New estimates of Essential norms of weighted composition operators between Bloch type spaces

Ruhan Zhao

SUNY-Brockport, NY, USA

March 19, 2011

Our Goal

Our Goal

Let φ be an analytic self-map of D, and u be an analytic function on D. The weighted composition operator induced by u and φ is defined by $uC_{\varphi}(f)(z) = u(z)f(\varphi(z))$. In this talk we give estimates of the essential norms of the weighted composition operators uC_{φ} between different α -Bloch spaces in terms of the *n*-th power of φ . We also give similar characterizations for boundedness and compactness of uC_{φ} between different α -Bloch spaces.

This is a joint work with Jasbir Singh Manhas.

• The α -Bloch Space:

Let $0 < \alpha < \infty$. The α -Bloch Space B^{α} consists of analytic functions f in D with

$$\|f\|_{B^{lpha}} = \sup_{z \in D} |f'(z)|(1-|z|^2)^{lpha} < \infty.$$

• The α -Bloch Space:

Let $0 < \alpha < \infty$. The α -Bloch Space B^{α} consists of analytic functions f in D with

$$\|f\|_{B^{lpha}} = \sup_{z \in D} |f'(z)|(1-|z|^2)^{lpha} < \infty.$$

• B^{α} is a Banach space under the norm $|f(0)| + ||f||_{B^{\alpha}}$.

• The α -Bloch Space:

Let $0 < \alpha < \infty$. The α -Bloch Space B^{α} consists of analytic functions f in D with

$$\|f\|_{B^{lpha}} = \sup_{z \in D} |f'(z)|(1-|z|^2)^{lpha} < \infty.$$

- B^{α} is a Banach space under the norm $|f(0)| + ||f||_{B^{\alpha}}$.
- When $0 < \alpha < 1$, $B^{\alpha} = \text{Lip}_{1-\alpha}$, the Lipschitz space, which contains analytic functions f in D such that, for all $z, w \in D$,

$$|f(z)-f(w)|\leq C|z-w|^{1-\alpha}.$$

• The α -Bloch Space:

Let $0 < \alpha < \infty$. The α -Bloch Space B^{α} consists of analytic functions f in D with

$$\|f\|_{B^{lpha}} = \sup_{z\in D} |f'(z)|(1-|z|^2)^{lpha} < \infty.$$

- B^{α} is a Banach space under the norm $|f(0)| + ||f||_{B^{\alpha}}$.
- When $0 < \alpha < 1$, $B^{\alpha} = \text{Lip}_{1-\alpha}$, the Lipschitz space, which contains analytic functions f in D such that, for all $z, w \in D$,

$$|f(z)-f(w)|\leq C|z-w|^{1-\alpha}.$$

• When $\alpha > 1$, $B^{\alpha} = A^{-(\alpha-1)} (H^{\infty}_{\alpha-1})$, which consists of analytic functions f in D such that

$$\sup_{z\in D}|f(z)|(1-|z|^2)^{\alpha-1}<\infty.$$

Bounded and compact operators:

Let X and Y be Banach spaces. Let B_X is the unit ball in X; A linear operator $T: X \to Y$ is **bounded**, if TB_X is bounded in Y, T is **compact**, if the closure of TB_X is a compact set in Y.

Bounded and compact operators:

Let X and Y be Banach spaces. Let B_X is the unit ball in X; A linear operator $T: X \to Y$ is **bounded**, if TB_X is bounded in Y, T is **compact**, if the closure of TB_X is a compact set in Y.

Essential norms:

The essential norm $||T||_e$ of a bounded operator T between Banach spaces X and Y is the distance from T to the space of compact operators from X to Y.

Bounded and compact operators:

Let X and Y be Banach spaces. Let B_X is the unit ball in X; A linear operator $T: X \to Y$ is **bounded**, if TB_X is bounded in Y, T is **compact**, if the closure of TB_X is a compact set in Y.

Essential norms:

The essential norm $||T||_e$ of a bounded operator T between Banach spaces X and Y is the distance from T to the space of compact operators from X to Y.

