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An almost periodic (AP for short) polynomial by definition is a
linear combination of the exponential functions eλ(x) =: e iλx with
real parameters λ over the complex field C; the set of all AP
polynomials is denoted APP . In other words, f ∈ APP if and only
if it is a finite sum of the form

∑

j

cjeλj
(1)

for some λj ∈ R, cj ∈ C.
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An almost periodic (AP for short) polynomial by definition is a
linear combination of the exponential functions eλ(x) =: e iλx with
real parameters λ over the complex field C; the set of all AP
polynomials is denoted APP . In other words, f ∈ APP if and only
if it is a finite sum of the form

∑

j

cjeλj
(1)

for some λj ∈ R, cj ∈ C. The Wiener norm of f given by (1) is

‖f ‖W =
∑

j

|cj | ; (2)

the closure of APP with respect to this norm is the algebra APW
of Wiener AP functions. It consists of all series (1), finite or not,
for which the right hand side of (2) is finite.
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An almost periodic (AP for short) polynomial by definition is a
linear combination of the exponential functions eλ(x) =: e iλx with
real parameters λ over the complex field C; the set of all AP
polynomials is denoted APP . In other words, f ∈ APP if and only
if it is a finite sum of the form

∑

j

cjeλj
(1)

for some λj ∈ R, cj ∈ C. The Wiener norm of f given by (1) is

‖f ‖W =
∑

j

|cj | ; (2)

the closure of APP with respect to this norm is the algebra APW
of Wiener AP functions. It consists of all series (1), finite or not,
for which the right hand side of (2) is finite. On the other hand,
the closure of APP with respect to the usual uniform norm is the
algebra AP of Bohr AP functions.
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According to Bohr mean value theorem, for every f ∈ AP there
exists

M(f ) := lim
T→∞

1

2T

∫ T

−T

f (x) dx ,

called the mean value of f . Consequently, for all λ ∈ R there exist
the mean values of e−λf , denoted f̂ (λ) and called the Bohr-Fourier
coefficients of f . As it happens, at most countably many of them
are different from zero. The respective values of λ form the
Bohr-Fourier spectrum of f :

Ω(f ) = {λ ∈ R : f̂ (λ) 6= 0}.

Of course, for an APP or APW function f given by (1), cj = f̂ (λj ).
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If f ∈ AP is bounded away from zero, then it is actually invertible
in AP . Moreover, then there exists (obviously, unique) real κ such
that a continuous branch of log(e−κf ) also belongs to AP . This κ
is called the mean motion of f , and in what follows will be denoted
κ(f ).
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If f ∈ AP is bounded away from zero, then it is actually invertible
in AP . Moreover, then there exists (obviously, unique) real κ such
that a continuous branch of log(e−κf ) also belongs to AP . This κ
is called the mean motion of f , and in what follows will be denoted
κ(f ).
We denote by AP+ (APW+, APP+) the subalgebra of AP (resp.,
APW , APP) consisting of the functions f with Ω(f ) ⊂ R+; the
classes AP−, APW−, APP− are defined in a similar way. Finally,
relations F ∈ X for the above mentioned functional classes X in
the case of a vector or a matrix function F are understood
entry-wise, and Ω(F ) will denote the union of the Bohr-Fourier
spectra of its entries.

Ilya M. Spitkovsky Toeplitz operators with AP symbols



A (right) AP factorization of an n × n matrix function G is its
representation in the form

G = G−ΛG
−1
+ , (3)

where G±1
+ ∈ AP+, G±1

− ∈ AP− and the middle factor Λ is
diagonal, with the diagonal entries of the form eλj

(cf.
[KarlSpit89,BKS]; see [BKS1] also for the motivations behind the
notion of AP factorization and its various applications).
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A (right) AP factorization of an n × n matrix function G is its
representation in the form

G = G−ΛG
−1
+ , (3)

where G±1
+ ∈ AP+, G±1

− ∈ AP− and the middle factor Λ is
diagonal, with the diagonal entries of the form eλj

(cf.
[KarlSpit89,BKS]; see [BKS1] also for the motivations behind the
notion of AP factorization and its various applications). The
exponents λj are defined uniquely (up to the order) whenever the
factorization (3) exists, and are called the AP indices of G . The
factorization (3) is canonical provided that all its AP indices are
equal to zero, in which case the middle factor Λ can be dropped.
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We say that (3) is an APW factorization of G if in fact
G±1
+ ∈ APW+, G±1

