
Technical Appendix to Accompany

�On the Design of Price Caps as Sanctions�

by D. Turner and D. Sappington

Part A of this Technical Appendix provides detailed proofs of the formal conclusions in the
paper.1 Part B analyzes the benchmark setting in which R is a monopoly supplier. Part C
considers the setting where R�s pro�t replaces R�s revenue in the welfare function. Part D
analyzes a benchmark setting with exogenous prices. Part E explores another benchmark
setting in which R has a di¤erent cost structure. Part F examines how equilibrium outcomes
change as parameter values change in the modi�ed baseline setting, where iso-elastic demand
prevails. Part G presents two supplemental �gures.

Equations from the Text

CR(qA; qN) = cA qA +
kA
2
[ qA ]

2 + cN qN +
kN
2
[ qN ]

2 +
kR

2
[ qA + qN ]

2 . (1)

D � [ 2 b+ k ]
�
kN
�
kA + kR

�
+ kA k

R
�
+ b kA [ 3 b+ 2 k ]� b2 [ b+ k ] > 0 . (2)

kA [ (a� cN) (2 b+ k)� b (a� c) ] > [ cN � cA ]
�
3 b2 + 2 b

�
k + kR

�
+ k kR

�
. (3)

R�s problem is:

Maximize
qA� 0; qN � 0

PA(qA + qN + q ) qA + [ a� b (qA + qN + q ) ] qN � CR(qA; qN)

where PA(Q) =

(
p if P (Q) � p

P (Q) if P (Q) < p .
(4)

The rival�s problem is:

Maximize
q� 0

[ a� b (qA + qN + q ) ] q � C(q) . (5)

The inequality in (2) holds because:

D = [ 2 b+ k ]
�
kN
�
kA + kR

�
+ kA k

R
�
+ b kA [ 3 b+ 2 k ]� b2 [ b+ k ]

= b
�
kN
�
kA + kR

�
+ kA k

R
�
+ [ b+ k ]

�
kN
�
kA + kR

�
+ kA k

R
�

+ 2 b kA [ b+ k ] + b2 kA � b2 [ b+ k ]

= b
�
kN
�
kA + kR

�
+ kA k

R
�

+ [ b+ k ]
�
kA kN + kN k

R + kA k
R + 2 b kA � b2

�
+ b2 kA

> [ b+ k ]
�
kA kN + kN k

R + kA k
R + 2 b kA � b2

�
1Some of the formal conclusions below generalize their counterparts in the paper.
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= [ b+ k ]
�
kA [ 2 b+ kN ] + kR [ kA + kN ]� b2

	
> 0 .

The �nal inequality here holds because kA [ 2 b+ kN ] + kR [ kA + kN ] > b2, by assumption.

A. Proofs of Formal Conclusions in the Paper.

Proposition 1. There exist values of the price cap, 0 < p0 < pd < pb, such that, in

equilibrium, qA = 0 if and only if p � p0. Furthermore: (i) p < P (Q) if p � pd; (ii)

p = P (Q) if p 2 (pd; pb ]; and (iii) p > P (Q) if p > pb.

Proof. The proof follows directly from Lemmas A1 �A6 (below), which refer to the following
de�nitions.

p0 � cA +
[ a� cN ] [ 2 b+ k ] � b [ a� c ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
�
b+ kR

�
. (6)

pd �
1

D2

f [ a (b+ k) + b c ]
� �
b+ kR

�
(kN + kA) + kN kA � b kN

�
+ b [ b+ k ] [ kA � b ] cN + b [ kN + b ] [ b+ k ] cA g

where D2 � b [ b+ k ] [ kN + kA ] + kN [ kA � b ] [ 2 b+ k ]

+ [ kN + kA ] [ 2 b+ k ]
�
b+ kR

�
. (7)

pb �
1

D3

f [ a (b+ k) + b c ]
� �
b+ kR

�
(kN + kA) + kN kA

�
+ b cN [ b+ k ] kA + b kN [ b+ k ] cA g

where D3 � b [ b+ k ] [ kN + kA ] + kN kA [ 2 b+ k ]

+ [ kN + kA ] [ 2 b+ k ]
�
b+ kR

�
= D2 + b kN [ 2 b+ k ] . (8)

Lemma A1. Suppose p � p0. Then in equilibrium:

qA = 0 , qN =
[ a� cN ] [ 2 b+ k ]� b [ a� c ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
,

q =
[ a� c ]

�
2 b+ kN + kR

�
� b [ a� cN ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
, and

Q = qA + qN + q =
[ a� c ]

�
b+ kN + kR

�
+ [ a� cN ] [ b+ k ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
. (9)

Proof. (4) implies that R�s problem when qA = 0 is:

Maximize
qN � 0

[ a� b (qN + q)� cN ] qN �
kN
2
(qN)

2 � kR

2
(qN)

2 : (10)
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(10) implies that R�s pro�t-maximizing choice of qN > 0 is determined by:

a� 2 b qN � b q � cN � kN qN � kR qN = 0 ) qN =
a� cN � b q

2 b+ kN + kR
. (11)

(5) implies that the necessary condition for an interior solution to the rival�s problem is:

a� b [ qA + qN + q ]� c� b q � k q = 0 , [ 2 b+ k ] q = a� b [ qA + qN ]� c

, q =
a� c

2 b+ k
� b

2 b+ k
[ qA + qN ] . (12)

(11) and (12) imply that when qA = 0:

qN =
a� cN

2 b+ kN + kR
� b

2 b+ kN + kR

�
a� c� b qN
2 b+ k

�

=
[ a� cN ] [ 2 b+ k ]� b [ a� b qN � c ]

[ 2 b+ kN + kR] [ 2 b+ k ]

) qN

�
1� b2

[ 2 b+ kN + kR] [ 2 b+ k ]

�
=
[ a� cN ] [ 2 b+ k ] � b [ a� c ]

[ 2 b+ kN + kR ] [ 2 b+ k ]

) qN
�
(2 b+ kN) (2 b + k)� b2

�
= [ a� cN ] [ 2 b+ k ]� b [ a� c ]

) qN =
[ a� cN ] [ 2 b+ k ]� b [ a� c ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
. (13)

(12) and (13) imply:

q =
a� c

2 b+ k
�
�

b

2 b+ k

�
[ a� cN ] [ 2 b+ k ]� b [ a� c ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2

=
[ a� c ]

� �
2 b+ kN + kR

�
(2 b+ k)� b2

�
� b [ a� cN ] [ 2 b+ k ] + b2 [ a� c ]

[ 2 b+ k ] [ [ 2 b+ kN + kR ] [ 2 b+ k ]� b2 ]

=
[ a� c ]

�
2 b+ kN + kR

�
[ 2 b+ k ]� b [ a� cN ] [ 2 b+ k ]

[ 2 b + k ] [ [ 2 b+ kN + kR ] [ 2 b+ k ] � b2 ]

=
[ a� c ]

�
2 b+ kN + kR

�
� b [ a� cN ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
. (14)

(13) and (14) imply:

Q = q + qN =
[ a� c ]

�
b+ kN + kR

�
+ [ a� cN ] [ b+ k ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
. (15)

From (6):

p0 =
1

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
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� f [ a� cN ] [ 2 b+ k ]
�
b+ kR

�
� b [ a� c ]

�
b+ kR

�
+ cA

� �
2 b+ kRN + kR

�
(2 b + k)� b2

�
g . (16)

(15) implies:

P (Q) = a� b
[ a� c ]

�
b+ kN + kR

�
+ [ a� cN ] [ b+ k ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2

=
a
� �
2 b+ kN + kR

�
(2 b+ k)� b2

�
� b [ a� c ]

�
b+ kN + kR

�
� b [ a� cN ] [ b+ k ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
:

(17)

Observe that: �
2 b+ kN + kR

�
[ 2 b+ k ] > 4 b2 > b2 .

Therefore, (16) and (17) imply:

p0 < P (Q) , [ a� cN ] [ 2 b+ k ]
�
b+ kR

�
� b [ a� c ]

�
b+ kR

�
+ cA

� �
2 b+ kN + kR

�
(2 b + k)� b2

�
< a

� �
2 b+ kN + kR

�
(2 b+ k)� b2

�
� b [ a� c ]

�
b+ kN + kR

�
� b [ a� cN ] [ b+ k ]

, [ a� cN ] [ 2 b+ k ]
�
b+ kR

�
� b [ a� c ]

�
b+ kR

�
+ cA

� �
2 b+ kN + kR

�
(2 b+ k)� b2

�
< a

� �
2 b+ kN + kR

�
(2 b+ k)� b2

�
� b [ a� c ]

�
b+ kN + kR

�
� b [ a� cN ] [ b+ k ]

, 0 < [ a� cA ]
� �
2 b+ kN + kR

�
(2 b+ k)� b2

�
� b [ a� c ] kN

� [ a� cN ]
�
(2 b+ k)

�
b+ kR

�
+ b (b+ k)

�
, 0 < [ a � cA ]

�
2 b k + 2 b kR + k kR + 3 b2 + 2 b kN + k kN

�
� b [ a� c ] kN � [ a� cN ]

�
2 b k + 2 b kR + k kR + 3 b2

�
, [ cN � cA ]

�
2 b k + 2 b kR + k kR + 3 b2

�
+ kN [ (a� cA) (2 b+ k)� b (a� c) ] > 0 . (18)

The last inequality in (18) re�ects (3). Therefore, p < P (Q) when p � p0.

It remains to show that qA = 0 when p � p0. Because p < P (Q) when p � p0, qA = 0
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when:

@

@qA

�
[ p� cA ] qA + [ a� b (qA + qN + q)� cN ] qN

� kA
2
[ qA ]

2 � kN
2
[ qN ]

2 � kR

2
[ qN + qA ]

2

�����
qA=0

� 0

, p� cA � b qN � kRqN � 0

, p � cA +
[ a � cN ] [ 2 b+ k ]� b [ a� c ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
�
b+ kR

�
= p0 . (19)

The equality in (19) re�ects (13). �

Lemma A2. Suppose p 2 ( p0; pd ]. Then in equilibrium:

qA =
1

D
f
�
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� �
[ p� cA ]

+ b
�
b+ kR

�
[ a� c ]� [ 2 b+ k ]

�
b+ kR

�
[ a� cN ] g ; (20)

qN =
1

D
f [ 2 b+ k ]

�
kA + kR

�
[ a� cN ]� b

�
kA + kR

�
[ a� c ]

�
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
[ p� cA ] g ; (21)

QR � qA + qN =
1

D
f [ 2 b+ k ] [ b+ kN ] [ p� cA ] + [ 2 b+ k ] [ kA � b ] [ a� cN ]

� b [ kA � b ] [ a� c ] g ; (22)

q =
1

D
f
�
kN
�
kA + kR

�
+ kA k

R + 2 b kA � b2
�
[ a� c ]

� b [ kA � b ] [ a� cN ]� b [ b+ kN ] [ p� cA ] g ; and (23)

Q = q + qA + qN =
1

D
f [ b+ k ] [ b+ kN ] [ p� cA ] + [ b+ k ] [ kA � b ] [ a� cN ]

+
�
kR (kA + kN ) + kA (b+ kN )

�
[ a� c ] g . (24)

Proof. (4) implies that if qA > 0 and p < P (Q), R�s problem, [P-R], is:

Maximize
qA; qN

p qA + [ a� b (qA + qN + q ) ] qN � cA qA �
kA
2
[ qA ]

2

� cN qN �
kN
2
[ qN ]

2 � kR

2
[ qA + qN ]

2 .
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The necessary conditions for a solution to [P-R] in this case are:2

qA : p� b qN � cA � kA qA � kR [ qA + qN ] = 0 ; (25)

qN : a� b [ qA + qN + q ]� b qN � cN � kN qN � kR [ qA + qN ] = 0 . (26)

(25) implies:

p� b qN � cA � kR qN =
�
kA + kR

�
qA ) qA =

p� cA
kA + kR

�
�
b+ kR

kA + kR

�
qN . (27)

(26) implies:

a� b [ qA + q ]� cN � kR qA =
�
2 b+ kN + kR

�
qN

) qN =
a� cN

2 b+ kN + kR
�
�
b+ kR

�
qA + b q

2 b+ kN + kR
. (28)

(25) also implies:

p� cA � kA qA � kR qA =
�
b+ kR

�
qN ) qN =

p� cA
b+ kR

�
�
kA + kR

b+ kR

�
qA . (29)

(28) and (29) imply:

a� cN
2 b+ kN + kR

�
�
b+ kR

�
qA + b q

2 b+ kN + kR
=

p� cA
b+ kR

�
�
kA + kR

b+ kR

�
qA

)
�

b+ kR

2 b+ kN + kR
� kA + kR

b+ kR

�
qA =

a� cN
2 b+ kN + kR

� p� cA
b+ kR

� b q

2 b+ kN + kR

)
n �

b+ kR
�2 � � kA + kR

� �
2 b+ kN + kR

� o
qA

=
�
b+ kR

�
[ a� cN ]�

�
2 b+ kN + kR

�
[ p� cA ]� b

�
b+ kR

�
q

) qA =

�
b+ kR

�
[ a� cN ]�

�
2 b+ kN + kR

�
[ p� cA ]� b

�
b+ kR

�
q

[ b+ kR ]2 � [ kA + kR ] [ 2 b+ kN + kR ]
. (30)

(5) implies that the rival�s problem in this setting, [P], is:

Maximize
q

[ a� b (qA + qN + q )� c ] q � k

2
(q)2 . (31)

The necessary condition for an interior solution to [P] is:

a� b [ qA + qN + q ]� c� b q � k q = 0 , [ 2 b+ k ] q = a� b [ qA + qN ]� c

2It is readily veri�ed that the determinant of the Hessian associated with [P-R] in this setting is�
kA + k

R
� �
2 b+ kN + k

R
�
�
�
b+ kR

�2
, which is strictly positive if kA � b

2 .

6



, q =
a� c

2 b+ k
� b

2 b+ k
[ qA + qN ] . (32)

(29) and (32) imply:

q =
a� c

2 b+ k
� b

2 b+ k

�
qA +

p� cA
b+ kR

�
�
kA + kR

b+ kR

�
qA

�

=
a� c

2 b+ k
� b

2 b+ k

�
p� cA
b+ kR

�
� b

2 b+ k

�
1� kA + kR

b+ kR

�
qA

=
a� c

2 b+ k
� b

2 b+ k

�
p� cA
b+ kR

�
� b

2 b+ k

�
b� kA
b+ kR

�
qA . (33)

(30) and (33) imply:

qA =

�
b+ kR

�
[ a� cN ]�

�
2 b+ kN + kR

�
[ p� cA ]

[ b+ kR ]2 � [ kA + kR ] [ 2 b+ kN + kR ]

�
b
�
b+ kR

�
[ b+ kR ]2 � [ kA + kR ] [ 2 b+ kN + kR ]

�
�

a� c

2 b+ k
� b

2 b+ k

�
p� cA
b+ kR

�
� b

2 b+ k

�
b� kA
b+ kR

�
qA

�

) qA

"
1�

 
b
�
b+ kR

�
[ b+ kR ]2 � [ kA + kR ] [ 2 b+ kN + kR ]

!�
b

2 b+ k

��
b� kA
b+ kR

�#

=

�
b+ kR

�
[ a� cN ]�

�
2 b+ kN + kR

�
[ p� cA ]

[ b+ kR ]2 � [ kA + kR ] [ 2 b+ kN + kR ]

�
b
�
b+ kR

�
[ b+ kR ]2 � [ kA + kR ] [ 2 b+ kN + kR ]

�
a� c

2 b+ k
� b

2 b+ k

�
p� cA
b+ kR

��

) qA

"
1� b2 [ b� kA ]

[ 2 b+ k ]
�
[ b+ kR ]2 � [ kA + kR ] [ 2 b+ kN + kR ]

	 #

=
[ 2 b+ k ]

� �
b+ kR

�
[ a� cN ]�

�
2 b+ kN + kR

�
[ p� cA ]

	
[ 2 b+ k ]

�
[ b+ kR ]2 � [ kA + kR ] [ 2 b+ kN + kR ]

	
�

b
�
b+ kR

� �
a� c� b

�
p� cA
b+ kR

� �
[ 2 b+ k ]

�
[ b+ kR ]2 � [ kA + kR ] [ 2 b+ kN + kR ]

	
) qA

n
[ 2 b+ k ]

� �
b+ kR

�2 � � kA + kR
� �
2 b+ kN + kR

� �
� b2 [ b� kA ]

o
7



= [ 2 b+ k ]
� �

b+ kR
�
[ a� cN ]�

�
2 b+ kN + kR

�
[ p� cA ]

	
� b

�
(a� c )

�
b+ kR

�
� b ( p� cA )

�
. (34)

Observe that:

[ 2 b+ k ]
n�
b+ kR

�2 � � kA + kR
� �
2 b+ kN + kR

� o
� b2 [ b� kA ]

= [ 2 b+ k ]
n
b2 + 2 b kR +

�
kR
�2 � 2 b kA � 2 b kR � kA kN � kRkN � kA k

R �
�
kR
�2 o

� b3 + b2kA

= [ 2 b+ k ]
�
b2 � 2 b kA � kA kN � kRkN � kA k

R
�
� b3 + b2kA

= 2 b3 � 4 b2kA � 2 b kA kN � 2 b kRkN � 2 b kA kR

+ b2k � 2 b k kA � k kA kN � k kRkN � k kA k
R � b3 + b2kA

= b3 � 3 b2kA � 2 b kA kN � 2 b kRkN � 2 b kA kR

+ b2k � 2 b k kA � k kA kN � k kRkN � k kA k
R

= b2 [ b+ k ]� b kA [ 3 b+ 2 k ]� [ 2 b+ k ]
�
kN
�
kA + kR

�
+ kA k

R
�
. (35)

Further observe that:

[ 2 b+ k ]
�
2 b+ kN + kR

�
� b2 = 2 b

�
2 b+ kN + kR

�
+ k

�
2 b+ kN + kR

�
� b2

= 3 b2 + 2 b
�
kN + kR

�
+ k

�
2 b+ kN + kR

�
= 3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

�
. (36)

(2) and (34) �(36) imply:

qA =
1

D
f
�
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� �
[ p� cA ]

+ b
�
b+ kR

�
[ a� c ]� [ 2 b+ k ]

�
b+ kR

�
[ a� cN ] g. (37)

(2), (29), and (37) imply:

qN =
p� cA
b+ kR

�
�
kA + kR

b+ kR

�
1

D
f
�
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� �
[ p� cA ]

+ b
�
b+ kR

�
[ a� c ]� [ 2 b+ k ]

�
b+ kR

�
[ a� cN ] g

=
1

D [ b+ kR ]
f [ p� cA ]D

�
�
kA + kR

� �
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� �
[ p� cA ]
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� b
�
b+ kR

� �
kA + kR

�
[ a� c ]

+ [ 2 b+ k ]
�
kA + kR

� �
b+ kR

�
[ a� cN ] g. (38)

(2) implies:

D �
�
kA + kR

� �
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� �
= [ 2 b+ k ]

�
kN
�
kA + kR

�
+ kA k

R
�
+ b kA [ 3 b+ 2 k ]� b2 [ b+ k ]

�
�
kA + kR

� �
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� �
=
�
kA + kR

� �
(2 b+ k ) kN � 3 b2 � 2 b

�
k + kN + kR

�
� k

�
kN + kR

� �
+ [ 2 b+ k ] kA k

R + 3 b2kA + 2 b k kA � b3 � b2k

=
�
kA + kR

� �
� 3 b2 � 2 bk � 2 b kR � k kR

�
+ 2 b kA k

R + k kA k
R + 3 b2kA + 2 b k kA � b3 � b2k

= � 3 b2kA � 3 b2kR � 2 bk kA � 2 bk kR � 2 b kA k
R � 2 b

�
kR
�2 � k kA k

R

� k
�
kR
�2
+ 2 b kA k

R + k kA k
R + 3 b2kA + 2 b k kA � b3 � b2k

= � 3 b2kR � 2 bk kR � 2 b kA k
R � 2 b

�
kR
�2 � k

�
kR
�2

+ 2 b kA k
R � b3 � b2k

= � b2kR � 2 b2kR � b k kR � bk kR � 2 b
�
kR
�2 � k

�
kR
�2 � b2b� b k b

= � b2
�
b+ kR

�
� 2 b2kR � bk

�
b+ kR

�
� bk kR � 2 b

�
kR
�2 � k

�
kR
�2

= � b2
�
b+ kR

�
� 2 b kR

�
b+ kR

�
� bk

�
b+ kR

�
� k kR

�
b+ kR

�
= �

�
b+ kR

� �
b2 + 2 b kR + bk + k kR

�
= �

�
b+ kR

� �
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
. (39)

(38) and (39) imply:

qN =
1

D
f [ 2 b+ k ]

�
kA + kR

�
[ a� cN ]� b

�
kA + kR

�
[ a� c ]

�
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
[ p� cA ] g . (40)

Observe that:

3 b2 + 2 b
�
k + kN + kR

�
+ k

�
kN + kR

�
�
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
9



= 3 b2 + 2 b k + 2 b kN + 2 b k
R + k kN + k kR � b2 � 2 b kR � b k � k kR

= 2 b2 + b k + 2 b kN + k kN = b [ 2 b+ k ] + kN [ 2 b+ k ] = [ 2 b+ k ] [ b+ kN ] . (41)

Further observe that:

b
�
b+ kR

�
� b
�
kA + kR

�
= b [ b� kA ] and

[ 2 b+ k ]
�
kA + kR

�
� [ 2 b+ k ]

�
b+ kR

�
= [ 2 b+ k ] [ kA � b ] . (42)

(37) and (40) �(42) imply:

qA + qN =
1

D
f [ 2 b+ k ] [ b+ kN ] [ p� cA ]� b [ kA � b ] [ a� c ]

+ [ 2 b+ k ] [ kA � b ] [ a� cN ] g . (43)

(32) and (43) imply:

q =
a� c

2 b+ k
�
�

b

2 b+ k

�
1

D
f [ 2 b+ k ] [ b+ kN ] [ p� cA ]� b [ kA � b ] [ a� c ]

+ [ 2 b+ k ] [ kA � b ] [ a� cN ] g

=
D + b2 [ kA � b ]

D [ 2 b+ k ]
[ a� c ]

� b

D
f [ b+ kN ] [ p� cA ] + [ 2 b+ k ] [ kA � b ] [ a� cN ] g . (44)

(2) implies:

D + b2 [ kA � b ] = [ 2 b+ k ]
�
kN
�
kA + kR

�
+ kA k

R
�
+ b kA [ 3 b+ 2 k ]

� b2 [ b+ k ] + b2 [ kA � b ]

= [ 2 b+ k ]
�
kN
�
kA + kR

�
+ kA k

R
�
+ 4 b2kA + 2 b k kA � b2 [ 2 b+ k ]

= [ 2 b+ k ]
�
kN
�
kA + kR

�
+ kA k

R
�
+ 2 b kA [ 2 b+ k ]� b2 [ 2 b+ k ]

= [ 2 b+ k ]
�
kN
�
kA + kR

�
+ kA k

R + 2 b kA � b2
�
. (45)

(44) and (45) imply:

q =
1

D
f
�
kN
�
kA + kR

�
+ kA k

R + 2 b kA � b2
�
[ a� c ]

� b [ kA � b ] [ a� cN ]� b [ b+ kN ] [ p� cA ] g . (46)

Observe that:

[ 2 b+ k ] [ b+ kN ]� b [ b+ kN ] = [ b+ k ] [ b+ kN ] ;

[ 2 b+ k ] [ kA � b ]� b [ kA � b ] = [ b+ k ] [ kA � b ] ; and
10



kN
�
kA + kR

�
+ kA k

R + 2 b kA � b2 � b [ kA � b ]

= kN
�
kA + kR

�
+ kA k

R + b kA = kR [ kA + kN ] + kA [ b+ kN ] . (47)

(43), (46), and (47) imply:

Q = q + qA + qN =
1

D
f [ b+ k ] [ b+ kN ] [ p� cA ] + [ b+ k ] [ kA � b ] [ a� cN ]

+
�
kR (kA + kN ) + kA (b+ kN )

�
[ a� c ] g . (48)

It remains to show that qA > 0 and p � P (Q) when p 2 ( p0; pd ]. (37) implies that
qA > 0 if:

b [ b+ kN ] [ a� c ] + [ p� cA ]
�
2 b k + 2 b kN + 2 b k

R + k kN + k kR + 3 b2
�

� [ a� cN ]
�
b k + 2 b kR + k kR + 2 b2

�
> 0

, cA +
[ a� cN ]

�
b k + 2 b kR + k kR + 2 b2

�
� b [ b+ kN ] [ a� c ]

2 b k + 2 b kN + 2 b kR + k kN + k kR + 3 b2
< p

, p > cA +
[ a� cN ] [ 2 b+ k ]� b [ a� c ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
�
b+ kR

�
= p0 .

The equality here re�ects (6). (48) implies:

Q =
1

D
[C1 a+ C2 c+ C3 cN + C4 cA � C4 p ] (49)

where C1 � [ b+ k ] [ kA � b ] + kR [ kA + kN ] + kA [ b+ kN ]

= b kA + b kA + k kA � b k + kA k
R + kN k

R + b kA + kA kN

= 2 b kA + k kA + kA kN + kA k
R + kN k

R � b2 � b k ;

C2 � � kR [ kA + kN ]� kA [ b+ kN ] ; C3 � � [ b+ k ] [ kA � b ] ; and

C4 � � [ b+ k ] [ b+ kN ] . (50)

(49) implies:

P (Q) = a� bQ =
[D � bC1 ] a� b cC2 � bC3 cN � bC4 cA + bC4 p

D
. (51)

(2) and (50) imply:

D � bC1 = [ 2 b+ k ]
�
kN
�
kA + kR

�
+ kA k

R
�
+ b kA [ 3 b+ 2 k ]� b2 [ b+ k ]

� b
�
2 b kA + k kA + kA kN + kA k

R + kN k
R � b2 � b k

�
= 2 b kA kN + 2 b kN k

R + 2 b kA k
R + k kA kN + k kN k

R + k kA k
R + 3 b2kA

11



+ 2 b k kA � b k � 2 b2kA � b k kA � b kA kN � b kA k
R � b kN k

R + b2k

= b2kA + b k kA + b kA kN + b kA k
R + b kN k

R + k kA kN + k kA k
R + k kN k

R

= [ b+ k ]
�
b kA + kA kN + kA k

R + kN k
R
�

= [ b+ k ] [ (b+ kA) (kN + kA) + kN kA � b kN ] . (52)

(2) and (50) imply:

D � bC4 = [ 2 b+ k ]
�
kN
�
kA + kR

�
+ kA k

R
�
+ b kA [ 3 b+ 2 k ]� b2 [ b+ k ]

� b [ b+ k ] [ b+ kN ]

= 3 b2kA � b2k � b3 + 2 b k kA + 2 b kA kN + 2 b kA k
R + 2 b kN k

R + k kA kN

+ k kA k
R + k kN k

R + kN b
2 + kN k b+ b3 + b2k

= 3 b2kA + 2 b k kA + 2 b kA kN + 2 b kA k
R + 2 b kN k

R + k kA kN

+ k kA k
R + k kN k

R + kN b
2 + kN k b

= b [ b+ k ] [ kN + kA ] + [ kA kN � kN b ] [ 2 b+ k ]

+ [ kN + kA ] [ 2 b+ k ]
�
b+ kR

�
. (53)

(51) implies:

p � P (Q) =
[D � bC1 ] a � b c C2 � bC3 cN � bC4 cA + bC4 p

D

, p� bC4
D

p � [D � bC1 ] a� b c C2 � bC3 cN � bC4 cA
D

, p

�
1 � bC4

D

�
� [D � bC1 ] a� b c C2 � bC3 cN � bC4 cA

D
(54)

, p [D � bC4 ] � [D � bC1 ] a� b c C2 � bC3 cN � bC4 cA

, p � [D � bC1 ] a� b c C2 � bC3 cN � bC4 cA
D � bC4

. (55)

(54) re�ects the fact that D � bC4 > 0 because C4 < 0 (from (50)), and because D > 0,
by assumption.

(50), (52), (53), and (55) imply:

p � 1

D2

f a [ b+ k ]
� �
b+ kR

�
(kN + kA) + kN kA � b kN

�
+ b c

�
(kN + kA)

�
b+ kR

�
+ kA kN � b kN

�
12



+ b [ b+ k ] [ kA � b ] cN + b [ kN + b ] [ b+ k ] cA g

, p � 1

D2

f [ (b+ k) a+ b c ]
� �
b+ kR

�
(kN + kA) + kN kA � b kN

�
+ b [ b+ k ] [ kA � b ] cN + b [ kN + b ] [ b+ k ] cA g = pd . (56)

The equality in (56) re�ects (7). (55) and (56) imply that p � P (Q) (and qA > 0)
when p 2 ( p0; pd ]. �

Lemma A3. Suppose p 2 ( pd; pb ], where pd < pb. Then in equilibrium, P (Q) = p.

Furthermore:

qA =
b [ b+ k ] [ cN � cA ] + kN [ a� p ] [ b+ k ]� b kN [ p� c ]

b [ b+ k ] [ kN + kA ]
;

qN =
kA [ b+ k ] [ a� p ]� b kA [ p� c ]� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]
;

QR � qA + qN =
[ b+ k ] [ a� p ]� b [ p� c ]

b [ b+ k ]
;

q =
p� c

b+ k
; and Q � a� p

b
. (57)

Proof. (4) implies that R�s problem, [P-R], can be written as:

Maximize
qA; QR

�R �
�
PA(q +QR)� cA

�
qA +

�
P (QR + q)� cN

� �
QR � qA

�
� kA

2
[ qA ]

2 � kN
2

�
QR � qA

�2 � kR

2

�
QR
�2

where PA(q + QR) =

(
p if P ( q +QR ) � p

P ( q +QR ) if p > P ( q +QR ).
(58)

(58) implies that when qA > 0 and there exists a range of p for which P (Q) = p, the
necessary conditions for a solution to R�s problem are:

@�R
@qA

= PA
�
q +QR

�
� cA � kA qA �

�
P
�
q +QR

�
� cN

�
+ kN

�
QR � qA

�
= 0 ; (59)

@+�R

@QR
� 0 and

@��R

@QR
� 0 for all p 2 [ pd; pb ] , (60)

where: (i) @
��R
@QR

denotes the left-sided derivative of �R with respect to QR, which is relevant

when PA(�) = p; and (ii) @ +�R
@QR

denotes the right-sided derivative of �R with respect to
QR, which is relevant when PA(�) = P (Q). The �rst inequality in (60) indicates that R�s

13



pro�t declines if R increases QR so as to reduce P (Q) below p (thereby rendering the cap
nonbinding). The second inequality in (60) indicates that R�s pro�t declines if R reduces QR

so as to increase P (Q) above p (thereby causing the cap to bind). Together, the inequalities
in (60) ensure that when p 2 [ pd; pb ], R cannot increase its pro�t by changing QR so as to
cause P (Q) to di¤er from p.

