Carleson Measures for Besov-Sobolev Spaces and Non-Homogeneous Harmonic Analysis

Brett D. Wick

Georgia Institute of Technology School of Mathematics

Southeastern Analysis Meeting University of Florida March 19, 2011

This talk is based on joint work with:

Alexander Volberg Michigan State University USA

Talk Outline

- Motivation of the Problem
 - Besov-Sobolev Spaces of analytic functions on \mathbb{B}_n
 - Carleson Measures for Besov-Sobolev Spaces
 - Connections to Non-Homogeneous Harmonic Analysis
- Main Results and Sketch of Proof
 - T(1)-Theorem for Bergman-type operators
 - Characterization of Carleson measures for Besov-Sobolev Spaces

Besov-Sobolev Spaces

The space B^σ₂ (𝔅_n) is the collection of holomorphic functions f on the unit ball 𝔅_n := {z ∈ ℂⁿ : |z| < 1} such that

$$\left\{\sum_{k=0}^{m-1}\left|f^{\left(k\right)}\left(0\right)\right|^{2}+\int_{\mathbb{B}_{n}}\left|\left(1-|z|^{2}\right)^{m+\sigma}f^{\left(m\right)}\left(z\right)\right|^{2}d\lambda_{n}\left(z\right)\right\}^{\frac{1}{2}}<\infty,$$

where $d\lambda_n(z) = (1 - |z|^2)^{-n-1} dV(z)$ is the invariant measure on \mathbb{B}_n and $m + \sigma > \frac{n}{2}$.

- Various choices of σ give important examples of classical function spaces:
 - $\sigma = 0$: Corresponds to the Dirichlet Space;
 - $\sigma = \frac{1}{2}$: Drury-Arveson Hardy Space;
 - $\sigma = \frac{n}{2}$: Classical Hardy Space;
 - $\sigma > \frac{\overline{n}}{2}$: Bergman Spaces.

Besov-Sobolev Spaces

- The spaces $B_2^{\sigma}(\mathbb{B}_n)$ are examples of reproducing kernel Hilbert spaces.
- Namely, for each point $\lambda \in \mathbb{B}_n$ there exists a function $k_{\lambda}^{\sigma} \in B_2^{\sigma}(\mathbb{B}_n)$ such that

$$f(\lambda) = \langle f, k_{\lambda}^{\sigma} \rangle_{B_{2}^{\sigma}(\mathbb{B}_{n})}$$

• A computation shows that the kernel function $k^{\sigma}_{\lambda}(z)$ is given by:

$$k^{\sigma}_{\lambda}(z) = rac{1}{\left(1-\overline{\lambda}z
ight)^{2\sigma}}$$

•
$$\sigma = \frac{1}{2}$$
: Drury-Arveson Hardy Space; $k_{\lambda}^{\frac{1}{2}}(z) = \frac{1}{1-\overline{\lambda}z}$
• $\sigma = \frac{n}{2}$: Classical Hardy Space; $k_{\lambda}^{\frac{n}{2}}(z) = \frac{1}{(1-\overline{\lambda}z)^n}$
• $\sigma = \frac{n+1}{2}$: Bergman Space; $k_{\lambda}^{\frac{n+1}{2}}(z) = \frac{1}{(1-\overline{\lambda}z)^{n+1}}$

Carleson Measures for Besov-Sobolev Spaces

Definition (Carleson Measures for $B_2^{\sigma}(\mathbb{B}_n)$)

A non-negative Borel measure μ is a $B_2^{\sigma}(\mathbb{B}_n)$ -Carleson measure if

$$\int_{\mathbb{B}_n} |f(z)|^2 d\mu(z) \leq C(\mu)^2 \|f\|_{B^\sigma_2(\mathbb{B}_n)}^2 \quad \forall f \in B^\sigma_2(\mathbb{B}_n).$$

Carleson measures play an important role in both the function theory of the space and more generally play a predominant role in harmonic analysis:

- Interpolating Sequences;
- Characterization of Multipliers for spaces of function;
- Corona Theorems;
- Paraproducts, Commutators, Hankel Operators;

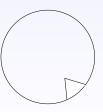
Carleson Measures for Besov-Sobolev Spaces

Question

Give a 'geometric' characterization of Carleson measures for the Besov-Sobolev spaces $B^2_{\sigma}(\mathbb{B}_n)$.