− ∈ APW− . Obviously, the matrix function G
must lie in AP (APW ) and be invertible there in order to admit an
AP (resp, APW ) factorization (3). Moreover, the sum of its partial
AP indices is nothing but κ(detG ). Since the algebra APW is
inverse closed, an AP factorization (3) of G ∈ APW is actually its
APW factorization as soon as at least one of the factors G±,G

−1
±

belongs to APW . Furthermore, a canonical AP factorization of an
APW matrix function, if it exists, is automatically its APW
factorization[Spit89], Theorem 1 (see also Section 9.4 in [BKS]).
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The factorization (3) is closely related to the Riemann-Hilbert
problem

Gψ+ = ψ−, (4)

in which the unknown vector-functions ψ± are analytic in the
upper/lower half plane C

±, respectively. On the one hand, the
description of all solutions to (4) can be given in terms of (3). On
the other hand, the existence criterion and formulas for the factors
in (3) can be given in terms of special solutions to (4).
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The factorization (3) is closely related to the Riemann-Hilbert
problem

Gψ+ = ψ−, (4)

in which the unknown vector-functions ψ± are analytic in the
upper/lower half plane C

±, respectively. On the one hand, the
description of all solutions to (4) can be given in terms of (3). On
the other hand, the existence criterion and formulas for the factors
in (3) can be given in terms of special solutions to (4).
Recall that the set of functions φ = (φ1, . . . , φn) satisfies the
corona condition (notation: φ ∈ CP(D)) if φj are analytic and
bounded on D, and

inf
z∈D

max
j=1,...,n

|φj (z)| > 0. (5)

In what follows, CP(C±) is abbreviated to CP±.
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Theorem
Let G be a 2× 2 invertible APW matrix function with detG
having zero mean motion. Then G admits an APW factorization if
and only if problem (4) has an APW solution with ψ− ∈ CP− and
ψ+ ∈ e−δCP

+ for some δ ≥ 0. If this is the case, then the partial
AP indices of G equal ±δ and the factors G± can be chosen in
such a way that e−δψ

+ and ψ− form the first column of G+ and
G−, respectively.
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Because of Theorem 1, the pairs of functions in APW ∩ CP± are
of special interest to us. In particular, the following simple
observation is useful.

Lemma
Let φ1, φ2 ∈ APW±. Then for (φ1, φ2) ∈ CP± it is necessary (and
if one of these functions is a monomial, also sufficient) that
0 ∈ Ω(φ1) ∪ Ω(φ2). Moreover, in the latter case actually
(φ1, φ2) ∈ CP(D) for any set D ⊂ C the projection of which onto
the y-axis is bounded from below/above.
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Suppose the Bohr-Fourier spectrum of f ∈ AP is bounded below.
Then f admits (a unique) analytic extension into the upper half
plane; with a slight abuse of notation, we denote the extended
function by the same symbol f . If f is not identically zero, then for
all but countably many values of y ∈ R+ the mean motion κ(fy ) of
the function fy (x) =: f (x + iy) will exist, and moreover (see
[Levin], Chapter II.6)

lim
y→+∞

κ(fy ) = − inf Ω(f ). (6)

1Due to a standard convention inf ∅ = +∞, equality (7) holds in a trivial
way when one or both of the functions f , g is identically zero.
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Suppose the Bohr-Fourier spectrum of f ∈ AP is bounded below.
Then f admits (a unique) analytic extension into the upper half
plane; with a slight abuse of notation, we denote the extended
function by the same symbol f . If f is not identically zero, then for
all but countably many values of y ∈ R+ the mean motion κ(fy ) of
the function fy (x) =: f (x + iy) will exist, and moreover (see
[Levin], Chapter II.6)

lim
y→+∞

κ(fy ) = − inf Ω(f ). (6)

Since the mean motion of the product equals the sum of the mean
motions, (6) implies that 1

inf Ω(fg) = inf Ω(f ) + inf Ω(g) (7)

whenever inf Ω(f ), inf Ω(g) > −∞.

