Boundaries of Holomorphic Chains within Vector Bundles over Complex Projective Space

Ronald A. Walker

Penn State - Harrisburg

March 19, 2011

Ronald A. Walker Boundaries of Holomorphic Chains within Vector Bundles

An analytic variety (or analytic set) in a complex manifold is a set locally defined as the common vanishing set of analytic functions

e.g., $\mathbb{V}(w - e^z)$ in \mathbb{C}^2

- A 3 N

An analytic variety (or analytic set) in a complex manifold is a set locally defined as the common vanishing set of analytic functions

e.g.,
$$\mathbb{V}(w-e^z)$$
 in \mathbb{C}^2

A holomorphic *p*-chain is a (locally finite) linear combination of *p*-dimensional analytic varieties with integer multiplicities.

e.g.,
$$2 \cdot \mathbb{V}(w - e^z) - 3 \cdot \mathbb{V}(w^2 - z^3)$$

Preliminaries and Background

Let *M* be a closed rectifiable current of dimension 2p - 1 with support satisfying condition A_{2p-1} in a complex manifold *Z*.

Definition: We say that M bounds a holomorphic p-chain within Z if there exists a holomorphic p-chain T in $Z \setminus \operatorname{spt} M$ with a simple extension as a current to Z such that

• dT = M (in the sense of currents, namely $\int_T d\omega = \int_M \omega$ for compactly supported (2p - 1)-forms ω)

 $\bullet \ {\rm spt} \ T \Subset Z$

 \mathbb{C}^{n} , p = 1 - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)

 \mathbb{C}^n , p = 1 - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)

 \mathbb{C}^n , p > 1 - maximal complexity (Harvey, Lawson 1975, Dinh 1998)

 \mathbb{C}^n , p = 1 - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)

 \mathbb{C}^n , p > 1 - maximal complexity (Harvey, Lawson 1975, Dinh 1998)

 \mathbb{CP}^n - shockwave decomposability of a certain Cauchy type integral function (Dolbeault, Henkin 1994, 1997, Dinh 1998)

 \mathbb{C}^n , p = 1 - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)

 \mathbb{C}^n , p > 1 - maximal complexity (Harvey, Lawson 1975, Dinh 1998)

 \mathbb{CP}^n - shockwave decomposability of a certain Cauchy type integral function (Dolbeault, Henkin 1994, 1997, Dinh 1998)

 $\mathbb{CP}^n \setminus \mathbb{CP}^{n-q}$ with $q \leq p$ - similar to \mathbb{C}^n depending on p-q+1 (Harvey, Lawson 1977)

伺い イラト イラト

 \mathbb{C}^n , p = 1 - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)

 \mathbb{C}^n , p > 1 - maximal complexity (Harvey, Lawson 1975, Dinh 1998)

 \mathbb{CP}^n - shockwave decomposability of a certain Cauchy type integral function (Dolbeault, Henkin 1994, 1997, Dinh 1998)

 $\mathbb{CP}^n \setminus \mathbb{CP}^{n-q}$ with $q \leq p$ - similar to \mathbb{C}^n depending on p-q+1 (Harvey, Lawson 1977)

 $\mathbb{CP}^n \setminus \mathbb{CP}^{n-p-1}$ (or $\mathcal{O}_{\mathbb{CP}^p}(1)^{\oplus (n-p)}$) - relations on moments (with some adjustments, Harvey, Lawson 2004)

伺い イラト イラト ニラ

 \mathbb{C}^n , p = 1 - vanishing moment conditions (Wermer 1958, Harvey, Lawson 1975, Dinh 1998)

 \mathbb{C}^n , p > 1 - maximal complexity (Harvey, Lawson 1975, Dinh 1998)

 \mathbb{CP}^n - shockwave decomposability of a certain Cauchy type integral function (Dolbeault, Henkin 1994, 1997, Dinh 1998)

 $\mathbb{CP}^n \setminus \mathbb{CP}^{n-q}$ with $q \leq p$ - similar to \mathbb{C}^n depending on p-q+1 (Harvey, Lawson 1977)

 $\mathbb{CP}^n \setminus \mathbb{CP}^{n-p-1}$ (or $\mathcal{O}_{\mathbb{CP}^p}(1)^{\oplus (n-p)}$) - relations on moments (with some adjustments, Harvey, Lawson 2004)

 $\mathcal{O}_{\mathbb{CP}^1}(d)$, p = 1 - relations on Wermer moments, but their nature depends on d (W. 2010)

Let *E* be a vector bundle over a connected complex manifold *X* of complex dimension *p* (e.g., \mathbb{CP}^p) with projection map $\pi : E \to X$. Suppose that *T* is a holomorphic *p*-chain bounded by *M* within *E*. Furthermore suppose such that $\pi|_{sptT}$ is a proper map. Let *E* be a vector bundle over a connected complex manifold *X* of complex dimension *p* (e.g., \mathbb{CP}^p) with projection map $\pi : E \to X$. Suppose that *T* is a holomorphic *p*-chain bounded by *M* within *E*. Furthermore suppose such that $\pi|_{sptT}$ is a proper map.

