Technical Appendix to Accompany
“Optimal Policies to Promote Efficient Distributed Generation of Electricity”

by David P. Brown and David E. M. Sappington

Part A of this Appendix states and proves Proposition 6. Part B outlines the analysis that
underlies the numerical solutions in Section 7 of the paper and in Part C of this Appendix.
Part C presents additional numerical solutions.

A. The Optimal Regulatory Policy with State-Specific Pricing with Externalities

Proposition 6 characterizes the optimal regulatory policy when the regulator can set: (i)
customer-specific TOU unit retail prices (r;;); (ii) customer-specific fixed retail charges (R;);
(iii) technology-specific and time-varying DG payments (wj;); and (iv) technology-specific
capacity payments (k,). The regulator seeks to maximize the difference between expected
consumer welfare and expected losses from environmental externalities while ensuring S
non-negative expected profit. Formally, the regulator’s problem, [RP-te], is

Mazimize. E{UP()+U"()} —E{v()} (1)

Tty Rj, ky,wjt K

subject to: E{m} > 0. (2)

Proposition 6. At the solution to [RP-te]:
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Proof. Let A > 0 denote the Lagrange multiplier associated with constraint (2). Then the
necessary conditions for an interior solution to [RP-te] include:!
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'We assume Kp; > 0 and Kp, > 0 at the solution to [RP-e].
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(8) implies that A\ = 1 at the solution to [RP-te].

% — 1y for j € {D,N}and t € {L, H} since V{ (X) is the gross surplus consumer
j derives from output X in period t.2 Also, because A = 1 and g;((; = gfj; = ggﬁ =1 (since
QY = XN+ XP —0,Kp; —QF and X; = XN + XP), (9) can be written as:
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Because \ = 1, a2t s ot a function of 6;, Q! = 0; Kp;, and k; only affects Q¥ through
Kpi, (3) can be written as:
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Observe that A = 1, 8?# is not a function of 6;, and k,, only affects @)} through Kp,

2This will be the case if M <0 forall ry, ry (s#t, s,t € {L,H}), which we assume to be true.



and the corresponding impact on Q). Therefore, (4) can be rewritten as:
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B. Elements of the Numerical Solutions.

The numerical solutions in Section 7 of the paper and in Part C of this Appendix employ
the following functional forms:
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stants, for j € {D,N} and t € {L, H}.3

Using (19) — (25) and the fact that Kp;, QF, and r are not functions of ; at the solution
to the problems under consideration:
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3 As noted in the paper, Byp = Byn = 1 in the baseline setting.
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The conclusions in (26) — (32) allow us to numerically integrate out ; separately from the
computation of the endogenous variables using the Newton-Raphson Method.

Given 6,, there is a critical unit retail price, 7;,(6;), at which X7 (7,(6,),6;) = 0:
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Let 7 denote the established unit retail price. (33) implies that consumer j’s expected
gross surplus in period ¢ is:
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Because there is a probability mass in the empirical distribution function at 6, = 0 for
both t € {L, H}, we estimate (26) — (36) using a two-part conditional expectation approach.

Specifically:
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where F,"(6) is the density function for the strictly positive values of 6;, and where P(6; > 0)
and P(0, = 0), respectively, are the probabilities that 6, > 0 and that 0, = 0.



State-Specific Retail Prices and DG Payments

Here we consider the setting where the regulator can set unit retail prices and DG out-
put payments that vary across states but not across consumers. To characterize the optimal
regulatory policy in this setting, we first solve analytically for the state-specific variables
ri(0;), Qi(0y), Qr(0;), and QV(A;). Then we characterize the optimal non-stochastic vari-
ables Kp;, Kp,, Ko as a system of non-linear equations that can be solved via nonlinear
programming and numerical integration. Finally, we employ a quasi-Monte Carlo approach
to compute expected utility, social losses from externalities, and welfare.

It is readily verified that at the solution to the regulator’s problem in this setting:
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(37) and the necessary condition for an optimal choice of Kp; imply:
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Solution Procedure

Step 1. Solve for the non-stochastic variables { K¢, Kp;, Kp,} defined in the nonlinear sys-
tem (42), (43), and (44) using the PATH algorithm and numerical integration.

