Boundaries of Holomorphic Chains within Vector Bundles over Complex Projective Space

Ronald A. Walker

Penn State - Harrisburg

March 19, 2011
An analytic variety (or analytic set) in a complex manifold is a set locally defined as the common vanishing set of analytic functions e.g., $\mathcal{V}(w - e^z)$ in \mathbb{C}^2
An analytic variety (or analytic set) in a complex manifold is a set locally defined as the common vanishing set of analytic functions e.g., $\mathbb{V}(w - e^z)$ in \mathbb{C}^2

A holomorphic p-chain is a (locally finite) linear combination of p-dimensional analytic varieties with integer multiplicities.

e.g., $2 \cdot \mathbb{V}(w - e^z) - 3 \cdot \mathbb{V}(w^2 - z^3)$
Let M be a closed rectifiable current of dimension $2p - 1$ with support satisfying condition A_{2p-1} in a complex manifold Z.

Definition: We say that M bounds a holomorphic p-chain within Z if there exists a holomorphic p-chain T in $Z \setminus \text{spt } M$ with a simple extension as a current to Z such that

- $dT = M$ (in the sense of currents, namely $\int_T d\omega = \int_M \omega$ for compactly supported $(2p - 1)$-forms ω)
- $\text{spt } T \subseteq Z$
Some Known Characterizations

\(\mathbb{C}^n, p = 1 \) - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)
Some Known Characterizations

\(\mathbb{C}^n, p = 1 \) - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)

\(\mathbb{C}^n, p > 1 \) - maximal complexity (Harvey, Lawson 1975, Dinh 1998)
Some Known Characterizations

\(\mathbb{C}^n, p = 1 \) - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)

\(\mathbb{C}^n, p > 1 \) - maximal complexity (Harvey, Lawson 1975, Dinh 1998)

\(\mathbb{CP}^n \) - shockwave decomposability of a certain Cauchy type integral function (Dolbeault, Henkin 1994, 1997, Dinh 1998)
Some Known Characterizations

$\mathbb{C}^n, p = 1$ - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)

$\mathbb{C}^n, p > 1$ - maximal complexity (Harvey, Lawson 1975, Dinh 1998)

$\mathbb{C}\mathbb{P}^n \setminus \mathbb{C}\mathbb{P}^{n-q}$ with $q \leq p$ - similar to \mathbb{C}^n depending on $p - q + 1$ (Harvey, Lawson 1977)
Some Known Characterizations

\mathbb{C}^n, $p = 1$ - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)

\mathbb{C}^n, $p > 1$ - maximal complexity (Harvey, Lawson 1975, Dinh 1998)

\mathbb{CP}^n - shockwave decomposability of a certain Cauchy type integral function (Dolbeault, Henkin 1994, 1997, Dinh 1998)

$\mathbb{CP}^n \setminus \mathbb{CP}^{n-q}$ with $q \leq p$ - similar to \mathbb{C}^n depending on $p - q + 1$ (Harvey, Lawson 1977)

$\mathbb{CP}^n \setminus \mathbb{CP}^{n-p-1}$ (or $\mathcal{O}_{\mathbb{C}P^p}(1) \oplus (n-p)$) - relations on moments (with some adjustments, Harvey, Lawson 2004)
Some Known Characterizations

\(\mathbb{C}^n, p = 1 \) - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)

\(\mathbb{C}^n, p > 1 \) - maximal complexity (Harvey, Lawson 1975, Dinh 1998)

\(\mathbb{C}P^n \) - shockwave decomposability of a certain Cauchy type integral function (Dolbeault, Henkin 1994, 1997, Dinh 1998)

\(\mathbb{C}P^n \setminus \mathbb{C}P^{n-q} \) with \(q \leq p \) - similar to \(\mathbb{C}^n \) depending on \(p - q + 1 \) (Harvey, Lawson 1977)

\(\mathbb{C}P^n \setminus \mathbb{C}P^{n-p-1} \) (or \(\mathcal{O}_{\mathbb{C}P^p}(1) \oplus (n-p) \)) - relations on moments (with some adjustments, Harvey, Lawson 2004)

\(\mathcal{O}_{\mathbb{C}P^1}(d), p = 1 \) - relations on Wermer moments, but their nature depends on \(d \) (W. 2010)
Let E be a vector bundle over a connected complex manifold X of complex dimension p (e.g., \mathbb{CP}^p) with projection map $\pi : E \to X$. Suppose that T is a holomorphic p-chain bounded by M within E. Furthermore suppose such that $\pi|_{spt \, T}$ is a proper map.
Let E be a vector bundle over a connected complex manifold X of complex dimension p (e.g., $\mathbb{C}\mathbb{P}^p$) with projection map $\pi : E \to X$. Suppose that T is a holomorphic p-chain bounded by M within E. Furthermore suppose such that $\pi|_{\text{spt} \, T}$ is a proper map.

