Technical Appendix to Accompany

"On the Performance of Endogenous Access Pricing"
by
Kenneth Fjell, Debashis Pal, and David E. M. Sappington

The key equations from Fjell et al. (2013) are:

$$
\begin{align*}
& \pi_{0}\left(q_{0}, q_{1}, \ldots, q_{N}, w, F\right)=P(Q) q_{0}+w \sum_{i=1}^{N} q_{i}-F . \tag{1}\\
& \pi_{i}\left(q_{0}, q_{1}, \ldots, q_{N}, w\right)=[P(Q)-w] q_{i} \text { for } i \in\{1, \ldots, N\} . \tag{2}\\
& \frac{\partial \pi_{0}}{\partial q_{0}}=0 \Leftrightarrow P(Q)+q_{0} P^{\prime}(Q)-\frac{F}{Q}+\frac{q_{0} F}{Q^{2}}=0 . \tag{3}\\
& \frac{\partial \pi_{i}}{\partial q_{i}}=P(Q)+q_{i} P^{\prime}(Q)-\frac{F}{Q}+\frac{q_{i} F}{Q^{2}}=0 \text { for } i=1, \ldots, N . \tag{4}\\
& \widetilde{q}_{0}^{*}=\widetilde{q}_{i}^{*}=\frac{\widetilde{Q}^{*}}{N+1} \text { for } i=1, \ldots, N . \tag{5}\\
& \widetilde{w} \sum_{i=1}^{N} \widetilde{q}_{i}-F=\frac{F}{\widetilde{Q}}\left[\widetilde{Q}-\widetilde{q}_{0}\right]-F=-\left[\frac{F}{\widetilde{Q}}\right] \widetilde{q}_{0}=-\widetilde{w} \widetilde{q}_{0} . \tag{6}\\
& \widehat{w} \sum_{i=1}^{N} \widehat{q}_{i}^{*}-F=\frac{F}{Q^{e}}\left[Q^{e}-\widehat{q}_{0}^{*}\right]-F=-\left[\frac{\widehat{q}_{0}^{*}}{Q^{e}}\right] F . \tag{7}
\end{align*}
$$

Proof of Proposition 1.

From (1) and (5), the VIP's equilibrium profit under ENAP is:

$$
\begin{align*}
\pi_{0}^{*} & =q_{0}^{*} P\left(Q^{*}\right)+\frac{F}{Q^{*}} \sum_{i=1}^{N} q_{i}^{*}-F=\left[\frac{Q^{*}}{N+1}\right] P\left(Q^{*}\right)+\frac{F}{Q^{*}}\left[\frac{N Q^{*}}{N+1}\right]-F \\
& =\left[\frac{Q^{*}}{N+1}\right] P\left(Q^{*}\right)+\frac{N F}{N+1}-F=\frac{1}{N+1}\left[Q^{*} P\left(Q^{*}\right)-F\right] \tag{8}
\end{align*}
$$

From (3) and (5), equilibrium industry output under ENAP is given by:

$$
P\left(Q^{*}\right)+\left[\frac{Q^{*}}{N+1}\right] P^{\prime}\left(Q^{*}\right)-\frac{F}{Q^{*}}+\frac{F\left[\frac{Q^{*}}{N+1}\right]}{\left(Q^{*}\right)^{2}}=0
$$

$$
\begin{align*}
& \Rightarrow P\left(Q^{*}\right)+\left[\frac{Q^{*}}{N+1}\right] P^{\prime}\left(Q^{*}\right)-\left[\frac{N}{N+1}\right] \frac{F}{Q^{*}}=0 \tag{9}\\
& \Rightarrow \quad Q^{*}[N+1] P\left(Q^{*}\right)+\left(Q^{*}\right)^{2} P^{\prime}\left(Q^{*}\right)-N F=0 \tag{10}\\
& \Rightarrow Q^{*} P\left(Q^{*}\right)=\frac{N F-\left(Q^{*}\right)^{2} P^{\prime}\left(Q^{*}\right)}{N+1} \tag{11}
\end{align*}
$$

