Boundaries of Holomorphic Chains within Vector Bundles over Complex Projective Space

Ronald A. Walker
Penn State - Harrisburg

March 19, 2011

An analytic variety (or analytic set) in a complex manifold is a set locally defined as the common vanishing set of analytic functions
e.g., $\mathbb{V}\left(w-e^{z}\right)$ in \mathbb{C}^{2}

An analytic variety (or analytic set) in a complex manifold is a set locally defined as the common vanishing set of analytic functions
e.g., $\mathbb{V}\left(w-e^{z}\right)$ in \mathbb{C}^{2}

A holomorphic p-chain is a (locally finite) linear combination of p-dimensional analytic varieties with integer multiplicities.
e.g., $2 \cdot \mathbb{V}\left(w-e^{z}\right)-3 \cdot \mathbb{V}\left(w^{2}-z^{3}\right)$

Preliminaries and Background

Let M be a closed rectifiable current of dimension $2 p-1$ with support satisfying condition $A_{2 p-1}$ in a complex manifold Z.

Definition: We say that M bounds a holomorphic p-chain within Z if there exists a holomorphic p-chain T in $Z \backslash$ spt M with a simple extension as a current to Z such that

- $d T=M$ (in the sense of currents, namely $\int_{T} d \omega=\int_{M} \omega$ for compactly supported ($2 p-1$)-forms ω)
- $\operatorname{spt} T \Subset Z$

Some Known Characterizations

$\mathbb{C}^{n}, p=1$ - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)

Some Known Characterizations

$\mathbb{C}^{n}, p=1$ - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)

$\mathbb{C}^{n}, p>1$ - maximal complexity (Harvey, Lawson 1975, Dinh 1998)

Some Known Characterizations

$\mathbb{C}^{n}, p=1$ - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)
$\mathbb{C}^{n}, p>1$ - maximal complexity (Harvey, Lawson 1975, Dinh 1998)
$\mathbb{C P}^{n}$ - shockwave decomposability of a certain Cauchy type integral function (Dolbeault, Henkin 1994, 1997, Dinh 1998)

Some Known Characterizations

$\mathbb{C}^{n}, p=1$ - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)
$\mathbb{C}^{n}, p>1$ - maximal complexity (Harvey, Lawson 1975, Dinh 1998)
$\mathbb{C P}^{n}$ - shockwave decomposability of a certain Cauchy type integral function (Dolbeault, Henkin 1994, 1997, Dinh 1998)
$\mathbb{C P}^{n} \backslash \mathbb{C P}^{n-q}$ with $q \leq p$ - similar to \mathbb{C}^{n} depending on $p-q+1$
(Harvey, Lawson 1977)

Some Known Characterizations

$\mathbb{C}^{n}, p=1$ - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)
$\mathbb{C}^{n}, p>1$ - maximal complexity (Harvey, Lawson 1975, Dinh 1998)
$\mathbb{C P}^{n}$ - shockwave decomposability of a certain Cauchy type integral function (Dolbeault, Henkin 1994, 1997, Dinh 1998)
$\mathbb{C P}^{n} \backslash \mathbb{C P}^{n-q}$ with $q \leq p$ - similar to \mathbb{C}^{n} depending on $p-q+1$ (Harvey, Lawson 1977)
$\mathbb{C P}^{n} \backslash \mathbb{C P}^{n-p-1}\left(\right.$ or $\left.\mathcal{O}_{\mathbb{C P}^{p}}(1)^{\oplus(n-p)}\right)$ - relations on moments (with some adjustments, Harvey, Lawson 2004)

Some Known Characterizations

$\mathbb{C}^{n}, p=1$ - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)
$\mathbb{C}^{n}, p>1$ - maximal complexity (Harvey, Lawson 1975, Dinh 1998)
$\mathbb{C P}^{n}$ - shockwave decomposability of a certain Cauchy type integral function (Dolbeault, Henkin 1994, 1997, Dinh 1998)
$\mathbb{C P}^{n} \backslash \mathbb{C P}^{n-q}$ with $q \leq p$ - similar to \mathbb{C}^{n} depending on $p-q+1$ (Harvey, Lawson 1977)
$\mathbb{C P}^{n} \backslash \mathbb{C P}^{n-p-1}\left(\right.$ or $\left.\mathcal{O}_{\mathbb{C P}^{p}}(1)^{\oplus(n-p)}\right)$ - relations on moments (with some adjustments, Harvey, Lawson 2004)
$\mathcal{O}_{\mathbb{C P}^{1}}(d), p=1$ - relations on Wermer moments, but their nature depends on d (W. 2010)

Let E be a vector bundle over a connected complex manifold X of complex dimension p (e.g., $\mathbb{C P}^{p}$) with projection map $\pi: E \rightarrow X$. Suppose that T is a holomorphic p-chain bounded by M within E. Furthermore suppose such that $\left.\pi\right|_{\mathrm{spt} T}$ is a proper map.

