New estimates of Essential norms of weighted composition operators between Bloch type spaces

Ruhan Zhao

SUNY-Brockport, NY, USA

March 19, 2011
Our Goal

Let ϕ be an analytic self-map of D, and u be an analytic function on D. The weighted composition operator induced by u and ϕ is defined by $uC_{\phi}(f)(z) = u(z)f(\phi(z))$. In this talk we give estimates of the essential norms of the weighted composition operators uC_{ϕ} between different α-Bloch spaces in terms of the n-th power of ϕ. We also give similar characterizations for boundedness and compactness of uC_{ϕ} between different α-Bloch spaces. This is a joint work with Jasbir Singh Manhas.
Let φ be an analytic self-map of D, and u be an analytic function on D. The weighted composition operator induced by u and φ is defined by $uC_{\varphi}(f)(z) = u(z)f(\varphi(z))$. In this talk we give estimates of the essential norms of the weighted composition operators uC_{φ} between different α-Bloch spaces in terms of the n-th power of φ. We also give similar characterizations for boundedness and compactness of uC_{φ} between different α-Bloch spaces.

This is a joint work with Jasbir Singh Manhas.
The α-Bloch Space: Let $0 < \alpha < \infty$. The α-Bloch Space B^{α} consists of analytic functions f in D with $\|f\|_{B^{\alpha}} = \sup_{z \in D} |f'(z)| (1 - |z|^2)^\alpha < \infty$.

B^{α} is a Banach space under the norm $|f(0)| + \|f\|_{B^{\alpha}}$.

When $0 < \alpha < 1$, $B^{\alpha} = \text{Lip}^{1-\alpha}$, the Lipschitz space, which contains analytic functions f in D such that, for all $z, w \in D$, $|f(z) - f(w)| \leq C |z - w|^{1-\alpha}$.

When $\alpha > 1$, $B^{\alpha} = A^{\alpha - 1}(H^{\infty})$, which consists of analytic functions f in D such that $\sup_{z \in D} |f(z)| (1 - |z|^2)^{\alpha - 1} < \infty$.
• The α-Bloch Space:

Let $0 < \alpha < \infty$. The α-Bloch Space B^α consists of analytic functions f in D with

$$\|f\|_{B^\alpha} = \sup_{z \in D} |f'(z)|(1 - |z|^2)\alpha < \infty.$$
• **The \(\alpha \)-Bloch Space:**

Let \(0 < \alpha < \infty \). The \(\alpha \)-Bloch Space \(B^\alpha \) consists of analytic functions \(f \) in \(D \) with

\[
\| f \|_{B^\alpha} = \sup_{z \in D} |f'(z)|(1 - |z|^2)^\alpha < \infty.
\]

• \(B^\alpha \) is a Banach space under the norm \(|f(0)| + \| f \|_{B^\alpha} \).
• The α-Bloch Space:

Let $0 < \alpha < \infty$. The α-Bloch Space B^α consists of analytic functions f in D with

$$\|f\|_{B^\alpha} = \sup_{z \in D} |f'(z)|(1 - |z|^2)^\alpha < \infty.$$

• B^α is a Banach space under the norm $|f(0)| + \|f\|_{B^\alpha}$.
• When $0 < \alpha < 1$, $B^\alpha = \text{Lip}_{1-\alpha}$, the Lipschitz space, which contains analytic functions f in D such that, for all $z, w \in D$,

$$|f(z) - f(w)| \leq C|z - w|^{1-\alpha}.$$
The α-Bloch Space:

Let $0 < \alpha < \infty$. The α-Bloch Space B^α consists of analytic functions f in D with

$$
\|f\|_{B^\alpha} = \sup_{z \in D} |f'(z)|(1 - |z|^2)^\alpha < \infty.
$$

- B^α is a Banach space under the norm $|f(0)| + \|f\|_{B^\alpha}$.
- When $0 < \alpha < 1$, $B^\alpha = \text{Lip}_{1-\alpha}$, the Lipschitz space, which contains analytic functions f in D such that, for all $z, w \in D$,

$$
|f(z) - f(w)| \leq C|z - w|^{1-\alpha}.
$$

- When $\alpha > 1$, $B^\alpha = A^{-(\alpha-1)}(H_\alpha^\infty)$, which consists of analytic functions f in D such that

$$
\sup_{z \in D} |f(z)|(1 - |z|^2)^{\alpha-1} < \infty.
$$
Bounded and compact operators:

Let X and Y be Banach spaces. Let B_X is the unit ball in X; A linear operator $T : X \rightarrow Y$ is **bounded**, if TB_X is bounded in Y, T is **compact**, if the closure of TB_X is a compact set in Y.

