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�On the Merits of Antitrust Liability in Regulated Industries�

by Arup Bose, Debashis Pal, and David Sappington

This Technical Appendix has two parts. Technical Appendix A begins with Conclusion 1,
which provides a formal statement of the regulator�s problem, [RP]. Conclusion 2 then iden-
ti�es conditions under which the pro�tability constraint (PC) and the behavioral constraint
(BC) bind at the solution to [RP] and the solution is unique. Next, Conclusion 3 identi-
�es conditions under which the regulated vertically-integrated �rm (V ) and the competitor
(E) both produce strictly positive output in equilibrium. The remainder of the analysis in
Technical Appendix A provides the proofs of the formal conclusions in the paper.

Technical Appendix B identi�es conditions under which the behavioral constraint (BC)
does not bind at the solution to [RP] and characterizes the optimal regulatory policy in this
case.

Technical Appendix A

To begin, de�ne d � d (�) ; d � d (�) ; and c � � cH + [ 1� � ] cL.

Conclusion 1. The regulator�s problem [RP] is the following:

Maximize
w� 0; r2 [ 12 ;1 ]; DR� DR

W

subject to:

g(w; r) � w

3 b
[ a+ 3u+ cv � 2 c ]�

2w2

3 b
� � � 0 , and (1)

h (w; r) � � 1

9 b
[�� � ] [ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w ]

+ [ 2 r � 1 ]DR +
�
d� d

�
DC � 0 , (2)

where

W � �

18b
[ 2a� w � u� cH � cv ]2 +

�
1� �
18b

�
[ 2a� w � u� cL � cv ]2

� k

�
r � 1

2

�2
+ [ 1� r ]DR [ 1� fR ] + [ 1� fC ] d DC , and (3)

� � u

3 b
[ a+ u+ cv � 2 c ] + [ 1� r ]DR + d DC + Fu > 0 . (4)
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Proof. The market demand curve is:

P (X) = a� bX = a� b [xe + xv ] . (5)

V �s pro�t, given realized costs and abstracting from regulatory and court penalties, is:

b�v = [w � u ]xe + [P (X)� u� cv ]xv � Fu � Fd . (6)

E�s pro�t, given realized costs and abstracting from regulatory and court penalties, is:b�e = [P (X)� w � ci ]xe � Fe . (7)

Because expected regulatory and court penalties do not vary with realized outputs, (5)
and (7) imply that E�s (interior) pro�t-maximizing choice of xe is determined by:

@b�e
@xe

= a� b [xe + xv ]� w � ci � b xe = 0

) xe = max

�
0;
1

2b
[ a� w � ci � bxv ]

�
. (8)

Similarly, (5) and (6) imply that V �s (interior) pro�t-maximizing choice of xv is deter-
mined by:

@b�v
@xv

= a� b [xe + xv ]� u� cv � b xv = 0

) xv = max

�
0;
1

2b
[ a� u� cv � bxe ]

�
. (9)

(8) and (9) imply that if xv > 0, then:

xv =
1

2b
[ a� u� cv ]�

1

2
max

�
0;
1

2b
[ a� w � ci � bxv ]

�

) xv =
1

2b
[ a� u� cv ] when xe = 0 .

When xe > 0:
xv =

1

2b
[ a� u� cv ]�

1

4b
[ a� w � ci � bxv ]

) 3

4
xv =

1

4b
[ 2a� 2u� 2cv � a+ w + ci ]

) xv =
1

3b
[ a+ w + ci � 2u� 2cv ] . (10)

(8) and (10) imply that when xe > 0 and xv > 0 in equilibrium:

xe =
1

2b
[ a� w � ci ]�

1

6b
[ a+ w + ci � 2u� 2cv ]
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=
1

6b
[ 3a� 3w � 3ci � a� w � ci + 2u+ 2cv ] =

1

3b
[ a+ u+ cv � 2w � 2ci ] . (11)

(10) and (11) imply that when xe > 0 and xv > 0 in equilibrium:

X = xe + xv =
1

3b
[ 2a� w � u� ci � cv ] (12)

) P (X) = a� 1
3
[ 2a� w � u� ci � cv ] =

1

3
[ a+ w + u+ ci + cv ] (13)

) P (X)� u� cv =
1

3
[ a+ w + ci � 2u� 2cv ] . (14)

(6), (10), (11), and (14) provide:

b�v = w � u
3b

[ a+ u+ cv � 2w � 2ci ] +
1

9b
[ a+ w + ci � 2u� 2cv ]2 � Fu � Fd. (15)

Then (15) implies that V �s expected pro�t when it undertakes the competitive action is:

�v = �

�
w � u
3b

[ a+ u+ cv � 2w � 2cH ] +
1

9b
[ a+ w + cH � 2u� 2cv ]2

�
+ [ 1� � ]

�
w � u
3b

[ a+ u+ cv � 2w � 2cL ] +
1

9b
[ a+ w + cL � 2u� 2cv ]2

�
� Fu � Fd � [ 1� r ]DR � d DC . (16)

(15) also implies that V �s expected pro�t when it undertakes the anticompetitive action is:

�v = �

�
w � u
3b

[ a+ u+ cv � 2w � 2cH ] +
1

9b
[ a+ w + cH � 2u� 2cv ]2

�
+ [ 1� � ]

�
w � u
3b

[ a+ u+ cv � 2w � 2cL ] +
1

9b
[ a+ w + cL � 2u� 2cv ]2

�
� Fu � Fd � r DR � d DC . (17)

From (12), consumers�surplus when E unit downstream cost is ci is:

S(ci) =
1

2
X [ a� (a� bX) ] = b

2
X2 .

Therefore, from (12), when xe > 0 and xv > 0 in equilibrium:

S(ci) =
1

2
X [ a� (a� bX) ] = b

2
X2 =

1

18b
[ 2a� w � u� ci � cv ]2 . (18)

Let �uv denote V �s upstream pro�t when it undertakes the competitive action. From (16):
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�uv = �

�
w � u
3 b

�
[ a+ u+ cv � 2w � 2 cH ] + [ 1� � ]

�
w � u
3 b

�
[ a+ u+ cv � 2w � 2 cL ]

� [ 1� r ]DR � d DC � Fu

=
w � u
3 b

[ a+ u+ cv � 2w ]�
2 [w � u ]
3 b

[ � cH + ( 1� � ) cL ]

� [ 1� r ]DR � d DC � Fu

=
w � u
3 b

[ a+ u+ cv � 2w � 2 c ]� [ 1� r ]DR � d DC � Fu

=
w

3 b
[ a+ u+ cv � 2 c ]�

2w2

3 b

� u

3 b
[ a+ u+ cv � 2w � 2 c ]� [ 1� r ]DR � d DC � Fu

=
w

3 b
[ a+ u+ cv � 2 c ] +

2uw

3 b
� 2w

2

3 b

� u

3 b
[ a+ u+ cv � 2 c ]� [ 1� r ]DR � d DC � Fu

=
w

3 b
[ a+ 3u+ cv � 2 c ]�

2w2

3 b
� � . (19)

The inequality in (4) holds when both �rms produce strictly positive output in equilibrium.1

Therefore, (11) implies a+ u+ cv � 2 c � 0.

(19) implies that V �s pro�tability constraint (PC) is:

w

3 b
[ a+ 3 u+ cv � 2 c ]�

2w2

3 b
� � � 0 . (20)

From (16), V �s expected pro�t when it undertakes the competitive action is:

�v =
�

9 b
f 3w [ a+ u+ cv � 2 cH ]� 6w2 � 3u [ a+ u+ cv � 2 cH � 2w ]

+ w2 + 2w [ a+ cH � 2u� 2 cv ] + [ a+ cH � 2u� 2 cv ]2 g

+
1� �
9 b

f 3w [ a+ u+ cv � 2 cL ]� 6w2 � 3u [ a+ u+ cv � 2 cL � 2w ]

+ w2 + 2w [ a+ cL � 2u� 2 cv ] + [ a+ cL � 2u� 2 cv ]2 g

� Fu � Fd � [ 1� r ]DR � d DC

1Conclusion 3 below provides su¢ cient conditions. The conditions are assumed to hold throughout the
ensuing analysis.

4



=
�

9 b
fw [ 3 a+ 3u+ 3 cv � 6 cH ]� 6w2 + 6w u� 3u [ a+ u+ cv � 2 cH ]

+ w2 + w [ 2 a+ 2 cH � 4u� 4 cv ] + [ a+ cH � 2u� 2 cv ]2 g

+
1� �
9 b

fw [ 3 a+ 3u+ 3 cv � 6 cL ]� 6w2 + 6w u� 3u [ a+ u+ cv � 2 cL ]

+ w2 + w [ 2 a+ 2 cL � 4u� 4 cv ] + [ a+ cL � 2u� 2 cv ]2 g

� Fu � Fd � [ 1� r ]DR � d DC

=
�

9 b
fw [ 5 a+ 5u� cv � 4 cH ]� 3u [ a+ u+ cv � 2 cH ]

� 5w2 + [ a+ cH � 2u� 2 cv ]2 g

+
1� �
9 b

fw [ 5 a+ 5u� cv � 4 cL ]� 3u [ a+ u+ cv � 2 cL ]

� 5w2 + [ a+ cL � 2u� 2 cv ]2 g
� Fu � Fd � [ 1� r ]DR � d DC

=
1

9 b
fw [ 5 a+ 5u� cv � 4 c ]� 3u [ a+ u+ cv � 2 c ]� 5w2

+ � [ a+ cH � 2u� 2 cv ]2 + [ 1� � ] [ a+ cL � 2u� 2 cv ]2 g

� Fu � Fd � [ 1� r ]DR � d DC . (21)

(21) implies that V �s expected pro�t when it undertakes the competitive action is:

�v = A0 + A1w + A2w
2 , (22)

where:
A0 �

�

9 b
[ a+ cH � 2u� 2cv ]2 +

1� �
9 b

[ a+ cL � 2u� 2 cv ]2

� u

3 b
[ a+ u+ cv � 2 c ]� Fu � Fd � [ 1� r ]DR � d DC ; (23)

A1 �
1

9 b
[ 5 a+ 5u� cv � 4 c ] ; and A2 � � 5

9 b
. (24)

Analogous calculations using (17) reveal that V �s expected pro�t when it undertakes the
anticompetitive action is:

�v = B0 +B1w +B2w
2 (25)

where:
B0 �

�

9 b
[ a+ cH � 2u� 2cv ]2 +

1� �
9 b

[ a+ cL � 2u� 2 cv ]2

� u

3 b
[ a+ u+ cv � 2 c ]� Fu � Fd � r DR � d DC ; (26)
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B1 �
1

9 b
[ 5 a+ 5u� cv � 4 c ] ; and B2 � � 5

9 b
. (27)

From (22), (24), (25), and (27):

�v � �v = A0 �B0 + [A1 �B1 ]w + [A2 �B2 ]w2 = A0 �B0 + [A1 �B1 ]w . (28)

From (23) and (26):

A0 �B0 =
�

9 b
[ a+ cH � 2u� 2cv ]2 +

1� �
9 b

[ a+ cL � 2u� 2 cv ]2

� �

9 b
[ a+ cH � 2u� 2cv ]2 �

1� �
9 b

[ a+ cL � 2u� 2 cv ]2

+
u

3 b
[ a+ u+ cv � 2 c ]�

u

3 b
[ a+ u+ cv � 2 c ]

+ r DR + d DC � [ 1� r ]DR � d DC

= � [�� � ] 1
9 b
[ a+ cH � 2u� 2 cv ]2 + [�� � ]

1

9 b
[ a+ cL � 2u� 2 cv ]2

� 2u
3 b
[ c � c ] + [ 2 r � 1 ]DR +

�
d� d

�
DC

= [�� � ] 1
9 b

�
( a+ cL � 2u� 2cv )2 � ( a+ cH � 2u� 2 cv )2

�
� 2u

3 b
[ � cH + ( 1� � ) cL � � cH + ( 1� � ) cL ]

