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1 Introduction.

In response to Russia�s military operations in Ukraine, G7 countries and other allies

(�the Alliance�) have imposed a cap on the price at which Russian �rms can sell the oil they

supply using key Alliance inputs (e.g., shipping and insurance).1 The price cap is intended

to reduce the (tax) revenue that Russia has available to �nance its operations in Ukraine2

without causing the sharp increase in the world price of oil that would likely arise if the

Alliance were to withhold its inputs from Russian oil suppliers altogether.3

Using price caps to reduce the (tax) revenue that accrues to a sanctioned nation is a

relatively novel undertaking,4 and so has received little formal analysis to date. The primary

analysis of this issue has (appropriately) examined the e¤ects of price caps on non-renewable

resources. Johnson, Rachel, and Wolfram et al. (2023a) (hereinafter JRW) demonstrate

that an exogenous price reduction often encourages a producer to increase its supply of a

non-renewable resource. A lower price reduces the value of the remaining reserves, thereby

enhancing incentives for current extraction and sale of the resource.5 It follows that the

imposition of a binding cap on the price at which a supplier can sell a non-renewable product

can induce the �rm to increase its current supply of the product.

The present research is intended to complement JRW�s important work by examining the

e¤ects of imposing a price ceiling on a product supplied by a �rogue�supplier (R), even if

the product is not a non-renewable resource. Historically, restrictions have been imposed on

many di¤erent types of exports. For example, the U.S. has restricted the �ows of a broad

spectrum of goods and services to and from many countries, including Cuba, Iran, Libya,

1See Wolfram et al. (2022), Baumeister (2023), Horwich (2023), and Johnson et al. (2023a,b) for details.
2Johnson et al. (2023b, p. 1245) observe that �The price cap ... is an integral part of a broader sanctions
package designed to reduce Russia�s foreign exchange revenues and reduce its capacity to wage war in
Ukraine. ... Reducing the revenue from oil exports provides a key potential lever to reduce Russia�s ability
to wage war.�Wessel (2022) reports that a key imperative of the price cap is �to reduce the �ow of oil
revenues that are �nancing Russia�s war machine.� Fishman (2022) notes that the �price cap marks the
�rst major attempt by the US and its allies to cut Russia�s oil revenues.�
3The U.S. Department of the Treasury (2022) states that �The price cap is an important tool to restrict the
revenue Russia receives to fund its illegal war in Ukraine, while also maintaining a reliable supply of oil
onto global markets.�Horwich (2023, p. 1) notes that �if Russian oil doesn�t get to the market somewhere,
then there�s a global shortfall that would have signi�cant rami�cations for the price.�
4Neil Mehrotra, one of the architects of the cap on the price at which Russian oil can be sold, observes that
�The price cap is an entirely novel e¤ort. Typically, U.S. sanctions have been just outright prohibitions
on certain types of business with certain entities. The price cap is novel in that we are trying to facilitate
trade, but only under certain terms. ... I think this is de�nitely a new front in the tools of economic
statecraft�(Horwich, 2023, p. 5). Johnson et al. (2023a, p. 16) observe that �The price cap on Russian oil
re�ects a novel approach to sanctions and the world is just beginning to understand its impacts on Russian
oil revenues, geopolitical alignments, and oil trade.�
5Also see Johnson et al. (2023b).

1



North Korea, and South Africa.6 In principle, corresponding future restrictions might take

the form of price restrictions rather than quantity restrictions. Therefore, it is important to

understand the likely e¤ects of price restrictions on a wide variety of products.

If all prices were exogenous in our static model, a binding ceiling on the price at which

R can sell the product it supplies using an Alliance input would induce R to reduce its

supply of this product.7 Thus, there is no natural tendency for a binding price cap to induce

expanded supply in our model, in contrast to JRW�s model. Nevertheless, when prices are

endogenous in our model,8 the imposition of a price cap can induce R to increase its supply of

the product, and thereby reduce the (unrestricted, endogenous) world price of the product.9

These potentially counterintuitive �ndings arise because a binding cap on the price at

which R sells a portion of its output ensures that the price at which this output is sold does

not decline as R�s output increases. When this standard drawback to output expansion by

a �rm with market power is eliminated, R �nds it pro�table to increase its output, ceteris

paribus.10 The increased output can both increase R�s revenue and reduce the world price

of oil. Consequently, a price cap can have two e¤ects that di¤er from the e¤ects typically

recognized by policymakers. First, a price cap can reduce, not increase, the world price of

the product in question. Second, a price cap on a portion of a sanctioned supplier�s output

can increase, not reduce, the supplier�s revenue. These �ndings imply that the optimal

design of a price cap entails important subtleties even in the absence of the intertemporal

considerations in JRW�s analysis.11

We show that the potentially counterintuitive qualitative e¤ects we identify can be eco-

nomically signi�cant under arguably plausible conditions. Speci�cally, modest reductions in
6See U.S. Senate and House of Representatives (1986) and U.S. Government Accountability O¢ ce (1987,
1988, 2007, 2010, 2015).
7See Turner and Sappington (2024, Part D) for a formal proof of this conclusion.
8The uncapped equilibrium price of the product is a¤ected by the strategic output decisions of industry
suppliers in our model.
9The unrestricted world price is the price at which suppliers other than R sell the product. It is also the
price at which R sells the output that it produces without using an Alliance input.
10In this respect, a price cap functions much like forward contracting (i.e., arranging to deliver future output
at a �xed price that does not vary with the (spot) price that ultimately prevails). Allaz and Vila (1993)
demonstrate that forward contracting can enhance incentives for output expansion by Cournot competitors.
It can be shown that a corresponding e¤ect arises in our model even if R is a monopolist.

11We focus on the e¤ects of a price cap on R�s revenue because the tax that the Russian government imposes
on oil exporters has historically been based primarily on oil export revenues. Goldsworthy and Zakharova
(2010, p. 9) observe that �Russia�s petroleum sector is governed primarily by a tax & royalty system that
relies on petroleum revenue as a tax base.�Reuters (2019) reports that �In Russia, oil-industry taxes are
based on revenues and output.�In recent years, the Russian government has begun to impose pro�t-based
taxes on some oil exports. However, oil export revenue remains the primary tax base (Reuters, 2021). As
the discussion in Section 7 reports, a price cap a¤ects R�s pro�t and revenue in similar fashion.
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the price cap below the prevailing world price of the product can cause R�s revenue to in-

crease substantially. Consequently, relatively stringent price caps can be required to reduce

R�s revenue.

We also characterize the price cap that maximizes the di¤erence between consumer sur-

plus and a multiple (r > 0 ) of R�s revenue. We demonstrate that this �welfare-maximizing

price cap�(p�) often is well below the uncapped price of the product. We also demonstrate

that the imposition of p� can increase welfare substantially under arguably plausible con-

ditions. In addition, we identify conditions under which welfare is higher when p� prevails

than when the Alliance refuses to supply its input to R. For example, when r is small,

welfare increase little when lack of access to the Alliance input reduces R�s output, and thus

its revenue. In contrast, consumer surplus declines considerably (thereby reducing welfare)

when R�s signi�cantly reduced output causes the uncapped price to increase substantially.

Our analysis and JRW�s analysis are related to Becko (2024)�s analysis of the design of

tari¤s and taxes that maximize the welfare of a home country for any level of welfare reduc-

tion imposed on a sanctioned country.12 However, our work di¤ers substantially from Becko�s

analysis in part because the suppliers in Becko�s model are price takers.13 Consequently, the

key considerations that underlie our primary �ndings do not arise in Becko�s model.14

The analysis proceeds as follows. Section 2 describes our model. Section 3 identi�es

conditions under which a binding price cap increases R�s revenue and reduces the uncapped

price of the sanctioned product. Section 4 considers the practical relevance of these poten-

tially counterintuitive e¤ects. Section 5 examines the welfare-maximizing choice of a price

12We share JRW�s focus on the e¤ects of a price cap rather than the e¤ects of tari¤s and taxes. However, we
abstract from the stochastic prices, risk aversion, and degree of intertemporal elasticity of substitution that
underlie JRW�s key �ndings. We focus on the strategic interaction between the sanctioned supplier and
a non-sanctioned supplier, both of which have market power. JRW explain that they �do not model the
strategic interaction between Russia and other global producers, [although their] model features parameters
that re�ect the responsiveness of other producers, such as OPEC, to shocks originating from Russia or
elsewhere�(p. 4) In contrast to JRW, we also examine the design of a welfare-maximizing price cap.

13Wachtmeister et al. (2022) also abstract from strategic oligopolistic interactions among suppliers. The
authors compare the e¤ects of price restrictions and quantity restrictions after estimating prevailing demand
and supply functions. They �nd that price discounts often are better able than quantity restrictions to
reduce the pro�ts of Russian oil producers without reducing unduly the surplus secured by oil consumers.
Ehrhart and Schlecht (2022) also do not model formally the strategic interactions among industry suppliers.
The authors identify conditions under which a sanctioned supplier will accept the price cap imposed by
buyers of its product.

14Furthermore, we examine the e¤ects of a price cap on some of R�s output, rather than a tax on all of
R�s output. Sturm (2022) extends the analysis in Becko (2024) in part to examine the design of tari¤s
that maximize the di¤erence between the welfare of the home country and a multiple of the welfare of
the sanctioned country. Sturm (2022) also considers retaliatory tari¤s by the sanctioned country. Sturm
(2023) examines how the presence of non-sanctioning countries that can either purchase the sanctioned
product or supply substitute products a¤ects the optimal design of sanctions.
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cap. Section 6 examines selected extensions of the analysis in sections 2 � 5.15 Section

7 summarizes our key �ndings and suggests directions for future research. The Appendix

provides the proofs of all formal conclusions in the text.

2 The Model.

We consider a setting in which R and a rival producer supply a homogeneous product.

The rival�s cost of producing q units of output is C(q). R produces qA � 0 units of output
using an input (e.g., shipping and/or insurance) supplied by an (Alliance) input owner (�A�).

R also produces qN � 0 units of output without employing this input.16 R�s total cost of

producing these outputs is CR(qA; qN). We assume that costless arbitrage supports a single

market for the homogeneous product with a corresponding single aggregate demand curve.17

This aggregate (inverse) demand curve is P (Q), where Q = qA+ qN + q is aggregate output

and P (�) denotes price.

The activity in our static model proceeds as follows. First, A speci�es the maximum

price, p, at which R can sell the output it produces using A�s input (qA). Then R chooses qA
and qN , and the rival chooses q (simultaneously and noncooperatively). The resulting total

output, Q, gives rise to a market-clearing price, P (Q). Finally, R sells qN and the rival sells

q at price P (Q). R also sells qA at this price if the price cap does not bind, i.e., if p > P (Q).

Otherwise, R sells qA at the lower, capped price, p. Excess demand for qA arises at this

capped price when p < P (Q). We assume the excess demand is rationed e¢ ciently, so the

marginal consumer valuation of each unit of qA that is sold at price p < P (Q) is at least

P (Q).18

De�ne pm � min fP (Q); p g. Then R�s problem, given p and q, is:

Maximize
qA� 0; qN � 0

�R(qA; qN) � pm qA + P (qA + qN + q ) qN � CR(qA; qN) . (1)

The rival�s problem, given qA and qN , is:

15The model extensions include an analysis of the e¤ects of a price cap on R�s pro�t. We �nd that a binding
price cap can increase R�s pro�t, just as it can increase R�s revenue.

16R might either produce a substitute input itself, or procure a substitute, but potentially more costly, input
from an alternative supplier other than A.

17We thereby assume that all consumers �including those who reside in �Alliance territories��can purchase
the product at a market-clearing price, P (Q), that exceeds p. Thus, like JRW, we abstract from any
additional considerations that might arise if the price controls we analyze were supplemented by quantity
controls. In practice, some Alliance countries have precluded non-pipeline imports of Russian oil (Kaniecki
et al., 2023).

18R and the rival each chooses its output(s) to maximize its pro�t, taking the other �rm�s output as given
and fully anticipating how P (Q) will be determined and how any excess demand for qA will be rationed.
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Maximize
q� 0

�(q) � P (qA + qN + q ) q � C(q) . (2)

(1) implies that the rates at which R�s pro�t increases as qA and qN increase are:

@�R(�)
@qA

= pm + qA
@pm
@qA

+ P 0(Q) qN � @CR(�)
@qA

;

@�R(�)
@qN

= P (Q) + qA
@pm
@qN

+ P 0(Q) qN � @CR(�)
@qN

. (3)

In practice, Russian oil exporters relied heavily, but not exclusively, on shipping and

insurance services supplied by the Alliance before the price cap was imposed. The exporters

reduced, but did not eliminate, this reliance after the cap was imposed.19 The limited

supply of ships that can transport crude oil e¢ ciently has prevented Russian oil exporters

from eliminating their reliance on Alliance shipping services. To capture a setting in which

R often supplies output both using A�s input (qA > 0) and without employing A�s input

(qN > 0), we assume that R�s cost function is

CR(qA; qN) = cA qA +
kA
2
[ qA ]

2 + cN qN +
kN
2
[ qN ]

2 +
kR

2
[ qA + qN ]

2 , (4)

where cA > 0, cN (� cA), kA > 0, kN (� kA), and kR > 0 are parameters. This cost function
implies that R operates with increasing marginal costs,20 which ensures that qA > 0 and

qN > 0 in equilibrium, barring an exceptionally stringent price cap.21

R can be viewed as incurring both manufacturing (e.g., extraction) costs and delivery

(e.g., shipping and insurance) costs. Manufacturing costs are costs that do not vary with

the presence or absence of A�s input. The marginal cost of extracting oil typically increases

with output because less e¢ cient wells are brought into service as output increases. Delivery

costs are costs that vary according to whether R�s output is supplied using A�s input. As

noted above, the marginal cost of shipping oil often rises as output increases due to the

limited supply of ships that can transport crude oil e¢ ciently.22 The parameter kR scales

19Lin and Perkins (2023) report that �the total share of non-Western tankers moving Russian crude ... stood
at 48% of total exports by November 2022, a month before the price cap came into e¤ect.� Levi et al.
(2024) report that as of December 2023, �46% of Russian oil and its products were transported by tankers
subject to the oil price cap. The remainder was shipped by �shadow�tankers that are not subject to the
price cap policy.�

20Equation (4) implies that R operates with increasing marginal costs because @2CR(�)
@(qA)

2 = kA + k
R > 0,

@2CR(�)
@(qN )

2 = kN + k
R > 0, and @2CR(�)

@qA@qN
= kR > 0.