(12) implies:
a� bQ � b q � c� k q = 0

, p� b q � c� k q = 0 , q =
p� c

b+ k
. (61)

Because p = a� b
�
q +QR

�
, (61) implies:

p = a� b

�
p� c

b+ k
+QR

�
, bQR = a� p� b

�
p� c

b+ k

�
, QR =

a� p

b
� p� c

b+ k
=
[ a� p ] [ b+ k ]� b [ p� c ]

b [ b+ k ]
. (62)

Because p = PA(q +QR) in equilibrium, by assumption, (59) holds if:

p� cA � kA qA � [ p� cN ] + kN
�
QR � qA

�
= 0

, cN � cA � kA qA + kN Q
R � kN qA = 0 . (63)

(62) implies that (63) holds if:

cN � cA � kA qA + kN
[ a� p ] [ b+ k ]� b [ p� c ]

b [ b+ k ]
� kN qA = 0

, qA [ kN + kA ] = cN � cA + kN
[ a� p ] [ b+ k ]� b [ p� c ]

b [ b+ k ]

, qA =
cN � cA
kN + kA

+ kN
[ a� p ] [ b+ k ]� b [ p� c ]

b [ b+ k ] [ kN + kA ]

=
b [ b+ k ] [ cN � cA ] + kN [ a� p ] [ b+ k ]� b kN [ p� c ]

b [ b+ k ] [ kN + kA ]
. (64)

(62) and (64) imply:

qN = QR � qA =
[ a� p ] [ b+ k ]� b [ p� c ]

b [ b + k ]

� b [ b+ k ] [ cN � cA ] + kN [ a� p ] [ b+ k ]� b kN [ p� c ]

b [ b+ k ] [ kN + kA ]

=
[ a� p ] [ b+ k ] [ kN + kA ]� b [ p� c ] [ kN + kA ]

b [ b+ k ] [ kN + kA ]
14



� b [ b+ k ] [ cN � cA ] + kN [ a� p ] [ b+ k ]� b kN [ p� c ]

b [ b+ k ] [ kN + kA ]

=
kA [ b+ k ] [ a� p ]� b kA [ p� c ] � b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]
. (65)

(64) and (65) imply:

QR � qA + qN =
1

b [ b+ k ] [ kN + kA ]
f [ kN + kA ] [ b+ k ] [ a� p ]

� b [ kN + kA ] [ p� c ] g

=
[ b+ k ] [ a� p ]� b [ p� c ]

b [ b+ k ]
. (66)

(61) and (66) imply:

Q � QR + q =
[ b+ k ] [ a� p ]� b [ p� c ]

b [ b+ k ]
+
b [ p� c ]

b [ b+ k ]
=

a� p

b
.

(58) implies:

@ +�R
@QR

= � b qA + a� 2 bQR � b q � cN + b qA � kN
�
QR � qA

�
� kRQR

= a� 2 bQR � b q � cN � kN
�
QR � qA

�
� kRQR

= p� bQR � cN � kN qN � kRQR = p�
�
b+ kR

�
QR � cN � kN qN ; (67)

@ ��R
@QR

= a� 2 bQR � b q � cN + b qA � kN
�
QR � qA

�
� kRQR

= a� 2 bQR � b q � cN + b qA � kN qN � kRQR

= p� bQR � cN + b qA � kN qN � kRQR

= p�
�
b+ kR

�
QR � cN + b qA � kN qN . (68)

(67) and (68) imply that (60) can be written as:

p�
�
b+ kR

�
QR � cN � kN qN � 0 < p�

�
b+ kR

�
QR � cN + b qA � kN qN

,
�
b+ kR

�
QR + cN + kN qN � b qA < p �

�
b+ kR

�
QR + cN + kN qN . (69)

(62) and (65) imply:

p �
�
b+ kR

�
QR + cN + kN qN

,
�
b+ kR

� [ a� p ] [ b+ k ] � b [ p� c ]

b [ b+ k ]
+ cN

15



+ kN
kA [ b+ k ] [ a� p ]� b kA [ p� c ]� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]
� p

,
�
b+ kR

� a [ b+ k ]� p [ 2 b+ k ] + b c

b [ b+ k ]
+ cN

+ kN
kA [ b+ k ] a� p kA [ 2 b+ k ] + b kA c� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]
� p

,
�
b+ kR

� a [ b+ k] + b c

b [ b+ k ]
+ cN + kN

kA [ b+ k ] a+ b kA c� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]

� p+ p
kN kA [ 2 b+ k ]

b [ b+ k ] [ kN + kA ]
+ p

[ 2 b+ k ]
�
b+ kR

�
b [ b+ k ]

,
�
b+ kR

� a [ b+ k ] + b c

b [ b+ k ]
+ cN + kN

kA [ b+ k ] a+ b kA c� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]

� p

"
1 +

kN kA [ 2 b+ k ]

b [ b+ k ] [ kN + kA ]
+
[ 2 b+ k]

�
b+ kR

�
b [ b+ k ]

#

,
�
b+ kR

�
[ a (b+ k) + b c ] [ kN + kA ] + cN b [ b+ k ] [ kN + kA ]

+ kN [ kA (b + k) a+ b kA c� b (b+ k) (cN � cA) ]

� p [ b (b+ k) (kN + kA) + kN kA (2 b+ k)

+ (kN + kA) (2 b+ k)
�
b+ kR

�
] = p D3 . (70)

The last equality in (70) re�ects (8). (70) implies:

p �
�
b+ kR

�
QR + cN + kN qN

, p � 1

D3

f
�
b+ kR

�
[ a (b+ k) + b c ] [kN + kA ] + cN b [ b+ k ] [ kN + kA ]

+ kN [ kA (b+ k) a+ b kA c� b (b+ k) (cN � cA) ] g

, p � 1

D3

f
�
b+ kR

�
[ a (b+ k) + b c ] [ kN + kA ] + cN b [ b+ k ] [ kN + kA ]

+ kN kA [ b+ k ] a+ b kN kA c� kN b [ b+ k ] [ cN � cA ] g

, p � 1

D3

f
�
b+ kR

�
[ a (b+ k) + b c ] [ kN + kA ] + cN b [ b+ k ] kA

+ kN kA [ b+ k ] a+ b kA kN c+ kN b [ b+ k ] cA
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+ kN kA [ b+ k ] a+ b kA kN c+ kN b [ b+ k ] cA g

, p � 1

D3

f a [ b+ k ]
� �
b+ kR

�
(kN + kA) + kN kA

�
+ c

�
b (kN + kA)

�
b+ kR

�
+ b kA kN

�
+ cN b [ b+ k ] kA + kN b [ b+ k ] cA g

, p � 1

D3

f a [ b+ k ]
� �
b+ kR

�
(kN + kA) + kN kA

�
+ b c

�
(kN + kA)

�
b+ kR

�
+ kA kN

�
+ cN b [ b+ k ] kA + kN b [ b+ k ] cA g

, p � pb . (71)

(62), (64), and (65) imply:�
b+ kR

�
QR + cN + kN qN � b qA < p

,
�
b+ kR

� [ a� p ] [ b+ k ]� b [ p� c ]

b [ b+ k ]
+ cN

+ kN
kA [ b+ k ] [ a� p ]� b kA [ p� c ]� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]

� b
b [ b+ k ] [ cN � cA ] + kN [ a� p ] [ b+ k ]� b kN [ p� c ]

b [ b+ k ] [ kN + kA ]
< p

,
�
b+ kR

� a [ b+ k ]� p [ 2 b+ k ] + b c

b [ b+ k ]
+ cN

+ kN
kA [ b+ k ] a� p kA [ 2 b+ k ] + b kA c� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]

� b
b [ b+ k ] [ cN � cA ] + kN a [ b+ k ]� p kN [ 2 b+ k ] + b kN c

b [ b+ k ] [ kN + kA ]
< p

,
�
b+ kR

� a [ b+ k ] + b c

b [b + k]
+ cN + kN

kA [ b+ k ] a+ b kA c� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]

� b
b [ b+ k ] [ cN � cA ] + kN a [ b+ k ] + b kN c

b [ b+ k ] [ kN + kA ]

< p+ p
[ kN kA � kN b ] [ 2 b+ k ]

b [ b+ k ] [ kN + kA ]
+ p

[ 2 b+ k ]
�
b+ kR

�
b [ b+ k ]

,
�
b+ kR

� a [ b+ k ] + b c

b [ b+ k ]
+ cN + kN

kA [ b+ k ] a+ b kA c� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [kN + kA]
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� b
b [ b+ k ] [ cN � cA ] + kN a [ b+ k ] b kN c

b [ b+ k ] [ kN + kA ]

< p

"
1 +

[ kN kA � kN b ] [ 2 b+ k ]

b [ b+ k ] [ kN + kA ]
+
[ 2 b+ k ]

�
b+ kR

�
b [ b+ k ]

#

,
�
b+ kR

�
[ a (b+ k) + b c ] [ kN + kA ] + cN b [ b+ k ] [ kN + kA ]

+ kN [ kA (b+ k) a+ b kA c� b (b+ k) (cN � cA) ]

� b [ b (b+ k) (cN � cA) + kN a (b+ k) + b kN c ]

< p [ b (b+ k) (kN + kA) + kN (kA � b) (2 b+ k)

+ (kN + kA) (2 b+ k)
�
b+ kR

�
] = p D2 . (72)

The last equality in (72) re�ects (7). (7) and (72) imply:�
b+ kR

�
QR + cN + kN qN � b qA < p

, p >
1

D2

f
�
b+ kR

�
[ a (b+ k) + b c ] [ kN + kA ] + cN b [ b+ k ] [ kN + kA ]

+ kN [ kA (b+ k) a+ b kA c� b (b+ k) (cN � cA) ]

� b [ b (b+ k) (cN � cA) + kN a (b+ k) + b kN c ] g

, p >
1

D2

f a
� �
b+ kR

�
(b+ k) (kN + kA) + kN kA (b+ k)� b (b+ k) kN

�
+ c

�
b (kN + kA)

�
b+ kR

�
+ b kA kN � b2kN

�
+ cN b [ b+ k ] [ kA � b ] + b [ kN + b ] [ b+ k ] cA g

, p >
1

D2

f a [ b+ k ]
� �
b+ kR

�
(kN + kA) + kN kA � b kN

�
+ c b

�
(kN + kA)

�
b+ kR

�
+ kA kN � b kN

�
+ cN b [ b+ k ] [ kA � b ] + b [ kN + b ] [ b+ k ] cA g = pd .

(7), (8), (67), (68), and (71) imply:

pd =
�
b+ kR

�
QR + cN + kN qN � b qA and

pb =
�
b+ kR

�
QR + cN + kN qN . (73)

(73) implies that pd < pb because qA > 0 when p > p0. �
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Lemma A4. Suppose p > pb. Then in equilibrium:

qA =
1

D3

f [ a� cA ]
�
2 b k + 2 b kN + 2 b k

R + k kN + k kR + 3 b2
�

� [ a� cN ]
�
2 b k + 2 b kR + k kR + 3 b2

�
� b kN [ a� c ] g ; (74)

qN =
1

D3

f [ a� cN ]
�
2 b k + 2 b kA + 2 b k

R + k kA + k kR + 3 b2
�

� [ a� cA ]
�
2 b k + 2 b kR + k kR + 3 b2

�
� b kA [ a� c ] g ; (75)

q =
1

D3

f [ a� c ]
�
2 b kA + 2 b kN + kA kN + kA k

R + kN k
R
�

� b kA [ a� cN ]� b kN [ a � cA ] g ; and (76)

QR � qA + qN =
1

D3

f [ a � cA ] kN [ 2 b+ k ] + [ a � cN ] kA [ 2 b+ k ]

� b [ kA + kN ] [ a� c ] g (77)

where D3 is as speci�ed in (8).

Proof. (4) implies that when the price cap does not bind, [P-R] is:

Maximize
qA; qN

[ a� b (qA + qN + q ) ] [ qA + qN ]� cA qA �
kA
2
[ qA ]

2

� cN qN �
kN
2
[ qN ]

2 � kR

2
[ qA + qN ]

2 . (78)

Di¤erentiating (78) with respect to qA provides:

a� b [ qA + qN + q ]� b [ qA + qN ]� cA � kA qA � kR [ qA + qN ] = 0

, a� b [ qN + q ]� b qN � cA � kR qN = qA
�
2 b+ kA + kR

�
, qA =

a� cA �
�
2 b+ kR

�
qN � b q

2 b+ kA + kR
. (79)

Corresponding di¤erentiation of (78) with respect to qN provides:

qN =
a� cN �

�
2 b+ kR

�
qA � b q

2 b+ kN + kR
. (80)

(32) implies:
q =

a� c

2 b+ k
� b

2 b+ k
[ qA + qN ] . (81)

De�nitions: KA � 2 b+ kA + kR and KN � 2 b+ kN + kR . (82)
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(79), (81), and (82) imply:

qA =
a� cA
KA

�
�
2 b+ kR

�
qN

KA

� b

KA

�
a� c� b (qA + qN)

2 b+ k

�
) qA

�
1� b2

[ 2 b+ k ]KA

�

=
[ 2 b+ k ] [ a� cA ]�

�
2 b+ kR

�
[ 2 b+ k ] qN � b [ a� c ] + b2 qN

[ 2 b+ k ]KA

) qA

�
[ 2 b+ k ]KA � b2

[ 2 b+ k ]KA

�

=
[ 2 b+ k ] [ a� cA ]� b [ a� c ]�

� �
2 b+ kR

�
[ 2 b+ k ]� b2

�
qN

[ 2 b+ k ]KA

) qA =
[ 2 b+ k ] [ a� cA ]� b [ a� c ]

DA

� B

DA

qN

where DA � [ 2 b+ k ]KA � b2 and B �
�
2 b+ kR

�
[ 2 b+ k ]� b2 . (83)

(80) �(82) imply:

qN =
a� cN
KN

�
�
2 b+ kR

�
qA

KN

� b

KN

�
a� c� b (qA + qN)

2 b+ k

�

) qN

�
1� b2

[ 2 b+ k ]KN

�

=
[ 2 b+ k ] [ a� cN ]�

�
2 b+ kR

�
[ 2 b+ k ] qA � b [ a� c ] + b2 qA

[ 2 b+ k ]KN

) qN

�
[ 2 b+ k ]KN � b2

[ 2 b+ k ]KN

�

=
[ 2 b+ k ] [ a� cN ]� b [ a� c ]�

� �
2 b+ kR

�
[ 2 b+ k ]� b2

�
qA

[ 2 b+ k ]KN

) qN =
[ 2 b+ k ] [ a� cN ]� b [ a� c ]

DN

� B

DN

qA

where KN � 2 b+ kN + kR and DN � [ 2 b+ k ]KN � b2 . (84)

(83) and (84) imply:

qA =
[ 2 b+ k ] [ a� cA ]� b [ a� c ]

DA

� B

DADN

f [ 2 b+ k ] [ a� cN ]� b [ a� c ]�B qA g
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) qA

�
1� B2

DADN

�
=

1

DADN

�
[ 2 b+ k ]DN [ a� cA ]� bDN [ a� c ]

� B [ 2 b+ k ]DN [ a� cN ] + bB [ a� c ]

�
) qA

�
DADN �B2

�
= [ 2 b+ k ]DN [ a� cA ] + b [B �DN ] [ a� c ]

+ [ 2 b+ k ]B [ a� cN ] . (85)

(83) and (84) imply:

DADN �B2 =
�
(2 b+ k)KA � b2

� �
(2 b+ k)KN � b2

�
�
� �
2 b+ kR

�
(2 b+ k)� b2

�2
= [ 2 b+ k ]2 KAKN � b2 [ 2 b+ k ]KA � b2 [ 2 b+ k ]KN + b4

� [ 2 b+ k ]2
�
2 b+ kR

�2
+ 2 b2 [ 2 b+ k ]

�
2 b+ kR

�
� b4

= [ 2 b+ k ] f [ 2 b+ k ]KAKN � b2 [KA +KN ] + 2 b
2
�
2 b+ kR

�
� [ 2 b+ k ]

�
2 b+ kR

�2g . (86)

(82) implies that the term in f�g in (86) is:

[ 2 b+ k ]
�
2 b+ kR + kA

� �
2 b+ kR + kN

�
� b2

�
4 b+ kA + kN + 2 k

R
�

+ 2 b2
�
2 b+ kR

�
� [ 2 b+ k ]

�
2 b+ kR

�2
= [ 2 b+ k ]

n �
2 b+ kR

�2
+ [ kA + kN ]

�
2 b+ kR

�
+ kA kN

o
+ 2 b2

�
2 b+ kR

�
� [ 2 b+ k ]

�
2 b+ kR

�2 � b2
�
2
�
2 b+ kR

�
+ kA + kN

�
=
�
2 b+ kR

� �
[ 2 b+ k ] [ kA + kN ] + 2 b

2 � 2 b2
	
+ [ 2 b+ k ] kA kN

+ [ 2 b+ k ] kA kN � b2 [ kA + kN ]

= [ kA + kN ]
�
[ 2 b+ k ]

�
2 b+ kR

�
� b2

	
+ [ 2 b+ k ] kA kN

= [ kA + kN ]
�
[ 2 b+ k ]

�
b+ kR

�
+ b [ 2 b+ k ]� b2

	
+ [ 2 b+ k ] kA kN

= [ kA + kN ]
�
[ 2 b+ k ]

�
b+ kR

�
+ b [ b+ k ]

	
+ [ 2 b+ k ] kA kN = D3 . (87)

The last equality in (87) re�ects (8).

(82) and (84) imply:

DN = [ 2 b+ k ]
�
2 b+ kN + kR

�
� b2 = 2 b [ 2 b+ k ]� b2 + [ 2 b+ k ]

�
kN + kR

�
= 3 b2 + 2 b k + [ 2 b+ k ]

�
kN + kR

�
. (88)
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(82) and (84) imply:

B �DN = [ 2 b+ k ]
�
2 b+ kR

�
� b2 �

�
[ 2 b+ k ]

�
2 b+ kN + kR

�
� b2

	
= [ 2 b+ k ]

�
2 b+ kR � 2 b� kN � kR

�
= � [ 2 b+ k ] kN . (89)

(83) and (85) �(89) imply that (74) holds. Furthermore, (74) and the symmetry of qA
and qN in the analysis imply that (75) holds.

Observe that:

3 b2 + 2 b k + [ 2 b+ k ]
�
kN + kR

�
�
�
(2 b+ k)

�
2 b+ kR

�
� b2

�
= 4 b2 + 2 b k + [ 2 b+ k ]

�
kN + kR �

�
2 b+ kR

� �
= 2 b [ 2 b+ k ] + [ 2 b+ k ] [ kN � 2 b ] = [ 2 b+ k ] kN ; and

3 b2 + 2 b k + [ 2 b+ k ]
�
kA + kR

�
�
�
(2 b+ k)

�
2 b+ kR

�
� b2

�
= 4 b2 + 2 b k + [ 2 b+ k ]

�
kA + kR �

�
2 b+ kR

� �
= 2 b [ 2 b+ k ] + [ 2 b+ k ] [ kA � 2 b ] = [ 2 b+ k ] kA . (90)

(74), (75), and (90) imply that QR = qA + qN is as speci�ed in (77).

(77) and (81) imply:

q =
[ a� c ]D3

[ 2 b+ k ]D3

� b

[ 2 b+ k ]D3

f [ a� cA ] kN [ 2 b+ k ] + [ a � cN ] kA [ 2 b+ k ]

� b [ kA + kN ] [ a� c ] g

=
1

[ 2 b+ k ]D3

f [ a� c ]
�
D3 + b2 (kA + kN)

�
� [ 2 b+ k ] b kA [ a � cN ]

� [ 2 b+ k ] b kN [ a � cA ] g . (91)

(8) implies:

D3 + b2 [ kA + kN ] = [ 2 b+ k ] kA kN + [ kA + kN ]
�
b2 + b (b+ k) + (2 b+ k)

�
b+ kR

� �
= [ 2 b+ k ] kA kN + [ kA + kN ]

�
2 b2 + b k + 2 b2 + 2 b kR + b k + k kR

�
= [ 2 b+ k ] kA kN + [ kA + kN ]

�
4 b2 + 2 b k + 2 b kR + k kR

�
= [ 2 b+ k ] kA kN + [ kA + kN ]

�
2 b (2 b+ k) + kR (2 b+ k)

�
= [ 2 b+ k ]

�
kA kN + [ kA + kN ]

�
2 b+ kR

� 	
. (92)
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(91) and (92) imply that q is as speci�ed in (76).

(74) �(76) imply:

P (Q) = a� b [ qA + qN + q ]

= a� b

D3

[B1 (a� cA) +B2 (a� cN) +B3 (a� c ) ] (93)

where B1 = kN [ b+ k ] ; B2 = kA [ b+ k ] ; and

B3 =
�
b+ kR

�
[ kA + kN ] + kA kN . (94)

(93) implies:

P (Q) =
[D3 � b (B1 +B2 +B3) ] a+ bB1 cA + bB2 cN + bB3 c

D3

. (95)

(94) implies:

B1 +B2 +B3 = [ kA + kN ] [ b+ k ] +
�
b+ kR

�
[ kA + kN ] + kA kN

=
�
2 b+ k + kR

�
[ kA + kN ] + kA kN .

(8) and (94) imply:

D3 � b [B1 +B2 +B3 ]

= b [ b+ k ] [ kN + kA ] + kN kA [ 2 b+ k ] + [ kN + kA ] [ 2 b+ k ]
�
b+ kR

�
� b

�
2 b+ k + kR

�
[ kA + kN ]� b kN kA

= b [ b+ k ] [ kN + kA ] + kN kA [ 2 b+ k ] + [ kN + kA ]
�
2 b2 + k b+ 2 kRb+ k kR

�
�
�
2 b2 + k b+ b kR

�
[ kA + kN ]� b kN kA

= b [ b+ k ] [ kN + kA ] + kN kA [ b+ k ] + [ kN + kA ]
�
b kR + k kR

�
= b [ b+ k ] [ kN + kA ] + kN kA [ b+ k ] + kR [ kN + kA ] [ b+ k ]

= [ b+ k ]
�
b (kN + kA) + kN kA + kR (kN + kA)

�
= [ b+ k ]

� �
b+ kR

�
(kN + kA) + kN kA

�
. (96)

(94), (95), and (96) imply that the price cap does not bind if:

p >
a [D3 � b (B1 +B2 +B3) ] + bB1 cA + bB2 cN + bB3 c

D3

=
1

D3

f a [ b+ k ]
� �
b+ kR

�
(kN + kA) + kN kA

�
+ b [ b+ k ] kN cA

+ b [ b+ k ] kA cN + b c
� �
b+ kR

�
(kA + kN) + kA kN

�
g
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=
1

D3

f [ (b+ k) a+ b c ]
� �
b+ kR

�
(kN + kA) + kN kA

�
+ b [ b+ k ] kN cA + b [ b+ k ] kA cN g = pb . (97)

The last equality in (97) re�ects (8). �

De�nitions

qA1(p0), qN1(p0), and q1(p0), respectively, denote the values of qA, qN , and q speci�ed in
Lemma A1, where p � p0.

qA2(p0), qN2(p0), and q2(p0), respectively, denote the values of qA, qN , and q speci�ed in
Lemma A2, where p 2 ( p0; pd ].

Lemma A5. lim
p! p0

qA2(p ) = qA1(p0), lim
p! p0

qN2(p) = qN1(p0) , and lim
p! p0

q2(p ) = q1(p0).

Proof. (11), (12), and (19) imply that when p � p0, qN , q, and qA are determined by:

@�R

@qN
= a� 2 b qN � b q � cN � kN qN � kR qN = 0 ;

@�

@q
= a� b qN � 2 b q � c� k q = 0 ;

qA = 0; and
@�R

@qA
= p� cA � b qN � kR qN � 0 . (98)

(19) implies that the weak inequality in (98) holds as an equality when p = p0.

(25), (26), and (32) imply that when p 2 ( p0; pd ], qN , q, and qA are determined by:
@�R

@qN
= a� 2 b qN � b q � b qA � cN � kN qN � kR [ qN + qA ] = 0 ;

@�

@q
= a� b qN � b qA � 2 b q � c� k q = 0 ;

@�R

@qA
= p� cA � kA qA � b qN � kR [ qN + qA ] = 0 . (99)

(6) and (25) imply:

lim
p! p0

qA2(p) =
1

D
f
�
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� �
[ p0 � cA ]

+ b
�
b+ kR

�
[ a� c ]� [ 2 b+ k ]

�
b+ kR

�
[ a� cN ] g

=
1

D
f
�
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� �
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�
�
b+ kR

� [ a� cN ] [ 2 b+ k ] � b [ a� c ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2

+ b
�
b+ kR

�
[ a� c ]� [ 2 b+ k ]

�
b+ kR

�
[ a� cN ] g

=
1

D
f
�
b+ kR

�
[ a� cN ] [ 2 b+ k ] � b

�
b+ kR

�
[ a� c ]

+ b
�
b+ kR

�
[ a� c ]� [ 2 b+ k ]

�
b+ kR

�
[ a� cN ] g = 0 . (100)

(100) re�ects the fact that:�
2 b+ kN + kR

�
[ 2 b+ k ]� b2 = 3 b2 + 2 b k +

�
kRN + kR

�
[ 2 b+ k ]

= 3 b2 + 2 b
�
k + kN + kR

�
+ k

�
kN + kR

�
.

(100) implies that lim
p! p0

qA2(p) = qA1(p0). The equations in (99) coincide with the equa-

tions in (98) when p = p0. Therefore, because (20), (21), and (23) imply that qA, qN ,
and q are continuous functions of p, lim

p! p0
qA2(p) = qA1(p0), lim

p! p0
qN2(p) = qN1(p0) , and

lim
p! p0

q2(p) = q1(p0). �

Lemma A6. 0 < p0 < pd < pb .

Proof. The proof of Lemma A3 establishes that pd < pb. From (6):

p0 =
[ a� cN ] [ 2 b+ k ]� b [ a� c ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
�
b+ kR

�
+ cA > 0 . (101)

The inequality in (101) holds because [ a� cN ] [ 2 b+ k ] � b [ a� c ] > 0, from (3).

To prove that p0 < pd, let Q1(p ) denote the value of Q(p ) speci�ed in Lemma A1, and
let Q2(p ) denote the value of Q(p ) speci�ed in Lemma A2. Lemma A5 implies:

Q1(p0) = Q2(p0) . (102)

Lemma A2 implies:
p < P (Q2(p ) ) , p < pd . (103)

(102) and (103) imply that if p0 < P (Q1(p0) ), then:

p0 < P (Q2(p0) ) , p0 < pd . (104)

The �rst inequality in (104) holds because (102) implies that P (Q1(p0) ) = P (Q2(p0) ). The
equivalence in (104) re�ects (103). (104) implies that to establish that p0 < pd, it su¢ ces
to show that p0 < P (Q1(p0) ):

(6) implies:

p0 = cA +
[ a� cN ] [ 2 b+ k ]� b [ a� c ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
�
b+ kR

�
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=
1

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2

� f cA
� �
2 b+ kN + kR

�
(2 b+ k)� b2

�
+ [ a� cN ] [ 2 b+ k ]

�
b+ kR

�
� b

�
b+ kR

�
[ a� c ] g : (105)

Recall from (15) that when qA = 0 and the price cap binds, the equilibrium price is:

P (Q) = a� b [ q + qN ] = a� b
[ a� c ]

�
b+ kN + kR

�
+ [ a� cN ] [ b+ k ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2

=
1

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2

� f a
� �
2 b+ kN + kR

�
(2 b+ k)� b2

�
� b [ a� c ]

�
b+ kN + kR

�
� b [ a� cN ] [ b+ k ] g . (106)

(105) and (106) imply that p0 < P (Q) if:

a
� �
2 b+ kN + kR

�
(2 b+ k)� b2

�
� b [ a� c ]

�
b+ kN + kR

�
� b [ a� cN ] [ b+ k ]

> cA
� �
2 b+ kN + kR

�
(2 b+ k)� b2

�
+ [ a� cN ] [ 2 b+ k ]

�
b+ kR

�
� b

�
b+ kR

�
[ a� c ]

, [ a � cA ]
� �
2 b+ kN + kR

�
(2 b+ k)� b2

�
� b [ a� c ] kN

� [ a� cN ]
�
(b+ k) b+ (2 b+ k)

�
b + kR

� �
> 0

, [ a� cA ]
�
2 b k + 2 b kN + 2 b k

R + k kN + k kR + 3 b2
�

� b kN [ a� c ]� [ a� cN ]
�
2 b k + 2 b kR + k kR + 3 b2

�
> 0

, [ cN � cA ]
�
2 b k + 2 b kR + k kR + 3 b2

�
+ kN [ (a� cA) (2 b+ k)� b (a� c ) ] > 0 .

The inequality here holds because cN � cA, by assumption and because (3) implies:

kA [ (a� cN) (2 b+ k)� b (a� c) ] > [ cN � cA ]
�
2 b k + 2 b kR + k kR + 3 b2

�
) [ a� cN ] [ 2 b+ k ]� b [ a� c ] > 0 ) [ a� cA ] [ 2 b+ k ]� b [ a� c ] > 0. (107)

The last two inequalities in (107) hold because cN � cA, by assumption. � �

Proposition 2. In equilibrium: (i) dqA
d p

< 0 , dqN
d p

< 0 , dq
d p
> 0 , dQ

d p
< 0 , and dP (Q)

d p
= 1

for p 2 (pd; pb ); and (ii) dqA
d p

> 0, dqN
d p

< 0 , dq
d p
< 0 , dQ

R

d p
> 0 , dQ

d p
> 0 , and dP (Q)

d p
< 0 for

p 2 (p0; pd ) . 26



Proof. Lemma A3 implies that for p 2 (pd; pb ):

dqA
dp

= � kN [ b+ k ] + b kN
b [ b+ k ] [ kN + kA ]

< 0 ;

dqN
dp

= � kA [ b+ k ] + b kA
b [ b+ k ] [ kN + kA ]

< 0 ;
dq

dp
=

1

b+ k
> 0 ;

dQ

dp
= � 1

b
< 0 ) dP (Q)

dp
= � b

�
� 1
b

�
= 1 .

