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LOS ANGELES

RSITY OF CALIFORN:

Apzil 1573

»fessor John B. Conway

hema

Tans Univorsity

oomington, Ir !M\ﬂna 47401
Dear John:
~ . . :

Thanks for your interesting preprint.

of your theorem was pointed out to me some time ago by Sarason (sé% p.
see p. 248 4th P for notation). You should
L and Paviov in the “Soviet Math.

Actually, the "easy" part

1 252 of the enclosed paper:
slso look at two papers by
Dokl." vol. 10 (1969), PP. 738-1%1 and 163-166.

- 1969, 38 3- |

Have you thought about which (scalar) Sz.-Nagy-Foias models are
similar to normal operators? The question is nontrivial, since some-
times ‘they are similar to unitary operators (see Sz.-N.-F. book);
necessary and sbfficient for this is that the characteristic function
be bounded below in the unit disc. If the guter part is bounded below
and the zeros of the innér part are uniformly separated is the model

similar to a normal operator?

Are these conditions necessary?

T on when two (scalar)

Kriete (B. A. M. S. 76 #2 (1970)) wrote a
models are similar (to eachother).

best regards,

oclsrar 3 croek
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On i of certain

B/APEL YUAN WU in Bloomington (Indiana, US.A)

iAGY and Foias showed in [4] that a contraction T on a separable Hilbert
space H is similar to a unitary operator if and only if ts characteristic function
©1(3) has a bounded aualytic inverse (se¢ also 5], Ch. IX). In the prescat paper,
we give a generalization of this result. We prove that a contraction 7 is simila
10 a direct sum of a unitary operator and a contraction of class C. if and only if
the outer factor of @1 () has a bounded analytic inverse. We shall also indicate some
interesting consequences.

1. Preliminarics. We only consider non-trivial, complex, separable Hilbert
spaces. For completely non-unitary contractions we e the functional models
as developed in [5], Ch. VL.

Let T be a contraction on the Hilbert space /. Denote by =i 7o Ty,
Dro=(1—TT*)"* the defect operators and Dy DrH the defect
spaces of T.

The charscerstie function (Dr, D, 07()) of T is the purely contrative
analytic fu r 10 Dr. defined by

©1(2) = [~ T+ADpa(1 —JT*) DDy for |3 <1.
1 7is compltely non-unitary, we will consider Tinis functional model, .. deined

b A,

T WD) = e~ “[u(e) —uO)S "0 ()
on lhc space
H = [H*(Dr)®4r L‘(mﬁle(efuasAru ug H(Dp)),
where 47(0)=[/— ©(e)* O (]2, 0.(1) be the canonical

Or(
factorization of {Dy, Dr., Or(D} into - producl o outer factor {Dr, ¥ €,(A}
and inner factor {§. Drr, O5(). Let

Hy = (Ouv: uc H'(S), ve 5T (D)0 (01w drw: we H (Dp)}
be the induced invariant subspace for 7 and
H, = HO H, = [H*(D1+)0 6, H*(§)]® (0)
i atogont compiemen. ot 71 1] b the antion f T corsondio
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L and Mt A, Vol 4550, 39-37) 199 OFA (Overes Pulers Aviion) N
Repriets avaiabie dirctly from the pos P
ing permitid by heense ouly

Lucas’ Theorem Refined*

HWA-LONG GAU and PEI YUAN WU'

Hsinchu, Taiwan, Republic of China

Communicated by T. Ando

(Received 24 April 1998)

Weprove  reined verson of the classical Lucas”theore: i s polynomil with sros
a2y all d pis zeros are those
oF 1 esivative /- hen the compreasion of the shih 5(@) has ke sammerica Hiaes
circumseribed abou by th (1 + 1500 a1~ 1 With tangent pointsthe midpoints of
the n + 1 sides of the polygon. This s proved via a special malrix representaion of S()
and is a generalization of the known case for

Keywords: Compression of the shift; numerical range; dilation

AMS Subject Classification: 15A60, 47A12

A classical result in complex analysis, variously attributed to Gauss,
Lucas, Grace and others and usually called Lucas’ theorem, says that
zeros of the derivative of a polynomial are all contained in the convex
hull of the set of zeros of the polynomial. A more refined assertion for
polynomials of degree three, due to Siebeck [5] (¢/: also [4, p. 9]), is that
if the degree-three polynomial p has zeros aj,a; and a; and the
derivative /' has zefos by and b, then there s an cllipse with foci at by
and b, which is circumscribed about by the triangle Aaiaa; with