21Turner and Sappington (2024, Part E) show that if kA = kN = 0 and cN > cA, then R will either set
qA = 0 or set qN = 0 in equilibrium.

22Parker (2024) reports that �between 2021 and 2022 the price index for second-hand tankers jumped to the
highest level in 15 years. In ordinary circumstances, some of these vessels would have been mothballed
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the nonlinear component of R�s manufacturing costs. The parameters kA and kN scale the

nonlinear component of R�s delivery costs, whereas the parameters cA and cN scale the linear

component of these costs.

We also take the rival�s cost function to be quadratic, i.e., C(q) = c q+ k
2
q2, where c > 0

and k > 0 are parameters.23 In addition, unless otherwise noted, we assume that the inverse

demand function for the homogeneous product is linear, i.e., P (Q) = a� bQ, where a > 0
and b > 0 are parameters.24

In the presence of linear demand and quadratic costs, the rival will produce output (i.e.,

q > 0) and R will supply output without using A�s input (i.e., qN > 0) as long as: (i) market

demand is su¢ ciently pronounced relative to cost; and (ii) R�s marginal cost of supplying

qA increases su¢ ciently rapidly as qA increases.25 In addition, as long as the price cap is not

too stringent, R will both supply output using A�s input (i.e., qA > 0) and supply output

without using A�s input (i.e., qN > 0) if R�s marginal costs rise su¢ ciently rapidly as output

increases.26 These conditions are assumed to hold throughout the ensuing analysis.

3 A Price Cap Can Reduce P (Q) and Increase R�s Revenue.

Proposition 1 reports that the impacts of a price cap (p ) on R�s output using A�s input

(qA) and on the equilibrium unrestricted price (P (Q)) vary with the level of the price cap.

Proposition 1. There exist values of the price cap, 0 < p0 < pd < pb, such that, in

equilibrium, qA = 0 if and only if p � p0. Furthermore: (i) p < P (Q) if p � pd; (ii)

p = P (Q) if p 2 (pd; pb ]; and (iii) p > P (Q) if p > pb.
27

or broken up, but they have been snapped up for the shadow �eet�that Russian oil exporters employ to
evade the price cap.

23The parameters c and k can be viewed as pertaining to both the rival�s manufacturing costs and its delivery
costs. For expositional ease, we abstract from �xed production costs for both R and the rival. Observe
that the rival operates with increasing marginal cost because @2C(�)

@q2 = k > 0.
24As explained further in section 6, our key qualitative conclusions are not an artifact of the assumption that
demand is linear, which is maintained to facilitate a complete characterization of equilibrium outcomes.

25Formally, to ensure that q > 0 in equilibrium, we assume that a > c and pd > c, where pd
(which is an increasing function of a) is de�ned in equation (8) in the Appendix. In addition, to en-
sure that qN > 0 in equilibrium, we assume that a > cN and kA [ (a� cN ) (2 b+ k)� b (a� c) ] >
[ cN � cA ]

�
3 b2 + 2 b

�
k + kR

�
+ k kR

�
.

26Formally, we assume that kA [ 2 b+ kN ] + kR [ kA + kN ] > b2. This condition holds when b is su¢ ciently
small (so the uncapped market price is su¢ ciently insensitive to industry output) and when kA, kN , and
kR are su¢ ciently large (so R�s marginal costs increase with output su¢ ciently rapidly). This condition
ensures that the second-order condition in R�s pro�t-maximization problem is satis�ed when a nontrivial
region of price caps (p ) exists in which p = P (Q).

27The values of p0, pd, and pb are speci�ed in equations (7) �(9) in the Appendix.
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Proposition 1 implies that the set of possible price caps can be divided into four distinct

regions, as illustrated in Figure 1. The �rst region, p > pb, consists of price caps that strictly

exceed the the market-clearing price that prevails in equilibrium in the absence of a price cap.

The price cap does not bind, and so does not a¤ect equilibrium outcomes, when p > pb.
28

Consequently, imposing a price cap that exceeds pb is e¤ectively equivalent to imposing no

sanctions at all.

The second region of price caps, p 2 (pd; pb ], is comprised of the least stringent price
caps that bind, in the sense that they a¤ect equilibrium outcomes. In this region, R produces

some output using A�s input and, perhaps surprisingly, the equilibrium unrestricted price

declines at exactly the same rate that the binding price cap declines. Formally, qA > 0 and

P (Q) = p for all p 2 (pd; pb ], as depicted in Figure 1.29

[Figure 1 about Here ]

The third region of price caps, p 2 ( p0; �pd ], consists of binding price caps that are strictly
below the equilibrium unrestricted price and that induce R to supply some output using A�s

input. Formally, qA > 0 and p < P (Q) for all p 2 (p0; pd ]. The fourth region of price caps,
p � p0, consists of binding price caps that are so stringent that they induce R to supply

no output using A�s input. Formally, qA = 0 and p < P (Q) for all p � p0, as illustrated in

Figure 1.30

To explain the presence of an entire range of price caps (p 2 (pd; pb ] ) for which the
cap coincides with the unrestricted equilibrium price, it is helpful to determine how R�s

equilibrium outputs (qA and qN) change as the level of the binding price cap changes.

Proposition 2. In equilibrium: (i) dqA
d p
< 0 and dqN

d p
< 0 for p 2 (pd; pb ) ; and (ii) dqA

d p
> 0

and dqN
d p
< 0 for p 2 (p0; pd ) .

Conclusion (i) in Proposition 2 reports that qA and qN both increase as p declines in

( pd; pb). The increased output causes P (Q) to decline at the same rate that p declines. (See

Figure 1.) This �nding re�ects the net impact of two countervailing e¤ects of a binding price

cap: the compensation reduction e¤ect and the output enhancement e¤ect. The compensation

reduction e¤ect arises because a reduction in p reduces the unit compensation that R derives

from selling qA. The reduced unit compensation induces R to reduce qA, ceteris paribus.

28Thus, pb is the highest price cap that �binds.�pb is also the equilibrium price, P (Q), in the absence of a
price cap.

29Thus, pd is the highest price cap for which the binding price cap and the uncapped price �diverge.�
30Thus, p0 is the highest price cap for which R sets qA = 0.
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The (countervailing) output enhancement e¤ect of a binding price cap is more subtle. To

understand the e¤ect, observe that in the absence of a binding price cap, R sells its entire

output (QR = qA + qN) at the unrestricted equilibrium price P (Q). This price declines at

the rate P 0(Q) as R increases its output. When the price cap binds, R sells only a portion

(qN) of its output at a price that declines as its output (QR) increases. The (capped) price

(p ) at which R sells qA does not decline as QR increases. Consequently, for this output (qA),

R avoids the standard drawback to output expansion that a �rm with market power faces

(i.e., an associated reduction in the price at which output is sold). The elimination of this

drawback to output expansion induces R to increase its output, ceteris paribus.

R�s enhanced incentive to increase its output in the presence of a binding price cap is

re�ected in the second term to the right of the equality in each of the equations in expression

(3). pm = p and @pm
@qA

= @pm
@qN

= 0 when the price cap binds. Consequently, the identi�ed

terms in expression (3) are 0. In contrast, these terms are negative (@pm
@qA

= @pm
@qN

= P 0(Q) < 0)

in the absence of a binding price cap. Therefore, the presence of a binding price cap serves to

increase the rate at which R�s pro�t increases as QR increases, which induces R to increase

its output, ceteris paribus.31

When p is set marginally below the unrestricted equilibrium price (pb), the impact of

the compensation reduction e¤ect is relatively limited. Speci�cally, the marginally lower

price that R secures for qA induces a relatively small reduction in qA, ceteris paribus. The

predominant e¤ect of reducing p marginally below pb is to increase R�s output, re�ecting

the output enhancement e¤ect.32 The expanded output reduces P (Q).33 Conceivably, the

output enhancement e¤ect might be so pronounced as to drive P (Q) below p. However, if

this were the case, then the price cap would no longer bind, so the output enhancement

e¤ect would be eliminated. Consequently, as p declines marginally below pb, the combined

impact of the (relatively pronounced) output enhancement e¤ect and the (relatively minor)

compensation reduction e¤ect is to induce R to increase its output up to, but not beyond,

the point at which P (Q) declines at the same rate that p declines.

31A monopolist�s incentive to expand its output is also enhanced when a portion of its output is sold at
a (capped) price that does not decline as the monopolist�s aggregate output increases. This conclusion
follows directly from expression (3) which, when q = 0, speci�es the rates at which a monopolist�s pro�t
increases as its outputs (qA and qN ) increase. The analysis in Part C of the Appendix demonstrates that
the output enhancement e¤ect often is more pronounced in a duopoly setting than in a monopoly setting
due in part to the strategic competitive advantage that a binding price cap can provide in a duopoly
setting.

32Miller (2023) reports that Russian oil exports increased after the Alliance imposed its price cap.
33Recall that R�s incentive to expand its output, thereby reducing P (Q), is particularly pronounced when
R faces a rival. In this case, R�s expanded output induces an accommodating output reduction from the
rival.
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qA increases further as p declines farther below pb. The increase in qA increases the

magnitude of the compensation reduction e¤ect, which causes R�s pro�t from supplying qA
to decline more rapidly or increase more slowly as p declines.34 Eventually, the compensation

reduction e¤ect outweighs the output enhancement e¤ect, inducing R to reduce qA as p

declines below pd, as reported in conclusion (ii) in Proposition 2 and illustrated in Figure 1.

The corresponding increase in P (Q) causes P (Q) to exceed p when p < pd.
35

Having established how a binding price cap a¤ects equilibrium outputs and prices, we

can determine the corresponding impact on R�s revenue, V (�), where:

V (p ) � p qA(�) + P (Q(�)) qN(�) . (5)

Proposition 3 considers this impact for the highest binding price caps.

Proposition 3. R�s equilibrium revenue, V (p ) is a strictly concave function of p for p 2
(pd; pb ). Furthermore,

@V ( p )
@ p

���
p= pb

< 0 .

Proposition 3 reports that as the price cap (p ) declines below pb, a more stringent price

cap increases R�s revenue. Furthermore, R�s revenue increases at a decreasing rate as p

declines below pb, as illustrated in Figure 2.
36

[Figure 2 about Here ]

R�s revenue increases as p declines marginally below pb because the relatively pronounced

output enhancement e¤ect of a reduction in p induces R to increase qA relatively rapidly. R

continues to increase qA as p declines further below pb. (Recall conclusion (i) in Proposition

2.) The higher level of qA enhances the revenue-reducing compensation reduction e¤ect of a

binding price cap, which causes R�s revenue to increase more slowly as p declines in (pd; pb ).

Consequently, V (p ) is a concave function of p when p 2 (pd; pb ).

If qA and qN increase su¢ ciently rapidly as p declines in (pd; pb ), the compensation

reduction e¤ect can outweigh the output expansion e¤ect, so a reduction in p can reduce R�s

34The output expansion e¤ect can cause R�s pro�t to increase as p declines. See the discussion in section 6.
35Proposition 2 reports that qN increases systematically as a binding price cap becomes more stringent. This
increase in qN when p 2 (p0; pd ) re�ects in part the output enhancement e¤ect. This increase also arises
when p 2 (p0; pd ) because the reduction in qA as p declines reduces R�s marginal cost of supplying qN .
(Recall that @CR(�)

@qA@qN
= kR > 0, from equation (4).)

36Figure 2 is drawn to roughly approximate R�s revenue (and consumer surplus) in the baseline setting that
is analyzed in section 4. Figure A1 in Turner and Sappington (2024) illustrates the (minor) variations in
R�s revenue (and consumer surplus) that can arise in other settings.