Lemma A2 implies that for p 2 (p0; pd ):

dqA
d p

=
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

�
D

> 0 ;

dqN
d p

= �
b
�
b+ 2 kR

�
+ k

�
b+ kR

�
D

< 0 ;
dQR

d p
=
[ 2 b+ k ] [ b+ kN ]

D
> 0 ;

dq

d p
= � b [ b+ kN ]

D
< 0 ; and

dQ

d p
=
[ b+ k ] [ b+ kN ]

D
> 0 . � (108)

Proposition 3. For p 2 (pd; pb ): (i) V (p ) is a strictly concave function of p ; (ii)
@V (p )
@ p

Q
0 , p R pVM where pVM 2 [ pd; pb); and (iii) pVM = pd if �1 � 0, whereas pVM > pd if

�1 < 0, where

�1 �
�
kR +

b2

2 b+ k

�
[ kA + kN ]A+ 2 b [ b+ k ] cA [ kN + b ]

+ [ 2 b (b+ k) cN + AkN ] [ kA � b ] where A � a [ b+ k ] + b c . (109)

Proof. (62) implies that for p 2 (pd; pb), R�s revenue is:

V (p ) = p

�
a (b+ k) + b c� p (2 b+ k )

b [ b+ k ]

�
=
[ a (b+ k) + b c ] p� [ 2 b+ k ] p2

b [ b+ k ]
. (110)

The value of p at which V (p ) in (110) is maximized is determined by:

a [ b+ k ] + b c� 2 [ 2 b+ k ] p = 0 ) p =
a [ b+ k ] + b c

2 [ 2 b+ k ]
� pVM . (111)

From (8):

pb =
[ a (b+ k) + b c ]

� �
b+ kR

�
(kN + kA) + kN kA

�
+ b cN [ b+ k ] kA + b kN [ b+ k ] cA

b [ b+ k ] [ kN + kA ] + kN kA [ 2 b+ k ] + [ kN + kA ] [ 2 b+ k ] [ b+ kR ]
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=

� �
b+ kR

�
( kN + kA ) + kN kA

�
a [ b+ k ] + b c
b [ b+ k ]

+ cN kA + kN cA

kN + kA + [ ( b+ kR ) (kN + kA ) + kN kA ]
2 b+ k
b [ b+ k ]

. (112)

(111) and (112) imply that pVM < pb if:

a [ b+ k ] + b c

2 [ 2 b+ k ]
<

� �
b+ kR

�
( kN + kA ) + kN kA

�
a [ b+ k ] + b c
b [ b+ k ]

+ cN kA + kN cA

kN + kA + [ ( b+ kR ) (kN + kA ) + kN kA ]
2 b+ k
b [ b+ k ]

: (113)

The inequality in (113) holds if:� �
b+ kR

�
( kN + kA ) + kN kA

� a [ b+ k ] + b c
b [ b+ k ]

kN + kA + [ ( b+ kR ) (kN + kA ) + kN kA ]
2 b+ k
b [ b+ k ]

>
a [ b+ k ] + b c

2 [ 2 b+ k ]
: (114)

De�ne z �
� �
b+ kR

�
( kN + kA ) + kN kA

�
1

b [ b+k ]
. Then the inequality in (114) holds

if:
z [ a (b+ k ) + b c ]

kN + kA + z [ 2 b+ k ]
>

a [ b+ k ] + b c

2 [ 2 b+ k ]

, z

kN + kA + z [ 2 b+ k ]
>

1

2 [ 2 b+ k ]

, 2 z [ 2 b+ k ] > kN + kA + z [ 2 b+ k ] , [ 2 b+ k ] z > kN + kA

,
� �
b+ kR

�
( kN + kA ) + kN kA

� 2 b+ k

b [ b+ k ]
> kN + kA

,
[ 2 b+ k ]

�
b+ kR

�
b [ b+ k ]

[ kN + kA ] + kN kA

�
2 b+ k

b (b + k)

�
> kN + kA

,
[ 2 b+ k ]

�
b+ kR

�
� b [ b+ k ]

b [ b+ k ]
[ kN + kA ] + kN kA

�
2 b+ k

b (b + k)

�
> 0 . (115)

The inequality in (115) always holds because:

[ 2 b+ k ]
�
b+ kR

�
� b [ b+ k ] = 2 b2 + 2 b kR + b k + k kR � b2 � b k

= b2 + 2 b kR + k kR > 0 .

(115) implies that pVM < pb.

(110) and (111) imply that for p 2 (pd; pb ), V (p ) is a strictly concave function that
attains its maximum at pVM . Therefore,

@V ( p )
@p

< 0 for p 2 (pVM ; pb ).

(7) and (111) imply that pd � pVM if and only if:

1

b [ b+ k ] [ kN + kA ] + [ kA kN � kN b ] [ 2 b+ k ] + [ kN + kA ] [ 2 b+ k ] [ b+ kR ]

� f [ (b+ k) a+ b c ]
� �
b+ kR

�
(kN + kA) + kN kA � b kN

�
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+ b [ b+ k ] [ kA � b ] cN + b [ kN + b ] [ b+ k ] cA g

� a [ b+ k ] + b c

2 [ b+ k ]

, 1
b[ b+k ]
2 b+k

[ kN + kA ] + [ kA kN � kN b ] + [ kN + kA ] [ b+ kR ]

� f 2 [ (b+ k) a+ b c ]
� �
b+ kR

�
(kN + kA) + kN kA � b kN

�
+ 2 b [ b+ k ] [ kA � b ] cN + 2 b [ kN + b ] [ b+ k ] cA g

� a [ b+ k ] + b c

, 2 [ (b+ k) a+ b c ]
� �
b+ kR

�
(kN + kA) + kN kA � b kN

�
+ 2 b [ b+ k ] [ kA � b ] cN

+ 2 b [ kN + b ] [ b+ k ] cA

� [ (b+ k) a+ b c ]
b [ b+ k ]

2 b+ k
[ kN + kA ] + [ a (b+ k) + b c ] [ kA kN � b kN ]

+ [ a (b+ k) + b c ] [ kN + kA ]
�
b+ kR

�
, [ (b+ k) a+ b c ]

� �
b+ kR

�
(kN + kA) + kN kA � b kN

�
+ 2 b [ b+ k ] [ kA � b ] cN

+ 2 b [ kN + b ] [ b+ k ] cA � [ a (b+ k) + b c ]
b [ b+ k ]

2 b+ k
[ kN + kA ]

, [ (b+ k) a+ b c ]

��
b� b (b+ k)

2 b+ k
+ kR

�
(kN + kA) + kN kA � b kN

�
+ 2 b [ b+ k ] [ kA � b ] cN + 2 b [ kN + b ] [ b+ k ] cA � 0

, [ (b+ k) a+ b c ]

��
2 b2 + k b

2 b+ k
� b (b+ k)

2 b+ k
+ kR

�
(kN + kA) + kN kA � b kN

�
+ 2 b [ b+ k ] [ kA � b ] cN + 2 b [ kN + b ] [ b+ k ] cA � 0

, [ (b+ k) a+ b c ]

��
b2

2 b+ k
+ kR

�
(kN + kA) + kN kA � b kN

�
+ 2 b [ b+ k ] [ kA � b ] cN + 2 b [ kN + b ] [ b+ k ] cA � 0

, [ (b+ k) a+ b c ]

��
b2

2 b+ k
+ kR

�
(kN + kA) + kN kA � b kN

�
+ 2 b [ b+ k ] [ kA cN + kN cA � b (cN � cA) ] � 0
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,
�
(b+ k) a+ b c

2 b+ k

� � �
b2 + kR [ 2 b+ k ]

�
(kN + kA) + kN kA (2 b+ k)� b kN (2 b+ k)

�
+ 2 b [ b+ k ] [ kA cN + kN cA � b (cN � cA) ] � 0 . (116)

Observe that:�
b2 + kR (2 b+ k)

�
[ kN + kA ] + kN kA [ 2 b+ k ]� b kN [ 2 b+ k ]

= b2 [ kN + kA ] + kR [ 2 b+ k ] [ kN + kA ] + kN [ 2 b+ k ] [ kA � b ]

= b2 [ kN + kA ]� b [ 2 b+ k ] [ kN + kA ] + b [ 2 b+ k ] [ kN + kA ]

+ kR [ 2 b+ k ] [ kN + kA ] + kN [ 2 b+ k ] [ kA � b ]

= � b [ b+ k ] [ kN + kA ] +
�
b+ kR

�
[ 2 b+ k ] [ kN + kA ] + kN [ 2 b+ k ] [ kA � b ]

= � 2 b [ b+ k ] [ kN + kA ] +D2 . (117)

The last equality in (117) re�ects (7). (116) and (117) imply:

pd � pVM , e�1 � 0 ,

where e�1 � �
(b+ k) a+ b c

2 b+ k

�
fD2 � 2 b [ b+ k ] [ kN + kA ] g

+ 2 b [ b+ k ] [ kA cN + kN cA � b (cN � cA) ] . (118)

(7) implies:

D2 � 2 b [ b+ k ] [ kN + kA ] = � b [ b+ k ] [ kN + kA ] + kN [ kA � b ] [ 2 b+ k ]

+ [ 2 b+ k ]
�
b+ kR

�
[ kN + kA ]

= [ kA + kN ]
�
2 b2 + 2 b kR + b k + k kR � b2 � b k

�
+ kN [ kA � b ] [ 2 b+ k ]

= [ kA + kN ]
�
b2 + 2 b kR + k kR

�
+ kN [ kA � b ] [ 2 b+ k ] . (119)

(119) implies:�
(b+ k) a+ b c

2 b+ k

�
[D2 � 2 b (b+ k) (kN + kA) ]

=

�
(b+ k) a+ b c

2 b+ k

�
[ kA + kN ]

�
b2 + kR (2 b+ k)

�
+ [ (b+ k) a+ b c ] kN [ kA � b ] . (120)

(109) and (120) imply:

e�1 = b2

2 b+ k
[ kA + kN ] [ (b+ k) a+ b c ] + kR [ kA + kN ] [ (b+ k) a+ b c ]
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+ [ (b+ k) a+ b c ] kN [ kA � b ] + 2 b [ b+ k ] cN [ kA � b ]

+ 2 b [ b+ k ] cA [ kN + b ]

=

�
kR +

b2

2 b+ k

�
[ kA + kN ] [ (b+ k) a+ b c ] + 2 b [ b+ k ] cA [ kN + b ]

+ f 2 b [ b+ k ] cN + [ (b+ k) a+ b c ] kN g [ kA � b ] � �1 . �

Proposition 4. pb � pd increases as: (i) cA, kA, or k
R declines; (ii) c or cN increases; or

(iii) kN increases if kA � b is su¢ ciently small.

Proof. (7) and (8) imply:

pd =
N2
D2

and pb =
N3

D2 + b [ 2 b+ k ] kN

where N3 � [ a (b+ k) + b c ]
� �
b+ kR

�
(kN + kA) + kN kA

�
+ b cN [ b+ k ] kA + b kN [ b+ k ] cA and

N2 � [ a (b+ k) + b c ]
� �
b+ kR

�
(kN + kA) + kN kA

�
+ b cN [ b+ k ] kA + b kN [ b+ k ] cA

� b kN [ a (b+ k) + b c ]� b2 [ b+ k ] cN + b2 [ b+ k ] cA

= N3 � b kN [ a (b+ k) + b c ]� b2 [ b+ k ] [ cN � cA ] . (121)

To prove that @(pb� pd)
@kR

< 0, let qA(p) denote R�s equilibrium output using A�s input when
the price cap is p 2 [ pd; pb ]. Let qN(p) denote R�s corresponding output when R does not
employ A�s input. Also let QR(p) = qA(p) + qN(p). (73) implies:

pb =
�
b+ kR

�
QR(pb) + cN + kN qN(pb)

where, from (57):

qN(pb) =
kA [ b+ k ] [ a� pb ]� b kA [ pb � c ]� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]
and

QR(pb) =
[ b+ k ] [ a� pb ]� b [ pb � c ]

b [ b+ k ]
. (122)

(122) implies that qN(pb) and Q
R(pb) vary with k

R only through pb. Therefore, (122)
implies:

@pb
@kR

= QR(pb) +
�
b+ kR

� @QR(pb)
@pb

@pb
@kR

+ kN
@qN(pb)

@pb

@pb
@kR

: (123)
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(122) also implies:

@qN(pb)

@pb
= � kA [ b+ k ] + b kA

b [ b+ k ] [ kN + kA ]
� DN < 0 ;

@QR(pb)

@pb
= � 2 b+ k

b [ b+ k ]
� DR < 0 . (124)

(123) and (124) imply:

@pb
@kR

= QR(pb) +
�
b+ kR

�
DR

@pb
@kR

+ kN DN
@pb
@kR

) @pb
@kR

�
1�

�
b+ kR

�
DR � kN DN

�
= QR(pb)

) @pb
@kR

=
QR(pb)

1� [ b+ kR ]DR � kN DN

> 0 . (125)

The inequality in (125) holds because DR < 0 and DN < 0, from (124).

(73) implies:

pd =
�
b+ kR

�
QR(pd) + cN + kN qN(pd)� b qA(pd)

where, from (57):

qA(pd) =
b [ b+ k ] [ cN � cA ] + kN [ a� p ] [ b+ k ]� b kN [ p� c ]

b [ b+ k ] [ kN + kA ]
;

qN(pd) =
kA [ b+ k ] [ a� pd ]� b kA [ pd � c ]� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]
; and

QR(pd) =
[ b+ k ] [ a� pd ]� b [ pd � c ]

b [ b+ k ]
. (126)

(126) implies that qA(pd), qN(pd), and Q
R(pd) vary with k

R only through pd. Therefore,
(126) implies:

@pd
@kR

= QR(pd) +
�
b+ kR

� @QR(pd)
@pd

@pd
@kR

+ kN
@qN(pd)

@pd

@pd
@kR

� b
@qA(pd)

@pd

@pd
@kR

. (127)

(126) also implies:

@qA(pd)

@pd
= � kN [ b+ k ] + b kN

b [ b+ k ] [ kN + kA ]
� DA < 0 ;

32



@qN(pd)

@pd
= � kA [ b+ k ] + b kA

b [ b+ k ] [ kN + kA ]
� DN < 0 ;

@QR(pd)

@pd
= � 2 b+ k

b [ b+ k ]
� DR < 0 . (128)

(127) and (128) imply:

@pd
@kR

= QR(pd) +
�
b+ kR

�
DR

@pd
@kR

+ kN DN
@pd
@kR

� bDA
@pd
@kR

) @pd
@kR

�
1�

�
b+ kR

�
DR � kNDN + bDA

�
= QR(pd)

) @pd
@kR

=
QR(pd)

1� [ b+ kR ]DR � kN DN + bDA

. (129)

(128) implies:

� bDR + bDA = b [�DR +DA ] = b

�
2 b+ k

b (b+ k)
� kN (b+ k) + b kN
b (b+ k) (kN + kA)

�

= b

�
2 b+ k

b (b+ k)
�
�

kN
kN + kA

�
2 b+ k

b (b+ k)

�

= b

�
2 b+ k

b (b+ k)

� �
1� kN

kN + kA

�
> 0 (130)

Because DN < 0 and DR < 0 from (128), (130) implies:

1�
�
b+ kR

�
DR � kN DN + bDA = 1� kRDR � kN DN � bDR + bDA

> 1� kRDR � kN DN > 0 . (131)

Because DA < 0 from (128), (131) implies:

1�
�
b+ kR

�
DR � kN DN > 0 . (132)

(129) and (131) imply:

@ pd
@kR

=
QR(pd)

1� [ b+ kR ]DR � kN DN + bDA

> 0 . (133)

(125) and (131) �(133) imply:

@ pb
@kR

� @ pd
@kR

=
QR(pb)

1� [ b+ kR ]DR � kN DN

� QR(pd)

1� [ b+ kR ]DR � kN DN + bDA

< 0
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, QR(pb)

1� [ b+ kR ]DR � kN DN

<
QR(pd)

1� [ b+ kR ]DR � kN DN + bDA

, QR(pb)

QR(pd)
<

1�
�
b+ kR

�
DR � kN DN

1� [ b+ kR ]DR � kN DN + bDA

. (134)

(62) implies that QR(pb) < QR(pd). Therefore:

QR(pb)

QR(pd)
< 1 . (135)

Furthermore, because 1�
�
b+ kR

�
DR � kNDN + bDA > 0 from (131):

1�
�
b+ kR

�
DR � kN DN

1� [ b+ kR ]DR � kN DN + bDA

> 1

, 1�
�
b+ kR

�
DR � kN DN > 1�

�
b+ kR

�
DR � kN DN + bDA

, DA < 0 . (136)

(128) implies that the last inequality in (136) holds. (135) and (136) imply that (134)
holds. Therefore, because pb > pd > 0 from Proposition 1, (125) and (134) imply that
@(pb�pd)
@kR

< 0 .

To prove that @( pb� pd)
@cN

> 0, observe that (7) and (8) imply:

@ pd
@cN

=
b [ b+ k ] [ kA � b ]

D2

and
@ pb
@cN

=
b [ b+ k ] kA

D2 + b kN [ 2 b+ k ]
. (137)

(137) implies:

@ pb
@cN

� @ pd
@cN

=
b [ b+ k ] kA

D2 + b kN [ 2 b+ k ]
� b [ b+ k ] [ kA � b ]

D2

> 0

, kA
D2 + b kN [ 2 b+ k ]

>
kA � b

D2

, D2 kA > [D2 + b kN (2 b+ k) ] [ kA � b ]

, D2 kA > D2 kA � bD2 + b kN [ 2 b+ k ] [ kA � b ]

, D2 � kN [ 2 b+ k ] [ kA � b ] > 0 . (138)

The inequality in (138) holds because, from (7):

D2 � kN [ 2 b+ k ] [ kA � b ]

= b [ b+ k ] [ kN + kA ] + [ 2 b+ k ] kN [ kA � b ]

34



+ [ 2 b+ k ] [ kN + kA ]
�
b+ kR

�
� kN [ 2 b+ k ] [ kA � b ]

= b [ b+ k ] [ kN + kA ] + [ 2 b+ k ] [ kN + kA ]
�
b+ kR

�
> 0 .

To prove that @( pb� pd)
@cA

< 0, observe that (7) and (8) imply:

@ pd
@cA

=
b [ b+ k ] [ kN + b ]

D2

and
@ pb
@cA

=
b [ b+ k ] kN

D2 + b kN [ 2 b+ k ]
: (139)

(139) implies:

@ pb
@cA

� @ pd
@cA

=
b [ b+ k ] kN

D2 + b kN [ 2 b+ k ]
� b [ b+ k ] [ kN + b ]

D2

< 0

, b [ b+ k ] kN
D2 + b kN [ 2 b+ k ]

<
b [ b+ k ] [ kN + b ]

D2

, bD2 [ b+ k ] kN < [D2 + b kN (2 b+ k) ] b [ b+ k ] [ kN + b ]

, D2 kN < [D2 + b kN (2 b+ k) ] [ kN + b ]

, D2 kN < D2 kN + bD2 + b kN [ 2 b+ k ] [ kN + b ]

, D2 + kN [ 2 b+ k ] [ kN + b ] > 0 . (140)

The inequality in (140) holds because, from (7):

D2 = b [ b+ k ] [ kN + kA ] + [ 2 b+ k ]
�
kN [ kA � b ] + [ kN + kA ]

�
b+ kR

� 	
= b [ b+ k ] [ kN + kA ] + [ 2 b+ k ]

�
kN
�
kA + kR

�
+ kA

�
b+ kR

� 	
> 0 .

To prove that @(pb�pd)
@kA

< 0, we introduce the following:

De�nition. Y1 � b [ b+ k ] f kN [ a (b+ k) + b c� (2 b+ k) cA ]

+ [ cN � cA ]
�
b (b+ k) + (2 b+ k)

�
b+ kR

� �
g . (141)

Observe that:
Y1 > 0 . (142)

(142) holds because cN � cA by assumption, and (3) implies:

[ a� cA ] [ 2 b+ k ]� b [ a� c ] > 0 ) a [ b+ k ] + b c� [ 2 b+ k ] cA > 0 .

(8) implies:

(D3)
2 @ pb
@kA

= D3

�
[ a (b+ k) + b c ]

�
b+ kR + kN

�
+ b [ b+ k ] cN
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�
�
b [ b+ k ] + [ 2 b+ k ]

�
kN + b+ kR

� 	
� f [ a (b+ k) + b c ]

� �
b+ kR

�
(kA + kN) + kA kN

�
+ b [ b+ k ] [ cN kA + cA kN ] g

=
�
[ a (b+ k) + b c ]

�
b+ kR + kN

�
+ b [ b+ k ] cN

	
�
�
b [ b+ k ] [ kA + kN ] + [ 2 b+ k ]

�
kA kN + (kA + kN)

�
b+ kR

� � 	
�
�
b [ b+ k ] + [ 2 b+ k ]

�
kN + b+ kR

� 	
� f [ a (b+ k) + b c ]

� �
b+ kR

�
(kA + kN) + kA kN

�
+ b [ b+ k ] [ cN kA + cA kN ] g

= [ a (b+ k) + b c ]
�
b+ kR + kN

�
b [ b+ k ] [ kA + kN ]

+ [ a (b+ k) + b c ]
�
b+ kR + kN

�
[ 2 b+ k ]

� �
b+ kR

�
(kA + kN) + kA kN

�
+ b [ b+ k ] cN b [ b+ k ] [ kA + kN ]

+ b [ b+ k ] cN [ 2 b+ k ]
� �
b+ kR

�
(kA + kN) + kA kN

�
� b [ b+ k ] [ a (b+ k) + b c ]

� �
b+ kR

�
(kA + kN) + kA kN

�
� b [ b+ k ] b [ b+ k ] [ cN kA + cA kN ]

� [ 2 b+ k ]
�
kN + b+ kR

�
[ a (b+ k) + b c ]

� �
b+ kR

�
(kA + kN) + kA kN

�
� [ 2 b+ k ]

�
kN + b+ kR

�
b [ b+ k ] [ cN kA + cA kN ] � � : (143)

(143) implies:
� = [ a (b+ k) + b c ] �A + b [ b+ k ] �B (144)

where

�A � b [ b+ k ]
�
b+ kR + kN

�
[ kA + kN ]

+ [ 2 b+ k ]
�
b+ kR + kN

� � �
b+ kR

�
(kA + kN) + kA kN

�
� b [ b+ k ]

� �
b+ kR

�
(kA + kN) + kA kN

�
� [ 2 b+ k ]

�
b+ kR + kN

� � �
b+ kR

�
(kA + kN) + kA kN

�
= b [ b+ k ]

� �
b+ kR + kN

�
[ kA + kN ]�

� �
b+ kR

�
(kA + kN) + kA kN

� 	
= b [ b+ k ] f kN [ kA + kN ]� kA kN g = b [ b+ k ] (kN)

2 and (145)
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�B � cN b [ b+ k ] [ kA + kN ] + cN [ 2 b+ k ]
� �
b+ kR

�
(kA + kN) + kA kN

�
� b [ b+ k ] [ cN kA + cA kN ]� [ 2 b+ k ]

�
kN + b+ kR

�
[ cN kA + cA kN ]

= b [ b+ k ] kN [ cN � cA ] + [ 2 b+ k ] �C (146)

where

�C � cN
� �
b+ kR

�
(kA + kN) + kA kN

�
�
�
kN + b+ kR

�
[ cN kA + cA kN ]

= cN
� �
b+ kR

�
(kA + kN) + kA kN � kA

�
kN + b+ kR

� �
� cA kN

�
kN + b+ kR

�
= cN kN

�
b+ kR

�
� cA kN

�
kN + b+ kR

�
=
�
b+ kR

�
kN [ cN � cA ]� cA (kN)

2 . (147)

(146) and (147) imply:

�B = b [ b+ k ] kN [ cN � cA ] + [ 2 b+ k ]
� �

b+ kR
�
kN [ cN � cA ]� cA (kN)

2 	
= kN [ cN � cA ]

�
b [ b+ k ] + [ 2 b+ k ]

�
b+ kR

� 	
� [ 2 b+ k ] cA (kN)

2 . (148)

(141), (144), (145), and (148) imply:

� = [ a (b+ k) + b c ] b [ b+ k ] (kN)
2

+ b [ b+ k ] kN [ cN � cA ]
�
b [ b+ k ] + [ 2 b+ k ]

�
b+ kR

� 	
� b [ b+ k ] [ 2 b+ k ] cA (kN)

2

= b [ b+ k ] kN f [ a (b+ k) + b c ] kN � [ 2 b+ k ] cA kN

+ [ cN � cA ]
�
b (b+ k) + (2 b+ k)

�
b+ kR

� �
g

= b [ b+ k ] kN f kN [ a (b+ k) + b c� (2 b+ k) cA ]

+ [ cN � cA ]
�
b (b+ k) + (2 b+ k)

�
b+ kR

� �
g = kN Y1 . (149)

(142), (143), and (149) imply that @ pb
@kA

= kN Y1
(D3)

2 > 0.

(7) implies:

(D2)
2 @pd
@kA

= D2

�
[ a (b+ k) + b c ]

�
b+ kR + kN

�
+ b [ b+ k ] cN

	
�
�
b [ b+ k ] + [ 2 b+ k ]

�
kN + b+ kR

� 	
� f [ a (b+ k) + b c ]

� �
b+ kR

�
(kA + kN) + kA kN � b kN

�
+ b [ b+ k ] [ cN (kA � b) + cA (kN + b) ] g

37



=
�
[ a (b+ k) + b c ]

�
b+ kR + kN

�
+ b [ b+ k ] cN

	
� f b [ b+ k ] [ kA + kN ] + [ 2 b+ k ]

�
kN
�
kA + kR

�
+ kA

�
b+ kR

� �
g

�
�
b [ b+ k ] + [ 2 b+ k ]

�
kN + b+ kR

� 	
� f [ a (b+ k) + b c ]

�
kA (b+ kN) + kR (kA + kN)

�
+ b [ b+ k ] [ cN (kA � b) + cA (kN + b) ] g

= [ a (b+ k) + b c ]
�
b+ kR + kN

�
b [ b+ k ] [ kN + kA ]

+ [ a (b+ k) + b c ]
�
b+ kR + kN

�
[ 2 b+ k ]

�
kN
�
kA + kR

�
+ kA

�
b+ kR

� �
+ b [ b+ k ] cN b [ b+ k ] [ kN + kA ]

+ b [ b+ k ] cN [ 2 b+ k ]
�
kN
�
kA + kR

�
+ kA

�
b+ kR

� �
� b [ b+ k ] [ a (b+ k) + b c ]

�
kA (b+ kN) + kR (kA + kN)

�
� b [ b+ k ] b [ b+ k ] [ cN (kA � b) + cA (kN + b) ]

� [ 2 b+ k ]
�
kN + b+ kR

�
[ a (b+ k) + b c ]

�
kA (b+ kN) + kR (kA + kN)

�
� [ 2 b+ k ]

�
kN + b+ kR

�
b [ b+ k ] [ cN (kA � b) + cA (kN + b) ] � z . (150)

(150) implies:
z = [ a (b+ k) + b c ]z1 + b [ b+ k ]z2 (151)

where

z1 �
�
b+ kR + kN

�
b [ b+ k ] [ kN + kA ]

+ [ 2 b+ k ]
�
b+ kR + kN

� �
kN
�
kA + kR

�
+ kA

�
b+ kR

� �
� b [ b+ k ]

�
kA (b+ kN) + kR (kA + kN)

�
� [ 2 b+ k ]

�
kN + b+ kR

� �
kA (b+ kN) + kR (kA + kN)

�
= b [ b+ k ]

� �
b+ kR + kN

�
[ kN + kA ]�

�
kA (b+ kN) + kR (kA + kN)

� 	
= b [ b+ k ] f [ b+ kN ] [ kN + kA ]� kA [ b+ kN ] g = b [ b+ k ] [ b+ kN ] kN (152)

and

z2 � b [ b+ k ] [ kN + kA ] cN + cN [ 2 b+ k ]
�
kN
�
kA + kR

�
+ kA

�
b+ kR

� �
� b [ b+ k ] [ cN (kA � b) + cA (kN + b) ]
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� [ 2 b+ k ]
�
kN + b+ kR

�
[ cN (kA � b) + cA (kN + b) ]

= b [ b+ k ] [ cN (kA + kN)� cN (kA � b)� cA (kN + b) ]

+ [ 2 b+ k ] f cN
�
kN
�
kA + kR

�
+ kA

�
b+ kR

� �
�
�
kN + b+ kR

�
[ cN (kA � b) + cA (kN + b) ] g

= b [ b+ k ] [ cN kN + b cN � cA (kN + b) ]

+ [ 2 b+ k ] f cN [ kN
�
kA + kR

�
� kN (kA � b) + kA

�
b+ kR

�
� (kA � b)

�
b+ kR

�
]� cA [ kN + b ]

�
kN + b+ kR

�
g

= b [ b+ k ] [ kN (cN � cA) + b (cN � cA) ]

+ [ 2 b+ k ] f cN
�
kN
�
b+ kR

�
+ b
�
b+ kR

� �
� cA [ kN + b ] kN

� cA [ kN + b ]
�
b+ kR

�
g

= b [ b+ k ] [ cN � cA ] [ kN + b ]

+ [ 2 b+ k ]
�
[ cN � cA ] [ kN + b ]

�
b+ kR

�
� cA [ kN + b ] kN

	
= b [ b+ k ] [ cN � cA ] [ kN + b ]

+ [ 2 b+ k ] [ kN + b ]
� �
b+ kR

�
(cN � cA)� cA kN

�
. (153)

(141), (151), (152), and (153) imply:

z = [ a (b+ k) + b c ] b [ b+ k ] [ b+ kN ] kN

+ b [ b+ k ] f b [ b+ k ] [ cN � cA ] [ kN + b ]

+ [ 2 b+ k ] [ kN + b ]
� �
b+ kR

�
(cN � cA)� cA kN

�
g

= b [ b+ k ] [ b+ kN ] f kN [ a (b+ k) + b c� (2 b+ k) cA ]

+ [ cN � cA ]
�
b (b+ k) + (2 b+ k)

�
b+ kR

� �
g

= [ b+ kN ]Y1 . (154)

(142), (150), and (154) imply that @ pd
@kA

= [ kN + b ]Y1
(D2)

2 > 0.

(141), (143), (149), (150), and (154) imply:

@ (pb � pd)

@kA
= Y1

�
kN

(D3)
2 �

kN + b

(D2)
2

�
< 0 .
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The inequality here holds because: (i) Y1 > 0, from (142); (ii) kN < kN + b; and (iii)
D3 > D2 > 0, from (7) and (8).

To prove that @(pb�pd)
@kN

> 0 if kA � b is su¢ ciently small, we introduce the following:

De�nition. Y2 � b [ b+ k ] f kA [ a (b+ k) + b c� (2 b+ k) cN ]

� [ cN � cA ]
�
b (b+ k) + (2 b+ k)

�
b+ kR

� �
g . (155)

Observe that:
Y2 > 0. (156)

(156) follows from (3) and (155) because:

a [ b+ k ] + b c� [ 2 b+ k ] cN = a [ 2 b+ k ]� a b+ b c� [ 2 b+ k ] cN

= [ a� cN ] [ 2 b+ k ]� b [ a� c ] and

b [ b+ k ] + [ 2 b+ k ]
�
b+ kR

�
= b2 + b k + 2 b2 + 2 b kR + b k + k kR

= 3 b2 + 2 b k + 2 b kR + k kR = 3 b2 + 2 b
�
k + kR

�
+ k kR .