Moreover $\overline{\partial} \pi_*(w^\alpha T)(\zeta) = \left[\pi_*(w^\alpha M)\right]_{0,1}$.

So for M to bound in E it is necessary that:

For all $\alpha \geq 0$, $\left[\pi_*(w^\alpha M)\right]_{0,1}$ is $\overline{\partial}$-exact, i.e., $\left[\pi_*(w^\alpha M)\right]_{0,1}$ corresponds to zero in $H^1_{\text{cpt}}(X, S|_\alpha|(E))$.

$p_\alpha(\zeta) = \pi_*(w^\alpha T)(\zeta) = \sum_j n_j w_j^\alpha$, where $T \cap \{z = \zeta\} = \sum_j n_j w_j$.

Ronald A. Walker

Boundaries of Holomorphic Chains within Vector Bundles
Let E be a vector bundle over a connected complex manifold X of complex dimension p (e.g., $\mathbb{C} \mathbb{P}^p$) with projection map $\pi : E \to X$. Suppose that T is a holomorphic p-chain bounded by M within E. Furthermore suppose such that $\pi|_{\text{spt}T}$ is a proper map.

$p\alpha(\zeta) = \pi_*(w^\alpha T)(\zeta) = \sum_j n_j w^\alpha_j,$
where $T \cap \{z = \zeta\} = \sum_j n_j w_j$.

Moreover

$$\bar{\partial}_\pi (w^\alpha T) = [\pi_*(w^\alpha M)]^{0,1}.$$
Let E be a vector bundle over a connected complex manifold X of complex dimension p (e.g., \mathbb{CP}^p) with projection map $\pi : E \to X$. Suppose that T is a holomorphic p-chain bounded by M within E. Furthermore suppose such that $\pi|_{\text{spt} \ T}$ is a proper map.

![Diagram of vector bundle and manifold](image)

\[p_\alpha(\zeta) = \pi_*(w^\alpha T)(\zeta) = \sum_j n_j w_j^\alpha, \]
where $T \cap \{z = \zeta\} = \sum_j n_j w_j$.

Moreover
\[\bar{\partial}\pi_*(w^\alpha T) = [\pi_*(w^\alpha M)]^{0,1}. \]

So for M to bound in E it is necessary that:

For all $\alpha \geq 0$, $[\pi_*(w^\alpha M)]^{0,1}$ is $\bar{\partial}$-exact, i.e., $[\pi_*(w^\alpha M)]^{0,1}$ corresponds to zero in $H^1_{\text{cpt}}(X, S|\alpha|(E))$.
Question: What choice of p_α characterize the power sums truly arising from some holomorphic chain T?
Question: What choice of p_α characterize the power sums truly arising from some holomorphic chain T?

The essential issue can be seen on level of fibers. So let us consider the 0-chain $S = \sum_j n_j \cdot (w_{j,1}, w_{j,2}, \ldots, w_{j,r})$ in \mathbb{C}^r. Let p_α denote its power sum

$$\sum_j n_j w_j^\alpha = \sum_j n_j w_{j,1}^{\alpha_1} w_{j,2}^{\alpha_2} \cdots w_{j,r}^{\alpha_r}.$$
Question: What choice of p_{α} characterize the power sums truly arising from some holomorphic chain T?