9



revenue as p declines toward pd.
37 Alternatively, R�s revenue can continue to increase as p

declines for all p 2 [ pd; pb ], as illustrated in Figure 2.38

Propositions 1 � 3 establish that a price cap can introduce two e¤ects that are not

commonly recognized in policy discussions. First, R�s output and its revenue can increase

as the cap declines below the level at which it �rst binds (pb). Second, the increase in R�s

output can cause P (Q) to decline.39

4 Practical Importance of Findings
To assess the practical importance of the �ndings reported in section 3, it is useful to

consider the following baseline setting. Although our analysis abstracts from the intertem-

poral considerations associated with non-renewable resources, the parameters in the baseline

setting are chosen to re�ect selected elements of Russia�s activity in the oil sector, given the

world�s focus on the cap that has been imposed on the price of oil sold by Russian suppliers

that employ Alliance inputs.40

We choose demand parameters a and b to ensure that in the absence of a price cap,

the equilibrium price is 70 (dollars) and equilibrium total output is 90 million units (e.g.,

barrels of oil per day) when the price elasticity of demand is � 0:75.41 This elasticity, which
exceeds common estimates of the price elasticity of demand for oil,42 helps to ensure that the

speci�ed equilibrium price and output prevail in our duopoly model when arguably plausible

values for cost parameters are adopted.43 These considerations imply that a = 163:33 and

b = 1:03703� 10�6 because:
37See Figure A1 in Turner and Sappington (2024). It can be shown that V (p ) attains its maxi-
mum value on [ pd; pb ] at some interior price cap p 2 (pd; pb) if and only if �1 < 0 where �1 �h
kR + b2

2 b+k

i
[ kA + kN ]A+2 b [ b+ k ] cA [ kN + b ]+[ 2 b (b+ k) cN +AkN ] [ kA � b ] and A � a [ b+ k ]+

b c . (See the proof of Proposition 3.) It is apparent that kA < b when �1 < 0. When kA is relatively
small, qA is relatively large. Consequently, R�s revenue from supplying qA declines relatively rapidly as p
declines (re�ecting a relatively pronounced compensation reduction e¤ect).

38Proposition 4 (below) establishes that pb � pd becomes smaller as cA, kA, or kR increases. It is apparent
that �1 (de�ned in the preceding footnote) increases as cA, kA, or kR increases. Therefore, because V (p )
attains its maximum value on [ pd; pb ] at pd when �1 > 0, V (p ) increases as p declines throughout the
entire [ pd; pb ] interval when this interval is relatively small.

39In contrast, P (Q) would increase if R were denied all access to A�s input.
40The Appendix considers substantial variation of the parameters in the baseline setting.
41In 2021 (the year prior to Russia�s invasion of Ukraine), the average Brent oil price was approximately $71
per barrel (U.S. Energy Information Administration, 2023). The average daily world production of oil in
2021 was approximately 89:9 million barrels (bp, 2022, p. 15).

42Caldara et al. (2016)�s review of studies of the short-run price elasticity of demand for oil reports an average
elasticity of � 0:22.

43The identi�ed equilibrium price and output can arise when equilibrium demand is substantially less elastic
if the number of industry suppliers is su¢ ciently large. We consider duopoly competition for analytic ease.
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@Q

@p

p

Q
= � 1

b

�
70

90; 000; 000

�
= � 0:75 ) b = 1:03703� 10�6 ; and

P (Q) = a� b [ 90; 000; 000 ] = 70 ) a = 70 + 1:03703 [ 90 ] � 163:33 .

The cost parameters in our baseline setting are chosen so that, in the absence of a

price cap, R�s equilibrium marginal cost when it employs A�s input is approximately 25

(dollars), and R�s corresponding average variable cost is approximately 15.44 Furthermore,

the rival�s cost is presumed to parallel�s R�s cost when R employs A�s input (i.e., c = cA

and k = kA + kR ). In addition, we assume cA = � cN and kA = � kN , and set � = 0:5 to

capture R�s cost saving from employing A�s input.45 Table 1 records the parameter values

in the baseline setting.46

Parameter Parameter Value Parameter Parameter Value

a 163:33 cN 5

b 1:03703� 10�6 kN 1� 10�6

cA 2:5 c 2:5

kA 5� 10�7 k 6� 10�7

kR 1� 10�7

Table 1. Parameters in the Baseline Setting.

The �rst column in Table 2 presents for the baseline setting the critical levels of the

price cap identi�ed in Proposition 1.47 Recall that the price cap (p ) coincides with P (Q),

the equilibrium price of the output supplied without using A�s input, when p 2 (pd; pb ].
Therefore, the �rst column in Table 2 implies that P (Q) = p as p declines from pb = 71:52

to pd = 56:35.
48 Consequently, as indicated in the �rst numerical entry in the last column

44Horwich (2023) estimates Russia�s marginal cost of supplying oil to be approximately $20 per barrel. The
Center for Research on Energy and Clean Air (2023) estimates this cost to be between $2:70 and $25.
Hausmann (2022) suggests that Russia�s average variable cost may be less than $6 per barrel. Kennedy
(2022)�s corresponding estimate is between $20 and $25 per barrel.

45Table A2 in the Appendix reports the equilibrium outcomes that arise for di¤erent values of �, including
� = 1, in which case R�s operating costs with and without using A�s input are symmetric.

46These parameters ensure that in the absence of a binding price cap, P (Q) = 71:52, Q = 88:535 million,
R�s marginal cost (cA + kA qA + kR [ qA + qN ]) is 23:43, and R�s average variable cost (cA + 1

2 kA qA +
1
2 k

R
h
(qA+qN )

2

qA

i
) is 13:34.

47It can be veri�ed that R�s revenue, V (p ), peaks at pd (because �1 > 0) in the baseline setting. V (p )
would peak at some p 2 (pd; pb) (because �1 < 0) if, for example, kA were reduced by 50% (to 2:5� 10�7)
while all other parameters remained at their values in the baseline setting. This possibility is illustrated
in Figure A1 in Turner and Sappington (2024).

48All entries in Table 2 (and subsequent tables) are rounded.
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in Table 2, P (Q) declines at the same rate that p declines as p declines by as much as 21%

below pb. The middle column in Table 2 reports corresponding changes in R�s revenue. As

illustrated in Figure 3 and as summarized in the second numerical entry in the last column

in Table 2, R�s revenue increases by approximately 19% as p declines from pb = 71:52 to

pd = 56:35.

Price Cap R�s Revenue Variation

p0 = 41:82 V (p0) = 2:70� 109 pb� pd
pb

= 0:21

pd = 56:35 V (pd) = 3:95� 109 V ( pd)�V ( pb)
V ( pb)

= 0:19

pb = 71:52 V (pb) = 3:32� 109

Table 2. Equilibrium Outcomes in the Baseline Setting.

[Figure 3 about Here ]

Table 2 indicates that under arguably plausible conditions, P (Q) declines at the same

rate that p declines for a relatively broad range of p values. Furthermore, a more stringent

price cap can increase R�s equilibrium revenue considerably. Tables A1 and A2 in the

Appendix demonstrate that values of pb� pd
pb

and V ( pd)�V ( pb)
V ( pb)

similar to those in Table 1

arise in equilibrium as parameter values diverge from their values in the baseline setting.49

Proposition 4 identi�es how production costs in�uence pb� pd, the extent of the range of
price caps for which P (Q) declines at the same rate that p declines.

Proposition 4. pb � pd increases as: (i) cA, kA, or kR declines; (ii) c or cN increases; or
(iii) kN increases if kA � b is su¢ ciently small.

Conclusion (i) in Proposition 4 holds because qA (R�s output using A�s input) increases

as R�s cost of supplying qA declines (i.e., as cA, kA, or kR declines).50 The higher level of qA
increases the amount of R�s output that is sold at a �xed price (p ) that does not decline as

expanded output reduces P (Q). A binding price cap thereby provides R with a relatively

strong incentive to expand its output aggressively, which increases the range of p�s for which

P (Q) declines at the same rate that p declines.

Similarly, conclusions (ii) and (iii) in Proposition 4 arise in part because qN (the output

that R supplies without using A�s input) declines as R�s cost of supplying qN increases (i.e.,

as cN or kN increases). The reduction in qN leads R to increase qA for two reasons. First,

49Tables A1 and A2 also report equilibrium levels of welfare and welfare-maximizing price caps. These
variables are de�ned in section 5.

50Recall that R�s cost function is presented in equation (4).
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R�s marginal cost of supplying qA declines as qN declines. (Recall that @CR(�)
@qA@qN

= kR > 0,

from equation (4).) Second, the amount of output that R sells at price P (Q) declines as

qN declines. This reduced exposure to the pro�t-reducing e¤ect of a reduction in P (Q)

enhances R�s incentive to increase qA.51 The increase in qA induced by these two e¤ects

exerts downward pressure on P (Q), which increases the range of p�s for which P (Q) declines

at the same rate that p declines.

Finally, observe that q declines and P (Q) increases as the rival�s production cost, c,

increases. The higher price and increased potential market share for R enhance R�s incentive

to increase its output aggressively when a binding price cap eliminates the exposure of some

of R�s output to the corresponding reduction in P (Q). Consequently, P (Q) declines at the

same rate that p declines over a broader range of price caps, i.e., pb � pd increases, as c
increases.52

5 Welfare.

We now examine how a price cap is optimally set to limit R�s revenue without reducing

consumer surplus unduly. To do so, we take welfare, W (�), to be the di¤erence between
consumer surplus, S(�), and a multiple (r > 0) of R�s revenue. Formally:

W (p ) = S(p )� r [ p qA(p ) + P (Q(p )) qN(p ) ] (6)

where S(p ) denotes equilibrium consumer surplus when the price cap is p.53 To characterize

the welfare-maximizing price cap, �p� � argmax fW (p )g, we �rst examine the properties of
consumer surplus when the equilibrium unrestricted price coincides with the price cap (so

P (Q) = p ), i.e., when p 2 (pd; pb).

Lemma 1. Equilibrium consumer surplus, S(p ), is a strictly decreasing, strictly convex

function of p for p 2 (pd; pb).

Lemma 1 establishes that consumer surplus increases at an increasing rate as p declines

in (pd; pb), as illustrated in Figure 2. This is the case because reductions in p and P (Q) both
51This reduced exposure is relatively pronounced when P (Q) is relatively sensitive to changes in output, i.e.,
when b is relatively large (so kA � b is relatively small).

52Corresponding analytic conclusions about the impact of parameter values on pb� pd
pb

are not available.

Numerical solutions reveal that pb� pd
pb

often increases as: (i) a, cA, kA, or kR declines; or (ii) cN , kN , k,

or b increases. Thus, pb� pdpb
and pb � pd tend to become relatively large as cN and kN increase relative to

cA and kA, i.e., as it becomes relatively costly for R to �evade� the e¤ects of the price cap. This is the
case in the baseline setting, for example, and for substantial variation in parameters around their values
in the baseline setting.

53Recall that e¢ cient rationing of the excess demand for qA at the capped price p < P (Q) prevails, by
assumption. Therefore, the marginal consumer valuation of each unit of qA that is sold is at least P (Q).
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increase consumer surplus. As p declines in (pd; pb), equilibrium output increases, re�ecting

the output enhancement e¤ect. (Recall conclusion (i) in Proposition 2.) The increased

output causes consumer surplus to increase more rapidly as the prevailing price (p = P (Q) )

declines.

Proposition 3 and Lemma 1 imply that welfare is a strictly convex function of p for

p 2 (pd; pb ]. Consequently, the welfare-maximizing price cap, �p�, is never in (pd; pb). It can
also be shown that a binding price cap always increases welfare, i.e., �p� < pb. This conclusion

re�ects in part the fact that R�s revenue is lower when the price cap is so stringent that it

induces R to set qA = 0 than when no price cap is imposed (i.e., V (p0) < V (pb) ).
54 This

�nding implies that if r is su¢ ciently large, then welfare is highest when a binding price cap

is imposed (because the price cap reduces R�s revenue). A binding price cap also maximizes

welfare when r is small because consumer surplus increases as p declines below pb. (Recall

Lemma 1 and Figure 2.) Because �p� is not in (pd; pb ], it follows that �p
� 2 [ p0; pd ].55

To further characterize the welfare-maximizing level of the price cap, we present two

lemmas that explain how R�s revenue, V (p ), and consumer surplus, S(p ), vary with p when

p 2 [ p0; pd ], so R produces output using A�s input (i.e., qA > 0) and the binding price cap
is below P (Q).

Lemma 2. R�s equilibrium revenue, V (p ), is a strictly convex function of p for p 2

[ p0; pd ]. Furthermore,
@V ( p )
@ p

���
p= pd

> 0. In addition, @V ( p )
@ p

���
p= p0

< 0 if cN � cA is su¢ -
ciently large.56

Lemma 2 reports that R�s revenue declines as p declines below pd (the highest level of

p for which the binding price cap is strictly less than P (Q) ), as illustrated in Figure 2.

The revenue reduction re�ects: (i) the lower unit compensation that R receives for qA as p

declines; and (ii) the reduction in qA that arises as p declines in (p0; pd).
57

The convexity of V (p ) reported in Lemma 2 implies that V (�) declines more slowly as
p declines further below pd (as depicted in Figure 2). This is the case because R�s output

54See Lemma A7 in the Appendix.
55See Proposition A1 in the Appendix. Observe that welfare is the same for all p � p0. This is the
case because equilibrium outcomes do not vary with p when p � p0 because all output is sold at the
unrestricted equilibrium price P (Q) (since qA = 0) whenever p � p0.

