Technical Appendix to Accompany
“Asymmetric Treatment of Identical Agents in Teams”

by A. Bose, D. Pal, and D. Sappington

Findings 1 — 4 below provide sufficient conditions for the values of p#, p®, and p* +
pP + v pp? that constitute the solutions to [P-S] and [P-SQ] to all lie in the (0,1) interval
and for these values of p* and p? to be uniquely defined by the agent’s relevant first-order
conditions. The proofs of these Findings proceed for the case where agent i’s cost (k%) can
differ from agent j’s cost (k7). The ensuing analysis presumes that Vz = 0, without essential
loss of generality.

To begin, define [P-S]” to be problem [P-S] where constraints (4) and (7) in the text are
replaced by:
;o Ee)

The solution to [P-S]? will be the solution to [P-S] if: (i) p* € (0,1), p®? € (0,1), and
pt 4+ pP +yp?pP € (0,1) at the solution to [P-S]!; and (ii) agent i’s choice of p’ as defined
implicitly by (A1) uniquely maximizes his objective function.

Finding 1. p* € (0,1), p? € (0,1), and p*+pP++p*p? € (0,1) at the solution to [P- S]I if:
(i) kA =kP =k > Vs (2 )9 L when v = 0; (i) 1—1—79 1 [ (%)9 Ty —I—’y]9 I (VS) ]
< 1 when v > 0; and (iii) k > Vs (2)%~1 when v € (—1,0).

Proof. Given p/, agent i chooses p’ to maximize:
k.l

Te'ly) = p'p) Ts — 50" (A2)
Differentiating (A2) provides:
OTT (- 0 O
ap§> - g}gl) TE — K ()" (A3)

Equation (1) in the text implies 85’15;) € {0, 1+~ p’} for p # 1, where p = p? + p® + v ppP.
Consequently, (A3) implies that for p < 1:

I
0 (p')”
Furthermore, from (A3):
oy [ L+ p ) TE—k ()" when je(0,1)
op* — K (p)" when p > 1.

- —KFOI-10()"" <o (A4)

Equation (1) in the text and (A5) imply:
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D [1+vpj]T§)m h ~ 1
p () = ()7 whe 5 (46)
1—p when p > 1.
Case 1. v=0.
1

(A6) implies that p* < 1, p? < 1, and p? + p® < 1 in this case if H—%] < % for
1 = A, B. Therefore, because the principal will never pay an agent more than the value of

success (Vs), a sufficient condition for unique, interior values of p# and p? is:

[E

= ) o |
kl} <5 e 2T < [k;l]‘)il & K>Ve@2)?"" fori=A,B.

Case 2. 7> 0.
(A6) implies that if p* + p? +~vp?p® € (0,1), then :

@ e e

(A7) and (A8) imply that as long as p(-) € (0,1), agent i’s best response function is an
L1
increasing, concave function of p/. Also, (A6) implies that p' = [%] *' when p = 0.

We seek conditions sufficient to ensure the best response functions of agents A and B
intersect at a point that lies (strictly) within the region in the (p, p?)-plane bounded by
the p4 = 0 axis, the p? = 0 axis, and the curve p?* + p? + yp?p?® = 1. Formally, we seek
conditions that ensure the solutions to (A9) and (A10) also satisfy (A11).

1+~pPI T =k ()" = 0. (A9)
1+~pYTE - k2 (?)"" = 0. (A10)
pt + P +yp*p? € (0,1). (A11)

When k4 = kP = k, it suffices to identify conditions that ensure the solutions to (A12) and

(A13) satisfy (A11).
L++p% Ve —k ()" = 0. (A12)

1L+ Vs — k(%) = 0. (A13)

This is the case because T4 < Vg and T? < Vg at the solution to [P-S] and because, from
(A9) and (A10):
dp’ 1+~p
. = — . > 0 when v > 0. Al4
a5 = R 1) E (414
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Therefore, the values of p# and p? that solve (A9) and (A10) will be less than the corre-
sponding values of p# and p” that solve (A12) and (A13) when v > 0.
(A9) implies: ,
-1
K (p?) = 1+7pP|T¢ < [1+9T¢