(8) and (11) provide:

$$
\begin{align*}
\pi_{0}^{*} & =\frac{1}{N+1}\left[\frac{N F-\left(Q^{*}\right)^{2} P^{\prime}\left(Q^{*}\right)}{N+1}-F\right]=-\frac{1}{[N+1]^{2}}\left[\left(Q^{*}\right)^{2} P^{\prime}\left(Q^{*}\right)+F\right] \\
& \Rightarrow \frac{d \pi_{0}^{*}}{d F}=-\frac{1}{[N+1]^{2}}\left\{\left[\left(Q^{*}\right)^{2} P^{\prime \prime}\left(Q^{*}\right)+2 Q^{*} P^{\prime}\left(Q^{*}\right)\right] \frac{\partial Q^{*}}{\partial F}+1\right\} . \tag{12}
\end{align*}
$$

(12) implies that if $P^{\prime \prime}\left(Q^{*}\right) \leq 0$ and $\frac{\partial Q^{*}}{\partial F} \leq 0$, then $\frac{d \pi_{0}^{*}}{d F}<0$, and so the VIP will set $F=\underline{F}$ under ENAP. To determine when $\frac{\partial Q^{*}}{\partial F} \leq 0$, let:

$$
\begin{align*}
h\left(Q^{*}\right) \equiv & Q^{*}[N+1] P\left(Q^{*}\right)+\left(Q^{*}\right)^{2} P^{\prime}\left(Q^{*}\right) \\
\Rightarrow \quad h^{\prime}\left(Q^{*}\right)= & {[N+1] P\left(Q^{*}\right)+Q^{*}[N+1] P^{\prime}\left(Q^{*}\right)+\left(Q^{*}\right)^{2} P^{\prime \prime}\left(Q^{*}\right)+2 Q^{*} P^{\prime}\left(Q^{*}\right) } \\
= & {[N+1] P\left(Q^{*}\right)+Q^{*}[N+3] P^{\prime}\left(Q^{*}\right)+\left(Q^{*}\right)^{2} P^{\prime \prime}\left(Q^{*}\right) } \\
\Rightarrow \quad h^{\prime \prime}\left(Q^{*}\right)= & {[N+1] P^{\prime}\left(Q^{*}\right)+[N+3] P^{\prime}\left(Q^{*}\right)+Q^{*}[N+3] P^{\prime \prime}\left(Q^{*}\right) } \\
& +\left(Q^{*}\right)^{2} P^{\prime \prime \prime}\left(Q^{*}\right)+2 Q^{*} P^{\prime \prime}\left(Q^{*}\right) \\
= & {[2 N+4] P^{\prime}\left(Q^{*}\right)+Q^{*}[N+5] P^{\prime \prime}\left(Q^{*}\right)+\left(Q^{*}\right)^{2} P^{\prime \prime \prime}\left(Q^{*}\right) } \tag{13}
\end{align*}
$$

(13) implies that $h^{\prime \prime}(\cdot)<0$, and so $h(\cdot)$ is a concave function of Q^{*}, under the conditions specified in the proposition. From (10), Q^{*} is determined by $h\left(Q^{*}\right)=N F$, and so (10) will have at least one real root when F is sufficiently small. Furthermore, when (10) has two real roots, the larger root of (10) decreases as F increases, and so $\frac{\partial Q^{*}}{\partial F}<0$, when $h(\cdot)$ is a concave function of Q^{*}.

It remains to verify that the larger root of (10) is the relevant root in cases where (10) has two roots. To do so, let Q_{1}^{*} and Q_{2}^{*} denote two distinct roots of (10), with $Q_{1}^{*}<Q_{2}^{*}$. We will show that $\left.\frac{\partial^{2} \pi_{0}}{\partial\left(q_{0}\right)^{2}}\right|_{Q_{1}^{*}}>0$, and so the smaller root does not correspond to a profit-maximizing level of output for the VIP.

