Technical Appendix to Accompany

"Employing Lenders’ Deep Pockets to Resolve Judgement-Proof Problems"
by
Tracy R. Lewis and David E. M. Sappington

Proof of Proposition 1.

Expression (3) implies that:

$$
P(D)= \begin{cases}D & \text { for } D \in[0, W+V+L] \tag{A1}\\ W+V+L & \text { for } D \in[W+V+L, \bar{D}]\end{cases}
$$

(A1) and (5) imply that:

$$
\begin{equation*}
R(D)=0 \text { for all } D \in[W+V+L, \bar{D}] \tag{A2}
\end{equation*}
$$

Since (A1) and (A2) imply that the producer will forfeit all of his assets and make no payments to the lender when social damages exceed $W+V+L$, the producer's voluntary participation constraint, (2), can be written as:

$$
\begin{equation*}
\int_{0}^{W+V+L}[W+V+L-P(D)-R(D)] d F(D \mid c)-K(c) \geq W . \tag{A3}
\end{equation*}
$$

Let $\lambda, \mu, \xi(D)$, and λ^{L} denote the Langrange multipliers associated with constraints (A3),
(4), (5), and (6), respectively. Also let $\boldsymbol{\gamma}$ denote the Lagrange multiplier associated with the constraint that $\bar{L} \geq L$. Then the Lagrangean function associated with [P] can be written as:

$$
\begin{align*}
& \mathscr{L}=V-\int_{0}^{\bar{D}} D d F(D \mid c)-K(c) \\
& +\lambda\left\{\int_{0}^{W+V+L}[W+V+L-D-R(D)] d F(D \mid c)-K(c)-W\right\} \\
& +\mu\left\{\int_{0}^{W+V+L}[W+V+L-D-R(D)] f_{c}(D \mid c) d D-K^{\prime}(c)\right\} \\
& +\int_{0}^{W+V+L} \xi(D)[W+V+L-D-R(D)] f(D \mid c) d D \\
& +\lambda^{L}\left[\int_{0}^{W+V+L} R(D) d F(D \mid c)-L\right]+\gamma[\bar{L}-L] . \tag{A4}
\end{align*}
$$

Differentiating (A4) with respect to $R(D)$ provides the following necessary condition for a solution to [P]:

$$
\begin{align*}
& {\left[\lambda^{L}-\lambda-\xi(D)\right] f(D \mid c)-\mu f_{c}(D \mid c) \leq 0 ; \text { and }} \\
& \qquad R(D)[\cdot]=0 \text { for all } D \in[0, W+V+L] . \tag{A5}
\end{align*}
$$

Result 1. Suppose $L>0$. Then there exists a $D^{o}(L) \in(0, W+V+L)$ such that:

$$
\begin{equation*}
Z\left(D^{o}\right) \equiv \lambda^{L}-\lambda-\mu \frac{f_{c}\left(D^{o} \mid c\right)}{f\left(D^{o} \mid c\right)}=0 . \tag{A6}
\end{equation*}
$$

Proof. Here and throughout, let $A \equiv W+V+L$. Suppose $Z(D)>0$ for all $D \in[0, A]$. Then $\xi(D)>0$ for all $D \in[0, A]$ from (A5). Consequently, $R(D)=A-D$ for all $D \in[0, A]$, from (5). But then $\pi(c)=0$ for all c, so $c=0$, which is a contradiction.

Similarly, if $Z(D)<0$ for all $D \in[0, A]$, then (A5) implies that $R(D)=0$ for all $D \in[0, \bar{D}]$. Hence, $L=0$ from (6). Therefore, since $L>0$ by hypothesis, there exists a $D^{o} \in(0, A)$ such that $Z\left(D^{o}\right)=0$.

Result 2. $\mu>0$.
Proof. Suppose $\mu<0$, and consider the case where $L>0$. (The proof for the case where $L=0$ is similar, and so is omitted.) Since $f_{c}(D \mid c) / f(D \mid c$) is decreasing in D, it follows from (A5) and (A6) that $Z(D)>0$ and hence $\xi(D)>0$ for all $D \in\left[0, D^{o}\right)$. Therefore, from (5), $R(D)=$ $W+V+L-D$ for all $D \in\left[0, D^{o}\right)$. Also, since $Z(D)<0$ for all $D>D^{o}, R(D)=0$ for all $D>D^{o}$. Therefore:

$$
\begin{equation*}
\pi(c)=\int_{D^{o}}^{A}[A-D] d F(D \mid c)-K(c) \tag{A7}
\end{equation*}
$$

But (A7) implies that $c=0$, which is a contradiction.
An analogous proof by contradiction reveals $\mu \neq 0$ whenever the unobservability of c is
constraining. Therefore, $\boldsymbol{\mu}>0$, which implies that total expected surplus would increase if c were increased above its level at the solution to [P].