$$p_{\alpha}(\zeta) = \pi_*(w^{\alpha}T)(\zeta) = \sum_j n_j w_j^{\alpha},$$

where $T \cap \{z = \zeta\} = \sum_j n_j w_j.$

Let *E* be a vector bundle over a connected complex manifold *X* of complex dimension *p* (e.g., \mathbb{CP}^p) with projection map $\pi : E \to X$. Suppose that *T* is a holomorphic *p*-chain bounded by *M* within *E*. Furthermore suppose such that $\pi|_{sptT}$ is a proper map.

$$p_{\alpha}(\zeta) = \pi_*(w^{\alpha}T)(\zeta) = \sum_j n_j w_j^{\alpha},$$

where $T \cap \{z = \zeta\} = \sum_j n_j w_j.$

Moreover $\bar{\partial}\pi_*(w^{\alpha}T) = [\pi_*(w^{\alpha}M)]^{0,1}.$ Let *E* be a vector bundle over a connected complex manifold *X* of complex dimension *p* (e.g., \mathbb{CP}^p) with projection map $\pi : E \to X$. Suppose that *T* is a holomorphic *p*-chain bounded by *M* within *E*. Furthermore suppose such that $\pi|_{\operatorname{spt} T}$ is a proper map.

$$p_{\alpha}(\zeta) = \pi_*(w^{\alpha}T)(\zeta) = \sum_j n_j w_j^{\alpha},$$

where $T \cap \{z = \zeta\} = \sum_j n_j w_j.$

Moreover
$$\bar{\partial}\pi_*(w^{lpha}T) = [\pi_*(w^{lpha}M)]^{0,1}.$$

So for M to bound in E it is necessary that:

For all
$$\alpha \geq 0$$
, $[\pi_*(w^{\alpha}M)]^{0,1}$ is $\bar{\partial}$ -exact, i.e., $[\pi_*(w^{\alpha}M)]^{0,1}$ corresponds to zero in $H^1_{cpt}(X, S^{|\alpha|}(E))$

• • = • • = •

The essential issue can be seen on level of fibers. So let us consider the 0-chain $S = \sum_j n_j \cdot (w_{j,1}, w_{j,2}, \dots, w_{j,r})$ in \mathbb{C}^r . Let p_α denote its power sum

$$\sum_{j} n_j w_j^{\alpha} = \sum_{j} n_j w_{j,1}^{\alpha_1} w_{j,2}^{\alpha_2} \cdots w_{j,r}^{\alpha_r}.$$

The essential issue can be seen on level of fibers. So let us consider the 0-chain $S = \sum_j n_j \cdot (w_{j,1}, w_{j,2}, \dots, w_{j,r})$ in \mathbb{C}^r . Let p_α denote its power sum

$$\sum_{j} n_{j} w_{j}^{\alpha} = \sum_{j} n_{j} w_{j,1}^{\alpha_{1}} w_{j,2}^{\alpha_{2}} \cdots w_{j,r}^{\alpha_{r}}.$$

Define the generating function $P[\lambda] = \sum_{\alpha \ge 0, \alpha \ne 0} p_{\alpha} \lambda^{\alpha}$. By standard geometric series techniques, it holds that $P[\lambda] = \sum_{j} \frac{w_{j} \cdot \lambda}{1 - w_{j} \cdot \lambda} = \sum_{j} \frac{w_{j,1}\lambda_1 + w_{j,2}\lambda_2 + \dots + w_{j,r}\lambda_r}{1 - (w_{j,1}\lambda_1 + w_{j,2}\lambda_2 + \dots + w_{j,r}\lambda_r)}.$

The essential issue can be seen on level of fibers. So let us consider the 0-chain $S = \sum_j n_j \cdot (w_{j,1}, w_{j,2}, \dots, w_{j,r})$ in \mathbb{C}^r . Let p_{α} denote its power sum

$$\sum_{j} n_j w_j^{\alpha} = \sum_{j} n_j w_{j,1}^{\alpha_1} w_{j,2}^{\alpha_2} \cdots w_{j,r}^{\alpha_r}.$$

Define the generating function $P[\lambda] = \sum_{\alpha \ge 0, \alpha \ne 0} p_{\alpha} \lambda^{\alpha}$. By standard geometric series techniques, it holds that $P[\lambda] = \sum_{j} \frac{w_{j} \cdot \lambda}{1 - w_{j} \cdot \lambda} = \sum_{j} \frac{w_{j,1}\lambda_1 + w_{j,2}\lambda_2 + \dots + w_{j,r}\lambda_r}{1 - (w_{j,1}\lambda_1 + w_{j,2}\lambda_2 + \dots + w_{j,r}\lambda_r)}.$

Define $E[\lambda] = 1 + \sum_{\alpha \ge 0, \alpha \ne 0} e_{\alpha} \lambda^{\alpha} = \prod_{j} (1 + w_{j} \cdot \lambda_{j})^{n_{j}}$, as the generating function of the *extended elementary multisymmetric functions* e_{α} of *S*. (If the 0-chain is has non-negative multiplicities, then $E[\lambda]$ becomes a standard finite generating function of the elementary multisymmetric functions.)