Dedicated to John B. Conway, the thesis advisor of the second author and the
mathematical randiather of the s, on bis 60th birthday
Corresponding author. e-mail: pywu@co nct.cdu tw
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H complex Hilbert space with inner product (-, -)

A bounded linear operator on H

Def. W(A) = {(Ax,x) : x € H,||x|]| =1}

numerical range of A

w(A) = sup {|(Ax,x)| : x € H,||x|| = 1}

numerical radius of A
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Properties:

U unitary = W(U*AU) = W(A)

W(A) bounded subset of C
W(aA+bl)=aW(A)+b Va,beC
W(Re A) = Re W(A), W(Im A) =Im W(A)
ReA=(A+A*)/2, ImA=(A—A")/(2))
W(A) convex (Toeplitz—Hausdorff, 1918-19)
a(A) € W(A)

A normal = W(A) = ¢(A)"

W(Aa B) = (W(A) U W(B)"
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Question 1. Given A, what can we say about W(A) ?
Question 2. Known W(A), what can we say about A ?

Question 3. Which bdd convex A C Cis W(A) for some A ?
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Ex.1.

=[5 ¢]

= W(A) = elliptic disc with foci a, ¢ & minor axis of

length |b|
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Ex.2.

A= i
0 an
= W(A) = polygonal region with some of the a;'s

as vertices
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Ex.3.

A=y = - (n x n Jordan block)

S
0

= W/(A) = circular disc centered at 0 & radius

cos (m/(n+ 1))
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Ex.4.

A= . on 2

= WA)=D={zeC:|z] <1}
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(1) J. Anderson (early 1970s):
Condition for W(A) = circular disc
(2) J. Holbrook (1969):
Inequality of w(AB) for AB = BA
(3) J. P. Williams & T. Crimmins (1967):

Condition for w(A) = ||A||/2
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J. Anderson (early 1970s):
Thm. Anx n, W(A) C D & # (OW(A)NdD) > n= W(A) =D
f: (Wu, 1999) W(A)CD < Re (e "A)< Iy VOeR
( 9y =det (I, — Re (e7"A)) >0 V4o
= ge M ...+ age % +ay+ael+ -+ ae
= |g(€e'?)|? for some poly. g of deg.< n by Riesz-Fejér (1916)

# (OW(A)NdD) > n = p(e’) =0 for more than n #’s
= q(e'%) = 0 for more than n #’s

.. Fund. thm. of algebra

=qg=0 =p=0 < W(A

Cor. {zeD:Rez>0}+#W(A) V

D
fin

inite matrix A
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Elaborations:
(1) Gau & Wu (2004, 2007):
0 1

A= 0 ] n x n companion matrix

W(A) D D (circular disc at 0), #(OW(A)N9dD) > n= A= J,
(2) Gau & Wu (2006):
A compact, W(A) C D, #(0W(A) N D) = co = W(A) =D
Idea: “analytic” branch of ds(#) = max W(Re (e?A)), § ¢ R
cda(0) <1 V6
da(f) =1 for infinitely many 6’s = day=1

Cor. {zeD:Rez>0}+# W(A) for Acompact
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(3) Gau & Wu (2008):
Anxn(n>3), WA) DD, #(0W(A)NadD) > n
= 0W/(A) contains at least one arc and at most n — 2 arcs
of oD

0 2
00
1<r<sec(n/(n—2)),00=2r/(n—2)

= W(A) > D & dW(A) contains n — 2 arcs of oD

Ex. A= [ } @ diag (r,re, ... re/("=3)%)
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(4) A n x nnilpotent, W(A) C D, #(0W(A)NdD) > n—2
= W(A)=D & “n—2"is sharp:

(01 0 -~ 0 1]
0 1 0
Ex. A= o (') nxn (n>3)
1
0

> W(A2) D & #(0W(An)N0D)=n—2
(5) Anx nnilpotent, W(A) D D, #(0W(A)NdD) > n—2

_ [ WA =D if 2<n<4
OW(A) containsanarcof oD  if n>5

\_/
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(6) Anx n, W(A) = circular disc centered at a
= ais eigenvalue of A with 1 < geom. multi. < alg. multi.

