The Pick problem on the polydisc and inner varieties

David Scheinker

April 2, 2011

$$\mathbb{D}^n = \{(z_1,...,z_n): |z_i| < 1\}$$
 $\mathbb{T}^n = \{(z_1,...,z_n): |z_i| = 1\}$

1

 $\mathbb{D}^n = \{(z_1, ..., z_n) : |z_i| < 1\} \qquad \mathbb{T}^n = \{(z_1, ..., z_n) : |z_i| = 1\}$

The **Schur class** of \mathbb{D}^n , $\mathcal{S}(\mathbb{D}^n)$, is the set of analytic functions F that map \mathbb{D}^n to $\overline{\mathbb{D}}$, i.e. satisfy

$$||F||_{\infty} = \sup_{\mathbb{D}^n} |F| \le 1.$$

$$\mathbb{D}^n = \{(z_1, ..., z_n) : |z_i| < 1\} \qquad \mathbb{T}^n = \{(z_1, ..., z_n) : |z_i| = 1\}$$

The **Schur class** of \mathbb{D}^n , $\mathcal{S}(\mathbb{D}^n)$, is the set of analytic functions F that map \mathbb{D}^n to $\overline{\mathbb{D}}$, i.e. satisfy

$$||F||_{\infty} = \sup_{\mathbb{D}^n} |F| \le 1.$$

The **Pick problem** on \mathbb{D}^n is to determine, given data $\lambda_1, ..., \lambda_N \in \mathbb{D}^n$ and $\omega_1, ..., \omega_N \in \mathbb{D}$, whether there exists a function $F \in \mathcal{S}(\mathbb{D}^n)$ that satisfies $F(\lambda_i) = \omega_i$ for each *i*.

$$\mathbb{D}^n = \{(z_1, ..., z_n) : |z_i| < 1\} \qquad \mathbb{T}^n = \{(z_1, ..., z_n) : |z_i| = 1\}$$

The **Schur class** of \mathbb{D}^n , $\mathcal{S}(\mathbb{D}^n)$, is the set of analytic functions F that map \mathbb{D}^n to $\overline{\mathbb{D}}$, i.e. satisfy

$$||F||_{\infty} = \sup_{\mathbb{D}^n} |F| \le 1.$$

The **Pick problem** on \mathbb{D}^n is to determine, given data $\lambda_1, ..., \lambda_N \in \mathbb{D}^n$ and $\omega_1, ..., \omega_N \in \mathbb{D}$, whether there exists a function $F \in \mathcal{S}(\mathbb{D}^n)$ that satisfies $F(\lambda_i) = \omega_i$ for each *i*.

Given a Pick problem, the set of uniqueness U for the problem is the largest subset of \mathbb{D}^n on which all solutions agree.

Given a Pick problem, the **set of uniqueness** U for the problem is the largest subset of \mathbb{D}^n on which all solutions agree.

A Pick problem is called **extremal** if a solution F satisfying $||F||_{\infty} = 1$ exists and no solution G satisfying $||G||_{\infty} < 1$ exists.

Given a Pick problem, the **set of uniqueness** U for the problem is the largest subset of \mathbb{D}^n on which all solutions agree.

A Pick problem is called **extremal** if a solution F satisfying $||F||_{\infty} = 1$ exists and no solution G satisfying $||G||_{\infty} < 1$ exists.

If a Pick problem is not extremal, then U equals the original set of nodes. If G is a solution and $||G||_{\infty} < 1$, then for each polynomial p satifying $p(\lambda_i) = 0$ for each i there exists $\epsilon > 0$ such that $||G + \epsilon p||_{\infty} < 1$.

i. In 1916, Pick gave necessary and sufficient conditions for a Pick problem on $\mathbb D$ to have a solution.

i. In 1916, Pick gave necessary and sufficient conditions for a Pick problem on $\mathbb D$ to have a solution.

ii. Pick also showed that a Pick problem on \mathbb{D} has a unique solution, $U = \mathbb{D}$, if and only if the problem is extremal.

i. In 1916, Pick gave necessary and sufficient conditions for a Pick problem on $\mathbb D$ to have a solution.