Testing on the reproducing kernel k_{λ}^{σ} we always have a necessary geometric condition for the measure μ to be Carleson:

 $\mu(T(B_r(\xi))) \lesssim r^{2\sigma} \quad \forall \xi \in \partial \mathbb{B}_n, \ r > 0$



When $\sigma \geq \frac{n}{2}$ then this necessary condition is also sufficient.

Carleson Measures for Besov-Sobolev Spaces

When $0 \le \sigma \le \frac{1}{2}$ then a geometric characterization of Carleson measures is known:

• If *n* = 1, the results can be expressed in terms of capacity conditions. More precisely,

 $\mu(T(\Omega)) \lesssim \operatorname{Cap}_{\sigma}(\Omega) \quad \forall \operatorname{open} \Omega \subset \mathbb{T}.$

See for example Stegenga, Maz'ya, Verbitsky, Carleson.

- If n > 1 there are two different characterizations of Carleson measures for B₂^σ(𝔅_n):
 - One method via integration operators on trees (dyadic structures on the ball \mathbb{B}_n) by Arcozzi, Rochberg and Sawyer.
 - One method via "T(1)" conditions by E. Tchoundja.

Question (Main Problem: Characterization in the Difficult Range)

Characterize the Carleson measures when $\frac{1}{2} < \sigma < \frac{n}{2}$.

Operator Theoretic Characterization of Carleson Measures

The following observations hold in an arbitrary Hilbert space with a reproducing kernel.

• Let \mathcal{J} be a Hilbert space of functions on a domain X with reproducing kernel function j_x , i.e.,

$$f(\mathbf{x}) = \langle f, j_{\mathbf{x}} \rangle_{\mathcal{J}} \quad \forall f \in \mathcal{J}.$$

• A measure μ is Carleson exactly if the inclusion map ι from $\mathcal J$ to $L^2(X;\mu)$ is bounded, or

$$\int_X |f(x)|^2 d\mu(z) \leq C(\mu) \|f\|_{\mathcal{J}}^2.$$

We can give a characterization of Carleson measures for the space \mathcal{J} in terms of information about the boundedness of a certain linear operator related to the reproducing kernel j_x .

Operator Theoretic Characterization of Carleson Measures

Proposition (Arcozzi, Rochberg, Sawyer)

A measure μ is a \mathcal{J} -Carleson measure if and only if the linear map

$$f(z) \rightarrow T_{\mu,\mathcal{J}}(f)(z) = \int_X \operatorname{Re} j_X(z) f(x) d\mu(x)$$

is bounded on $L^2(X; \mu)$.

When we apply this proposition to the spaces $B_2^{\sigma}(\mathbb{B}_n)$ this suggests that we study the operator $T_{\mu,2\sigma}: L^2(\mathbb{B}_n;\mu) \to L^2(\mathbb{B}_n;\mu)$ given by

$$T_{\mu,2\sigma}(f)(z) = \int_{\mathbb{B}_n} \operatorname{Re}\left(rac{1}{(1-\overline{w}z)^{2\sigma}}
ight) f(w) d\mu(w)$$

and find some conditions that will let us determine when it is bounded.