From (9):

$$
\begin{equation*}
g\left(Q^{*}\right) \equiv g_{1}\left(Q^{*}\right)-g_{2}\left(Q^{*}\right)=0 \tag{14}
\end{equation*}
$$

where:

$$
\begin{equation*}
g_{1}\left(Q^{*}\right)=P\left(Q^{*}\right)+\left[\frac{Q^{*}}{N+1}\right] P^{\prime}\left(Q^{*}\right) \quad \text { and } \quad g_{2}\left(Q^{*}\right)=\left[\frac{N}{N+1}\right] \frac{F}{Q^{*}} \tag{15}
\end{equation*}
$$

Observe that:

$$
\begin{equation*}
g_{2}^{\prime}\left(Q^{*}\right)=-\left[\frac{N}{N+1}\right] \frac{F}{\left(Q^{*}\right)^{2}}<0 \Rightarrow g_{2}^{\prime \prime}\left(Q^{*}\right)=\left[\frac{N}{N+1}\right] \frac{2 F}{\left(Q^{*}\right)^{3}}>0 . \tag{16}
\end{equation*}
$$

Therefore, $g_{2}\left(Q^{*}\right)$ is a decreasing, convex function of Q^{*}.
Also observe that:

$$
\begin{align*}
g_{1}^{\prime}\left(Q^{*}\right) & =\left[1+\frac{1}{N+1}\right] P^{\prime}\left(Q^{*}\right)+\left[\frac{Q^{*}}{N+1}\right] P^{\prime \prime}\left(Q^{*}\right)<0 \tag{17}\\
\Rightarrow g_{1}^{\prime \prime}\left(Q^{*}\right) & =\left[1+\frac{1}{N+1}\right] P^{\prime \prime}\left(Q^{*}\right)+\left[\frac{1}{N+1}\right] P^{\prime \prime}\left(Q^{*}\right)+\left[\frac{Q^{*}}{N+1}\right] P^{\prime \prime \prime}\left(Q^{*}\right) \leq 0 .
\end{align*}
$$

Therefore, $g_{1}\left(Q^{*}\right)$ is a decreasing, concave function of Q^{*} under the maintained conditions, and so, from (14), $g\left(Q^{*}\right)$ is a concave function of Q^{*}.

We now establish that $g^{\prime}\left(Q_{1}^{*}\right)>0$. To do so, consider the interval $\left[Q_{1}^{*}, Q_{1}^{*}+\epsilon\right]$, where $\epsilon>0$ is arbitrarily small. (14) implies that $g\left(Q_{1}^{*}\right)=0$. Furthermore, $g\left(Q^{*}\right)>0$ for all $Q^{*} \in\left(Q_{1}^{*}, Q_{1}^{*}+\epsilon\right)$ since $g\left(Q^{*}\right)$ is a concave function of Q^{*}. Therefore, $g^{\prime}\left(Q_{1}^{*}\right)>0$.

From (1) and (5):

$$
\begin{align*}
& \frac{\partial \pi_{0}}{\partial q_{0}}=P\left(Q^{*}\right)+q_{0} P^{\prime}\left(Q^{*}\right)-\frac{F}{\left(Q^{*}\right)^{2}} \sum_{i=1}^{N} q_{i}^{*} \\
& \Rightarrow \quad \frac{\partial^{2} \pi_{0}}{\partial\left(q_{0}\right)^{2}}=2 P^{\prime}\left(Q^{*}\right)+q_{0} P^{\prime \prime}\left(Q^{*}\right)+\frac{2 F}{\left(Q^{*}\right)^{3}} \sum_{i=1}^{N} q_{i}^{*} \\
&\left.\Rightarrow \quad \frac{\partial^{2} \pi_{0}}{\partial\left(q_{0}\right)^{2}}\right|_{q_{0}^{*}=q_{i}^{*}=\frac{Q_{1}^{*}}{N+1}}=2 P^{\prime}\left(Q_{1}^{*}\right)+\left[\frac{Q_{1}^{*}}{N+1}\right] P^{\prime \prime}\left(Q_{1}^{*}\right)+\frac{2 F}{\left(Q_{1}^{*}\right)^{3}}\left[\frac{N Q_{1}^{*}}{N+1}\right] \\
&=2 P^{\prime}\left(Q_{1}^{*}\right)+\left[\frac{Q_{1}^{*}}{N+1}\right] P^{\prime \prime}\left(Q_{1}^{*}\right)+\frac{2 F}{\left(Q_{1}^{*}\right)^{2}}\left[\frac{N}{N+1}\right] \tag{18}
\end{align*}
$$