Result 3. If $\xi\left(D^{\prime}\right)>0$ for some $D^{\prime} \in[0, A)$, then $\xi\left(D^{\prime \prime}\right)>0$ for all $D^{\prime \prime} \in\left[D^{\prime}, A\right]$.
Proof. From (5), if $\xi\left(D^{\prime}\right)>0$, then $R\left(D^{\prime}\right)=A-D^{\prime}>0$. Therefore, (A5) implies that:

$$
\begin{equation*}
0<\xi\left(D^{\prime}\right)=\lambda^{L}-\lambda-\mu \frac{f_{c}\left(D^{\prime} \mid c\right)}{f\left(D^{\prime} \mid c\right)} \tag{A8}
\end{equation*}
$$

Since $\mu>0$ and $f_{c}(\cdot) / f(\cdot)$ is decreasing in D, the expression to the right of the equality in (A8) increases with D. Consequently, $\xi\left(D^{\prime \prime}\right)>\xi\left(D^{\prime}\right)>0$ for all $D^{\prime \prime} \in\left(D^{\prime}, A\right]$.

Result 4. There exists a $\hat{D}(L) \in[0, W+V+L]$ such that $\xi(D)=0$ for all $D \in[0, \hat{D}(L)]$ and $\xi(D)>0$ for all $D \in(\hat{D}(L), W+V+L]$.

Proof. Suppose $\xi(D)>0$ forall $D \in[0, A]$. Then $R(D)=A-D$ for all $D \in[0, A]$, andso $\pi(c)=0$ for all c. Hence, $c=0$, which is a contradiction. Therefore, $\xi(D)=0$ for some $D \in[0, A]$, and so Result 4 follows from Result 3.

Result 5. There exists a $\hat{D}(L) \in[0, W+V+L]$ such that:
$R(D)=\left\{\begin{array}{cl}0 & \text { for all } D \in[0, \hat{D}(L)] \\ W+V+L-D & \text { for all } D \in(\hat{D}(L), W+V+L] .\end{array}\right.$
Proof. The $\hat{D}(L)$ identified in Result 5 is the same $\hat{D}(L)$ identified in Result 4. Suppose $R(D)>0$ for some $D^{\prime} \in[0, \hat{D}(L))$. Then the arguments employed in the proof of Result 3 imply that $\xi\left(D^{\prime \prime}\right)>0$ for all $D^{\prime \prime} \in\left[D^{\prime}, \hat{D}(L)\right)$, which contradicts Result 4. Therefore, $R(D)=0$ for all $D \in[0, \hat{D}(L)]$. Furthermore, (5) and Result 4 imply that $R(D)=W+V+L-D$ for all $D \in(\hat{D}(L), W+V+L]$.

Result 4 implies that the solution to $[P]$ is characterized in part by the following equalities:

$$
\begin{equation*}
H^{1} \equiv \int_{0}^{\hat{D}(L)}[W+V+L-D] f_{c}(D \mid c) d D-K^{\prime}(c)=0 ; \text { and } \tag{A9}
\end{equation*}
$$

$$
\begin{equation*}
H^{2} \equiv \int_{\widehat{D}(L)}^{W+V+L}[W+V+L-D] d F(D \mid c)-L=0 \tag{A10}
\end{equation*}
$$

(A9) reflects the producer's profit-maximizing choice of c, given the repayment policy summarized in Result 5. (A10) reflects constraint (6) in $[P]$.

Letting H_{j}^{i} denote the partial derivative of H^{i} with respect to variable $j \in\{c, L, \hat{D}\}$, it follows from (A9), (A10), and Cramer's Rule that:

$$
\frac{d c}{d L}=\left|\begin{array}{cc}
-H_{L}^{1} & H_{D}^{1} \tag{A11}\\
-H_{L}^{2} & H_{D}^{2} \\
\hline H_{c}^{1} & H_{D}^{1} \\
H_{c}^{2} & H_{D}^{2}
\end{array}\right| .
$$

For future reference, notice that:

$$
\begin{align*}
& H_{c}^{1}=\int_{0}^{\hat{D}}[W+V+L-D] f_{c c}(D \mid c) d D-K^{\prime \prime}(c)<0 ; \tag{A12}\\
& H_{\hat{D}}^{1}=[W+V+L-\hat{D}] f_{c}(\hat{D} \mid c) ; \tag{A13}\\
& H_{L}^{1}=F_{c}(\hat{D} \mid c) ; \tag{A14}\\
& H_{c}^{2}=\int_{\hat{D}}^{W+V+L}[W+V+L-D] f_{c}(D \mid c) d D \tag{A15}\\
& H_{\hat{D}}^{2}=-[W+V+L-\hat{D}] f(\hat{D} \mid c) ; \text { and } \tag{A16}\\
& H_{L}^{2}=F(W+V+L \mid c)-F(\hat{D} \mid c)-1 . \tag{A17}
\end{align*}
$$