$$P[\lambda] = \sum_{j} rac{w_j \cdot \lambda}{1 - w_j \cdot \lambda}, \qquad E[\lambda] = \prod_{j} (1 + w_j \cdot \lambda_j)^{n_j}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

$$P[\lambda] = \sum_{j} rac{w_j \cdot \lambda}{1 - w_j \cdot \lambda}, \qquad E[\lambda] = \prod_{j} (1 + w_j \cdot \lambda_j)^{n_j}$$

 $E[\lambda]$ can be readily constructed from $P[\lambda]$ by means of the following generalization of the Newton formulae

$$E[\lambda] = \exp\left(\int_0^1 -P[-t\lambda] dt\right).$$

留 と く ヨ と く ヨ と

$$P[\lambda] = \sum_{j} rac{w_j \cdot \lambda}{1 - w_j \cdot \lambda}, \qquad E[\lambda] = \prod_{j} (1 + w_j \cdot \lambda_j)^{n_j}$$

 $E[\lambda]$ can be readily constructed from $P[\lambda]$ by means of the following generalization of the Newton formulae

$$E[\lambda] = \exp\left(\int_0^1 -P[-t\lambda] dt\right).$$

Furthermore, $E[\lambda]$ corresponds to a finite 0-chain if and only if $E[\lambda]$ is a rational function that completely splits into linear factors in terms of λ . (Furthermore, this correspondence is unique with the only exception of the multiplicity of the point w = 0.)

Moreover, a (multivariate) polynomial of degree d completely splits into linear factors is equivalent to the coefficients of the polynomial residing in the Chow variety of 0-dimensional varieties of degree d in \mathbb{C}^r .

Moreover, a (multivariate) polynomial of degree d completely splits into linear factors is equivalent to the coefficients of the polynomial residing in the Chow variety of 0-dimensional varieties of degree d in \mathbb{C}^r .

This latter condition is vacuous in the case r = 1 (or when d = 0, 1, but not when $r \ge 2$ and $d \ge 2$.

Moreover, a (multivariate) polynomial of degree d completely splits into linear factors is equivalent to the coefficients of the polynomial residing in the Chow variety of 0-dimensional varieties of degree d in \mathbb{C}^r .

This latter condition is vacuous in the case r = 1 (or when d = 0, 1, but not when $r \ge 2$ and $d \ge 2$.

For example $1+e_{0,1}\lambda_2+e_{1,0}\lambda_1+e_{0,2}\lambda_2^2+e_{1,1}\lambda_1\lambda_2+e_{2,0}\lambda_1^2$ splits into a product of two linear factors if and only if

$$e_{1,1}^2 - e_{1,0}e_{0,1}e_{1,1} + e_{0,1}^2e_{2,0} + e_{1,0}^2e_{0,2} - 4e_{2,0}e_{0,2} = 0$$

伺い イラト イラト

Note, if $E[\lambda t]$ is rational with respect to t for all $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$, this implies that $E[\lambda]$ is rational with respect to λ , but it does not imply that $E[\lambda]$ completely splits into linear factors.

Note, if $E[\lambda t]$ is rational with respect to t for all $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$, this implies that $E[\lambda]$ is rational with respect to λ , but it does not imply that $E[\lambda]$ completely splits into linear factors.

Example: $1 + \lambda_1 + \lambda_2 + k\lambda_1\lambda_2$, $k \neq 0, 1$.

Theorem

Let *M* be a rectifiable 2p - 1 chain with support satisfying condition A_{2p-1} such that $\pi(\operatorname{spt} M)$ satisifes condition A_{2p-1} and $\pi|_{\operatorname{spt} M\setminus S}$ is injective for some H^{2p-1} -measure zero subset *S* of spt*M*. *M* bounds a holomorphic 1-chain within the vector bundle *E* if and only if the following hold

- M is maximally complex,
- So there exist $p_{\alpha} \in H^{0}_{cpt}(X, S^{|\alpha|}(E))$ such that $\bar{\partial}p_{\alpha} = \pi_{*}(w^{\alpha}\gamma)^{0,1}$ (in other words $\pi_{*}(w^{\alpha}\gamma)^{0,1}$ is $\bar{\partial}$ -exact in $H^{1}_{cpt}(\mathbb{CP}^{1}, S^{|\alpha|}(E)))$, and
- in a neighborhood of some $\zeta^* \in X \setminus \pi(\operatorname{spt} M)$ there exist r_{α} in $Z^{0,0}(X, S^{|\alpha|}(E))$ such that $\exp\left(-\int_0^1 \sum_{\alpha \ge 0, \alpha \ne 0} (p_{\alpha} + r_{\alpha})(-t\lambda)^{\alpha} dt\right)$ is a rational function that completely splits into linear factors.

向 ト イヨ ト イヨ ト