Two integral operators:

For an analytic function u on D, we define two integral operators on H(D) as follows: for every $f \in H(D)$,

$$J_u f(z) = \int_0^z f'(\zeta) u(\zeta) d\zeta, \qquad J_u f(z) = \int_0^z f(\zeta) u'(\zeta) d\zeta.$$

Motivations

Theorem

Let $0 < \alpha, \beta < \infty$ and φ be an analytic self-map of the unit disk D. Then the essential norm of composition operator $C_{\varphi}: B^{\alpha} \to B^{\beta}$ is

$$\|C_{arphi}\|_e = \lim_{s
ightarrow 1} \sup_{|arphi(z)| > s} |arphi'(z)| rac{(1-|z|^2)^eta}{(1-|arphi(z)|^2)^lpha}.$$

Motivations

Theorem

Let $0 < \alpha, \beta < \infty$ and φ be an analytic self-map of the unit disk D. Then the essential norm of composition operator $C_{\varphi}: B^{\alpha} \to B^{\beta}$ is

$$\|C_{\varphi}\|_e = \lim_{s \to 1} \sup_{|\varphi(z)| > s} |\varphi'(z)| \frac{(1-|z|^2)^{eta}}{(1-|\varphi(z)|^2)^{lpha}}.$$

The result was first proved by Montes-Rodríguez in 1999 for the case $\alpha = \beta = 1$. For the case $0 < \alpha = \beta < \infty$, the result was proved by Montes-Rodríguez in 2000. Contreras and Hernandez-Díaz proved for the general case in 2000. When $0 < \alpha \le 1$, the result was also proved by MacCluer and Z in 2003. The last three papers actually generalized this result to weighted composition operators.

Wulan, Zheng and Zhu obtained the following result (PAMS 2009).

Theorem

Let φ be an analytic self-map of D. Then C_{φ} is compact on the Bloch space B if and only if

$$\lim_{n\to\infty}\|\varphi^n\|_B=0.$$

Wulan, Zheng and Zhu obtained the following result (PAMS 2009).

Theorem

Let φ be an analytic self-map of D. Then C_{φ} is compact on the Bloch space B if and only if

$$\lim_{n\to\infty}\|\varphi^n\|_B=0.$$

Question 1. Can we have an essential norm formula for $C_{\varphi}: B \to B$, in terms of φ^n ? How about $C_{\varphi}: B^{\alpha} \to B^{\beta}$?

The question has been answered affirmatively by Z (PAMS 2010):

Theorem

Let $0 < \alpha, \beta < \infty$. Let φ be an analytic self-map of the unit disk D. Then the essential norm of composition operator $C_{\varphi}: B^{\alpha} \to B^{\beta}$ is

$$\|C_{\varphi}\|_{e} = \left(\frac{e}{2\alpha}\right)^{\alpha} \limsup_{n \to \infty} n^{\alpha-1} \|\varphi^{n}\|_{B^{\beta}}.$$

The question has been answered affirmatively by Z (PAMS 2010):

Theorem

Let $0 < \alpha, \beta < \infty$. Let φ be an analytic self-map of the unit disk D. Then the essential norm of composition operator $C_{\varphi}: B^{\alpha} \to B^{\beta}$ is

$$\|C_{\varphi}\|_{e} = \left(\frac{e}{2\alpha}\right)^{\alpha} \limsup_{n \to \infty} n^{\alpha-1} \|\varphi^{n}\|_{B^{\beta}}.$$

Question 2. Can we generalize this result to the weighted composition operators uC_{φ} ?

Boundedness

Boundedness

Theorem (Boundedness)

Let φ be an analytic self map of *D*, let *u* be analytic on *D*, and let α and β be positive real numbers.

(i) If $0 < \alpha < 1$, then uC_{φ} maps B^{α} boundedly into B^{β} if and only if $u \in B^{\beta}$ and

$$\sup_{n\geq 1} n^{\alpha-1} \|I_u(\varphi^n)\|_{B^{\beta}} < \infty.$$

(ii) If $\alpha > 1$, then uC_{φ} maps B^{α} boundedly into B^{β} if and only if

$$\sup_{n\geq 1} n^{\alpha-1} \|I_u(\varphi^n)\|_{B^{\beta}} < \infty$$

and

$$\sup_{n\geq 1} n^{\alpha-1} \|J_u(\varphi^n)\|_{B^{\beta}} < \infty.$$

The case $\alpha = 1$

For $\alpha = 1$, the corresponding conditions would be

$$\sup_{n\geq 1}\|I_u(\varphi^n)\|_{B^\beta}<\infty,\qquad \sup_{n\geq 1}\|J_u(\varphi^n)\|_{B^\beta}<\infty.$$

Curiously enough, while these conditions are necessary for uC_{φ} to be bounded from B to B^{β} , but they are not sufficient.

For $\alpha = 1$, the corresponding conditions would be

$$\sup_{n\geq 1}\|I_u(\varphi^n)\|_{B^{\beta}}<\infty,\qquad \sup_{n\geq 1}\|J_u(\varphi^n)\|_{B^{\beta}}<\infty.$$

Curiously enough, while these conditions are necessary for uC_{φ} to be bounded from B to B^{β} , but they are not sufficient. **Example.** Let $1 < \beta < \infty$. Let $u(z) = (1-z)^{1-\beta}$, $\varphi(z) = z$, and $f(z) = \log(2/(1-z))$. Then $u \in B^{\beta}$, and $f \in B$. Easy computations show that, for $\beta > 1$,

$$\|I_u(\varphi^n)\|_{B^\beta} \leq 2^\beta \quad \|J_u(\varphi^n)\|_{B^\beta} \leq \|u\|_{B^\beta}.$$

However, for $\beta > 1$, we have

$$\|uC_{\varphi}(f)\|_{B^{\beta}}=\infty.$$

Therefore, $uC_{\varphi}: B \rightarrow B^{\beta}$ is not bounded.