Now define D to be the damage realization for which $f_{c}(D \mid c)=0$ at the solution to the problem corresponding to [P] where L is restricted to be zero. If $W+V \geq D$, then, by raising L above zero, it is possible to: (1) induce the producer to increase c without altering his expected profit; and (2) ensure the lender's voluntary participation. These two outcomes, which secure an increase in surplus, are effected by reducing the producer's payoff for some realizations of D for
which $f_{c}(D \mid c)<0$ and increasing the producer's payoff for some realizations of D for which $f_{c}(D \mid c)>0$. Consequently, $\left.\frac{d c}{d L}\right|_{L=0}>0$ and $L>0$ at the solution to [P] if $V+W \geq D$.

Now suppose $V+W<\boldsymbol{D}$. Notice that when $L>0$ at the solution to [P], Result 5 implies that constraint (6) in [P] will only be satisfied if:

$$
\begin{equation*}
\hat{D}(L)<W+V+L \tag{A18}
\end{equation*}
$$

(A12), (A13), (A15) and (A16) imply that the denominator of the fraction in (A11) is:

$$
\begin{align*}
& H_{c}^{1} H_{\hat{D}}^{2}-H_{\hat{D}}^{1} H_{c}^{2}=[W+V+L-\hat{D}]\left\{-f(\hat{D} \mid c) H_{c}^{1}\right. \\
&\left.-f_{c}(\hat{D} \mid c) \int_{\hat{D}(L)}^{W+V+L}[W+V+L-D] f_{c}(D \mid c) d D\right\} \tag{A19}
\end{align*}
$$

As $L \rightarrow 0, \hat{D}(L) \rightarrow W+V+L$. Therefore, (A12), (A18), and (A19) imply that:

$$
\begin{equation*}
H_{c}^{1} H_{\widehat{D}}^{2}-H_{\widehat{D}}^{1} H_{c}^{2} \stackrel{s}{=}-f(\hat{D} \mid c) H_{c}^{1}>0 \tag{A20}
\end{equation*}
$$

(A20) and (A11) imply that:

$$
\begin{equation*}
\left.\frac{d c}{d L}\right|_{L=0} \stackrel{s}{=} H_{L}^{2} H_{\hat{D}}^{1}-H_{L}^{1} H_{\hat{D}}^{2} \tag{A21}
\end{equation*}
$$

From (A13), (A14), (A16), and (A17):

$$
\begin{align*}
H_{L}^{2} H_{\hat{D}}^{1}-H_{L}^{1} H_{\hat{D}}^{2}= & {[W+V+L-\hat{D}]\left\{f(\hat{D} \mid c) F_{c}(\hat{D} \mid c)\right.} \\
& \left.+f_{c}(\hat{D} \mid c)[F(W+V+L \mid c)-F(\hat{D} \mid c)-1]\right\} \tag{A22}
\end{align*}
$$

(A21) and (A22) imply that as $L \rightarrow 0$:

$$
\begin{equation*}
\left.\frac{d c}{d L}\right|_{L=0} \stackrel{s}{=} F_{c}(V+W \mid c)-\frac{f_{c}(V+W \mid c)}{f(V+W \mid c)} \tag{A23}
\end{equation*}
$$

Notice that $F_{c}(0 \mid c)=0$, and that $f_{c}(0 \mid c)>0$ under the maintained assumptions. Also notice that as $V+W \rightarrow D, \frac{f_{c}(V+W \mid c)}{f(V+W \mid c)} \rightarrow 0$ while $F_{c}(V+W \mid c)$ is bounded strictly above zero. Therefore, since the maintained assumptions imply that $F_{c}(D \mid c)$ is strictly increasing in D and
$\frac{f_{c}(D \mid c)}{f(D \mid c)}$ is strictly decreasing in D, it follows from (A23) that there exists a $D^{\prime}<D$ such that

$$
\begin{equation*}
\left.\frac{d c}{d L}\right|_{L=0} \stackrel{\gtreqless}{\gtreqless} 0 \quad \text { as } \quad V+W \stackrel{\gtreqless}{<} D^{\prime} \tag{A24}
\end{equation*}
$$

(A24) implies that $L>0$ at the solution to [P] whenever $V+W>D^{\prime}$.