(8) implies:

(D3)
2 @ pb
@kN

= D3

�
[ a (b+ k) + b c ]

�
b+ kR + kA

�
+ b [ b+ k ] cA

	
�
�
b [ b+ k ] + [ 2 b+ k ]

�
kA + b+ kR

� 	
� f [ a (b+ k) + b c ]

� �
b+ kR

�
(kA + kN) + kA kN

�
+ b [ b+ k ] [ cN kA + cA kN ] g

=
�
[ a (b+ k) + b c ]

�
b+ kR + kA

�
+ b [ b+ k ] cA

	
�
�
b [ b+ k ] [ kA + kN ] + [ 2 b+ k ]

�
kA kN + (kA + kN)

�
b+ kR

� � 	
�
�
b [ b+ k ] + [ 2 b+ k ]

�
kA + b+ kR

� 	
� f [ a (b+ k) + b c ]

� �
b+ kR

�
(kA + kN) + kA kN

�
+ b [ b+ k ] [ cN kA + cA kN ] g

= [ a (b+ k) + b c ]
�
b+ kR + kA

�
b [ b+ k ] [ kA + kN ]

+ [ a (b+ k) + b c ]
�
b+ kR + kA

�
[ 2 b+ k ]

� �
b+ kR

�
(kA + kN) + kA kN

�
+ b [ b+ k ] cA b [ b+ k ] [ kA + kN ]
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+ b [ b+ k ] cA [ 2 b+ k ]
� �
b+ kR

�
(kA + kN) + kA kN

�
� b [ b+ k ] [ a (b+ k) + b c ]

� �
b+ kR

�
(kA + kN) + kA kN

�
� b [ b+ k ] b [ b+ k ] [ cN kA + cA kN ]

� [ 2 b+ k ]
�
kA + b+ kR

�
[ a (b+ k) + b c ]

� �
b+ kR

�
(kA + kN) + kA kN

�
� [ 2 b+ k ]

�
kA + b+ kR

�
b [ b+ k ] [ cN kA + cA kN ] � � : (157)

(157) implies:
� = [ a (b+ k) + b c ] �1 + b [ b+ k ] �2 (158)

where

�1 � b [ b+ k ]
�
b+ kR + kA

�
[ kA + kN ]

+ [ 2 b+ k ]
�
b+ kR + kA

� � �
b+ kR

�
(kA + kN) + kA kN

�
� b [ b+ k ]

� �
b+ kR

�
(kA + kN) + kA kN

�
� [ 2 b+ k ]

�
b+ kR + kA

� � �
b+ kR

�
(kA + kN) + kA kN

�
= b [ b+ k ]

� �
b+ kR + kA

�
[ kA + kN ]�

� �
b+ kR

�
(kA + kN) + kA kN

� 	
= b [ b+ k ] f kA [ kA + kN ]� kA kN g = b [ b+ k ] (kA)

2 and (159)

�2 � cA b [ b+ k ] [ kA + kN ] + cA [ 2 b+ k ]
� �
b+ kR

�
(kA + kN) + kA kN

�
� b [ b+ k ] [ cN kA + cA kN ]� [ 2 b+ k ]

�
kA + b+ kR

�
[ cN kA + cA kN ]

= � b [ b+ k ] kA [ cN � cA ] + [ 2 b+ k ] �3 (160)

where

�3 � cA
� �
b+ kR

�
(kA + kN) + kA kN

�
�
�
kA + b+ kR

�
[ cN kA + cA kN ]

= cA
� �
b+ kR

�
(kA + kN) + kA kN � kN

�
kA + b+ kR

� �
� cN kA

�
kA + b+ kR

�
= cA kA

�
b+ kR

�
� cN kA

�
kA + b+ kR

�
= �

�
b+ kR

�
kA [ cN � cA ]� cN (kA)2 . (161)

(160) and (161) imply:

�2 = � b [ b+ k ] kA [ cN � cA ]� [ 2 b+ k ]
� �

b+ kR
�
kA [ cN � cA ]� cN (kA)

2 	
= � kA [ cN � cA ]

�
b [ b+ k ] + [ 2 b+ k ]

�
b+ kR

� 	
� [ 2 b+ k ] cN (kA)

2 . (162)
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(155), (158), (159), and (162) imply:

� = [ a (b+ k) + b c ] b [ b+ k ] (kA)
2

� b [ b+ k ] kA [ cN � cA ]
�
b [ b+ k ] + [ 2 b+ k ]

�
b+ kR

� 	
� b [ b+ k ] [ 2 b+ k ] cN (kA)

2

= b [ b+ k ] kA f [ a (b+ k) + b c ] kA � [ 2 b+ k ] cN kA

� [ cN � cA ]
�
b (b+ k) + (2 b+ k)

�
b+ kR

� �
g

= b [ b+ k ] kA f kA [ a (b+ k) + b c� (2 b+ k) cN ]

� [ cN � cA ]
�
b (b+ k) + (2 b+ k)

�
b+ kR

� �
g = kA Y2 . (163)

(156), (157), and (163) imply that @ pb
@kN

= kA Y2
(D3)

2 > 0.

(7) implies:

(D2)
2 @ pd
@kN

= D2

�
[ a (b+ k) + b c ]

�
b+ kR + kA � b

�
+ b [ b+ k ] cA

	
�
�
b [ b+ k ] + [ 2 b+ k ]

�
kA � b+ b+ kR

� 	
� f [ a (b+ k) + b c ]

� �
b+ kR

�
(kA + kN) + kA kN � b kN

�
+ b [ b+ k ] [ cN (kA � b) + cA (kN + b) ] g

=
�
[ a (b+ k) + b c ]

�
kR + kA

�
+ b [ b+ k ] cA

	
� f b [ b+ k ] [ kA + kN ] + [ 2 b+ k ]

�
kN
�
kA + kR

�
+ kA

�
b+ kR

� �
g

�
�
b [ b+ k ] + [ 2 b+ k ]

�
kA + kR

� 	
� f [ a (b+ k) + b c ]

�
kA (b+ kN) + kR (kA + kN)

�
+ b [ b+ k ] [ cN (kA � b) + cA (kN + b) ] g

= [ a (b+ k) + b c ]
�
kR + kA

�
b [ b+ k ] [ kA + kN ]

+ [ a (b+ k) + b c ]
�
kR + kA

�
[ 2 b+ k ]

�
kN
�
kA + kR

�
+ kA

�
b+ kR

� �
+ b [ b+ k ] cA b [ b+ k ] [ kA + kN ]

+ b [ b+ k ] cA [ 2 b+ k ]
�
kN
�
kA + kR

�
+ kA

�
b+ kR

� �
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� b [ b+ k ] [ a (b+ k) + b c ]
�
kA (b+ kN) + kR (kA + kN)

�
� b [ b+ k ] b [ b+ k ] [ cN (kA � b) + cA (kN + b) ]

� [ 2 b+ k ]
�
kA + kR

�
[ a (b+ k) + b c ]

�
kA (b+ kN) + kR (kA + kN)

�
� [ 2 b+ k ]

�
kA + kR

�
b [ b+ k ] [ cN (kA � b) + cA (kN + b) ] � � . (164)

(164) implies:
� = [ a (b+ k) + b c ]z1 + b [ b+ k ]z2 (165)

where

�1 � b [ b+ k ]
�
kR + kA

�
[ kA + kN ]

+ [ 2 b+ k ]
�
kR + kA

� �
kN
�
kA + kR

�
+ kA

�
b+ kR

� �
� b [ b+ k ]

�
kA (b+ kN) + kR (kA + kN)

�
� [ 2 b+ k ]

�
kA + kR

� �
kA (b+ kN) + kR (kA + kN)

�
= b [ b+ k ]

� �
kR + kA

�
[ kA + kN ]�

�
kA (b+ kN) + kR (kA + kN)

� 	
= b [ b+ k ] f kA [ kA + kN ]� kA [ b+ kN ] g = b [ b+ k ] [ kA � b ] kA (166)

and

�2 � b [ b+ k ] [ kA + kN ] cA + cA [ 2 b+ k ]
�
kN
�
kA + kR

�
+ kA

�
b+ kR

� �
� b [ b+ k ] [ cN (kA � b) + cA (kN + b) ]

� [ 2 b+ k ]
�
kA + kR

�
[ cN (kA � b) + cA (kN + b) ]

= b [ b+ k ] [ cA (kA + kN)� cN (kA � b)� cA (kN + b) ]

+ [ 2 b+ k ] f cA
�
kN
�
kA + kR

�
+ kA

�
b+ kR

� �
�
�
kA + kR

�
[ cN (kA � b) + cA (kN + b) ] g

= b [ b+ k ] [ cA (kA � b)� cN (kA � b) ]

+ [ 2 b+ k ] f cA
�
kN
�
kA + kR

�
+ kA

�
b+ kR

�
�
�
kA + kR

�
(kN + b)

�
� cN

�
kA + kR

�
[ kA � b ] g

= � b [ b+ k ] [ kA � b ] [ cN � cA ]

+ [ 2 b+ k ] f cA
�
kA
�
b+ kR

�
� b
�
kA + kR

� �
� cN

�
kA + kR

�
[ kA � b ] g
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= � b [ b+ k ] [ kA � b ] [ cN � cA ]

+ [ 2 b+ k ]
�
cA k

R [ kA � b ]� cN k
R [ kA � b ]� cN kA [ kA � b ]

	
= [ kA � b ]

�
� b [ b+ k ] [ cN � cA ]� [ 2 b+ k ] kR [ cN � cA ]� [ 2 b+ k ] kA cN

	
= � [ kA � b ]

�
[ cN � cA ]

�
b (b+ k) + (2 b+ k) kR

�
+ [ 2 b+ k ] kA cN

	
. (167)

(155), (165), (166), and (167) imply:

� = [ a (b+ k) + b c ] b [ b+ k ] [ kA � b ] kA

� b [ b+ k ] [ kA � b ] f [ cN � cA ]
�
b (b+ k) + (2 b+ k) kR

�
+ [ 2 b+ k ] kA cN g

= b [ b+ k ] [ kA � b ] f [ a (b+ k) + b c ] kA � [ cN � cA ]
�
b (b+ k) + (2 b+ k) kR

�
� [ 2 b+ k ] kA cN g

= [ kA � b ] b [ b+ k ] f kA [ a (b+ k) + b c� (2 b+ k) cN ]

� [ cN � cA ]
�
b (b+ k) + (2 b+ k) kR

�
g

= [ kA � b ] Y2 . (168)

(164) and (168) imply that @ pd
@kN

= [ kA� b ]Y2
(D2)

2 R 0 , kA R b.

(155), (156), (157), (163), (164), and (168) imply:

@ (pb � pd)

@kN
= Y2

�
kA

(D3)
2 �

kA � b

(D2)
2

�
> 0 if kA � b is su¢ ciently small. (169)

To prove that @( pb� pd)
@c

> 0, observe that (7) implies:

@pd
@c

=
b

D2

� �
b+ kR

�
(kA + kN) + kN (kA � b)

�
=

b

D2

�
kA
�
b+ kR

�
+ kN

�
b+ kR + kA � b

� �
=

b

D2

�
kA
�
b+ kR

�
+ kN

�
kA + kR

� �
> 0 . (170)

Furthermore, (8) implies:

@pb
@c

=
1

D3

�
b
� �
b+ kR

�
(kA + kN) + kN kA

� 	
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=
b

D3

� �
b+ kR

�
(kA + kN) + kN kA

�
=

b

D3

�
kA
�
b+ kR

�
+ kN

�
kA + kR + b

� �
> 0 . (171)

(170) and (171) imply:

@ ( pb � pd)

@c
s
=

kA
�
b+ kR

�
+ kN

�
kA + kR + b

�
D3

�
kA
�
b+ kR

�
+ kN

�
kA + kR

�
D2

> 0

,
kA
�
b+ kR

�
+ kN

�
kR + b+ kA

�
D3

>
kA
�
b+ kR

�
+ kN

�
kA + kR

�
D2

,
kA
�
b+ kR

�
+ kN

�
kR + b+ kA

�
D2 + b kN [ 2 b+ k ]

>
kA
�
b+ kR

�
+ kN

�
kA + kR

�
D2

, Z + b kN
D2 + b kN [ 2 b+ k ]

>
Z

D2

where Z � kA
�
b+ kR

�
+ kN

�
kA + kR

�
. (172)

(172) implies:

@ ( pb � pd)

@c
> 0 , Z D2 + b kN D2 > Z D2 + Z b kN [ 2 b+ k ]

, b kN D2 > Z b kN [ 2 b+ k ] , D2 > Z [ 2 b+ k ]

, D2 >
�
kA
�
b+ kR

�
+ kN

�
kA + kR

��
[ 2 b+ k ]

, b [ b+ k ] [ kN + kA ] + kN [ kA � b ] [ 2 b+ k ] + [ kN + kA ] [ 2 b+ k ]
�
b+ kR

�
>
�
kA
�
b+ kR

�
+ kN

�
kA + kR

� �
[ 2 b+ k ]

, b [ b+ k ] [ kN + kA ] + kN [ kA � b ] [ 2 b+ k ] + [ kN + kA ] [ 2 b+ k ]
�
b+ kR

�
>
� �
b+ kR

�
(kA + kN) + kN (kA � b)

�
[ 2 b+ k ]

, b [ b+ k ] [ kN + kA ] > 0 . �

Recall that welfare is:

W (p ) � S(p )� r [ p qA + ( a� b [ qA + qN + q ] ) qN ] = S(p )� r V (p ) (173)

where r > 0 is a parameter and S(�) denotes consumer surplus. The gross value that
consumers derive from Q units of output is:

1

2
[ a� P (Q) ]Q+ P (Q)Q =

1

2
[ a+ P (Q) ]Q =

1

2
[ a+ a� bQ ]Q = a Q� b

2
Q2.
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Therefore, consumer surplus when the price cap is p is:

S(p ) = aQ� b

2
Q2 � p qA � P (Q) [ qN + q ] . (174)

Lemma 1. Equilibrium consumer surplus,S(p ), is a strictly decreasing, strictly convex

function of p for p 2 (pd; pb).

Proof. (57) implies that when p 2 (pd; pb), so P (Q) = p :

Q =
a� p

b
) @Q

@p
= � 1

b
: (175)

(174) and (175) imply that for p 2 (pd; pb), where P (Q) = p :

@S(p )

@p
= a

@Q

@p
� bQ

@Q

@p
�Q� p

@Q

@p
= � a

b
+Q�Q+

p

b

= � a� p

b
< 0 ) @2S(p )

@ (p )2
=
1

b
> 0 . � (176)

Lemma A7. V (p0) < V (pb).

Proof. Lemmas A1 and A3 imply that because qA(p0) = 0 and P (Q(pb)) = pb:

V (p0) = p0 qN(p0) = p0
[ a� cN ] [ 2 b+ k ]� b [ a� c ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
;

V (pb) = pb Q
R(pb) = pb

[ b+ k ] [ a� pb ]� b [ pb � c ]

b [ b+ k ]
. (177)

De�nition. DN �
�
2 b+ kN + kR

�
[ 2 b+ k ]� b2 . (178)

Because p0 < pb, (177) and (178) imply that V (p0) < V (pb) if:

qN(p0) =
[ a� cN ] [ 2 b+ k ]� b [ a� c ]

DN

<
[ b+ k ] [ a� pb ]� b [ pb � c ]

b [ b+ k ]
= QR(pb)

, a [ b+ k ] + a b� cN [ 2 b+ k ]� b a+ b c

DN

<
[ b+ k ] a� [ b+ k ] pb � b pb + b c

b [ b+ k ]

, a [ b+ k ] + b c� cN [ 2 b+ k ]

DN

<
[ b+ k ] a+ b c� [ 2 b+ k ] pb

b [ b+ k ]

, a [ b+ k ] + b c� cN [ 2 b+ k ]

DN

b [ b+ k ]� [ b+ k ] a� b c < � [ 2 b+ k ] pb
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, a [ b+ k ] + b c

2 b+ k
� a [ b+ k ] + b c� cN [ 2 b+ k ]

[ 2 b+ k ]DN

b [ b+ k ] > pb

, a [ b+ k ] + b c

2 b+ k
� [ a (b+ k) + b c ] b [ b+ k ]� cN [ 2 b+ k ] b [ b+ k ]

[ 2 b+ k ]DN

> pb

, 1

[ 2 b+ k ]DN

f [ a (b+ k) + b c ]
� �
2 b+ kN + kR

�
(2 b+ k)� b2 � b (b+ k)

�
+ cN [ 2 b+ k ] b [ b+ k ] g > pb

, 1

[ 2 b+ k ]DN

f [ a (b+ k) + b c ]
� �
2 b+ kN + kR

�
(2 b+ k)� b (2 b+ k)

�
+ cN [ 2 b+ k ] b [ b+ k ] g > pb

,
[ a (b+ k) + b c ]

�
2 b+ kN + kR � b

�
+ cN b [ b+ k ]

DN

> pb

,
[ a (b+ k) + b c ]

�
b+ kN + kR

�
+ cN b [ b+ k ]

DN

> pb : (179)

(8) implies:

pb =
[ a (b+ k) + b c ]

� �
b+ kR

�
(kN + kA) + kN kA

�
+ b cN [ b+ k ] kA + b kN [ b+ k ] cA

b [ b+ k ] [ kN + kA ] + kN kA [ 2 b+ k ] + [ kN + kA ] [ 2 b+ k ] [ b+ kR ]
:

(180)

As established in the proof of Proposition 4 (just below (149)), pb is increasing in kA.
Therefore, (180) implies that because kA � kN by assumption:

pb �
[ a (b+ k) + b c ]

�
2 kN

�
b+ kR

�
+ (kN)

2 �+ b cN [ b+ k ] kN + b kN [ b+ k ] cA

2 b [ b+ k ] kN + (kN)
2 [ 2 b+ k ] + 2 kN [ 2 b+ k ] [ b+ kR ]

: (181)

(8) implies that pb is increasing in cA. Therefore, because cA � cN by assumption, (181)
implies:

pb �
[ a (b+ k) + b c ]

�
2 kN

�
b+ kR

�
+ (kN)

2 �+ 2 b cN [ b+ k ] kN

2 b [ b+ k ] kN + (kN)
2 [ 2 b+ k ] + 2 kN [ 2 b+ k ] [ b+ kR ]

=
[ a (b+ k) + b c ]

�
2
�
b+ kR

�
+ kN

�
+ 2 b cN [ b+ k ]

2 b [ b+ k ] + kN [ 2 b+ k ] + 2 [ 2 b+ k ] [ b+ kR ]

=
[ a (b+ k) + b c ]

�
b+ kR + kN

2

�
+ b cN [ b+ k ]

b [ b+ k ] + kN
2
[ 2 b+ k ] + [ 2 b+ k ] [ b+ kR ]

=
[ a (b+ k) + b c ]

�
b+ kR + kN

2

�
+ b cN [ b+ k ]

[ 2 b+ k ]
�
b+ kR + kN

2

�
+ b [ b+ k ]
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=
[ a (b+ k) + b c ]

�
b+ kR + kN

2

�
+ b cN [ b+ k ]

[ 2 b+ k ]
�
2 b+ kR + kN

2

�
� b2

: (182)

The last equality in (182) holds because:

[ 2 b+ k ]

�
b+ kR +

kN
2

�
+ b [ b+ k ]

= [ 2 b+ k ]

�
2 b+ kR +

kN
2

�
� b [ 2 b+ k ] + b [ b+ k ]

= [ 2 b+ k ]

�
2 b+ kR +

kN
2

�
� 2 b2 � b k + b2 + b k

= [ 2 b+ k ]

�
2 b+ kR +

kN
2

�
� b2.

(178), (179), and (182) imply that the Lemma holds if:

[ a (b+ k) + b c ]
�
b+ kR + kN

2

�
+ b cN [ b+ k ]

[ 2 b+ k ]
�
2 b+ kR + kN

2

�
� b2

<
[ a (b+ k) + b c ]

�
b+ kR + kN

�
+ b cN [ b+ k ]

[ 2 b+ k ] [ 2 b+ kR + kN ]� b2
: (183)

De�nition. f(x) �
A
�
b+ kR + x

�
+ b cN [ b+ k ]

[ 2 b+ k ] [ 2 b+ kR + x ]� b2
where A � a [ b+ k ] + b c . (184)

(184) implies that (183) holds if @f
@x
> 0. (178) and (184) imply:

@f(�)
@x

s
=
�
[ 2 b+ k ]

�
2 b+ kR + x

�
� b2

	
A

� [ 2 b+ k ]
�
A
�
b+ kR + x

�
+ b cN [ b+ k ]

	
= A

�
[ 2 b+ k ]

�
2 b+ kR + x�

�
b+ kR + x

� �
� b2

	
� b [ b+ k ] [ 2 b+ k ] cN

= A
�
b [ 2 b+ k ]� b2

	
� b [ b+ k ] [ 2 b+ k ] cN

= Ab [ b+ k ]� b [ b+ k ] [ 2 b+ k ] cN
s
= A� [ 2 b+ k ] cN

= a [ b+ k ] + b c� [ 2 b+ k ] cN > 0 .

The inequality here holds because (3) implies:

[ a� cN ] [ 2 b+ k ]� b [ a� c ] > 0
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) [ a� cN ] [ b+ k ] + b [ a� cN ]� b [ a� c ] > 0

) [ a� cN ] [ b+ k ] + b [ c� cN ] > 0

) a [ b+ k ]� cN [ b+ k ] + b [ c� cN ] > 0

) a [ b+ k ] + b c� [ 2 b+ k ] cN > 0 . �

Proposition A1. p� 2 [ p0; pd ].

Proof. Proposition 3 and Lemma 1 imply that W (�) is a strictly convex function of p for
p 2 (pd; pb). Therefore, p� =2 (pd; pb). Lemma A1 implies that W (p ) =W (p0) for all p < p0.
Lemma A4 implies that W (p ) =W (pb) for all p > pb. Therefore, p

� 2 [ p0; pd ]
S
pb .

It remains to show that p� 6= pb. The proof of Lemma A7 establishes that:

QR(p0) < QR(pb) (185)

where QR(p) is R�s total output when the price cap is p. Lemma A6 and Proposition 2
imply:

QR(pb) < QR(pd) : (186)

(185) and (186) imply that QR(p0) < QR(pb) < QR(pd). Q
R(p ) is continuous and monoton-

ically increasing in p for p 2 (p0; pd) (from Lemma A2). Therefore, the intermediate value
theorem implies that there exists a pE 2 (p0; pd) such that:

QR(pE) = QR(pb) : (187)

(12) implies that the rival�s output q is determined by:

a� b
�
QR(p ) + q(p )

�
� c� b q(p )� k q(p ) = 0 : (188)

(187) and (188) imply:
q(pE) = q(pb) : (189)

(187) and (189) imply:

Q(pE) = Q(pb) and P (Q(pE) ) = P (Q(pb) ) : (190)

R�s revenue is:

V2(pE) = pE qA(pE) + P (Q(pE) ) qN(pE)

< P (Q(pE) ) qA(pE) + P (Q(pE) ) qN(pE)

= P (Q(pE) ) Q
R(pE) = P (Q(pb) ) Q

R(pb) = V3(pb) . (191)

The inequality in (191) holds because pE < P (Q(pE) ), since pE 2 (p0; pd). The penultimate
equality in (191) re�ects (190). The last equality in (191) holds because P (Q(pb) ) = pb.

(174) and (190) imply:
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S(pE) = a Q(pE)�
b

2
Q(pE)

2 � P (Q(pE) ) [ q(pE) + qN(pE) ]� pE qA(pE)

> a Q(pE)�
b

2
Q(pE)

2 � P (Q(pE) ) [ q(pE) + qN(pE) + qA(pE) ]

= a Q(pE)�
b

2
Q(pb)

2 � P (Q(pE) )Q(pE)

= a Q(pE)�
b

2
Q(pb)

2 � P (Q(pb) ) Q(pb) = S(pb) . (192)

The inequality in (192) holds because pE < P (Q(pE) ), since pE 2 (p0; pd). (191) and (192)
imply that consumer surplus is higher and R�s revenue is lower when p = pE than when
p = pb. Therefore, W (pE) > W (pb), so p

� 6= pb. �

Lemma 2. For p 2 ( p0; pd ): (i) V (p ) is a strictly convex function of p ; (ii)
@V (p )
@ p

Q 0 ,
p Q pV m where pV m 2 [ p0; pd); and (iii) pV m > p0 if �2 > 0, where

�2 � f kR [ 2 b+ k ]
�
kR (2 b+ k) + 2 b (3 b+ 2 k)

�
+ kN [ 2 b+ k ]

�
kR (2 b+ k) + b2

�
+ b2

�
5 b2 + 6 b k + 2 k2

�
g cN

�
�
b [ 3 b+ 2 k ] + [ 2 b+ k ]

�
kN + kR

�	2
cA

� b
�
b2 � k kN + (2 b+ k) kR

�
[ a (b+ k) + b c ] : (193)

Corollary to Lemma 2. @V ( p )
@ p

���
p= p0

< 0 if �2 > 0.

Proof of Lemma 2 and its Corollary.

De�ne: eV2(p ) � qA2(p ) p + qN2(p )P (Q2(p )) (194)

where qA2(p ) and qN2(p ) are as de�ned in (20) and (21), respectively. Observe that eV2(p ) =
V (p ) for p 2 [ p0; pd ].

Because P (Q2) = a� bQ2, (194) implies:

@ eV2(p )
@ p

= qA2 + p
@qA2
@ p

+ P (Q2)
@qN2
@ p

� b qN2
@Q2
@ p

. (195)

(2) and Lemma A2 imply:

@2qA2

@ (p )2
=

@2qN2

@ (p )2
=

@2q2

@ (p )2
=

@2Q2

@ (p )2
= 0 . (196)
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(195) and (196) imply:

@2eV2(p )
@ (p )2

=
@qA2
@ p

+
@qA2
@ p

� b
@Q2
@ p

@qN2
@ p

� b
@qN2
@ p

@Q2
@ p

= 2
@qA2
@ p

� 2 b @Q2
@ p

@qN2
@ p

> 0 . (197)

The inequality in (197) holds because D > 0 by assumption, so @qA2
@ p

> 0 from (20), @Q2
@ p

> 0

from (24), and @qN2
@ p

< 0 from (21).

pV m � argmin
p

f eV2(p )g is unique and is determined by:
@ eV2(pV2m)

@p
� @ eV2(p )

@p

�����
p= pV2m

= 0. (198)

This is the case because (2), (20) �(24), and (195) imply that @ eV2( p )
@ p

is a linear function of

p. Therefore, eV2(p ) is a quadratic function of p. Consequently, (197) implies that eV2(p ) has
a unique minimum that is determined by (198).

To prove the Corollary to Lemma 2 and thereby establish that pV m > p0 when �2 > 0,
observe that R�s revenue is:

V (p ) = p qA + P (Q) qN = p qA + [ a� bQ ] qN . (199)

(199) implies that the Corollary to Lemma 2 holds if:

@+V (p0)

@ p
= qA + p0

@qA
@ p

� b
@Q

@ p
qN + P (Q)

@qN
@ p

< 0 , (200)

where: (i) @+V (p0)
@p

= @+V (p)
@p

���
p= p0

denotes the right-sided derivative of V (�); (ii) @qA
@p
, @qN

@p
,

and @Q
@p
pertain to the quantities identi�ed in Lemma A2 (which prevail when p 2 (p0; pd));

and (iii) qA, qN , and Q are as de�ned in Lemma A1.

De�ne:
E = 2 b [ 2 b+ k ] +

�
kN + kR

�
[ 2 b+ k ]� b2

= 3 b2 + 2 b k +
�
kN + kR

�
[ 2 b+ k ]

= b [ 3 b+ 2 k ] + [ 2 b+ k ]
�
kN + kR

�
. (201)

(201) and Lemma A2 imply that when p 2 (p0; pd):

@qN
@ p

= � b k + 2 b kR + k kR + b2

D
;

@qA
@ p

=
2 b k + 2 b kN + 2 b k

R + k kN + k kR + 3 b2

D
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=

�
2 b+ kN + kR

�
[ 2 b+ k ]� b2

D
=

E

D
;

@Q

@ p
=

1

D
f 2 b k + 2 b kN + 2 b kR + k kN + k kR + 3 b2

�
�
b k + 2 b kR + k kR + b2

�
�
�
b2 + kN b

�
g

=
b k + b kN + k kN + b2

D
=
[ b+ k ] [ b+ kN ]

D
. (202)

Lemma A1 implies that when p � p0:

qN =
[ a� cN ] [ 2 b+ k ]� b [ a� c ]

E
, q =

[ a� c ]
�
2 b+ kN + kR

�
� b [ a� cN ]

E
, and

P (Q) = a� b [ qN + q ] = a� b
[ a� cN ] [ b+ k ] +

�
b+ kN + kR

�
[ a� c ]

E

=
aE � b [ a� cN ] [ b+ k ]� b

�
b+ kN + kR

�
[ a� c ]

E
. (203)

(200) �(203) imply that because qA = 0 when p = p0 (from Lemma A1):

@+V (p0)

@ p
= p0

E

D
� b

�
(b+ k) (b+ kN)

D

� �
(a� cN) (2 b+ k)� b (a� c )

E

�
(204)

�
"
aE � b (a� cN) (b+ k)� b

�
b+ kN + kR

�
(a� c )

E

#

�
�
b k + 2 b kR + k kR + b2

D

�

=
1

DE
f p0E2 � b [ b+ k ] [ b+ kN ] [ (a� cN) (2 b+ k)� b (a� c ) ]

�
�
aE � b (a� cN) (b+ k)� b

�
b+ kN + kR

�
(a� c )

�
�
�
b k + 2 b kR + k kR + b2

�
g . (205)

(6) and (201) imply:

E p0 = cAE + [ a� cN ] [ 2 b+ k ]
�
b+ kR

�
� b [ a� c ]

�
b+ kR

�
: (206)

(201), (205), and (206) imply:

@+V (p0)

@ p
=

1

DE
f cAE2 +E

�
(a� cN) (2 b+ k)

�
b+ kR

�
� b (a� c)

�
b+ kR

� �
� b [ b+ k ] [ b+ kN ] [ (a� cN) (2 b+ k)� b (a� c) ]
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�
�
aE � b (a� cN) (b+ k)� b

�
b+ kN + kR

�
(a� c)

� �
b k + 2 b kR + k kR + b2

�
g

=
1

DE
f cAE2 +

�
E
�
b+ kR

�
� b (b+ k) (b+ kN)

�
[ (a� cN) (2 b+ k)� b (a� c) ]

�
�
aE � b (a� cN) (b+ k)� b

�
b+ kN + kR

�
(a� c)

� �
b k + 2 b kR + k kR + b2

�
g

=
1

DE

h
cAE

2 � ~E
i
. (207)

where

~E =
�
aE � b (a� cN) (b+ k)� b

�
b+ kN + kR

�
(a� c)

� �
b k + 2 b kR + k kR + b2

�
�
�
E
�
b+ kR

�
� b (b+ k) (b+ kN)

�
[ (a� cN) (2 b+ k)� b (a� c) ]

=
�
aE � b (a� cN) (b+ k)� b

�
b+ kN + kR

�
(a� c)

� �
b k + 2 b kR + k kR + b2

�
+ b [ b+ k ] [ b+ kN ] [ (a� cN) (2 b+ k)� b (a� c) ]

� E
�
b+ kR

�
[ a� cN ] [ 2 b+ k ] + E

�
b+ kR

�
b [ a� c ]

=
�
aE � b (a� cN) (b+ k)� b

�
b+ kN + kR

�
(a� c)

� �
b k + 2 b kR + k kR + b2

�
+ b [ b+ k ] [ b+ kN ] [ (a� cN) (2 b+ k)� b (a� c) ]

� E
�
b+ kR

�
a [ 2 b+ k ] + E

�
b+ kR

�
b [ a� c ] + cN E

�
b+ kR

�
[ 2 b+ k ] . (208)

(201) implies:�
b+ kR

�
[ 2 b+ k ] =

�
2 b+ kN + kR

�
[ 2 b+ k ]� [ b+ kN ] [ 2 b+ k ]

= E + b2 � [ b+ kN ] [ 2 b+ k ] = E �
�
(b+ kN) (2 b+ k)� b2

�
: (209)

(201), (208), and (209) imply:

~E = Ê + cN E
2, where

Ê �
�
aE � b (a� cN) (b+ k)� b

�
b+ kN + kR

�
(a� c )

� �
b k + 2 b kR + k kR + b2

�
+ b [ b+ k ] [ b+ kN ] [ (a� cN) (2 b+ k)� b (a� c ) ]

� E
�
b+ kR

�
a [ 2 b+ k ] + E

�
b+ kR

�
b [ a� c ]

� E
�
(b+ kN) (2 b+ k)� b2

�
cN . (210)

(207) and (210) imply:

@+V (p0)

@ p
=

1

DE

h
cAE

2 �
�
Ê + cN E

2
� i

= � 1

DE

h
(cN � cA) E

2 + Ê
i
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< 0 if cN � cA > � Ê

E2
, �2 � E2 [ cN � cA ] + Ê > 0 . (211)

(211) re�ects the facts that E > 0 (from (201)) and D > 0 (by assumption).