Two integral operators:

For an analytic function u on D, we define two integral operators on $H(D)$ as follows: for every $f \in H(D)$,

$I_u f(z) = \int_{z_0}^z f'(\zeta) u(\zeta) \, d\zeta,$

$J_u f(z) = \int_{z_0}^z f(\zeta) u'(\zeta) \, d\zeta.$
Bounded and compact operators:

Let X and Y be Banach spaces. Let B_X is the unit ball in X; A linear operator $T : X \to Y$ is **bounded**, if TB_X is bounded in Y, T is **compact**, if the closure of TB_X is a compact set in Y.

Essential norms:

The essential norm $\|T\|_e$ of a bounded operator T between Banach spaces X and Y is the distance from T to the space of compact operators from X to Y.

Two integral operators:

For an analytic function u on D, we define two integral operators on $H(D)$ as follows: for every $f \in H(D)$,

$I_u f(z) = \int_z^0 f'(\zeta) u(\zeta) \, d\zeta,$

$J_u f(z) = \int_z^0 f(\zeta) u'(\zeta) \, d\zeta.$
Bounded and compact operators:

Let X and Y be Banach spaces. Let B_X is the unit ball in X; A linear operator $T : X \to Y$ is **bounded**, if TB_X is bounded in Y, T is **compact**, if the closure of TB_X is a compact set in Y.

Essential norms:

The essential norm $\|T\|_e$ of a bounded operator T between Banach spaces X and Y is the distance from T to the space of compact operators from X to Y.

Two integral operators:

For an analytic function u on D, we define two integral operators on $H(D)$ as follows: for every $f \in H(D)$,

$$ I_u f(z) = \int_0^z f'(\zeta)u(\zeta) \, d\zeta, \quad J_u f(z) = \int_0^z f(\zeta)u'(\zeta) \, d\zeta. $$
Let $0 < \alpha, \beta < \infty$ and φ be an analytic self-map of the unit disk D. Then the essential norm of composition operator $C_{\varphi} : B^\alpha \rightarrow B^\beta$ is

$$\|C_{\varphi}\|_e = \lim_{s \to 1} \sup_{|\varphi(z)| > s} |\varphi'(z)| \frac{(1 - |z|^2)^\beta}{(1 - |\varphi(z)|^2)^\alpha}.$$
Motivations

Theorem

Let $0 < \alpha, \beta < \infty$ and φ be an analytic self-map of the unit disk D. Then the essential norm of composition operator $C_\varphi : B^\alpha \to B^\beta$ is

$$
\| C_\varphi \|_e = \lim_{s \to 1} \sup_{|\varphi(z)| > s} |\varphi'(z)| \frac{(1 - |z|^2)^\beta}{(1 - |\varphi(z)|^2)^\alpha}.
$$

The result was first proved by Montes-Rodríguez in 1999 for the case $\alpha = \beta = 1$. For the case $0 < \alpha = \beta < \infty$, the result was proved by Montes-Rodríguez in 2000. Contreras and Hernandez-Díaz proved for the general case in 2000. When $0 < \alpha \leq 1$, the result was also proved by MacCluer and Z in 2003. The last three papers actually generalized this result to weighted composition operators.
Wulan, Zheng and Zhu obtained the following result (PAMS 2009).

Theorem

Let φ be an analytic self-map of D. Then C_φ is compact on the Bloch space B if and only if

$$\lim_{n \to \infty} \|\varphi^n\|_B = 0.$$
Wulan, Zheng and Zhu obtained the following result (PAMS 2009).

Theorem

Let φ be an analytic self-map of D. Then C_φ is compact on the Bloch space B if and only if

$$\lim_{n \to \infty} \| \varphi^n \|_B = 0.$$

Question 1. Can we have an essential norm formula for $C_\varphi : B \to B$, in terms of φ^n? How about $C_\varphi : B^\alpha \to B^\beta$?
The question has been answered affirmatively by Z (PAMS 2010):

\textbf{Theorem}

Let \(0 < \alpha, \beta < \infty\). Let \(\varphi\) be an analytic self-map of the unit disk \(D\). Then the essential norm of composition operator \(C_{\varphi} : B^\alpha \rightarrow B^\beta\) is

\[\|C_{\varphi}\|_e = \left(\frac{e}{2\alpha}\right)^\alpha \limsup_{n \to \infty} n^{\alpha - 1} \|\varphi^n\|_{B^\beta}.\]
The question has been answered affirmatively by Z (PAMS 2010):