+ [ 2 r � 1 ]DR +
�
d� d

�
DC

= [�� � ] 1
9 b
f [ a� 2u� 2cv ]2 + 2 cL [ a� 2u� 2cv ] + (cL)2

� [ a� 2u� 2 cv ]2 � 2 cH [ a� 2u� 2cv ]� (cH)2 g

� 2u
3 b
[�� � ] [ cH � cL ] + [ 2 r � 1 ]DR +

�
d� d

�
DC

= � [�� � ] 1
9 b
f 2 [ cH � cL ] [ a� 2u� 2cv ] + (cH)2 � (cL)2 g

� 6u

9 b
[�� � ] [ cH � cL ] + [ 2 r � 1 ]DR +

�
d� d

�
DC

= � [�� � ] 1
9 b
f 2 [ cH � cL ] [ a� 2u� 2cv ] + [ cH � cL ] [ cH + cL ] g
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� 6u

9 b
[�� � ] [ cH � cL ] + [ 2 r � 1 ]DR +

�
d� d

�
DC

= � [�� � ] 1
9 b
[ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv ]

+ [ 2 r � 1 ]DR +
�
d� d

�
DC . (29)

From (24) and (27):

A1 �B1 =
1

9 b
[ 5 a+ 5u� cv � 4 c ]�

1

9 b
[ 5 a+ 5u� cv � 4 c ]

=
4

9 b
[ c� c ] =

4

9 b
[� cH + ( 1� � ) cL � � cH � ( 1� � ) cL]

=
4

9 b
[�� � ] [ cH � cL ] . (30)

(28), (29), and (30) provide:

�v � �v = A0 �B0 + [A1 �B1 ]w

= � 1

9 b
[�� � ] [ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w ]

+ [ 2 r � 1 ]DR +
�
d� d

�
DC . (31)

The conclusion follows from (18), (20), and (31). �

(1) is the pro�tability constraint (PC) and (2) is the behavioral constraint (BC). We now
identify conditions under which the PC and the BC both bind at the solution to [RP] and
the solution is unique. To do so, it is useful to �x DR at an exogenous level, and de�ne
the BC curve as the set of (w; r) for which (2) holds as an equality, given the speci�ed DR.
The BC is not satis�ed for (w; r) points to the left of the BC curve in (w; r) space, which is
de�ned for w � 0 and r 2

�
1
2
; 1
�
. The BC is satis�ed, but does not bind, for points to the

right of the BC curve in (w; r) space.

To further characterize the PC, de�ne for a �xed DR:

g (w; r) =
w

3 b
[ a+ 3u+ cv � 2 c ]�

2w2

3 b
� � . (32)

(4) and (32) imply that g (0; r) < 0, g (1; r) < 0, and g (w; r) is a concave function of w;
given r. Because g(w; r) is quadratic in w, given r; the equation g (w; r) = 0 has two real
solutions if the PC holds, which are given by:

ew1 = 1

4

�
a+ 3u+ cv � 2 c �

q
[ a+ 3u+ cv � 2 c ]2 � 24 b �

�
, and (33)
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ew2 = 1

4

�
a+ 3u+ cv � 2 c +

q
[ a+ 3u+ cv � 2 c ]2 � 24 b �

�
. (34)

De�ne the PC1 curve as the set of (w; r) for which (33) holds, and de�ne the PC2 curve
as the set of (w; r) for which (34) holds. Because ew2 > ew1, the PC2 curve lies to the right
of the PC1 curve in (w; r) space. The set of (w; r) that satisfy the pro�tability constraint
consists of the values of (w; r) bounded to the left in (w; r) space by the PC1 curve and to
the right by the PC2 curve.

From (4), (33), and (34), the slopes of the PC1 and PC2 curves in (w; r) space are:

@r

@ ew1 s
= � 1

3 bDR

q
( a+ 3u+ cv � 2 c )2 � 24 b � < 0 ; and (35)

@r

@ ew2 s
=

1

3 bDR

q
( a+ 3u+ cv � 2 c )2 � 24 b � > 0 . (36)

From (2), the slope of the BC in (w; r) space is:

dr

dw
= � 2 [� � � ] [ cH � cL ]

9 bDR

< 0 . (37)

From (3), the slope of an iso-W curve in (w; r) space is:

dr

dw
= � 2 a � w � u � c � cv

18 b k
�
r � 1

2

�
+ 9 bDR [ 1 � fR ]

. (38)

Let w�, r�, and W �, respectively, denote the values of w, r, and W at the solution to
[RP]. Also let w�(DR) and r�(DR), respectively, denote the values of w and r at the solution
to [RP] when the optimal regulatory penalty is DR 2 [ 0; DR ].

Before proceeding, we restate Assumptions 1 and A1 from the text, along with Assump-
tions 2 and 3. The latter two assumptions refer to w (br )jj, which is the value of w on the j
curve when r = br, for j 2 fPC1, PC2, BCg.
Assumption A1. a > max f a1; a2; a3; a4; a5; 7u+ 2 cv, 2 [u+ cv ]� cL g ,

where:

a1 �
1

2
[u+ cv + c ] +

4 d
h
fC +

k
DR
� fR

i
[�� � ] [ cH � cL ]

d+ d � 3
h

k
DR
+ 1� fR

i �
d� d

�
� 6 d [ 1� fC ]

;

a2 � u+
5 cv
7
+
2 c

7
+
16

7

�
k

DR

+ fC � fR
�
[�� � ] [ cH � cL ] ;

a3 �
1

2 fC � fR � 1
3

�
3

�
fR � 2 fC +

10

9

�
u+

�
fR � 2 fC +

4

3

�
cv
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� 2
�
fR � 2 fC +

5

6

�
c� 4

3
[�� � ] [ cH � cL ]

�
fR � fC �

k

DR

��
;

a4 �
5u

3
+ cv +

2

3

�
k +DR ( 1� fR )

�r 9 b

2 k
;

a5 � u� cv + 2 c +

s
24 b

�
DR

2
+ d DC + Fu

�
+
16

9
[�� � ]2 [ cH � cL ]2 .

Assumption 1.

[ a� u+ cv � 2 c ]2 >

�
2 a� 2u� c� cv
3 ( 1� fR )

�2
+ 24 b

�
DR

2
+ dDC + Fu

�
.

Assumption 2. w
�
1
2

���
PC1

< w
�
1
2

���
BC

and w (1)jPC1 > w (1)jBC when DR = DR.

Assumption 3. w
�
1
2

���
PC2

> w
�
1
2

���
BC

when DR = DR:

It can be shown that Assumption 1 ensures:2

a+ 3u+ cv � 2 c� 4w�(DR)

3 bDR

>
1
9 b

�
2 a� w�(DR)� u� c� cv

�
2 k
�
r�(DR)� 1

2

�
+DR [ 1� fR ]

>
2

9 b

[�� � ] [ cH � cL ]
DR

. (39)

Therefore, from (35), (37), and (38), Assumption 1 ensures that when DR = DR; the slope
of the PC1 curve at (w�(DR); r

�(DR)) in (w; r) space exceeds the slope of the iso-W curves,
which in turn exceeds the slope of the BC curve. Assumptions 2 and 3 state that ifDR = DR,
then: (i) when r = 1

2
, the value of w on the BC curve exceeds the value of w on the PC1

curve, and the value of w on the PC2 curve exceeds the value of w on the BC curve; and
(ii) when r = 1, the value of w on the PC1 curve exceeds the value of w on the BC curve.

Conclusion 2. If Assumptions 1 � 3 hold, then the solution to [RP] is unique. At this
solution, DR = DR , r 2 (12 ; 1) , and the PC and the BC both bind.

Proof. The proof proceeds by �rst characterizing the welfare-maximizing values of w and r
for a �xed DR 2 [ 0; DR ]. Let [RP-DR] denote problem [RP] where DR 2 [ 0; DR ] is speci�ed
exogenously. The proof consists of the following fourteen Claims.

2See Conclusion 4 below.
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Claim 1. The BC curve (h(w; r) = 0) is quasi-concave (so the set of (w; r) for which (2)
holds is convex).

Proof. From (2), the equation of the BC curve is:

h (w; r) � � 1

9 b
[�� � ] [ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w ]

+ [ 2 r � 1 ]DR +
�
d� d

�
DC = 0 .

It is apparent that h (w; r) is linear in w and r. Hence, it is quasi-concave in w and r. �

Claim 2. The PC curve ( g(w; r) = 0) is quasi-concave (so the set of (w; r) for which (1)
holds is convex).

Proof. From (1), the equation of the PC curve is:

g (w; r) � w

3 b
[ a+ 3u+ cv � 2 c ]�

2w2

3 b
� � = 0 . (40)

Di¤erentiating (40), letting subscripts denote partial derivatives, provides:

gw =
1

3 b
[ a+ 3u+ cv � 2 c ]�

4w

3 b
; gww = � 4

3 b
;

gr = DR; and grr = gwr = 0 . (41)

(41) implies that g(�) is quasi-concave if:3������
0 gw gr
gw gww gwr
gr grw grr

������ � 0 , 2 gw gr gwr � gww (gr)2 � grr (gw)2 � 0

, � gww (gr)2 � 0 , 4

3 b
(DR)

2 � 0 . (42)

(42) implies that g (w; r) is quasi-concave. �

Claim 3. The iso-W curves are strictly quasi-concave for all relevant values of w, r and
DR 2 [ 0; DR ].

Proof. From (3), the equation of an iso-W curve is:

W (w; r) � �

18b
[ 2a� w � u� cH � cv ]2 +

�
1� �
18b

�
[ 2a� w � u� cL � cv ]2

� k

�
r � 1

2

�2
+ [ 1� r ]DR [ 1� fR ] + [ 1� fC ] d DC = W . (43)

3Chiang and Wainwright (2005, pp. 368-370).
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Di¤erentiating (43), letting subscripts denote partial derivatives, provides:

Ww = � �

9 b
[ 2 a� w � u� cH � cv ]�

�
1� �
9 b

�
[ 2 a� w � u� cL � cv ]

= � 1

9 b
[ 2 a� w � u� c� cv ] ) Www =

1

9 b
;

Wr = � 2 k
�
r � 1

2

�
�DR [ 1� fR ] ) Wrr = � 2 k and Wwr = 0 . (44)

As in (42), W (�) is strictly quasi-concave if:

2WwWrWwr �Www (Wr)
2 �Wrr (Ww)

2 > 0. (45)

(44) and (45) imply that W (�) is strictly quasi-concave if:

� 1

9b

�
2 k

�
r � 1

2

�
+DR (1� fR)

�2
+ 2 k

�
1

9 b
( 2a� w � u� c� cv )

�2
> 0

, 2 k

�
1

9 b
( 2a� w � u� c� cv )

�2
>

1

9 b

�
2 k

�
r � 1

2

�
+DR (1� fR)

�2

, [ 2a� w � u� c� cv ]2 >
9 b

2 k

�
2 k

�
r � 1

2

�
+DR (1� fR)

�2

, 2 a� w � u� c� cv
2 k
�
r � 1

2

�
+DR [ 1� fR ]

>

r
9 b

2 k
. (46)

(34) implies:
w � ew2 if w � bw2 � 1

2
[ a+ 3u+ cv � 2 c ] . (47)

Therefore, since DR � DR, it must be the case that for all w � bw2:
2 a� w � u� c� cv

2 k
�
r � 1

2

�
+DR [ 1� fR ]

� 2 a� w � u� c� cv
2 k
�
1� 1

2

�
+DR [ 1� fR ]

=
2 a� w � u� c� cv
k +DR [ 1� fR ]

�
2 a� 1

2
[ a+ 3u+ cv � 2 c ]� u� c� cv

k +DR [ 1� fR ]
=

3 a� 5u� 3 cv
2
�
k +DR ( 1� fR )

� . (48)

(48) implies that (46) holds when, as is assumed to be the case, a is su¢ ciently large.4 �

Claim 4. For any DR 2 [ 0; DR ], there is a unique (w; r) that solves [RP-DR].