1Due to a standard convention inf ∅ = +∞, equality (7) holds in a trivial
way when one or both of the functions f , g is identically zero.
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Note that (7) is obvious when both inf Ω(f ) and inf Ω(g) are
attained, and fails if either of them is allowed to equal −∞. An
easy counterexample is delivered by any f invertible in AP− and
g = f −1. In particular, f = 1 + ce−1 with |c | < 1 will do.
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Note that (7) is obvious when both inf Ω(f ) and inf Ω(g) are
attained, and fails if either of them is allowed to equal −∞. An
easy counterexample is delivered by any f invertible in AP− and
g = f −1. In particular, f = 1 + ce−1 with |c | < 1 will do.
Passing to complex conjugates, it is easy to derive from (7) that

supΩ(fg) = supΩ(f ) + supΩ(g)

provided that supΩ(f ), supΩ(g) < +∞. (8)
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Theorem
Let G be a 2× 2 invertible APW matrix function with detG
having zero mean motion and Ω(G ) bounded below. Suppose that
problem (4) has an APW solution (ψ+, ψ−) in which at least one
component of ψ− is a monomial and the set Ω(ψ−) contains its
supremum δ−. Denote δ+ = inf Ω(ψ+).

(i) If δ+ ∈ Ω(ψ+), then G admits an APW factorization, and its
partial AP indices equal ±(δ+ − δ−).

(ii) If δ+ /∈ Ω(ψ+), then G is not AP factorable.
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Multiplying both ψ+ and ψ− by e−δ
−

, we may without loss of
generality suppose that δ− = 0, and therefore δ+ − δ− = δ+.
According to Lemma 2 (and in the notation of its proof),
ψ− ∈ CP(C− ∪ Sa) for any a > 0.
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Multiplying both ψ+ and ψ− by e−δ
−

, we may without loss of
generality suppose that δ− = 0, and therefore δ+ − δ− = δ+.
According to Lemma 2 (and in the notation of its proof),
ψ− ∈ CP(C− ∪ Sa) for any a > 0.
(i) Observe that all the entries of G and ψ± are entire functions.
So, (4) holds not only on R but actually everywhere on C. Since G
is bounded on Sa, from ψ− ∈ CP(C− ∪ Sa) it follows that
ψ+ ∈ CP(Sa). Equivalently, e−δ+ψ

+ ∈ CP(Sa).
On the other hand, at least one of the functions e−δ+ψ

+

j ∈ APW+

(j = 1, 2) has a non-zero mean value. Therefore, this function is
bounded away from zero on C

+ \ Sa for a large enough. This
proves that e−δ+ψ

+ ∈ CP+. By Theorem 1. G is APW factorable
with partial AP indices equal ±δ+.
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Multiplying both ψ+ and ψ− by e−δ
−

, we may without loss of
generality suppose that δ− = 0, and therefore δ+ − δ− = δ+.
According to Lemma 2 (and in the notation of its proof),
ψ− ∈ CP(C− ∪ Sa) for any a > 0.
(i) Observe that all the entries of G and ψ± are entire functions.
So, (4) holds not only on R but actually everywhere on C. Since G
is bounded on Sa, from ψ− ∈ CP(C− ∪ Sa) it follows that
ψ+ ∈ CP(Sa). Equivalently, e−δ+ψ

+ ∈ CP(Sa).
On the other hand, at least one of the functions e−δ+ψ

+

j ∈ APW+

(j = 1, 2) has a non-zero mean value. Therefore, this function is
bounded away from zero on C

+ \ Sa for a large enough. This
proves that e−δ+ψ

+ ∈ CP+. By Theorem 1. G is APW factorable
with partial AP indices equal ±δ+.
(ii) If G admits a canonical AP factorization, then ψ+ can be used
as a respective column of the factor G+ for some of them.
Consequently, ψ+ ∈ CP+, and 0 ∈ Ω(ψ+

1
) ∪ Ω(ψ+

2
) by Lemma 2.
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On the other hand, if an AP factorization of G is non-canonical,
its partial AP indices are δ(> 0) and −δ, and according to [CDKS]

ψ+ = fg+

1
, ψ− = e−δfg

−

1
. (9)

Here g±

1
are matching columns of G± from the factorization (3),

while f is an AP function with Ω(f ) ⊂ [0, δ]. Note that Ω(G−) is
bounded from below along with Ω(G ), and obviously bounded
from above by 0. Consequently, formulas (7) and (8) are applicable
to the equalities

ψ−

j = e−δfg
−

1j ,

obtained by entry-wise rewriting the second part of (9).
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Choosing the value j = 1, 2 for which ψ−

j is a monomial, we
conclude that

supΩ(f ) + supΩ(g−

1j ) = inf Ω(f ) + inf Ω(g−

1j ).