ii. Pick also showed that a Pick problem on \mathbb{D} has a unique solution, $U = \mathbb{D}$, if and only if the problem is extremal.

iii. In 1988 Agler gave necessary and sufficient conditions for a Pick problem on \mathbb{D}^2 to have a solution.

i. In 1916, Pick gave necessary and sufficient conditions for a Pick problem on $\mathbb D$ to have a solution.

ii. Pick also showed that a Pick problem on \mathbb{D} has a unique solution, $U = \mathbb{D}$, if and only if the problem is extremal.

iii. In 1988 Agler gave necessary and sufficient conditions for a Pick problem on \mathbb{D}^2 to have a solution.

iv. A Pick problem on \mathbb{D}^2 has a unique solution if and only if ???

i. In 1916, Pick gave necessary and sufficient conditions for a Pick problem on $\mathbb D$ to have a solution.

ii. Pick also showed that a Pick problem on \mathbb{D} has a unique solution, $U = \mathbb{D}$, if and only if the problem is extremal.

iii. In 1988 Agler gave necessary and sufficient conditions for a Pick problem on \mathbb{D}^2 to have a solution.

iv. A Pick problem on \mathbb{D}^2 has a unique solution if and only if ???

Inner varieties

Inner varieties

For $n \geq 2$, an irreducible algebraic variety $V \subset \mathbb{C}^n$ is called **inner** if it meets \mathbb{D}^n and exits \mathbb{D}^n through the n-torus, i.e. $V \cap \mathbb{D}^n \neq \emptyset$ and $V \cap \partial(\mathbb{D}^n) \subset \mathbb{T}^n$.

4

Inner varieties

For $n \geq 2$, an irreducible algebraic variety $V \subset \mathbb{C}^n$ is called **inner** if it meets \mathbb{D}^n and exits \mathbb{D}^n through the n-torus, i.e. $V \cap \mathbb{D}^n \neq \emptyset$ and $V \cap \partial(\mathbb{D}^n) \subset \mathbb{T}^n$.

Example 1:

Example 1: The Pick problem on \mathbb{D}^n with data

$$(0,...,0),(1/2,...,1/2)\in \mathbb{D}^n ext{ and } 0,1/2\in \mathbb{D}$$

is extremal. For $V = \{(z, ..., z) : z \in \mathbb{C}\}$ all solutions agree on the set $V \cap \mathbb{D}^n$, i.e. $V \cap \mathbb{D}^n \subset U$. Furthermore, $U = V \cap \mathbb{D}^n$.

Example 1: The Pick problem on \mathbb{D}^n with data

$$(0, ..., 0), (1/2, ..., 1/2) \in \mathbb{D}^n \text{ and } 0, 1/2 \in \mathbb{D}$$

is extremal. For $V = \{(z, ..., z) : z \in \mathbb{C}\}$ all solutions agree on the set $V \cap \mathbb{D}^n$, i.e. $V \cap \mathbb{D}^n \subset U$. Furthermore, $U = V \cap \mathbb{D}^n$.

Theorem (Agler and McCarthy, 2001): Given an extremal Pick problem on \mathbb{D}^2 , there exists a 1-dimensional inner variety V with the property that all solutions agree on $V \cap \mathbb{D}^2$. That is, $V \cap \mathbb{D}^2 \subset U$.

Definition

A rational function F on \mathbb{D}^n is called **inner** if F is analytic on \mathbb{D}^n and satisfies $|F(\tau)| = 1$ for almost every $\tau \in \mathbb{T}^n$.

Definition

A rational function F on \mathbb{D}^n is called **inner** if F is analytic on \mathbb{D}^n and satisfies $|F(\tau)| = 1$ for almost every $\tau \in \mathbb{T}^n$.

Theorem (Pick, 1916): If *F* is a rational inner function on \mathbb{D} with fewer than *N* zeros on \mathbb{D} and $\lambda_1, ..., \lambda_N \in \mathbb{D}$ are distinct, then the Pick problem with data $\lambda_1, ..., \lambda_N$ and $F(\lambda_1), ..., F(\lambda_N)$ has a unique solution.