Calderón-Zygmund Operators

A function $k(x, y) : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$ will be called a Calderón-Zygmund kernel if it satisfies the following estimates:

$$|k(x,y)| \lesssim rac{1}{|x-y|^d} \quad orall x,y \in \mathbb{R}^d;$$

If
$$|x - x'| \leq \frac{1}{2}|x - y|$$
 then

$$|k(y,x) - k(y,x')| + |k(x,y) - k(x',y)| \lesssim rac{|x-x'|^{ au}}{|x-y|^{d+ au}}$$

provided that, with some (fixed) $0 < \tau \leq 1$. Given the kernel, we define the operator by

$$T(f)(x) = \int_{\mathbb{R}^n} k(x, y) f(y) dy$$

Then for $1 <math>T : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$.

Connections to T(1)-Theorem

Guessing the Characterization?

Theorem (David and Journé)

If T is a Calderón-Zygmund operator then $T : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ if and only if $T(1), T^*(1) \in BMO(\mathbb{R}^n)$ and T is weak bounded.

The condition $T(1) \in BMO(\mathbb{R}^n)$ can be phrased in a more geometric way:

Lemma

Suppose that T is a Calderón-Zygmund operator. The following are equivalent:

- (i) $T(1) \in BMO(\mathbb{R}^n)$;
- (ii) For all $Q \subset \mathbb{R}^n$

$$\int_{Q} |T\chi_Q(x)|^2 dx \lesssim |Q|.$$

Calderón–Zygmund Estimates for $T_{\mu,2\sigma}$

If we define

$$\Delta(z,w):=\left\{egin{array}{cc} ||z|-|w||+\left|1-rac{z\overline{w}}{|z||w|}
ight|&:&z,w\in\mathbb{B}_n\setminus\{0\}\ &|z|+|w|&:& ext{otherwise.} \end{array}
ight.$$

Then Δ is a pseudo-metric and makes the ball into a space of homogeneous type.

A computation demonstrates that the kernel of $T_{\mu,2\sigma}$ satisfies the following estimates:

$$|\mathcal{K}_{2\sigma}(z,w)|\lesssim rac{1}{\Delta(z,w)^{2\sigma}} \quad orall z,w\in \mathbb{B}_n;$$

If $\Delta(\zeta, w) < \frac{1}{2}\Delta(z, w)$ then

$$|\mathcal{K}_{2\sigma}(\zeta,w)-\mathcal{K}_{2\sigma}(z,w)|\lesssim rac{\Delta(\zeta,w)^{1/2}}{\Delta(z,w)^{2\sigma+1/2}}\,.$$

Calderón-Zygmund Estimates for $T_{\mu,2\sigma}$

- These estimates on $K_{2\sigma}(z, w)$ say that it is a Calderón-Zygmund kernel of order 2σ with respect to the metric Δ .
 - Unfortunately, we can't apply the standard T(1) technology (adapted to a space of homogeneous type) to study the operators T_{μ,2σ}. We would need the estimates of order n instead of 2σ.
- However, the measures we want to study (the Carleson measures for the space) satisfy the growth estimate

$$\mu\left(\mathcal{T}(B_r)\right)\lesssim r^{2\sigma}$$

and this is exactly the issue that will save us!

This places us in the setting of non-homogeneous harmonic analysis as developed by Nazarov, Treil and Volberg. We have an operator with a Calderón-Zygmund kernel satisfying estimates of order 2σ, a measure μ of order 2σ, and are interested in L²(B_n; μ) → L²(B_n; μ) bounds.

Euclidean Variant of the Question

There is a natural extension of these questions/ideas to the Euclidean setting \mathbb{R}^d .

More precisely, for $m \le d$ we are interested in Calderón-Zygmund kernels that satisfy the following estimates:

$$|k(x,y)| \lesssim \frac{1}{|x-y|^m},$$

and

$$|k(y,x) - k(y,x')| + |k(x,y) - k(x',y)| \lesssim rac{|x-x'|^{ au}}{|x-y|^{m+ au}}$$

provided that $|x - x'| \le \frac{1}{2}|x - y|$, with some (fixed) $0 < \tau \le 1$.