56More precisely, @V ( p )
@ p

���
p= p0

< 0 if �2 > 0, where �2 � f kR [ 2 b+ k ]
�
kR (2 b+ k) + 2 b (3 b+ 2 k)

�
+

kN [ 2 b+ k ]
�
kR (2 b+ k) + b2

�
+b2

�
5 b2 + 6 b k + 2 k2

�
g cN �f b [ 3 b+ 2 k ]+[ 2 b+ k ]

�
kN + k

R
�2g cA�

b
�
b2 � k kN + (2 b+ k) kR

�
[ a (b+ k) + b c ]. It is apparent that �2 increases as cN � cA increases.

57Recall from conclusion (ii) in Proposition 2 that dqAd p > 0 when p 2 (p0; pd), as illustrated in Figure 1.
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using A�s input (qA) declines as p declines in (p0; pd), which diminishes the revenue-reducing

compensation reduction e¤ect of a more stringent price cap.

Lemma 2 also reports that R�s revenue declines as p increases above p0 when cN � cA is
su¢ ciently large. In this case, R reduces qN relatively rapidly as qA increases in response

to the increase in p above p0. The reduction in qN (sold at the relatively high price, P (Q))

reduces R�s revenue, despite the increase in qA (sold at the relatively low price, p ). When

R�s revenue declines as p increases above p0 and r is su¢ ciently large, welfare increases as

p increases above p0.

Lemma 3 characterizes equilibrium consumer surplus, S(p ). The lemma refers to pSM ,

which is the level of p at which S(�) is maximized.

Lemma 3. Equilibrium consumer surplus, S(p ), is a strictly concave function of p for

p 2 [ p0; pd ]. Furthermore: (i)
@S( p )
@ p

���
p= pd

< 0 when pSM < pd;
58 and (ii) @S( p )

@ p

���
p= p0

> 0.

Lemma 3 reports that consumer surplus initially increases as p declines below pd when

pSM < pd (as illustrated in Figure A1 in Turner and Sappington (2024)). The increase in

S(�) re�ects in part the lower p at which qA is sold. The concavity of S(�) reported in Lemma
3 implies that the rate at which consumer surplus increases as p declines diminishes as p

declines further below pd (when pSM < pd). The diminishing rate of increase in S(�) re�ects
the reduction in qA that R implements as p declines in (p0; pd).

59 Eventually, S(�) declines
as p declines when p is su¢ ciently close to p0.

60 The reduction in consumer surplus arises

because: (i) the reduction in qA induced by a reduction in p causes P (Q) to increase; and

(ii) the reduction in p reduces the price at which only a relatively small number of units are

sold as p approaches p0.

Lemmas 2 and 3 allow us to determine when the welfare-maximizing price cap (p�)

induces R to supply output using A�s input.

Proposition 5. p� 2 ( p0; pd ] if cN�cA is su¢ ciently large to ensure that
@V ( p )
@ p

���
p= p0

< 0.

In contrast, p� = p0 if
@V ( p )
@ p

���
p= p0

> 0 and r is su¢ ciently large.61

Proposition 5 reports that when cN � cA is su¢ ciently large, the welfare-maximizing
58When pSM = pd (as in Figure 2),

@S( p )
@ p > 0 as p approaches pd from below.

59Recall the observation in footnote 57.
60In Figure 2, S(�) declines as p declines throughout the entire (p0; pd) interval, as it does in the baseline
setting.

61More precisely, p� 2 ( p0; pd ] if �2 � 0. In contrast, p� = p0 if �2 < 0 and r is su¢ ciently large. Recall
that �2 is de�ned in footnote 56.
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price cap exceeds p0, so R produces some output using A�s input (i.e., qA > 0). This

conclusion arises because consumer surplus increases as p increases above p0 (Lemma 3)
62

and because R�s revenue declines as p increases above p0 (Lemma 2). Consequently, the

welfare-maximizing price cap generates a strictly higher level of welfare than does a refusal

to supply any of A�s input to R (which would induce R to set qA = 0). In contrast, such a

refusal (or setting p � p0) can maximize welfare when R�s revenue increases as p increases

above p0 and society is primarily concerned with limiting R�s revenue (i.e., r is su¢ ciently

large). In this case, the optimal policy e¤ectively implements a complete embargo on output

supplied by R using A�s input.

The welfare-maximizing price cap (p�) lies between the price cap at which R�s revenue

is minimized (i.e., at pV m, which coincides with p0 in Figure 2) and the price cap at which

consumer surplus is maximized (i.e., at pSM , which coincides with pd in Figure 2).
63 Fur-

thermore, p� approaches pSM as the concern with reducing R�s revenue becomes negligible.

In contrast, p� approaches pV m when reducing R�s revenue is of paramount importance.
64

Proposition 6 provides additional guidance on how R�s production costs (cA, kA, and

cN)65 a¤ect the level of the welfare-maximizing price cap (p� ) when p� 2 (p0; pd).

Proposition 6. When p� 2 (p0; pd): (i) d p�

dcA
> 0 ; (ii) d p�

dkA
> 0 ; and (iii) d p�

dcN
< 0 .

Proposition 6 states that the welfare-maximizing price cap (p�) increases as qA becomes

more costly to produce (i.e., as cA or kA increases) or as qN becomes less costly to produce

(i.e., as cN declines), ceteris paribus. These cost changes induce R to reduce qA relative to

qN . The relative reduction in qA diminishes the potential welfare gain from reducing p for

two reasons. First, when qA is small, the surplus of consumers that purchase qA increases

relatively slowly as p declines. Second, when qA is small, R�s revenue from selling qA declines

relatively slowly as p declines. Both sources of diminished bene�t from reducing p imply

that p� increases (i.e., d p
�

dcA
> 0 and d p�

dkA
> 0).66

62Consumer surplus increases in part because as p increases above p0, there is no �rst-order e¤ect on consumer
surplus associated with qA (because qA � 0). Furthermore, when cA is su¢ ciently small relative to cN ,
the increase in p induces R to increase qA by more than qN and q decline, so P (Q) declines.

63Formally, �p� 2 [ pVm; pSM ], where pVm � argmin
�p2 [ p0;pd ]

V ( �p ) and pSM � argmax
�p2 [ p0;pd ]

S( �p ). See Proposition A2

in the Appendix. Figure A1 in Turner and Sappington (2024) considers a setting in which pVm 2 (p0; pd)
and pSM 2 (p0; pd). Lemma 3 in Turner and Sappington (2024) establishes that pVm < pSM .

64Formally, �p� ! pSM as r ! 0 and �p� ! pVm as r !1. See Proposition A2 in the Appendix.
65Recall the speci�cation of R�s cost function in equation (4).
66It can also be shown that d p�

dc > 0 when p� 2 (p0; pd). Furthermore, numerical solutions reveal that p�
often increases as: (i) a, k, or kR increases; or (ii) kN or b declines. This is the case, for example, in the
baseline setting and for substantial variation in parameters around their values in the baseline setting.
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Proposition 6 implies that the welfare-maximizing price cap becomes more stringent as

access to A�s input reduces R�s marginal cost more substantially (i.e., p� declines as cN � cA
increases). Intuitively, the welfare-maximizing price cap becomes more stringent as the value

of A�s input increases. In essence, the price cap instrument is employed more extensively

when it becomes more costly for R to avoid the impact of the price cap by operating without

A�s input.

Figure 4 illustrates how welfare varies with p in the baseline setting when r = 1
2
, so

W (p ) = S(p ) � 1
2
V (p ).67 As is apparent from Figure 4, the welfare-maximizing price cap

strictly exceeds p0 in the baseline setting when r =
1
2
.68 As p declines from pb = 71:52 to

p� = 54:31, welfare increases by nearly 50%, from 2:40 (million dollars) to 3:58. Welfare then

declines to 2:06 as p declines from p� to p0 = 41:86.
69 Tables A1 and A2 in the Appendix

report that the welfare-maximizing price cap generates corresponding increases in welfare as

parameter values diverge substantially from the levels in the baseline setting. Table A3 in

the Appendix reports how p�, p
�

pb
, W (p�), and W ( p�)�W ( pb)

jW ( pb) j
vary as r varies in the baseline

setting.70

[Figure 4 about Here ]

6 Model Variations.
We now brie�y extend the foregoing analysis to consider nonlinear demand functions, to

examine R�s pro�t, and to illustrate the e¤ects of an alternative welfare function.

To begin, consider the modi�ed baseline setting, which parallels the baseline setting de-

scribed in section 4 except that the inverse aggregate demand for the homogeneous product

is P (Q) = mQ�
1
" , where m = 106 and " = 2. The parameters of this iso-elastic demand

formulation are chosen to satisfy relevant second order conditions and to generate an equi-

librium price near 70 in the absence of a price cap.71 The equilibrium unrestricted market

67Figure A2 in Turner and Sappington (2024) illustrates how welfare, consumer surplus, and R�s revenue all
vary with p in the baseline setting when r = 1

2 .
68�2 < 0 in the baseline setting, and for the variations in the baseline parameters identi�ed in Table A1.
�2 > 0 if, for example, cN exceeds 21 while all other parameters remain at their values in the baseline
setting.

69Numerical solutions reveal that W (p�) often increases as: (i) cA, kA, kR, c, or k declines; or (ii) a, cN ,
kN , or b increases. This is the case, for example, as parameters vary (substantially) around their values
in the baseline setting. These �ndings indicate in part that higher levels of welfare can often be achieved
when it is more costly for R to diminish the impact of a binding price cap by producing more of its output
without employing the Alliance input.

70The absolute value sign in the denominator of the proportionate increase in welfare re�ects the fact that
welfare as de�ned in equation (6) can be negative if r is su¢ icently large.

71The second order condition for R�s maximization problem is violated if " is too small. Recall that a
monopolist can always increase its pro�t by reducing its output when demand is inelastic.
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price (P (Q)) declines at the same rate that the price cap (p ) declines as p declines from

from pb = 71:52 to pd = 67:59 in the modi�ed baseline setting. R�s revenue increases by

12:35% (from 7:84 billion to 8:97 billion) as the price cap declines in this range.72

The analysis to this point has focused on the impact of a binding price cap on R�s revenue

because, as noted in the Introduction, the tax that the Russian government imposes on oil

exporters is based primarily on oil export revenues. However, just as a price cap can increase

the revenue of the sanctioned supplier (R), it can increase R�s pro�t. Figure 5 documents

how R�s pro�t varies with the cap (p ) on the price at which R can sell output (qA) using

the A�s input in the baseline setting. Much like R�s revenue, R�s pro�t (�R) increases as p

declines below the equilibrium price in the absence of a price cap (pb = 71:52 ). �
R continues

to increase as p declines from 71:52 to 62:38, which constitutes a 12:8% reduction in the price

cap. �R increases by 6:07%, from 2:80 billion to 2:97 billion, as p declines from 71:52 to

62:38.73 �R remains above the pro�t that R secures in the absence of a price cap until the

cap falls below 55:12, which constitutes nearly a 23% reduction in p below pb.
74

[Figure 5 about Here ]

The welfare analysis in section 5 implicitly treated the welfare of di¤erent consumers

symmetrically. We now illustrate the changes that can arise when the designers of a price

cap value di¤erently the welfare of �A consumers��consumers who purchase the output that

is supplied using A�s input �and the welfare of �other consumers��consumers who purchase

the output that is supplied without using A�s input. Speci�cally, suppose the designers set

the price cap (p ) to maximize Ww(p ) = wA SA(p ) + [ 1� wA ]S�A(p ) � r V (p ), where
wA 2 (0; 1) and r > 0 are parameters, SA(�) is the surplus of A consumers, S�A(�) is the
surplus of other consumers, and V (�) is R�s revenue.75

72Table TA1 in Turner and Sappington (2024, Part F) reports how equilibrium outcomes change as parameter
values change in the modi�ed baseline setting.

73This percentage increase in R�s pro�t is less than the correponding increase in R�s revenue (19%) that
arises as p declines from pb = 71:52 to pd = 56:35 in the baseline setting. (Recall Table 2.) The smaller
percentage increase in pro�t arises in part because R�s costs increase as the output expansion e¤ect induces
R to increase its outputs (qA and qN ) as the price cap declines below pb = 71:52.

74Welfare e¤ects similar to those reported in Section 5 arise if welfare is the di¤erence between consumer
surplus and one-half of R�s pro�t (rather than R�s revenue). This alternative measure of welfare increases
by approximately 52%, from 2:66 billion to 4:07 billion, as p declines from pb = 71:52 to pd = 56:35 in
the baseline setting. More generally, Sappington and Turner (2024, Part C) prove that when welfare is the
di¤erence between consumer surplus and a multiple r > 0 of R�s pro�t, the welfare-maximizing price cap
lies in the interval [ p0; pd ], just as it does in the analysis in section 5.

75Under the maintained assumption of e¢ cient rationing, SA(p ) �
qA( p )R
0

[ a � b eQ ] d eQ � p qA(p ) and

S�A(p ) �
Q( p )R
qA( p )

[ a� b eQ ] d eQ� P (Q(p ) ) [ qN (p ) + q(p ) ].
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Table 3 reports how outcomes in the baseline setting change as wA changes when r = 1
2
.