The essential issue can be seen on level of fibers. So let us consider the 0-chain $S = \sum_j n_j \cdot (w_{j,1}, w_{j,2}, \ldots, w_{j,r})$ in \mathbb{C}^r. Let p_{α} denote its power sum

$$\sum_j n_j w_{j,1}^{\alpha_1} w_{j,2}^{\alpha_2} \cdots w_{j,r}^{\alpha_r}.$$

Define the generating function $P[\lambda] = \sum_{\alpha \geq 0, \alpha \neq 0} p_{\alpha} \lambda^\alpha$. By standard geometric series techniques, it holds that

$$P[\lambda] = \sum_j \frac{w_{j} \cdot \lambda}{1 - w_{j} \cdot \lambda} = \sum_j \frac{w_{j,1} \lambda_1 + w_{j,2} \lambda_2 + \cdots + w_{j,r} \lambda_r}{1 - (w_{j,1} \lambda_1 + w_{j,2} \lambda_2 + \cdots + w_{j,r} \lambda_r)}.$$
Question: What choice of p_α characterize the power sums truly arising from some holomorphic chain T?

The essential issue can be seen on level of fibers. So let us consider the 0-chain $S = \sum_j n_j \cdot (w_{j,1}, w_{j,2}, \ldots, w_{j,r})$ in \mathbb{C}^r. Let p_α denote its power sum

\[
\sum_j n_j w_{j}^\alpha = \sum_j n_j w_{j,1}^{\alpha_1} w_{j,2}^{\alpha_2} \cdots w_{j,r}^{\alpha_r}.
\]

Define the generating function $P[\lambda] = \sum_{\alpha \geq 0, \alpha \neq 0} p_\alpha \lambda^\alpha$. By standard geometric series techniques, it holds that

\[
P[\lambda] = \sum_j \frac{w_j \cdot \lambda}{1 - w_j \cdot \lambda} = \sum_j \frac{w_{j,1} \lambda_1 + w_{j,2} \lambda_2 + \cdots + w_{j,r} \lambda_r}{1 - (w_{j,1} \lambda_1 + w_{j,2} \lambda_2 + \cdots + w_{j,r} \lambda_r)}.
\]

Define $E[\lambda] = 1 + \sum_{\alpha \geq 0, \alpha \neq 0} e_\alpha \lambda^\alpha = \prod_j (1 + w_j \cdot \lambda_j)^{n_j}$, as the generating function of the extended elementary multisymmetric functions e_α of S. (If the 0-chain is has non-negative multiplicities, then $E[\lambda]$ becomes a standard finite generating function of the elementary multisymmetric functions.)
\[P[\lambda] = \sum_j \frac{w_j \cdot \lambda}{1 - w_j \cdot \lambda}, \quad E[\lambda] = \prod_j (1 + w_j \cdot \lambda_j)^{n_j} \]
\[P[\lambda] = \sum_j \frac{w_j \cdot \lambda}{1 - w_j \cdot \lambda}, \quad E[\lambda] = \prod_j (1 + w_j \cdot \lambda_j)^{n_j} \]

\(E[\lambda] \) can be readily constructed from \(P[\lambda] \) by means of the following generalization of the Newton formulae

\[
E[\lambda] = \exp \left(\int_0^1 -P[-t\lambda] \, dt \right).
\]
\[P[\lambda] = \sum_j \frac{w_j \cdot \lambda}{1 - w_j \cdot \lambda}, \quad E[\lambda] = \prod_j (1 + w_j \cdot \lambda_j)^{n_j} \]

\(E[\lambda] \) can be readily constructed from \(P[\lambda] \) by means of the following generalization of the Newton formulae

\[E[\lambda] = \exp \left(\int_0^1 -P[-t\lambda] \, dt \right). \]

Furthermore, \(E[\lambda] \) corresponds to a finite 0-chain if and only if \(E[\lambda] \) is a rational function that completely splits into linear factors in terms of \(\lambda \). (Furthermore, this correspondence is unique with the only exception of the multiplicity of the point \(w = 0 \).)
Consider the multivariate power series $E[\lambda] = 1 + \sum_{\alpha \geq 0, \alpha \neq 0} e_{\alpha} \lambda^{\alpha}$. Given prescribed bounds M and N, $E[\lambda]$ is a rational function with numerator having degree bounded by M and denominator having degree bounded by N if and only if certain determinantal relations (in essence due to criteria by Kroenecker) on e_{α} are satisfied.
Consider the multivariate power series \(E[\lambda] = 1 + \sum_{\alpha \geq 0, \alpha \neq 0} e_{\alpha} \lambda^{\alpha} \). Given prescribed bounds \(M \) and \(N \), \(E[\lambda] \) is a rational function with numerator having degree bounded by \(M \) and denominator having degree bounded by \(N \) if and only if certain determinantal relations (in essence due to criteria by Kroenecker) on \(e_{\alpha} \) are satisfied.