4Speci�cally, (46) holds when Assumption A1 holds.
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Proof. The objective function in [RP-DR] is strictly quasi-concave and the constraint set is
convex. Therefore, the problem has a unique solution. �

Claim 5. Suppose Assumption 2 holds. Then when DR = DR, the PC1 curve and the BC
curve intersect exactly once. r 2 ( 1

2
; 1) at the point of intersection.

Proof. (35) and (37) imply that the PC1 curve and the BC curve both have negative slopes.
Therefore, Assumption 2 ensures that when DR = DR, the two curves intersect at least
once and they do not intersect where r = 1

2
or where r = 1. (35) implies that @

@r
( @r
@ ew1 ) < 0.

Therefore, the PC1 curve is convex to the origin in (w; r) space. (37) implies that the BC
curve is linear. Therefore, the two curves intersect exactly once at a point where r 2 (1

2
; 1).

�

Claim 6. Suppose Assumption 3 holds. Then for any DR 2
�
0; DR

�
, the solution to

[RP-DR] does not lie on the PC2 curve.

Proof. @
@DR

�
w
�
1
2

���
PC2

	
< 0 from (34). Therefore, w

�
1
2

���
PC2

increases as DR decreases.
Also, from (2), w

�
1
2

���
BC

does not change as DR changes. Consequently, w
�
1
2

���
PC2

>

w
�
1
2

���
BC
for all DR 2

�
0; DR

�
if Assumption 3 holds.

(36) implies that PC2 has a positive slope in (w; r) space for all DR 2
�
0; DR

�
. (37)

implies that the BC curve has a negative slope. Therefore, when Assumption 3 holds,
w (r)jPC2 > w (r)jBC for all r 2

�
1
2
; 1
�
, so the PC2 curve lies strictly to the right of the

BC curve in (w; r) space for all DR 2
�
0; DR

�
.

Suppose (w�; r�), a candidate solution to [RP-DR], lies on the PC2 curve. Because the
PC2 curve lies the right of the BC curve in (w; r) space, the BC does not bind. Therefore,
there exist values of w 2 [ 0; w�) for which (w; r�) satisfy both the PC and the BC. (3) implies
that W is higher at all such values of (w; r�) than at (w�; r�). Consequently, (w�; r�) is not
a solution to [RP-DR]. �

Let bw (DR) and br (DR) denote the values of w and r that solve the following two equations,
given DR:5

bw (DR) =
1

4
[ a+ 3u+ cv � 2 c ]�

1

4
f [ a+ 3u+ cv � 2 c ]2

� 24 b
h u
3 b
( a+ u+ cv � 2 c ) + ( 1� br (DR) )DR + d DC + Fu

i
g 12 . (49)

� 1

9 b
[�� � ] [ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4 bw (DR) ]

= [ 2 br (DR)� 1 ]DR +
�
d� d

�
DC . (50)

5Observe that (49) re�ects (33), and (50) re�ects (2).
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Claim 7. Suppose Assumptions 1 �3 hold. Then bw (DR) and br (DR) solve [RP-DR]. In
addition, br (DR) 2

�
1
2
; 1
�
, the pro�tability constraint binds, and the behavioral constraint

binds at the solution to [RP-DR].

Proof. Claim 5 implies that when DR = DR, the PC1 curve and the BC curve intersect
exactly once at ( bw (DR); br (DR)), where br (DR) 2

�
1
2
; 1
�
. Claim 6 implies that the feasible

solutions to [RP-DR] consist of the (w; r) pairs that lie to the right of the PC1 curve for r 2
[ br (DR); 1 ] and to the right of the BC curve for r 2 [ 12 ; br (DR) ] in (w; r) space. Assumption
1 ensures that the iso-W curves are more steeply sloped than the BC curve and less steeply
sloped than the PC1 curve in the neighborhood of ( bw (DR); br (DR)). Furthermore, iso-W
curves further to the left in (w; r) space correspond to higher levels of W . Therefore, the
highest feasible level of W in the neighborhood of ( bw (DR); br (DR)) is uniquely achieved at
( bw (DR); br (DR)). Furthermore, the constraint set is convex and Claim 4 implies that the
objective function in [RP-DR] is strictly quasi-concave. Therefore, ( bw (DR); br (DR)) is the
unique solution to [RP-DR]. �

Claim 8. w
�
1
2

���
PC1

increases as DR increases, whereas w
�
1
2

���
BC

is independent of DR.

Proof. From (4) and (33):

@

@DR

�
w(
1

2
)

����
PC1

�
= � 1

8

�
( a+ 3u+ cv � 2 c )2 � 24 b �

�� 3
2 [� 24 b ] 1

2
> 0 .

From (2):
@

@DR

�
w(
1

2
)

����
BC

�
= [ 2 r � 1 ] j r= 1

2
= 0 . �

Claim 9. The PC1 curve and the BC curve are vertical straight lines when DR = 0.

Proof. Follows immediately from (1), (2), (4) and (33). �

Claim 10. Suppose Assumptions 1 �3 hold. Then there exists a eDR 2
�
0; DR

�
such that:

(i) the PC1 curve lies everywhere to the left of the BC curve in (w; r) space if DR 2 [ 0; eDR );
(ii) the two curves intersect exactly once at r = 1 if DR = eDR; and (iii) the two curves
intersect for some w > 0 and r 2 ( 1

2
; 1) if DR 2 ( eDR; DR ].

Proof. From Assumption 2 and Claim 8: (i) w
�
1
2

���
PC1

< w
�
1
2

���
BC

at DR = DR; (ii)
w
�
1
2

���
PC1

declines as DR declines; and (iii) w
�
1
2

���
BC

is independent of DR. Therefore,
w
�
1
2

���
PC1

< w
�
1
2

���
BC

for all DR 2
�
0; DR

�
. Furthermore, as demonstrated in the proof

of Claim 5, for a �xed DR: (i) the PC1 curve is convex to the origin in (w; r) space; (ii)
the BC curve is a straight line; and (iii) both curves have a negative slope. Therefore, the
curves intersect at most once.
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Claim 9 implies that when DR = 0, the PC1 curve and the BC curve are vertical lines in
(w; r) space. Furthermore, because w

�
1
2

���
PC1

< w
�
1
2

���
BC

for all DR 2
�
0; DR

�
, the PC1

curve lies to the left of the BC curve. Consequently, the two curves do not intersect.

Claim 5 implies that the PC1 curve and the BC curve intersect when DR = DR.

From (2) and (33), w
�
1
2

���
PC1

increases and w
�
1
2

���
BC

does not change as DR increases
from 0 to DR. In addition, from (35) and (37), the PC1 curve and the BC curve both
become �atter in (w; r) space as DR increases. The claim then follows from the established
fact that for a �xed DR: (i) the PC1 curve is convex to the origin in (w; r) space; (ii) the
BC curve is a straight line; and (iii) both curves have a negative slope. �

Claim 11. Suppose Assumptions 1 �3 hold. Then it is not the case that only BC binds at
a solution to [RP].

Proof. If DR = DR; then the PC and the BC both bind at a solution to [RP], from Claim
7. Consider a candidate solution to [RP] at which DR < DR and the BC is the only binding
constraint. Suppose DR is increased by an arbitrarily small amount. This increase in DR

is feasible because DR < DR. Following this increase: (i) the PC continues to hold because
the constraint is not binding; (ii) the BC continues to hold because the expression to the left
of the inequality in (2) is increasing in DR; and (iii) W increases because it is increasing in
DR, from (3). Therefore, the candidate solution cannot be a solution to [RP]. �

Claim 12. Suppose Assumptions 1 �3 hold. Then it is not the case that only the PC binds
at a solution to [RP].

Proof. First suppose DR = 0 at a solution to [RP]. Then from Claim 9, the PC1 curve and
the BC curve are both vertical lines in (w; r) space. Furthermore, Assumption 2 implies that
the PC1 curve lies everywhere to the left of the BC curve in (w; r) space. Therefore, Claim
6 implies that if the PC binds at a solution to [RP], then the BC is violated. Consequently,
it cannot be the case that only the PC binds when DR = 0 at a solution to [RP].

Now suppose r = 1
2
and only the PC binds at a solution to [RP]. w

�
1
2

���
PC

< w
�
1
2

���
BC

for all DR 2
�
0; DR

�
from Claim 8 and Assumption 2. Therefore, if the PC binds at a

solution to [RP], then the BC is violated. Consequently, it cannot be the case that r = 1
2

and only the PC binds at a solution to [RP].

Now suppose r > 1
2
, DR > 0, and only the PC binds at a solution to [RP]. Since r > 1

2

and DR > 0; it is possible to �nd r 2 (1
2
; r) and DR 2 (0; DR) such that [ 1� r ]DR =

[ 1� r ]DR. Observe from (1) and (4) that the PC continues to bind at (w; r;DR). Also, if
DR � DR is su¢ ciently small, then the inequality in (2) will continue to hold because, by
assumption, it holds strictly when the regulatory penalty is DR. W is higher at (w; r;DR)
than at (w; r;DR) because, from (3), @W

@r

��
[ 1� r ]DR= constant

= � 2 k
�
r � 1

2

�
< 0. Therefore,

it cannot be the case that DR = 0, r = 1
2
, and only the PC binds at a solution to [RP]. �

14



Claim 13. Suppose Assumptions 1 �3 hold. Then at a solution to [RP]: (i) DR 2 [ eDR; DR ];

and (ii) w� = bw (DR) and r� = br (DR), as speci�ed in (49) and (50).

Proof. From Claim 10, the PC1 curve lies everywhere to the left of the BC curve in (w; r)
space if DR 2 [ 0; eDR ). Therefore, because the PC and the BC both bind at the solution to
[RP] from Claims 11 and 12, it must be the case that DR 2 [ eDR; DR ].

The remainder of the proof follows from (2), (4), and (33) because the PC and the BC
both bind at the solution to [RP]. �

Claim 14. Suppose Assumptions 1 �3 hold. Then dW �

dDR
> 0 for all DR 2 ( eDR; DR).

Proof. From (1), di¤erentiating g(w; r) = 0 with respect to DR, using (4), provides:

DR

�
@r

@DR

�
+

�
a+ 3u+ cv � 2 c� 4w

3 b

�
@w

@DR

= 1� r . (51)

From (2), di¤erentiating h(w; r) = 0 with respect to DR provides:

4

9 b
[ �� � ] [ cH � cL ]

@w

@DR

+ 2 r � 1 + 2DR

�
@r

@DR

�
= 0

) 2DR

�
@r

@DR

�
+
4

9 b
[ �� � ] [ cH � cL ]

@w

@DR

= 1� 2 r . (52)

(51) and (52) can be written as:

�

24 @r
@DR

@w
@DR

35 =
24 1� r

1� 2 r

35 where � �

24 DR
a+3u+ cv � 2 c� 4w

3 b

2DR
4
9 b
[ �� � ] [ cH � cL ]

35 (53)

) j� j = DR

3 b

�
4

3
(�� � ) ( cH � cL )� 2 (a + 3u + cv � 2 c � 4w)

�
< 0. (54)

The inequality in (54) holds because:

a+ 3u+ cv � 2 c� 4w

�

s
[ a+ 3u+ cv � 2 c ]2 � 24 b

�
u

3 b
( a+ u+ cv � 2 c ) +

DR

2
+ d DC + Fu

�
. (55)

(55) follows from (33) and Claim 6, since the PC binds at the solution to [RP]. (55) implies:

a+ 3u+ cv � 2 c� 4w �
2

3
[�� � ] [ cH � cL ]

15



� a+ 3u+ cv � 2 c �
2

3
[�� � ] [ cH � cL ]� [ a+ 3u+ cv � 2 c ]

+

s
[ a+ 3u+ cv � 2 c ]2 � 24 b

�
u

3 b
( a+ u+ cv � 2 c ) +

DR

2
+ d DC + Fu

�

= � 2
3
[�� � ] [ cH � cL ]

+

s
[ a+ 3u+ cv � 2 c ]2 � 24 b

�
u

3 b
( a+ u+ cv � 2 c ) +

DR

2
+ d DC + Fu

�

> � 2
3
[�� � ] [ cH � cL ] +

r
4

9
[�� � ]2 [ cH � cL ]2 = 0 . (56)

The inequality in (56) holds because

[ a� u+ cv � 2 c ]2 � 24 b
�
DR

2
+ d DC + Fu

�
>
4

9
[�� � ]2 [ cH � cL ]2 (57)

from Assumption A1 and because:

[ a+ 3u+ cv � 2 c ]2 � 24 b
u

3b
[ a+ u+ cv � 2 c ]

= [ a+ u+ cv � 2 c ]2 + 4u [ a+ u+ cv � 2 c ] + 4u2 � 8u [ a+ u+ cv � 2 c ]

= [ a+ u+ cv � 2 c ]2 � 4u [ a+ u+ cv � 2 c ] + 4u2

= [ a+ u+ cv � 2 c � 2u ]2 = [ a� u+ cv � 2 c ]2 . (58)

(54) follows from (56).