Definition

A rational function F on \mathbb{D}^n is called **inner** if F is analytic on \mathbb{D}^n and satisfies $|F(\tau)| = 1$ for almost every $\tau \in \mathbb{T}^n$.

Theorem (Pick, 1916): If *F* is a rational inner function on \mathbb{D} with fewer than *N* zeros on \mathbb{D} and $\lambda_1, ..., \lambda_N \in \mathbb{D}$ are distinct, then the Pick problem with data $\lambda_1, ..., \lambda_N$ and $F(\lambda_1), ..., F(\lambda_N)$ has a unique solution.

F is uniquely determined in $\mathcal{S}(\mathbb{D})$ by it's values on $\lambda_1, ..., \lambda_N$. That is, if $G \in \mathcal{S}(\mathbb{D})$ satisfies $G(\lambda_i) = F(\lambda_i)$ for each *i*, then G = F on \mathbb{D} .

Generalization of Pick's theorem to $V \cap \mathbb{D}^n$.

Generalization of Pick's theorem to $V \cap \mathbb{D}^n$.

Theorem 1: Let $V \subset \mathbb{C}^n$ be an irreducible 1-dimensional inner variety. If F is a rational inner function on \mathbb{D}^n with fewer than N zeros on $V \cap \mathbb{D}^n$ and $\lambda_1, ..., \lambda_N \in V \cap \mathbb{D}^n$ are distinct, then all solutions to the Pick problem with data $\lambda_1, ..., \lambda_N$ and $F(\lambda_1), ..., F(\lambda_N)$ agree on $V \cap \mathbb{D}^n$.

Generalization of Pick's theorem to $V \cap \mathbb{D}^n$.

Theorem 1: Let $V \subset \mathbb{C}^n$ be an irreducible 1-dimensional inner variety. If F is a rational inner function on \mathbb{D}^n with fewer than N zeros on $V \cap \mathbb{D}^n$ and $\lambda_1, ..., \lambda_N \in V \cap \mathbb{D}^n$ are distinct, then all solutions to the Pick problem with data $\lambda_1, ..., \lambda_N$ and $F(\lambda_1), ..., F(\lambda_N)$ agree on $V \cap \mathbb{D}^n$.

For $a, b \neq 0$ with |a| + |b| < 1, the rational function defined by the following formula is inner on \mathbb{D}^2 and has 5 zeros on $\mathcal{N} \cap \mathbb{D}^2$.

$$F(z,w) = \frac{zw + az + bw}{1 + \overline{b}z + \overline{a}w}$$

For $a, b \neq 0$ with |a| + |b| < 1, the rational function defined by the following formula is inner on \mathbb{D}^2 and has 5 zeros on $\mathcal{N} \cap \mathbb{D}^2$.

$$F(z,w) = rac{zw+az+bw}{1+ar{b}z+ar{a}w}$$

For any $\lambda_1, ..., \lambda_6 \in \mathcal{N} \cap \mathbb{D}^2$, Theorem 1 states that every solution to the Pick problem with data $\lambda_1, ..., \lambda_6$ and $F(\lambda_1), ..., F(\lambda_6)$ agrees with F on $\mathcal{N} \cap \mathbb{D}^2$.

For $a, b \neq 0$ with |a| + |b| < 1, the rational function defined by the following formula is inner on \mathbb{D}^2 and has 5 zeros on $\mathcal{N} \cap \mathbb{D}^2$.

$$F(z,w) = rac{zw+az+bw}{1+ar{b}z+ar{a}w}$$

For any $\lambda_1, ..., \lambda_6 \in \mathcal{N} \cap \mathbb{D}^2$, Theorem 1 states that every solution to the Pick problem with data $\lambda_1, ..., \lambda_6$ and $F(\lambda_1), ..., F(\lambda_6)$ agrees with F on $\mathcal{N} \cap \mathbb{D}^2$.

9

Generalization of Pick's theorem to \mathbb{D}^n using degree.

Generalization of Pick's theorem to \mathbb{D}^n using degree.