The case $0 < \alpha < 1$

The case $0 < \alpha < 1$

Theorem

Suppose $0 < \alpha < 1$ and $0 < \beta < \infty$ and suppose the weighted composition operator uC_{φ} is bounded from B^{α} to B^{β} . Then

$$\|uC_{\varphi}\|_{e} = \left(\frac{e}{2\alpha}\right)^{\alpha} \limsup_{n \to \infty} n^{\alpha-1} \|I_{u}(\varphi^{n})\|_{B^{\beta}}.$$

The case $0 < \alpha < 1$

Theorem

Suppose $0 < \alpha < 1$ and $0 < \beta < \infty$ and suppose the weighted composition operator uC_{φ} is bounded from B^{α} to B^{β} . Then

$$\|uC_{\varphi}\|_{e} = \left(\frac{e}{2\alpha}\right)^{\alpha} \limsup_{n \to \infty} n^{\alpha-1} \|I_{u}(\varphi^{n})\|_{B^{\beta}}.$$

Corollary

Suppose $0 < \alpha < 1$ and $0 < \beta < \infty$ and suppose the weighted composition operator uC_{φ} is bounded from B^{α} to B^{β} . Then uC_{φ} is compact from B^{α} to B^{β} if and only if

$$\limsup_{n\to\infty} n^{\alpha-1} \|I_u(\varphi^n)\|_{B^\beta} = 0.$$

The case $\alpha > 1$

The case $\alpha > 1$

Denote by

$$A = \left(\frac{e}{2\alpha}\right)^{\alpha} \limsup_{n \to \infty} n^{\alpha - 1} \|I_u(\varphi^n)\|_{B^{\beta}}$$

and

$$B = \left(\frac{e}{2(\alpha-1)}\right)^{\alpha-1} \limsup_{n\to\infty} n^{\alpha-1} \|J_u(\varphi^n)\|_{B^{\beta}}.$$

Then we have the following result.

The case $\alpha > 1$

Denote by

$$A = \left(\frac{e}{2\alpha}\right)^{\alpha} \limsup_{n \to \infty} n^{\alpha - 1} \|I_u(\varphi^n)\|_{B^{\beta}}$$

and

$$B = \left(\frac{e}{2(\alpha-1)}\right)^{\alpha-1} \limsup_{n\to\infty} n^{\alpha-1} \|J_u(\varphi^n)\|_{B^{\beta}}.$$

Then we have the following result.

Theorem

Let $\alpha > 1$, $0 < \beta < \infty$. Suppose that the weighted composition operator uC_{φ} is bounded from B^{α} to B^{β} . Then

$$\max\left(\frac{1}{2^{1+\alpha}(3\alpha+2)}A, \ \frac{1}{2^{1+\alpha}3\alpha(\alpha+1)}B\right) \leq \|uC_{\varphi}\|_{e} \leq A+B.$$

Corollary

Let $\alpha > 1$, $0 < \beta < \infty$. Suppose that the weighted composition operator uC_{φ} is bounded from B^{α} to B^{β} . Then uC_{φ} is compact from B^{α} to B^{β} if and only if the following two conditions are satisfied.

$$\limsup_{n\to\infty} n^{\alpha-1} \|I_u(\varphi^n)\|_{B^\beta} = 0$$

and

$$\limsup_{n\to\infty} n^{\alpha-1} \|J_u(\varphi^n)\|_{B^{\beta}} = 0.$$

Idea of Proofs

Idea of Proofs

Recall

Theorem (Boundedness)

Part (i). If $0 < \alpha < 1$, then uC_{φ} maps B^{α} boundedly into B^{β} if and only if $u \in B^{\beta}$ and

$$\sup_{n\geq 1} n^{\alpha-1} \|I_u(\varphi^n)\|_{B^{\beta}} < \infty.$$

Idea of Proof. We are going to use the following theorem by Ohno, Stroethoff and Z in 2003: uC_{φ} be bounded from B^{α} to B^{β} if and only if $u \in B^{\beta}$ and

$$M=\sup_{z\in D}|u(z)||arphi'(z)|rac{(1-|z|^2)^eta}{(1-|arphi(z)|^2)^lpha}<\infty.$$