From (14), (16), and (17):

$$
\begin{align*}
g^{\prime}\left(Q_{1}^{*}\right) & =\left[1+\frac{1}{N+1}\right] P^{\prime}\left(Q_{1}^{*}\right)+\left[\frac{Q_{1}^{*}}{N+1}\right] P^{\prime \prime}\left(Q_{1}^{*}\right)+\left[\frac{N}{N+1}\right] \frac{F}{\left(Q_{1}^{*}\right)^{2}} \\
& =\left[\frac{N+2}{N+1}\right] P^{\prime}\left(Q_{1}^{*}\right)+\left[\frac{Q_{1}^{*}}{N+1}\right] P^{\prime \prime}\left(Q_{1}^{*}\right)+\left[\frac{N}{N+1}\right] \frac{F}{\left(Q_{1}^{*}\right)^{2}} \\
& =\frac{N}{N+1}\left[P^{\prime}\left(Q_{1}^{*}\right)+\frac{F}{\left(Q_{1}^{*}\right)^{2}}\right]+\left[\frac{2}{N+1}\right] P^{\prime}\left(Q_{1}^{*}\right)+\left[\frac{Q_{1}^{*}}{N+1}\right] P^{\prime \prime}\left(Q_{1}^{*}\right) . \tag{19}
\end{align*}
$$

Since $g^{\prime}\left(Q_{1}^{*}\right)>0,(19)$ implies:

$$
\begin{equation*}
P^{\prime}\left(Q_{1}^{*}\right)+\frac{F}{\left(Q_{1}^{*}\right)^{2}}>0 . \tag{20}
\end{equation*}
$$

From (18):

$$
\begin{align*}
\left.\frac{\partial^{2} \pi_{0}}{\partial\left(q_{0}\right)^{2}}\right|_{q_{0}^{*}=q_{i}^{*}=\frac{Q_{1}^{*}}{N+1}}=\frac{2 N}{N+1}\left[P^{\prime}\left(Q_{1}^{*}\right)+\frac{F}{\left(Q_{1}^{*}\right)^{2}}\right] & +\left[\frac{2}{N+1}\right] P^{\prime}\left(Q_{1}^{*}\right) \\
& +\left[\frac{Q_{1}^{*}}{N+1}\right] P^{\prime \prime}\left(Q_{1}^{*}\right) \tag{21}
\end{align*}
$$

(19) and (21) provide:

$$
\begin{equation*}
\left.\frac{\partial^{2} \pi_{0}}{\partial\left(q_{0}\right)^{2}}\right|_{q_{0}^{*}=q_{i}^{*}=\frac{Q_{1}^{*}}{N+1}}=\frac{N}{N+1}\left[P^{\prime}\left(Q_{1}^{*}\right)+\frac{F}{\left(Q_{1}^{*}\right)^{2}}\right]+g^{\prime}\left(Q_{1}^{*}\right) \tag{22}
\end{equation*}
$$

(20) and (22) imply that $\left.\frac{\partial^{2} \pi_{0}}{\partial\left(q_{0}\right)^{2}}\right|_{q_{0}^{*}=q_{i}^{*}=\frac{Q_{1}^{*}}{N+1}}>0$, since $g^{\prime}\left(Q_{1}^{*}\right)>0$.

The following Lemmas are instrumental in the proof of Proposition 2.

Lemma 1. Suppose Assumption 1 holds. Then given access price \widehat{w}, the equilibrium output of the VIP under EXAP is $\widehat{q}_{0}^{*}=\frac{a+\widehat{w} N}{b[N+2]}$. The equilibrium output of each of the N rivals under $E X A P$ is $\widehat{q}_{i}^{*}=\frac{a-2 \widehat{w}}{b[N+2]}$ for $i=1, \ldots, N$.

Proof. Differentiating (1) and (2) provides:

$$
\begin{equation*}
\frac{\partial \pi_{0}}{\partial q_{0}}=a-2 b q_{0}-b \sum_{j=1}^{N} q_{j} \quad \text { and } \quad \frac{\partial \pi_{i}}{\partial q_{i}}=a-b q_{i}-b q_{0}-b \sum_{j=1}^{N} q_{j}-w \tag{23}
\end{equation*}
$$

In equilibrium, $\frac{\partial \pi_{0}}{\partial q_{0}}=\frac{\partial \pi_{i}}{\partial q_{i}}=0$. Therefore, from (23):

$$
\begin{gather*}
a-2 b q_{0}=b \sum_{j=1}^{N} q_{j}=a-b q_{i}-b q_{0}-w \\
\Leftrightarrow \quad b q_{i}=b q_{0}-w \Rightarrow b \sum_{i=1}^{N} q_{i}=N b q_{0}-w N . \tag{24}
\end{gather*}
$$