Theorem

Let $0 < \alpha, \beta < \infty$. Let φ be an analytic self-map of the unit disk D. Then the essential norm of composition operator $C_\varphi : B^\alpha \rightarrow B^\beta$ is

$$\| C_\varphi \|_e = \left(\frac{e}{2\alpha} \right)^\alpha \limsup_{n \rightarrow \infty} n^{\alpha - 1} \| \varphi^n \|_{B^\beta}.$$

Question 2. Can we generalize this result to the weighted composition operators uC_φ?
Boundedness

Theorem (Boundedness)

Let ϕ be an analytic self map of D, let u be analytic on D, and let α and β be positive real numbers.

(i) If $0 < \alpha < 1$, then uC_ϕ maps B_α boundedly into B_β if and only if $u \in B_\beta$ and

$$\sup_{n \geq 1} n^{\alpha - 1} \|I_u(\phi^n)\|_{B_\beta} < \infty.$$

(ii) If $\alpha > 1$, then uC_ϕ maps B_α boundedly into B_β if and only if

$$\sup_{n \geq 1} n^{\alpha - 1} \|I_u(\phi^n)\|_{B_\beta} < \infty$$
and

$$\sup_{n \geq 1} n^{\alpha - 1} \|J_u(\phi^n)\|_{B_\beta} < \infty.$$
Theorem (Boundedness)

Let φ be an analytic self map of D, let u be analytic on D, and let α and β be positive real numbers.

(i) If $0 < \alpha < 1$, then uC_{φ} maps B^α boundedly into B^β if and only if $u \in B^\beta$ and

$$\sup_{n \geq 1} n^{\alpha - 1} \| l_u(\varphi^n) \|_{B^\beta} < \infty.$$

(ii) If $\alpha > 1$, then uC_{φ} maps B^α boundedly into B^β if and only if

$$\sup_{n \geq 1} n^{\alpha - 1} \| l_u(\varphi^n) \|_{B^\beta} < \infty$$

and

$$\sup_{n \geq 1} n^{\alpha - 1} \| J_u(\varphi^n) \|_{B^\beta} < \infty.$$
The case $\alpha = 1$

For $\alpha = 1$, the corresponding conditions would be

$$\sup_{n \geq 1} \| I_u(\phi_n) \|_{B^\beta} < \infty,$$
$$\sup_{n \geq 1} \| J_u(\phi_n) \|_{B^\beta} < \infty.$$

Curiously enough, while these conditions are necessary for $u C \phi$ to be bounded from B to B^β, but they are not sufficient.

Example. Let $1 < \beta < \infty$. Let $u(z) = (1 - z)^{1 - \beta}$, $\phi(z) = z$, and $f(z) = \log(2/(1 - z))$. Then $u \in B^\beta$, and $f \in B$. Easy computations show that, for $\beta > 1$,

$$\| I_u(\phi_n) \|_{B^\beta} \leq 2^\beta \| J_u(\phi_n) \|_{B^\beta} \leq \| u \|_{B^\beta}.$$

However, for $\beta > 1$, we have

$$\| u C \phi(f) \|_{B^\beta} = \infty.$$

Therefore, $u C \phi : B \to B^\beta$ is not bounded.
The case $\alpha = 1$

For $\alpha = 1$, the corresponding conditions would be

$$\sup_{n \geq 1} \| I_u(\varphi^n) \|_{B^\beta} < \infty, \quad \sup_{n \geq 1} \| J_u(\varphi^n) \|_{B^\beta} < \infty.$$

Curiously enough, while these conditions are necessary for uC_φ to be bounded from B to B^β, but they are not sufficient.
The case $\alpha = 1$

For $\alpha = 1$, the corresponding conditions would be

$$
\sup_{n \geq 1} \| I_u(\varphi^n) \|_{B^\beta} < \infty, \quad \sup_{n \geq 1} \| J_u(\varphi^n) \|_{B^\beta} < \infty.
$$

Curiously enough, while these conditions are necessary for uC_φ to be bounded from B to B^β, but they are not sufficient.