Let uC_{φ} be bounded from B^{α} to B^{β} . Then, from above theorem we have $u \in B^{\beta}$ (actually, $u = uC_{\varphi}(1) \in B^{\beta}$). Notice that

$$(I_u(\varphi^n)(z))' = u(z)(\varphi^n(z))' = nu(z)\varphi^{n-1}(z)\varphi'(z).$$

Thus we have, for all $n \ge 1$,

$$\begin{split} n^{\alpha-1} \| I_{u}(\varphi^{n}) \|_{B^{\beta}} \\ &= n^{\alpha-1} \sup_{z \in D} n |u(z)| |\varphi(z)|^{n-1} |\varphi'(z)| (1-|z|^{2})^{\beta} \\ &= \sup_{z \in D} n^{\alpha} |\varphi(z)|^{n-1} (1-|\varphi(z)|^{2})^{\alpha} |u(z)| |\varphi'(z)| \frac{(1-|z|^{2})^{\beta}}{(1-|\varphi(z)|^{2})^{\alpha}} \\ &\leq M \sup_{z \in D} n^{\alpha} |\varphi(z)|^{n-1} (1-|\varphi(z)|^{2})^{\alpha} \\ &\leq M K. \end{split}$$

Conversely, let $u \in B^{\beta}$ and $\sup_{n \ge 1} n^{\alpha-1} ||I_u(\varphi^n)||_{B^{\beta}} < \infty$. For any integer $n \ge 1$, let

$$D_n = \{z \in D : r_n \leq |\varphi(z)| \leq r_{n+1}\},\$$

where

$$r_n = \begin{cases} 0, & \text{as } n = 1 \\ \left(\frac{n-1}{n-1+2\alpha}\right)^{1/2}, & \text{as } n \geq 2. \end{cases}$$

Let *m* and *k* be the smallest and largest positive integers such that $D_m \neq \emptyset$ and $D_k \neq \emptyset$ (*k* could be ∞). Then we can decompose *D* as $D = \bigcup_{n=m}^{k} D_n$. An easy exercise in Calculus shows that, there exists a constant $\delta > 0$, independent of *n*, such that

$$\min_{z\in D_n} n^{\alpha} |\varphi(z)|^{n-1} (1-|\varphi(z)|^2)^{\alpha} \geq \delta.$$

Hence,

$$\begin{split} \sup_{z \in D} |u(z)| |\varphi'(z)| \frac{(1-|z|^2)^{\beta}}{(1-|\varphi(z)^2|)^{\alpha}} \\ &= \sup_{m \le n \le k} \sup_{z \in D_n} |u(z)| |\varphi'(z)| \frac{n^{\alpha} |\varphi(z)|^{n-1} (1-|z|^2)^{\beta}}{n^{\alpha} |\varphi(z)|^{n-1} (1-|\varphi(z)^2|)^{\alpha}} \\ &\le \frac{1}{\delta} \sup_{m \le n \le k} \sup_{z \in D_n} n^{\alpha} |u(z)| |\varphi(z)|^{n-1} |\varphi'(z)| (1-|z|^2)^{\beta} \\ &\le \frac{1}{\delta} \sup_{n \ge 1} \sup_{z \in D} n^{\alpha} |u(z)| |\varphi(z)|^{n-1} |\varphi'(z)| (1-|z|^2)^{\beta} \\ &\le \frac{1}{\delta} n^{\alpha-1} \sup_{n \ge 1} \|I_u(\varphi^n)\|_{B^{\beta}} < \infty. \end{split}$$

Thus by Theorem (OSZ 2003) we know that uC_{φ} is bounded from B^{α} to B^{β} .

Some references

1. M. Contreras and A. Hernandez-Díaz, Weighted composition operators in weighted Banach spaces of analytic functions, *J. Australian Math. Soc.*, **69** (2000), 41–60.

2. B. MacCluer and R. Zhao, Essential norms of weighted composition operators between Bloch-type spaces, *Rocky Mountain J. Math.*, **33** (2003), 1437–1458.

A. Montes-Rodríguez, The essential norm of a composition operator on Bloch spaces, *Pacific J. Math.*, **188** (1999), 339–351.
 A. Montes-Rodríguez, Weighted composition operators on weighted Banach spaces of analytic functions, *J. London Math.*

Soc. (2), **61** (2000), 872–844.

5. H. Wulan , D. Zheng and K. Zhu, Composition operators on BMOA and the Bloch space, *Proc. Amer. Math. Soc.*, **137** (2009), 3861–3868.

6. R. Zhao, Essential norms of composition operators between Bloch type spaces, *Proc. Amer. Math. Soc.*, **138** (2010), 2537–2546.

THANK YOU!