Three e¤ects warrant emphasis. First, p�w (the price cap that maximizesWw) increases as wA
(the weight placed on the surplus of A consumers) increases.76 The increase in p�w induces R

to expand its output using A�s input (qA).77 The increase in qA increases the corresponding

consumer surplus, SA(�), despite the increase in the price at which qA is sold (p�w).78

Second, the surplus of other consumers declines as wA increases. The reduction in S�A(�)
arises because the aforementioned increase in qA reduces the equilibrium price of the output

that is supplied without usingA�s input (P (Q) ), which reduces the corresponding equilibrium

outputs (qN and q ) and consumer surplus (S�A(�) ). Third, R�s revenue increases as wA
increases. The increase in V (�) stems from the identi�ed increases in qA and p�w.

wA p�w qA qN q P (Q) SA S�A V Ww

0:1 41:82 0:00 3:46 4:67 78:98 0:00 3:43 2:73 1:72
0:3 42:59 0:25 3:40 4:60 77:84 0:29 3:32 2:75 1:04
0:5 51:52 3:23 2:60 3:75 63:89 3:07 2:09 3:33 0:92
0:7 55:76 4:66 2:23 3:35 57:26 3:88 1:61 3:87 1:27
0:9 56:35 4:85 2:18 3:29 56:35 3:97 1:55 3:96 1:75

Table 3. Equilibrium Outcomes with Weighted Welfare in the Baseline Setting.

7 Conclusions.
We have examined the design of price caps as an instrument to reduce the (tax) revenue

available to a sanctioned nation without causing the world price of a key product to increase

excessively. We have shown that a price cap on a portion of a supplier�s output can have

potentially counterintuitive e¤ects. Speci�cally, the price cap can increase, not reduce, the

supplier�s revenue by inducing the supplier to increase its output. Furthermore, the sanc-

tioned supplier�s increased output can cause the world price of the product to decline, not

increase.

The supplier�s increased output stems from the output enhancement e¤ect of a price cap.

This e¤ect arises because when output is sold at the capped price, the sales price does not

decline as output increases. Consequently, the pro�t the supplier secures from the enhanced
76Numerical solutions reveal that this qualitative conclusion persists for wide variation in the parameters in
the baseline setting.

77The welfare-maximizing price cap (p�w) lies in the interval [ p0; pd ], where R increases qA as the price cap
(p ) increases. The outputs recorded in the third, fourth, and �fth columns in Table 3 are in units of 10
million. All outputs are equilibrium outputs when the price cap is p�w.

78The entries for consumer surplus, revenue, and welfare in the last four columns in Table 3 are reported in
billions. All these outcomes are equilibrium outcomes when the price cap is p�w.
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output increases relatively rapidly, which induces the supplier to increase its output. The

increased output reduces the price at which output that is not subject to the price cap is

sold, ceteris paribus. The increased output can also increase the supplier�s revenue.

We have also shown that the welfare-maximizing price cap often is well below the pre-

vailing market price of the product, and that a price cap can enhance welfare considerably

under arguably plausible conditions. In addition, we have shown that raising a price cap

above the level that would eliminate sales by the sanctioned supplier at the capped price

often can both increase consumer surplus and reduce the aggregate revenue of the sanc-

tioned producer. Thus, moderately stringent price caps often outperform relatively lenient

or particularly severe price caps.

Our streamlined duopoly model was designed to illustrate simply and clearly potentially

counterintuitive e¤ects of price caps as sanctions. Future research should consider additional

demand and cost functions, alternative rationing rules, di¤erentiated products, more than

two suppliers, and di¤erent market interactions (e.g., bargaining among industry suppliers

and large buyers). Future research might also consider alternative (e.g., nonlinear) welfare

functions and allow the sanctioned supplier to act to reduce the cost it incurs when it operates

without access to key (Alliance) inputs. Future research might also consider the coordination

(and enforcement) problems that arise when the nations that impose the price cap di¤er in

their valuations of the sanctioned product.

These model extensions likely will alter the extent to which a more stringent price cap

increases the revenue (and the pro�t) of a sanctioned supplier, the level of the welfare-

maximizing pice cap, and the potential welfare gains from a price cap. However, the model

extensions seem unlikely to eliminate the output enhancement e¤ect of a price cap that we

have identi�ed. Consequently, the model extensions seem unlikely to fundamentally alter

the potentially counterintuitive e¤ects that arise in our streamlined model of price caps as

sanctions.
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Appendix

Part A of this Appendix illustrates how equilibrium outcomes change as parameter values
diverge from their levels in the baseline setting. Part B presents the proofs of the formal
conclusions in the text. Part C analyzes a benchmark setting in which R is a monopoly
supplier.

A. Outcomes in Settings Other Than the Baseline Setting.

Parameter Variation pb� pd
pb

V (pd)�V (pb)
V (pb)

p� p�

pb

W (p�)�W (pb)
W (pb)

1:50 a 0:21 0:19 81:08 0:76 0:48
0:50 a 0:21 0:21 27:55 0:75 0:52
1:50 b 0:26 0:19 49:57 0:74 0:51
0:50 b 0:13 0:19 59:56 0:72 0:65
1:50 cA 0:20 0:20 55:24 0:77 0:46
0:50 cA 0:22 0:19 53:39 0:75 0:51
1:50 kA 0:15 0:18 57:86 0:79 0:34
0:5 kA 0:35 0:15 45:36 0:65 0:87
1:50 kR 0:20 0:20 55:47 0:77 0:46
0:50 kR 0:23 0:19 53:06 0:75 0:52
1:50 cN 0:22 0:20 53:58 0:75 0:52
0:50 cN 0:20 0:19 55:05 0:77 0:46
1:50 kN 0:24 0:21 51:03 0:71 0:60
0:50 kN 0:17 0:15 58:81 0:83 0:34
1:50 c 0:21 0:19 54:51 0:76 0:50
0:50 c 0:21 0:19 54:12 0:76 0:48
1:50 k 0:22 0:17 56:22 0:75 0:63
0:50 k 0:20 0:23 51:78 0:77 0:36

Table A1. The E¤ects of Changing Baseline Parameters.

The �rst column in Table A1 identi�es the single parameter that is changed in the baseline
setting and the amount by which it is changed. All other parameters remain at their levels
in the baseline setting.79 The remaining columns in Table A1 identify outcomes that arise
in equilibrium, including the outcomes reported above in Table 2 and the outcomes reported
below (and de�ned) in Table A3. The welfare calculations in the last column assume that
r = 1

2
.

79For example, the �rst row of data in Table A1 records the outcomes that arise in equilibrium when a is
increased by 50% above its level in the baseline setting, holding all other parameters at their values in the
baseline setting.
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� pb� pd
pb

V (pd)�V (pb)
V (pb)

p� p�

pb

W (p�)�W (pb)
W (pb)

0:25 0:36 0:14 44:23 0:64 0:91
0:50 0:21 0:19 54:31 0:76 0:49
0:75 0:14 0:18 58:69 0:80 0:32
1:00 0:11 0:16 61:34 0:83 0:23

Table A2. Additional E¤ects of Changing Baseline Parameters.

Table A2 reports the impact of changing � in the baseline setting, where cA = � cN and
kA = � kN . The �rst column in Table A1 identi�es the relevant value of �. All parameters
other than cA, kA, and � remain at their levels in the baseline setting (including cN = 5
and kN = 1 � 10�6). The remaining columns in Table A2 identify outcomes that arise in
equilibrium, including the outcomes reported above in Table 2 and the outcomes reported
below in Table A3. The welfare calculations in the last column assume that r = 1

2
.

r p� p�

pb
W (p�) jW (p�)�W (pb) j

jW (pb) j
0:00 56:35 0:79 5:518� 109 0:36
0:25 56:26 0:79 4:529� 109 0:40
0:50 54:31 0:76 3:579� 109 0:49
0:75 52:79 0:74 2:688� 109 0:70
1:00 51:56 0:72 1:837� 109 1:46
2:00 48:36 0:68 � 1:325� 109 0:48
10:0 42:70 0:60 � 23:873� 109 0:18

Table A3. The E¤ects of Changing r in the Baseline Setting.

The �rst column in Table A3 identi�es the value of r in the welfare function W (�) =
S(�) � r V (�). The remaining columns report the corresponding welfare-maximizing price
cap (p�), the ratio of this price cap to the equilibrium price in the absence of a price cap
(pb), the maximized level of welfare (W (p

�)), and the proportionate maximum welfare gain,
respectively.80

80The relatively large welfare gain that arises when r = 1 arises in part because W (pb) is relatively close to
0 in the baseline setting when r = 1.
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B. Proofs of Formal Conclusions in the Text81

Proof of Proposition 1. The proof follows directly from Lemmas A1 �A6 (below), which
refer to the following de�nitions.82

p0 � cA +
[ a� cN ] [ 2 b+ k ] � b [ a� c ]
[ 2 b+ kN + kR ] [ 2 b+ k ]� b2

�
b+ kR

�
. (7)

pd �
1

D2

f [ a (b+ k) + b c ]
� �
b+ kR

�
(kN + kA) + kN kA � b kN

�
+ b [ b+ k ] [ kA � b ] cN + b [ kN + b ] [ b+ k ] cA g

where D2 � b [ b+ k ] [ kN + kA ] + kN [ kA � b ] [ 2 b+ k ]

+ [ kN + kA ] [ 2 b+ k ]
�
b+ kR

�
. (8)

pb �
1

D3

f [ a (b+ k) + b c ]
� �
b+ kR

�
(kN + kA) + kN kA

�
+ b cN [ b+ k ] kA + b kN [ b+ k ] cA g

where D3 � b [ b+ k ] [ kN + kA ] + kN kA [ 2 b+ k ]

+ [ kN + kA ] [ 2 b+ k ]
�
b+ kR

�
= D2 + b kN [ 2 b+ k ] . (9)

Lemma A1. Suppose p � p0. Then in equilibrium:

qA = 0 , qN =
[ a� cN ] [ 2 b+ k ]� b [ a� c ]
[ 2 b+ kN + kR ] [ 2 b+ k ]� b2

,

q =
[ a� c ]

�
2 b+ kN + k

R
�
� b [ a� cN ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
, and

Q = qA + qN + q =
[ a� c ]

�
b+ kN + k

R
�
+ [ a� cN ] [ b+ k ]

[ 2 b+ kN + kR ] [ 2 b+ k ]� b2
. (10)

Lemma A2. Suppose p 2 ( p0; pd ]. Then in equilibrium:

qA =
1

D
f
�
3 b2 + 2 b

�
k + kN + k

R
�
+ k

�
kN + k

R
� �
[ p� cA ]

+ b
�
b+ kR

�
[ a� c ]� [ 2 b+ k ]

�
b+ kR

�
[ a� cN ] g ; (11)

81Part B of this Appendix sketches the proofs of the formal conclusions in the text. Detailed proofs are
available in Turner and Sappington (2024, Part A).

82The proofs of Lemmas A1, A2, and A4 �A6 employ relatively standard techniques, and so are omitted.
Detailed proofs of these lemmas are available in Turner and Sappington (2024, Part A).
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qN =
1

D
f [ 2 b+ k ]

�
kA + k

R
�
[ a� cN ]� b

�
kA + k

R
�
[ a� c ]

�
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
[ p� cA ] g ; (12)

QR � qA + qN =
1

D
f [ 2 b+ k ] [ b+ kN ] [ p� cA ] + [ 2 b+ k ] [ kA � b ] [ a� cN ]

� b [ kA � b ] [ a� c ] g ; (13)

q =
1

D
f
�
kN
�
kA + k

R
�
+ kA k

R + 2 b kA � b2
�
[ a� c ]

� b [ kA � b ] [ a� cN ]� b [ b+ kN ] [ p� cA ] g ; and (14)

Q = q + qA + qN =
1

D
f [ b+ k ] [ b+ kN ] [ p� cA ] + [ b+ k ] [ kA � b ] [ a� cN ]

+
�
kR (kA + kN ) + kA (b+ kN )

�
[ a� c ] g (15)

where83

D � [ 2 b+ k ]
�
kN
�
kA + k

R
�
+ kA k

R
�
+ b kA [ 3 b+ 2 k ]� b2 [ b+ k ] > 0 . (16)

Lemma A3. Suppose p 2 ( pd; pb ], where pd < pb. Then in equilibrium, P (Q) = p.

