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Dn = {(z1, ..., zn) : |zi | < 1} Tn = {(z1, ..., zn) : |zi | = 1}

The Schur class of Dn, S(Dn), is the set of analytic functions F
that map Dn to D, i.e. satisfy

||F ||∞ = sup
Dn
|F | ≤ 1.

The Pick problem on Dn is to determine, given data
λ1, ..., λN ∈ Dn and ω1, ..., ωN ∈ D, whether there exists a function
F ∈ S(Dn) that satisfies F (λi ) = ωi for each i .
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Given a Pick problem, the set of uniqueness U for the problem is
the largest subset of Dn on which all solutions agree.

A Pick problem is called extremal if a solution F satisfying
||F ||∞ = 1 exists and no solution G satisfying ||G ||∞ < 1 exists.

If a Pick problem is not extremal, then U equals the original set of
nodes. If G is a solution and ||G ||∞ < 1, then for each polynomial
p satifying p(λi ) = 0 for each i there exists ε > 0 such that
||G + εp||∞ < 1.
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Previous Results

i. In 1916, Pick gave necessary and sufficient conditions for a Pick
problem on D to have a solution.

ii. Pick also showed that a Pick problem on D has a unique
solution, U = D, if and only if the problem is extremal.

iii. In 1988 Agler gave necessary and sufficient conditions for a
Pick problem on D2 to have a solution.

iv. A Pick problem on D2 has a unique solution if and only if ???
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Inner varieties

For n ≥ 2, an irreducible algebraic variety V ⊂ Cn is called inner if
it meets Dn and exits Dn through the n-torus, i.e. V ∩ Dn 6= ∅ and
V ∩ ∂(Dn) ⊂ Tn.



4

Inner varieties

For n ≥ 2, an irreducible algebraic variety V ⊂ Cn is called inner if
it meets Dn and exits Dn through the n-torus, i.e. V ∩ Dn 6= ∅ and
V ∩ ∂(Dn) ⊂ Tn.



4

Inner varieties

For n ≥ 2, an irreducible algebraic variety V ⊂ Cn is called inner if
it meets Dn and exits Dn through the n-torus, i.e. V ∩ Dn 6= ∅ and
V ∩ ∂(Dn) ⊂ Tn.



5

Example 1:

The Pick problem on Dn with data

(0, ..., 0), (1/2, ..., 1/2) ∈ Dn and 0, 1/2 ∈ D

is extremal. For V = {(z , ..., z) : z ∈ C} all solutions agree on the
set V ∩ Dn, i.e. V ∩ Dn ⊂ U. Furthermore, U = V ∩ Dn.

Theorem (Agler and McCarthy, 2001): Given an extremal Pick
problem on D2, there exists a 1-dimensional inner variety V with
the property that all solutions agree on V ∩ D2. That is,
V ∩ D2 ⊂ U.
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A theorem by Pick

Definition
A rational function F on Dn is called inner if F is analytic on Dn

and satisfies |F (τ)| = 1 for almost every τ ∈ Tn.

Theorem (Pick, 1916): If F is a rational inner function on D
with fewer than N zeros on D and λ1, ..., λN ∈ D are distinct, then
the Pick problem with data λ1, ..., λN and F (λ1), ...,F (λN) has a
unique solution.

F is uniquely determined in S(D) by it’s values on λ1, ..., λN . That
is, if G ∈ S(D) satisfies G (λi ) = F (λi ) for each i , then G = F on
D.
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Generalization of Pick’s theorem to V ∩ Dn.

Theorem 1: Let V ⊂ Cn be an irreducible 1-dimensional inner
variety. If F is a rational inner function on Dn with fewer than N
zeros on V ∩ Dn and λ1, ..., λN ∈ V ∩ Dn are distinct, then all
solutions to the Pick problem with data λ1, ..., λN and
F (λ1), ...,F (λN) agree on V ∩ Dn.
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Example 2: Let N ⊂ C2 denote the Niel Parabola,
{(z ,w) : z3 − w2 = 0}.

For a, b 6= 0 with |a|+ |b| < 1, the rational function defined by the
following formula is inner on D2 and has 5 zeros on N ∩ D2.

