Technical Appendix to Accompany
“Employing Simple Cost-Sharing Policies to Motivate the

Efficient Implementation of Distributed Energy Resources”

by David P. Brown and David E. M. Sappington

This Technical Appendix has three sections. Section 1 describes how the numerical
solutions to [P] and [PNC] are derived. Section 2 explains how the numerical solutions to
[PM] are derived. Section 3 derives the analytic characterization of the solutions to [Pm]
and [PR] and describes how the numerical solutions to these problems are derived.

1 Numerical Solutions to [P] and [PNC].

We begin by defining two problems, labeled [P1] and [P2].

Problem [P1]

Maximize /j“{m <§[E—Q}>“[s—1][6—g]} dG(5) — [1—G(8,)]ro

subject to 19 > ¢y, and

(6n1,T1, To1, 51) Will denote the solution to [P1].

Problem [P2]

Maximize — {c+T—C+s[c—c]}dG(9)

T,70,8 5

_/:”{ﬂ(g[z_g])*[s—me—g]}dG<a>— 1= G(6:)]ro

1

subject to 19 > ¢p, and

F—E+<5i)w [E—Q]Wzl(s)vzl[’y—_l] = 19— Cp,
where §; = s[c—c .

(012, On2, T2, To2, S2) will denote the solution to [P2].



Observation Al. If §,; < § and s, < E%c (so &[c—c] < 1 forall § €[4,0d]), then

(6n1,71, To1, S1) is the solution to the regulator’s problem .

Observation A2. If 6,; < §, 51 > E%C, 812 > 0, and 8,2 < 0, then the solution to [P2]

is the solution to the regulator’s problem.

Otherwise, the solution to [PNC] is the solution to the regulator’s problem. We solve
the constrained nonlinear programs [P] and [PNC] using the CONOPT algorithm in GAMS
(Ferris and Munson, 2000).

Calculations for the Numerical Solutions to [P] and [PNC]

Consider any 61,09 € [é,g], with d5 > ;. When ¢ is uniformly distributed on [Q,S}:

/;MG<5> = %[5—15} [(82)* = (61)%] . (1)
When 7y = 2:
/: (%)vlldG@) = [%} [In(d,) —In(6,)]. ()
When v # 2:
) o = [ [ ] [=2] o
- 1553 [Zii] | (52)3 = (51)7 | 3)

Case 1. 4§, < 0, so the relevant problem is [P].

Expected procurement cost in this case is:

01
E{Proc Cost } = / fdG(é)—i—/
[} )



¥ <s>h[s—1][e—g]fi/: (%)fldcxa). ()

The firm’s expected profit is:

B{r} — /661{F—E+8[6—g]—%}d6’(6)

F[e-c] ()7 [”—‘1}/ (%)”lldc:(m[1—G<5nmm—co1. )

g

The expected success probability is:

E{p(0)} = / 1dG<5>+/6"(§[z—g])””dG<5>

[ 01

Expected project cost is:

E{Cost} — /561 [g+§] dG(5)+/:{gp(5)+z [1—p(5)]+j

v

[
=X
—

>,
SN~—
=
N——
U
@
—
[e9)
SN—

5
+/ Co dG(é)
On

. gG(&H%/jladc:(aH/:{a—p@[z—g}+§[p<a>w}de<a>
F(1-G() e

_ /5dG / {a— f[a—g])”l‘l[z—g]+%<§[a—g}>”g}dG(a)
[1-G(6,)]

- QG(51)+% /56 5dG(5)+/:{z—(s)fl[z—g]ﬁl [1—%} (%)Wll}dG(d)



+[1-G(6n)]co

1 [ _
= gG((Sl)—i—;/é 6 dG(8)+C[G(0,) — G(61)]

()P [e—c ] [V‘S]/: (%)”Lda(awu—cwn)]c@.

v

Case 2. 6, > 0, so the relevant problem is [PNC].

Expected procurement cost in this case is:
51 é
E{Proc Cost } = / rdG0)+ [ {p(6)r+[1—p()]T}dG(9)
) o1

01

= {F+[s—1][6—§]}dG(6)+/

g 5

= () (T4 [s—1][e—c]}+7[1-G(&)]
" <s>fl[s—1na—gwl/é (%)“dG(é).