Because j� j < 0, (53) implies:

@w

@DR

=
j
2 j
j� j

s
= � j
2 j where 
2 �

24 DR 1� r

2 DR 1� 2 r

35 (59)

) j
2 j = [ 1� 2 r ]DR � 2 [ 1� r ]DR = �DR . (60)

(59) and (60) imply @w
@DR

s
= � j
2 j = DR > 0.

(52) implies @r
@DR

< 0, since @w
@DR

> 0 and r > 1
2
.

De�ne �1 �
2

3
[�� � ] [ cH � cL ] and �2 � a+ 3u+ cv � 2 c� 4w . (61)

(54) and (61) imply:

j� j = 2DR

3 b
[�1 � �2 ] < 0 ) �2 > �1 . (62)
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(59), (60), and (62) provide:

@w

@DR

=
j
2 j
j� j =

3 b

2 [�2 � �1 ]
> 0 . (63)

From (53):

@r

@DR

=
j
3 j
j� j where 
3 �

24 1� r a+3u+ cv � 2 c� 4w
3 b

1� 2 r 4
9 b
[ �� � ] [ cH � cL ]

35 (64)

Because @r
@DR

< 0 and j� j < 0:

j
3 j = [ 1� r ] 4
9 b
[ �� � ] [ cH � cL ]

� [ 1� 2 r ]
�
a + 3u + cv � 2 c � 4w

3 b

�
> 0. (65)

(61) and (65) imply:

j
3 j =
2 [ 1� r ]�1

3 b
� [ 1� 2 r ]�2

3 b
> 0 (66)

) 2 [ 1� r ]�1 � [ 1� 2 r ]�2 = 2 [ 1� r ] [�1 � �2 ] + �2 > 0 . (67)

(63), (64), and (66) provide:

@r

@DR

=
2 [ 1�r ]�1

3 b
� [ 1�2 r ]�2

3 b
2DR
3 b
[�1 � �2 ]

=
2 [ 1� r ]�1 � [ 1� 2 r ]�2

2DR [�1 � �2 ]
. (68)

From (3):

dW �

dDR

= � �

9 b
[ 2 a� w � u� cH � cv ]

@w

@DR

�
�
1� �
9 b

�
[ 2 a� w � u� cL � cv ]

@w

@DR

� 2 k

�
r � 1

2

�
@r

@DR

�DR [ 1� fR ]
@r

@DR

+ [ 1� r ] [ 1� fR ] (69)

= � 1

9 b
[ 2 a� w � u� c� cv ]

@w

@DR

� [ k ( 2r � 1 ) +DR ( 1� fR )]
@r

@DR

+ [ 1� r ] [ 1� fR ] . (70)
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(62), (68), and (70) provide:

dW �

dDR

=
1

9 b
[ 2 a� w � u� c� cv ]

3 b

2 [�1 � �2 ]

� [ k ( 2 r � 1 ) +DR ( 1� fR ) ]
2 [ 1� r ]�1 � [ 1� 2 r ]�2

2DR [�1 � �2 ]
+ [ 1� r ] [ 1� fR ]

=
1

6

�
2 a� w � u� c� cv

�1 � �2

�
� k [ 2 r � 1 ] 2 [ 1� r ] [�1 � �2 ] + �2

2DR [�1 � �2 ]

� DR [ 1� fR ]
2 [ 1� r ] [�1 � �2 ] + �2

2DR [�1 � �2 ]
+ [ 1� r ] [ 1� fR ]

=
1

6

�
2 a� w � u� c� cv

�1 � �2

�
� k [ 2r � 1 ] 2 [ 1� r ] [�1 � �2 ] + �2

2DR [�1 � �2 ]

� [ 1� fR ] [ 1� r ]� DR [ 1� fR ]
�2

2DR [�1 � �2 ]
+ [ 1� r ] [ 1� fR ]

=
1

6

�
2 a� w � u� c� cv

�1 � �2

�
� k [ 2r � 1 ] 2 [ 1� r ] [�1 � �2 ] + �2

2DR [�1 � �2 ]

� [ 1� fR ]
�2

2 [�1 � �2 ]

) 2 [�1 � �2 ]
dW �

dDR

=
1

3
[ 2 a� w � u� c� cv ]

� k [ 2 r � 1 ]
DR

[ 2 ( 1� r ) (�1 � �2 ) + �2 ]� [ 1� fR ]�2 . (71)

Since �1 < �2; (71) implies:

dW �

dDR

> 0 if
1

3
[ 2 a� w� � u� c� cv ]� [ 1� fR ]��2

<
k [ 2 r� � 1 ]

DR

[ 2 ( 1� r� ) (�1 � ��2 ) + ��2 ] (72)

where �1 �
2

3
[�� � ] [ cH � cL ] and ��2 � a+ 3u+ cv � 2 c� 4w� .

Since 2 [ 1� r�] [�1 � ��2 ] + ��2 � 0 from (67), (72) holds if:

1

3
[ 2 a� w� � u� c� cv ]� [ 1� fR ]��2 < 0. (73)

Observe that (73) holds when:

3 [ 1� fR ] [ a+ 3u+ cv � 2 c� 4w�(DR) ] > 2 a� w�(DR)� u� c� cv . (74)
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To complete the proof, we will show that (74) holds when Assumption 1 holds.

The PC binds at a solution to [RP], from Claims 11 and 12. Therefore, from (33):

a+ 3u+ cv � 2 c� 4 w� (DR) =

q
[ a+ 3u+ cv � 2 c ]2 � 24 b � .

Consequently, (74) holds if and only if:

3 [ 1� fR ]
q
[ a+ 3u+ cv � 2 c ]2 � 24 b � > 2 a� w�(DR)� u� c� cv . (75)

(4) and (58) imply:

[ a+ 3u+ cv � 2 c ]2 � 24 b [�� ( 1� r )DR � d DC � Fu ] = [ a� u+ cv � 2 c ]2

) [ a+ 3u+ cv � 2 c ]2 � 24 b �

= [ a� u+ cv � 2 c ]2 � 24 b [ ( 1� r )DR + d DC + Fu ]

� [ a� u+ cv � 2 c ]2 � 24 b
�
DR

2
+ d DC + Fu

�
. (76)

Also, because w� > u to ensure the PC is satis�ed:

2 a� w�(DR)� u� c� cv < 2 a� 2u� c� cv . (77)

(76) and (77) imply that (75) holds if:

3 [ 1� fR ]

s
[ a� u+ cv � 2 c ]2 � 24 b

�
DR

2
+ d DC + Fu

�
> 2 a� 2u� c� cv

, [ 1� fR ]2
�
( a� u+ cv � 2 c )2 � 24 b

�
DR

2
+ d DC + Fu

��
>

�
2 a� 2u� c� cv

3

�2
. (78)

Assumption 1 ensures that the inequality in (78) holds. �

Conclusion 3. E will produce strictly positive output in equilibrium if cv > cH . V will pro-
duce strictly positive output in equilibrium if Assumption A1 holds (so a > 2

�
u+ cv � cL

2

�
).

Proof. Because the BC binds at the solution to [RP], (2) implies that when DR > 0 and/or
DC > 0:

4w < 2 a+ 2u+ cL + cH � 4 cv ) 2w < a+ u+
cL + cH
2

� 2 cv . (79)

Therefore:
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a+ u+ cv � 2w � 2 cH > a+ u+ cv � a� u�
cL + cH
2

+ 2 cv � 2 cH

= 3 cv �
cL + cH
2

� 2 cH > 3 [ cv � cH ] > 0 if cv > cH .

Consequently, (11) implies that xe > 0 if cv > cH .

Since w � 0 and cL < cH , (10) implies that if a > 2
�
u+ cv � cL

2

�
, then:

xv =
1

3 b
[ a+ w + ci � 2u� 2 cv ] >

1

3 b
[ a+ cL � 2u� 2 cv ] > 0 . �

Proof of Observation 1.

The proof follows directly from the proof of Conclusion 2. �

Proof of Observation 2.

From (1), di¤erentiating g(w; r) = 0 with respect to �, using (4), provides:

1

3 b
[ a+ 3u+ cv � 2 c ]

@w

@�
� 4w
3 b

�
@w

@�

�
+DR

�
@r

@�

�
� 2w

3 b
[ cH � cL ] +

2u

3 b
[ cH � cL ] = 0

) DR

�
@r

@�

�
+

�
a+ 3u+ cv � 2 c� 4w

3 b

�
@w

@�
=

2

3 b
[w � u ] [ cH � cL ] . (80)

From (2), di¤erentiating h(w; r) = 0 with respect to � provides:

4

9 b
[�� � ] [ cH � cL ]

@w

@�
+ 2DR

�
@r

@�

�
+

1

9 b
[ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w ] = 0

) 2DR

�
@r

@�

�
+
4

9 b
[�� � ] [ cH � cL ]

@w

@�

= � 1

9 b
[ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w ] . (81)

(80) and (81) can be written as:

[ � ]

24 @r
@�

@w
@�

35 =

24 2
3 b
[w � u ] [ cH � cL ]

� 1
9 b
[ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w ]

35 , (82)
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where � is de�ned in (53) with DR = DR. Since j� j < 0, (82) implies:

@r

@�
=
j�r� j
j� j

s
= � j�r� j

where

�r� �

24 2
3 b
[w � u ] [ cH � cL ] a+3u+ cv � 2 c� 4w

3 b

� 1
9 b
[ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w ] 4

9 b
[�� � ] [ cH � cL ]

35

) j�r� j =
1

27 b2
[ cH � cL ] [ 8 (�� � ) (w � u ) ( cH � cL )

+ ( 2 a+ 2u+ cL + cH � 4 cv � 4w ) ( a+ 3u+ cv � 2 c � 4w ) ] > 0 . (83)

The inequality in (83) re�ects (33) and (79). The inequality implies @r
@�
< 0.

Similarly, since j� j < 0, (82) implies:

@w

@�
=
j�w� j
j� j

s
= � j�w� j

where

�w� �

24 DR
2
3 b
[w � u ] [ cH � cL ]

2DR � 1
9 b
[ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w ]

35

) j�w� j = � DR

9 b
[ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w + 12 (w � u ) ]

= � DR

9 b
[ cH � cL ] [ 2 a+ cL + cH � 4 cv + 8w � 10u ]. (84)

From (79):

2 a+ cL + cH � 4 cv + 8w � 10u � 4w � 2u+ 8w � 10u = 12 [w � u ] > 0 . (85)

(84) and (85) imply j�w� j < 0 and so @w
@�
> 0.