Step 2. Using the identified values of {Kg, Kp;, Kp,}, calculate point estimates for the
stochastic variables 7:(0;), wi(0:), wnt(6;), and Q}(6;) defined in (37), (39), and (41). We
employ a Monte Carlo algorithm in each period t € {L, H}. We select a set of M = 1,000 6,
values (61, 02, ..., 0p) and solve for the state-specific variables for each t € {L, H}. The M
6, values are chosen via the Halton Sequence. Then we average these stochastic solutions,
using weights that reflect the likelihood of the relevant 6;,’s for each j = 1,2,..., M. For
instance, the point estimate for w;(6;) is determined by:

M f(0;1)
B ~ ;ﬂjt(%) walb) where py(0n) = S =ro

Step 3. Compute the values of expected utility, expected welfare, expected losses from envi-
ronmental externalities, and the fixed retail charges using a Quasi-Monte Carlo Integration
method. We select M = 1,000 6; values (61,02, ...,0:) and solve for the state-specific
variables for each t € {L, H}. Taking the non-stochastic variables { K¢, Kp;, Kp,} derived
in Step 1, we solve for the fixed charge, utility of each consumer group, environmental losses,
and welfare for each particular 6;; draw. Then, we approximate the expected value of these
variables by taking a weighted average of these M draws, where the weights reflect the
probability density function that specifies the likelihood of a particular 6 -draw.
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TOU Pricing and TOP DG Payments

Now consider the setting where the regulator can set: (i) TOU retail prices that do not
vary across customers (r;); (ii) a fixed retail charge (R); (iii) technology-specific, time-varying
DG payments (wy); and (iv) technology-specific DG capacity payments (k,). The values of
wy and k; are not unique in his setting. We assume w;, = r, for t € {L, H}.

The necessary conditions for a solution to the regulator’s problem in this setting include:
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(46) — (53) characterize a system of 13 equations and 13 unknowns that can be solved
using the PATH algorithm and numerical integration. E{Q}(-)} and E{Q}(-) 0,} are defined
in (27) and (28).
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Flat Retail Prices and DG Payments

Now consider the setting where the regulator can set: (i) retail prices that do not vary
across customers or over time (7); (ii) a fixed retail charge (R); (iii) technology-specific DG
payments (w,); and (iv) technology-specific DG capacity payments (k,). w; and k; are not
unique in this setting. We assume w; = r.

The necessary conditions for a solution to the regulator’s problem in this setting include:
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KDn
te{y,H}
bn
= B Z [Q?]Q +/{?n = (an+2bDnKDn; (56)
(Kpn) te{y,H}
0, vy,
/ CUQt()dFt(et) = CLK+2bKKG+ag
(Ke)?
te{y,H}
0,
Cy v
= o > Q!(-)dFy(0;) = ax +2bg K¢ + a$; (57)
Gl ey
0
k;, = Z / {av+2b Q7 () + -+6v—6i]9tdFt(9t)_aT
te{y,H}
c O
— Z (av—i—Kv —wi—i—ev—ei) 6’{3—}-21)” Q7 (-) 0, dF,(0,) —alT)Z; (58)
te{y,H} G C

2, 220 - 0,0 anio
te{v,H

0
— ot e el b Y /@t ) dF(0,) (59)

te{sz}
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6.
t Q
kn = Z / |:a/v+2b Q;() + +e,— e, }aKDtndEwt)_aT
te{y,H}
Wy — Ap Co . . .
e Z av+__Wn+ev_en+2bv Qt()dﬂ(et) —aT ’ (60)
2b, Kea ;
te{y,H} 0,
Zte{w,H}f;t [av +2b, Q7 () + I?é; +€v] [apt + ant | dE(0;)
71 —
0t
Siequry Jy Lo+ ani] dF(60))
04
= a,+ K testby Y / QV(-) dF,(0,). 61)

te{y,H}

Equations (54) — (61) characterize a system of 10 equations and 10 unknowns that can
be solved using the PATH algorithm and numerical integration. E{Q¥(-)} and E{QV(-) 0}
are defined in (27) and (28).
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Flat Retail Prices and No DG Capacity Payments

Now consider the setting where the regulator can set: (i) retail prices that do not vary
across customers or over time (r); (ii) a fixed retail charge (R); and (iii) technology-specific
DG payments (w,). The regulator cannot implement DG capacity payments.