Euclidean Variant of the Question

Additionally the kernels will have the following property

$$|k(x,y)|\leq rac{1}{\max(d(x)^m,d(y)^m)}\,,$$

where $d(x) := \text{dist}(x, \mathbb{R}^d \setminus H)$ and H being an open set in \mathbb{R}^d .

Key Example: Let $H = \mathbb{B}_d$, the unit ball in \mathbb{R}^d and

$$k(x,y)=\frac{1}{(1-x\cdot y)^m}.$$

A Calderón-Zygmund kernel k on a closed $X \subset \mathbb{R}^d$ if k(x, y) is defined only on $X \times X$ and the previous properties of k are satisfied whenever $x, x', y \in X$.

We say that a $L^2(\mathbb{R}^d; \mu)$ bounded operator is a Calderón-Zygmund operator with kernel k if,

$$T_{\mu,m}f(x) = \int_{\mathbb{R}^d} k(x,y)f(y)d\mu(y) \quad \forall x \notin \mathrm{supp} f.$$

Main Results

Main Results

T(1)-Theorem for Bergman-Type Operators

Theorem (T(1)-Theorem for Bergman-Type Operators, Volberg, BDW (Amer. J. Math., to appear))

Let k(x, y) be a Calderón-Zygmund kernel of order m on $X \subset \mathbb{R}^d$. m < dwith Calderón-Zygmund constants C_{CZ} and τ . Let μ be a probability measure with compact support in X and all balls such that $\mu(B_r(x)) > r^m$ lie in an open set H. Let also

$$|k(x,y)| \leq \frac{1}{\max(d(x)^m, d(y)^m)},$$

where $d(x) := \text{dist}(x, \mathbb{R}^d \setminus H)$. Finally, suppose also that:

$$\|T_{\mu,m}\chi_Q\|^2_{L^2(\mathbb{R}^d;\mu)} \leq A\mu(Q), \|T^*_{\mu,m}\chi_Q\|^2_{L^2(\mathbb{R}^d;\mu)} \leq A\mu(Q).$$

Then $||T_{\mu,m}||_{L^2(\mathbb{R}^d;\mu)\to L^2(\mathbb{R}^d;\mu)} \leq C(A, m, d, \tau).$

Remarks about T(1)-Theorem for Bergman-Type Operators

This theorem gives an extension of the non-homogeneous harmonic analysis of Nazarov, Treil and Volberg to "Bergman-type" operators.

- The balls for which we have $\mu(B(x, r)) > r^m$ are called "non-Ahlfors balls".
 - Non-Ahlfors balls are enemies, their presence make the estimate of Calderón-Zygmund operator basically impossible.
 - The key hypothesis is that we can capture all the non-Ahlfors balls in some open set H.
 - This is just a restatement of the Carleson measure condition in this context.
- To handle this difficulty we suppose that our Calderón-Zygmund kernels have an additional estimate in terms of the behavior of the distance to the complement of *H* (namely that they are Bergman-type kernels).

Main Results

Characterization of Carleson Measures for $B^2_{\sigma}(\mathbb{B}_n)$

Theorem (Characterization of Carleson Measures for Besov-Sobolev Spaces, Volberg, BDW Amer. J. Math. to appear))

Let μ be a positive Borel measure in \mathbb{B}_n . Then the following conditions are equivalent:

- (a) μ is a $B_2^{\sigma}(\mathbb{B}_n)$ -Carleson measure;
- (b) $T_{\mu,2\sigma}: L^2(\mathbb{B}_n;\mu) \to L^2(\mathbb{B}_n;\mu)$ is bounded;
- (c) There is a constant C such that

(i) || *T*_{μ,2σ}χ_Q ||²_{L²(B_n;μ)} ≤ C μ(Q) for all Δ-cubes Q;
(ii) μ(B_Δ(x, r)) ≤ C r^{2σ} for all balls B_Δ(x, r) that intersect Cⁿ \ B_n.

Above, the sets B_{Δ} are balls measured with respect to the metric Δ and the set Q is a "cube" defined with respect to the metric Δ .