Since $\frac{\partial \pi_{0}}{\partial q_{0}}=0$ in equilibrium, (23) and (24) provide:

$$
\begin{equation*}
a-2 b q_{0}-N b q_{0}+w N=0 \Rightarrow \widehat{q}_{0}^{*}=\frac{a+w N}{b[N+2]} \tag{25}
\end{equation*}
$$

(24) and (25) provide:

$$
\begin{align*}
b N \widehat{q}_{i}^{*} & =N b\left[\frac{a+w N}{b(N+2)}\right]-w N=\frac{a N+w N^{2}-w N[N+2]}{N+2} \\
& =\frac{a N-2 w N}{N+2} \Rightarrow \widehat{q}_{i}^{*}=\frac{a-2 w}{b[N+2]} . \tag{26}
\end{align*}
$$

Lemma 2. Suppose Assumption 1 holds. Then when the VIP's fixed cost is F, the access price that will be set under EXAP is $\widehat{w}(F)=\frac{1}{2 N}[a(N+1)-\sqrt{\widehat{G}(F)}]$ where $\widehat{G}(F) \equiv$ $a^{2}[N+1]^{2}-4 b F N[N+2]$.

Proof. (25) and (26) imply:

$$
\begin{equation*}
\widehat{Q}^{*}=q_{0}^{*}+\sum_{i=1}^{N} \widehat{q}_{i}^{*}=\frac{a+w N}{b[N+2]}+\frac{N[a-2 w]}{b[N+2]}=\frac{a[N+1]-w N}{b[N+2]} . \tag{27}
\end{equation*}
$$

Therefore, when $Q^{e}=\widehat{Q}^{*}$:

$$
\begin{align*}
& w=\frac{F}{\widehat{Q}^{*}}=\frac{b F[N+2]}{a[N+1]-w N} \Rightarrow N w^{2}-a[N+1] w+F[N+2] b=0 \\
& \Rightarrow \widehat{w}(F)=\frac{a[N+1]-\sqrt{a^{2}[N+1]^{2}-4 b F N[N+2]}}{2 N} \tag{28}
\end{align*}
$$

The smallest root here reflects the fact that the lower access price generates larger industry output and welfare. A real solution to (28) exists because:

$$
\begin{equation*}
a^{2}[N+1]^{2}-4 N F[N+2] b \geq 0 \quad \Leftrightarrow \quad F \leq \frac{a^{2}[N+1]^{2}}{4 b N[N+2]} \tag{29}
\end{equation*}
$$

Observe that $\frac{[a(N+1)]^{2}}{4 b N[N+2]}>\frac{a^{2}}{4 b}$, since $[N+1]^{2}>N[N+2]$.

Lemma 3. Suppose Assumption 1 holds. Then for a given fixed cost, F, the VIP's equilibrium profit under EXAP is:

$$
\begin{aligned}
\widehat{\pi}_{0}^{*}(F)=\frac{1}{4 b N^{2}[N+2]^{2}}\{2 a N[N+4] \sqrt{\widehat{G}(F)} & +4 b F N^{2}[N+4][N+2] \\
& \left.-2 a^{2} N\left[N^{2}+3 N+4\right]\right\}-F .
\end{aligned}
$$

Proof. For expositional ease, we suppress the dependence of $\widehat{w}(\cdot)$ and $\widehat{G}(\cdot)$ on F in the ensuing analysis. From (1), (25), (26), and (27):

$$
\begin{align*}
\widehat{\pi}_{0}^{*} & =\widehat{q}_{0}^{*}\left[a-b \widehat{Q}^{*}\right]+\widehat{w} \sum_{i=1}^{N} \widehat{q}_{i}^{*}-F \\
& =\frac{a+\widehat{w} N}{[N+2] b}\left[\frac{a+\widehat{w} N}{N+2}\right]+\widehat{w}\left[\frac{N(a-2 \widehat{w})}{b(N+2)}\right]-F=\frac{H}{b[N+2]^{2}}-F \tag{30}
\end{align*}
$$