Let E be a vector bundle over a connected complex manifold X of complex dimension p (e.g., $\mathbb{C P}^{p}$) with projection map $\pi: E \rightarrow X$. Suppose that T is a holomorphic p-chain bounded by M within E. Furthermore suppose such that $\left.\pi\right|_{\mathrm{spt} T}$ is a proper map.

$$
\begin{aligned}
& p_{\alpha}(\zeta)=\pi_{*}\left(w^{\alpha} T\right)(\zeta)=\sum_{j} n_{j} w_{j}^{\alpha}, \\
& \text { where } T \cap\{z=\zeta\}=\sum_{j} n_{j} w_{j} .
\end{aligned}
$$

Let E be a vector bundle over a connected complex manifold X of complex dimension p (e.g., $\mathbb{C P}^{p}$) with projection map $\pi: E \rightarrow X$. Suppose that T is a holomorphic p-chain bounded by M within E. Furthermore suppose such that $\left.\pi\right|_{\mathrm{spt} T}$ is a proper map.

$$
\begin{aligned}
& p_{\alpha}(\zeta)=\pi_{*}\left(w^{\alpha} T\right)(\zeta)=\sum_{j} n_{j} w_{j}^{\alpha}, \\
& \text { where } T \cap\{z=\zeta\}=\sum_{j} n_{j} w_{j} .
\end{aligned}
$$

Moreover
$\bar{\partial} \pi_{*}\left(w^{\alpha} T\right)=\left[\pi_{*}\left(w^{\alpha} M\right)\right]^{0,1}$.

Let E be a vector bundle over a connected complex manifold X of complex dimension p (e.g., $\mathbb{C P}^{p}$) with projection map $\pi: E \rightarrow X$. Suppose that T is a holomorphic p-chain bounded by M within E. Furthermore suppose such that $\left.\pi\right|_{\mathrm{spt} T}$ is a proper map.

$$
\begin{aligned}
& p_{\alpha}(\zeta)=\pi_{*}\left(w^{\alpha} T\right)(\zeta)=\sum_{j} n_{j} w_{j}^{\alpha}, \\
& \text { where } T \cap\{z=\zeta\}=\sum_{j} n_{j} w_{j} .
\end{aligned}
$$

Moreover
$\bar{\partial} \pi_{*}\left(w^{\alpha} T\right)=\left[\pi_{*}\left(w^{\alpha} M\right)\right]^{0,1}$.

So for M to bound in E it is necessary that:
For all $\alpha \geq 0,\left[\pi_{*}\left(w^{\alpha} M\right)\right]^{0,1}$ is $\bar{\partial}$-exact, i.e., $\left[\pi_{*}\left(w^{\alpha} M\right)\right]^{0,1}$
corresponds to zero in $H_{\mathrm{cpt}}^{1}\left(X, S^{|\alpha|}(E)\right)$

Question: What choice of p_{α} characterize the power sums truly arising from some holomorphic chain T ?

Question: What choice of p_{α} characterize the power sums truly arising from some holomorphic chain T ?

The essential issue can be seen on level of fibers. So let us consider the 0-chain $S=\sum_{j} n_{j} \cdot\left(w_{j, 1}, w_{j, 2}, \ldots, w_{j, r}\right)$ in \mathbb{C}^{r}. Let p_{α} denote its power sum

$$
\sum_{j} n_{j} w_{j}^{\alpha}=\sum_{j} n_{j} w_{j, 1}^{\alpha_{1}} w_{j, 2}^{\alpha_{2}} \cdots w_{j, r}^{\alpha_{r}}
$$

Question: What choice of p_{α} characterize the power sums truly arising from some holomorphic chain T ?

