
Technical Appendix to Accompany

�Asymmetric Treatment of Identical Agents in Teams�

by A. Bose, D. Pal, and D. Sappington

Findings 1 �4 below provide su¢ cient conditions for the values of pA, pB, and pA +
pB + 
 pApB that constitute the solutions to [P-S] and [P-SQ] to all lie in the (0; 1) interval
and for these values of pA and pB to be uniquely de�ned by the agent�s relevant �rst-order
conditions. The proofs of these Findings proceed for the case where agent i�s cost (ki) can
di¤er from agent j�s cost (kj). The ensuing analysis presumes that VF = 0, without essential
loss of generality.

To begin, de�ne [P-S]I to be problem [P-S] where constraints (4) and (7) in the text are
replaced by:

[1 + 
 pj]T iS = ki
�
pi
���1 ) T iS =

ki (pi)
��1

1 + 
 pj
for j 6= i, i; j 2 fA;Bg. (A1)

The solution to [P-S]I will be the solution to [P-S] if: (i) pA 2 (0; 1), pB 2 (0; 1), and
pA + pB + 
 pApB 2 (0; 1) at the solution to [P-S]I ; and (ii) agent i�s choice of pi as de�ned
implicitly by (A1) uniquely maximizes his objective function.

Finding 1. pA 2 (0; 1), pB 2 (0; 1), and pA+pB+
 pApB 2 (0; 1) at the solution to [P-S]I if:
(i) kA = kB = k > VS (2)

��1 when 
 = 0; (ii) [1 + 
]
1

��1

h
2
�
VS
k

� 1
��1 + 
 [1 + 
]

1
��1
�
VS
k

� 2
��1
i

< 1 when 
 > 0; and (iii) k > VS (2)
��1 when 
 2 (�1; 0).

Proof. Given pj, agent i chooses pi to maximize:

�i(pijpj) = p(pi; pj)T iS �
ki

�
(pi)�. (A2)

Di¤erentiating (A2) provides:

@�i(�)
@pi

=
@p(�)
@pi

T iS � ki
�
pi
���1

. (A3)

Equation (1) in the text implies @p(�)
@pi

2 f0; 1 + 
 pjg for ep 6= 1, where ep � pA + pB + 
 pApB.
Consequently, (A3) implies that for ep < 1:

@2�i(�)
@ (pi)2

= � ki [� � 1]
�
pi
���2

< 0. (A4)

Furthermore, from (A3):

@�i(�)
@pi

=

(
[1 + 
 pj]T iS � ki (pi)

��1 when ep 2 (0; 1)
� ki (pi)��1 when ep > 1. (A5)

Equation (1) in the text and (A5) imply:
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pi
�
pj
�
=

8<:
�
[1+
 pj ]T iS

ki

� 1
��1

when ep 2 (0; 1)
1� pj when ep > 1. (A6)

Case 1. 
 = 0.

(A6) implies that pA < 1; pB < 1, and pA + pB < 1 in this case if
h
T iS
ki

i 1
��1

< 1
2
for

i = A;B. Therefore, because the principal will never pay an agent more than the value of
success (VS), a su¢ cient condition for unique, interior values of pA and pB is:�

VS
ki

� 1
��1

<
1

2
, 2 [VS]

1
��1 <

�
ki
� 1
��1 , ki > VS (2)

��1 for i = A;B.

Case 2. 
 > 0.

(A6) implies that if pA + pB + 
 pApB 2 (0; 1); then :

@pi(�)
@pj

=

�
T iS
ki

� 1
��1
�



� � 1

�
[1 + 
 pj]

2��
��1 > 0, and (A7)

@2pi(�)
@ (pj)2

= �
�
T iS
ki

� 1
��1
�
� � 2
[� � 1]2

�

2 [1 + 
 pj]

3�2�
��1 < 0. (A8)

(A7) and (A8) imply that as long as p(�) 2 (0; 1); agent i�s best response function is an

increasing, concave function of pj. Also, (A6) implies that pi =
h
T iS
ki

i 1
��1

when pj = 0.