where $H=[a+\widehat{w} N]^{2}+[N+2] \widehat{w} N[a-2 \widehat{w}]$

$$
\begin{gather*}
=a^{2}+N^{2} \widehat{w}^{2}+2 a N \widehat{w}+a N^{2} \widehat{w}+2 a \widehat{w} N-2 N^{2} \widehat{w}^{2}-4 \widehat{w}^{2} N \\
=a^{2}+a N \widehat{w}[N+4]-\widehat{w}^{2} N[N+4] \\
=a^{2}+a N[4+N]\left[\frac{a(N+1)-\sqrt{\widehat{G}}}{2 N}\right]-N[N+4]\left[\frac{a^{2}[N+1]^{2}+\widehat{G}-2 a[N+1] \sqrt{\widehat{G}}}{4 N^{2}}\right] \\
=\frac{1}{4 N^{2}}\left\{4 N^{2} a^{2}+2 a N^{2}[N+4][a(N+1)-\sqrt{\widehat{G}}]\right. \\
\left.\quad-N[N+4]\left[a^{2}(N+1)^{2}+\widehat{G}-2 a(N+1) \sqrt{\widehat{G}}\right]\right\} \\
=\frac{1}{4 N^{2}}\left\{4 N^{2} a^{2}+2 a^{2} N^{2}[N+4][N+1]-\left[2 a N^{2}(N+4) \sqrt{\widehat{G}}\right]\right. \\
\\
\quad-a^{2} N[N+4][N+1]^{2}+2 a N[N+4][N+1] \sqrt{\widehat{G}} \\
\left.\quad-\quad N[N+4]\left[a^{2}(N+1)^{2}-4 b N F(N+2)\right]\right\} \\
=\frac{1}{4 N^{2}}\left\{4 N^{2} a^{2}+2 a^{2} N^{2}[N+4][N+1]-2 a^{2} N[N+4][N+1]^{2}\right. \\
 \tag{31}\\
\left.\quad-2 a N^{2}[N+4] \sqrt{\widehat{G}}+2 a N[N+4][N+1] \sqrt{\widehat{G}}+4 b F N^{2}[N+4][N+2]\right\} \\
=\frac{1}{4 N^{2}}\left\{-2 a^{2} N\left[N^{2}+3 N+4\right]+2 a N[4+N] \sqrt{\widehat{G}}+4 b F N^{2}[N+4][N+2]\right\} .
\end{gather*}
$$

(30) and (31) provide the expression for $\widehat{\pi}_{0}^{*}(F)$ specified in the lemma.

Proof of Proposition 2.

Differentiating $\widehat{\pi}_{0}^{*}(F)$ provides:

$$
\begin{align*}
\widehat{\pi}_{0}^{* \prime}(F) & =\frac{1}{4 b N^{2}[N+2]^{2}}\left[a N[4+N] \frac{\widehat{G}^{\prime}(F)}{\sqrt{\widehat{G}}}+4 b N^{2}(N+4)(N+2)\right]-1 \\
& =\left[\frac{1}{4 b N^{2}[N+2]^{2}}\right]\left[-\frac{4 a N^{2}[N+4][N+2] b}{\sqrt{\widehat{G}}}+4 b N^{2}[N+4][N+2]\right]-1 \\
& =\frac{4 N^{2}[N+4][N+2] b}{4 b N^{2}[N+2]^{2}}\left[-\frac{a}{\sqrt{\widehat{G}}}+1\right]-1=\frac{N+4}{N+2}\left[-\frac{a}{\sqrt{\widehat{G}}}+1\right]-1 \tag{32}
\end{align*}
$$

(32) implies:

$$
\begin{align*}
\widehat{\pi}_{0}^{* \prime}(F) & \gtreqless 0 \Leftrightarrow\left[\frac{N+4}{N+2}\right]\left[-\frac{a}{\sqrt{\widehat{G}}}+1\right] \gtreqless 1 \\
& \Leftrightarrow-\frac{a}{\sqrt{\widehat{G}}}+1 \gtreqless \frac{N+2}{N+4} \Leftrightarrow-\frac{a}{\sqrt{\widehat{G}}} \gtreqless \frac{N+2}{N+4}-1 \Leftrightarrow-\frac{a}{\sqrt{\widehat{G}}} \gtreqless \frac{-2}{N+4} \\
& \Leftrightarrow \frac{a}{\sqrt{\widehat{G}}} \lesseqgtr \frac{2}{N+4} \Leftrightarrow \frac{\sqrt{\widehat{G}}}{a} \gtreqless \frac{N+4}{2} \Leftrightarrow \sqrt{\widehat{G}} \gtreqless \frac{[N+4] a}{2} \\
& \Leftrightarrow \widehat{G} \gtreqless \frac{[N+4]^{2} a^{2}}{4} \Leftrightarrow[a(N+1)]^{2}-4 N F[N+2] b \gtreqless \frac{[N+4]^{2} a^{2}}{4} \\
& \Leftrightarrow a^{2}\left[(N+1)^{2}-\frac{(N+4)^{2}}{4}\right] \gtreqless 4 b N F[N+2] \\
& \Leftrightarrow a^{2}\left[4(N+1)^{2}-(N+4)^{2}\right] \gtreqless 16 b N F[N+2] \\
& \Leftrightarrow a^{2}[3(N+2)(N-2)] \gtreqless 16 b N F[N+2] \Leftrightarrow F \gtreqless \frac{3 a^{2}[N-2]}{16 b N} . \tag{33}
\end{align*}
$$

(33) implies that $\frac{\partial \pi_{0}^{*}}{\partial F}<0$ (and so $\widehat{F}^{*}=\underline{F}$) if $N \leq 2$. In contrast, if $N \geq 3$, then $\widehat{F}^{*}=$ $\min \left\{\max \left(\underline{F}, \frac{3 a^{2}[N-2]}{16 b N}\right), \bar{F}\right\}$. Consequently, $\widehat{F}^{*}>\underline{F}$ if $\underline{F}<\frac{3 a^{2}[N-2]}{16 b N}$. This will be the case if $\underline{F}<\frac{a^{2}}{16 b}$, since $z(N) \equiv \frac{N-2}{N}$ is an increasing function of N with $z(3)=\frac{1}{3}$.

Proof of Proposition 3.

The incumbent's profit in the setting with variable access costs is:

$$
\begin{equation*}
\pi_{0}=q_{0} P(Q)+w \sum_{i=1}^{n} q_{i}-F-c(F) Q . \tag{34}
\end{equation*}
$$

Differentiating (34) provides:

$$
\begin{equation*}
\frac{\partial \pi_{0}}{\partial F}=\frac{\partial}{\partial F}\left\{q_{0} P(Q)+w \sum_{i=1}^{n} q_{i}-F\right\}-\frac{\partial}{\partial F}\{c(F) Q\} \tag{35}
\end{equation*}
$$

where:

$$
\begin{equation*}
\frac{\partial}{\partial F}\{c(F) Q\}=Q\left[\frac{\partial c(F)}{\partial F}\right]+c(F)\left[\frac{\partial Q}{\partial F}\right]=-Q r^{\prime}(F)+c(F)\left[\frac{\partial Q}{\partial F}\right] \tag{36}
\end{equation*}
$$

From Proposition 3 in Fjell et al. (2010), the equilibrium value of Q is the same under EXAP and ENAP for a given F. Therefore, it must be the case that both Q and the rate at which Q varies with F are the same at each F under EXAP and ENAP. Consequently, (36) implies that for any given $F, \frac{\partial}{\partial F}\{c(F) Q\}$ is the same under exogenous access pricing and endogenous access pricing.

Under the conditions specified in Proposition 3, $\frac{\partial}{\partial F}\left\{q_{0} P(Q)+w \sum_{i=1}^{n} q_{i}-F\right\}$ is strictly positive under EXAP for $F \in\left[0, \widehat{F}^{*}\right)\left(\right.$ where $\left.\widehat{F}^{*}>0\right)$ and strictly negative under ENAP for all $F \geq 0$. Therefore, (35) implies that for each $F, \frac{\partial \pi_{0}}{\partial F}$ is larger under EXAP than under ENAP, and so the VIP will implement a larger level of F under EXAP than under ENAP in the setting with variable access costs.

Reference

Fjell, K., Pal, D., and Sappington, D. (2013). On the Performance of Endogenous Access Pricing. Journal of Regulatory Economics, (forthcoming).