The essential issue can be seen on level of fibers. So let us consider the 0-chain $S=\sum_{j} n_{j} \cdot\left(w_{j, 1}, w_{j, 2}, \ldots, w_{j, r}\right)$ in \mathbb{C}^{r}. Let p_{α} denote its power sum

$$
\sum_{j} n_{j} w_{j}^{\alpha}=\sum_{j} n_{j} w_{j, 1}^{\alpha_{1}} w_{j, 2}^{\alpha_{2}} \cdots w_{j, r}^{\alpha_{r}}
$$

Define the generating function $P[\lambda]=\sum_{\alpha \geq 0, \alpha \neq 0} p_{\alpha} \lambda^{\alpha}$. By standard geometric series techniques, it holds that $P[\lambda]=\sum_{j} \frac{w_{j} \cdot \lambda}{1-w_{j} \cdot \lambda}=\sum_{j} \frac{w_{j, 1} \lambda_{1}+w_{j, 2} \lambda_{2}+\cdots+w_{j, r} \lambda_{r}}{1-\left(w_{j, 1} \lambda_{1}+w_{j, 2} \lambda_{2}+\cdots+w_{j, r} \lambda_{r}\right)}$.

Question: What choice of p_{α} characterize the power sums truly arising from some holomorphic chain T ?

The essential issue can be seen on level of fibers. So let us consider the 0-chain $S=\sum_{j} n_{j} \cdot\left(w_{j, 1}, w_{j, 2}, \ldots, w_{j, r}\right)$ in \mathbb{C}^{r}. Let p_{α} denote its power sum

$$
\sum_{j} n_{j} w_{j}^{\alpha}=\sum_{j} n_{j} w_{j, 1}^{\alpha_{1}} w_{j, 2}^{\alpha_{2}} \cdots w_{j, r}^{\alpha_{r}}
$$

Define the generating function $P[\lambda]=\sum_{\alpha \geq 0, \alpha \neq 0} p_{\alpha} \lambda^{\alpha}$. By standard geometric series techniques, it holds that $P[\lambda]=\sum_{j} \frac{w_{j} \cdot \lambda}{1-w_{j} \cdot \lambda}=\sum_{j} \frac{w_{j, 1} \lambda_{1}+w_{j, 2} \lambda_{2}+\cdots+w_{j, ~} \lambda_{r}}{1-\left(w_{j, 1} \lambda_{1}+w_{j, 2} \lambda_{2}+\cdots+w_{j, r} \lambda_{r}\right)}$.
Define $E[\lambda]=1+\sum_{\alpha \geq 0, \alpha \neq 0} e_{\alpha} \lambda^{\alpha}=\prod_{j}\left(1+w_{j} \cdot \lambda_{j}\right)^{n_{j}}$, as the generating function of the extended elementary multisymmetric functions e_{α} of S. (If the 0 -chain is has non-negative multiplicities, then $E[\lambda]$ becomes a standard finite generating function of the elementary multisymmetric functions.)

$$
P[\lambda]=\sum_{j} \frac{w_{j} \cdot \lambda}{1-w_{j} \cdot \lambda}, \quad E[\lambda]=\prod_{j}\left(1+w_{j} \cdot \lambda_{j}\right)^{n_{j}}
$$

$$
P[\lambda]=\sum_{j} \frac{w_{j} \cdot \lambda}{1-w_{j} \cdot \lambda}, \quad E[\lambda]=\prod_{j}\left(1+w_{j} \cdot \lambda_{j}\right)^{n_{j}}
$$

$E[\lambda]$ can be readily constructed from $P[\lambda]$ by means of the following generalization of the Newton formulae

$$
E[\lambda]=\exp \left(\int_{0}^{1}-P[-t \lambda] d t\right) .
$$

$$
P[\lambda]=\sum_{j} \frac{w_{j} \cdot \lambda}{1-w_{j} \cdot \lambda}, \quad E[\lambda]=\prod_{j}\left(1+w_{j} \cdot \lambda_{j}\right)^{n_{j}}
$$

$E[\lambda]$ can be readily constructed from $P[\lambda]$ by means of the following generalization of the Newton formulae

$$
E[\lambda]=\exp \left(\int_{0}^{1}-P[-t \lambda] d t\right) .
$$

Furthermore, $E[\lambda]$ corresponds to a finite 0 -chain if and only if $E[\lambda]$ is a rational function that completely splits into linear factors in terms of λ. (Furthermore, this correspondence is unique with the only exception of the multiplicity of the point $w=0$.)

Consider the multivariate power series $E[\lambda]=1+\sum_{\alpha \geq 0, \alpha \neq 0} e_{\alpha} \lambda^{\alpha}$. Given prescribed bounds M and $N, E[\lambda]$ is a rational function with numerator having degree bounded by M and denominator having degree bounded by N if and only if certain determinantal relations (in essence due to criteria by Kroenecker) on e_{α} are satisfied.