Furthermore:

qA =
b [ b+ k ] [ cN � cA ] + kN [ a� p ] [ b+ k ]� b kN [ p� c ]

b [ b+ k ] [ kN + kA ]
;

qN =
kA [ b+ k ] [ a� p ]� b kA [ p� c ]� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]
; q =

p� c
b+ k

;

QR � qA + qN =
[ b+ k ] [ a� p ]� b [ p� c ]

b [ b+ k ]
; and Q � a� p

b
. (17)

Proof. (1) implies that R�s problem can be written as:

Maximize
qA; QR

�R �
�
PA(q +Q

R)� cA
�
qA +

�
P (QR + q)� cN

� �
QR � qA

�
� kA

2
[ qA ]

2 � kN
2

�
QR � qA

�2 � kR
2

�
QR

�2
where PA(q + QR) =

(
p if P ( q +QR ) � p

P ( q +QR ) if p > P ( q +QR ).
(18)

83As noted above, the inequality in (16) is ensured by the maintained assumption that kA [ 2 b+ kN ] +
kR [ kA + kN ] > b2.
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(18) implies that when qA > 0 and there exists a range of p for which P (Q) = p, the
necessary conditions for a solution to R�s problem are:

@�R
@qA

= PA
�
q +QR

�
� cA � kA qA �

�
P
�
q +QR

�
� cN

�
+ kN

�
QR � qA

�
= 0 ; (19)

@+�R

@QR
� 0 and

@��R

@QR
� 0 for all p 2 [ pd; pb ] , (20)

where: (i) @
��R
@QR

denotes the left-sided derivative of �R with respect to QR, which is relevant

when PA(�) = p; and (ii) @ +�R
@QR

denotes the right-sided derivative of �R with respect to
QR, which is relevant when PA(�) = P (Q). The �rst inequality in (20) indicates that R�s
pro�t declines if R increases QR so as to reduce P (Q) below p (thereby rendering the cap
nonbinding). The second inequality in (20) indicates that R�s pro�t declines if R reduces QR

so as to increase P (Q) above p (thereby causing the cap to bind). Together, the inequalities
in (20) ensure that when p 2 [ pd; pb ], R cannot increase its pro�t by changing QR so as to
cause P (Q) to di¤er from p.

(2) implies that the rival�s choice of q is determined by:

p� b q � c� k q = 0 , q =
p� c
b+ k

. (21)

Because p = a� b
�
q +QR

�
, (21) implies:

p = a� b
�
p� c
b+ k

+QR
�
, QR =

[ a� p ] [ b+ k ]� b [ p� c ]
b [ b+ k ]

. (22)

Because p = PA(q +Q
R) in equilibrium, (19) holds if:

p� cA � kA qA � [ p� cN ] + kN
�
QR � qA

�
= 0

, cN � cA � kA qA + kN QR � kN qA = 0 . (23)

(22) implies that (23) holds if:

qA =
b [ b+ k ] [ cN � cA ] + kN [ a� p ] [ b+ k ]� b kN [ p� c ]

b [ b+ k ] [ kN + kA ]
. (24)

(22) and (24) imply:

qN = QR � qA =
kA [ b+ k ] [ a� p ]� b kA [ p� c ] � b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]
. (25)

(24) and (25) imply:

QR � qA + qN =
[ b+ k ] [ a� p ]� b [ p� c ]

b [ b+ k ]
. (26)

(21) and (26) imply:
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Q � QR + q =
[ b+ k ] [ a� p ]� b [ p� c ]

b [ b+ k ]
+
b [ p� c ]
b [ b+ k ]

=
a� p

b
.

(18) implies:

@ +�R
@QR

= a� 2 bQR � b q � cN � kN
�
QR � qA

�
� kRQR

= p� bQR � cN � kN qN � kRQR = p�
�
b+ kR

�
QR � cN � kN qN ; (27)

@ ��R
@QR

= a� 2 bQR � b q � cN + b qA � kN
�
QR � qA

�
� kRQR

= p�
�
b+ kR

�
QR � cN + b qA � kN qN . (28)

(27) and (28) imply that (20) can be written as:�
b+ kR

�
QR + cN + kN qN � b qA < p �

�
b+ kR

�
QR + cN + kN qN . (29)

(9), (22), and (25) imply:

p �
�
b+ kR

�
QR + cN + kN qN

,
�
b+ kR

�
[ a (b+ k) + b c ] [ kN + kA ] + cN b [ b+ k ] [ kN + kA ]

+ kN [ kA (b + k) a+ b kA c� b (b+ k) (cN � cA) ]

� p [ b (b+ k) (kN + kA) + kN kA (2 b+ k)

+ (kN + kA) (2 b+ k)
�
b+ kR

�
] = p D3. (30)

(30) implies:
p �

�
b+ kR

�
QR + cN + kN qN , p � pb . (31)

(8), (22), (24), and (25) imply:�
b+ kR

�
QR + cN + kN qN � b qA < p

,
�
b+ kR

�
[ a (b+ k) + b c ] [ kN + kA ] + cN b [ b+ k ] [ kN + kA ]

+ kN [ kA (b+ k) a+ b kA c� b (b+ k) (cN � cA) ]

� b [ b (b+ k) (cN � cA) + kN a (b+ k) + b kN c ]

< p [ b (b+ k) (kN + kA) + kN (kA � b) (2 b+ k)

+ (kN + kA) (2 b+ k)
�
b+ kR

�
] = p D2 . (32)

(32) implies:�
b+ kR

�
QR + cN + kN qN � b qA < p
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, p >
1

D2

f [ a (b+ k) + b c ]
� �
b+ kR

�
(kN + kA) + kN kA � b kN

�
+ b [ b+ k ] [ kA � b ] cN + b [ kN + b ] [ b+ k ] cA g � pd . (33)

(9), (27), (28), (31), and (33) imply:

pd =
�
b+ kR

�
QR + cN + kN qN � b qA and

pb =
�
b+ kR

�
QR + cN + kN qN . (34)

(34) implies that pd < pb because qA > 0 when p > p0. �

Lemma A4. Suppose p > pb. Then in equilibrium:

qA =
1

D3

f [ a� cA ]
�
2 b k + 2 b kN + 2 b k

R + k kN + k k
R + 3 b2

�
� [ a� cN ]

�
2 b k + 2 b kR + k kR + 3 b2

�
� b kN [ a� c ] g ; (35)

qN =
1

D3

f [ a� cN ]
�
2 b k + 2 b kA + 2 b k

R + k kA + k k
R + 3 b2

�
� [ a� cA ]

�
2 b k + 2 b kR + k kR + 3 b2

�
� b kA [ a� c ] g ; (36)

q =
1

D3

f [ a� c ]
�
2 b kA + 2 b kN + kA kN + kA k

R + kN k
R
�

� b kA [ a� cN ]� b kN [ a � cA ] g ; and (37)

QR � qA + qN =
1

D3

f [ a � cA ] kN [ 2 b+ k ] + [ a � cN ] kA [ 2 b+ k ]

� b [ kA + kN ] [ a� c ] g (38)

where D3 is as speci�ed in (9).

De�nitions

qA1(p0), qN1(p0), and q1(p0), respectively, denote the values of qA(�), qN(�), and q(�) speci�ed
in Lemma A1, where p � p0.

qA2(p0), qN2(p0), and q2(p0), respectively, denote the values of qA(�), qN(�), and q(�) speci�ed
in Lemma A2, where p 2 ( p0; pd ].

Lemma A5. lim
p! p0

qA2(p ) = qA1(p0), lim
p! p0

qN2(p ) = qN1(p0), and lim
p! p0

q2(p ) = q1(p0).

Lemma A6. 0 < p0 < pd < pb . �
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Proof of Proposition 2. The conclusions in the proposition follow directly from Lemmas A2
and A3. �

Proof of Proposition 3. (22) implies that for p 2 (pd; pb), R�s revenue is:

V (p ) = p

�
a (b+ k) + b c� p (2 b+ k )

b [ b+ k ]

�
=
[ a (b+ k) + b c ] p� [ 2 b+ k ] p2

b [ b+ k ]
. (39)

The value of p at which V (p ) in (39) is maximized is determined by:

a [ b+ k ] + b c� 2 [ 2 b+ k ] p = 0 ) p =
a [ b+ k ] + b c

2 [ 2 b+ k ]
� pVM . (40)

(9) and (40) imply that pVM < pb if:

a [ b+ k ] + b c

2 [ 2 b+ k ]
<

� �
b+ kR

�
( kN + kA ) + kN kA

�
a [ b+ k ] + b c
b [ b+ k ]

+ cN kA + kN cA

kN + kA + [ ( b+ kR ) (kN + kA ) + kN kA ]
2 b+ k
b [ b+ k ]

,
[ 2 b+ k ]

�
b+ kR

�
� b [ b+ k ]

b [ b+ k ]
[ kN + kA ] + kN kA

�
2 b+ k

b (b + k)

�
> 0 . (41)

It is readily veri�ed that the inequality in (41) always holds, so pVM < pb.

(39) and (40) imply that for p 2 (pd; pb ), V (p ) is a strictly concave function that attains
its maximum at pVM . Therefore,

@V ( p )
@p

< 0 for p 2 (pVM ; pb ).

(8) and (40) imply that pd � pVM if and only if:

1

b [ b+ k ] [ kN + kA ] + [ kA kN � kN b ] [ 2 b+ k ] + [ kN + kA ] [ 2 b+ k ] [ b+ kR ]

� f [ (b+ k) a+ b c ]
� �
b+ kR

�
(kN + kA) + kN kA � b kN

�
+ b [ b+ k ] [ kA � b ] cN + b [ kN + b ] [ b+ k ] cA g

� a [ b+ k ] + b c

2 [ b+ k ]

,
�
(b+ k) a+ b c

2 b+ k

� � �
b2 + kR [ 2 b+ k ]

�
(kN + kA) + kN kA (2 b+ k)� b kN (2 b+ k)

�
+ 2 b [ b+ k ] [ kA cN + kN cA � b (cN � cA) ] � 0 . (42)

It is readily veri�ed that:�
b2 + kR (2 b+ k)

�
[ kN + kA ]+kN kA [ 2 b+ k ]�b kN [ 2 b+ k ] = � 2 b [ b+ k ] [ kN + kA ]+D2.

Therefore, (42) implies that pd � pVM , e�1 � 0 , where:
e�1 � �

(b+ k) a+ b c

2 b+ k

�
fD2 � 2 b [ b+ k ] [ kN + kA ] g
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+ 2 b [ b+ k ] [ kA cN + kN cA � b (cN � cA) ] .

It is readily veri�ed that e�1 = �1, where:
�1 �

�
kR +

b2

2 b+ k

�
[ kA + kN ]A+ 2 b [ b+ k ] cA [ kN + b ]

+ [ 2 b (b+ k) cN + AkN ] [ kA � b ] and A � a [ b+ k ] + b c : �

Proof of Proposition 4. Let qA(p ) denote R�s equilibrium output using A�s input when the
price cap is p 2 [ pd; pb ]. Let qN(p ) denote R�s corresponding output when R does not
employ A�s input. Also let QR(p ) = qA(p ) + qN(p ).

To prove that @( pb� pd)
@kR

< 0, observe that (34) implies:

pb =
�
b+ kR

�
QR(pb) + cN + kN qN(pb)

where, from (17):

qN(pb) =
kA [ b+ k ] [ a� pb ]� b kA [ pb � c ]� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]
and

QR(pb) =
[ b+ k ] [ a� pb ]� b [ pb � c ]

b [ b+ k ]
. (43)

(43) implies that qN(pb) and Q
R(pb) vary with k

R only through pb. Therefore:

@ pb
@kR

= QR(pb) +
�
b+ kR

� @QR(pb)
@pb

@pb
@kR

+ kN
@qN(pb)

@pb

@ pb
@kR

,

@qN(pb)

@pb
= � kA [ b+ k ] + b kA

b [ b+ k ] [ kN + kA ]
� DN < 0 , and

@QR(pb)

@pb
= � 2 b+ k

b [ b+ k ]
� DR < 0

) @ pb
@kR

=
QR(pb)

1� [ b+ kR ]DR � kN DN

> 0 . (44)

(17) and (34) imply:

pd =
�
b+ kR

�
QR(pd) + cN + kN qN(pd)� b qA(pd)

where qA(pd) =
b [ b+ k ] [ cN � cA ] + kN [ a� p ] [ b+ k ]� b kN [ p� c ]

b [ b+ k ] [ kN + kA ]
;

qN(pd) =
kA [ b+ k ] [ a� pd ]� b kA [ pd � c ]� b [ b+ k ] [ cN � cA ]

b [ b+ k ] [ kN + kA ]
; and

QR(pd) =
[ b+ k ] [ a� pd ]� b [ pd � c ]

b [ b+ k ]
. (45)

(45) implies that qA(pd), qN(pd), and Q
R(pd) vary with k

R only through pd. Therefore:
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@ pd
@kR

= QR(pd) +
�
b+ kR

� @QR(pd)
@ pd

@ pd
@kR

+ kN
@qN(pd)

@ pd

@ pd
@kR

� b @qA(pd)
@ pd

@ pd
@kR

;

@qA(pd)

@ pd
= � kN [ b+ k ] + b kN

b [ b+ k ] [ kN + kA ]
� DA < 0 ;

@qN(pd)

@ pd
= � kA [ b+ k ] + b kA

b [ b+ k ] [ kN + kA ]
� DN < 0 ;

@QR(pd)

@ pd
= � 2 b+ k

b [ b+ k ]
� DR < 0 . (46)

(46) implies:
@pd
@kR

=
QR(pd)

1� [ b+ kR ]DR � kN DN + bDA

, and (47)

� bDR + bDA = b

�
2 b+ k

b (b+ k)

� �
1� kN

kN + kA

�
> 0 . (48)

Because DN < 0 and DR < 0 from (46), (48) implies:

1�
�
b+ kR

�
DR � kN DN + bDA > 1� kRDR � kN DN > 0 . (49)

Because DA < 0 from (46), (49) implies:

1�
�
b+ kR

�
DR � kN DN > 0 . (50)

(47) and (49) imply:

@pd
@kR

=
QR(pd)

1� [ b+ kR ]DR � kN DN + bDA

> 0 . (51)

(44) and (49) �(51) imply:

@pb
@kR

� @pd
@kR

< 0 , QR(pb)

QR(pd)
<

1�
�
b+ kR

�
DR � kN DN

1� [ b+ kR ]DR � kN DN + bDA

. (52)

(22) implies that Q
R(pb)

QR(pd)
< 1. Furthermore, because 1�

�
b+ kR

�
DR�kNDN + bDA > 0

from (49):
1�

�
b+ kR

�
DR � kN DN

1� [ b+ kR ]DR � kN DN + bDA

> 1 , DA < 0 . (53)

(46) implies that the last inequality in (53) holds. Therefore, (52) holds. Consequently,
because pb > pd > 0 from Proposition 1, (44) and (52) imply that @(pb�pd)

@kR
< 0 .