The firm’s expected profit is:

E{r} — /:1{F—E+5[E—Q]—%}d(¥(§)

+ [e—c)rT ()71 {77_1}/: (%)”Lde(a).

The expected success probability is:

E{p(0)} = /5 1dG<a>+/(:(§[e—g1)* 1G(5)

j{ﬁ(g[é—g])“[8—1][5_9]}dG(5)



Expected project cost is:

ploos) = [ [g+§]dG<6>+/6{gp<6>+r:[1—p<5>1+§[p<5>w}da<5>

Y 51

. gG<61>+1/:16dG<5>+/:{a—pw)[a—m%[pw}dG(a)

Y Js 1
_ ga(al)% /:15dc:(5)+/(:{5—(g[z—g])”ll[z—g]+%(§[e—g])*}da(a)
_ QG((51)—|—% /5615dG(5)+/:{5—<s)f—1[a—g]ﬂ—l [1—3] (%)Wl_l}de(a)
_ QG((Sl)—i-% 5615dG(5)+E[1—G(51)]

- <s>v11[e—g]fl[”;Suf(g)”lldaw (1)

2 Numerical Solutions to [PM].
To characterize the solution to [PM] numerically, we:
1. Solve for §; and 4§,,.
2. Draw 250, 000 values randomly from a uniform distribution on the support [§,0].

3. For each 0 realization, solve for the optimal procurement policy (r(d), 7(9), s(0), 70(4))
and the associated level of procurement cost, profit, project cost, probability of success,
and effort cost.

4. Summarize the distribution of values by its minimum, mean, maximum, and standard-
deviation.

Observe that for a # 1:

/[25—§]_“d5 = ﬁ[zé—g]m.

Therefore, if v = 2, then ﬁ = 2, and so for &,, 6, € [§,0 | with 6, < d,:

5y :
| 2o-ar T s = < S26,- a1+ S (26, -0

= - . (12



Furthermore, if v = 3, then ﬁ = %, and s0 0, 6, € [8,6 ] with &, < d,:

N

Oy v 1 1
/ (26— 6] 7T ds = —~[26,— 6] % + =26, — 8]
5. 2 2

Because G(-) is uniform:

G(01) _ _ 1. _

01 + =C¢c—¢c & 0+ —d=¢c—c & 0 = =|c—c+d]. 14
g e @ BB f—c-c @ 6= glo-crs] (4)
Becauseé—l—%:Q&—é:

_1171

25— 5 — {7—11 [E—co] " [e—c]
8
1f[y=11""_ L
& 0 = 3V | [C—co] T[e—c]"+4 (15)

V(0 = L s(8) = 5t and 7(5) = a(0),
1—0
where:
S S !
21(61) = c—i—;[C—Q] {2é—451 25—4(51}
1 = y—11._ e 01 =
) (2o stg] s
) 1 1
0) = ¢ c—clt -
21(07) c+ —[c—c] [\/2(51—§ \/251—§}

When 6 < é1, p(6) = 1, procurement cost is r(d), effort cost is %, total project cost is

5 ‘e
¢+ 3, and profit is: ) 5

where:
6



S D 1
(o) _C+§[C_g] [2§—451 2@—45]

1\ 71 v—17._ 3 5 1 L
—(5) [T}[c—g] [25—§_ when v =2; and
(61) _+1[_ ]L 1 1 ]
V4 = C —|lc—c |7 1! —
o v VI -8 V2o -2

~

N [y=1],. o[ & 177 B
) e ] e

When ¢ € [d1, 61], p(0) = (@ [c— g])ﬁ, procurement cost is 7(9)+p(6) [r(d) — 7() ],
effort cost is %[p(é) ]7, total project cost is ¢ p(6) +¢[1 —p(d)] + %[p(é) |7, and profit is:

=%}

Also:

When § > 4, the utility undertakes the core project and receives payment 7¢(d) = ¢y,
so procurement cost and total project cost are cg.