The necessary conditions for a solution to the regulator’s problem in this setting include:

Z w; 0F = ap; +2bp; Kpi; (63)
te{y,H}

0¢ Qr 2
/ bn <_t) dFt(et) = apn + 2 bDn KDn
0 KDn

te{y,H}
bn,

(KDn>2

> QP = apn+2bpn Kpn; (64)
te{y,H}

=

0y
> / C“Qt =~ dF(0;) = ax +2bx Kg + af
te{y,H}

01
Cy v _ G,
7 (Kap? te{%} ,, GO0 = ok B o v er )

Zte{w,H}fét [av+2bv Q() + & +ev] [aps + ane | dE(6;)

7
Sve oy Jot Lo+ ani] dF(60))

0
— a, + K teotby Y /Qt ) dF,(6,) . (66)

te{y,H}

— 67,:| et dFt(et) — aTZ

>oowiof = /Gt{azﬁr%@:()

te{y,H} te{y,H}

_ C E
= Z {|:GU+K_G+€v_ei:|9t +26’U

te{y,H}

01

Q7 () 0, dF,(0;) } - aZrJZ- (67)

0,
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g
¢ Co 0Q . | OKpy,
{ Z / ( n— ay —2b,Q7() — Ko en — €y )GK;M dF,(0,) + af D0
te{y,H}
z ‘. oQ;
- > n— Gy — 2D, QV(-) — en — €y | =L dF,(0,) = 0. (68)
KG 0 n
te{y,H}
From (62): " n
00 _ Ly ey = 9 (69)
8KDn an KDn
Differentiating (62) and (64) with respect to w, provides:
2b, dQy  2b,Qy dKp,
@ _ Qﬁ L ¥ (70)
Kpn dw, (Kp,)* dw,
2 j 2 o dK
Kpn dw,  (Kp,)" dw,
2b, Q) dQy | 20, Qfy dQ
(Kpn)® dwn  (Kp,)? dw,
20, N K dK
(Kpn) dw, dwy,
(70) — (72) can be rewritten as:
qQr,
dwn, 1
Al =] 1 (73)
dKpy O
dwn,
2by 2bn Q7
Kpn 0 ~ W
where A = 0 % - % (74)

Observe that:

2b,
Al =

2bn Qy 2b, Q%

(Kpn)? (Kpn)?

KDn

2b, 2b,
KDn (KDn>3 Z

(KD )3 Zte{L H} (Qt) -2 bDn

"2 —2bp, | —
S B T
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20,Qy [o- <2bn) 2an$} _ = 8bpn (bn)?
(Kpn)? Kon) (Kpa)*] — (Kpa)*

(74), (75), and Cramer’s Rule imply:

2y

n 1 O (KDn)2

4@y _ 1 20n _2b.QY

dw | Al Kpn (Kpn)?
0 (KDn)Ié o (;Dn)?» Zte{L,H} (QF)" —2bpy

1
| Al

(KDn)4 te (v, H} KDn (KDn)4 (KDn)4

ST R U S NG e A @z]_ -

QY = @, from (62). Consequently, (75) and (76) imply:

aqr Kp,)? 4b, by,
P _ ( D) - |- 32<Q$>2+bDn
dwn 8 bDn (bn) KDn (KDn)
Kpn 2b,, ) 1 [/ Qp\* Kbp,
= n b n = .
Similarly, it is readily shown that:
dQy 1 (Q%\ ., Ko
(73), (74), and Cramer’s Rule imply:
B0 2
dEKp, _ 1 0 2 | 1 [_4@”)2%}3 A(bn) cgg R
dwy, 1A on0n aon . | Al (Kpn) (Kpn)
(Kpn)*  (Kpn)®
QY = Qy, from (62). Consequently, (75) and (79) imply:
dKp, _ (Kpa)® | 8" Q% | _ Qi (80)
dwn 8 bDn (bn)2 (KDn)3 bDn KDn .