Remarks about Characterization of Carleson Measures

- We have already proved that (a) \Leftrightarrow (b), and it is trivial (b) \Rightarrow (c).
- It only remains to prove that $(c) \Rightarrow (b)$.
 - The proof of this Theorem follows from the T(1)-Theorem for Bergman-type operators.
 - In a neighborhood of the sphere $\partial \mathbb{B}_n$ the metric Δ looks a Euclidean-type quasi-metric. For example when n = 2 we have that

$$\Delta(x,y) \approx |x_1 - y_1| + |x_2 - y_2| + |x_3 - y_3|^2 + |x_4 - y_4|^2$$

- The method of proof of the Euclidean Bergman-type T(1) theorem can then be modified to case of Calderón-Zygmund operators with respect to a quasi-metric (essentially verbatim).
- It is possible to show that the T(1) condition reduces to the simpler conditions in certain cases.
- An alternate proof of this Theorem was recently given by Hytönen and Martikainen. Their proof used a non-homogeneous T(b)-Theorem on metric spaces.

Checking the Theorem for Carleson Measures of H^2

Definition (Carleson Measures for $H^2(\mathbb{C}_+)$)

A measure μ is a Carleson measure for $H^2(\mathbb{C}_+)$ (or $H^2(\mathbb{D}))$ if

$$\int_{\mathbb{C}_+} |f(z)|^2 d\mu(z) \leq C(\mu)^2 \|f\|^2_{H^2(\mathbb{C}_+)} \quad orall f \in H^2(\mathbb{C}_+).$$

As is well-known this function-theoretic condition happens if and only if the follow geometric condition is satisfied for all tents T(I) over $I \subset \mathbb{R}$:

$$\mu(T(I)) \leq C|I| \quad \forall I \subset \mathbb{R}.$$

If $I \subset \mathbb{R}$ is an interval, then T(I) will be a cube in \mathbb{R}^2 . Restricting the integral to T(I) and using standard estimates for the kernel one sees:

$$\frac{\mu(\mathcal{T}(I))^3}{|I|^2} \leq C(\mu)\mu(\mathcal{T}(I)) \Rightarrow \mu(\mathcal{T}(I)) \leq C(\mu)|I|$$

Checking the Theorem for Carleson Measures of H^2

We want to show that if we know that $\boldsymbol{\mu}$ satisfies the geometric Carleson condition, then

$$\|T_{\mu,\frac{1}{2}}\chi_{Q}\|^{2}_{L^{2}(\mathbb{C}_{+};\mu)} \leq C \mu(Q)$$

Observe that the function

$$\mathsf{F}_{\mathcal{Q},\mu}(z):=\int_{\mathbb{R}^2}rac{\chi_{\mathcal{Q}}(\xi)}{\xi-z}\mathsf{d}\mu(\xi)\in\mathsf{H}^2(\mathbb{C}_-).$$

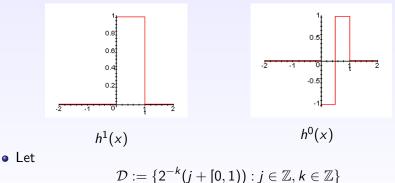
with norm a constant multiple of $\sqrt{\mu(Q)}$.

Since the function then belongs to $H^2(\mathbb{C}_-)$, an application of the Carleson Embedding property (or equivalently, the geometric condition for Carleson measures) gives that

$$\|T_{\mu,\frac{1}{2}}\chi_Q\|^2_{L^2(\mathbb{C}_+\mu)} = \int_{\mathbb{C}_+} |F_{Q,\mu}(z)|^2 d\mu(z) \leq C(\mu)\mu(Q).$$

The Haar Basis for $L^2(\mathbb{R})$

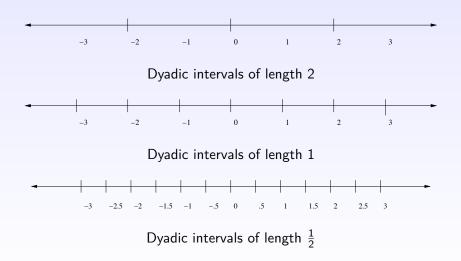
• Let
$$h^1(x) := \mathbf{1}_{[0,1)}(x)$$
 and let $h^0(x) := -\mathbf{1}_{[0,1/2)}(x) + \mathbf{1}_{[1/2,1)}(x)$



i.e., the usual dyadic grid in \mathbb{R} .

