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Given a Pick problem, the set of uniqueness U for the problem is
the largest subset of D" on which all solutions agree.

A Pick problem is called extremal if a solution F satisfying
[|F|loc = 1 exists and no solution G satisfying ||G||c < 1 exists.

If a Pick problem is not extremal, then U equals the original set of
nodes. If G is a solution and ||G||~ < 1, then for each polynomial
p satifying p(A;) = 0 for each i there exists € > 0 such that

16 + eplloo < 1.



Previous Results



Previous Results

i. In 1916, Pick gave necessary and sufficient conditions for a Pick
problem on ID to have a solution.



Previous Results

i. In 1916, Pick gave necessary and sufficient conditions for a Pick
problem on ID to have a solution.

ii. Pick also showed that a Pick problem on D has a unique
solution, U = D, if and only if the problem is extremal.



Previous Results

i. In 1916, Pick gave necessary and sufficient conditions for a Pick
problem on ID to have a solution.

ii. Pick also showed that a Pick problem on D has a unique
solution, U = D, if and only if the problem is extremal.

ili. In 1988 Agler gave necessary and sufficient conditions for a
Pick problem on D? to have a solution.



Previous Results

i. In 1916, Pick gave necessary and sufficient conditions for a Pick
problem on ID to have a solution.

ii. Pick also showed that a Pick problem on D has a unique
solution, U = D, if and only if the problem is extremal.

ili. In 1988 Agler gave necessary and sufficient conditions for a
Pick problem on D? to have a solution.

iv. A Pick problem on D? has a unique solution if and only if 7?7



Previous Results

i. In 1916, Pick gave necessary and sufficient conditions for a Pick
problem on ID to have a solution.

ii. Pick also showed that a Pick problem on D has a unique
solution, U = D, if and only if the problem is extremal.

ili. In 1988 Agler gave necessary and sufficient conditions for a
Pick problem on D? to have a solution.

iv. A Pick problem on D? has a unique solution if and only if 7?7



Inner varieties



Inner varieties

For n > 2, an irreducible algebraic variety V C C" is called inner if
it meets D" and exits D" through the n-torus, i.e. V N D" # () and
Vo) c T



Inner varieties

For n > 2, an irreducible algebraic variety V C C" is called inner if
it meets D" and exits D" through the n-torus, i.e. V N D" # () and
Vo) cT".

|w] c?




Example 1:



Example 1: The Pick problem on D" with data
(0,...,0),(1/2,...,1/2) e D" and 0,1/2 € D

is extremal. For V ={(z,...,z) : z € C} all solutions agree on the
set VND", ie. VND" C U. Furthermore, U =V ND".



Example 1: The Pick problem on D" with data
(0,...,0),(1/2,...,1/2) e D" and 0,1/2 € D

is extremal. For V ={(z,...,z) : z € C} all solutions agree on the
set VND", ie. VND" C U. Furthermore, U =V ND".

Theorem (Agler and McCarthy, 2001): Given an extremal Pick
problem on D?, there exists a 1-dimensional inner variety V with
the property that all solutions agree on V N D?. That is,

vnD? c U.
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Definition
A rational function F on D" is called inner if F is analytic on D"
and satisfies |F(7)| = 1 for almost every 7 € T".

Theorem (Pick, 1916): If F is a rational inner function on D
with fewer than N zeros on D and Aq, ..., Ay € D are distinct, then
the Pick problem with data Az, ..., Ay and F(A1),..., F(Ayn) has a
unique solution.

F is uniquely determined in S(DD) by it's values on Ag, ..., Ay. That
is, if G € S(D) satisfies G(\;) = F(\;) for each i, then G = F on
D.
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Definition
For a rational inner function F on D" define deg(F), the degree of
F. by letting F = 2 for q,r € Clz, ..., z,] relatively prime and let

deg(F) = deg(q).

Theorem 2: For N > 1 there exist points Ay, ..., Ayn € D" with
the following property. If F is a rational inner function on D" of
degree less than N, then the Pick problem with data Ag, ..., Ayn

and F(A1),..., F(Ann) has a unique solution.
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Generalization of Pick’s theorem to functions of one variable
on D",

Write (z,w) € D" with z =z and w = (2, ..., zp).

Theorem 3: Let F be a rational inner function of one variable of
degree less than N, F(z,w) = f(z). If

D={(z,w):z€D,w D"}

and A1, ..., Ay € D are distinct, then the Pick problem with data
A1, .., Ay and F(A1), ..., F(An) has a unique solution on D",
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A converse

Theorems 1, 2 and 3 give sufficient conditions for V N D" C U.
When is U C V N D"?

When do there exist F, G € S(D") such that F = G on V N D"
and F # G?
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The converse on D".

For a rational inner function F on D" and an algebraic variety

V C C" we write that n-deg(V') < n-deg(F) if F = % on D" with
q, r relatively prime, V = Z, and the degree of p is less than or
equal to the degree of g in each variable z;.

Theorem 4: Fix a rational inner function F on D". If an inner
variety V satisfies n-deg(V) < n-deg(F) and F has no singular
points on V NT", then there exists a rational inner function G on
D" that satisfies G = F on V ND"” and G # F on D".
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Corollary: For each 1 < k < n there exists a k-dimensional inner
variety V C C” and a Pick problem such that U =V NnD".
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Theorems 1-4 suggest the following definitions.

Pick sets

Definition

Fix a rational inner function F on D" and an algebraic variety

vV ccCn.

i. We say that V is a Pick set for F, if F is uniquely determined
on VN D" by its values on any N distinct points on V when N is
greater than the number of zeros of F on V N D".

il. We say that V is a strong Pick set for F, if F is uniquely
determined on D" by its values on V.
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Question: For a rational inner function F on D" which algebraic
varieties are weak/strong Pick sets for F?
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variety V' C C”, define deg/(F), the degree of F on V/, as the
number of zeros of F on V N D" counted with multiplicity.
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The number of zeros of F on V N D".

Definition

For a rational inner function F on D” and a 1-dimensional inner
variety V' C C”, define deg/(F), the degree of F on V/, as the
number of zeros of F on V N D" counted with multiplicity.

Theorem 5: If F is a rational inner function on D" with n-degree
d =(di,...,dn) and V is a 1-dimensional inner variety with rank
m = (my,...,m,), then

degy(f)<d-m=dim + ..+ dym,.

Furthermore, equality holds whenever f has no singular points on
VT