We seek conditions su¢ cient to ensure the best response functions of agents A and B
intersect at a point that lies (strictly) within the region in the (pA; pB)-plane bounded by
the pA = 0 axis, the pB = 0 axis, and the curve pA + pB + 
 pApB = 1. Formally, we seek
conditions that ensure the solutions to (A9) and (A10) also satisfy (A11).

[1 + 
 pB]TAS � kA
�
pA
���1

= 0. (A9)

[1 + 
 pA]TBS � kB
�
pB
���1

= 0. (A10)

pA + pB + 
 pApB 2 (0; 1). (A11)

When kA = kB = k, it su¢ ces to identify conditions that ensure the solutions to (A12) and
(A13) satisfy (A11).

[1 + 
 pB]VS � k
�
pA
���1

= 0. (A12)

[1 + 
 pA]VS � k
�
pB
���1

= 0. (A13)

This is the case because TA � VS and TB � VS at the solution to [P-S] and because, from
(A9) and (A10):

dpi

dT iS
=

1 + 
 pj

ki[� � 1](pi)��2 > 0 when 
 > 0. (A14)
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Therefore, the values of pA and pB that solve (A9) and (A10) will be less than the corre-
sponding values of pA and pB that solve (A12) and (A13) when 
 > 0.

(A9) implies:
kA
�
pA
���1

= [1 + 
 pB]TAS � [1 + 
]TAS

)
�
pA
���1 � [1 + 
]TAS

kA
) pA �

�
[1 + 
]TAS

kA

� 1
��1

. (A15)

Similarly, (A10) implies:

pB �
�
[1 + 
]TBS

kB

� 1
��1

. (A16)

(A15) and (A16) imply:

pA + pB + 
 pApB

�
�
[1 + 
]TAS

kA

� 1
��1

+

�
[1 + 
]TBS

kB

� 1
��1

+ 


�
[1 + 
]TAS

kA

� 1
��1
�
[1 + 
]TBS

kB

� 1
��1

= [1 + 
]
1

��1

"�
TAS
kA

� 1
��1

+

�
TBS
kB

� 1
��1

+ 
 [1 + 
]
1

��1

�
TAS
kA

� 1
��1
�
TBS
kB

� 1
��1
#

� [1 + 
]
1

��1

"�
VS
kA

� 1
��1

+

�
VS
kB

� 1
��1

+ 
 [1 + 
]
1

��1

�
VS
kA

� 1
��1
�
VS
kB

� 1
��1
#
. (A17)

(A15) �(A17) imply that if kA = kB = k and if [1 + 
]
1

��1

h
2
�
VS
k

� 1
��1 + 
 [1 + 
]

1
��1
�
VS
k

� 2
��1
i

< 1, then pA < 1; pB < 1 and pA + pB + 
 pApB < 1 at the solution to [P-S]I .

Case 3. 
 < 0.

(A7) and (A8) imply that as long as p 2 (0; 1), agent i�s optimal choice of pi is a

decreasing, convex function of pj. Also, (A6) implies that pi =
h
T iS
ki

i 1
��1

when pj = 0. From

(A14), if j
j < 1, then dpi

dT iS
> 0 when pj < 1. Consequently, it su¢ ces to ensure that the

solutions to (A12) and (A13) satisfy (A11). (A9), (A10), (A12), and (A13) imply:

pi =

�
[1 + 
 pj]VS

ki

� 1
��1

<

�
VS
ki

� 1
��1

<
1

2
for i 2 fA;Bg when ki > VS (2)

��1 .

Therefore, pA < 1; pB < 1, and pA+pB+
pApB < 1 when ki > VS (2)
��1 for i = A;B. Also,

if j
j < 1, then (A9) and (A10) imply pA > 0 and pB > 0. Furthermore, pA+ pB + 
 pApB =
pA[1 + 
 pB] + pB > 0 when j
j < 1. �

Finding 2. Agent i 2 fA;Bg�s choice of pi as de�ned by (A1) uniquely maximizes his
objective function when the conditions identi�ed in Finding 1 hold.