Qy = Q) = Q" from (62). Therefore, (69), (77), (78), and (80) imply that (68) can
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be written as:

‘{ 2 /6( w s — 25, QU

te{v,H}

te{y,H}

0+
Z / |: n— Gy — ZbUQ;}(')_[?UG—FGn—GU}

2b, Q" 0 "
- 2l QU AR(6:) + a?"] %
Dro e {y.HY Dn 1 Dn,
& ] 1 Qn 2 KDn
-2 n — Wy ™ n — €v R
[w a KG—I—G e_lbDn<KDn> +2bn]
1 Qn 2 KDn_ (o
2 7(+) dF; =
+ 2b, bpn <KDn) * 2b, | te{%g} Qt() d t(et) 0
Cy (Qn)?
= _2 wn_aﬂ__‘i_en_ev D E—
|: Kq } bDn(KDn)2
2bU Qn 2 o v Qn Dn
b K Z Q; () dF(0:) — b 0T
Dn Dn te{o.H} o Kpn
o - 1 Qn ? KDn
-2 n — Yo — €y R
|:w a Kq € | [bDn (KDH> + 2bn]
1 QTL ? KDn_ 6,5
T, (KD,) o / Qi () dF(6;) = 0
1 te{y,H}
G [ 2 Q" ’ Kpn Q" D
— 9 o B 2 )
- {w" " K¢ ev] bpn (KDn) + 2b, | bpn Kpy, ap
2 Qn 2 KD | 9t
25y - ) dF,(6,) = 0.
- bDn (KDn) . 2b, Z / Q7 () dFy(6,)

1 te{y,H}

dFy(0;) + a?"}

bpn Kpn

(81)
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(62) — (67) and (81) constitute a system of 8 equations and 8 unknowns that can be
solved using the PATH algorithm and numerical integration. E{Qy(-)} and E{Qy(-) 0} are
defined in (27) and (28).

C. Additional Numerical Solutions.

We now present two sets of additional numerical solutions to complement those provided
in the paper. The first set of numerical solutions consider outcomes in a “coal-intensive”
setting which is designed to reflect a environment where S primarily employs coal-powered
generating units to serve a relatively small market (as in Ohio, for instance). In this setting,
¢. = 0.9, ¢, = 0.1 (so e, = 35.692), and the demand parameters are chosen to ensure that

expected demand for consumer j in period ¢ is 7; )A(t,‘l where )?w = 9,748 and )?H = 18,1427

S’s capacity cost function, C¥(Kg) = 16.1 Kg + .000674 (K¢)®, is specified to ensure
the marginal cost of capacity required to generate a MWh of electricity is approximately
60.4 when Ko = Kg = 32,854. Kg = 32,854 MW reflects the level of centralized non-
renewable generation capacity in Ohio in 2013 (EIA, 2015¢). The estimated cost of capacity
required to produce a MWh of electricity using a coal generating unit is $60.4 (EIA, 2015a).

As in the baseline setting, we choose a,, b,, and ¢, (the parameters of S’s quadratic C“(-)
function) to reflect Bushnell (2007)’s estimates for the serving region of the PJM regional
transmission organization, assuming that the welfare-maximizing level of S’s capacity in the
model is Kg. Doing so provides the cost function C%(Q") = 0.00313 (Q*)?.

The values of ap, and bp, for y € {i,n} are set as in the baseline setting, except that the
benchmark level of DG-n capacity is reduced to K pn = 3,837.35 = 0.1168 - l?g, reflecting
the ratio of non-intermittent to centralized capacity ( K p,/ Kg = 0.1168) observed in the
baseline setting.