To prove that @(pb� pd)
@cN

> 0, observe that (8) and (9) imply:

@pb
@cN

� @pd
@cN

=
b [ b+ k ] kA

D2 + b kN [ 2 b+ k ]
� b [ b+ k ] [ kA � b ]

D2

> 0
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, D2 � kN [ 2 b+ k ] [ kA � b ] > 0 . (54)

It is readily veri�ed that the inequality in (54) holds.

To prove that @(pb� pd)
@cA

< 0, observe that (8) and (9) imply:

@pb
@cA

� @pd
@cA

=
b [ b+ k ] kN

D2 + b kN [ 2 b+ k ]
� b [ b+ k ] [ kN + b ]

D2

< 0

, D2 + kN [ 2 b+ k ] [ kN + b ] > 0 . (55)

It is readily veri�ed that D2 > 0, so the inequality in (55) holds.

To prove that @(pb� pd)
@c

> 0, observe that (8) and (9) imply:

@ ( pb � pd)

@c
s
=
kA
�
b+ kR

�
+ kN

�
kA + k

R + b
�

D3

�
kA
�
b+ kR

�
+ kN

�
kA + k

R
�

D2

> 0

, b [ b+ k ] [ kN + kA ] + kN [ kA � b ] [ 2 b+ k ] + [ kN + kA ] [ 2 b+ k ]
�
b+ kR

�
>
� �
b+ kR

�
(kA + kN) + kN (kA � b)

�
[ 2 b+ k ] , b [ b+ k ] [ kN + kA ] > 0 .

The proofs of the remaining conclusions are similar, but more tedious. See Turner and
Sappington (2024, Part A) for details. �

Recall that welfare is:

W (p ) � S(p )� r [ p qA + ( a� b [ qA + qN + q ] ) qN ] = S(p )� r V (p ) (56)

where r > 0 is a parameter and S(�) denotes consumer surplus. The gross value that
consumers derive from Q units of output is:

1

2
[ a� P (Q) ]Q+ P (Q)Q =

1

2
[ a+ P (Q) ]Q =

1

2
[ a+ a� bQ ]Q = a Q� b

2
Q2.

Therefore, consumer surplus when the price cap is p is:

S(p ) = aQ� b

2
Q2 � p qA � P (Q) [ qN + q ] . (57)

Proof of Lemma 1. (17) implies that when p 2 (pd; pb) (so P (Q) = p ), Q = a�p
b
)

@Q
@p
= � 1

b
. Therefore, (57) implies:

@S(p )

@p
= � a� p

b
< 0 ) @2S(p )

@ (p )2
=
1

b
> 0 . � (58)

Lemma A7. V (p0) < V (pb).

Proof. Lemmas A1 and A3 imply that because qA(p0) = 0 and P (Q(pb)) = pb:

V (p0) = p0 qN( p0) = p0
[ a� cN ] [ 2 b+ k ]� b [ a� c ]
[ 2 b+ kN + kR ] [ 2 b+ k ]� b2

;
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V (pb) = pb Q
R( pb) = pb

[ b+ k ] [ a� pb ]� b [ pb � c ]
b [ b+ k ]

. (59)

De�nition. DN �
�
2 b+ kN + k

R
�
[ 2 b+ k ]� b2 . (60)

Because p0 < pb, (59) and (60) imply that V (p0) < V (pb) if:

qN(p0) =
[ a� cN ] [ 2 b+ k ]� b [ a� c ]

DN

<
[ b+ k ] [ a� pb ]� b [ pb � c ]

b [ b+ k ]
= QR(pb)

, a [ b+ k ] + b c� cN [ 2 b+ k ]
DN

<
[ b+ k ] a+ b c� [ 2 b+ k ] pb

b [ b+ k ]

,
[ a (b+ k) + b c ]

�
b+ kN + k

R
�
+ cN b [ b+ k ]

DN

> pb : (61)

As established in the proof of Proposition 4, pb is increasing in kA. Therefore, (9) implies
that because kA � kN by assumption:

pb �
[ a (b+ k) + b c ]

�
2 kN

�
b+ kR

�
+ (kN)

2 �+ b cN [ b+ k ] kN + b kN [ b+ k ] cA
2 b [ b+ k ] kN + (kN)

2 [ 2 b+ k ] + 2 kN [ 2 b+ k ] [ b+ kR ]
: (62)

(9) implies that pb is increasing in cA. Therefore, because cA � cN by assumption, (9)
implies:

pb �
[ a (b+ k) + b c ]

�
2 kN

�
b+ kR

�
+ (kN)

2 �+ 2 b cN [ b+ k ] kN
2 b [ b+ k ] kN + (kN)

2 [ 2 b+ k ] + 2 kN [ 2 b+ k ] [ b+ kR ]

=
[ a (b+ k) + b c ]

�
b+ kR + kN

2

�
+ b cN [ b+ k ]

[ 2 b+ k ]
�
2 b+ kR + kN

2

�
� b2

: (63)

(60), (61), and (63) imply that the Lemma holds if:

[ a (b+ k) + b c ]
�
b+ kR + kN

2

�
+ b cN [ b+ k ]

[ 2 b+ k ]
�
2 b+ kR + kN

2

�
� b2

<
[ a (b+ k) + b c ]

�
b+ kR + kN

�
+ b cN [ b+ k ]

[ 2 b+ k ] [ 2 b+ kR + kN ]� b2
:

It can be veri�ed that this inequality holds. �

Proposition A1. p� 2 [ p0; pd ].
Proof. Proposition 3 and Lemma 1 imply that W (�) is a strictly convex function of p for
p 2 (pd; pb). Therefore, p� =2 (pd; pb). Lemma A1 implies that W (p ) =W (p0) for all p < p0.
Lemma A4 implies that W (p ) =W (pb) for all p > pb. Therefore, p

� 2 [ p0; pd ]
S
pb .

It remains to show that p� 6= pb. The proof of Lemma A7 establishes that:
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QR(p0) < QR(pb) : (64)

Lemma A6 and Proposition 2 imply:

QR(pb) < QR(pd) : (65)

(64) and (65) imply that QR(p0) < QR(pb) < QR(pd). Q
R(p ) is continuous and monoton-

ically increasing in p for p 2 (p0; pd) (from Lemma A2). Therefore, the intermediate value
theorem implies that there exists a pE 2 (p0; pd) such that:

QR(pE) = QR(pb) : (66)

(2) implies that the rival�s output q is determined by:

a� b
�
QR(p ) + q(p )

�
� c� b q(p )� k q(p ) = 0 : (67)

(66) and (67) imply:
q(pE) = q(pb) : (68)

(66) and (68) imply:

Q(pE) = Q(pb) and P (Q(pE) ) = P (Q(pb) ) : (69)

R�s revenue is:

V2(pE) = pE qA(pE) + P (Q(pE) ) qN(pE)

< P (Q(pE) ) qA(pE) + P (Q(pE) ) qN(pE)

= P (Q(pE) ) Q
R(pE) = P (Q(pb) ) Q

R(pb) = V3(pb) . (70)

The inequality in (70) holds because pE < P (Q(pE) ), since pE 2 (p0; pd). The penultimate
equality in (70) re�ects (69). The last equality in (70) holds because P (Q(pb) ) = pb.

(57) and (69) imply:

S(pE) = a Q(pE)�
b

2
Q(pE)

2 � P (Q(pE) ) [ q(pE) + qN(pE) ]� pE qA(pE)

> a Q(pE)�
b

2
Q(pE)

2 � P (Q(pE) ) [ q(pE) + qN(pE) + qA(pE) ]

= a Q(pE)�
b

2
Q(pb)

2 � P (Q(pb) ) Q(pb) = S(pb) . (71)

The inequality in (71) holds because pE < P (Q(pE) ), since pE 2 (p0; pd). (70) and (71)
imply that consumer surplus is higher and R�s revenue is lower when p = pE than when
p = pb. Therefore, W (pE) > W (pb), so p

� 6= pb. �

Proof of Lemma 2.

De�ne eV2(p ) � qA2( p ) p + qN2( p )P (Q2( p )) (72)

where qA2(p ) and qN2(p ) are as de�ned in (11) and (12), respectively. Observe that eV2(p ) =
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V (p ) for p 2 [ p0; pd ]. Because P (Q2) = a� bQ2, (72) implies:

@ eV2(p )
@ p

= qA2 + p
@qA2
@p

+ P (Q2)
@qN2
@p

� b qN2
@Q2
@p

. (73)

(16) and Lemma A2 imply that @2qA2
@(p )2

= @2qN2
@(p )2

= @2q2
@(p )2

= @2Q2
@(p )2

= 0. Therefore, (73)
implies:

@2eV2(p )
@ (p )2

= 2
@qA2
@p

� 2 b @Q2
@p

@qN2
@p

> 0 . (74)

The inequality in (74) holds because D > 0 by assumption, so @qA2
@p

> 0 from (11), @Q2
@p

> 0

from (15), and @qN2
@p

< 0 from (12).

pV m � argmin
p

f eV2(p )g is unique and is determined by:
@ eV2(pV m)
@ p

� @ eV2(p )
@p

�����
p= pVm

= 0. (75)

This is the case because (16), (11) �(15), and (73) imply that @ eV2(p)
@p

is a linear function of

p. Therefore, eV2( p ) is a quadratic function of p. Consequently, (74) implies that eV2( p ) has
a unique minimum that is determined by (75).

Recall that:

�2 � f kR [ 2 b+ k ]
�
kR (2 b+ k) + 2 b (3 b+ 2 k)

�
+ kN [ 2 b+ k ]

�
kR (2 b+ k) + b2

�
+ b2

�
5 b2 + 6 b k + 2 k2

�
g cN � f b [ 3 b+ 2 k ] + [ 2 b+ k ]

�
kN + k

R
�2gcA

� b
�
b2 � k kN + (2 b+ k) kR

�
[ a (b+ k) + b c ] .

It is apparent that �2 increases as cN � cA increases.

To establish that pV m > p0 when cN � cA is su¢ ciently large to ensure that�2 > 0,
observe that R�s revenue is:

V (p ) = p qA + P (Q) qN = p qA + [ a� bQ ] qN . (76)

(76) implies that @V (p)
@ p

���
p= p0

< 0 when �2 > 0 if:

@+V (p0)

@ p
= qA + p0

@qA
@ p

� b @Q
@ p

qN + P (Q)
@qN
@ p

< 0 , (77)

where: (i) @+V (p0)
@p

= @+V (p)
@p

���
p= p0

denotes the right-sided derivative of V (�); (ii) @qA
@ p
, @qN
@ p
,

and @Q
@ p

pertain to the quantities identi�ed in Lemma A2; and (iii) qA, qN , and Q are as
de�ned in Lemma A1.

Lemma A2 implies that when p 2 (p0; pd):
@qN
@ p

= � b k + 2 b k
R + k kR + b2

D
;

@qA
@p

=
E

D
; and

@Q

@p
=
[ b+ k ] [ b+ kN ]

D
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where E � b [ 3 b+ 2 k ] + [ 2 b+ k ]
�
kN + k

R
�
. (78)

Lemma A1 implies that when p � p0:

qN =
[ a� cN ] [ 2 b+ k ]� b [ a� c ]

E
, q =

[ a� c ]
�
2 b+ kN + k

R
�
� b [ a� cN ]

E
,

and P (Q) =
aE � b [ a� cN ] [ b+ k ]� b

�
b+ kN + k

R
�
[ a� c ]

E
. (79)

(77) �(79) imply that because qA = 0 when p = p0 (from Lemma A1):

@+V (p0)

@ p
=

1

DE
f p0E2 � b [ b+ k ] [ b+ kN ] [ (a� cN) (2 b+ k)� b (a� c ) ]

�
�
aE � b (a� cN) (b+ k)� b

�
b+ kN + k

R
�
(a� c )

�
�
�
b k + 2 b kR + k kR + b2

�
g . (80)

Tedious calculations reveal that the expression in (80) is strictly negative when �2 > 0.