Example. Let $1 < \beta < \infty$. Let $u(z) = (1 - z)^{1 - \beta}$, $\varphi(z) = z$, and $f(z) = \log(2/(1 - z))$. Then $u \in B^\beta$, and $f \in B$. Easy computations show that, for $\beta > 1$,

$$
\| I_u(\varphi^n) \|_{B^\beta} \leq 2^\beta \quad \| J_u(\varphi^n) \|_{B^\beta} \leq \| u \|_{B^\beta}.
$$

However, for $\beta > 1$, we have

$$
\| uC_\varphi(f) \|_{B^\beta} = \infty.
$$

Therefore, $uC_\varphi : B \to B^\beta$ is not bounded.
Theorem
Suppose \(0 < \alpha < 1 \) and \(0 < \beta < \infty \) and suppose the weighted composition operator \(uC \phi \) is bounded from \(B^\alpha \) to \(B^\beta \). Then
\[
\|uC \phi\|_e = (e^{2\alpha})^{\alpha} \limsup_{n \to \infty} n^{\alpha - 1} \|I_u(\phi^n)\|_{B^\beta}.
\]

Corollary
Suppose \(0 < \alpha < 1 \) and \(0 < \beta < \infty \) and suppose the weighted composition operator \(uC \phi \) is bounded from \(B^\alpha \) to \(B^\beta \). Then \(uC \phi \) is compact from \(B^\alpha \) to \(B^\beta \) if and only if
\[
\limsup_{n \to \infty} n^{\alpha - 1} \|I_u(\phi^n)\|_{B^\beta} = 0.
\]
The case $0 < \alpha < 1$
The case $0 < \alpha < 1$

Theorem

Suppose $0 < \alpha < 1$ and $0 < \beta < \infty$ and suppose the weighted composition operator uC_φ is bounded from B^α to B^β. Then

$$
\|uC_\varphi\|_e = \left(\frac{e}{2\alpha}\right)^\alpha \limsup_{n \to \infty} n^{\alpha - 1} \|I_u(\varphi^n)\|_{B^\beta}.
$$

Corollary

Suppose $0 < \alpha < 1$ and $0 < \beta < \infty$ and suppose the weighted composition operator uC_φ is bounded from B^α to B^β. Then uC_φ is compact from B^α to B^β if and only if

$$
\limsup_{n \to \infty} n^{\alpha - 1} \|I_u(\varphi^n)\|_{B^\beta} = 0.
$$
Essential Norms

The case $0 < \alpha < 1$

Theorem

Suppose $0 < \alpha < 1$ and $0 < \beta < \infty$ and suppose the weighted composition operator uC_φ is bounded from B^α to B^β. Then

$$\|uC_\varphi\|_e = \left(\frac{e}{2\alpha}\right)^\alpha \limsup_{n \to \infty} n^{\alpha - 1} \|I_u(\varphi^n)\|_{B^\beta}.$$

Corollary

Suppose $0 < \alpha < 1$ and $0 < \beta < \infty$ and suppose the weighted composition operator uC_φ is bounded from B^α to B^β. Then uC_φ is compact from B^α to B^β if and only if

$$\limsup_{n \to \infty} n^{\alpha - 1} \|I_u(\varphi^n)\|_{B^\beta} = 0.$$
The case $\alpha > 1$
The case $\alpha > 1$

Denote by

$$A = \left(\frac{e}{2\alpha} \right)^{\alpha} \limsup_{n \to \infty} n^{\alpha - 1} \| I_u(\varphi^n) \|_{B^\beta}$$

and

$$B = \left(\frac{e}{2(\alpha - 1)} \right)^{\alpha - 1} \limsup_{n \to \infty} n^{\alpha - 1} \| J_u(\varphi^n) \|_{B^\beta}.$$

Then we have the following result.
The case $\alpha > 1$

Denote by

$$A = \left(\frac{e}{2\alpha} \right)^{\alpha} \limsup_{n \to \infty} n^{\alpha-1} \| I_u(\varphi^n) \|_{B^\beta}$$

and

$$B = \left(\frac{e}{2(\alpha - 1)} \right)^{\alpha-1} \limsup_{n \to \infty} n^{\alpha-1} \| J_u(\varphi^n) \|_{B^\beta}.$$

Then we have the following result.

Theorem

Let $\alpha > 1$, $0 < \beta < \infty$. Suppose that the weighted composition operator uC_φ is bounded from B^α to B^β. Then

$$\max \left(\frac{1}{2^{1+\alpha}(3\alpha + 2)} A, \frac{1}{2^{1+\alpha}3\alpha(\alpha + 1)} B \right) \leq \| uC_\varphi \|_e \leq A + B.$$
Corollary

Let $\alpha > 1$, $0 < \beta < \infty$. Suppose that the weighted composition operator $uC\varphi$ is bounded from B^α to B^β. Then $uC\varphi$ is compact from B^α to B^β if and only if the following two conditions are satisfied.