3 Characterizing the Solutions to [Pm] and [PR].

A. Characterizing the Solution to [Pm].

Paralleling the analysis that underlies the solution to [P], it is readily verified that problem
[Pm)] is:
01
Maximize — {c+m+s[c—c]}dG(9)

T0,S FY

- [Herme G e) T -1l f ac) - -6l

subject to ry > ¢y, and (16)
m(0n) = ro—co- (17)
To characterize the solution to [Pm], let A\g > 0 and A, denote the Lagrange multipli-

ers associated with constraints (16) and (17), respectively. Then the Lagrangian function

associated with [Pm] is:
7



01

L=~ {c+m+s[c—c]} dG(9)
8
Sn . 2 )
_/51 {c—l—m—i—(g[C—Q]) [3_1][0—2]}dG(5)
— [1—G(5n>]7"0+ /\O[TO_CO]+)‘T[TO_Co—ﬂ'((Sn)], (18)

The necessary conditions for a solution to [Pm] include:

o _gi:g<5") E—i—m—l—(i[é—g])%l[s—”[a_g]_ro]_[1_G(5")]
+m+&—m% = 0; (19)
s %9(61){c+m+<§1[E—§])M[8—1][5—9]—(C+m+3[5_9]>}
_aai” 9(6,) 5+m—|—(%[E—g])w[s—l][ﬁ—g]—ro]
on(dn) _
S 0 e jaa)

From the definition of §,,:

ctmt (Fle-el) s 1le-cl-rg

Because 0;(s) = s[¢—c]:



(21) and (22) imply that (19) and (20) can be written as:
OmL0n) 11 _¢(5,)] = 0; and (23)

Ao+ A — A,
To

—[a—g]fl{svllﬂs—u(L)(s)i‘?]ﬂwl,an) =0, (24)

where H(0y, d,) = f;l” (%)”—1 )

Observe that:

7T 4[5 1] [—] @ = () {H G:D]

Z-z{sw—ms—l} _ (sﬁ‘?{”‘l]. (25)

(25) implies that (24) can be written as:

on(0,) . _ B 2=y
w O e claan = 97 |

Observe that:

m(0n) = m+<5i)71_1[6—g]f—1 (s)7 {7;1}

From (27):
9



P[] A e
aﬂ(gg”) = [77_1][5+m—r0]{1i8]2. (29)
(28) and (29) imply that (23) and (26) can be written as:
/\0+/\T{1+%] — 1-G(5,): and (30)
Ar [77_1][6+m—r0]{1—18]2+[6—Q]G(61)
= F | T2 | el (5, 0,). (31)

To characterize the solution to the nonlinear mixed complementarity program [Pm], we
solve for the values of {s,rg, Ao, A, 1, 6, } using the PATH algorithm in GAMS (Ferris and
Munson, 2000).

B. Characterizing the Solution to [PR].

To characterize the solution to [PR], define w = r—¢c = 7—¢+s[¢—c| and w = F—¢.

Lemma 1. When § is realized and the firm implements the non-core project, it will imple-

} . (32)

Proof. When the firm operates under the non-core project, it will choose p to

ment success probability

Maximize pu(w)+[1—plu(w)— D(p,0)
p
When p € (0, 1), the utility’s choice of p is determined by:

ww)—uw(w) = 6p~h = Pt o= .

= 50) = (§lutw) —u@)]) " (53

The conclusion follows from (33) because p(-) cannot exceed 1. W

10



Lemma 2. p(§) = 1 forall § < §1(s) = u(w) —u(w) when § is realized and the utility

implements the non-core project.

Proof. (33) implies that p(d1(s)) = 1. Therefore, the conclusion follows from (33) because,
holding w and s constant:

2=y

0 = [5]()7 (4) <o o

Lemma 3. The firm’s expected utility under the non-core project when it implements the
success probability specified in (32) is:

1

U — {u(w>+ [7—;1} (%)ﬁ [u(w) —u(@)]ﬁ if § > 01(s),
u(w) =3 if § < 81(s).

(34)

Proof. Lemmas 1 and 2 imply that the utility’s expected profit under the specified conditions
when § > §1(s) is:

p(0) u(w) +[1—=p(d) Ju(w) — D(p,0) = U(W)+p(5)[U(w)—U(@)]—é[p@)]”’

=) [T ()7 ) i

Lemmas 1 and 2 imply that the utility’s expected profit under the specified conditions
when § < §;(s) is:

p(6) w(w) +[1—=pd)]u(w) — D(p,6) = w(w)——. A

Lemma 4. Suppose T > ro. Then the requlator prefers to implement the non-core project

rather than the core project for all § < §, (s), where:
39 = Tutw) - u(w)] (H=HE=l) (3

Furthermore, §,,(s) > 01(s) if r < 19 < T.