From (1), di¤erentiating g(w; r) = 0 with respect to �, using (4), provides:

1

3 b
[ a+ 3u+ cv � 2 c ]

@w

@�
� 4w
3 b

�
@w

@�

�
+DR

�
@r

@�

�
= 0

) DR

�
@r

@�

�
+

�
a+ 3u+ cv � 2 c� 4w

3 b

�
@w

@�
= 0 . (86)
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From (2), di¤erentiating h(w; r) = 0 with respect to � provides:

4

9 b
[�� � ] [ cH � cL ]

@w

@�
+ 2DR

�
@r

@�

�
� 1

9 b
[ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w ] = 0

) 2DR

�
@r

@�

�
+
4

9 b
[�� � ] [ cH � cL ]

@w

@�

=
1

9 b
[ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w ] . (87)

(86) and (87) can be written as:

[ � ]

24 @r
@�

@w
@�

35 =

24 0

1
9 b
[ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w ]

35 , (88)

where � is de�ned in (53). Since j� j < 0, (88) implies:
@r

@�
=
j�r� j
j� j

s
= � j�r� j

where

�r� �

24 0 a+3u+ cv � 2 c� 4w
3 b

1
9 b
[ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w ] 4

9 b
[�� � ] [ cH � cL ]

35

) j�r� j = � 1

27 b2
[ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w ]

� [ a+ 3u+ cv � 2 c � 4w ] < 0 . (89)

The inequality in (89) re�ects (33) and (79). The inequality implies @r
@�
> 0.

Similarly, since j� j < 0, (88) implies:

@w

@�
=
j�w� j
j� j

s
= � j�w� j

where

�w� �

24 DR 0

2DR
1
9 b
[ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w ]

35
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) j�w� j =
DR

9 b
[ cH � cL ] [ 2 a+ 2u+ cL + cH � 4 cv � 4w ] > 0. (90)

The inequality in (90) re�ects (79). The inequality implies @w
@�
< 0. �

Proof of Observation 3.

From (1), di¤erentiating g(w; r) = 0 with respect to k, using (4), provides:

1

3 b
[ a+ 3u+ cv � 2 c ]

@w

@k
� 4w
3 b

�
@w

@k

�
+DR

�
@r

@k

�
= 0

) DR

�
@r

@k

�
+

�
a+ 3u+ cv � 2 c� 4w

3 b

�
@w

@k
= 0 . (91)

From (2), di¤erentiating h(w; r) = 0 with respect to k provides:

4

9 b
[�� � ] [ cH � cL ]

@w

@k
+ 2DR

�
@r

@k

�
= 0

) 2DR

�
@r

@k

�
+
4

9 b
[�� � ] [ cH � cL ]

@w

@k
= 0 . (92)

(91) and (92) can be written as:

[ � ]

24 @r
@k

@w
@k

35 =

24 0
0

35 , (93)

where � is de�ned in (53). Since j� j < 0, (93) implies:

@r

@k
=
j�rk j
j� j

s
= � j�rk j where �rk �

24 0 a+3u+ cv � 2 c� 4w
3 b

0 4
9 b
[�� � ] [ cH � cL ]

35
) j�rk j = 0 ) @r

@k
= 0 .

(93) also implies:

@w

@k
=
j�wk j
j� j

s
= � j�wk j where �wk �

24 DR 0

2DR 0

35
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) j�wk j = 0 ) @w

@k
= 0 . �

Proof of Proposition 1.

From (1), di¤erentiating g(w; r) = 0 with respect to DC , using (4), provides:

@r

@DC

DR +

�
a+ 3u+ cv � 2 c� 4w

3 b

�
@w

@DC

= d . (94)

From (2), di¤erentiating h(w; r) = 0 with respect to DC provides:

4

9 b
[ �� � ] [ cH � cL ]

@w

@DC

+ 2DR
@r

@DC

+ d� d = 0

) 2DR
@r

@DC

+
4

9 b
[ �� � ] [ cH � cL ]

@w

@DC

= �
�
d� d

�
. (95)

(94) and (95) can be written as:

�

24 @r
@DC

@w
@DC

35 =

24 d

�
�
d� d

�
35 (96)

where � is de�ned in (53). Since j� j < 0, (96) implies:

@r

@DC

=
j�1 j
j� j

s
= � j�1 j where �1 �

24 d a+3u+ cv � 2 c� 4w
3 b

�
�
d� d

�
4
9 b
[ �� � ] [ cH � cL ]

35 (97)

) j�1 j =
4 d

9 b
[ �� � ] [ cH � cL ] +

�
d� d

� � a+ 3u+ cv � 2 c � 4w
3 b

�
> 0. (98)

The inequality in (98) follows from (33). (97) and (98) imply @r
@DC

< 0.

From (1), di¤erentiating g(w; r) = 0 with respect to d, using (4), provides:

1

3 b
[ a+ 3u+ cv � 2 c ]

@w

@ d
� 4w
3 b

�
@w

@ d

�
+DR

�
@r

@ d

�
= 0

) DR

�
@r

@ d

�
+

�
a+ 3u+ cv � 2 c� 4w

3 b

�
@w

@ d
= 0 . (99)
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From (2), di¤erentiating h(w; r) = 0 with respect to d provides:

4

9 b
[�� � ] [ cH � cL ]

@w

@ d
+ 2DR

�
@r

@ d

�
+DC = 0

) 2DR

�
@r

@ d

�
+
4

9 b
[�� � ] [ cH � cL ]

@w

@ d
= �DC . (100)

(99) and (100) can be written as:

[ � ]

24 @r
@ d

@w
@ d

35 =

24 0

�DC

35 , (101)

where � is de�ned in (53). Since j� j < 0, (101) implies:

@r

@ d
=
j�1 j
j� j

s
= � j�1 j where �1 �

24 0 a+3u+ cv � 2 c� 4w
3 b

�DC
4
9 b
[�� � ] [ cH � cL ]

35 (102)

) j�1 j = DC

�
a+ 3u+ cv � 2 c� 4w

3 b

�
> 0 ) @r

@ d
< 0 .

From (1), di¤erentiating g(w; r) = 0 with respect to d, using (4), provides:

1

3 b
[ a+ 3u+ cv � 2 c ]

@w

@d
� 4w
3 b

�
@w

@ d

�
+DR

�
@r

@d

�
�DC = 0

) DR

�
@r

@d

�
+

�
a+ 3u+ cv � 2 c� 4w

3 b

�
@w

@d
= DC . (103)

From (2), di¤erentiating h(w; r) = 0 with respect to d provides:

4

9 b
[�� � ] [ cH � cL ]

@w

@d
+ 2DR

�
@r

@d

�
�DC = 0

) 2DR

�
@r

@d

�
+
4

9 b
[�� � ] [ cH � cL ]

@w

@d
= DC . (104)

(103) and (104) can be written as:24 DR
a+3u+ cv � 2 c� 4w

3 b

2DR
4
9 b
[�� � ] [ cH � cL ]

3524 @r
@d

@w
@d

35 =

24 DC

DC

35
25



, [ � ]

24 @r
@d

@w
@d

35 =

24 DC

DC

35 , (105)

where � is de�ned in (53). Since j� j < 0, (105) implies:

@r

@d
=
j�1 j
j� j

s
= � j�1 j where �1 �

24 DC
a+3u+ cv � 2 c� 4w

3 b

DC
4
9 b
[�� � ] [ cH � cL ]

35 (106)

) j�1 j = DC

�
4

9 b
(�� � ) ( cH � cL )�

a+ 3u+ cv � 2 c� 4w
3 b

�
. (107)

From (55):

a+ 3u+ cv � 2 c� 4w �
4

3
[�� � ] [ cH � cL ]

�

s
[ a+ 3u+ cv � 2 c ]2 � 24 b

�
u

3 b
( a+ u+ cv � 2 c ) +

DR

2
+ d DC + Fu

�

� 4

3
[�� � ] [ cH � cL ] . (108)

Also, (58) implies:

[ a+ 3u+ cv � 2 c ]2 � 24 b
�
u

3 b
( a+ u+ cv � 2 c ) +

DR

2
+ d DC + Fu

�
= [ a� u+ cv � 2 c ]2 � 24 b

�
DR

2
+ d DC + Fu

�
. (109)

(108), (109), and Assumption A1 imply:

a+ 3u+ cv � 2 c� 4w �
4

3
[�� � ] [ cH � cL ]

�

s
[ a� u+ cv � 2 c ]2 � 24 b

�
DR

2
+ d DC + Fu

�
� 4
3
[�� � ] [ cH � cL ]

>

r
16

9
[�� � ]2 [ cH � cL ]2 �

4

3
[�� � ] [ cH � cL ] = 0 . (110)

(107) and (110) imply:

j�1 j =
DC

3 b

�
4

3
(�� � ) ( cH � cL )� ( a+ 3u+ cv � 2 c� 4w )

�
< 0 . (111)
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(106) and (111) imply @r
@d
> 0. �

Proof of Proposition 2.

Since j� j < 0, (53) and (96) imply:

@w

@DC

=
j�2 j
j� j

s
= � j�2 j (112)

where

�2 =

24 DR d

2DR �
�
d� d

�
35

) j�2 j = �DR

�
d� d

�
� 2DR d = �DR

�
d+ d

�
< 0 . (113)

(112) and (113) imply @w
@DC

> 0.

Similarly, (101) implies:

@w

@ d
=
j�2 j
j� j

s
= � j�2 j where �2 �

24 DR 0

2DR �DC

35 (114)

) j�2 j = �DR DC < 0 ) @w

@ d
> 0 .

In addition, (105) implies:

@w

@d
=
j�2 j
j� j

s
= � j�2 j where �2 �

24 DR DC

2DR DC

35
) j�2 j = �DRDC < 0 ) @w

@d
> 0 . �

Proof of Proposition 3.

From (1), (2), and (3), the Lagrangian function associated with [RP] is:

$ =
�

18b
[ 2a� w � u� cH � cv ]2 +

�
1� �
18b

�
[ 2a� w � u� cL � cv ]2

� k
�
r � 1

2

�2
+ [ 1� r ]DR [ 1� fR ] + [ 1� fC ] dDC

+ �

�
w

3 b
[ a+ 3u+ cv � 2 c ]�

2w2

3 b
� �

�
27



+ � f� [ �� � ]
9 b

[ cH � cL ] [ 2a+ 2u+ cL + cH � 4 cv � 4w ]

+ [ 2 r � 1 ]DR +
�
d� d

�
DC g (115)

where � is de�ned in (4).

Di¤erentiating (115), using (4), provides:

@$

@r
= � 2 k

�
r � 1

2

�
�DR [ 1� fR ] + �DR + 2�DR = 0 (116)

, �DR + 2�DR = 2 k

�
r � 1

2

�
+DR [ 1� fR ] ; and (117)

@$

@w
= � �

9 b
[ 2 a� w � u� cH � cv ] �

�
1� �
9 b

�
[ 2 a� w � u� cL � cv ]

+ �

�
1

3 b
( a+ 3u+ cv � 2 c )�

4w

3 b

�
+ �

4 [�� � ] [ cH � cL ]
9 b

= 0

, �

3 b
[ a+ 3u+ cv � 2 c � 4w] +

4� [�� � ] [ cH � cL ]
9 b

=
1

9 b
[ 2 a� w � u� c� cv ] . (118)

(117) and (118) can be written as:

[M ]

24 �
�

35 =

24 1
9 b
[ 2 a� w � u� c� cv ]

2 k
�
r � 1

2

�
+DR [ 1� fR ]

35

where M �

24 1
3 b
[ a+ 3u+ cv � 2 c � 4w ] 4 [��� ][ cH�cL ]

9 b

DR 2DR

35 (119)

) jM j = �DR

�
4 [�� � ] [ cH � cL ]

9 b
� 2

3 b
[ a+ 3u+ cv � 2 c � 4w ]

�
= � j� j > 0 . (120)

From (119):
� =

jM� j
jM j , where (121)

M� �

24 1
3 b
[ a+ 3u+ cv � 2 c � 4w ] 1

9 b
[ 2 a� w � u� c� cv ]

DR 2 k
�
r � 1

2

�
+DR [ 1� fR ]

35 . (122)
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(116) implies that at a solution to [RP]:

� 2 k
�
r � 1

2

�
�DR [ 1� fR ] + �DR + 2�DR = 0

) �+ 2� =
2 k

DR

�
r � 1

2

�
+ 1� fR . (123)

From the envelope theorem, (4), and (115):

dW �

dDC

=
@$

@DC

= [ 1� fC ] d � � d+ �
�
d� d

�
= [ 1� fC ] d � � d+ � d� 2� d + � d

= [ 1� fC ] d � [�+ 2� ] d+ �
�
d+ d

�
. (124)

(123) and (124) provide:

dW �

dDC

= [ 1� fC ] d �
�
2 k

DR

�
r � 1

2

�
+ 1� fR

�
d + �

�
d+ d

�
= d

�
1� fC �

2 k

DR

�
r � 1

2

�
� ( 1� fR )

�
+ �

�
d+ d

�
= d

�
fR � fC �

2 k

DR

�
r � 1

2

��
+
jM� j
jM j

�
d+ d

�
(125)

s
= jM j d

�
fR � fC �

2 k

DR

�
r � 1

2

��
+ jM� j

�
d+ d

�
. (126)

The equality in (125) re�ects (121). (126) holds because jM j > 0, from (120).