Consider the multivariate power series $E[\lambda]=1+\sum_{\alpha \geq 0, \alpha \neq 0} e_{\alpha} \lambda^{\alpha}$. Given prescribed bounds M and $N, E[\lambda]$ is a rational function with numerator having degree bounded by M and denominator having degree bounded by N if and only if certain determinantal relations (in essence due to criteria by Kroenecker) on e_{α} are satisfied.

Moreover, a (multivariate) polynomial of degree d completely splits into linear factors is equivalent to the coefficients of the polynomial residing in the Chow variety of 0-dimensional varieties of degree d in \mathbb{C}^{r}.

Consider the multivariate power series $E[\lambda]=1+\sum_{\alpha \geq 0, \alpha \neq 0} e_{\alpha} \lambda^{\alpha}$. Given prescribed bounds M and $N, E[\lambda]$ is a rational function with numerator having degree bounded by M and denominator having degree bounded by N if and only if certain determinantal relations (in essence due to criteria by Kroenecker) on e_{α} are satisfied.

Moreover, a (multivariate) polynomial of degree d completely splits into linear factors is equivalent to the coefficients of the polynomial residing in the Chow variety of 0-dimensional varieties of degree d in \mathbb{C}^{r}.

This latter condition is vacuous in the case $r=1$ (or when $d=0,1$, but not when $r \geq 2$ and $d \geq 2$.

Consider the multivariate power series $E[\lambda]=1+\sum_{\alpha \geq 0, \alpha \neq 0} e_{\alpha} \lambda^{\alpha}$. Given prescribed bounds M and $N, E[\lambda]$ is a rational function with numerator having degree bounded by M and denominator having degree bounded by N if and only if certain determinantal relations (in essence due to criteria by Kroenecker) on e_{α} are satisfied.

Moreover, a (multivariate) polynomial of degree d completely splits into linear factors is equivalent to the coefficients of the polynomial residing in the Chow variety of 0-dimensional varieties of degree d in \mathbb{C}^{r}.

This latter condition is vacuous in the case $r=1$ (or when $d=0,1$, but not when $r \geq 2$ and $d \geq 2$.
For example $1+e_{0,1} \lambda_{2}+e_{1,0} \lambda_{1}+e_{0,2} \lambda_{2}^{2}+e_{1,1} \lambda_{1} \lambda_{2}+e_{2,0} \lambda_{1}^{2}$ splits into a product of two linear factors if and only if

$$
e_{1,1}^{2}-e_{1,0} e_{0,1} e_{1,1}+e_{0,1}^{2} e_{2,0}+e_{1,0}^{2} e_{0,2}-4 e_{2,0} e_{0,2}=0
$$

Note, if $E[\lambda t]$ is rational with respect to t for all $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$, this implies that $E[\lambda]$ is rational with respect to λ, but it does not imply that $E[\lambda]$ completely splits into linear factors.

Note, if $E[\lambda t]$ is rational with respect to t for all $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)$, this implies that $E[\lambda]$ is rational with respect to λ, but it does not imply that $E[\lambda]$ completely splits into linear factors.

Example: $1+\lambda_{1}+\lambda_{2}+k \lambda_{1} \lambda_{2}, k \neq 0,1$.

Theorem

Let M be a rectifiable $2 p-1$ chain with support satisfying condition $A_{2 p-1}$ such that $\pi(\operatorname{spt} M)$ satisifes condition $A_{2 p-1}$ and $\left.\pi\right|_{\mathrm{spt} M \backslash S}$ is injective for some $H^{2 p-1}$-measure zero subset S of $\operatorname{spt} M$. M bounds a holomorphic 1-chain within the vector bundle E if and only if the following hold
(1) M is maximally complex,
(2) there exist $p_{\alpha} \in H_{c p t}^{0}\left(X, S^{|\alpha|}(E)\right)$ such that $\bar{\partial} p_{\alpha}=\pi_{*}\left(w^{\alpha} \gamma\right)^{0,1}$ (in other words $\pi_{*}\left(w^{\alpha} \gamma\right)^{0,1}$ is $\bar{\partial}$-exact in $H_{c p t}^{1}\left(\mathbb{C P}^{1}, S^{|\alpha|}(E)\right)$), and
(3) in a neighborhood of some $\zeta^{*} \in X \backslash \pi(\operatorname{spt} M)$ there exist r_{α} in $Z^{0,0}\left(X, S^{|\alpha|}(E)\right)$ such that
$\exp \left(-\int_{0}^{1} \sum_{\alpha \geq 0, \alpha \neq 0}\left(p_{\alpha}+r_{\alpha}\right)(-t \lambda)^{\alpha} d t\right)$ is a rational function that completely splits into linear factors.