Moreover, a (multivariate) polynomial of degree \(d \) completely splits into linear factors is equivalent to the coefficients of the polynomial residing in the Chow variety of 0-dimensional varieties of degree \(d \) in \(\mathbb{C}^r \).
Consider the multivariate power series $E[\lambda] = 1 + \sum_{\alpha \geq 0, \alpha \neq 0} e_{\alpha} \lambda^{\alpha}$. Given prescribed bounds M and N, $E[\lambda]$ is a rational function with numerator having degree bounded by M and denominator having degree bounded by N if and only if certain determinantal relations (in essence due to criteria by Kroenecker) on e_{α} are satisfied.

Moreover, a (multivariate) polynomial of degree d completely splits into linear factors is equivalent to the coefficients of the polynomial residing in the Chow variety of 0-dimensional varieties of degree d in \mathbb{C}^r.

This latter condition is vacuous in the case $r = 1$ (or when $d = 0, 1$, but not when $r \geq 2$ and $d \geq 2$.)
Consider the multivariate power series $E[\lambda] = 1 + \sum_{\alpha \geq 0, \alpha \neq 0} e_\alpha \lambda^\alpha$. Given prescribed bounds M and N, $E[\lambda]$ is a rational function with numerator having degree bounded by M and denominator having degree bounded by N if and only if certain determinantal relations (in essence due to criteria by Kroenecker) on e_α are satisfied.

Moreover, a (multivariate) polynomial of degree d completely splits into linear factors is equivalent to the coefficients of the polynomial residing in the Chow variety of 0-dimensional varieties of degree d in \mathbb{C}^r.

This latter condition is vacuous in the case $r = 1$ (or when $d = 0, 1$, but not when $r \geq 2$ and $d \geq 2$.

For example $1 + e_{0,1} \lambda_2 + e_{1,0} \lambda_1 + e_{0,2} \lambda_2^2 + e_{1,1} \lambda_1 \lambda_2 + e_{2,0} \lambda_1^2$ splits into a product of two linear factors if and only if

$$e_{1,1}^2 - e_{1,0} e_{0,1} e_{1,1} + e_{0,1}^2 e_{2,0} + e_{1,0}^2 e_{0,2} - 4 e_{2,0} e_{0,2} = 0$$
Note, if $E[\lambda t]$ is rational with respect to t for all $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r)$, this implies that $E[\lambda]$ is rational with respect to λ, but it does not imply that $E[\lambda]$ completely splits into linear factors.
Note, if $E[\lambda t]$ is rational with respect to t for all $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r)$, this implies that $E[\lambda]$ is rational with respect to λ, but it does not imply that $E[\lambda]$ completely splits into linear factors.

Example: $1 + \lambda_1 + \lambda_2 + k\lambda_1\lambda_2$, $k \neq 0, 1$.

Ronald A. Walker
Boundaries of Holomorphic Chains within Vector Bundles
Theorem

Let \(M \) be a rectifiable \(2p - 1 \) chain with support satisfying condition \(A_{2p-1} \) such that \(\pi(sptM) \) satisfies condition \(A_{2p-1} \) and \(\pi|_{sptM\setminus S} \) is injective for some \(H^{2p-1} \)-measure zero subset \(S \) of \(sptM \). \(M \) bounds a holomorphic 1-chain within the vector bundle \(E \) if and only if the following hold

1. \(M \) is maximally complex,
2. there exist \(p_\alpha \in H^0_{cpt}(X, S|\alpha|(E)) \) such that \(\bar{\partial}p_\alpha = \pi_*(w^\alpha \gamma)^{0,1} \) (in other words \(\pi_*(w^\alpha \gamma)^{0,1} \) is \(\bar{\partial} \)-exact in \(H^1_{cpt}(\mathbb{CP}^1, S|\alpha|(E)) \)), and
3. in a neighborhood of some \(\zeta^* \in X \setminus \pi(sptM) \) there exist \(r_\alpha \) in \(Z^{0,0}(X, S|\alpha|(E)) \) such that
 \[
 \exp \left(-\int_0^1 \sum_{\alpha \geq 0, \alpha \neq 0} (p_\alpha + r_\alpha)(-t\lambda)\alpha dt \right)
 \]
 is a rational function that completely splits into linear factors.