Proof. Lemma 1 implies that the regulator’s expected procurement cost when the utility
11



undertakes the non-core project and p(d) € (0,1) is:

F 4 p(0) [r —7] = ﬂ(l[u(w—u(wn)”l[s—ma—g] < 70

& (5) ) - a@PT -1 e-c] < e
o (1) I - sl = 7y
o [uw) —u@T HEEEL S g

o 5 < ) —am)] (P )T 2 g,

Therefore, Lemma 2 implies that for s > 0 and 7 > rq:

5u(s) = 0i(s) © [u(@—u@)](

Magimize —/: {7—«+ (% u(w) —u(w)])"ll (s—1] [E—g]} dG(6)

T, 70,8

Proof. Lemmas 1 — 4 imply that the regulator’s problem is:

e p®) -1 1aGE) +

0,

51 5
Minimize / r dG(6) + ro dG(9)
é n

T,7T0,S8 51

subject to:  u(rg —co) > U,

U) > u(rg—co) forall 9 < §,, and

12



u(ro —co) > U(0) foralld > ¢,. (38)

It is apparent from (34) that U’(§) < 0 for all § € [§,4|. Therefore, the constraints in
(38) imply that u(ro—cy) = U(d, ) at the solution to the regulator’s problem. Consequently,
Lemma 1 implies that the regulator’s problem is as specified in [PR]. B

(34) and (35) imply:

0(6,) = u(w)+ | 12 (}) (u(w) — u(w) ]

’y n
_ ey [0 1 T — 7o 1\ ) — () 175
A _<u<w>—u<w><[1—s][a—g1> ) ) =)
— w(w v—1 1 ﬁuw—uw . T—19
=)+ |2 (L) ) -
— u(m)+ | 1= ) = ()| (39)
Because u(w) —u(w) = u(f —c+s[c—c]) —u(T —¢), (39) implies:
0 = u'(w)
-1 ! —u(w T—r0) (v (w)—u(w
[ 1| e ) = @)+ (= ) () (@) (40
aUa(rin) = = {77_1] [u(w)_u<w)][1—s]1[6—g] < 0; and (41)

3U8(85n) {7—1} ['f“’_—ro] [(1—5)U’(w)[E—QHU(M)—U(@)

The inequality in (41) holds because s € (0,1] and w > w.

The following definitions are helpful in characterizing the solution to [PR].

¢ = [e=cllutw) - olm]F [u(w) - um) - EE=E v [y
H(31,6,) = /5 5 (%)”lldc;w). (44)

13



Let A\; > 0 and A\, denote the Lagrange multipliers associated with constraints (36) and

(37), respectively. Then the Lagrangian function associated with [PR] is:
1

L = —T[G(6,)—G(01)]=H(61,0,) [s —1][c—c][u(w) —u(w)]7T=[1=G(d,)] 70
— G {T+[s—1][e—c]}+ M [ulro—co) = U]+ A2 [u(ro —co) = U(dn)]. (45)

91 = 01(s,7) and 6, = 0,(7,s,19) from Lemmas 2 and 4. Therefore, the necessary

conditions for a solution to [PR] include:

. (1)#1] gig o(5.)

[ro—f—[s—u[z—guum)—u(ww1 5
— [1—G(5n)]—|—)\1 U,/(To—Co)—i-)\g Ul(To—Co)—)\g 8%5.571) = O; (46)

. ro—r—[s—lue—gnu@)—u(mw“(i)“]%?gwn)
(1))

- HOb0) [ 1][e-e]| 2 ||
~ 16(5) ~ 6(81)] - Gl — 2 252 = 0; (47)
Sl L 6U8(55n)

=T ls=1[e—e]+ [s—1][e e ][u(w) - w(w)] 7 (%)“]%M
— G(o)[e—c]— H(01,6,) [2—c] {[u(w) —u(m)]7
Fls= 1] | 2 | futw) - w(@) [ ww)fe-c]) = 0. @9
The expression in (47) reflects the fact that:
-2 0T = w(w) ()

The expression in (48) reflects the fact that:

14



d o 1w _ dw , _ _ dw ) ~
T lu(w) —u(@)] = w(F-ets[e-c]) T —w(T-2) ST = W(w)[e—c]
(35) implies:

(0,)77 = [u(w) —u(w)]7 [1—;]_[fo—g]

o ro—T—[s—1][E—c ] u(w) — u(®)] 7 ((%) _ 0. (19)

_ [s—me—g](—1+[u<w>—u<w>1v1 (W)) —0. (50)

(49) and (50) imply that (46) — (48) can be written as:

—[1—G(5n)]+[)\1+)\2]u'(7“0—co)—)\2%rin) = 0; (51)
- Ho) s (e e] | Tutw) - u(m) [ () - ()]
—G(6)) = Ao ‘9%(;“) — 0; and (52)
Mo aUafj”) _ GO [E—c]— @ H(01,6,) = 0 (53)
Suppose As = 0. Then (52) implies:
~ (018 (s = 1o -] | 2 | [u(w) — u(@) 5 [0/(w) ~ (@) = G(5,)
= = H) 1= sl ]| | Tu(w) — u(@) 5 () - ww)] = 6(6,).

(54)

The left-hand side of (54) is non-positive because s € (0,1] and w > w. The right-hand

side of (54) is strictly positive because d,, > ¢, by assumption. This contradiction ensures
Ao # 0. Therefore, U(d, ) = u(ro — c), from (37).

15



(53) implies:

(55)

Problem [PNC-R| where the Risk Averse Firm Always Implements the Non-Core Project

Lemma 6. The regulator’s problem, [PNC-R], is:

Magimize — /;{F—i— (%[u(g) —u(w)]yil [s—1][c—c] } dG(5)

-Gl {r+[s—1][e—-c]}

subject to U(8) > U. (56)

Proof. Lemmas 1 — 3 imply that under the specified conditions, the regulator’s problem is:

51 5
Minimize /5 r dG(0) + / {T+p(6)[r—7]} dG(J)

T, s 51
subject to  U(§) > U forall 6 € [§,6]. (57)

The conclusion follows from Lemma 1 because U'(§) < 0, from (34). W

Let A > 0 denote the Lagrange multiplier associated with constraint (56). Define:

H(5,) = /5 ' (%) dG(6) (58)

1

where §; = d1(s,7). Then the Lagrangian function associated with [PNC-R] is:
L= —-G(O){T+[s—1][c—c]}—-[1—-G(01)]T

— H(6y) [s—1][c—c][u(w) —u(®)]7T + A[U(T) -

<l
—_
—

(SN

Ne)
~—

The necessary conditions for a solution to [PNC-R] include:

g {F—r—[s—u[e—gms—1]{a—gm<w>—u<w>]f—l(%)”}gwl)%

2 2800 )~ 11— o)
- 00 =1 [ | atw) @) 2 ) @) = 0 o)



#2290 o) e —e] - HG) 17— e ] {[u(w) ~u(m) |7
# L= 11| = Tulw) - u(@) 5 ww)e-c]) = 0. 1)
(50) implies that (60) and (61) can be written as:
oU(3)
A 5 1
~ () [s=1[e -] | | Tulw) - u(@) 75 [w(w) (@] = 0i (@
el | rutw w
200Gy (e ]~ B[] {[u(w) - u(m)]
+[s—H{Jéilhmw»—mwniiu%wna—gn-—o (63)
(62) implies:
VG = a1l | ) —u@ ) - @)
—1+fu&>u—sua—d[§%7}hww»wwwni¥w«w»wmwn > 0. (64

The inequality in (64) holds because s € (0,1] and w > w. (64) implies that A > 0.
Therefore, U(d) = U, from (56).

(63) implies:
290 s -G fe-e] = 0 = A =

Deriving the Numerical Solution to [PR]

(1), (2), and (3), respectively, provide the values of |, 5512 § dG(9), 5612 (3)7 "

02 (3) Eple (6) when § is uniformly distributed on [§,4].

01
Suppose the firm’s utility function for wealth is:

u(w) = w* = Jw) = aw*!' >0 = V'(w) =ala-1]w



where a € (0, 1) reflects the degree of risk-aversion.

For this utility function:

The Solution to [PR]

(67) and Lemma 2 imply:

(35) and (67) imply:

(36) and (66) require:
[ro—co]® > U and N\ [(ro—co)o‘—U} = 0.