Haar Wavelets

The Dyadic Grid in \mathbb{R}



A Wavelet Basis for $L^2(\mathbb{R})$

For *I* ∈ D and let *h_I* be the version of *h⁰* "adapted" to the interval *I*{*h_I* : *I* ∈ D} is the Haar wavelet basis for *L²*(ℝ).

$$\langle f, h_l \rangle_{L^2(\mathbb{R})} := \int_{\mathbb{R}} f(x) h_l(x) dx$$

$$f(x) = \sum_{I \in \mathcal{D}} \langle f, h_I \rangle_{L^2(\mathbb{R})} h_I(x)$$

$$\|f\|_{L^2(\mathbb{R})}^2 = \sum_{I \in \mathcal{D}} |\langle f, h_I \rangle_{L^2(\mathbb{R})}|^2$$

Showing the the Calderón-Zygmund Operator is Bounded

Expand f and g in the Haar basis:

$$f = \sum_{I \in \mathcal{D}} \langle f, h_I \rangle_{L^2(\mathbb{R})} h_I \quad g = \sum_{I \in \mathcal{D}} \langle g, h_I \rangle_{L^2(\mathbb{R})} h_I$$

$$\begin{aligned} \langle Tf,g\rangle_{L^2(\mathbb{R})} &= \sum_{I,J\in\mathcal{D}} \langle f,h_I\rangle_{L^2(\mathbb{R})} \langle g,h_J\rangle_{L^2(\mathbb{R})} \langle Th_I,h_J\rangle_{L^2(\mathbb{R})} \\ &= \sum_{I=J} + \sum_{I\subset J} + \sum_{J\subset I} \left(\langle f,h_I\rangle_{L^2(\mathbb{R})} \langle g,h_J\rangle_{L^2(\mathbb{R})} \langle Th_I,h_J\rangle_{L^2(\mathbb{R})} \right). \end{aligned}$$

- The diagonal piece is easy, and contributes obvious estimates;
- The other two pieces are dual to each other and reduce to controlling operators like

$$\sum_{I\in\mathcal{D}} \langle T\chi_I, h_I \rangle_{L^2(\mathbb{R})} \left\langle f, \frac{\chi_I}{|I|} \right\rangle_{L^2(\mathbb{R})} \langle g, h_I \rangle_{L^2(\mathbb{R})}.$$

Littlewood-Paley Decomposition

- Construct two independent dyadic lattices \mathcal{D}_1 and \mathcal{D}_2 .
- There are special unit cubes Q^0 and R^0 of \mathcal{D}_1 and \mathcal{D}_2 respectively that contain supp μ deep inside them.
- Define expectation operators Δ_Q (Haar function on Q) and Λ (average on Q^0), then we have for every $\varphi \in L^2(\mathbb{R}^d; \mu)$

$$\varphi = \Lambda \varphi + \sum_{Q \in \mathcal{D}_1} \Delta_Q \varphi,$$

the series converges in $L^2(\mathbb{R}^d; \mu)$. Moreover,

$$\|\varphi\|_{L^2(\mathbb{R}^d;\mu)}^2 = \|\Lambda\varphi\|_{L^2(\mathbb{R}^d;\mu)}^2 + \sum_{Q\in\mathcal{D}_1} \|\Delta_Q\varphi\|_{L^2(\mathbb{R}^d;\mu)}^2.$$