Recall �1 � 2
3
[�� � ] [ cH � cL ] and �2 � a+ 3u+ cv � 2 c� 4w from (61). De�ne:

�3 � 2 a� w � u� c� cv . (127)

Then, from (122):

jM� j =
1

3 b
[ a+ 3u+ cv � 2 c � 4w ]

�
2 k

�
r � 1

2

�
+DR ( 1� fR )

�
� 1

9 b
[ 2 a� w � u� c� cv ]DR

=
1

3 b

�
�2

�
2 k

�
r � 1

2

�
+DR ( 1� fR )

�
� 1
3
�3DR

�
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=
DR

3 b

�
�2

�
2 k

DR

�
r � 1

2

�
+ ( 1� fR )

�
� 1
3
�3

�
. (128)

(120) implies:
jM j = 2DR

3 b
[�2 � �1 ] . (129)

(126), (128), and (129) provide:

dW �

dDC

s
= jM j d

�
fR � fC �

2 k

DR

�
r � 1

2

��
+ jM� j

�
d+ d

�
=
2DR

3 b
[�2 � �1 ] d

�
fR � fC �

2 k

DR

�
r � 1

2

��
+
DR

3 b

�
�2

�
2 k

DR

�
r � 1

2

�
+ ( 1� fR )

�
� 1
3
�3

��
d+ d

�
=

2

3 b
[�2 � �1 ] d

�
DR ( fR � fC )� 2 k

�
r � 1

2

��
+

1

3 b

�
�2

�
2 k

�
r � 1

2

�
+DR ( 1� fR )

�
� DR

3
�3

��
d+ d

�
(130)

= � 4

3 b
[�2 � �1 ] d k

�
r � 1

2

�
+
2 k

3 b

�
r � 1

2

�
�2
�
d+ d

�
+

2

3 b
[�2 � �1 ] d DR [ fR � fC ] +

DR

3 b

h
�2 ( 1� fR )�

�3
3

i �
d+ d

�
(131)

=
4�1
3 b

d k

�
r � 1

2

�
� 4

3 b
[�2 ] d k

�
r � 1

2

�
+
2 k

3 b

�
r � 1

2

�
�2
�
d+ d

�
+
2

3 b
[�2 � �1 ] d DR [ fR � fC ] +

DR

3 b

h
�2 ( 1� fR )�

�3
3

i �
d+ d

�
=
4�1
3 b

d k

�
r � 1

2

�
+
2 k

3 b

�
r � 1

2

�
�2
�
�2d+

�
d+ d

��
+
2

3 b
[�2 � �1 ] d DR [ fR � fC ] +

DR

3 b

h
�2 ( 1� fR )�

�3
3

i �
d+ d

�
=
4�1
3 b

d k

�
r � 1

2

�
+
2 k

3 b

�
r � 1

2

�
�2
�
d� d

�
+
2

3 b
[�2 � �1 ] d DR [ fR � fC ] +

DR

3 b

h
�2 ( 1� fR )�

�3
3

i �
d+ d

�
. (132)

�2 > �1 from (62). Furthermore, Assumption 1 ensures �2 [ 1� fR ] � �3
3
. (See the

30



proof of Conclusion 4 below.) Therefore, (132) implies that dW �

dDC
> 0 if fR � fC .

�1 is independent of DR and �2 and �3 are bounded above. Consequently, [�2 � �1 ]DR

! 0 and
�
�2 ( 1� fR ) � �3

3

�
DR ! 0 as DR ! 0. Therefore, as DR ! 0 :

2

3 b
[�2 � �1 ] d DR [ fR � fC ] +

DR

3 b

h
�2 ( 1� fR )�

�3
3

i �
d+ d

�
! 0 . (133)

Recall that @w
@DR

> 0 and @r
@DR

< 0. Therefore, @�1
@DR

= 0 and @�2
@DR

< 0. Consequently,

when DR is su¢ ciently close to 0, the �rst two terms in (131) are strictly positive, so (131)

and (133) imply dW �

dDC
> 0 . �

Proof of Proposition 4.

From (3), using (97) and (112):

dW �

dDC

= � 1

9 b
[ 2 a� w � u� c� cv ]

@w

@DC

�
�
2 k ( r � 1

2
) +DR ( 1� fR )

�
@r

@DC

+ [ 1� fC ] d

= � 1

9 b
[ 2 a� w � u� c� cv ]

j�2 j
j� j

�
�
2 k ( r � 1

2
) +DR ( 1� fR )

�
j�1 j
j� j + [ 1� fC ] d Q 0

, H � � 1

9 b
[ 2 a� w � u� c� cv ] j�2 j

�
�
2 k ( r � 1

2
) +DR ( 1� fR )

�
j�1 j+ [ 1� fC ] d j� j R 0 . (134)

The inequality in (134) holds because j� j < 0.

Recall from (61) and (127) that:

�1 �
2

3
[�� � ] [ cH � cL ] , �2 � a+ 3u+ cv � 2 c � 4w , and

�3 � 2 a� w � u� c� cv . (135)

Since j�1 j > 0 from (98):

H � � 1

9 b
[ 2 a� w � u� c� cv ] j�2 j

�
�
2 k ( r � 1

2
) +DR ( 1� fR )

�
j�1 j+ [ 1� fC ] d j� j
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= � 1

9 b
[ 2 a� w � u� c� cv ] j�2 j �

�
k +DR ( 1� fR )

�
j�1 j

+ [ 1� fC ] d j� j = G (w) (136)

where, from (98), (113), (120), (135), and (136):

G (w) � �3
9 b
DR

�
d+ d

�
�
�
k +DR ( 1� fR )

� � 4 d
9 b
(�� � ) ( cH � cL ) +

�
d� d

� �2
3 b

�
� [ 1� fC ] d

�
2DR

3 b

� �
�2 �

2

3
(�� � ) ( cH � cL )

�
. (137)

(127), (135), and (137) imply that G(�) is linear in w. Therefore, G (w�) > 0 if: (i)

G (0) > 0; (ii) G ( ew) > 0; and (iii) w� 2 [ 0; ew ], where ew = 1
4
[ a+ 3u+ cv � 2 c ].

(108) implies that w� � ew. To determine when G (0) > 0, note that (135) and (137)
imply:

G (w) =
�3
9 b
DR

�
d+ d

�
�
�
k +DR ( 1� fR )

� � 2 d
3 b
�1 +

�
d� d

� �2
3 b

�
(138)

� [ 1� fC ] d
�
2DR

3 b

�
[�2 � �1 ]

=
�3
9 b
DR

�
d+ d

�
� DR

3 b

�
k

DR

+ 1� fR
� �
2 d�1 +

�
d� d

�
�2
�

� [ 1� fC ] d
�
2DR

3 b

�
[�2 � �1 ] =

DR

3 b
eG (w) , (139)

where eG (w) � �3
3

�
d+ d

�
�
�
k

DR

+ 1� fR
� �
2 d�1 +

�
d� d

�
�2
�

� 2 d [ 1� fC ] [�2 � �1 ] . (140)

(135) and (140) imply:

eG (0) =
1

3

�
d+ d

�
[ 2 a� u� cv � c ]�

�
k

DR

+ 1� fR
� �
d� d

�
[ a+ 3u+ cv � c ]

� 2 d [ 1� fC ] [ a+ 6u+ cv � c ]� 2 d
�
fC +

k

DR

� fR
�
�1 . (141)

Since a > 7u+ 2 cv from Assumption A1:

2 a� u� cv � c > a+ 6u+ cv � c > a+ 3u+ cv � c . (142)

(141) and (142) imply:

eG (0) >

�
1

3

�
d+ d

�
�
�
k

DR

+ 1� fR
� �
d� d

�
� 2 d [ 1� fC ]

�
[ 2 a� u� cv � c ]
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� 2 d
�
fC +

k

DR

� fR
�
�1 . (143)

(135), (143), and Assumption A1 imply that eG (0) > 0 (and so G (0) > 0, from (139)) if:

1

3

�
d+ d

�
�
�
k

DR

+ 1� fR
� �
d� d

�
� 2 d [ 1� fC ] > 0 . (144)

It remains to demonstrate that G ( ew) > 0. From (135) and (137):

G ( ew) � 1

9 b

�
2 a� u� c� cv �

a+ 3u+ cv � 2 c
4

�
DR

�
d+ d

�
�
�
k +DR ( 1� fR )

� 4 d
9 b
[ �� � ] [ cH � cL ]

+ [ 1� fC ] d
�
2DR

3 b

�
2

3 b
[�� � ] [ cH � cL ]

=
1

9 b

�
7 a� 7u� 2 c� 5 cv

4

�
DR

�
d+ d

�
�
�
k +DR ( 1� fR )

� 4 d
9 b
[ �� � ] [ cH � cL ]

+ [ 1� fC ] d
�
2DR

3 b

�
2

3 b
[�� � ] [ cH � cL ]

>
1

9 b

�
7 a� 7u� 2 c� 5 cv

4

�
DR [ 2 d ]�

�
k +DR ( 1� fR )

� 4 d
9 b
[ �� � ] [ cH � cL ]

+ [ 1� fC ] d
�
2DR

3 b

�
2

3 b
[�� � ] [ cH � cL ]

= d

�
2

9 b

�
7 a� 7u� 2 c� 5 cv

4

�
DR �

�
k +DR ( 1� fR )

� 4
9 b
[ �� � ] [ cH � cL ]

�
+ [ 1� fC ] d

�
2DR

3 b

�
2

3 b
[ �� � ] [ cH � cL ] . (145)

Assumption A1 ensures:

2

9 b

�
7 a� 7u� 2 c� 5 cv

4

�
DR >

�
k +DR ( 1� fR )

� 4
9 b
[ �� � ] [ cH � cL ] . (146)

(145) and (146) imply G ( ew) > 0.

Finally, observe that since d+ d > 2 d , (144) holds if:�
k

DR

+ fC � fR
� �
d� d

�
+ 2 d [ 1� fC ] <

2

3
d
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,
�
k

DR

+ fC � fR
� �
d� d

d

�
< 2

�
fC �

2

3

�
. �

Proof of Proposition 5.

From (4) and (115): dW �

d d
=
@$

@ d
= �DC > 0 . �

Proof of Proposition 6.

From (4) and (115):

dW �

dd
=
@$

@ d
= [ 1� fC ]DC � �DC � �DC = DC [ 1� fC � �� � ]

= DC [ 1� fC � (�+ 2� ) + � ] . (147)

Since �+ 2� = 2 k
DR

�
r � 1

2

�
+ 1� fR from (123), (147) implies:

dW �

dd
= DC

�
1� fC �

�
2 k

DR

�
r � 1

2

�
+ 1� fR

�
+ �

�

= DC

�
fR � fC �

2 k

DR

�
r � 1

2

�
+ �

�
> DC

�
fR � fC �

k

DR

+ �

�
. (148)

(148) implies:

If
dW �

dd
< 0 , then it must be the case that fC � fR �

k

DR

. (149)

From (117) and (118):

3� [ a+ 3u+ cv � 2 c � 4w ] + 4� [�� � ] [ cH � cL ] = 2 a� w � u� c� cv ,

and
� =

2 k

DR

�
r � 1

2

�
+ 1� fR � 2� .