(39), (66), and (67) imply that (37) can be written as:

— ’7_1 a s« T—To — —_ o
o | 5 |- gy - el
(41), (66), and (67) imply that (51) can be written as:
_{%__Z”]jt[)\ﬁ—)\z]a[ro—co]al
T ! _

e

(40), (66), (67), and (68) imply that (52) can be written as:

1

- HGb) [ = 1] 2 | [ -

v—1

(42), (66), and (67) imply that (53) can be written as:

|

01 —0

6—14

| e-c1- wmns,)

(73)

18



o [5][ [ee i

(66) and (67) imply that (43) can be written as:

(75)

¢ = [e-cllwr - w | | - o

S

(76)

To characterize the solution to [P-R], we need to characterize the values of the vari-
ables {d1, 0n, A1, Ao, 7o, 7, s }. Expressions for these variables are defined in (69) — (75).

H(-) and ¢ are defined in (44) and (76), respectively. We can solve this nonlinear mixed
complementarity program using the PATH algorithm in GAMS.

Lemmas 1 — 5 imply that expected procurement cost is:

51 Gn 3
E{Proc Cost } = /5 rdG(9) + ) {p(d) r+[1—p(d)] F}dG(é)-l—/a ro dG(0)

On
{ms—lue—g]}awm/ r

{r+ls—1][e=c]}G(01) +[1=G(n)] 7o

+ /(:n {F+ (%[u(w) —u(@)]yll [s—1][c—c] }dG((S)

= {7+ [s—1][c—c|}G(d1)+ [1 —G(dn)] 0

w) 7T H(81,6,).

B{r} — /5 b {u(@)—%} dG(5) + / " o ca) dG6)

On

' /:"{u<w>+ [”T‘ﬂ (g)”l‘l[u@)—u(m]ﬁ }dG@

Lemma 1 implies:

19



o1 N\ 6 (1 _
v f {c—(g[u@)—u(wn) o-cl+ 2 (5 luw) - u(m))
—catoy [T 5dce) 1 (1- G5, et 2G6,) — G61)]
~[o— e u(w) — o(@)]7T H(316,)+ 2 [u(w) — u(@)]7T H(:,5,)

The Solution to [PNC-R]
Because A > 0, (34), (66), and (67) imply that (56) can be written as:

) = wmy+ [122] (2

Y

= 8((;(5 = “/(w)+(%)711[U(w)—U(@)]”il[U'(w)—U’(@)]
W) (%)”“[u@)—u(mw W(w)[e—c]

(67), (68), and (78) imply that (62) can be written as:

! [u'm) #(5) " Tatw) - a7 ) - o] | - 1

20



~ () [s = 1o 2] | | futw) ()5 [w(w) ~ ()] = 0
& A [o@“% <%)%1 [wo‘—@a]711 [aw*™ —a@al}] -1
— H(61)[s—1][c—c] [ﬁ} [w“—m“]ij [aw* ™ —aw* '] =0 (80)

+ [s—1]| — | [w* =@~ aw* " [c—c]} = 0. (81)
=

To characterize the solution to [PNC-R|, we need to specify the values of {1, A, 7, s}.
These variables are specified in the conditions (69), (77), (80), and (81). The variable H (¢ )

is defined in (58). We can solve for this nonlinear mixed complementarity program using the
PATH algorithm in GAMS.

Lemmas 1 — 3 and 6 imply:
01
B{ Proc Cost} — / rdGO)+ | {p() r+[1—p(3)] 7} dG(5)
[

= {7+ [s-1][e=c]}G(0) + [ {T+p(0)[z—T]}dGC(3)
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(34) and Lemmas 1 — 3 imply:

B = [ 51[u<w>—ﬂda<a>

Lemma 1 implies:
1

B0} ~ [ "1 ace) + / (51w~ u(@) 1) ac)

= G(01) + [u(w) — u(@)]7T H(6,).

1 T 5 (1 N\
+/§1{c—(5[U(w)—U(w)1) e cl+ 2 (5 lutw - u(m)]) }de)
1 (% B
_ gG((Sl)—i—;/ 5 dG(6) +2[1—G(6))]
e el lulw) — u(@) |7 HG) + [u(w) — (@) 77 H(6)
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