Good and Bad Decomposition

We fix the decomposition of f and g into good and bad parts:

$$f = f_{good} + f_{bad}$$
, where $f_{good} = \Lambda f + \sum_{Q \in D_1 \cap \mathcal{G}_1} \Delta_Q f$

$$g = g_{good} + g_{bad} \ , \$$
where $g_{good} = \Lambda g + \sum_{R \in \mathcal{D}_2 \cap \mathcal{G}_2} \Delta_R g .$

It turns out that for any fixed $Q\in\mathcal{D}_1$,

 $\mathbb{P}\{Q \text{ is bad}\} \le \delta^2$ $\mathbb{E}(\|f_{bad}\|_{L^2(\mathbb{R}^d;\mu)}) \le \delta \|f\|_{L^2(\mathbb{R}^d;\mu)}.$

Similar statements for g hold as well.

Haar Wavelets

Reduction to Controlling The Good Part

Using the decomposition above, we have

$$\langle T_{\mu,m}f,g \rangle_{L^2(\mathbb{R}^d;\mu)} = \langle T_{\mu,m}f_{good},g_{good} \rangle_{L^2(\mathbb{R}^d;\mu)} + R(f,g)$$

Using the construction above, we have that

$$\mathbb{E}|R_{\omega}(f,g)| \leq 2\,\delta \|T\|_{L^2(\mathbb{R}^d;\mu) \to L^2(\mathbb{R}^d;\mu)} \|f\|_{L^2(\mathbb{R}^d;\mu)} \|g\|_{L^2(\mathbb{R}^d;\mu)}.$$

• Choosing δ small enough $(<\frac{1}{4})$ we only need to show that

$$\left|\langle \mathsf{T}_{\mu,m}\mathsf{f}_{\mathsf{good}},\mathsf{g}_{\mathsf{good}}\rangle_{L^2(\mathbb{R}^d;\mu)}\right| \leq C(\tau,m,\mathsf{A},d)\|\mathsf{f}\|_{L^2(\mathbb{R}^d;\mu)}\|g\|_{L^2(\mathbb{R}^d;\mu)}$$

This will then give

$$\|T\|_{L^2(\mathbb{R}^d;\mu)\to L^2(\mathbb{R}^d;\mu)}\leq 2C(\tau,m,A,d).$$

Sketch of Proof Estimating The Good Part

• We then decompose the

$$\langle T_{\mu,m} f_{good}, g_{good} \rangle_{L^2(\mathbb{R}^d;\mu)} = A_1 + A_2 + A_3$$

- The term A_1 is the diagonal part of the sum. This is the easiest part.
- The term A₂ is the long-range interaction part. The second easiest part
 - Here we use the Calderón-Zygmund Estimates and the hypothesis that we can capture all the non-Ahlfors balls in the open set *H*.
- The term A_3 is the short-range interaction part.
 - Here we use the T(1) hypothesis and reduce the estimates to paraproducts.
- These all then imply that

$$\left|\langle T_{\mu,m}f_{good},g_{good}\rangle_{L^2(\mathbb{R}^d;\mu)}\right| \leq C(\tau,m,A,d) \|f\|_{L^2(\mathbb{R}^d;\mu)} \|g\|_{L^2(\mathbb{R}^d;\mu)}.$$

Internet Analysis Seminar Announcement

2nd Internet Analysis Seminar will take place during the Fall 2011 – Spring 2012 Academic Year.

- Phase I (October February), approximately fifteen weekly, electronic lectures will be provided via a public website.
- Phase II (March May), participants from Phase I will apply to work through a more advanced project.
- Phase III consists of a final one-week workshop held in June, during which, participants will present their projects.

Topic: Multiparameter Harmonic Analysis or Non-Homogeneous Harmonic Analysis Details available on:

http://internetanalysisseminar.gatech.edu/

Supported by National Science Foundation CAREER grant DMS # 0955432.

Thank You!