Therefore:

3

�
2 k

DR

�
r � 1

2

�
+ 1� fR � 2�

�
[ a+ 3u+ cv � 2 c � 4w ]

+ 4� [�� � ] [ cH � cL ] = 2 a� w � u� c� cv

) � 6� [ a+ 3u+ cv � 2 c � 4w ]

+ 3

�
2 k

DR

�
r � 1

2

�
+ 1� fR

�
[ a+ 3u+ cv � 2 c � 4w ]
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+ 4� [�� � ] [ cH � cL ] = 2 a� w � u� c� cv

) 6� [ a+ 3u+ cv � 2 c � 4w ]� 4� [�� � ] [ cH � cL ]

= 3

�
2 k

DR

�
r � 1

2

�
+ 1� fR

�
[ a+ 3u+ cv � 2 c � 4w ]� [ 2 a� w � u� c� cv ]

) 6�

�
a+ 3u+ cv � 2 c � 4w �

2

3
(�� � ) ( cH � cL )

�

= 3

�
2 k

DR

�
r � 1

2

�
+ 1� fR

�
[ a+ 3u+ cv � 2 c � 4w ]� [ 2 a� w � u� c� cv ]

) � =
3
h
2 k
DR

�
r � 1

2

�
+ 1� fR

i
[ a+ 3u+ cv � 2 c � 4w ]� [ 2 a� w � u� c� cv ]

6
�
a+ 3u+ cv � 2 c � 4w � 2

3
(�� � ) ( cH � cL )

� .

(150)

Assumption 1 ensures the numerator in (150) is positive. Therefore, because � > 0; the
denominator in (150) is also positive. Consequently, (148) and (150) imply:

dW �

dd
< 0 , fR � fC �

2 k

DR

�
r � 1

2

�
+ � < 0 ,  (w) < 0 (151)

where

 (w) � 6

�
fR � fC �

2 k

DR

�
r � 1

2

���
a+ 3u+ cv � 2 c � 4w �

2

3
(�� � ) ( cH � cL )

�

+ 3

�
2 k

DR

�
r � 1

2

�
+ 1� fR

�
[ a+ 3u+ cv � 2 c � 4w ]

� [ 2 a� w � u� c� cv ] (152)

)  (0) = 6

�
fR � fC �
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DR

�
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���
a+ 3u+ cv � 2 c �

2
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(�� � ) ( cH � cL )

�
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�
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�
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�
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�
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�
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�
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�
a

+

�
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�
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�
�
12
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�
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2
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�
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�
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�
+ 1� fR

�
� 1
�
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�
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De�ne ' � 2

�
fR � fC �

2 k

DR

�
r � 1

2

��
+

�
2 k

DR

�
r � 1

2

�
+ 1� fR

�
(155)

= 2 fR � 2 fC �
4 k

DR

�
r � 1

2

�
+
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�
r � 1

2

�
+ 1� fR

= 1 + fR � 2 fC �
2 k

DR

�
r � 1

2

�
< 1 + fR � 2 fC . (156)

(154) and (155) imply:

 (0) = [ 3'� 2 ] a+ [ 9'+ 1 ]u+ [ 3'+ 1 ] cv � [ 6'� 1 ] c
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DR
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)  (0) < 0 , 3' [ a+ 3u+ cv � 2 c ]� [ 2 a� u� cv � c ]

< 6

�
fR � fC �
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DR

�
r � 1

2
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2

3
[�� � ] [ cH � cL ] . (158)

Since r 2 [ 1
2
; 1 ], (158) implies:

 (0) < 0 if 3' [ a+ 3u+ cv � 2 c ]� [ 2 a� u� cv � c ]
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k

DR

�
2

3
[�� � ] [ cH � cL ] . (159)

(156) and (159) imply:

 (0) < 0 if 3 [ 1 + fR � 2 fC ] [ a+ 3u+ cv � 2 c ]� [ 2 a� u� cv � c ]
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DR
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, 3

�
1 + fR � 2 fC �

2

3

�
a < [� 9 ( 1 + fR � 2 fC )� 1 ]u� [ 3 ( 1 + fR � 2 fC ) + 1 ] cv
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)  (0) < 0 if fR � 2 fC +
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3
< 0 and Assumption A1 holds. (161)

From (33), w < ew = 1
4
[ a+ 3u+ cv � 2 c ] at the solution to [RP]. From (152):
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2 k

DR

�
r � 1

2

��
2

3
[�� � ] [ cH � cL ]

�
�
2 a� a+ 3u+ cv � 2 c

4
� u� c� cv

�

= � 6
�
fR � fC �

2 k

DR

�
r � 1

2

��
2

3
[�� � ] [ cH � cL ]

� 1

4
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fR � fC �

k

DR
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4
[ 7 a� 7u� 5 cv � 2 c ] < 0 . (162)

The last inequality in (162) re�ects Assumption A1.

Observe from (152) that  (w) is linear in w. Therefore, since w < ew at the solution

to [RP],  (w) < 0 for all relevant w if  (0) < 0 and  ( ew) < 0. Consequently, the

proposition follows from (149), (161), and (162). �
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Proof of Proposition 7.

(148) implies:

dW �

dd
= DC

�
1� fC �

�
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DR
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�
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�
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Conclusion 4. (39) holds if Assumption 1 holds.

Proof. Assumption A1 ensures:

7 a� 7u� 5 cv � 2 c > 16

�
k

DR

+ 1� fR
�
[�� � ] [ cH � cL ] . (163)

Observe that:
1
9 b

�
2 a� w�(DR)� u� c� cv

�
2 k
�
r�(DR)� 1

2

�
+DR [ 1� fR ]

>
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9 bDR

, 2 a� w�(DR)� u� c� cv

> 2

�
2 k

DR
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r�(DR)�

1

2

�
+ 1� fR

�
[�� � ] [ cH � cL ] . (164)

Since r�(DR) 2 [ 12 ; 1 ], (164) holds if:

2 a� w�(DR)� u� c� cv > 2

�
k

DR

+ 1� fR
�
[�� � ] [ cH � cL ] . (165)

Because w�(DR) � 1
4
[ a+ 3u+ cv � 2 c ]:

2 a� w�(DR)� u� c� cv � 2 a� 1
4
[ a+ 3u+ cv � 2 c ]� u� c� cv

=
1

4
[ 8 a� a� 3u� cv + 2 c� 4u� 4 c� 4 cv ] =

1

4
[ 7 a� 7u� 5 cv � 2 c ] .

Therefore, (164) holds if

1

4
[ 7 a� 7u� 5 cv � 2 c ] > 2

�
k

DR

+ 1� fR
�
[�� � ] [ cH � cL ] . (166)

(163) implies that (166) holds.
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It remains to show that when Assumption 1 holds:

a+ 3u+ cv � 2 c� 4 w�(DR)

3 bDR

>
1
9 b

�
2 a� w�(DR)� u� c� cv

�
2 k
�
r�(DR)� 1

2

�
+DR [ 1� fR ]

. (167)

Assumption 1 holds if and only if:

3 [ 1� fR ]

s
( a� u+ cv � 2 c )2 � 24 b

�
DR

2
+ d DC + Fu

�
> 2 a� 2u� c� cv . (168)

(167) holds if and only if:

a+ 3u+ cv � 2 c� 4 w�(DR) >
1

3

"
2 a� w�(DR)� u� c� cv
2 k
DR

�
r�(DR)� 1

2

�
+ 1� fR

#
. (169)

Since r�(DR) � 1
2
:

2 a� w�(DR)� u� c� cv
2 k
DR

�
r�(DR)� 1

2

�
+ 1� fR

� 2 a� w�(DR)� u� c� cv
1� fR

.

Therefore, (169) holds (and so (167) holds) if:

a+ 3u+ cv � 2 c� 4 w�(DR) >
1

3

�
2 a� w�(DR)� u� c� cv

1� fR

�
, 3 [ 1� fR ]

�
a+ 3u+ cv � 2 c� 4 w�(DR)

�
> 2 a� w�(DR)� u� c� cv . (170)

Since w�(DR) � u to ensure non-negative upstream pro�t for V :

2 a� w�(DR)� u� c� cv � 2 a� 2u� c� cv .

Therefore, (170) holds (and so (167) holds) if:

3 [ 1� fR ]
�
a+ 3u+ cv � 2 c� 4 w�(DR)

�
> 2 a� 2u� c� cv . (171)

From (4):

[ a+ 3u+ cv � 2 c ]2 � 24 b �

= [ a+ 3u+ cv � 2 c ]2 � 24 b
h u
3 b
( a+ u+ cv � 2 c ) +

�
1� r�(DR)
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DR + d DC + Fu

i
= [ a+ 3u+ cv � 2 c ]2 � 8u [ a+ u+ cv � 2 c ]� 24 b

� �
1� r�(DR)

�
DR + d DC + Fu

�
= [ a+ 3u+ cv � 2 c ]2 � 8u [ a+ 3u+ cv � 2 c � 2u ]

� 24 b
� �
1� r�(DR)

�
DR + d DC + Fu

�
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= [ a+ 3u+ cv � 2 c ]2 � 8u [ a+ 3u+ cv � 2 c ] + 16u2

� 24 b
� �
1� r�(DR)

�
DR + d DC + Fu

�
= [ a+ 3u+ cv � 2 c � 4u ]2 � 24 b

� �
1� r�(DR)

�
DR + d DC + Fu

�
= [ a� u+ cv � 2 c ]2 � 24 b

� �
1� r�(DR)

�
DR + d DC + Fu

�
� [ a� u+ cv � 2 c ]2 � 24 b

�
1

2
DR + d DC + Fu

�
. (172)

The inequality in (172) holds because r�(DR) 2 ( 12 ; 1).

(33) and (172) imply:

a+ 3u+ cv � 2 c� 4 w�(DR) �

s
[ a� u+ cv � 2 c ]2 � 24 b

�
1

2
DR + d DC + Fu

�
) 3 [ 1� fR ]

�
a+ 3u+ cv � 2 c� 4 w�(DR)

�
� 3 [ 1� fR ]

s
[ a� u+ cv � 2 c ]2 � 24 b

�
1

2
DR + d DC + Fu

�
. (173)

(168) and (173) ensure that (171) holds (and so (167) holds) when Assumption 1 holds. �
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Technical Appendix B

This appendix identi�es conditions under which the behavioral constraint (BC) does not
bind at the solution to [RP] and characterizes the optimal regulatory policy in this case.

Observation B1. V �s equilibrium expected pro�t increases as E�s output increases if and
only if V �s upstream pro�t margin (w�u) exceeds its equilibrium downstream pro�t margin
(P � u� cv).

Proof. @b�v
@xe

= w � u + P 0(�)xv from (6). Furthermore, given xe, V �s pro�t-maximizing
choice of xv is determined by @b�v

@xv
= P (�)� u� cv + P 0(�) xv = 0. Therefore:

@b�v
@xe

= w � u� (P (�)� u� cv ) R 0 , w � u R P (�)� u� cv . �

Observation B1 implies that V will not wish to raise E�s cost when V �s upstream pro�t
margin exceeds its equilibrium downstream pro�t margin.6 Lemmas B1 and B2 help to
identify exogenous conditions under which V will have no incentive to raise E�s cost in
equilibrium.

Lemma B1. When DR > 0; the PC curve and the BC curve both have a negative slope
and the PC curve is more steeply sloped than the BC curve in (w; r) space. When DR = 0;
both the PC curve and the BC curve are vertical straight lines in (w; r) space.