It remains to demonstrate that �2 is as speci�ed in (193). (201) and (210) imply:

Ê =  1E +  2 , where (212)

 1 � a
�
b k + 2 b kR + k kR + b2

�
� a

�
b+ kR

�
[ 2 b+ k ] + b

�
b+ kR

�
[ a� c ]

�
�
(b+ kN) (2 b+ k)� b2

�
cN , and (213)

 2 � �
�
b (a� cN) (b+ k) + b

�
b+ kN + kR

�
(a� c)

� �
b k + 2 b kR + k kR + b2

�
+ b [ b+ k ] [ b+ kN ] [ (a� cN) (2 b+ k)� b (a� c ) ] . (214)

(213) implies:

 1 = a
�
b k + 2 b kR + k kR + b2 �

�
b+ kR

�
(2 b+ k) + b

�
b+ kR

� �
� b

�
b+ kR

�
c�

�
(b+ kN) (2 b+ k)� b2

�
cN

= a
�
b k + 2 b kR + k kR + b2 � 2 b2 � b k � 2 b kR � k kR + b2 + b kR

�
� b

�
b+ kR

�
c�

�
(b+ kN) (2 b+ k)� b2

�
cN

= a b kR � b
�
b+ kR

�
c�

�
(b+ kN) (2 b+ k)� b2

�
cN . (215)

(214) implies:

 2 = �
�
b [ b+ k ] [ a� cN ] + b

�
b+ kN + kR

�
[ a� c ]

	 �
b k + 2 b kR + k kR + b2

�
+ b [ b+ k ] [ b+ kN ] [ 2 b+ k ] [ a� cN ]� b2 [ b+ k ] [ b+ kN ] [ a� c ]

= [ a� cN ]
�
b [ b+ k ] [ b+ kN ] [ 2 b+ k ]� b [ b+ k ]

�
b k + 2 b kR + k kR + b2

� 	
� [ a� c ]

�
b2 [ b+ k ] [ b+ kN ] + b

�
b+ kN + kR

� �
b k + 2 b kR + k kR + b2

� 	
= [ a� cN ] b [ b+ k ]

�
[ b+ kN ] [ 2 b+ k ]�

�
b k + 2 b kR + k kR + b2

� 	
� b [ a� c ]

�
b [ b+ k ] [ b+ kN ] +

�
b+ kN + kR

� �
b k + 2 b kR + k kR + b2

� 	
. (216)

The coe¢ cient on [ a� cN ] b [ b+ k ] in (216) is:

2 b2 + b k + 2 b kN + k kN � b k � 2 b kR � k kR � b2

= b2 + 2 b kN + k kN � 2 b kR � k kR = b2 + [ 2 b+ k ]
�
kN � kR

�
. (217)
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The coe¢ cient on � b [ a� c ] in (216) is:

b [ b+ k ] [ b+ kN ] + [ b+ kN ]
�
b k + 2 b kR + k kR + b2

�
+ kR

�
b k + 2 b kR + k kR + b2

�
= [ b+ kN ]

�
b2 + b k + b k + 2 b kR + k kR + b2

�
+ kR

�
b k + 2 b kR + k kR + b2

�
= [ b+ kN ]

�
2 b2 + 2 b k + 2 b kR + k kR

�
+ kR

�
b k + 2 b kR + k kR + b2

�
= [ b+ kN ]

�
2 b2 + 2 b k

�
+ kR

�
(b+ kN) (2 b+ k) + b k + 2 b kR + k kR + b2

�
= 2 b [ b+ k ] [ b+ kN ] + kR

�
2 b2 + b k + 2 b kN + k kN + b k + 2 b kR + k kR + b2

�
= 2 b [ b+ k ] [ b+ kN ] + kR

�
3 b2 + 2 b k + 2 b kN + k kN + 2 b k

R + k kR
�

= 2 b [ b+ k ] [ b+ kN ] + kR
�
3 b2 + 2 b k +

�
kN + kR

�
(2 b+ k)

�
= 2 b [ b+ k ] [ b+ kN ] + kRE . (218)

The last equality in (218) re�ects (201).

(212) and (215) �(218) imply:

Ê = E
�
[ a� c ] b kR � b2c�

�
(b+ kN) (2 b+ k)� b2

�
cN
	

+
�
b2 + [ 2 b+ k ]

�
kN � kR

� 	
b [ b+ k ] [ a� cN ]

�
�
2 b [ b+ k ] [ b+ kN ] + kRE

	
b [ a� c ]

= � E
�
b2c+

�
(b+ kN) (2 b+ k)� b2

�
cN
	

+ b [ b+ k ]
�
b2 + [ 2 b+ k ]

�
kN � kR

� 	
[ a� cN ]

� 2 b2 [ b+ k ] [ b+ kN ] [ a� c ] . (219)

(201) and (219) imply:

�2 � E2 [ cN � cA ] + bE
=
�
b [ 3 b+ 2 k ] + [ 2 b+ k ]

�
kN + kR

� 	2
[ cN � cA ]

�
�
b [ 3 b+ 2 k ] + [ 2 b+ k ]

�
kN + kR

� 	
�
�
b2 c+

�
(b+ kN) (2 b+ k)� b2

�
cN
	

+ b [ b+ k ]
�
b2 + [ 2 b+ k ]

�
kN � kR

� 	
[ a� cN ]� 2 b2 [ b+ k ] [ b+ kN ] [ a� c ] . (220)

Observe that:
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[ b+ kN ] [ 2 b+ k ]� b2 = b2 + b k + kN [ 2 b+ k ] = b [ b+ k ] + [ 2 b+ k ] kN . (221)

(220) and (221) imply:

�2 =
�
b [ 3 b+ 2 k ] + [ 2 b+ k ]

�
kN + kR

� 	2
[ cN � cA ]

�
�
b [ 3 b+ 2 k ] + [ 2 b+ k ]

�
kN + kR

� 	
�
�
b2 c+ [ b (b+ k) + (2 b+ k) kN ] cN

	
+ b [ b+ k ]

�
b2 + [ 2 b+ k ]

�
kN � kR

� 	
[ a� cN ]

� 2 b2 [ b+ k ] [ b+ kN ] [ a� c ]

=
�
b [ 3 b+ 2 k ] + [ 2 b+ k ]

�
kN + kR

� 	
�
� �

b [ 3 b+ 2 k ] + [ 2 b+ k ]
�
kN + kR

� 	
[ cN � cA ]

� b2 c� b [ b+ k ] cN � [ 2 b+ k ] kN cN

�
+ b [ b+ k ] f b2 [ a� cN ] + [ 2 b+ k ]

�
kN � kR

�
[ a� cN ]

� 2 b [ b+ kN ] [ a� c ] g

=
�
b [ 3 b+ 2 k ] + [ 2 b+ k ]

�
kN + kR

� 	
�
� �

b [ 3 b+ 2 k ] + [ 2 b+ k ]
�
kN + kR

�
� b [ b+ k ]� [ 2 b+ k ] kN

	
cN

� b2 c�
�
b [ 3 b+ 2 k ] + [ 2 b+ k ]

�
kN + kR

� 	
cA

�
+ b [ b+ k ]

� �
b2 + [ 2 b+ k ]

�
kN � kR

�
� 2 b [ b+ kN ]

	
a

�
�
b2 + [ 2 b+ k ]

�
kN � kR

� 	
cN + 2 b [ b+ kN ] c

�
. (222)

Observe that:

b [ 3 b+ 2 k ] + [ 2 b+ k ]
�
kN + kR

�
� b [ b+ k ]� [ 2 b+ k ] kN

= b [ 3 b+ 2 k � b� k ] + [ 2 b+ k ] kR = [ 2 b+ k ]
�
b+ kR

�
. (223)

Further observe that:

b2 + [ 2 b+ k ]
�
kN � kR

�
� 2 b [ b+ kN ]

= b2 + [ 2 b+ k � 2 b ] kN � [ 2 b+ k ] kR � 2 b2
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= � b2 + k kN � [ 2 b+ k ] kR = �
�
b2 � k kN + (2 b+ k) kR

�
. (224)

(222) �(224) imply:

E2 [ cN � cA ] + Ê

=
�
b [ 3 b+ 2 k ] + [ 2 b+ k ]

�
kN + kR

� 	
�
�
[ 2 b+ k ]

�
b+ kR

�
cN � b2 c

�
�
b [ 3 b+ 2 k ] + [ 2 b+ k ]

�
kN + kR

� 	
cA

�
� b [ b+ k ]

� �
b2 � k kN + (2 b+ k) kR

�
a

+
�
b2 + (2 b+ k)

�
kN � kR

� �
cN � 2 b [ b+ kN ] c

�
. (225)

The coe¢ cient on cN in (225) is:

b [ 2 b+ k ] [ 3 b+ 2 k ]
�
b+ kR

�
+ [ 2 b+ k ]2

�
b+ kR

� �
kN + kR

�
� b3 [ b+ k ]� b [ b+ k ] [ 2 b+ k ]

�
kN � kR

�
= kR

�
b [ 2 b+ k ] [ 3 b+ 2 k ] + [ 2 b+ k ]2

�
b+ kR

�
+ b [ b+ k ] [ 2 b+ k ]

	
+ kN

�
[ 2 b+ k ]2

�
b+ kR

�
� b [ b+ k ] [ 2 b+ k ]

	
+ b2 [ 2 b+ k ] [ 3 b+ 2 k ]� b3 [ b+ k ]

= kR [ 2 b+ k ]
�
b [ 3 b+ 2 k ] + [ 2 b+ k ]

�
b+ kR

�
+ b [ b+ k ]

	
+ kN [ 2 b+ k ]

�
[ 2 b+ k ]

�
b+ kR

�
� b [ b+ k ]

	
+ b2 f [ 2 b+ k ] [ 3 b+ 2 k ]� b [ b+ k ] g

= kR [ 2 b+ k ]
�
kR [ 2 b+ k ] + b [ 3 b+ 2 k + 2 b+ k + b+ k ]

	
+ kN [ 2 b+ k ]

�
kR [ 2 b+ k ] + b [ 2 b+ k � b� k ]

	
+ b2

�
6 b2 + 7 b k + 2 k2 � b2 � b k

�
= kR [ 2 b+ k ]

�
kR (2 b+ k) + 2 b (3 b+ 2 k)

�
+ kN [ 2 b+ k ]

�
kR (2 b+ k) + b2

�
+ b2

�
5 b2 + 6 b k + 2 k2

�
. (226)

The coe¢ cient on c in (225) is:
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2 b2 [ b+ k ] [ b+ kN ]� b2
�
b [ 3 b+ 2 k ] + [ 2 b+ k ]

�
kN + kR

� 	
= b2

�
2 [ b+ k ] [ b+ kN ]� b [ 3 b+ 2 k ]� [ 2 b+ k ]

�
kN + kR

� 	
= b2

�
2
�
b2 + b k + b kN + k kN

�
� 3 b2 � 2 b k � 2 b kN � k kN � [ 2 b+ k ] kR

	
= b2

�
� b2 + k kN � [ 2 b+ k ] kR

	
= � b2

�
b2 � k kN + (2 b+ k) kR

�
. (227)

(201) implies that the coe¢ cient on cA in (225) is �E2. Therefore, (201) and (225) �
(227) imply:

�2 = f kR [ 2 b+ k ]
�
kR (2 b+ k) + 2 b (3 b+ 2 k)

�
+ kN [ 2 b+ k ]

�
kR (2 b+ k) + b2

�
+ b2

�
5 b2 + 6 b k + 2 k2

�
g cN

� b2
�
b2 � k kN + (2 b+ k) kR

�
c� E2 cA

� b [ b+ k ]
�
b2 � k kN + (2 b+ k) kR

�
a

= f kR [ 2 b+ k ]
�
kR (2 b+ k) + 2 b (3 b+ 2 k)

�
+ kN [ 2 b+ k ]

�
kR (2 b+ k) + b2

�
+ b2

�
5 b2 + 6 b k + 2 k2

�
g cN

� b
�
b2 � k kN + (2 b+ k) kR

�
[ a (b+ k) + b c ]

�
�
b [ 3 b+ 2 k ] + [ 2 b+ k ]

�
kN + kR

� 	2
cA . (228)

It remains to prove that pV m < pd, which is established by demonstrating that
@�V (p )
@ p

���
p= pd

> 0 . De�ne V2(p ) � p qA(�) + P (Q(�)) qN(�) for p 2 (p0; pd). Because P (Q) = a� bQ :

@�V2(pd)

@ p
= qA + pd

@qA
@ p

+ P (Q)
@qN
@ p

� b qN
@Q

@ p
(229)

where qA, qN , andQ are as speci�ed in Lemma A2, evaluated at p = pd. Because pd = P (Q),
(229) implies:

@�V2(pd)

@ p
= qA + pd

�
@qA
@ p

+
@qN
@ p

�
� b qN

@Q

@ p
: (230)

(68) implies:

pd =
�
b+ kR

�
QR + cN + kN qN � b qA

=
�
b+ kR

�
qA +

�
b+ kR

�
qN + cN + kN qN � b qA

= kR qA +
�
b+ kN + kR

�
qN + cN . (231)
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(230) and (231) imply:

@�V2(pd)

@ p
= qA � b qN

@Q

@ p
+
�
kR qA +

�
b+ kN + kR

�
qN + cN

� � @qA
@ p

+
@qN
@ p

�

= qA +
�
kR qA +

�
kN + kR

�
qN + cN

� � @qA
@ p

+
@qN
@ p

�

+ b qN

�
@qA
@ p

+
@qN
@ p

�
� b qN

@Q

@p

= qA +
�
kR qA +

�
kN + kR

�
qN + cN

� � @qA
@ p

+
@qN
@ p

�

+ b qN

�
@qA
@ p

+
@qN
@ p

� @Q

@ p

�

= qA +
�
kR qA +

�
kN + kR

�
qN + cN

� � @qA
@ p

+
@qN
@ p

�
� b qN

@q

@ p
> 0 . (232)

The inequality holds here because @qA
@p
+ @qN

@p
= @QR

@p
> 0 (from (22)) and @q

@p
< 0 (from

(23)). �

Lemma 3. For p 2 ( p0; pd ): (i) S(p ) is a strictly concave function of p ; (ii)
@S(p )
@ p

R 0 ,
p Q pSM where pSM 2 (p0; pd ]; and (iii) pS2M > pV m.

Proof. As in (174), de�ne:

eS2(p ) � a Q2(p )�
b

2
Q2(p )

2 � qA2(p ) p� [ q2(p ) + qN2(p ) ] P (Q2(p ) ) (233)

where qA2(p ), qN2(p ), q2(p ), and Q2(p ) are as de�ned in (20), (21), (23), and (24), respec-
tively. Observe that eS2(p ) = S(p ) for p 2 [ p0; pd ].

(233) implies that because P (Q2) = a� bQ2 and Q2 = qA2 + qN2 + q2 :

@ eS2(p )
@ p

= a
@Q2
@ p

� bQ2
@Q2
@ p

� qA2 � p
@qA2
@ p

� P (Q2)

�
@qN2
@ p

+
@q2
@ p

�
+ b

@Q2
@ p

[ qN2 + q2 ]

= P (Q2)

�
@Q2
@ p

� @qN2
@ p

� @q2
@ p

�
� p

@qA2
@ p

+ b
@Q2
@ p

[ qN2 + q2 ]� qA2

= [P (Q2)� p ]
@qA2
@ p

+ b
@Q2
@ p

[ qN2 + q2 ]� qA2 . (234)
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(196) and (234) imply that because P (Q2) = a� bQ2 :

@2 eS2(p )
@ (p )2

=

�
� b @Q2

@ p
� 1

�
@qA2
@ p

+ b
@Q2
@ p

�
@qN2
@ p

+
@q2
@ p

�
� @qA2

@ p
< 0 . (235)

The inequality in (235) holds becauseD > 0 by assumption, so @qA2
@p

> 0 from (20), @Q2
@p

> 0

from (24), @qN2
@p

< 0 from (21), and @q2
@p

< 0 from (23).

pSM � argmax
p

f eS2(p )g is unique and is determined by:
@ eS2(pSM)

@ p
� @ eS2(p )

@ p

�����
p= pS2M

= 0 . (236)

This is the case because (2), (20) �(24), and (234) imply that @ eS2(p)
@p

is a linear function of

p. Therefore, eS2(p ) is a quadratic function of p. Consequently, (235) implies that eS2(p ) has
a unique maximum that is determined by (236).

To prove that pSM > pV m, let:

H(p ) � aQ2 �
b

2
Q22 � [ a� bQ2 ] q2 (237)

) @H(p )

@ p
� [ a� bQ2 ]

@Q2
@ p

� [ a� bQ2 ]
@q2
@ p

+ b
@Q2
@ p

q2 (238)

where q2 and Q2 are de�ned in (23) and (24). Di¤erentiating (238) provides:

@2H(p )

(@ p )2
� � b

�
@Q2
@ p

�2
+ 2 b

@Q2
@ p

@q2
@ p

< 0 . (239)

The inequality in (239) holds because @Q2
@p

> 0 and @q2
@p

< 0, from (23) and (24). (238)
implies:

@H(pd)

@ p
� @H(p )

@ p

����
p= pd

= pd
@Q2
@ p

� pd
@q2
@ p

+ b
@Q2
@ p

q2(pd) > 0 . (240)

The inequality in (240) holds because @Q2
@p

> 0 and @q2
@p

< 0, from (23) and (24). The
concavity of H(p ) established in (239), along with (240), imply:

@H(p )

@ p
> 0 for all p < pd ) @H(pV m)

@ p
> 0 : (241)

The implication in (241) holds because pV2m < pd, from Lemma 2.

(195) and (236) imply:

@ eV2(pV m)
@ p

= [ a� bQ2(�) ]
@qN2(�)
@ p

� b
@Q2(�)
@ p

qN2(�)
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+ qA2(�) + pV m
@qA2(�)
@ p

= 0 (242)

where qA2(�), qN2(�), and Q2(�) are de�ned in (20), (21), and (24), and evaluated at pV m.

(234) implies:

@ eS2(p )
@p

= [ a� bQ2 ]
@Q2
@p

� [ a� bQ2 ]
@q2
@p

+ b
@Q2
@p

q2

� [ a� bQ2 ]
@qN2
@p

+ b
@Q2
@p

qN2 � qA2 � p
@qA2
@p

(243)

where qA2, qN2, q2, and Q2 are de�ned in (20), (21), (23), and (24). (243) implies:

@ eS2(pV m)
@p

=
�
a� bQ2(pV2m)

� @Q2
@p

� [ a� bQ2(pV m) ]
@q2
@p

+ b
@Q2
@p

q2(pV m)

� [ a� bQ2(pV m) ]
@qN2
@p

+ b
@Q2
@p

qN2(pV m)� qA2(pV m)� pV2m
@qA2
@p

= [ a� bQ2(pV m) ]
@Q2
@p

� [ a� bQ2(pV m) ]
@q2
@p

+ b
@Q2
@p

q2(pV m)

=
@H(pV2m)

@p
> 0 . (244)

The last equality in (244) re�ects (242). The inequality in (244) re�ects (241).

(235) implies that eS2(p ) is a strictly concave function of p. Therefore, pV2m < pSM

because: (i) @ eS2(pSM )
@p

= 0 from (236); and (ii) @ eS2(pVm)
@p

> 0, from (244).

To prove that pSM > p0, it su¢ ces to establish that
@+S2( p0)

@p
� @+S2( p0)

@p

���
p= p0

> 0.

Lemma A1 implies that qA = 0 when p = p0. Therefore, (174) implies:

@+ eS2(p0)
@p

= [ a� bQ ]
@Q

@p
� p0

@qA
@p

� P (Q)

�
@qN
@p

+
@q

@p

�
+ b [ qN + q ]

@Q

@p

= P (Q)
@Q

@p
� p0

@qA
@p

� P (Q)

�
@qN
@p

+
@q

@p

�
+ b [ qN + q ]

@Q

@p

= [P (Q)� p0 ]
@qA
@p

+ b [ qN + q ]
@Q

@p
> 0 . (245)

The inequality in (245) holds because D > 0 by assumption, so @qA
@p

> 0 from (20), @Q
@p

> 0

from (24), and P (Q) > p0 when p 2 (p0; pd). �
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Proposition 5. p� 2 (p0; pd ] if �2 � 0. p� = p0 if �2 < 0 and r is su¢ ciently large.

Proof. The �rst conclusion in the Proposition follows from Proposition A1 because (173)
implies that when if �2 � 0:

@+W2(p0)

@ p
� @+W2(p )

@ p

����
p= p0

=
@+S2(p0)

@ p
� r

@+V2(p0)

@ p
> 0 . (246)

The inequality in (246) holds because when �2 � 0: (i) @+V2( p0)
@ p

� 0 from (211); and (ii)
@+S2( p0)

@p
> 0 from (245).

The second conclusion in the Proposition holds if V (p0) < V (p ) for all p > p0 when r
is su¢ ciently large and �2 < 0. (211) and (220) imply:

@+V (p )

@ p

����
p= p0

> 0 when �2 < 0 : (247)

V (p ) is a strictly convex function of p for p 2 (p0; pd), from Lemma 2. Therefore, (247)
implies that V (p ) is a strictly increasing function of p for p 2 [ p0; pd ] under the maintained
conditions. Consequently:

V (p0) < V (p ) for all p 2 (p0; pd ] . (248)

Lemma A7 implies that under the maintained conditions:

V (p0) < V (pb) . (249)

(110) implies that V (p ) is a strictly concave function of p for p 2 ( pd; pb ). Therefore,
(248) and (249) imply:

V (p ) > V (p0) for all p 2 (pd; pb ] : (250)

The conclusion follows from (248), (250), and Proposition A1. �

Proposition A2. �p� 2 [ pV m; pSM ]. Furthermore: (i) �p� < pSM when pSM < pd and

d > 0; (ii) �p� > pV m when pV m > p0; (iii) �p
� ! pSM as r ! 0; and (iv) �p� ! pV m as

r !1.

Proof. To prove that p� � pSM , suppose that p
� > pSM . eS2(p ) is a strictly concave function

of p, from Lemma 3. Therefore, because p� > pSM , (236) implies:

@ eS2(p�)
@p

<
@ eS2(pSM)

@p
= 0 : (251)

eV2(p ) is a strictly convex function of p, from Lemma 2. Therefore, because pV m < pSM
from Lemma 3 and because p� > pSM by assumption, (198) implies:

@ eV2(p�)
@p

>
@ eV2(pSM)

@p
>

@ eV2(pV m)
@p

= 0 . (252)
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(251) and (252) imply that R�s revenue declines and consumer surplus increases as p
declines below p�. Therefore, p� is not the welfare-maximizing value of p. Hence, by contra-
diction, p� � pSM .

To prove that p� � pV m, suppose that p
� < pV m. eV2(p ) is a strictly convex function of

p, from Lemma 2. Therefore, because pV m < pSM from Lemma 3, (198) implies:

@ eV2(p�)
@p

<
@ eV2(pV m)

@p
= 0 . (253)

eS2(p ) is a strictly concave function of p, from Lemma 3. Therefore, because pV m < pSM
from Lemma 3 and because p� < pV m by assumption, (236) implies:

@ eS2(p�)
@p

>
@ eS2(pV m)

@p
>

@ eS2(pSM)
@p

= 0 : (254)

(253) and (254) imply that R�s revenue declines and consumer surplus increases as p
increases above p�. Therefore, p� is not the welfare-maximizing value of p. Hence, by
contradiction, p� � pV m.

To prove conclusion (i) in the Proposition, de�ne fW2(�) � eS2(�) � r eV2(�) and observe
that when pSM < pd and r > 0:

@fW2(p)

@p

�����
p= pSM

=
@ eS2(pSM)

@p
� r

@ eV2(pSM)
@ p

= � r
@ eV2(pS2M)

@ p
< � r @

eV2(pV m)
@ p

= 0 . (255)

The inequality in (255) holds because: (i) pS2M > pV m, from Lemma 3; and (ii) eV2(�) is a
strictly convex function of p, from Lemma 2. (255) implies that pSM > p� because fW2(�) is
a strictly concave function of p (because eS2(�) is a strictly concave function of p and eV2(�) is
a strictly convex function of p).

To prove conclusion (ii) in the Proposition, observe that when pV2m > p0:

@fW2(p)

@ p

�����
p= pVm

=
@ eS2(pV m)

@ p
� r

@ eV2(pV m)
@ p

=
@ eS2(pV2m)

@ p
>

@ eS2(pSM)
@ p

= 0 . (256)

The inequality in (255) holds because: (i) pS2M > pV m, from Lemma 3; and (ii) eS2(�) is a
strictly concave function of p, from Lemma 3. (256) implies that p� > pV m because fW2(�)
is a strictly concave function of p.

Conclusions (iii) and (iv) in the Proposition follow immediately from (173) because p� 2
(p0; pd) is a non-increasing function of r. This is the case because (173) implies that when
p� 2 (p0; pd):
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@S(p�)

@ p
� r

@ eV (p�)
@ p

= 0 ) @2 eS(p�)
@(p)2

@ p�

@r
� @ eV (p�)

@ p
� r

@2eV (p�)
@(p)2

@ p�

@r
= 0

) @ p�

@r
=

@ eV ( p�)
@p

@2 eS( p�)
@(p)2

� r @
2 eV ( p�)
@(p)2

s
= � @ eV (p�)

@p
. (257)

The last conclusion in (257) holds because Lemmas 2 and 3 imply that @2 eS( p�)
@(p)2

< 0 and
@2 eV ( p�)
@(p)2

> 0 when p� 2 (p0; pd).

It remains to prove that @
eV2( p�)
@ p

� 0. To do so, suppose that @
eV2( p�)
@ p

< 0. Then:

p� < pV m . (258)

(258) holds because: (i) eV2(p ) is a strictly convex function of p, from Lemma 2; and (ii)
@ eV2( pVm)

@ p
= 0, from (198). Furthermore, because eS2(p) is a strictly concave function of p,

from Lemma 3:
@ eS2(p )
@ p

> 0 for all p < pSM . (259)

Observe that:
p� < pV m < pSM . (260)

The �rst inequality in (260) re�ects (258). The second inequality in (260) re�ects Lemma 3.
(236), (259), and (260) imply:

@ eS2 (p�)
@ p

> 0 . (261)

@ eS2( p�)
@ p

> 0 (from (261)), @
eV2( p�)
@ p

< 0 (by assumption), and p� 2 (p0; pd) (by assump-
tion) imply that consumer surplus increases and R�s revenue declines as p increases above
p�. Therefore, p� cannot be the welfare-maximizing value of p. Hence, by contradiction,
@V2( p�)
@ p

� 0. Consequently, (257) implies that @ p
�

@r
� 0. �

Proposition 6. When p� 2 (p0; pd): (i) d p�

dcA
> 0 ; (ii) d p�

dkA
> 0 ; (iii) d p�

dc
> 0 ; and (iv)

d p�

dcN
< 0 .