Definition

For a rational inner function F on \mathbb{D}^n define deg(F), the **degree** of F, by letting $F = \frac{q}{r}$ for $q, r \in \mathbb{C}[z_1, ..., z_n]$ relatively prime and let deg(F) = deg(q).

Generalization of Pick's theorem to \mathbb{D}^n using degree.

Definition

For a rational inner function F on \mathbb{D}^n define deg(F), the **degree** of F, by letting $F = \frac{q}{r}$ for $q, r \in \mathbb{C}[z_1, ..., z_n]$ relatively prime and let deg(F) = deg(q).

Theorem 2: For $N \ge 1$ there exist points $\lambda_1, ..., \lambda_{N^n} \in \mathbb{D}^n$ with the following property. If F is a rational inner function on \mathbb{D}^n of degree less than N, then the Pick problem with data $\lambda_1, ..., \lambda_{N^n}$ and $F(\lambda_1), ..., F(\lambda_{N^n})$ has a unique solution.

Generalization of Pick's theorem to functions of one variable on \mathbb{D}^n .

Generalization of Pick's theorem to functions of one variable on \mathbb{D}^n .

Write $(z, w) \in \mathbb{D}^n$ with $z = z_1$ and $w = (z_2, ..., z_n)$.

Generalization of Pick's theorem to functions of one variable on \mathbb{D}^n .

Write $(z, w) \in \mathbb{D}^n$ with $z = z_1$ and $w = (z_2, ..., z_n)$.

Theorem 3: Let *F* be a rational inner function of one variable of degree less than *N*, F(z, w) = f(z). If

$$D = \{(z, w_0) : z \in \mathbb{D}, w_0 \in \mathbb{D}^{n-1}\}$$

and $\lambda_1, ..., \lambda_N \in D$ are distinct, then the Pick problem with data $\lambda_1, ..., \lambda_N$ and $F(\lambda_1), ..., F(\lambda_N)$ has a unique solution on \mathbb{D}^n .

11

A converse

A converse

Theorems 1, 2 and 3 give sufficient conditions for $V \cap \mathbb{D}^n \subset U$.

A converse

Theorems 1, 2 and 3 give sufficient conditions for $V \cap \mathbb{D}^n \subset U$. When is $U \subset V \cap \mathbb{D}^n$?

A converse

Theorems 1, 2 and 3 give sufficient conditions for $V \cap \mathbb{D}^n \subset U$. When is $U \subset V \cap \mathbb{D}^n$?

When do there exist $F, G \in \mathcal{S}(\mathbb{D}^n)$ such that F = G on $V \cap \mathbb{D}^n$ and $F \neq G$? The converse on \mathbb{D}^n .

The converse on \mathbb{D}^n .

For a rational inner function F on \mathbb{D}^n and an algebraic variety $V \subset \mathbb{C}^n$ we write that $n \operatorname{-deg}(V) \leq n \operatorname{-deg}(F)$ if $F = \frac{q}{r}$ on \mathbb{D}^n with q, r relatively prime, $V = Z_p$ and the degree of p is less than or equal to the degree of q in each variable z_i .

The converse on \mathbb{D}^n .

For a rational inner function F on \mathbb{D}^n and an algebraic variety $V \subset \mathbb{C}^n$ we write that $n\text{-deg}(V) \leq n\text{-deg}(F)$ if $F = \frac{q}{r}$ on \mathbb{D}^n with q, r relatively prime, $V = Z_p$ and the degree of p is less than or equal to the degree of q in each variable z_i .

Theorem 4: Fix a rational inner function F on \mathbb{D}^n . If an inner variety V satisfies n-deg $(V) \le n$ -deg(F) and F has no singular points on $V \cap \mathbb{T}^n$, then there exists a rational inner function G on \mathbb{D}^n that satisfies G = F on $V \cap \mathbb{D}^n$ and $G \ne F$ on \mathbb{D}^n .

Corollary: For each $1 \le k \le n$ there exists a k-dimensional inner variety $V \subset \mathbb{C}^n$ and a Pick problem such that $U = V \cap \mathbb{D}^n$.