Cor.1. A n x nsimilar to normal = W(A) # circular disc
Cor.2. A n x nnonnegative & irreducible

= W/(A) # circular disc
Cor.3. A n x nrow stochastic = W/(A) # circular disc

0 1

Note. A = Ul nxn
o

0
= W(A)={zeC:|z|<cos(n/(n+1))}
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J. Holbrook (1969):
AB = BA = w(AB) < w(A)||B]|, ||Allw(B)
Known:
(1) w(AB) <4w(A)w(B) & “4”is sharp:

Ex.A:H 8},3:[8 H :>AB:[(O) ?]
-~ W(AB) = 1, w(A) = w(B) = 1/2

(2) AB=BA= w(AB) <2w(A)w(B) & “2”is sharp:
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(3) True if A normal (Holbrook, 1969)
if A isometry (Bouldin, 1971)
if AB=BA & AB* = B*A (Holbrook, 1969)
if A, B 2x2 (Holbrook, 1992)

(4) Crabb (1976):
AB = BA = w(AB) < (V2 + 2v/3/2)w(A)| B|

Pei Yuan Wu A Journey Through Numerical Ranges



(5) Muller (1988), Davidson & Holbrook (1988):
Ex.A=Jy, B=J3+J]
w(AB) = ||A| =1, |B| > V2
w(A) = w(B) = cos (7/10)
= w(AB) > ||A|lw(B), but w(AB) < w(A)|B]|

Schoch (2002): A, B 4 x 4
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Wu, Gau & Tsai (2009) :
Thm 1. A= S(¢), AB= BA= w(AB) < w(A)| B|
But A= S(¢), AB= BA =% w(AB) < ||A||lw(B)

é inner func. (¢ : D — D analy. & |¢| = 1 a.e. on ID)
Def. S(@)f = Pregyre(2f(2))  for f e H? © ¢pH?
Ex. ¢(2z)=2" (n>1) Then S(¢) = Js
More generally,
Thm 2. A Cy contraction with minimal func. ¢, w(A) = w(S(¢))
(Def. ||A|| <1 & ¢(A)=0)
AB = BA = w(AB) < w(A)|B||
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Cor. A quadratic, AB = BA= w(AB) < w(A)| B

T
A2+ aA+ bl =0 forsome a,beC

Unknown:
A quadratic, AB = BA = w(AB) < ||A||\w(B)
Known:
(1) Rao (1994):
A2 — al, AB = BA = w(AB) < |A|w(B)
(2) Gau, Huang & Wu (2008):
A2=0 or A=A AB=BA
= W(AB) < min{w(A)||BI|, [|Allw(B)}
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1Al[/2 < w(A) < [|All

(1) Williams & Crimmins (1967):

Pf:

|All = 2, w(A) =1, [|Ax]| = [|A[| for some [|x|| = 1
02

;‘Ag[o 0

}EBA' & W(A) =D

Let y = (1/2)Ax (x:[?}@o&y:[é]@m

Then |ly||=1 & xLly
Let K= Vv{y,x}

0 2

Then A:[o 0

]@A' on H=K@K+
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August, 1978
Helsinki, Finland
James P. Williams
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(2) Crabb (1971):
w(A) <1,||A"x|| =2 forsomen>1 & |x| =1

([0 2 , .
00 e A _ if n=1
[0 V2
0 1
= A=
1 oA if n>2
V2
\ L 0_
& W(A) =D
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Gau & Wu (2009): confirming a conjecture of Drury (2008)

Thm. finner func., f(0) =0
w(A) < 1, A has no singular unitary part
IlIf(A)x|| = 2 for some ||x|| = 1
= A= Bg A, where B similar to S(¢),

#(2) = zf(z) & W(A) =D
Special cases:

f(z) =z = Wiliams & Crimmins
f(zy=2"(n>2) = Crabb
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BHET, BIRPREE |

John Conway:

Beneficial to Operator Theory,

Happy Retirement !
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