Proof. (174) implies that consumer surplus is:

S = aQ� 1
2
bQ2 � p [ q + qN ]� p qA

= aQ� 1
2
bQ2 � p [ q + qN + qA ] + [ p� p ] qA

= aQ� 1
2
bQ2 � [ a� bQ ]Q+ [ p� p ] qA

=
1

2
bQ2 + [ p� p ] qA =

1

2
bQ2 + [ a� bQ� p ] qA
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=
b

2
Q2 + [ a� p ] qA � bQ qA . (262)

(262) implies that p� is the solution to:

Maximize
p

W =
b

2
Q2 + [ a� p ] qA � bQ qA � r p qA � r a qN + r bQ qN . (263)

(108) and (263) imply that for p 2 [ p0; pd ]:

dW

dp
= bQ

�
[ b+ k ] [ b+ kN ]

D

�
+ [ a� p ]

"
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

�
D

#

� qA � bQ
"
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

�
D

#
� b qA

�
[ b+ k ] [ b+ kN ]

D

�

� r qA � r p

"
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

�
D

#

� r a

"
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

�
D

#

+ r bQ

"
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

�
D

#
+ r b qN

�
[ b+ k ] [ b+ kN ]

D

�
= 0

, b [ b+ k ] [ b+ kN ]Q+ [ a� p ]
�
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� 	
� D qA � b

�
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� 	
Q� b [ b+ k ] [ b+ kN ] qA

� r D qA � r p
�
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� 	
+ r a

�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� 	
� r b

�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� 	
Q+ r b [ b+ k ] [ b+ kN ] qN = 0

, f b [ b+ k ] [ b+ kN ]� b
�
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� �
� r b

�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
gQ

� fD + b [ b+ k ] [ b+ kN ] + r D g qA + r b [ b+ k ] [ b+ kN ] qN

� f 3 b2 + 2 b
�
k + kN + kR

�
+ k

�
kN + kR

�
+ r

�
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� �
g p
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+ f 3 b2 + 2 b
�
k + kN + kR

�
+ k

�
kN + kR

�
+ r

�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
g a = 0 . (264)

The coe¢ cient on Q in (264) is:

b [ b+ k ] [ b+ kN ]� b
�
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� �
� r b

�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
= b [ b2 + b kN + b k + k kN � 3 b2 � 2 b k � 2 b kN � 2 b kR � k kN � k kR

� r b
�
b+ 2 kR

�
� rk

�
b+ kR

�
]

= b
�
� 2 b2 � b kN � b k � 2 b kR � k kR � b2r � 2 b r kR � b r k � r k kR

�
= � b [ 2 b2 + b k + b kN + 2 b k

R + k kR + b2r

+ 2 b r kR + b r k + r k kR ] < 0 . (265)

(2) implies that the coe¢ cient on � qA in (264) is:

[ 1 + r ]D + b [ b+ k ] [ b+ kN ]

= [ 1 + r ]
�
[ 2 b+ k ]

�
kN
�
kA + kR

�
+ kA k

R
�
+ b kA [ 3 b+ 2 k ]� b2 [ b+ k ]

	
+ b [ b+ k ] [ b+ kN ] > 0 because D > 0 . (266)

(264) �(266) imply that if p� 2 (p0; pd), p� is determined by:

G� g p� = 0, where (267)

G � r b [ b+ k ] [ b+ kN ] qN

+ f 3 b2 + 2 b
�
k + kN + kR

�
+ k

�
kN + kR

�
+ r

�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
g a

� b [ 2 b2 + b k + b kN + 2 b k
R + k kR + b2r

+ 2 b r kR + b r k + r k kR ]Q

� f [ 1 + r ]D + b [ b+ k ] [ b+ kN ] g qA , and

g � f 3 b2 + 2 b
�
k + kN + kR

�
+ k

�
kN + kR

�
+ r

�
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� �
g > 0 . (268)

To prove that d p�

dcA
> 0, observe from (268) that dg

d p
= 0. Therefore, (267) implies that

for parameter x:
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[Gx � p� gx ] dx+ [Gp � g ] d p� = 0 ) d p�

dx
=

Gx � p gx
g �Gp

. (269)

(2) and (268) imply that because D > 0:

GcA = r b [ b+ k ] [ b+ kN ]
dqN
dcA

� b [ 2 b2 + b k + b kN + 2 b k
R + k kR + b2r

+ 2 b r kR + b r k + r k kR ]
dQ

dcA

� f [ 1 + r ]D + b [ b+ k ] [ b+ kN ] g
dqA
dcA

> 0 if
dqA
dcA

< 0 ,
dqN
dcA

> 0 ,
dQ

dcA
< 0 . (270)

(270) implies that because D > 0:

GcA > 0 . (271)

(2) and (268) imply that because D > 0:

Gp = r b [ b+ k ] [ b+ kN ]
dqN
dp

� b [ 2 b2 + b k + b kN + 2 b k
R + k kR + b2r

+ 2 b r kR + b r k + r k kR ]
dQ

dp

� f [ 1 + r ]D + b [ b+ k ] [ b+ kN ] g
dqA
dp

< 0 if
dqA
dp

> 0 ,
dqN
dp

< 0 , and
dQ

dp
> 0 . (272)

(108) implies that because D > 0:
dqA
dp

> 0 ,
dqN
dp

< 0 , and
dQ

dp
> 0 . (273)

(272) and (273) imply that because D > 0:

Gp < 0 . (274)

(268) implies:
gcA = 0 . (275)

(268), (269), (271), (274), and (275) imply that because D > 0:

d p�

dcA
=

GcA
g �Gp

> 0 .
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To prove that d p
�

dc
> 0, observe that (2) and (268) imply that because D > 0:

Gc = r b [ b+ k ] [ b+ kN ]
dqN
dc

� b [ 2 b2 + b k + b kN + 2 b k
R + k kR + b2r

+ 2 b r kR + b r k + r k kR ]
dQ

dc

� f [ 1 + r ]D + b [ b+ k ] [ b+ kN ] g
dqA
dc

> 0 if
dqA
dc

< 0 ,
dqN
dc

> 0 , and
dQ

dc
< 0 . (276)

(276) implies that because D > 0:

Gc > 0 . (277)

(268) implies:
gc = 0 . (278)

(268), (269), (274), (277), and (278) imply that because D > 0:

d p�

dc
=

Gc
g �Gp

> 0 .

To prove that @p�

@cN
< 0, observe that (195) implies that for p 2 (p0; pd):

@V2(p )

@p
= qA + p

@qA
@p

+ P (Q)
@qN
@p

� b qN
@Q

@p
(279)

) @2V2(p )

@�p @cN
=

@qA
@cN

+ p
@2qA
@p @cN

+ P (Q)
@2qN
@p @cN

� b
@Q

@cN

@qN
@p

� b qN
@2Q

@p @cN
� b

@qN
@cN

@Q

@p

=
@qA
@cN

� b
@Q

@cN

@qN
@p

� b
@qN
@cN

@Q

@p
. (280)

The last equality in (280) holds because @2qA
@p @cN

= @2qN
@p @cN

= @2Q
@p @cN

= 0 when p 2 (p0; pd),
from Lemma A2.

(2) and Lemma A2 imply that when p 2 (p0; pd):
@Q

@cN

@qN
@p

+
@qN
@cN

@Q

@p

s
= [ b+ k ] [ kA � b ]

�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
� [ 2 b+ k ]

�
kA + kR

�
[ b+ k ] [ b+ kN ]

s
= [ kA � b ]

�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
� [ 2 b+ k ]

�
kA + kR

�
[ b+ kN ]
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= kA
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
� b
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
� kA [ 2 b+ k ] [ b+ kN ]� kR [ b+ kN ] [ 2 b+ k ]

= kA
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

�
� (2 b+ k) (b+ kN)

�
� b

�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
� kR [ b+ kN ] [ 2 b+ k ] . (281)

The coe¢ cient on kA in (281) is:

b
�
b+ 2 kR

�
+ k

�
b+ kR

�
� [ 2 b+ k ] [ b+ kN ]

= b2 + 2 b kR + b k + k kR � 2 b2 � 2 b kN � k b� k kN

= 2 b kR + k kR � b2 � 2 b kN � k kN . (282)

(281) and (282) imply that because kA � kN :

@Q

@cN

@qN
@p

+
@qN
@cN

@Q

@p

s
= kA

�
2 b kR + k kR � b2 � 2 b kN � k kN

�
� b
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
� kR [ b+ kN ] [ 2 b+ k ]

� kA
�
2 b kR + k kR � b2 � 2 b kN � k kN

�
� b
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
� kR [ b+ kA ] [ 2 b+ k ]

= kA
�
2 b kR + k kR � b2 � 2 b kN � k kN � kR (2 b+ k)

�
� b

�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
� kR b [ 2 b+ k ]

= kA
�
� b2 � 2 b kN � kkN

�
� b
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
� kR b [ 2 b+ k ] < 0 : (283)

Because @qA
@cN

> 0 when p 2 (p0; pd), from Lemma A2, (280) and (283) imply:

@2V2(p )

@p @cN
=

@qA
@cN

� b

�
@Q

@cN

@qN
@p

+
@qN
@cN

@Q

@p

�
> 0 . (284)

(234) and (279) imply:

@S2(p )

@p
= a

@Q

@p
� bQ

@Q

@p
� qA � p

@qA
@p

� P (Q)

�
@qN
@p

+
@q

@p

�
+ b

@Q

@p
[ qN + q ]

= a
@Q

@p
� b Q

@Q

@p
� P (Q)

@q

@p
+ b

@Q

@p
q

69



� qA � p
@qA
@p

� P (Q)
@qN
@p

+ b
@Q

@p
qN

= a
@Q

@p
� b Q

@Q

@p
� P (Q)

@q

@p
+ b

@Q

@p
q � @V2(p )

@p

) @2S2(p )

@p @cN
= a

@2Q

@p @cN
� bQ

@2Q

@p@cN
� b

@Q

@p

@Q

@cN
� @2V2(p )

@p @cN

� P (Q)
@2q

@p @cN
+ b

@Q

@cN

@q

@p
+ b

@2Q

@p@cN
q + b

@Q

@p

@q

@cN
: (285)

Lemma A2 implies that @2Q
@p @cN

= @2q
@p@cN

= 0 when p 2 (p0; pd) : Therefore, because
Q = QR + q, (285) implies:

@2S2(p )

@p @cN
= � b @Q

@p

@Q

@cN
� @2V2(p )

@p @cN
+ b

@Q

@cN

@q

@p
+ b

@Q

@p

@q

@cN

= � b @Q
@p

@QR

@cN
� @2V2(p )

@p @cN
+ b

@Q

@cN

@q

@p
. (286)

(280) and (286) imply that because QR = qA + qN :

@2S2(p )

@p @cN
= � b @Q

@p

@QR

@cN
�
�
@qA
@cN

� b
@Q

@cN

@qN
@p

� b
@qN
@cN

@Q

@p

�
+ b

@Q

@cN

@q

@p

= � b @Q
@p

�
@QR

@cN
� @qN
@cN

�
� @qA
@cN

+ b
@Q

@cN

�
@q

@p
+
@qN
@p

�

= � b @Q
@p

@qA
@cN

� @qA
@cN

+ b
@Q

@cN

�
@q

@p
+
@qN
@p

�
: (287)

(2), (287), and Lemma A2 imply:

@2S2(p)

@p @cN

s
= � b [ b+ k ] [ b+ kN ] [ 2 b+ k ]

�
b+ kR

�
� [ 2 b+ k ]

�
b+ kR

�
D

+ b [� (b+ k) (kA � b) ]
�
�b (b+ kN)� b

�
b+ 2 kR

�
� k

�
b+ kR

� �
= � b [ b+ k ] [ b+ kN ] [ 2 b+ k ]

�
b+ kR

�
� [ 2 b+ k ]

�
b+ kR

�
D

+ b [ b+ k ] [ kA � b ]
�
b (b+ kN) + b

�
b+ 2 kR

�
+ k

�
b+ kR

� �
. (288)

(2) and (288) imply:

@2S2(p)

@p @cN
= � b [ b+ k ] [ b+ kN ] [ 2 b+ k ]

�
b+ kR

�
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+ b [ b+ k ] [ kA � b ]
�
b (b+ kN) + b

�
b+ 2 kR

�
+ k

�
b+ kR

� �
� [ 2 b+ k ]

�
b+ kR

�
�
�
(2 b+ k)

�
kN
�
kA + kR

�
+ kAk

R
�
+ b kA (3 b+ 2 k)� b2 (b+ k)

�
= b [ b+ k ] [ kA � b ]

�
b (b+ kN) + b

�
b+ 2 kR

�
+ k

�
b+ kR

� �
� [ 2 b+ k ]

�
b+ kR

�
�
�
b (b+ k) (b+ kN) + (2 b+ k)

�
kN
�
kA + kR

�
+ kA k

R
�
+ b kA (3 b+ 2 k)� b2 (b+ k)

�
= b [ b+ k ] [ kA � b ]

�
b (b+ kN) + b

�
b+ 2 kR

�
+ k

�
b+ kR

� �
� [ 2 b+ k ]

�
b+ kR

� �
b (b+ k) kN + (2 b+ k)

�
kN
�
kA + kR

�
+ kAk

R
�
+ b kA (3 b+ 2 k)

�
= � b [ b+ k ] b

�
b (b+ kN) + b

�
b+ 2 kR

�
+ k

�
b+ kR

� �
+ b [ b+ k ] kA

�
b (b+ kN) + b

�
b+ 2 kR

�
+ k

�
b+ kR

� �
� [ 2 b+ k ]

�
b+ kR

� �
b (b+ k) kN + (2 b+ k)

�
kN
�
kA + kR

�
+ kAk

R
� �

� kA [ 2 b+ k ]
�
b+ kR

�
b [ 3 b+ 2 k ]

= � b [ b+ k ] b
�
b ( b+ kN) + b

�
b+ 2 kR

�
+ k

�
b+ kR

� �
� [ 2 b+ k ]

�
b+ kR

� �
b (b+ k) kN + (2 b+ k) kN k

R
�

+ kA f b [ b+ k ]
�
b (b+ kN) + b

�
b+ 2 kR

�
+ k

�
b+ kR

� �
� [ 2 b+ k ]

�
b+ kR

� �
( 2 b+ k)

�
kN + kR

�
+ b (3 b+ 2 k)

�
g . (289)

The coe¢ cient on kA in (289) is:

b [ b+ k ]
�
b (b+ kN) + b

�
b+ 2 kR

�
+ k

�
b+ kR

� �
� [ 2 b+ k ]

�
b+ kR

� �
(2 b+ k)

�
kN + kR

�
+ b (3 b+ 2 k)

�
= kN

�
b (b+ k) b� (2 b+ k)

�
b+ kR

�
(2 b+ k)

�
+ b [ b+ k ]

�
b2 + b

�
b+ 2 kR

�
+ k

�
b+ kR

� �
� [ 2 b+ k ]

�
b+ kR

� �
(2 b+ k) kR + b (3 b+ 2 k)

�
= kN

�
b (b+ k) b� (2 b+ k)

�
b+ kR

�
(2 b+ k)

�
+ kR

�
b (b+ k) (2 b+ k)� (2 b+ k)

�
b+ kR

�
(2 b+ k)

�
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+ b [ b+ k ]
�
2 b2 + k b

�
� [ 2 b+ k ]

�
b+ kR

�
b [ 3 b+ 2 k ] : (290)

The coe¢ cient on kN in (290) is:

b [ b+ k ] b� [ 2 b+ k ]
�
b+ kR

�
[ 2 b+ k ] < 0 : (291)

The inequality in (291) holds because b < b+ kR, b+ k < 2 b+ k, and b < 2 b+ k.

The coe¢ cient on kR in (290) is:

b [ b+ k ] [ 2 b+ k ]� [ 2 b+ k ]
�
b+ kR

�
[ 2 b+ k ] < 0 . (292)

The inequality in (292) holds because b < b+ kR and b+ k < 2 b+ k.

The last line in (290) is:

b [ b+ k ]
�
2 b2 + k b

�
� [ 2 b+ k ]

�
b+ kR

�
b [ 3 b+ 2 k ]

= b2 [ b+ k ] [ 2 b+ k ]� [ 2 b+ k ]
�
b+ kR

�
b [ 3 b+ 2 k ]

s
= b [ b+ k ]�

�
b+ kR

�
[ 3 b+ 2 k ] < 0 . (293)

The inequality in (293) holds because b < b+ kR and b+ k < 3 b+ 2 k.

(290) � (293) imply that the coe¢ cient on kA in (289) is negative. Therefore, (289)
implies:

@2S2(p )

@ p @cN
< 0 : (294)

p� satis�es:
@S2(p

�)

@ p
� r

@V2(p
�)

@p
= 0 : (295)

Totally di¤erentiating (295) with respect to cN provides:

@2S2(p
�)

(@p )2
@ p�

@cN
+
@2S2(p

�)

@p @cN
� r

�
@2V2(p

�)

(@p)2
@ p�

@cN
+
@2V2(p

�)

@p @cN

�
= 0

) @ p�

@cN
= �

@2S2(p�)
@p @cN

� d @
2V2(p�)
@p @cN

@2S2(p�)

(@p)2
� r @

2V2(p�)

(@p)2

= �
@2S2(p�)
@p @cN

� r @
2V2(p�)
@p @cN

@2W2(p�)

(@p)2

< 0 .

The inequality follows from (284) and (294), because @2W2(p�)

(@p)2
< 0 (from (173) and Lemmas

2 and 3).

To prove that dp�

dkA
> 0, observe that (2) implies:

@D

@kA
= [ 2 b+ k ]

�
kN + kR

�
+ b [ 3 b+ 2 k ] > 0 : (296)

(20) and (296) imply that for p 2 (p0; pd):
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dqA
dkA

= � qA
D

@D

@kA
< 0 . (297)

(29) and (297) imply that for p 2 (p0; pd):

@qN
@kA

= �
�
kA + kR

b+ kR

�
@qA
@kA

�
�

1

b+ kR

�
qA

=

�
kA + kR

b+ kR

�
qA
D

@D

@kA
�
�

1

b+ kR

�
qA

s
=
�
kA + kR

� 1
D

@D

@kA
� 1 : (298)

(2), (296), and (298) imply that @qN
@kA

> 0 because:

@qN
@kA

> 0 ,
�
kA + kR

� @D
@kA

> D

, [ 2 b+ k ]
�
kN
�
kA + kR

�
+ kA k

R
�
+ b kA[ 3 b+ 2 k ]� b2 [ b+ k ]

<
�
kA + kR

� �
(2 b+ k)

�
kN + kR

�
+ b (3 b+ 2 k)

�
, [ 2 b+ k ]

�
kN
�
kA + kR

�
+ kA k

R
�
+ b kA[ 3 b+ 2 k ]� b2 [ b+ k ]

< [ 2 b+ k ]
�
kN + kR

� �
kA + kR

�
+ b
�
kA + kR

�
[ 3 b+ 2 k ]

, [ 2 b+ k ]
�
kN
�
kA + kR

�
+ kA k

R
�
+ b kA[ 3 b+ 2 k ]� b2 [ b+ k ]

< [ 2 b+ k ]
h
kN
�
kA + kR

�
+ kR kA +

�
kR
�2 i

+ b
�
kA + kR

�
[ 3 b+ 2 k ]. (299)

It is apparent that the inequality in (299) holds.

Because Q(p ) is linear in p:

Q(p ) = Q(p0) +
@Q

@p
[ p� p0 ] for p 2 (p0; pd) : (300)

(24) implies that for p 2 (p0; pd):
@Q

@p
=
[ b+ k ] [ b+ kN ]

D
: (301)

(296) and (301) imply:

@Q

@p @kA
= � [ b+ k ] [ b+ kN ]

D2

@D

@kA
< 0 : (302)

(6) implies that p0 does not vary with kA. Lemma A1 implies that Q(p0) does not vary
with kA. Therefore, (300) and (302) imply that for p 2 (p0; pd):

@Q(p )

@kA
=

@Q

@ p @kA
[ p� p0 ] < 0 : (303)
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In summary, (297), (299), and (303) imply:

dqA
dkA

< 0 ;
dqN
dkA

> 0 ; and
dQ

dkA
< 0 for all p 2 (p0; pd) : (304)

(20) implies that for p 2 (p0; pd):

D qA =
�
3 b2 + 2 b

�
k + kN + kR

�
+ k

�
kN + kR

� �
[ p� cA ]

+ b
�
b+ kR

�
[ a� c ]� [ 2 b+ k ]

�
b+ kR

�
[ a� cN ]

which is not a function of kA. Therefore, (268) implies:

GkA = r b [ b+ k ] [ b+ kN ]
@qN
@kA

� b
�
2 b2 + b k + b kN + 2 b k

R + k kR + b2 r + 2 b r kR + b r k + r k kR
� @Q

@kA

� b [ b+ k ] [ b+ kN ]
@qA
@kA

. (305)

(304) and (305) imply:
GkA > 0 . (306)

(268) implies:
gkA = 0 . (307)

(268), (269), (274), (306), and (307) imply:

dp�

dkA
=

GkA
g �Gp

> 0 . �

B. Benchmark Setting where R is a Monopoly Supplier.

R�s problem, [M], when it is the sole supplier of the product is:

Maximize
qA� 0; qN � 0

PA(qA + qN ) qA + [ a� b (qA + qN ) ] qN � CR(qA; qN)

where PA(Q) =

(
p if P (Q) � p

P (Q) if P (Q) < p .
(308)

De�nitions

p0M � cA +
a� cN

2 b+ kN + kR
�
b+ kR

�
. (309)

pdM �
a
� �
b+ kR

�
( kA + kN )� b kN + kA kN

�
+ b cN [ kA � b ] + b cA [ b+ kN ]

[ 2 b+ kR ] [ kA + kN ]� b kN + kN kA
. (310)
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pbM �
a
� �
b+ kR

�
(kA + kN) + kN kA

�
+ b [ cN kA + cA kN ]

[ 2 b+ kR ] [ kA + kN ] + kN kA
. (311)

Assumptions

1.
�
kA + kR

� �
2 b+ kN + kR

�
>
�
b+ kR

�2
.

2. 0 � cA � cN < a.

3. 0 � kA � kN .

We characterize equilibrium outcomes when R is the monopoly supplier as follows.

Lemma 4 establishes that the price cap does not bind, and so has no impact on equilibrium
outputs or prices, when p > pbM .

Lemma 5 establishes that the market price of oil that is shipped without using the Alliance
input is p when p 2 [ pdM ; pbM ], where pdM < pbM .

Lemma 6 establishes that the market price of oil exceeds p and R ships a positive amount
of oil using the Alliance input (so qA > 0) when p 2 (p0M ; pdM).

Lemma 7 establishes that R does not ship any oil using the Alliance input and the market
price exceeds p when p � p0M :

Lemma 4. If p > pbM , then in equilibrium:

qA =
[ a� cA ]

�
2 b+ kN + kR

�
� [ a� cN ]

�
2 b+ kR

�
[ 2 b+ kR ] [ kA + kN ] + kA kN

,

qN =
[ a� cN ]

�
2 b+ kA + kR

�
� [ a� cA ]

�
2 b+ kR

�
[ 2 b+ kR ] [ kA + kN ] + kA kN

, and

QR =
[ a� cN ] kA + [ a� cA ] kN
[ 2 b+ kR ] [ kA + kN ] + kA kN

.

Proof. (308) implies that when the price cap does not bind, [M] is:

Maximize
qA; qN

[ a� b (qA + qN ) ] [ qA + qN ]� cA qA �
kA
2
[ qA ]

2

� cN qN �
kN
2
[ qN ]

2 � kR

2
[ qA + qN ]

2 . (312)
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Di¤erentiating (312) with respect to qA provides:3

a� b [ qA + qN ]� b [ qA + qN ]� cA � kAqA � kR [ qA + qN ] = 0

) a�
�
2 b+ kR

�
[ qA + qN ]� cA � kA qA = 0 . (313)

Di¤erentiating (312) with respect to qN provides:

a� b [ qA + qN ]� b [ qA + qN ]� cN � kN qN � kR [ qA + qN ] = 0

) a�
�
2 b+ kR

�
qA �

�
2 b+ kN + kR

�
qN � cN = 0

) qN =
a�

�
2 b+ kR

�
qA � cN

2 b+ kN + kR
. (314)

(313) and (314) imply:

a�
�
2 b+ kR

� "
qA +

a�
�
2 b+ kR

�
qA � cN

2 b+ kN + kR

#
� cA � kA qA = 0

, a
�
2 b+ kN + kR

�
�
�
2 b+ kR

� �
qA
�
2 b+ kN + kR

�
+ a�

�
2 b+ kR

�
qA � cN

�
� cA

�
2 b+ kN + kR

�
� kA qA

�
2 b+ kN + kR

�
= 0

, a
�
2 b+ kN + kR

�
�
�
2 b+ kR

�
[ qA kN + a� cN ]

� cA
�
2 b+ kN + kR

�
� kA qA

�
2 b+ kN + kR

�
= 0

, [ a� cA ]
�
2 b+ kN + kR

�
�
�
2 b+ kR

�
[ qA kN + a� cN ]

� kA qA
�
2 b+ kN + kR

�
= 0

, [ a� cA ]
�
2 b+ kN + kR

�
�
� �
2 b+ kR

�
(kA + kN) + kA kN

�
qA

� [ a� cN ]
�
2 b+ kR

�
= 0

, qA =
[ a� cA ]

�
2 b+ kN + kR

�
� [ a� cN ]

�
2 b+ kR

�
[ 2 b+ kR ] [ kA + kN ] + kA kN

. (315)

By symmetry:

qN =
[ a� cN ]

�
2 b+ kA + kR

�
� [ a� cA ]

�
2 b+ kR

�
[ 2 b+ kR ] [ kA + kN ] + kA kN

. (316)

(315) and (316) imply:

QR = qA + qN
3It is readily veri�ed that the determinant of the Hessian associated with [M] is

�
2 b+ kR

�
kN +�

2 b+ kR
�
kA > 0.
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=
1

[ 2 b+ kR ] [ kA + kN ] + kA kN
f [ a� cA ]

�
2 b+ kN + kR

�
� [ a� cN ]

�
2 b+ kR

�
+ [ a� cN ]

�
2 b+ kA + kR

�
� [ a� cA ]

�
2 b+ kR

�
g

=
[ a� cN ] kA + [ a� cA ] kN
[ 2 b+ kR ] [ kA + kN ] + kA kN

. (317)

(317) implies:

P (Q) = a� bQR = a� b
[ a� cN ] kA + [ a� cA ] kN
[ 2 b+ kR ] [ kA + kN ] + kA kN

=
a
� �
2 b+ kR

�
(kA + kN) + kA kN

�
� b [ a� cN ] kA � b [ a� cA ] kN

[ 2 b+ kR ] [ kA + kN ] + kA kN

=
a
� �
b+ kR

�
(kA + kN) + kN kA

�
+ a b [ kA + kN ]� a b [ kA + kN ] + b [ cN kA + cA kN ]

[ 2 b+ kR ] [ kA + kN ] + kN kA

=
a
� �
b+ kR

�
(kA + kN) + kN kA

�
+ b [ cN kA + cA kN ]

[ 2 b+ kR ] [ kA + kN ] + kN kA
= pbM . �

Lemma 5. Suppose p 2 ( pdM ; pbM ], where pdM < pbM . Then in equilibrium:

qA =
b [ cN � cA ] + kN [ a� p ]

b [ kA + kN ]
; qN =

[ a� p ] kA � b [ cN � cA ]

b [ kA + kN ]
;

P (Q) = p ; and QR =
a� p

b
: (318)

Proof. To prove that pdM < pbM , observe that (310) and (311) imply:

pbM > pdM ,
a
� �
b+ kR

�
(kA + kN) + kN kA

�
+ b [ cN kA + cA kN ]

[ 2 b+ kR ] [ kA + kN ] + kN kA

>
a
� �
b+ kR

�
( kA + kN )� b kN + kA kN

�
+ b cN [ kA � b ] + b cA [ b+ kN ]

[ 2 b+ kR ] [ kA + kN ]� b kN + kN kA

,
a
� �
b+ kR

�
(kA + kN) + kN kA

�
+ b [ cN kA + cA kN ]

[ 2 b+ kR ] [ kA + kN ] + kN kA

>
a
� �
b+ kR

�
( kA + kN ) + kA kN

�
� a b kN + b [ cN kA + cA kN ]� b2 [ cN � cA ]

[ 2 b+ kR ] [ kA + kN ] + kN kA � b kN
.

(319)

De�nitions. N1 � a
� �
b+ kR

�
(kA + kN) + kN kA

�
+ b [ cN kA + cA kN ] > 0 .

D1 �
�
2 b+ kR

�
[ kA + kN ] + kN kA > 0 . (320)
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(319) and (320) imply:

pbM > pdM , N1
D1

>
N1 � a b kN � b2 [ cN � cA ]

D1 � b kN
. (321)

(320) implies:

D1 � b kN =
�
2 b+ kR

�
kA +

�
b+ kR

�
kN + kN kA > 0 . (322)

(320) and (322) imply that (321) holds if N1 � a b kN � b2 [ cN � cA ] � 0.

Suppose N1 � a b kN � b2 [ cN � cA ] > 0. Then (321) implies:

pbM > pdM , N1D1 � b kN N1 > D1N1 � a b kN D1 � b2 [ cN � cA ]D1

, a b kN D1 + b2 [ cN � cA ]D1 > b kN N1

, a kN D1 + b [ cN � cA ]D1 > kN N1

, [ a kN + b (cN � cA) ]D1 > kN N1. (323)

(320) and (323) imply:

pbM > pdM , [ a kN + b (cN � cA) ]
� �
2 b+ kR

�
[ kA + kN ] + kN kA

	
> akN

� �
b+ kR

�
(kA + kN) + kN kA

�
+ b kN [ cN kA + cA kN ]

, a kN
� �
2 b+ kR

�
[ kA + kN ] + kN kA

	
+ b [ cN � cA ]

� �
2 b+ kR

�
[ kA + kN ] + kN kA

	
> akN

�
b+ kR

�
[ kA + kN ] + a (kN)

2 kA + b kN [ cN kA + cA kN ]

, a kN
�
2 b+ kR

�
[ kA + kN ] + a (kN)

2 kA + b [ cN � cA ]
�
2 b+ kR

�
[ kA + kN ]

+ b kN kA [ cN � cA ]

> akN
�
b+ kR

�
[ kA + kN ] + a (kN)

2 kA + b cN kN kA + b cA (kN)
2

, a kN b [ kA + kN ] + b [ cN � cA ]
�
2 b+ kR

�
[ kA + kN ] + b kN kA [ cN � cA ]

> b cN kN kA + b cA (kN)
2

, a kN b [ kA + kN ] + b [ cN � cA ]
�
2 b+ kR

�
[ kA + kN ]� b kN kA cA > b cA (kN)

2

, a kN b [ kA + kN ] + b [ cN � cA ]
�
2 b+ kR

�
[ kA + kN ] > b cA kN [ kA + kN ]

, [ a� cA ] kN b [ kA + kN ]+b [ cN � cA ]
�
2 b+ kR

�
[ kA + kN ] > 0 . (324)

The inequality in (324) holds because a > cN � cA, by assumption.
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Next observe that [M] can be stated as:

Maximize
qA; QR

�R =
�
PA(Q

R)� cA
�
qA +

�
P (QR)� cN

� �
QR � qA

�
� kA

2
[ qA ]

2 � kN
2

�
QR � qA

�2 � kR

2

�
QR
�2

where PA(Q
R) =

(
p if P (QR) � p

P (QR) if p > P (QR) .
(325)

Then when qA > 0 and there exists a range of p for which P (Q) = p, the necessary
conditions for a solution to [M] are:

@�R

@qA
= PA(Q

R)� cA � kA qA �
�
P (QR)� cN

�
+ kN

�
QR � qA

�
= 0 and (326)

@+�R

@QR
� 0 and

@��R

@QR
� 0 for all p 2 [ pdM ; pbM ] . (327)

Recall that @
��R

@QR
denotes the left-sided derivative of �R with respect to QR, which is relevant

when PA(�) = p, and @+�R

@QR
denotes the right-sided derivative of �R with respect to QR; which

is relevant when PA(�) = P (QR).