Proof. The �rst conclusion re�ects (35) and (37). The second conclusion re�ects Claim 8 in
the proof of Conclusion 2 in Appendix A. �

From (38):
@r

@w

����
dW =0

= �
1
9 b

�
2 a� w

�
1
2

���
PC
� u� c� cv

�
DR [ 1� fR ]

at r =
1

2
, and

@r

@w

����
dW =0

= �
1
9 b
[ 2 a� w (1)jPC � u� c� cv ]

k +DR [ 1� fR ]
at r = 1 , (174)

where:

w(
1

2
)

����
PC1

=
1

4
[ a+ 3u+ cv � 2 c ]

� 1

4

�
[ a� u+ cv � 2 c ]2 � 24 b

�
DR

2
+ d DC + Fu

�� 1
2

, and (175)

w (1)jPC1 =
1

4
[ a+ 3u+ cv � 2 c ]

6Observe that P (� )�u�cv can be viewed as V �s marginal opportunity cost of providing access to E (Baumol,
Ordover, and Willig, 1997).
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� 1

4

�
[ a� u+ cv � 2 c ]2 � 24 b [ d DC + Fu ]

� 1
2 . (176)

(175) and (176) follow from (1) and (4) because:

[ a+ 3u+ cv � 2 c ]2 � 24 b
u

3 b
[ a+ u+ cv � 2 c ]

= [ a+ 3u+ cv � 2 c ]2 � 8u [ a+ u+ cv � 2 c ]

= [ a+ 3u+ cv � 2 c ]2 � 8u [ a+ 3u+ cv � 2 c ] + 16u2

= [ a+ 3u+ cv � 2 c � 4u ]2 = [ a� u+ cv � 2 c ]2 . (177)

Also, from (2):

w(
1

2
)

����
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= �
�
d� d

�
DC

4
9 b

�
q � q

�
[ cH � cL ]

+
1

4
[ 2 a+ 2u+ cL + cH � 4 cv ] , and (178)

w (1)jBC = �
DR +

�
d� d

�
DC

4
9 b

�
q � q

�
[ cH � cL ]

+
1

4
[ 2 a+ 2u+ cL + cH � 4 cv ] . (179)

Proposition B1. Only the PC binds at the solution to [RP] if:

a� u+ cL + cH � 5 cv + 2 c <
�
d� d

�
DC

1
9 b

�
q � q

�
[ cH � cL ]

�
�
[ a� u+ cv � 2 c ]2 � 24 b [ d DC + Fu ]

� 1
2 . (180)

Proof. The proof proceeds by demonstrating that: (i) the PC1 curve, the BC curve, and
the iso-W constraints are all downward sloping in (w; r) space; (ii) the PC1 curve is more
steeply sloped than the BC curve; (iii) the PC1 curve lies to the right of the BC curve at
r = 1

2
.

Lemma B1 establishes that both the PC1 curve and the BC curve have a negative slope
in (w; r) space, and the PC1 curve is everywhere more steeply sloped than the BC curve
for r 2

�
1
2
; 1
�
. (175) and (178) imply that w

�
1
2

���
BC
< w

�
1
2

���
PC1

when (180) holds, so the
PC1 curve and the BC curve do not intersect and the BC curve lies to the left of the PC1
curve (and the PC2 curve), and so is not constraining (since an iso-W curve that is closer
to the origin in (w; r) space represents a higher level of W , from (3) ).

Finally, note that @
@DR

�
[ a� u+ cv � 2 c ]2 � 24 b

�
DR
2
+ d DC + Fu

� �
< 0. Therefore,

the inequality in (180) will hold for all DR � 0 if it holds for DR = 0. �

Proposition B2. If only the PC binds at the solution to [RP], then r� = 1
2
.
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Proof. When only the PC binds, [RP] is as speci�ed in Conclusion 1, except that the BC in
(2) is omitted. Let LB denote the relevant Lagrangian function in this case. Then:

@LB
@r

= � 2 k [ r � 1
2
]�DR [ 1� fR � � ] ; (181)

@LB
@w

= � 1

9 b
[ 2 a� w � u� c� cv ] +

�

3 b
[ a+ 3u+ cv � 2 c � 4w ] ; and (182)

@LB
@DR

= [ 1� r ] [ 1� fR � � ] . (183)

The remainder of the proof consists primarily of the following �ndings.

Finding 1. r =2
�
1
2
; 1
�
at the solution to [RP].

Proof. If r 2
�
1
2
; 1
�
at the solution to [RP], then (181) implies:

DR [ 1� fR � � ] = � 2 k [ r � 1
2
]. (184)

Continuing to let L denote the Lagrangian function associated with [RP], (183) and (184)
imply: @L

@DR

= [ 1� r ] [ 1� fR � � ] = � 2 k

DR

[ r � 1
2
] [ 1� r ] . (185)

(185) implies @L
@DR

< 0 for all DR > 0 because r 2
�
1
2
; 1
�
by assumption. Therefore, DR = 0:

Consequently, from (181), for all r > 1
2
:

@L
@r

= � 2 k [ r � 1
2
]�DR [ 1� fR � � ] = � 2 k [ r � 1

2
] < 0 . (186)

(186) implies r =2
�
1
2
; 1
�
at the solution to [RP].

Finding 2. It is not the case that r = 1 and DR = 0 at the solution to [RP].

Proof. From (181), @L
@r

��
DR=0

= � 2 k
�
r � 1

2

�
< 0 for all r > 1

2
. Therefore, r < 1 if

DR = 0 at a solution to [RP]. �

Finding 3. Suppose

2 a� w� � u� c� cv > 3 [ 1� fR ] [ a+ 3u+ cv � 2 c� 4w� ] , (187)

where r� =
1

2
; DR = 0 ; �� =

2a� w� � u� c� cv
3 [ a+ 3u+ cv � 2 c� 4w�]

; and (188)

w� =
1

4
[ a+ 3u+ cv � 2 c ]�

1

4

�
[ a� u+ cv � 2 c ]2 � 24 b [ d DC + Fu ]

� 1
2 . (189)

Then these values of r�, w�, DR, and �
� satisfy the necessary conditions for a solution to

[RP].
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Proof. (182) implies that �� must be as speci�ed in (188) to ensure @L
@w

= 0. Because
�� > 0, the PC must hold as an equality. (175) implies that w� must be as speci�ed in (189)
to ensure the PC holds as an equality when DR = 0 and r = 1

2
.

(183), (187), and (188) imply that if r < 1, then for all DR 2
�
0; DR

�
:

@L
@DR

= [ 1� r ] [ 1� fR � �� ]
s
= 1� fR �

2 a� w� � u� c� cv
3 [ a+ 3u+ cv � 2 c� 4w� ]

< 0 . (190)

(190) implies that when (187) holds, DR must be 0 to satisfy the relevant necessary condition
for a solution to [RP] when r < 1.

From (181), @L
@r

��
DR=0

= � 2 k
�
r � 1

2

�
< 0 for all r > 1

2
. Therefore, r must be 1

2
to

satisfy the relevant necessary condition for a solution to [RP] when DR = 0. �

Finding 4. Suppose �� and w� are as speci�ed in (188) and (189), respectively, and:

2 a� w� � u� c� cv > 3

�
k

DR

+ 1� fR
�
[ a+ 3u+ cv � 2 c� 4w� ] , (191)

where r� = 1 and DR 2
�
0; DR

�
: Then these values of r�, w�, DR, and �

� satisfy the
necessary conditions for a solution to [RP].

Proof. (182) implies that �� must be as speci�ed in (188) to ensure @L
@w
= 0. Because �� > 0,

the PC must hold as an equality. (176) implies that w� must be as speci�ed in (189) to
ensure the PC holds as an equality when r = 1.

Since DR > 0; (181) and (188) imply:

@L
@r

����
r=1

= � 2 k
�
r � 1

2

�
�DR [ 1� fR � ��] = � k �DR [ 1� fR � �� ] � 0

, �� =
2a� w� � u� c� cv

3 [ a+ 3u+ cv � 2 c� 4w� ]
� k

DR

+ 1� fR . (192)

(192) holds when (191) holds. Therefore, when (191) holds, r = 1 satis�es the relevant
necessary condition for a solution to [RP].

From (183), @L
@DR

���
r=1

= [ 1� r ] [ 1� fR � � ] = 0 for all DR 2
�
0; DR

�
. Therefore,

when r = 1; any DR 2
�
0; DR

�
satis�es the relevant necessary condition for a solution to

[RP]. �

Finding 5. Suppose �� is as speci�ed in (188) and

2 a� w� � u� c� cv < 3 [ 1� fR ] [ a+ 3u+ cv � 2 c� 4w� ] , (193)

where r� =
1

2
, DR = DR , and (194)

w� =
1

4
[ a+ 3u+ cv � 2 c ]
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� 1

4

�
[ a� u+ cv � 2 c ]2 � 24 b

�
DR

2
+ d DC + Fu

�� 1
2

. (195)

Then these values of r�, w�, DR, and �
� satisfy the necessary conditions for a solution to

[RP].

Proof. (182) implies that �� must be as speci�ed in (188) to ensure @L
@w
= 0. Because �� > 0,

the PC must hold as an equality. (175) implies that w� must be as speci�ed in (195) to
ensure the PC holds as an equality when r = 1

2
.

If DR > 0, then (181) and (188) imply:

@L
@r

= � 2 k
�
r � 1

2

�
�DR [ 1� fR � �� ] � �DR [ 1� fR � �� ]

< 0 , �� =
2 a� w� � u� c� cv

3 [ a+ 3u+ cv � 2 c� 4w� ]
< 1� fR . (196)

(196) implies that r must be 1
2
to satisfy the relevant necessary condition for a solution to

[RP] when DR > 0 and (193) holds.

From (183) and (193), if r < 1, then @L
@DR

= [ 1� r ] [ 1� fR � �� ] > 0 for all DR 2�
0; DR

�
, so DR = DR satis�es the relevant necessary condition for a solution to [RP]. �

Finding 6. Suppose 2 a� w� � u� c� cv = 3 [ 1� fR ] [ a+ 3u+ cv � 2 c� 4w� ] , (197)

where r� = 1
2
; �� = 1� fR , and w� and DR solve:

w�

3 b
[ a+ 3u+ cv � 2 c ]�

2 (w�)2

3 b
=

u

3 b
[ a+ u+ cv � 2 c ] +

DR

2
+ d DC + Fu . (198)

Then if DR 2 [ 0; DR ], these values of r�, w�, DR, and �
� satisfy the necessary conditions

for a solution to [RP].

Proof. (182) implies that �� = 2 a�w��u� c� cv
3 [ a+3u+ cv � 2 c� 4w� ] at a solution to [RP]. Therefore, �

� =

1� fR when (198) holds. Consequently, (181) implies that when r� = 1
2
:

@L
@DR

= [ 1� r ] [ 1� fR � �� ] = 0 for all DR 2
�
0; DR

�
.

(1) and (4) imply that when r = 1
2
and (197) holds, the PC is as speci�ed in (198).

Therefore, under the stated conditions, the identi�ed values of r�, w�, DR, and �
� satisfy

the necessary conditions for a solution to [RP], provided DR 2 [ 0; DR ]. �

Observe that the sets of values of r�, w�, DR, and �
� identi�ed in Findings 3 �6 are

the only potential solutions to [RP]. This is the case because r� =2
�
1
2
; 1
�
at the solution to

[RP]. Therefore, the only possible solutions to [RP] are of the form: (i) r� = 1
2
; DR = 0;

(ii) r� = 1
2
; DR = DR ; (iii) r� = 1

2
; DR 2

�
0; DR

�
; (iv) r� = 1; DR = 0; and (v) r� = 1;
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DR 2 (0; DR ]. Finding 1 precludes possibility (iv). The other possibilities are accounted for
in Findings 3, 4, 5, and 6.

Finding 7. If (191) holds. Then W �( r� = 1
2
; DR = 0 ) = W �( r� = 1; DR > 0 ) +

k
4
.

Proof. (189) implies that if (187) and (191) hold, then w�( r� = 1
2
; DR = 0 ) = w

�( r� = 1;
DR > 0 ). Therefore, (187) holds if (191) holds. The conclusion then follows from (3). �

Finally, suppose that only the PC binds at the solution to [RP]. Then Findings 3 �6
imply that if r = 1 at the solution to [RP], then (191) must hold. However, Finding 7
implies that if (191) holds, then r 6= 1 . Therefore, r = 1

2
because r =2 (1

2
; 1), from Finding

1. �
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