Therefore, f is a monomial as well. Since g−

1
∈ CP− and δ− = 0,

the second equation in (9) implies that f = eδ. But then
e−δψ

+ = g+

1
according to the first equation in (9), and therefore

lies in CP+. In particular (Lemma 2 again), δ = minΩ(ψ+).
Note that the proof of sufficiency is based on ideas similar to those
of [Camara-Diogo’08].
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Let

G =

[
e−λ 0
g eλ

]
, (10)

where

g = c−1e−σ+T+eµ, 0 < σ, µ < λ, T+ ∈ APW with inf Ω(T+) = 0.
(11)

Using the notation µ+ σ = κ and n =
⌈
λ
κ

⌉
, suppose that

nτ ≤ min{µ, λ− nκ} (12)

and
τ ∈ Ω(T+) if nτ > λ− nκ− σ, (13)

where τ = supΩ(T+).

Ilya M. Spitkovsky Toeplitz operators with AP symbols



Theorem
Under the conditions listed, the matrix function G given by (10) is
APW factorable if 0 ∈ Ω(T+) and not AP factorable otherwise. In
the former case, the partial AP indices of G equal ±δ with δ
determined by

δ =

{
min{σ, (n + 1)κ− λ} if nτ ≤ λ− nκ− σ,

min{λ− nκ, µ} − nτ if nτ > λ− nκ− σ.
(14)
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Let now g be given by

g = b + eαT+ (15)

with b being a binomial c−1e−σ + c1eµ , and

µ < α < λ ≤ α+ σ, inf Ω(T+) = 0. (16)
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Let now g be given by

g = b + eαT+ (15)

with b being a binomial c−1e−σ + c1eµ , and

µ < α < λ ≤ α+ σ, inf Ω(T+) = 0. (16)

Theorem
Let (15)–(16) hold. Denote ξ := inf(Ω(T+) \ {0}). The matrix
function (10) is not AP factorable if either

α < µ+ κn, M(T+) = 0, (17)

or
µ+ κn = α, M(T+) = −c1c

n (18)

while λ− α > ξ /∈ Ω(T+).
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Otherwise, G is APW factorable, with partial AP indices ±δ
computed according to the rule:

δ =

{
min{µ, α − κn} if λ− κn ≤ σ,

min{κ(n + 1)− λ, α+ σ − λ} if λ− κn ≥ σ
(19)

when either µ+ κn < α, or

µ+ κn = α and M(T+) 6= −c1c
n, (20)

or
µ+ κn > α and M(T+) 6= 0; (21)
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δ = min{λ− κn, σ} (22)

when (18) holds while ξ ≥ λ− α, and

δ =

{
α+ ξ − κn if λ− κn ≤ σ,

α+ σ + ξ − λ if λ− κn ≥ σ
(23)

when (18) holds with Ω(T+) 3 ξ < λ− α.
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Finally, let in (10) g be a trinomial

g = c−1e−σ + c1eµ + c2eα (24)

with non-zero coefficients cj and σ, µ, α ∈ (0, λ), µ < α. This
may be thought of as a particular case of (15), with T+ being
constant. Our additional conditions on the exponents will be
different however. Since the case α+ σ ≥ λ in (24) has been
studied earlier ([QRS], see also [BKS], Section 15 for the
systematic exposition and a recent [KarlSpit10] for more
constructive treatment), it is natural to concentrate on the case

α+ σ ≤ λ. (25)
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We may also suppose that

ν := 2µ + σ − α 6= 0,

because otherwise α− µ = µ+ σ, and the distances between the
points of Ω(g) are commensurable — a well known situation (see
e.g., Section 14.4 in [BKS]). We will, however, impose more
restrictive conditions

2κ ≥ λ, ν > 0, (26)

along with
kν < α− µ, (27)

where
k =

⌈σ
ν

⌉
− 1. (28)

Note that we could allow the equality in (27) but this would again
yield the commensurability of the distances between the points of
Ω(g) and therefore is not interesting.
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Theorem
Let G be of the form (10) with g given by (24) under conditions
(25)–(27). Then G admits an APW factorization, and its partial
AP indices equal ±δ with δ given by

δ = min{2κ − λ, σ − kν, λ− (α + σ), kν + 2µ − α}. (29)
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