-1 [1+~]T¢ [1+4]T¢ o
= (p) < k—AS = pt < k—AS : (A15)
Similarly, (A10) implies: !
[L+9]T5\""

(A15) and (A16) imply:

p* +pP + v pp?
1 1 1

_ = Té4 -1 TSB -1 = T = TSB =
= [1+A]7 <k ) +<k3 oy L7 15
< N1 | (Vs ﬁ Vs L
< [1+7] A + LB
1 2

1 1 _2
(A15) ~ (A17) imply that if b4 = kP = k and if [1 + 977 [2 ()™ 44 [1 +4]77 (1) 7]
< 1, then p? < 1, pP <1 and p? + p® + v p*p® < 1 at the solution to [P-S]’.
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Case 3. 7v<0.
(A7) and (A8) imply that as long as p € (0,1), agent i’s optimal choice of p' is a

a
(A14), if |y| < 1, then j;ii > 0 when p’ < 1. Consequently, it suffices to ensure that the
S

solutions to (A12) and (A13) satisfy (A1l). (A9), (A10), (A12), and (A13) imply:

A 1 ' =T =1 '
P o= (%) < (%) <3 for i € {A, B} when k' > Vg(2)" .

decreasing, convex function of p’. Also, (A6) implies that p’ = [Tq " Wwhen p’ = 0. From

Therefore, p* < 1, p? < 1, and pA+pB+yp?p? < 1 when k' > Vg (2)*! fori = A, B. Also,
if |v| < 1, then (A9) and (A10) imply p* > 0 and p® > 0. Furthermore, p* + p? + v pp? =
p1+4pPl +pP >0when |y <1. H

Finding 2. Agent i € {A, B}’s choice of p' as defined by (A1) uniquely mazimizes his
objective function when the conditions identified in Finding 1 hold.

Proof. From (A4), II'(p‘|p’) is a strictly concave function of p’ for p’ € (0,1) for j # 1,
3



i,j € {A, B}. Therefore, when the conditions identified in Finding 1 hold, p’ as defined by
(A1) uniquely maximizes (A2). W

Now define [P-SQ]’ to be problem [P-SQ] where constraint (4) in the text is replaced by
(A1) for i = B and where constraint (5) in the text is replaced by:
]{}A A\ 0-1 kA A\ 0-1
TS = ) _ —(ZZ) _. (A18)
LrypP+ 35 L+ 5] ap

(A18) is derived by first differentiating (A1) when i = B to obtain:

dp® VT8
dp” = doA 1B o2
p kP[0 — 1] (pP)

Then, differentiating constraint (5) in the text (with k& = k%) reveals that for p(-) € (0,1):

dnB B A (pA)? !
A )" (a2
dp L+ypP + [1+vp] Ea

0-2

yTEdp* = kP[0 —1] (p”) (A19)

1+yp” + (1+yp?)

(A1) and (A19) imply:

0—-1
S e e e L0 S (A21)
B BY-2 ~ 1B ByY-2  §_1"
p kP10 = 1] (pP) kP10 = 1] (p7)

Substituting (A21) into (A20) provides (A18).

Finding 3. p* € (0,1), p® € (0,1), and p* + p® + ypp? € (0,1) at the solution
to [P-SQJ if: (i) k* = kB = k > V5(2)° ! when v = 0; (ii) k > k when v > 0,

o
where k is defined by (ﬁA)B_l = % + [%} (VS)% (%) "' and P is defined by

pA 4 1+ +yp?] (w>m = 1; and (iii) k > Vs (2)°~! when v € (—1,0).
Proof.
Case 1. v=0.

The analysis in this case is identical to the analysis in the proof of Finding 1.

Case 2. 7> 0.