F (z ,w) =
zw + az + bw

1 + b̄z + āw

For any λ1, ..., λ6 ∈ N ∩ D2, Theorem 1 states that every solution
to the Pick problem with data λ1, ..., λ6 and F (λ1), ...,F (λ6)
agrees with F on N ∩ D2.
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Generalization of Pick’s theorem to Dn using degree.

Definition
For a rational inner function F on Dn define deg(F ), the degree of
F , by letting F = q

r for q, r ∈ C[z1, ..., zn] relatively prime and let
deg(F ) = deg(q).

Theorem 2: For N ≥ 1 there exist points λ1, ..., λNn ∈ Dn with
the following property. If F is a rational inner function on Dn of
degree less than N, then the Pick problem with data λ1, ..., λNn

and F (λ1), ...,F (λNn) has a unique solution.
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Generalization of Pick’s theorem to functions of one variable
on Dn.

Write (z ,w) ∈ Dn with z = z1 and w = (z2, ..., zn).

Theorem 3: Let F be a rational inner function of one variable of
degree less than N, F (z ,w) = f (z). If

D = {(z ,w0) : z ∈ D,w0 ∈ Dn−1}

and λ1, ..., λN ∈ D are distinct, then the Pick problem with data
λ1, ..., λN and F (λ1), ...,F (λN) has a unique solution on Dn.
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A converse

Theorems 1, 2 and 3 give sufficient conditions for V ∩ Dn ⊂ U.

When is U ⊂ V ∩ Dn?

When do there exist F ,G ∈ S(Dn) such that F = G on V ∩ Dn

and F 6= G?
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The converse on Dn.

For a rational inner function F on Dn and an algebraic variety
V ⊂ Cn we write that n-deg(V ) ≤ n-deg(F ) if F = q

r on Dn with
q, r relatively prime, V = Zp and the degree of p is less than or
equal to the degree of q in each variable zi .

Theorem 4: Fix a rational inner function F on Dn. If an inner
variety V satisfies n-deg(V ) ≤ n-deg(F ) and F has no singular
points on V ∩ Tn, then there exists a rational inner function G on
Dn that satisfies G = F on V ∩ Dn and G 6= F on Dn.
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Corollary: For each 1 ≤ k ≤ n there exists a k-dimensional inner
variety V ⊂ Cn and a Pick problem such that U = V ∩ Dn.
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Theorems 1-4 suggest the following definitions.

Pick sets

Definition
Fix a rational inner function F on Dn and an algebraic variety
V ⊂ Cn.
i. We say that V is a Pick set for F , if F is uniquely determined
on V ∩ Dn by its values on any N distinct points on V when N is
greater than the number of zeros of F on V ∩ Dn.

ii. We say that V is a strong Pick set for F , if F is uniquely
determined on Dn by its values on V .
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i. Each irreducible 1-dimensional inner variety V ⊂ Cn is a Pick
set for each rational inner function F on Dn.

ii. Any variety containing the points λ1, ..., λNn ∈ Dn constructed
in Theorem 2 is a strong Pick set for each rational inner function
F on Dn of degree less than N.

iii. The analytic disc D = {(z ,wo) : z ∈ D , w0 ∈ Dn−1} is a strong
Pick set for each rational inner function F of one variable only.

iii. No inner variety V is a strong Pick set for a rational inner
function F satisfying n-deg(F ) ≥ n-deg(V ).
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Question: For a rational inner function F on Dn which algebraic
varieties are weak/strong Pick sets for F?
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The number of zeros of F on V ∩ Dn.

Definition
For a rational inner function F on Dn and a 1-dimensional inner
variety V ⊂ Cn, define degV (F ), the degree of F on V , as the
number of zeros of F on V ∩ Dn counted with multiplicity.

Theorem 5: If F is a rational inner function on Dn with n-degree
d = (d1, ..., dn) and V is a 1-dimensional inner variety with rank
m = (m1, ...,mn), then

degV (f ) ≤ d ·m = d1m1 + ...+ dnmn.

Furthermore, equality holds whenever f has no singular points on
V ∩ Tn.
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