Proof. From (A4), �i(pijpj) is a strictly concave function of pi for pj 2 (0; 1) for j 6= i,
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i; j 2 fA;Bg. Therefore, when the conditions identi�ed in Finding 1 hold, pi as de�ned by
(A1) uniquely maximizes (A2). �

Now de�ne [P-SQ]I to be problem [P-SQ] where constraint (4) in the text is replaced by
(A1) for i = B and where constraint (5) in the text is replaced by:

TAS =
kA
�
pA
���1

1 + 
 pB + 
 pB

��1

=
kA
�
pA
���1

1 +
�
�
��1
�

 pB

. (A18)

(A18) is derived by �rst di¤erentiating (A1) when i = B to obtain:


 TBS dp
A = kB[� � 1]

�
pB
���2

dpB ) dpB

dpA
=


 TBS

kB[� � 1] (pB)��2
. (A19)

Then, di¤erentiating constraint (5) in the text (with k = kA) reveals that for p(�) 2 (0; 1):�
1 + 
 pB +

�
1 + 
 pA

� dpB
dpA

�
TAS = k

A
�
pA
���1 ) TAS =

kA
�
pA
���1

1 + 
 pB + [1 + 
 pA] dp
B

dpA

. (A20)

(A1) and (A19) imply:

�
1 + 
 pA

� dpB
dpA

=

�
1 + 
 pA

�

 TBS

kB[� � 1] (pB)��2
=


 kB
�
pB
���1

kB[� � 1] (pB)��2
=


 pB

� � 1 . (A21)

Substituting (A21) into (A20) provides (A18).

Finding 3. pA 2 (0; 1), pB 2 (0; 1), and pA + pB + 
 pApB 2 (0; 1) at the solution
to [P-SQ]I if: (i) kA = kB = k > VS (2)

��1 when 
 = 0; (ii) k > ek when 
 > 0,

where ek is de�ned by
�epA���1 = VSek +

h

 (1+
) �
��1

i
(VS)

�
��1

�
1ek
� �
��1

and epA is de�ned by

epA + �1 + +
 epA� � [1+
 epA]VS
k

� 1
��1

= 1; and (iii) k > VS (2)
��1 when 
 2 (�1; 0).

Proof.

Case 1. 
 = 0.

The analysis in this case is identical to the analysis in the proof of Finding 1.

Case 2. 
 > 0.

The analysis for agent B coincides with the corresponding analysis in the proof of Finding
1.

Agent A will pick his preferred point on agent B�s reaction function as de�ned by (A6)
for i = B. Let �A(pA) � �A(pAjpB(pA)) denote agent A�s expected pro�t in the present
setting. Also let bpA � 1 denote the smallest value of pA on the portion of agent B�s reaction
function de�ned by the equation pA + pB + 
 pApB = 1.
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Agent A will never choose to deliver a contribution in excess of bpA because he can secure
the same aggregate probability of success (p(�) = 1) at lower personal cost by setting pA =bpA. Therefore, conditions that ensure d�A(�)

dpA

���
pA=0

> 0 and d�A(�)
dpA

���
pA=bpA < 0 are su¢ cient to

ensure agent A will choose a pA 2 (0; 1).

From (A20), for pA + pB + 
 pApB 2 (0; 1):

d�A(�)
dpA

= [1 + 
 pB]TAS + [1 + 
 p
A]TAS

dpB

dpA
� kA

�
pA
���1

. (A22)

Solving (A10) for pB provides:

pB =

�
[1 + 
 pA]TBS

kB

� 1
��1

) dpB

dpA
=

�
TBS
kB

� 1
��1
�



� � 1

�
[1 + 
 pA]

2��
��1 . (A23)

Substituting from (A23) into (A22) provides:

d�A(�)
dpA

= TAS + 
 T
A
S

�
[1 + 
 pA]TBS

kB

� 1
��1

+ [1 + 
 pA]TAS

�
TBS
kB

� 1
��1
�



� � 1

�
[1 + 
 pA]

2��
��1 � kA

�
pA
���1

= TAS + 


�
TBS
kB

� 1
��1

[1 + 
 pA]
1

��1 TAS

�
�

� � 1

�
� kA

�
pA
���1

. (A24)

(A24) implies:

d�A(�)
dpA

����
pA=0

= TAS + 


�
TBS
kB

� 1
��1

TAS

�
�

� � 1

�
> 0; and (A25)

d�A(�)
dpA

����
pA=bpA = TAS + 


�
TBS
kB

� 1
��1

[1 + 
 bpA] 1
��1 TAS

�
�

� � 1

�
� kA

�bpA���1
< VS + 


�
VS
kB

� 1
��1

[1 + 
 bpA] 1
��1 VS

�
�

� � 1

�
� kA

�bpA���1 . (A26)