Table A1 records outcomes under the optimal regulatory policy in this setting when retail
charges (r, R) cannot vary with customer type, the prevailing demand period, or the realized
state. The variables reported in Table A1l are defined in the paper.

4The demand parameters are also set to ensure the relevant elasticities of demand with respect to 6 are 0.1
and the relevant price elasticities of demand are — 0.25 at the relevant expected levels of price and demand.

®Annual system peak load in Ohio was 27,563 MWs in 2013 (Ohio PUC, 2015). Xy is taken to be
0.66 [27,563] = 18,192 MWs, employing the 0.66 ratio of average peak load to system peak load in Cal-

ifornia in 2014. X is taken to be 1.867 [18,192] = 9,748 MWs, using the 1.867 ratio of average peak to
off-peak demand that prevailed in California in 2014.

22



Without DG With DG
Variable | Capacity Charges | Capacity Charges
r 156.1 156.3
w; 189.3 156.3
Wy, 134.4 135.2
k; 0 23.0
ky, 0 —24
Kp; 5,176 5,193
Kpp 3,657 3,585
Ko 29,116 29, 142
E{c’} 132.7 132.7
T Di 70,455 70,903
T Dn 92,984 89, 326
E{UP} 1,100, 890 1,098,048
E{UN} 8,437,104 8,440,412
E{y} 841,345 841,610
E{W} 8,696, 649 8,696, 849

Table A1l. Outcomes in the Coal Intensive Setting.

Table A1 reports that when the regulator can set DG capacity charges in the coal intensive
setting, she optimally implements a capacity payment (k; > 0) for the clean DG-i technology
and a capacity tax (k, < 0) for the less clean DG-n technology. This payment and tax
induce increased investment in DG-i capacity and reduced investment in DG-n capacity.
On balance, profit from DG operations declines and social losses from externalities increase
slightly.

The second set of numerical solutions examine the optimal regulatory policy and industry
outcomes in the baseline setting when the regulator sets DG capacity charges to maximize
expected welfare. Table A2 compares outcomes for three cases: (i) when the retail price
of electricity (r) cannot vary within or across time periods (“Flat”); (ii) when TOU retail
pricing is implemented (“TOU”); and (iii) when state-specific retail pricing is implemented
(“SS”).° Because consumer D cannot control the level of output from the DG-i technology
other than through his choice of capacity (Kp;), w; and k; are redundant instruments for
the regulator when both are available. In this event, we assume the regulator implements
net metering (w; = r) for the DG-i technology.

In each case, the regulator can set a per-unit retail charge (r) and a fixed retail charge (R). Reflecting
common practice, these charges do not vary by customer type. The unit retail prices (r) and DG output
payments (w) reported in the last column of Table A2 reflect expected prices and payments.
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Variable Flat TOU SS
£ 148.4 122.7 122.3
rH 148.4 172.5 172.6
Wi 148.4 122.7 122.3
Wi 148.4 172.5 172.6
Whp 127.4 101.7 101.3
W H 127.4 151.5 151.6
3 215 5.6 5.1
ky, —2.4 —24 —2.4
Kp; 3,869 2,922 2,301
Kp, 6,010 6, 564 6,964
K¢ 66, 831 66, 362 66, 266
E{c'} 1915 189.3 187.4
T Di 39, 368 22,446 14,034
T D 113,125 134,940 | 152,012
E{UP} | 1,444,739 1,457,830 | 1,471,888
E{U"} | 11,630,212 | 11,703,983 | 11,752,576
E{y} 604, 761 612,459 623,007
E{W?} | 12,470,189 | 12,549,354 | 12,601,456

Table A2. The Effects of Retail Pricing Flexibility in the Baseline Setting.

Table A2 reports that when TOU and state-specific pricing are feasible, the regulator
sets (expected) retail prices and DG output payments that are higher in the peak period
than in the off-peak period. The optimal level of centralized capacity declines modestly
and the regulator reduces k; in order to (substantially) reduce investment in DG-i capacity.
Expected losses from environmental externalities increase modestly, as does the expected
utility of both consumers. Expected aggregate welfare increases slightly.
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