$$\limsup_{n \to \infty} n^{\alpha-1} \| l_u(\varphi^n) \|_{B^\beta} = 0$$

and

$$\limsup_{n \to \infty} n^{\alpha-1} \| J_u(\varphi^n) \|_{B^\beta} = 0.$$
Idea of Proofs
Idea of Proofs

Recall

Theorem (Boundedness)

Part (i). If $0 < \alpha < 1$, then uC_{φ} maps B^α boundedly into B^β if and only if $u \in B^\beta$ and

$$\sup_{n \geq 1} n^{\alpha - 1} \| I_u(\varphi^n) \|_{B^\beta} < \infty.$$
Idea of Proof. We are going to use the following theorem by Ohno, Stroethoff and Z in 2003: $uC\varphi$ be bounded from B^α to B^β if and only if $u \in B^\beta$ and

$$M = \sup_{z \in D} |u(z)||\varphi'(z)| \frac{(1 - |z|^2)^\beta}{(1 - |\varphi(z)|^2)^\alpha} < \infty.$$

Let $uC\varphi$ be bounded from B^α to B^β. Then, from above theorem we have $u \in B^\beta$ (actually, $u = uC\varphi(1) \in B^\beta$). Notice that

$$(I_u(\varphi^n)(z))' = u(z)(\varphi^n(z))' = nu(z)\varphi^{n-1}(z)\varphi'(z).$$

Thus we have, for all $n \geq 1$,

$$n^{\alpha-1} \|I_u(\varphi^n)\|_{B^\beta} = n^{\alpha-1} \sup_{z \in D} n|u(z)||\varphi(z)|^{n-1}|\varphi'(z)|(1 - |z|^2)^\beta$$

$$= \sup_{z \in D} n^{\alpha}|\varphi(z)|^{n-1}(1 - |\varphi(z)|^2)^\alpha|u(z)||\varphi'(z)| \frac{(1 - |z|^2)^\beta}{(1 - |\varphi(z)|^2)^\alpha}$$

$$\leq M \sup_{z \in D} n^{\alpha}|\varphi(z)|^{n-1}(1 - |\varphi(z)|^2)^\alpha$$

$$\leq MK.$$
Conversely, let \(u \in B^\beta \) and \(\sup_{n \geq 1} n^{\alpha-1} \| I_u(\varphi^n) \|_{B^\beta} < \infty \). For any integer \(n \geq 1 \), let

\[
D_n = \{ z \in D : r_n \leq |\varphi(z)| \leq r_{n+1} \},
\]

where

\[
r_n = \begin{cases}
0, & \text{as } n = 1 \\
\left(\frac{n-1}{n-1+2\alpha} \right)^{1/2}, & \text{as } n \geq 2.
\end{cases}
\]

Let \(m \) and \(k \) be the smallest and largest positive integers such that \(D_m \neq \emptyset \) and \(D_k \neq \emptyset \) (\(k \) could be \(\infty \)). Then we can decompose \(D \) as \(D = \bigcup_{n=m}^k D_n \). An easy exercise in Calculus shows that, there exists a constant \(\delta > 0 \), independent of \(n \), such that

\[
\min_{z \in D_n} n^{\alpha} |\varphi(z)|^{n-1} (1 - |\varphi(z)|^2)^\alpha \geq \delta.
\]
Hence,

\[
\begin{align*}
\sup_{z \in D} |u(z)||\varphi'(z)| \frac{(1 - |z|^2)^\beta}{(1 - |\varphi(z)|^2)^\alpha} \\
= \sup_{m \leq n \leq k} \sup_{z \in D_n} |u(z)||\varphi'(z)| \frac{n^\alpha|\varphi(z)|^{n-1}(1 - |z|^2)^\beta}{n^\alpha|\varphi(z)|^{n-1}(1 - |\varphi(z)|^2)^\alpha} \\
\leq \frac{1}{\delta} \sup_{m \leq n \leq k} \sup_{z \in D_n} n^\alpha|u(z)||\varphi(z)|^{n-1}|\varphi'(z)|(1 - |z|^2)^\beta \\
\leq \frac{1}{\delta} \sup_{n \geq 1} \sup_{z \in D} n^\alpha|u(z)||\varphi(z)|^{n-1}|\varphi'(z)|(1 - |z|^2)^\beta \\
\leq \frac{1}{\delta} n^{\alpha-1} \sup_{n \geq 1} \|l_u(\varphi^n)\|_{B^\beta} < \infty.
\end{align*}
\]

Thus by Theorem (OSZ 2003) we know that \(uC \varphi \) is bounded from \(B^\alpha \) to \(B^\beta \).
THANK YOU!