If PA(QR) = p, then (326) implies:

p� cA � kA qA � [ p� cN ] + kN
�
QR � qA

�
= 0

, cN � cA � kA qA + kN Q
R � kN qA = 0 . (328)

If PA(QR) = p, then QR = a� p
b
, so (328) implies:

cN � cA � kA qA + kN

�
a� p

b

�
� kN qA = 0

, cN � cA + kN

�
a� p

b

�
= qA [ kA + kN ]

, qA =
cN � cA + kN

�
a� p
b

�
kA + kN

=
b [ cN � cA ] + kN [ a� p ]

b [ kA + kN ]
. (329)

(329) implies that when QR = a� p
b
:

qN = QR � qA =
a� p

b
� b [ cN � cA ] + kN [ a� p ]

b [ kA + kN ]

=
a [ kA + kN ]� p [ kA + kN ]� b [ cN � cA ]� kN [ a� p ]

b [ kA + kN ]
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=
a kA � p kA � b [ cN � cA ]

b [ kA + kN ]
=
[ a� p ] kA � b [ cN � cA ]

b [ kA + kN ]
. (330)

It remains to prove that the inequalities in (327) hold. (325) implies:

@+�R

@QR
� 0 , � b qA � b

�
QR � qA

�
+ a� bQR � cN � kN

�
QR � qA

�
� kRQR � 0

, a� 2 bQR � cN � kN Q
R + kN qA � kRQR � 0

, a� bQR � bQR � cN � kN
�
QR � qA

�
� kRQR � 0

, p�
�
b+ kR

�
QR � cN � kN qN � 0

, p �
�
b+ kR

�
QR + cN + kN qN . (331)

(330) and (331) imply:

@+�R

@QR
� 0 , p �

�
b+ kR

� a� p

b
+ cN + kN

[ a� p ] kA � b [ cN � cA ]

b [ kA + kN ]

, p b [ kA + kN ] �
�
b+ kR

�
[ a� p ] [ kA + kN ] + cN b [ kA + kN ]

+ kN [ (a� p ) kA � b (cN � cA) ]

, p b [ kA + kN ] � [ a� p ]
� �
b+ kR

�
(kA + kN) + kN kA

�
+ cN b [ kA + kN ]� kN b [ cN � cA ]

, p
�
b (kA + kN) +

�
b+ kR

�
(kA + kN) + kN kA

�
� a

� �
b+ kR

�
(kA + kN) + kN kA

�
+ cN b [ kA + kN ]� kN b [ cN � cA ]

, p
� �
2 b+ kR

�
(kA + kN) + kN kA

�
� a

� �
b+ kR

�
(kA + kN) + kN kA

�
+ b cN [ kA + kN � kN ] + b kN cA

, p �
a
� �
b+ kR

�
(kA + kN) + kN kA

�
+ b cN kA + b cA kN

[ 2 b+ kR ] [ kA + kN ] + kN kA
= pbM . (332)

(325) implies:

@��R

@QR
� 0 , a� 2 bQR � cN + b qA � kN

�
QR � qA

�
� kRQR � 0

, a� 2 bQR � cN + b qA � kN qN � kRQR � 0

, p� bQR � cN + b qA � kN qN � kRQR � 0

, p �
�
b+ kR

�
QR + cN � b qA + kN qN � 0
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, p�
�
b+ kR

�
QR � cN + b qA � kN qN � 0 . (333)

(329), (330), and (333) imply:

@��R

@QR
� 0 , p �

�
b+ kR

� a� p

b
+ cN � b

b [ cN � cA ] + kN [ a� p ]

b [ kA + kN ]

+ kN
[ a� p ] kA � b [ cN � cA ]

b [ kA + kN ]

, p b [ kA + kN ] �
�
b+ kR

�
[ a� p ] [ kA + kN ]+cN b [ kA + kN ]

� b [ b (cN � cA) + kN (a� p ) ] + kN [ (a� p ) kA � b (cN � cA) ]

, p b [ kA + kN ] � [ a� p ]
��
b+ kR

�
(kA + kN)� b kN + kN kA

�
+ cN b [ kA + kN ]

� b2 [ cN � cA ]� kN b [ cN � cA ]

, p
�
b (kA + kN) +

�
b+ kR

�
(kA + kN)� b kN + kN kA

�
� a

� �
b+ kR

�
(kA + kN)� b kN + kN kA

�
+ cN b [ kA + kN ]

� b2 [ cN � cA ]� kN b [ cN � cA ]

, p
� �
2 b+ kR

�
(kA + kN)� b kN + kN kA

�
� a

� �
b+ kR

�
(kA + kN)� b kN + kN kA

�
+ cN

�
b (kA + kN)� b2 � kN b

�
+
�
b2 + b kN

�
cA

, p �
a
� �
b+ kR

�
(kA + kN)� b kN + kN kA

�
+ b cN [ kA + kN � b� kN ] + [ b+ kN ] bcA

[ 2 b+ kR ] [ kA + kN ]� b kN + kN kA

, p �
a
� �
b+ kR

�
(kA + kN)� b kN + kN kA

�
+ b cN [ kA � b ] + b cA [ b+ kN ]

[ 2 b+ kR ] [ kA + kN ]� b kN + kN kA

, p � pdM . �

Lemma 6. If p 2 ( p0M ; pdM ], then in equilibrium:

qA =

�
2 b+ kN + kR

�
[ p� cA ]�

�
b+ kR

�
[ a� cN ]

[ kA + kR ] [ 2 b+ kN + kR ]� [ b+ kR ]2
,

qN =

�
kA + kR

�
[ a� cN ]�

�
b+ kR

�
[ p� cA ]

[ kA + kR ] [ 2 b+ kN + kR ]� [ b+ kR ]2
, and
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QR � qA + qN =
[ kA � b ] [ a� cN ] + [ b+ kN ] [ p� cA ]

[ kA + kR ] [ 2 b+ kN + kR ]� [ b+ kR ]2
.

Proof. (308) implies that if qA > 0 and p < P (Q), then [M] is:

Maximize
qA; qN

p qA + [ a� b (qA + qN ) ] qN � cA qA �
kA
2
[ qA ]

2

� cN qN �
kN
2
[ qN ]

2 � kR

2
[ qA + qN ]

2 .

The necessary conditions for an interior solution to [M] when p < P (Q) are:4

qA : p� b qN � cA � kA qA � kR [ qA + qN ] = 0 ; (334)

qN : a� b [ qA + qN ]� b qN � cN � kN qN � kR [ qA + qN ] = 0 . (335)

(334) implies:

p� b qN � cA � kR qN =
�
kA + kR

�
qA ) qA =

p� cA
kA + kR

�
�
b+ kR

kA + kR

�
qN . (336)

(335) implies:

a� b qA � cN � kR qA =
�
2 b+ kN + kR

�
qN

) qN =
a� cN

2 b+ kN + kR
�
�

b+ kR

2 b+ kN + kR

�
qA . (337)

(334) also implies:

p� cA � kA qA � kR qA =
�
b+ kR

�
qN ) qN =

p� cA
b+ kR

�
�
kA + kR

b+ kR

�
qA . (338)

(337) and (338) imply:

a� cN
2 b+ kN + kR

�
�

b+ kR

2 b+ kN + kR

�
qA =

p� cA
b+ kR

�
�
kA + kR

b+ kR

�
qA

)
�

b+ kR

2 b+ kN + kR
� kA + kR

b+ kR

�
qA =

a� cN
2 b+ kN + kR

� p� cA
b+ kR

)
n �

b+ kR
�2 � � kA + kR

� �
2 b+ kN + kR

� o
qA

=
�
b+ kR

�
[ a� cN ]�

�
2 b+ kN + kR

�
[ p� cA ]

) qA =

�
b+ kR

�
[ a� cN ]�

�
2 b+ kN + kR

�
[ p� cA ]

[ b+ kR ]2 � [ kA + kR ] [ 2 b+ kN + kR ]

4It is readily veri�ed that the Hessian associated with this problem is
�
kA + k

R
� �
2 b+ kN + k

R
�
��

b+ kR
�2
> 0 . This inequality holds, by assumption.
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) qA =

�
2 b+ kN + kR

�
[ p� cA ]�

�
b+ kR

�
[ a� cN ]

[ kA + kR ] [ 2 b+ kN + kR ]� [ b+ kR ]2
. (339)

(338) and (339) imply:

qN =
p� cA
b+ kR

�
�
kA + kR

b+ kR

�" �
2 b+ kN + kR

�
( p� cA )�

�
b+ kR

�
( a� cN )

( kA + kR ) ( 2 b+ kN + kR )� ( b+ kR )2

#

=
[ p� cA ]

h �
kA + kR

� �
2 b+ kN + kR

�
�
�
b+ kR

�2 i
[ b+ kR ]

�
( kA + kR ) ( 2 b+ kN + kR )� ( b+ kR )2

�
�
�
kA + kR

b+ kR

�" �
2 b+ kN + kR

�
( p� cA )�

�
b+ kR

�
( a� cN )

( kA + kR ) ( 2 b+ kN + kR )� ( b+ kR )2

#

=

�
kA + kR

� �
b+ kR

�
[ a� cN ]�

�
b+ kR

�2
[ p� cA ]

[ b+ kR ]
�
( kA + kR ) ( 2 b+ kN + kR )� ( b+ kR )2

�
=

�
kA + kR

�
[ a� cN ]�

�
b+ kR

�
[ p� cA ]

[ kA + kR ] [ 2 b+ kN + kR ]� [ b+ kR ]2
. (340)

(339) and (340) imply:

Q = QR = qA + qN =
[ kA � b ] [ a� cN ] + [ b+ kN ] [ p� cA ]

[ kA + kR ] [ 2 b+ kN + kR ]� [ b+ kR ]2
. (341)

It remains to show that qA > 0 and p � P (Q) when p 2 ( p0M ; pdM ]. (339) implies
that qA > 0 if: �

2 b+ kN + kR
�
[ p� cA ]�

�
b+ kR

�
[ a� cN ] > 0

, p > cA +

�
b+ kR

�
[ a� cN ]

2 b+ kN + kR
= p0M .

(341) implies that P (QR) � p if:

a� b
[ kA � b ] [ a� cN ] + [ b+ kN ] [ p� cA ]

[ kA + kR ] [ 2 b+ kN + kR ]� [ b+ kR ]2
� p

, a� b
[ kA � b ] [ a� cN ]� [ b+ kN ] cA

[ kA + kR ] [ 2 b+ kN + kR ]� [ b+ kR ]2

� p+ p
b [ b+ kN ]

[ kA + kR ] [ 2 b+ kN + kR ]� [ b+ kR ]2
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, a+
� b [ kA � b ] [ a� cN ] + b [ b+ kN ] cA

[ kA + kR ] [ 2 b+ kN + kR ]� [ b+ kR ]2

� p

�
kA + kR

� �
2 b+ kN + kR

�
�
�
b+ kR

�2
+ b [ b+ kN ]

[ kA + kR ] [ 2 b+ kN + kR ]� [ b+ kR ]2

, a+
� b [ kA � b ] a+ b [ kA � b ] cN + b [ b+ kN ] cA

[ kA + kR ] [ 2 b+ kN + kR ]� [ b+ kR ]2

� p

�
kA + kR

� �
2 b+ kN + kR

�
�
�
b+ kR

�2
+ b [ b+ kN ]

[ kA + kR ] [ 2 b+ kN + kR ]� [ b+ kR ]2

,
a
h �
kA + kR

� �
2 b+ kN + kR

�
�
�
b+ kR

�2 i� b [ kA � b ] a+ b [ kA � b ] cN + b [ b+ kN ] cA

[ kA + kR ] [ 2 b+ kN + kR ]� [ b+ kR ]2

� p

�
kA + kR

� �
2 b+ kN + kR

�
�
�
b+ kR

�2
+ b [ b+ kN ]

[ kA + kR ] [ 2 b+ kN + kR ]� [ b+ kR ]2

, a
h �
kA + kR

� �
2 b+ kN + kR

�
�
�
b+ kR

�2 i�b [ kA � b ] a+b [ kA � b ] cN+b [ b+ kN ] cA

� p
n �

kA + kR
� �
2 b+ kN + kR

�
�
�
b+ kR

�2
+ b [ b+ kN ]

o
, a

h �
kA + kR

� �
2 b+ kN + kR

�
�
�
b+ kR

�2 � b (kA � b)
i
+b [ kA � b ] cN+b [ b+ kN ] cA

� p
n �

kA + kR
� �
2 b+ kN + kR

�
�
�
b+ kR

�2
+ b [ b+ kN ]

o
. (342)

Observe that:�
kA + kR

� �
2 b+ kN + kR

�
�
�
b+ kR

�2 � b [ kA � b ]

= 2 b kA + kA kN + kA k
R + 2 b kR + kR kN +

�
kR
�2 � b2 � 2 b kR �

�
kR
�2 � b kA + b2

= b kA+kA kN +kA k
R+kR kN +b kN�b kN =

�
b+ kR

�
[ kA + kN ]�b kN +kA kN . (343)

Further observe that:�
kA + kR

� �
2 b+ kN + kR

�
�
�
b+ kR

�2
+ b [ b+ kN ]

= 2 b kA + kA kN + kA k
R + 2 b kR + kR kN +

�
kR
�2 � b2 � 2 b kR �

�
kR
�2
+ b2 + b kN

= 2 b kA + kA kN + kA k
R + kR kN + b kN

= 2 b kA + kA kN + kA k
R + kR kN � b kN + 2 b kN

= 2 b kA + 2 b kN + kA k
R + kR kN � b kN + kA kN
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=
�
2 b+ kR

�
[ kA + kN ]� b kN + kN kA : (344)

(342) �(344) imply that P (QR) � p if:

a
� �

b+ kR
�
[ kA + kN ]� b kN + kA kN

	
+ b [ kA � b ] cN + b [ b+ kN ] cA

� p
� �
2 b+ kR

�
[ kA + kN ]� b kN + kN kA

	
, p �

a
� �
b+ kR

�
( kA + kN )� b kN + kA kN

�
+ b [ kA � b ] cN + b [ b+ kN ] cA

[ 2 b + kR ] [ kA + kN ]� b kN + kN kA

, p � pdM .

Thus, qA > 0 and p � P (Q) when p 2 ( p0M ; pdM ] �

Lemma 7. If p � p0M , then in equilibrium:

qA = 0 and qN =
a� cN

2 b+ kN + kR
:

Proof. (308) implies that when qA = 0, R�s problem is:

Maximize
qN � 0

[ a� b qN � cN ] qN �
kN
2
[ qN ]

2 � kR

2
[ qN ]

2 : (345)

(345) implies that R�s pro�t-maximizing choice of qN > 0 is determined by:

a� 2 b qN � cN � kN qN � kR qN = 0 ) qN =
a� cN

2 b+ kN + kR
. (346)

(346) implies:

P (Q) = a� b

�
a� cN

2 b+ kN + kR

�
=

a
�
2 b+ kN + kR

�
� b [ a� cN ]

2 b+ kN + kR

=
a
�
b+ kN + kR

�
+ b cN

2 b+ kN + kR
. (347)

(309) and (347) imply:

p0M < P (Q) , cA +

�
b+ kR

�
[ a� cN ]

2 b+ kN + kR
<

a
�
2 b+ kN + kR

�
� b [ a� cN ]

2 b+ kN + kR

,
�
b+ kR

�
[ a� cN ]

2 b+ kN + kR
<
[ a� cA ]

�
2 b+ kN + kR

�
� b [ a� cN ]

2 b+ kN + kR

,
�
2 b+ kR

�
[ a� cN ]

2 b+ kN + kR
<
[ a� cA ]

�
2 b+ kN + kR

�
2 b+ kN + kR

,
�
2 b+ kR

�
[ a� cN ] < [ a� cA ]

�
2 b+ kN + kR

�
.
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The last inequality here holds because cA � cN < a and kN > 0. Therefore, p < P (Q) when
p � p0M .

It remains to show that qA = 0 when p � p0M . Because p < P (Q) when p � p0M ,
qA = 0 if R�s pro�t declines as qA increases above 0, i.e., if:

@

@qA

�
[ p� cA ] qA + [ a� b (qA + qN)� cN ] qN

� kA
2
[ qA ]

2 � kN
2
[ qN ]

2 � kR

2
[ qN + qA ]

2

� ����
qA=0

� 0

, p� cA � b qN � kRqN � 0 , p � cA +
�
b+ kR

�
qN

, p � cA +
a� cN

2 b+ kN + kR
�
b+ kR

�
= p0M . (348)

The last inequality in (348) re�ects (314). �

To compare the e¤ects of a price cap on R�s revenue under monopoly and duopoly,
suppose the maintained assumptions in both the monopoly and duopoly settings hold. Also
let QRdbM(p ) denote R�s total output when p 2 (pdM ; pbM ]. Then (318) implies:

QRdbM(p ) =
a� p

b
) @QRdbM(p )

@ p
= � 1

b
: (349)

Let QRdb(p ) denote R�s total output when p 2 (pd; pb ] and R faces a rival. Recall from
Lemma A3 that:

QRdb(p ) =
a [ b+ k ] + b c� p [ 2 b+ k ]

b [ b+ k ]
) @QRdb(p )

@ p
= � 2 b+ k

b [ b+ k ]
: (350)

Conclusion 1. @QRdb( p )

@ p
<

@QRdbM ( pM )

@ p
< 0 when pM 2 (pdM ; pbM ] and p 2 (pd; pb ].

Proof. (349) and (350) imply:

@QRdbM(p )

@ p
>

@QRdb(p )

@ p
, � 1

b
> � 2 b+ k

b [ b+ k ]
, b+ k < 2 b+ k , b > 0 . �

De�ne VdmM(p ) to be R�s revenue when p 2 (pdM ; pbM ]. Then (349) implies:

VdmM(p ) = p QRdbM(p ) = p

�
a� p

b

�
. (351)

(350) implies that when R faces a rival, R�s revenue when p 2 (pd; pb] is:

Vdm(p ) = p

�
a (b+ k) + b c� p (2 b+ k)

b (b+ k)

�
. (352)
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Conclusion 2. @Vdm( p )
@ p

< @VdmM ( p )
@ p

when p 2 (pdM ; pbM ] and p 2 (pd; pb ].

Proof. (351) implies:

@VdbM(p )

@ p
=

a� 2 p
b

. (353)

(352) implies:
@Vdb(p )

@ p
=

a [ b+ k ] + b c� 2 p [ 2 b+ k ]

b [ b+ k ]
. (354)

(353) and (354) imply:

@Vdb(p )

@ p
<

@VdbM(p )

@p
, a [ b+ k ] + b c� 2 p [ 2 b+ k ]

b [ b+ k ]
<

a� 2 p
b

, a [ b+ k ] + b c� 2 p [ 2 b+ k ] < [ b+ k ] [ a� 2 p ]

, b c+ p [ 2 (b+ k)� 2 (2 b+ k) ] < 0 , b c < 2 b p , p >
c

2
.

The last inequality here holds because, by assumption, p � pd > c. �

C. Welfare Analysis Involving Pro�t Rather than Revenue.

Now consider the duopoly setting where R�s pro�t replaces R�s revenue in the welfare
function. Call this the W � � setting. Welfare in the W � � setting is:

W�(p ) � S(p )� r �R(p ) (355)

where r > 0 is a parameter and S(�), which denotes consumer surplus, is:

S(p ) = aQ� b

2
Q2 � p qA � P (Q) [ qN + q ] . (356)

De�nitions. S0d(p ) is consumer surplus when p 2 [ p0; pd ].

Sdb(p ) is consumer surplus when p 2 (pd; pb).

�R0d(p ) is R�s pro�t when p 2 [ p0; pd ].

�Rdb(p ) is R�s pro�t when p 2 (pd; pb). �Rb (pb) is R�s pro�t when p = pb.

W�0d(p ) is welfare when p 2 [ p0; pd ].

W�db(p ) is welfare when p 2 (pd; pb).

Lemma 8. In the W � � setting:

@2�Rdb(p )

@ (p )2
< 0 ,

@2Sdb(p )

@ (p )2
> 0 , and

@2W�db(p )

@ (p )2
> 0 for p 2 (pd; pb) . (357)
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Proof. Lemma A3 implies that when p 2 (pd; pb), so P (Q) = p :

Q =
a� p

b
) @Q

@p
= � 1

b
: (358)

(356) and (358) imply that for p 2 (pd; pb), where P (Q) = p :

@Sdb(p )

@ p
= a

@Q

@ p
� bQ

@Q

@ p
�Q� p

@Q

@ p
= � a

b
+Q�Q+

p

b

= � a� p

b
) @2Sdb(p )

@ (p )2
=
1

b
> 0 . (359)

(110) implies that R�s revenue in the W � � setting when p 2 (pd; pb) is:

@Vdp(p )

@ p
=

a [ b+ k ] + b c� 2 p [ 2 b+ k ]

b [ b+ k ]
) @2Vdb(p )

@ (p )2
= � 2 [ 2 b+ k ]

b [ b+ k ]
< 0 . (360)

Let CRdb(p ) denote R�s total cost as a function of the price cap p when p 2 (pd; pb).
Then:

@CRdb(p )

@ p
= cA

@qA
@ p

+ cN
@qN
@ p

+ kA qA
@qA
@ p

+ kN qN
@qN
@ p

+ kR [ qA + qN ]

�
@qA
@ p

+
@qN
@ p

�
:

Lemma A3 implies that @qN
@p
and @qA

@p
do not vary with p when p 2 (pd; pb). Therefore:

@2CRdb(p )

@ (p )2
= kA

�
@qA
@ p

�2
+ kN

�
@qN
@ p

�2
+ kR

�
@qA
@ p

+
@qN
@ p

�2
� 0 : (361)

(360) and (361) imply:

@2�Rdb(p )

@ (p )2
=

@2Vdb(p )

@ (p )2
� @2CRdb(p )

@ (p )2
< 0 : (362)

(355), (359), and (362) imply:

@2W�db(p )

@ (p )2
=

@2Sdb(p )

@ (p )2
� r

@2�Rdb(p )

@ (p )2
> 0 . �

Lemma 9. �R0d(p0) < �Rb (pb) in the W � � setting.

Proof. Lemma A1 implies that QR(p0) = qN(p0) because qA(p0) = 0.

De�nition. DN �
�
2 b+ kN + kR

�
[ 2 b+ k ]�b2 . (363)

(363) and Lemmas A1 and A3 imply:

QR(p0) =
[ a� cN ] [ 2 b+ k ]� b [ a� c ]

DN

<
[ b+ k ] [ a� pb ]� b [ pb � c ]

b [ b+ k ]
= QR(pb)
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, a [ b+ k ] + a b� cN [ 2 b+ k ]� b a+ b c

DN

<
[ b+ k ] a� [ b+ k ] pb � b pb + b c

b [ b+ k ]

, a [ b+ k ] + b c� cN [ 2 b+ k ]

DN

<
[ b+ k ] a+ b c� [ 2 b+ k ] pb

b [ b+ k ]

, a [ b+ k ] + b c� cN [ 2 b+ k ]

DN

b [ b+ k ]� [ b+ k ] a� b c < � [ 2 b+ k ] pb

, a [ b+ k ] + b c

2 b+ k
� a [ b+ k ] + b c� cN [ 2 b+ k ]

[ 2 b+ k ]DN

b [ b+ k ] > pb

, a [ b+ k ] + b c

2 b+ k
� [ a (b+ k) + b c ] b [ b+ k ]� cN [ 2 b+ k ] b [ b+ k ]

[ 2 b+ k ]DN

> pb

, 1

[ 2 b+ k ]DN

f [ a (b+ k) + b c ]
� �
2 b+ kN + kR

�
(2 b+ k)� b2 � b (b+ k)

�
+ cN [ 2 b+ k ] b [ b+ k ] g > pb

, 1

[ 2 b+ k ]DN

f [ a (b+ k) + b c ]
� �
2 b+ kN + kR

�
(2 b+ k)� b (2 b+ k)

�
+ cN [ 2 b+ k ] b [ b+ k ] g > pb

,
[ a (b+ k) + b c ]

�
2 b+ kN + kR � b

�
+ cN b [ b+ k ]

DN

> pb

,
[ a (b+ k) + b c ]

�
b+ kN + kR

�
+ cN b [ b+ k ]

DN

> pb : (364)

As established in the proof of Proposition 4, just below (149), pb is increasing in kA.
Therefore, (8) implies that when kA � kN :

pb �
[ a (b+ k) + b c ]

�
2 kN

�
b+ kR

�
+ (kN)

2 �+ 2 b cN [ b+ k ] kN

2 b [ b+ k ] kN + (kN)
2 [ 2 b+ k ] + 2 kN [ 2 b+ k ] [ b+ kR ]

=
[ a (b+ k) + b c ]

�
2
�
b+ kR

�
+ kN

�
+ 2 b cN [ b+ k ]

2 b [ b+ k ] + kN [ 2 b+ k ] + 2 [ 2 b+ k ] [ b+ kR ]

=
[ a (b+ k) + b c ]

�
b+ kR + kN

2

�
+ b cN [ b+ k ]

b [ b+ k ] + kN
2
[ 2 b+ k ] + [ 2 b+ k ] [ b+ kR ]

=
[ a (b+ k) + b c ]

�
b+ kR + kN

2

�
+ b cN [ b+ k ]

[ 2 b+ k ]
�
b+ kR + kN

2

�
+ b [ b+ k ]

=
[ a (b+ k) + b c ]

�
b+ kR + kN

2

�
+ b cN [ b+ k ]

[ 2 b+ k ]
�
2 b+ kR + kN

2

�
� b2

: (365)
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The last equality in (365) holds because:

[ 2 b+ k ]

�
b+ kR +

kN
2

�
+ b [ b+ k ] = [ 2 b+ k ]

�
2 b+ kR +

kN
2

�
� b [ 2 b+ k ] + b [ b+ k ]

= [ 2 b+ k ]

�
2 b+ kR +

kN
2

�
� 2 b2 � b k + b2 + b k = [ 2 b+ k ]

�
2 b+ kR +

kN
2

�
� b2.

(363), (364), and (365) imply that QR(p0) < QR(pb) if:

[ a (b+ k) + b c ]
�
b+ kR + kN

2

�
+ b cN [ b+ k ]

[ 2 b+ k ]
�
2 b+ kR + kN

2

�
� b2

<
[ a (b+ k) + b c ]

�
b+ kR + kN

�
+ b cN [ b+ k ]

[ 2 b+ k ] [ 2 b+ kR + kN ]� b2
: (366)

The proof of Lemma A7 establishes that this inequality holds, so QR(p0) < QR(pb).

(12) implies that the rival�s output q is determined by:

a� b
�
QR(p ) + q(p )

�
� c� b q(p )� k q(p ) = 0 ) q(p ) =

a� bQR(p )� c

2 b+ k
. (367)

Because QR(p0) < QR(pb), (367) implies that q(p0) > q(pb). R�s pro�t when p = p0 is:

�R0d(p0) = qN(p0) [P (qN(p0) + q(p0))� cN ]�
kN
2
[ qN(p0) ]

2 � kR

2
[ qN(p0) ]

2

< qN(p0) [P (qN(p0) + q(pb) )� cN ]�
kN
2
[ qN(p0) ]

2 � kR

2
[ qN(p0) ]

2

� max
qN � 0; qA� 0

fqN [P (qN + q + qA)� cN ] + qA [P (qN + q + qA)� cA ]

� kA
2
[ qA ]

2 � kN
2
[ qN ]

2 � kR

2
[ qA + qN ]

2 g = �Rb (pb) : �

De�nition. p�� � argmax W�(p ) .

Conclusion 3. p�� 2 [ p0; pd ] .

Proof. Lemma 8 implies that p�� =2 (pd; pb). Equilibrium outcomes do not vary with p when
p < p0 (because qA = 0 for all such p ). Similarly, equilibrium outcomes do not vary with
p when p > pb (because the price cap does not bind for all such p ). Therefore: (i) welfare
does not vary with p when p � p0; and (ii) welfare does not vary with p when p � pb.
Consequently, p�� 2 [ p0; pd ]

S
pb .

It remains to show that p�� 6= pb. The proof of Lemma 9 establishes that:

QR(p0) < QR(pb) (368)

where QR(p ) is R�s total output when the price cap is p. Proposition 2 implies:
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QR(pb) < QR(pd) : (369)

(368) and (369) imply that QR(p0) < QR(pb) < QR(pd). Lemma A2 implies that Q
R(p )

is continuous and monotonically increasing in p for p 2 (p0; pd). Therefore, the Intermediate
Value Theorem implies that there exists a pE 2 (p0; pd) such that:

QR(pE) = QR(pb) : (370)

(12) implies that the rival�s output q is determined by:

a� b
�
QR(p ) + q(p )

�
� c� b q(p )� k q(p ) = 0 : (371)

(370) and (371) imply:
q(pE) = q(pb) : (372)

(370) and (372) imply:

Q(pE) = Q(pb) and P (Q(pE) ) = P (Q(pb) ) : (373)

Observe that:

�R0d(pE) = pE qA(pE) + P (Q(pE) ) qN(pE)� CR(qA(pE); qN(pE) )

< P (Q(pE) ) qA(pE) + P (Q(pE) ) qN(pE)� CR(qA(pE); qN(pE) )

= P (Q(pb) ) qA(pb) + P (Q(pb) ) qN(pb)� CR(qA(pb); qN(pb) ) = �Rb (pb). (374)

The inequality in (374) holds because pE < P (Q(pE) ), since pE 2 (p0; pd). The penultimate
equality in (374) re�ects (373). The last equality in (374) holds because P (Q(pb) ) = pb.

(356) and (373) imply:

S0d(pE) = a Q(pE)�
b

2
Q(pE)

2 � P (Q(pE) ) [ q(pE) + qN(pE) ]� pE qA(pE)

> a Q(pE)�
b

2
Q(pE)

2 � P (Q(pE) ) [ q(pE) + qN(pE) + qA(pE) ]

= a Q(pE)�
b

2
Q(pb)

2 � P (Q(pE) )Q(pE)

= a Q(pE)�
b

2
Q(pb)

2 � P (Q(pb) ) Q(pb) = S(pb) . (375)

The inequality in (375) holds because pE < P (Q(pE) ), since pE 2 (p0; pd). (374) and (375)
imply that consumer surplus is higher and R�s pro�t is lower in the W � � setting when
p = pE than when p = pb. Therefore, welfare is strictly greater when p = pE than when
p = pb, so p

�
� 6= pb. �

D. Benchmark Setting with Exogenous Prices.

Finally, consider the benchmark exogenous price setting in which the price of output
supplied using A�s input is set (exogenously) at pA and the price of output supplied without
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using A�s input is set (exogenously) at pN .

Conclusion 4. R reduces both qA and QR = qA + qN as pA declines in the exogenous price

setting.

Proof. In the exogenous price setting, R chooses qA and qN to:

Maximize pA qA + pN qN � cA qA �
kA
2
[ qA ]

2 � cN qN �
kN
2
[ qN ]

2 � kR

2
[ qA + qN ]

2 .

The necessary conditions for a solution to this problem, [P-E], are:

pA � cA � kA qA � kR [ qA + qN ] � 0 qA [ � ] = 0 ;

pN � cN � kN qN � kR [ qA + qN ] � 0 qN [ � ] = 0 . (376)

(376) implies that if qA = 0 and qN > 0 at the solution to [P-E]:

pN � cN � kN qN � kR qN = 0 ) qN =
pN � cN
kN + kR

) @qN
@pN

=
1

kN + kR
> 0 and

@qN
@pA

= 0 .

(376) also implies that if qN = 0 and qA > 0 at the solution to [P-E]:

pA � cA � kA qA � kR qA = 0 ) qA =
pA � cA
kA + kR

) @qA
@pA

=
1

kA + kR
> 0 and

@qA
@pN

= 0 .