The analysis for agent B coincides with the corresponding analysis in the proof of Finding

Agent A will pick his preferred point on agent B’s reaction function as defined by (A6)
for i = B. Let 7(p?) = II4(p?|pP(p?)) denote agent A’s expected profit in the present
setting. Also let p* < 1 denote the smallest value of p* on the portion of agent B’s reaction
function defined by the equation p4 + p? + ~ pp? = 1.



Agent A will never choose to deliver a contribution in excess of p because he can secure
the same aggregate probability of success (p(-) = 1) at lower personal cost by setting p* =

pA. Therefore, conditions that ensure dz:ﬁ') > 0 and dz ﬁ) B < 0 are sufficient to
p4=0 pA=p4
ensure agent A will choose a p* € (0, 1).
From (A20), for p* + p? +~yp*p? € (0,1):
dr(- dp® 01
dpf(‘) = [1+~pP) T8 + [1 4+~ p* ]TSd]?—k:A(pA) ) (A22)
Solving (A10) for p? provides:
1 1
s ([L+p"TE\™T P (TENTT] v 4720
P ( kP T oapt T\ P g1 Lol (A2

Substituting from (A23) into (A22) provides:

dm(-) A AL+ TE
R | G

TB o1 2—6 0—
+[1+7p"TE (k;B) {91—1][1+7p]“—kf‘(p‘4) '

T 1 0 0—1
= T§ +~v ( k%) [14+~p*)7T T¢ [—9_ 1] — k(). (A24)
(A24) implies:
dWA(‘) A Tsl? 7 A 0
= — 1§ | —— ; d A2
dpA o S +/7<]{ZB) S [8—]} > 0, an ( 5)
dr(-) A T3 o At pa | 0 A (A1
| T +’Y(k—) [L+~p=1 Ty {ﬁ} — k4 (p7)
p=p
V %1 AL (9 AN O—
v () e e

The inequality in (A26) holds because T4 < Vg and T# < Vs at the solution to [P-SQ)]

(A26) implies:

(- e 07 (Vs\71 e
™) < 0 if B (Y zvg+[07 }(kg) [1+~pY 7T Vs,  (A27)

dpA pA—pA

Since p* < 1, the weak inequality in (A27) will hold when k4 = kZ = k if:



) > Vs | {7 (;J_r? 9} (Ve) 7 (é)xl (A28)

From equation (1) in the text and (A23), p* is the solution to:

PP+ pP 4+ pP =1 and pf = (Wﬂ) & . (A29)
(A29) implies that p* is the solution to:
R g () " (A30)
Let p* be the solution to:
fﬁA_F<[1+Z§A]VS)911_i_,yﬁA([l—i_ZgA]VS)(JL L (A31)

Since Vg > T?, (A30) and (A31) imply that p* < p* for given v > 0 and k® > 0. Therefore,
when k4 = kP = k, the inequality in (A28) holds if;

~ - 6
AN O— 1% 14+7v)0 o (1)1
R % (V)7 (E) : (A32)
Deﬁne%by: ,
A\ O— V (v (1+7) 0] o (1)1
)" = f+ % (Vg)7r (Z) : (A33)

(A31) implies that p* is an increasing function of k&4 = k® = k. Furthermore, the expression
to the right of the inequality in (A32) is a decreasing function of k. Therefore, as k is

dr () < 0 for

increased above E, the inequality in (A32) will continue to hold, and so .l A
pA=p

k> k.

Case 3. 7 <0.
From (A25):
drA(-) \ TENTT (9 ]
e, - () (75)
Ve\7T [/ 6 \] '
> 74 = — A ~—)]. 4
> T 1+7(k3) («9—1) > T {1+2(9—1)] (A34)

The strict inequality in (A34) holds because v < 0 and because k' > Vg (2)%~! fori = A, B
1

implies ()% < 1. (A34) implies:

dri (")
dp4

0
0—1

200 — 1]

> 0 © > -
i 0

: (A35)

>0 if1+z[

pA=0
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(A35) implies that % () >0 if ye (=254, 0) when k4 = kP =k > V5 (2)°71.