The inequality in (A26) holds because TAS � VS and TBS � VS at the solution to [P-SQ]I .
(A26) implies:

d�A(�)
dpA

����
pA=bpA < 0 if kA

�bpA���1 � VS +

�

 �

� � 1

��
VS
kB

� 1
��1

[1 + 
 bpA] 1
��1 VS. (A27)

Since bpA � 1, the weak inequality in (A27) will hold when kA = kB = k if:
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�bpA���1 � VS
k
+

�

 (1 + 
) �

� � 1

�
(VS)

�
��1

�
1

k

� �
��1

. (A28)

From equation (1) in the text and (A23), bpA is the solution to:
bpA + pB + 
 bpApB = 1 and pB =

�
[1 + 
 bpA]TB

kB

� 1
��1

. (A29)

(A29) implies that bpA is the solution to:
bpA + � [1 + 
 bpA]TB

kB

� 1
��1

+ 
 bpA� [1 + 
 bpA]TB
kB

� 1
��1

= 1. (A30)

Let epA be the solution to:
epA + � [1 + 
 epA]VS

kB

� 1
��1

+ 
 epA� [1 + 
 epA]VS
kB

� 1
��1

= 1. (A31)

Since VS � TB, (A30) and (A31) imply that epA � bpA for given 
 > 0 and kB > 0. Therefore,
when kA = kB = k, the inequality in (A28) holds if:

�epA���1 � VS
k
+

�

 (1 + 
) �

� � 1

�
(VS)

�
��1

�
1

k

� �
��1

. (A32)

De�ne ek by: �epA���1 =
VSek +

�

 (1 + 
) �

� � 1

�
(VS)

�
��1

�
1ek
� �

��1

. (A33)

(A31) implies that epA is an increasing function of kA = kB = k. Furthermore, the expression
to the right of the inequality in (A32) is a decreasing function of k. Therefore, as k is

increased above ek, the inequality in (A32) will continue to hold, and so d�A(�)
dpA

���
pA=bpA < 0 for

k > ek.
Case 3. 
 < 0.

From (A25):

d�A(�)
dpA

����
pA=0

= TA

"
1 + 


�
TB

kB

� 1
��1
�

�

� � 1

�#

� TA

"
1 + 


�
VS
kB

� 1
��1
�

�

� � 1

�#
> TA

�
1 +




2

�
�

� � 1

��
. (A34)

The strict inequality in (A34) holds because 
 < 0 and because ki > VS (2)��1 for i = A;B

implies
�
VS
kB

� 1
��1 < 1

2
. (A34) implies:

d�A(�)
dpA

����
pA=0

> 0 if 1 +



2

�
�

� � 1

�
> 0 , 
 > � 2 [� � 1]

�
. (A35)
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(A35) implies that d�A(�)
dpA

���
pA=0

> 0 if 
 2 (�2[��1]
�
; 0) when kA = kB = k > VS (2)��1.

From (A23), 
 > �1 ensures 1 + 
pA > 0, and so ensures pB > 0. Also, since � > 2,
��1
�
> 1

2
, which implies 2[��1]

�
> 1. Therefore, if j
j < 1, then j
j < 2[��1]

�
. Consequently,


 > �1 ensures 
 > �2[��1]
�

when 
 < 0. Therefore, 
 2 (�1; 0) ensures d�A(�)
dpA

���
pA=0

> 0 and

also ensures pB > 0.