(376) further implies that if qA > 0 and qN > 0 at the solution to [P-E]:

pA � cA � kA qA = kR [ qA + qN ] ) qA
�
kA + kR

�
= pA � cA � kR qN

) qA =
pA � cA � kR qN

kA + kR
; and (377)

pN � cN � kN qN = kR [ qA + qN ] ) qN
�
kN + kR

�
= pN � cN � kR qA

) qN =
pN � cN � kR qA

kN + kR
. (378)

(377) and (378) imply:

qN =
pN � cN
kN + kR

� kR

kN + kR

�
pA � cA � kR qN

kA + kR

�
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) qN

"
1�

�
kR
�2

(kA + kR) (kN + kR)

#
=

pN � cN
kN + kR

� kR [ pA � cA ]

[ kA + kR ] [ kN + kR ]

) qN

h �
kA + kR

� �
kN + kR

�
�
�
kR
�2 i

= [ pN � cN ]
�
kA + kR

�
� kR [ pA � cA ]

) qN =
[ pN � cN ]

�
kA + kR

�
� kR [ pA � cA ]

[ kA + kR ] [ kN + kR ]� (kR)2
. (379)

(377) and (379) imply:

qA =
pA � cA
kA + kR

� kR

kA + kR

(
[ pN � cN ]

�
kA + kR

�
� kR [ pA � cA ]

[ kA + kR ] [ kN + kR ]� (kR)2

)

=
1

[ kA + kR ]
�
[ kA + kR ] [ kN + kR ]� (kR)2

	
�
�
[ pA � cA ]

n �
kA + kR

� �
kN + kR

�
�
�
kR
�2 o� kR [ pN � cN ]

�
kA + kR

�
+
�
kR
�2
[ pA � cA ]

�

=
[ pA � cA ]

�
kA + kR

� �
kN + kR

�
� kR [ pN � cN ]

�
kA + kR

�
[ kA + kR ]

�
[ kA + kR ] [ kN + kR ]� (kR)2

	
=
[ pA � cA ]

�
kN + kR

�
� kR [ pN � cN ]

[ kA + kR ] [ kN + kR ]� (kR)2
. (380)

(379) and (380) imply:

@qA
@ pA

=
kN + kR

[ kA + kR ] [ kN + kR ]� (kR)2
> 0 , and

@ (qA + qN)

@ pA
=

kN + kR � kR

[ kA + kR ] [ kN + kR ]� (kR)2

=
kN

[ kA + kR ] [ kN + kR ]� (kR)2
> 0 . � (381)

E. The Simpli�ed Cost Setting.

De�nitions.

p2 �
b cA [ b+ k ] + a [ b+ k ] kR + b c kR

[ 2 b+ k ] [ b+ kR ]� b2
.
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p3 �
a
�
b+ kR

�
[ b+ k ] + b cA [ b+ k ] + b c

�
b+ kR

�
[ 2 b+ kR ] [ 2 b+ k ]� b2

. (382)

Assumptions

1. CR(qA; qN) = cA qA + cN qN +
kR

2
[ qA + qN ]

2, where kR > 0.

2. cN > cA > 0 .

3. a > max f c; cN g .

4. [ a� cA ] [ 2 b+ k ] > b [ a� c ].

5. p2 > c .

6. All other model features are as speci�ed in the main analysis.

Lemma 10. p3 > p2.

Proof. (382) implies that the lemma holds if:�
a [ b+ k ]

�
b+ kR

�
+ b cA [ b+ k ] + b c

�
b+ kR

� 	 �
[ 2 b+ k ]

�
b+ kR

�
� b2

	
>
�
a [ b+ k ] kR + b cA [ b+ k ] + b c kR

	� �
2 b+ kR

�
[ 2 b+ k ]� b2

	
, a [ b+ k ] [ 2 b+ k ]

�
b+ kR

�2 � a b2 [ b+ k ]
�
b+ kR

�
+ b cA [ b+ k ] [ 2 b+ k ]

�
b+ kR

�
� b3 cA [ b+ k ]

+ b c [ 2 b+ k ]
�
b+ kR

�2 � b3 c
�
b+ kR

�
> a [ b+ k ] [ 2 b+ k ] kR

�
2 b+ kR

�
� a b2 [ b+ k ] kR

+ b cA [ b+ k ] [ 2 b+ k ]
�
2 b+ kR

�
� b3 cA [ b+ k ]

+ b c [ 2 b+ k ] kR
�
2 b+ kR

�
� b3 c kR

, a [ b+ k ] [ 2 b+ k ]
h
b2 + 2 b kR +

�
kR
�2 � 2 b kR � �kR�2 i� a b3 [ b+ k ]

� b2 cA [ b+ k ] [ 2 b+ k ]

+ b c [ 2 b+ k ]
h
b2 + 2 b kR +

�
kR
�2 � 2 b kR � �kR�2 i� b4 c > 0

, a b2 [ b+ k ] [ 2 b+ k ]� a b3 [ b+ k ]� b2 cA [ b+ k ] [ 2 b+ k ]

+ b3 c [ 2 b+ k ]� b4 c > 0
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, a b2 [ b+ k ] [ 2 b+ k � b ] + b2 cA [ 2 b+ k ] [ b� (b+ k) ]� b4 c > 0

, a b2 [ b+ k ]2 � b2 k cA [ 2 b+ k ]� b4 c > 0

, a b2
�
b2 + 2 b k + k2

�
� 2 b3 k cA � b2 k2 cA � b4 c > 0

, a b4 + 2 a b3 k + a b2 k2 � 2 b3 k cA � b2 k2 cA � b4 c > 0

, [ a� c ] b4 + 2 b3 k [ a� cA ] + b2 k2 [ a� cA ] > 0 .

The last inequality here holds because a > c and a > cA, by assumption. �

Conclusion 5. qA = 0 or qA = 0 in equilibrium in the simpli�ed cost setting.

Proof. Let �R(qa; qn) denote R�s pro�t when it supplies qa units using A�s input and qn units
without using this input. We will show in three distinct cases that if R is initially supplying
strictly positive amounts of output both using A�s input and not using A�s input (so qA > 0
and qN > 0), then R can strictly increase its pro�t by setting qA = 0 or qN = 0.

Case 1. PA(Q)� cA > P (Q)� cN . If qA > 0 and qN > 0 in this case, then:

�R(qA; qN) = [PA(Q)� cA ] qA + [P (Q)� cN ] qN �
kR

2
[ qA + qN ]

2 (383)

< [PA(Q)� cA ] [ qA + qN ]�
kR

2
[ qA + qN ]

2 = �R(qA + qN ; 0) . (384)

(384) implies that R could increase its pro�t by selling its entire output, QR = qA + qN ,
using A�s input, and supplying no output without using the input.

Case 2. PA(Q)� cA < P (Q)� cN . If qA > 0 and qN > 0 in this case, then:

�R(qA; qN) = [PA(Q)� cA ] qA + [P (Q)� cN ] qN �
kR

2
[ qA + qN ]

2

< [P (Q)� cN ] [ qA + qN ]�
kR

2
[ qA + qN ]

2 = �R(0; qA + qN) . (385)

(385) implies that R could increase its pro�t by selling its entire output, QR = qA + qN ,
without using A�s input, and supplying no output using the input.

Case 3. PA(Q)� cA = P (Q)� cN . In this case:

P (Q)� PA(Q) = cN � cA > 0 ) PA(Q) < P (Q) ) PA(Q) = p . (386)

(386) implies that if qA > 0 and qN > 0 in this case, then:

@�R(qA; qN)

@qA
= � b qN + p� cA � kR [ qA + qN ] = 0

) p� cA � kR [ qA + qN ] = b qN > 0 . (387)
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(386) implies that in this case:

�R(qA; qN) = [PA(Q)� cA ] qA + [P (Q)� cN ] qN �
kR

2
[ qA + qN ]

2

= [PA(Q)� cA ] [ qA + qN ]�
kR

2
[ qA + qN ]

2

= [ p� cA ] [ qA + qN ]�
kR

2
[ qA + qN ]

2 = �R(qA + qN ; 0) . (388)

(388) implies that R would secure the same pro�t if it sold its entire output, QR = qA+ qN ,
using A�s input. (388) also implies:

@�R(qA + qN ; 0)

@qA
= p� cA � kR [ qA + qN ] > 0 . (389)

The inequality in (389) re�ects (387). (389) implies that R could increase its pro�t by
marginally increasing its total output and selling the entire output using A�s input. �

Lemma 11. Suppose p � p3. Then in equilibrium in the simpli�ed cost setting:

p � P (Q), q� =
[ a� c ]

�
2 b+ kR

�
� b [ a� cA ]

[ 2 b+ kR ] [ 2 b+ k ]� b2
, q�N = 0 , and

q�A =
[ a� cA ] [ 2 b+ k ]� b [ a� c ]

[ 2 b + kR ] [ 2 b+ k ]� b2
. (390)

Proof. Consider a putative equilibrium in which outputs are as speci�ed in (390). Then in
this equilibrium, for Q� = q� + q�A + q�N :

P (Q�) = a� b [ q�A + q�N + q� ] = a� b q�A � b q�

= a� b

�
( a� cA ) (2 b+ k)� b (a� c)

(2 b+ kR) (2 b+ k)� b2

�
� b

"
(a� c)

�
2 b+ kR

�
� b (a� cA)

(2 b+ kR) (2 b+ k)� b2

#

= a� b

"
(a� cA) (2 b+ k)� b (a� c) + (a� c)

�
2 b+ kR

�
� b (a� cA)

(2 b+ kR) (2 b+ k)� b2

#

= a� b

"
(a� cA) (b+ k) + (a� c)

�
b+ kR

�
(2 b+ kR) (2 b+ k)� b2

#

=
a
� �
2 b+ kR

�
(2 b+ k)� b2

�
� b [ a� cA ] [ b+ k ]� b [ a� c ]

�
b+ kR

�
[ 2 b+ kR ] [ 2 b+ k ]� b2

=
a
� �
2 b+ kR

�
(2 b+ k)� b2 � b (b+ k)� b

�
b+ kR

� �
+ b cA [ b+ k ] + b c

�
b+ kR

�
[ 2 b+ kR ] [ 2 b+ k ]� b2
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=
a
� �
2 b+ kR

�
(2 b+ k)� b (2 b+ k)� b

�
b+ kR

� �
+ b cA [ b+ k ] + b c

�
b+ kR

�
[ 2 b+ kR ] [ 2 b+ k ]� b2

=
a
� �
b+ kR

�
(2 b+ k)� b

�
b+ kR

� �
+ b cA [ b+ k ] + b c

�
b+ kR

�
[ 2 b+ kR ] [ 2 b+ k ]� b2

=
a
�
b+ kR

�
[ b+ k ] + b cA [ b+ k ] + b c

�
b+ kR

�
[ 2 b+ kR ] [ 2 b+ k ]� b2

= p3 .

(391)

The last inequality in (391) re�ects (382). (391) implies that p � P (Q�) in the putative
equilibrium when p � p3.

We now establish that R cannot increase its pro�t by deviating unilaterally to supply qA
and qN that di¤er from their values in (390). (383) and (391) imply that R�s pro�t in the
simpli�ed cost setting when p � p3 is:

�R(qA; qN) = [PA(Q)� cA ] qA + [P (Q)� cN ] qN �
kR

2
[ qA + qN ]

2

= [ a� bQ� cA ] qA + [ a� bQ� cN ] qN �
kR

2
[ qA + qN ]

2

) @�R(qA; qN)

@qA
= a� b [ q + qA + qN ]� cA � b qA � b qN � kR [ qA + qN ]

= a� b q � 2 b qA � 2 b qN � cA � kR [ qA + qN ] (392)

) @2�R(qA; qN)

@ (qA)
2 = � 2 b� kR < 0 . (393)

(393) implies that �R(qA; qN) is strictly concave in qA.

(390) and (392) imply that in the putative equilibrium:

@�R(qA; qN)

@qA

����
qA= q

�
A; qN = q

�
N

= a� b q� � 2 b q�A � cA � kR q�A = 0

, a� cA � b q� =
�
2 b+ kR

�
q�A

, [ a� cA ]
� �
2 b+ kR

�
(2 b+ k)� b2

�
� b
�
(a� c)

�
2 b+ kR

�
� b (a� cA)

�
=
�
2 b+ kR

�
[ (a� cA) (2 b+ k)� b (a� c) ]

, [ a� cA ]
� �
2 b+ kR

�
(2 b+ k)� b2 �

�
2 b+ kR

�
(2 b+ k) + b2

�
� b [ a� c ]

�
2 b+ kR �

�
2 b+ kR

� �
= 0

, [ a� cA ] 0� b [ a� c ] 0 = 0 . (394)
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The last equality in (394) holds. (393) and (394) imply:

[P (Q)� cA ] qA �
kR

2
[ qA ]

2 � �R(q�A; 0) for all qA . (395)

(395) implies that R cannot increase its pro�t by deviating from the putative equilibrium
by producing distinct qA and qN because (383) implies:

�R(qA; qN) = [P (Q)� cN ] qN + [PA(Q)� cA ] qA �
kR

2
[ qA + qN ]

2

� [P (Q)� cN ] qN + [P (Q)� cA ] qA �
kR

2
[ qA + qN ]

2

< [P (Q)� cA ] [ qA + qN ]�
kR

2
[ qA + qN ]

2 � �R(q�A; 0) . (396)

The �rst inequality in (396) holds because PA(Q) � P (Q) for all Q. The second inequality
in (396) holds because cA < cN , by assumption. The last inequality in (396) re�ects (395).
(396) implies that R cannot increase its pro�t by undertaking such a deviation.

Finally, we establish that the rival cannot increase its pro�t by unilaterally deviating to
supply some output other than the q� speci�ed in (390). The rival�s pro�t is:

�(q) = [P (Q)� c ] q � k

2
q2 = [ a� b(q + qA + qN)� c ] q � k

2
q2

) @�(q)

@q
= a� bQ� c� b q � k q (397)

) @2�(q)

@q2
= � 2 b� k < 0 . (398)

(390) and (397) imply that at the putative equilibrium:

@�(q)

@q

����
q= q�

= a� b q�A � 2 b q� � c� k q� = a� [ 2 b+ k ] q� � b q�A

= a� [ 2 b+ k ]

"
(a� c)

�
2 b+ kR

�
� b (a� cA)

(2 b+ kR) (2 b+ k)� b2

#

� b

�
(a� cA) (2 b+ k)� b (a� c)

(2 b+ kR) (2 b+ k)� b2

�
� c

= [ a� c ]
� �
2 b+ kR

�
(2 b+ k)� b2

�
�[ 2 b+ k ]

�
(a� c)

�
2 b+ kR

�
� b (a� cA)

�
� b [ (a� cA) (2 b+ k)� b (a� c) ] = 0

= [ a� c ]
� �
2 b+ kR

�
(2 b+ k)� b2 � (2 b+ k)

�
2 b+ kR

�
+ b2

�
� b [ a� cA ] [ 2 b+ k � (2 b+ k) ] = 0 (399)
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(398) and (399) imply that the rival cannot increase its pro�t by unilaterally deviating from
the putative equilibrium. Therefore, the outputs in (390) constitute an equilibrium because
neither �rm can increase its pro�t by undertaking a unilateral deviation. �

Lemma 12. In the simpli�ed cost setting, there exists a ep 2 [ p2; p3) such that in equilib-
rium, for all p 2 (ep; p3 ]:

P (Q�) = p, q�A =
a [ b+ k ] + b c� p [ 2 b+ k ]

b [ b+ k ]
, q�N = 0, and q� =

p� c

b+ k
: (400)

Proof. Suppose an equilibrium exits in which prices and outputs are as speci�ed in (400).
We will show that neither R nor the rival can increase its pro�t by deviating unilaterally
from the putative equilibrium. We �rst consider three possible deviations by R.

Deviation 1. R deviates unilaterally to set qA 6= q�A and qN = 0.

(383) implies:
�R(qA; 0) = [PA(Q)� cA ] qA �

kR

2
[ qA ]

2 (401)

) @�R(qA; 0)

@qA
= PA(Q)� cA + qA

@PA(Q)

@qA
� kR qA (402)

) @2�R(qA; 0)

@ (qA)
2 = 2

@PA(Q)

@qA
� kR < 0 . (403)

The inequality in (403) holds because @PA(Q)
@qA

2 f 0;� b g. (403) implies that the identi�ed
deviation will not increase R�s pro�t if:

@+�R(q�A; 0)

@qA
� 0 � @��R(q�A; 0)

@qA
: (404)

If (404) holds, then R�s pro�t declines as qA increases above q�A or as qA declines below q�A,
given q� and q�N = 0.

(400) and (402) imply that at the putative equilibrium:

@+�R(qA; 0)

@qA

����
qA= q

�
A

= PA(Q
�) � cA+ q

�
A

@PA(Q
�)

@qA
� kR q�A

= p � cA�
�
b+ kR

�
q�A = p� cA�

�
b+ kR

� � a (b+ k) + b c� p (2 b+ k)

b (b+ k)

�
(405)

=
p b [ b+ k ]� b cA [ b+ k ]� a [ b+ k ]

�
b+ kR

�
� b c

�
b+ kR

�
+ p [ 2 b+ k ]

�
b+ kR

�
b [ b+ k ]

=
p
�
b (b+ k) + (2 b+ k)

�
b+ kR

� �
� b cA [ b+ k ]� a [ b+ k ]

�
b+ kR

�
� b c

�
b+ kR

�
b [ b+ k ]

� 0
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, p �
a [ b+ k ]

�
b+ kR

�
+ b cA [ b+ k ] + b c

�
b+ kR

�
b [ b+ k ] + [ 2 b+ k ] [ b+ kR ]

, p �
a [ b+ k ]

�
b+ kR

�
+ b cA [ b+ k ] + b c

�
b+ kR

�
b [ b+ k ] + [ 2 b+ k ] [ 2 b+ kR ]� b [ 2 b+ k ]

, p �
a [ b+ k ]

�
b+ kR

�
+ b cA [ b+ k ] + b c

�
b+ kR

�
[ 2 b+ k ] [ 2 b+ kR ]� b2

= p3. (406)

The �rst equality in (405) holds because PA(Q) = P (Q) = a� bQ as qA increases above q�A
(thereby reducing P (Q) below p ). The last equality in (406) re�ects (382).

(400) and (402) also imply that at the putative equilibrium:

@��R(qA; 0)

@qA

����
qA= q

�
A

= PA(Q
�)� cA + q�A

@PA(Q
�)

@qA
� kR q�A = p� cA � kR q�A � 0 (407)

, p� cA � kR
�
a (b+ k) + b c� p (2 b+ k)

b ( b+ k )

�
� 0

, p� cA �
�
a (b+ k) kR + b c kR � p (2 b+ k) kR

b (b+ k)

�
� 0

, [ p� cA ] b [ b+ k ]� a [ b+ k ] kR � b c kR + p [ 2 b+ k ] kR

b [ b+ k ]
� 0

,
p
�
b (b+ k) + (2 b+ k) kR

�
� b cA [ b+ k ]� a [ b+ k ] kR � b c kR

b [ b+ k ]
� 0

, p � b cA [ b+ k ] + a [ b+ k ] kR + b c kR

b [ b+ k ] + [ 2 b+ k ] kR

, p � b cA [ b+ k ] + a [ b+ k ] kR + b c kR

b [ 2 b+ k ] + [ 2 b+ k ] kR � b2

, p � b cA [ b+ k ] + a [ b+ k ] kR + b c kR

[ 2 b+ k ] [ b+ kR ]� b2
= p2 : (408)

The second equality in (407) holds because PA(Q) = p as qA declines below q�A (thereby
increasing P (Q) above p ). The last equality in (408) re�ects (382). (404), (406), and
(408) imply that R cannot increase its pro�t by undertaking a deviation of this kind when
p 2 [ p2; p3 ].

Deviation 2. R deviates unilaterally to set qA = 0 and qN > 0.

Let q�A(p ) denote q
�
A as de�ned in (400) as a function of p. (382) and (400) imply:

q�A(p3) =
a [ b+ k ] + b c� p3 [ 2 b+ k ]

b [ b+ k ]
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=
a [ b+ k ] + b c� a [ b+ k ][ b+ kR]+ b cA [ b+ k ]+ b c [ b+ kR]

[ 2 b+ k ][ 2 b+ kR]� b2 [ 2 b+ k ]

b [ b+ k ]

=

�
( 2 b+ k )

�
2 b+ kR

�
� b2

�
[ a (b+ k) + b c ]

b [ b+ k ] [ (2 b+ k) (2 b+ kR)� b2 ]

�
�
a (b+ k)

�
b+ kR

�
+ b cA (b+ k) + b c

�
b+ kR

� �
[ 2 b+ k ]

b [ b+ k ] [ (2 b+ k) (2 b+ kR)� b2 ]

=

�
(2 b+ k)

�
2 b+ kR

�
� b2

�
[ a (b+ k) + b c ]

b [ b+ k ] [ (2 b+ k) (2 b+ kR)� b2 ]

�
�
[ a (b+ k) + b c ]

�
b+ kR

�
+ b cA [ b+ k ]

	
[ 2 b+ k ]

b [ b+ k ] [ (2 b+ k) (2 b+ kR)� b2 ]

=
[ (2 b+ k) b� b2 ] [ a (b+ k) + b c ]� b cA [ b+ k ] [ 2 b+ k ]

b [ b+ k ] [ (2 b+ k) (2 b+ kR)� b2 ]

=
[ 2 b+ k � b ] [ a (b+ k) + b c ]� cA [ b+ k ] [ 2 b+ k ]

[ b+ k ] [ (2 b+ k) (2 b+ kR)� b2 ]

=
[ b+ k ] [ a (b+ k) + b c ]� cA [ b+ k ] [ 2 b+ k ]

[ b+ k ] [ (2 b+ k) (2 b+ kR)� b2 ]

=
a [ b+ k ] + b c� cA [ 2 b+ k ]

[ 2 b+ k ] [ 2 b+ kR ]� b2
=
[ a� cA ] [ 2 b+ k ]� a b+ b c

[ 2 b+ k ] [2 b+ kR]� b2

=
[ a� cA ] [ 2 b+ k ]� b [ a� c ]

[ 2 b+ kR ] [ 2 b+ k ]� b2
= q�A4 (409)

where q�A4 re�ects the value of q
�
A identi�ed in (390). Let q

max
N denote the value of qN that

maximizes R�s pro�t when qA = 0, given q. Then, given q, for all qN :

�R(0; qN) = [P (q + qN)� cN ] qN �
kR

2
[ qN ]

2 � �R(0; qmaxN ) : (410)

qmaxN exists because it is apparent from (410) that �R(0; qN) is a strictly concave function of
qN . Observe that, given q� as speci�ed in (390):

�R(0; qmaxN ) < [P (q� + qmaxN )� cA ] q
max
N � kR

2
[ qmaxN ]2

� �R(q�A4; 0) = �R(q�A(p3); 0). (411)

The �rst inequality in (411) holds because cA < cN , by assumption. The second inequality
in (411) holds because, from Lemma 11, q�A4 = q�A(p3) is the value of qA that maximizes R�s
pro�t when qN = 0 and q = q�. The equality in (411) re�ects (409).

R�s pro�t when q = q�, qN = 0, and qA = q�A(p ) is:
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�R(q�A(p ); 0) = [PA(q
�
A(p ) + q�(p ) )� cA ] q

�
A(p )�

kR

2
[ q�A(p ) ]

2 : (412)

(400) and (412) imply that �R(q�A(p ); 0) is a continuous function of p. Therefore, (411)
implies that there exists a p0 � p3 such that, for all p 2 (p0; p3 ]:

�R(q�A(p ); 0) > �R(0; qmaxN ) � �R(0; qN) for all qN :

Consequently, when p 2 (p0; p3 ], R cannot increase its pro�t by undertaking a deviation of
the speci�ed type.

Deviation 3. R deviates unilaterally to set qA > 0 and qN > 0.

Conclusion 5 establishes that such a deviation generates less pro�t for R than R secures
by setting qA = 0 or qN = 0. Therefore, the foregoing �ndings regarding Deviations 1 and
2 imply that R cannot cannot increase its pro�t by undertaking a unilateral deviation in
which qA > 0 and qN > 0.

In summary, R cannot increase its pro�t by undertaking a unilateral deviation when
p 2 [ep; p3 ] where ep = maxfp0; p2g. It remains to establish that the rival cannot increase
its pro�t by changing q unilaterally. The rival�s pro�t is:

�(q) = [ a� bQ� c ] q � k

2
q2 ) @�(q)

@q
= a� bQ� c� b q � k q (413)

) @2�(q)

@q2
= � 2 b� k < 0 . (414)

(413) implies that when P (Q) = p :

@�(q)

@q

����
q= q�

= a� bQ� c� b q� � k q�

= p� c� b q� � k q� = 0 , q� =
p� c

b+ k
. (415)

(400) implies that the last equality in (415) holds at the putative equilibrium. (414) and (415)
imply that the rival cannot increase its pro�t by deviating from the proposed equilibrium.

We have proved that neither �rm can increase its pro�t by deviating from the outputs
speci�ed in (400). Therefore, these outputs constitute an equilibrium. �

Conclusion 6. In the simpli�ed cost setting, there exists a ep 2 [ p2; p3 ) such that R�s

revenue, V (p ), is strictly decreasing in p for p 2 (ep; p3 ].
Proof. Let ep denote the smallest p for which the outcomes identi�ed in (400) prevail in
equilibrium. (400) implies that when p 2 (ep; p3 ]:

V (p ) = p qA = p

�
a (b+ k) + b c� p (2 b+ k)

b (b+ k)

�
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) @V (p )

@ p
=

a [ b+ k ] + b c� 2 p [ 2 b+ k ]

b [ b+ k ]

) @V (p )

@ p
< 0 , a [ b+ k ] + b c� 2 p [ 2 b+ k ] < 0

, p >
a [ b+ k ] + b c

2 [ 2 b+ k ]
� pV3M . (416)

(382) and (416) imply:

pV3M < p3 , a [ b+ k ] + bc

2 [ 2 b+ k ]
<

a
�
b+ kR

�
[ b+ k ] + bcA [ b+ k ] + b c

�
b+ kR

�
[ 2 b+ kR ] [ 2 b+ k ]� b2

, a [ b+ k ] + b c

2 [ 2 b+ k ]
<
[ a (b+ k ) + b c ]

�
b+ kR

�
+ b cA [ b+ k ]

[ 2 b+ kR ] [ 2 b+ k ]� b2
. (417)

The inequality in (417) holds if:

a [ b+ k ] + b c

2 [ 2 b+ k ]
<
[ a (b+ k ) + b c ]

�
b+ kR

�
[ 2 b+ kR ] [ 2 b+ k ]� b2

, 1

2 [ 2 b+ k ]
<

b+ kR

[ 2 b+ kR ] [ 2 b+ k ]� b2

,
�
2 b+ kR

�
[ 2 b+ k ]� b2 < 2 [ 2 b+ k ]

�
b+ kR

�
,

�
b+ kR

�
[ 2 b+ k ] + b [ 2 b+ k ]� b2 < 2 [ 2 b+ k ]

�
b+ kR

�
, b [ 2 b+ k ]� b2 < [ 2 b+ k ]

�
b+ kR

�
, � b2 < [ 2 b+ k ] kR.

The last inequality here holds. Therefore, (416) and (417) imply that @V ( p )
@ p

< 0 when

p 2 (maxfep; pVM g; p3 ]. �
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F. The Modi�ed Baseline Setting.

Table TA1 reports how equilibrium outcomes change as parameter values change in the
modi�ed baseline setting. Recall that P (Q) = mQ� 1

" where m = 106 and " = 2 in this
setting.

Parameter Variation pb� pd
pb

V (pd)�V (pb)
V (pb)

p� p�

pb

W (p�)�W (pb)
W (pb)

1:50m 0:05 0:14 88:06 0:95 0:01
0:50m 0:06 0:15 43:01 0:95 0:01
1:10 " 0:04 0:13 121:56 0:96 0:01
0:90 " 0:07 0:16 34:82 0:93 0:02
1:50 cA 0:05 0:14 67:59 0:95 0:01
0:50 cA 0:05 0:14 67:12 0:95 0:01
1:50 kA 0:04 0:12 70:64 0:96 0:01
0:5 kA 0:07 0:19 61:51 0:93 0:03
1:50 kR 0:05 0:14 69:00 0:95 0:01
0:50 kR 0:05 0:15 65:72 0:95 0:02
1:50 cN 0:05 0:15 67:59 0:95 0:02
0:50 cN 0:05 0:14 67:36 0:95 0:01
1:50 kN 0:06 0:16 68:29 0:94 0:02
0:50 kN 0:04 0:12 65:48 0:96 0:01
1:50 c 0:05 0:14 67:59 0:95 0:02
0:50 c 0:05 0:14 67:36 0:95 0:01
1:50 k 0:07 0:16 70:64 0:94 0:02
0:50 k 0:03 0:12 61:27 0:97 0:01

Table TA1. The E¤ects of Changing Baseline Parameters.

The �rst column in Table A4 identi�es the single parameter that is changed in the
modi�ed baseline setting and the amount by which it is changed. All other parameters
remain at their levels in the baseline setting.5 The remaining columns in Table TA1 identify
outcomes that arise in equilibrium, corresponding to the entries in Table A1 in the Appendix
of the paper. The welfare calculations in the last column assume that r = 1

2
.

5For example, the �rst row of data in Table TA1 records the outcomes that arise in equilibrium when m is
increased by 50% above its level in the modi�ed baseline setting with P (Q) = mQ� 1

" , holding all other
parameters at their values in this setting. Table TA1 considers relatively limited variation in " because the
second order condition for R�s problem is violated if " becomes too small.
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F. Supplemental Figures.

Figure A1 below complements Figure 2 in the paper by illustrating how consumer surplus
(S(�) ) and R�s revenue (V (�) ) vary with the price cap (p ) in settings where pV m 2 (p0; pd )
and pSM 2 (p0; pd ) Recall that pV m is the value of the price cap at which R�s equilibrium
revenue is minimized and pSM is the value of the price cap at which equilibrium consumer
surplus is maximized.

Figure A2 below complements Figures 2 and 4 in the paper by depicting how consumer
surplus (S(�) ), R�s revenue (V (�) ), and welfare (W (�) = S(�)� 1

2
V (�) ) vary with p in the

baseline setting.
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            Figure A1.  Consumer Surplus, 𝑺𝑺(𝒑𝒑), and 𝑹𝑹’s Revenue, 𝑽𝑽(𝒑𝒑),  
                       when  𝒑𝒑𝟎𝟎 <  𝒑𝒑𝑽𝑽𝑽𝑽 <  𝒑𝒑𝑺𝑺𝑺𝑺 <  𝒑𝒑𝒅𝒅 <  𝒑𝒑𝒃𝒃 . 



                                
 

 
 
            Figure A2.  Consumer Surplus, 𝑺𝑺(𝒑𝒑), Welfare, 𝑾𝑾(𝒑𝒑), and  
                                𝑹𝑹’s Revenue, 𝑽𝑽(𝒑𝒑), in the Baseline Setting. 
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