From (A23), v > —1 ensures 1 + vpA > 0, and so ensures p® > 0. Also, since § > 2,
% > —, which implies [9 U > 1. Therefore, if |v] < 1, then |y| < 9 1

. Consequently,

v > —1 ensures v > — [0 ”

when v < 0. Therefore, v € (—1,0) ensures dg:ﬁ) A > 0 and

also ensures p? > 0.

dri ()

To derive conditions that ensure A

~A ~A
— < 0, let p7_y denote the value of p” for
given v < 0. (A24) implies:
dr? (")
dp4

TB\ 71 4 .l 0 0—1
= T¢+~ (k:B) (14~ Do)71 T [m} — K (Pio)

pA:ﬁ;’?<0
< T4 —k* (Af<0)9_1 since v € (—1,0)

T, 4 \0-1 Vs a4 01
alls A A A

- B0 < o[- ]

dr(-
dp4

.. Vi 4\ 01 N Vg\ o1
< 0 if k—j— (Plo) <0 < Py > (—5) : (A36)
PT=Py<0

)

=

The first equality in (A29) implies that ]07 0 > py_ for a fixed p®. The second equahty
in (A29) implies that p” decreases as p** increases when v < 0. Therefore p7<0 > p,y 0-
Consequently:

R AN R Vo) 71 Vo oo o-1
p:?:o > (k_A> = p;4<0 > (k_A) = ]{,'_A_ (pf<0) < 0. (A37)
(A29) also implies
TE\ 7" TE\ 71
ﬁf:o = <—g) , and so ]3‘74:0 = 1- <k—g) ) (A38)
(A37) and (A38) imply
T8 = Vg \ -1 Vs N 0—1
1— (k_g) (k_A) = - (Po<o) < 0. (A39)

VS 9711 VS ﬁ Vs ~ 6—1
1— (/TB) > (k;_A) = k—A—(pf?<0) < 0. (A40)

(A40) implies:



1
Vo7& | (Vs\ ™! Vs a0t
(k:_B> + (k—A) <l = 5-(Fw) <0 (A41)

(A36) and (A41) imply:

1 1
VS o-1 VS -1 dﬂ'A(-)
— — 1 . A42
(k:A> +(I<:B) < = A <0 (A42)
A_sA
P=Py<o
Therefore, d’;;ﬁ) L, <0 E>Vs(2) e (B) T <lfori=AB N
PT=Py<0

Finding 4. Suppose the conditions identified in Finding 3 hold. Further suppose |v| is
sufficiently small when v < 0. Then agent B’s choice of p® as defined by (A1) with i = B
uniquely mazimizes his objective function, and agent A’s choice of p* as defined by (A18)
uniquely maximizes his objective function.

Proof. From (A4), TIZ(pP|p?) is a strictly concave function of p®. Therefore, the value of
p? identified in (A1) with i = B uniquely maximizes I1%(-) when the conditions identified
in Finding 3 hold.

Differentiating (A24) provides:

Tt = (1) 7 G e o0 6 (A43)
Differentiating (A43) provides:

Tt =~ () T [T s P -l 6" Gas
(A44) implies that 23(;255) < 0 when v > 0, since 6 > 2.

(A24) and (A43) imply that 74() is increasing and convex at p* = 0 when vy > 0.
Furthermore, 74(-) is decreasing at p** when v > 0 and the conditions in Finding 3 hold.

65(7;25'3) < 0 when ~ > 0, the value of p* € (0,p") defined by (A18) uniquely
maximizes agent A’s expected profit.

Therefore, since

It is also apparent from (A44) that Cf(zﬁjg') is a continuous, decreasing function of p# when

v = 0. Therefore, if 74(-) is increasing at p* = 0 and decreasing at p* when v = 0, then
there will exist a 7 < 0 such that for all v € [7,0), the value of p* € (0,p?) at which the
expression in (A24) is zero uniquely maximizes agent A’s expected profit. Consequently,
agent A’s choice of p4 as defined by (A18) uniquely maximizes his objective function when
the conditions identified in Finding 3 hold and when v € [,0). W