To derive conditions that ensure d�A(�)
dpA

���
pA=bpA < 0, let bpA
<0 denote the value of bpA for

given 
 < 0. (A24) implies:

d�A(�)
dpA

����
pA=bpA
<0 = TAS + 


�
TBS
kB

� 1
��1

[1 + 
 bpA
<0] 1
��1 TAS

�
�

� � 1

�
� kA

�bpA
<0���1
< TAS � kA

�bpA
<0���1 since 
 2 (�1; 0)

= kA
�
TAS
kA

�
�bpA
<0���1� � kA

�
VS
kA
�
�bpA
<0���1�

) d�A(�)
dpA

����
pA=bpA
<0 < 0 if

VS
kA
�
�bpA
<0���1 < 0 , bpA
<0 > �VSkA

� 1
��1

. (A36)

The �rst equality in (A29) implies that bpA
<0 > bpA
=0 for a �xed bpB. The second equality
in (A29) implies that bpB decreases as bpA increases when 
 < 0. Therefore, bpA
<0 > bpA
=0.
Consequently:

bpA
=0 > �
VS
kA

� 1
��1

) bpA
<0 > �
VS
kA

� 1
��1

) VS
kA
�
�bpA
<0���1 < 0. (A37)

(A29) also implies:

bpB
=0 = �
TBS
kB

� 1
��1

, and so bpA
=0 = 1�
�
TBS
kB

� 1
��1

. (A38)

(A37) and (A38) imply:

1�
�
TBS
kB

� 1
��1

>

�
VS
kA

� 1
��1

) VS
kA
�
�bpA
<0���1 < 0. (A39)

1�
�
TBS
kB

� 1
��1 � 1�

�
VS
kB

� 1
��1 since TBS � VS. Therefore, from (A39):

1�
�
VS
kB

� 1
��1

>

�
VS
kA

� 1
��1

) VS
kA
�
�bpA
<0���1 < 0. (A40)

(A40) implies:
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�
VS
kB

� 1
��1

+

�
VS
kA

� 1
��1

< 1 ) VS
kA
�
�bpA
<0���1 < 0. (A41)

(A36) and (A41) imply:�
VS
kA

� 1
��1

+

�
VS
kB

� 1
��1

< 1 ) d�A(�)
dpA

����
pA=bpA
<0

< 0. (A42)

Therefore, d�
A(�)
dpA

���
pA=bpA
<0 < 0 if k

i > VS (2)
��1 ,

�
VS
ki

� 1
��1 < 1

2
for i = A;B. �

Finding 4. Suppose the conditions identi�ed in Finding 3 hold. Further suppose j
j is
su¢ ciently small when 
 < 0. Then agent B�s choice of pB as de�ned by (A1) with i = B
uniquely maximizes his objective function, and agent A�s choice of pA as de�ned by (A18)
uniquely maximizes his objective function.

Proof. From (A4), �B(pBjpA) is a strictly concave function of pB. Therefore, the value of
pB identi�ed in (A1) with i = B uniquely maximizes �B(�) when the conditions identi�ed
in Finding 3 hold.

Di¤erentiating (A24) provides:

d2�A(�)
d (pA)2

=

�
TBS
kB

� 1
��1

TAS

�

2 �

(� � 1)2
�
[1 + 
 pA]

2��
��1 � kA[� � 1]

�
pA
���2

. (A43)

Di¤erentiating (A43) provides:

d3�A(�)
d (pA)3

= �
�
TBS
kB

� 1
��1

TAS

�

3 � (� � 2)
(� � 1)3

�
[1 + 
 pA]

3�2�
��1 � kA[�� 1] [� � 2]

�
pA
���3

. (A44)

(A44) implies that d
3�A(�)
d(pA)3

< 0 when 
 > 0, since � > 2.

(A24) and (A43) imply that �A(�) is increasing and convex at pA = 0 when 
 > 0.
Furthermore, �A(�) is decreasing at bpA when 
 > 0 and the conditions in Finding 3 hold.
Therefore, since d3�A(�)

d(pA)3
< 0 when 
 > 0, the value of pA 2 (0; bpA) de�ned by (A18) uniquely

maximizes agent A�s expected pro�t.

It is also apparent from (A44) that d
2�A(�)
d(pA)2

is a continuous, decreasing function of pA when


 = 0. Therefore, if �A(�) is increasing at pA = 0 and decreasing at bpA when 
 = 0, then
there will exist a e
 < 0 such that for all 
 2 [e
; 0), the value of pA 2 (0; bpA) at which the
expression in (A24) is zero uniquely maximizes agent A�s expected pro�t. Consequently,
agent A�s choice of pA as de�ned by (A18) uniquely maximizes his objective function when
the conditions identi�ed in Finding 3 hold and when 
 2 [e
; 0). �
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