Pick sets

Pick sets

Definition

Fix a rational inner function F on \mathbb{D}^n and an algebraic variety $V \subset \mathbb{C}^n$.

i. We say that V is a **Pick set** for F, if F is uniquely determined on $V \cap \mathbb{D}^n$ by its values on any N distinct points on V when N is greater than the number of zeros of F on $V \cap \mathbb{D}^n$.

Pick sets

Definition

Fix a rational inner function F on \mathbb{D}^n and an algebraic variety $V \subset \mathbb{C}^n$.

i. We say that V is a **Pick set** for F, if F is uniquely determined on $V \cap \mathbb{D}^n$ by its values on any N distinct points on V when N is greater than the number of zeros of F on $V \cap \mathbb{D}^n$.

ii. We say that V is a **strong Pick set** for F, if F is uniquely determined on \mathbb{D}^n by its values on V.

- i. Each irreducible 1-dimensional inner variety $V \subset \mathbb{C}^n$ is a Pick set for each rational inner function F on \mathbb{D}^n .
- **ii.** Any variety containing the points $\lambda_1, ..., \lambda_{N^n} \in \mathbb{D}^n$ constructed in Theorem 2 is a strong Pick set for each rational inner function F on \mathbb{D}^n of degree less than N.

ii. Any variety containing the points $\lambda_1, ..., \lambda_{N^n} \in \mathbb{D}^n$ constructed in Theorem 2 is a strong Pick set for each rational inner function F on \mathbb{D}^n of degree less than N.

iii. The analytic disc $D = \{(z, w_o) : z \in \mathbb{D}, w_0 \in \mathbb{D}^{n-1}\}$ is a strong Pick set for each rational inner function F of one variable only.

ii. Any variety containing the points $\lambda_1, ..., \lambda_{N^n} \in \mathbb{D}^n$ constructed in Theorem 2 is a strong Pick set for each rational inner function F on \mathbb{D}^n of degree less than N.

iii. The analytic disc $D = \{(z, w_o) : z \in \mathbb{D}, w_0 \in \mathbb{D}^{n-1}\}$ is a strong Pick set for each rational inner function F of one variable only.

iii. No inner variety V is a strong Pick set for a rational inner function F satisfying $n-\deg(F) \ge n-\deg(V)$.

ii. Any variety containing the points $\lambda_1, ..., \lambda_{N^n} \in \mathbb{D}^n$ constructed in Theorem 2 is a strong Pick set for each rational inner function F on \mathbb{D}^n of degree less than N.

iii. The analytic disc $D = \{(z, w_o) : z \in \mathbb{D}, w_0 \in \mathbb{D}^{n-1}\}$ is a strong Pick set for each rational inner function F of one variable only.

iii. No inner variety V is a strong Pick set for a rational inner function F satisfying $n-\deg(F) \ge n-\deg(V)$.

Question: For a rational inner function F on \mathbb{D}^n which algebraic varieties are weak/strong Pick sets for F?

The number of zeros of F on $V \cap \mathbb{D}^n$.

The number of zeros of F on $V \cap \mathbb{D}^n$.

Definition

For a rational inner function F on \mathbb{D}^n and a 1-dimensional inner variety $V \subset \mathbb{C}^n$, define $\deg_V(F)$, the **degree of** F **on** V, as the number of zeros of F on $V \cap \mathbb{D}^n$ counted with multiplicity.

The number of zeros of F on $V \cap \mathbb{D}^n$.

Definition

For a rational inner function F on \mathbb{D}^n and a 1-dimensional inner variety $V \subset \mathbb{C}^n$, define $\deg_V(F)$, the **degree of** F **on** V, as the number of zeros of F on $V \cap \mathbb{D}^n$ counted with multiplicity.

Theorem 5: If *F* is a rational inner function on \mathbb{D}^n with *n*-degree $d = (d_1, ..., d_n)$ and *V* is a 1-dimensional inner variety with rank $m = (m_1, ..., m_n)$, then

$$\deg_V(f) \leq d \cdot m = d_1m_1 + \ldots + d_nm_n.$$

Furthermore, equality holds whenever f has no singular points on $V \cap \mathbb{T}^n$.