It remains to prove that pV m < pd, which is established by demonstrating that
@�V (p )
@ p

���
p= pd

> 0 . De�ne V2(p ) � p qA(�) + P (Q(�)) qN(�) for p 2 (p0; pd). Because P (Q) = a� bQ :

@�V2(pd)

@ p
= qA + pd

@qA
@p

+ P (Q)
@qN
@p

� b qN
@Q

@p
(81)

where qA, qN , andQ are as speci�ed in Lemma A2, evaluated at p = pd. Because pd = P (Q),
(81) implies:

@�V2(pd)

@p
= qA + pd

�
@qA
@ p

+
@qN
@ p

�
� b qN

@Q

@ p
: (82)

(28) implies:

pd =
�
b+ kR

�
QR + cN + kN qN � b qA = kR qA +

�
b+ kN + k

R
�
qN + cN . (83)

(82) and (83) imply:

@�V2( pd)

@ p
= qA +

�
kR qA +

�
kN + k

R
�
qN + cN

� � @qA
@ p

+
@qN
@ p

�
� b qN

@q

@ p
> 0 . (84)

The inequality holds here because @qA
@ p
+ @qN

@ p
= @QR

@ p
> 0 (from (13)) and @q

@ p
< 0 (from

(14)). �

Proof of Lemma 3. As in (57), de�ne:eS2(p ) � a Q2(p )�
b

2
Q2(p )

2 � qA2( p ) p� [ q2(p ) + qN2(p ) ] P (Q2(p ) ) (85)

where qA2( p ), qN2( p ), q2( p ), and Q2( p ) are as de�ned in (11), (12), (14), and (15),
respectively. Observe that eS2( p ) = S( p ) for p 2 [ p0; pd ].

(85) implies that because P (Q2) = a� bQ2 and Q2 = qA2 + qN2 + q2 :
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@ eS2(p )
@ p

= [P (Q2)� p ]
@qA2
@ p

+ b
@Q2
@ p

[ qN2 + q2 ]� qA2 (86)

) @2 eS2(p )
@ (p )2

=

�
� b @Q2

@p
� 1

�
@qA2
@ p

+ b
@Q2
@ p

�
@qN2
@ p

+
@q2
@ p

�
� @qA2
@ p

< 0 . (87)

The inequality in (87) holds because Lemma A2 implies that @qA2
@ p

> 0, @Q2
@ p

> 0, @qN2
@ p

< 0,

and @q2
@ p

< 0.

pSM � argmax
p

f eS2( p )g is unique and is determined by:
@ eS2( pSM)

@ p
� @ eS2( p )

@ p

�����
p= pSM

= 0 . (88)

This is the case because (16), (11) �(15), and (86) imply that @ eS2(p)
@ p

is a linear function of

p. Therefore, eS2(p ) is a quadratic function of p. Consequently, (87) implies that eS2(p ) has
a unique maximum that is determined by (88).

To prove that pSM > pV m, de�ne H( p ) � aQ2 � b
2
Q22 � [ a� bQ2 ] q2. Observe that:

@H( p )

@ p
� [ a� bQ2 ]

@Q2
@ p

� [ a� bQ2 ]
@q2
@ p

+ b
@Q2
@ p

q2 (89)

) @2H(p )

(@ p )2
� � b

�
@Q2
@ p

�2
+ 2 b

@Q2
@ p

@q2
@ p

< 0 , (90)

where q2 and Q2 are de�ned in (14) and (15). The inequality in (90) holds because
@Q2
@p
> 0

and @q2
@p
< 0, from (14) and (15). (89) implies:

@H(pd)

@ p
� @H(p )

@ p

����
p= pd

= pd
@Q2
@ p

� pd
@q2
@ p

+ b
@Q2
@ p

q2(pd) > 0 . (91)

The inequality in (91) holds because @Q2
@p
> 0 and @q2

@p
< 0, from (14) and (15). The concavity

of H(p ) established in (90), along with (91), imply:
@H(p )

@ p
> 0 for all p < pd ) @H(pV m)

@p
> 0 : (92)

The implication in (92) holds because pV m < pd, from Lemma 2.

(73) and (88) imply:

@ eV2(pV m)
@ p

= [ a� bQ2(�) ]
@qN2(�)
@ p

� b @Q2(�)
@ p

qN2(�) + qA2(�) + pV m
@qA2(�)
@ p

= 0 (93)

where qA2(�), qN2(�), and Q2(�) are de�ned in (11), (12), and (15), and evaluated at pV m.
(86) implies:
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@ eS2(p )
@ p

= [ a� bQ2 ]
@Q2
@ p

� [ a� bQ2 ]
@q2
@ p

+ b
@Q2
@ p

q2

� [ a� bQ2 ]
@qN2
@ p

+ b
@Q2
@ p

qN2 � qA2 � p
@qA2
@ p

(94)

where qA2, qN2, q2, and Q2 are de�ned in (11), (12), (14), and (15). (94) implies:

@ eS2(pV m)
@ p

= [ a� bQ2(pV m) ]
@Q2
@ p

� [ a� bQ2(pV m) ]
@q2
@ p

+ b
@Q2
@ p

q2(pV m)

=
@H(pV m)

@ p
> 0 . (95)

The last equality in (95) re�ects (93). The inequality in (95) re�ects (92).

(87) implies that eS2(p ) is a strictly concave function of p. Therefore, pV m < pSM
because: (i) @ eS2(pSM )

@ p
= 0 from (88); and (ii) @ eS2(pVm)

@ p
> 0, from (95).

To prove that pSM > p0, it su¢ ces to establish that
@+S2( p0)

@ p
� @+S2( p0)

@ p

���
p= p0

> 0.

Lemma A1 implies that qA = 0 when p = p0. Therefore, (57) implies:

@+ eS2(p0)
@ p

= [P (Q)� p0 ]
@qA
@ p

+ b [ qN + q ]
@Q

@ p
> 0 . (96)

The inequality in (96) holds because @qA
@ p

> 0 and @Q
@ p

> 0 from Lemma A2, and because
P (Q) > p0 when p 2 (p0; pd). �

Proposition A2. �p� 2 [ pV m; pSM ]. Furthermore: (i) �p� < pSM when pSM < pd and

d > 0; (ii) �p� > pV m when pV m > p0; (iii) �p
� ! pSM as d ! 0; and (iv) �p� ! pV m as

d !1.

Proof. To prove that p� � pSM , suppose that p
� > pSM . eS2(p ) is a strictly concave function

of p, from Lemma 3. Therefore, because p� > pSM , (88) implies:

@ eS2(p�)
@ p

<
@ eS2(pSM)

@ p
= 0 : (97)

eV2(p ) is a strictly convex function of p, from Lemma 2. Therefore, because pV m < pSM
from Lemma 3 and because p� > pSM by assumption, (75) implies:

@ eV2(p�)
@ p

>
@ eV2(pSM)
@ p

>
@ eV2(pV m)
@ p

= 0 . (98)

(97) and (98) imply that R�s revenue declines and consumer surplus increases as p declines
below p�. Therefore, p� is not the welfare-maximizing value of p. Hence, by contradiction,
p� � pSM .
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To prove that p� � pV m, suppose that p
� < pV m. eV2(p ) is a strictly convex function of

p, from Lemma 2. Therefore, because pV m < pSM from Lemma 3, (75) implies:

@ eV2(p�)
@ p

<
@ eV2(pV m)
@ p

= 0 . (99)

eS2(p ) is a strictly concave function of p, from Lemma 3. Therefore, because pV m < pSM
from Lemma 3 and because p� < pV m by assumption, (88) implies:

@ eS2(p�)
@ p

>
@ eS2(pV m)
@ p

>
@ eS2(pSM)

@ p
= 0 : (100)

(99) and (100) imply that R�s revenue declines and consumer surplus increases as p
increases above p�. Therefore, p� is not the welfare-maximizing value of p. Hence, by
contradiction, p� � pV m.

To prove conclusion (i) in the Proposition, de�ne fW2(�) � eS2(�) � d eV2(�) and observe
that when pSM < pd and d > 0:

@fW2(p )

@ p

�����
p= pSM

= � d @
eV2(pSM)
@ p

< � d @
eV2(pV m)
@ p

= 0 . (101)

The inequality in (101) holds because: (i) pSM > pV m, from Lemma 3; and (ii) eV2(�) is a
strictly convex function of p, from Lemma 2. (101) implies that pSM > p� because fW2(�) is
a strictly concave function of p (because eS2(�) is a strictly concave function of p and eV2(�) is
a strictly convex function of p).

To prove conclusion (ii) in the Proposition, observe that when pV m > p0:

@fW2(p )

@ p

�����
p= pVm

=
@ eS2(pV m)
@ p

>
@ eS2(pSM)

@ p
= 0 . (102)

The inequality in (101) holds because: (i) pSM > pV m, from Lemma 3; and (ii) eS2(�) is a
strictly concave function of p, from Lemma 3. (102) implies that p� > pV m because fW2(�)
is a strictly concave function of p.

Conclusions (iii) and (iv) in the Proposition follow immediately from (56) because p� 2
(p0; pd) is a non-increasing function of r. This is the case because (56) implies that when
p� 2 (p0; pd):

@S(p�)

@ p
� r @

eV (p�)
@ p

= 0 ) @2 eS(p�)
@(p)2

@ p�

@r
� @

eV (p�)
@ p

� r @
2eV (p�)
@(p)2

@ p�

@r
= 0

) @ p�

@r
=

@ eV (p�)
@p

@2 eS(p�)
@(p)2

� d @2 eV (p�)
@(p)2

=

@ eV (p�)
@p

@2fW (p�)
@(p)2

s
= � @

eV (p�)
@ p

. (103)

The last conclusion in (103) holds because Lemmas 2 and 3 imply that @
2fW (p�)
@(p)2

< 0.

It remains to prove that @
eV2(p�)
@ p

� 0. To do so, suppose that @
eV2(p�)
@ p

< 0. Then:
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p� < pV m . (104)

(104) holds because: (i) eV2(p ) is a strictly convex function of p, from Lemma 2; and (ii)
@ eV2(pVm)

@ p
= 0, from (75). Furthermore, because eS2(p ) is a strictly concave function of p,

from Lemma 3:
@ eS2(p )
@ p

> 0 for all p < pSM . (105)

Observe that:
p� < pV m < pSM . (106)

The �rst inequality in (106) re�ects (104). The second inequality in (106) re�ects Lemma 3.
(88), (105), and (106) imply:

@ eS2 (p�)
@ p

> 0 . (107)

Because @ eS2( p�)
@p

> 0 (from (107)), @ eV2( p�)
@p

< 0 (by assumption), and p� 2 (p0; pd)

(by assumption), consumer surplus increases and R�s revenue declines as p increases above
p�. Therefore, p� cannot be the welfare-maximizing value of p. Hence, by contradiction,
@ eV2( p�)
@p

� 0. Consequently, (103) implies that @p
�

@r
� 0. �

Proof of Proposition 5. The �rst conclusion in the Proposition holds because (56) implies
that when �2 � 0:

@+W2(p0)

@ p
� @+W2(p )

@ p

����
p= p0

=
@+S2(p0)

@ p
� r @

+V2(p0)

@ p
> 0 . (108)

The inequality in (108) holds because when �2 � 0: (i) @+V2( p0)
@ p

� 0 from the proof of

Lemma 2; and (ii) @
+S2( p0)
@ p

> 0 from (96).

The second conclusion in the Proposition holds if V (p0) < V (p ) for all p > p0 when d
is su¢ ciently large and �2 < 0. The proof of Lemma 2 establishes that:

@+V (p )

@ p

����
p= p0

> 0 when �2 < 0 : (109)

V (p ) is a strictly convex function of p for p 2 (p0; pd), from Lemma 2. Therefore, (109)
implies that V (p ) is a strictly increasing function of p for p 2 [ p0; pd ] under the maintained
conditions. Consequently:

V (p0) < V (p ) for all p 2 (p0; pd ] . (110)

Lemma A7 implies that under the maintained conditions:

V (p0) < V (pb) . (111)

(39) implies that V (p ) is a strictly concave function of p for p 2 ( pd; pb ). Therefore,
(110) and (111) imply:

V (p ) > V (p0) for all p 2 (pd; pb ] : (112)
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The conclusion follows from (110), (112), and Proposition A2. �

Proof of Proposition 6. (57) implies that consumer surplus is:

S =
b

2
Q2 + [ a� p ] qA � bQ qA . (113)

(113) implies that p� is the solution to:

Maximize
p

W =
b

2
Q2 + [ a� p ] qA � bQ qA � r p qA � r a qN + r bQ qN . (114)

(114) imply that for p 2 (p0; pd):
dW

dp
= 0 , f b [ b+ k ] [ b+ kN ]� b

�
3 b2 + 2 b

�
k + kN + k

R
�
+ k

�
kN + k

R
� �

� r b
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
gQ

� [D + b (b+ k) (b+ kN) + r D ] qA + r b [ b+ k ] [ b+ kN ] qN

� f 3 b2 + 2 b
�
k + kN + k

R
�
+ k

�
kN + k

R
�

+ r
�
3 b2 + 2 b

�
k + kN + k

R
�
+ k

�
kN + k

R
� �
g p

+ f 3 b2 + 2 b
�
k + kN + k

R
�
+ k

�
kN + k

R
�

+ r
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
g a = 0 . (115)

The coe¢ cient on Q in (115) is readily shown to be:

� b [ 2 b2 + b k + b kN + 2 b kR + k kR + b2r + 2 b r kR + b r k + r k kR ] < 0 . (116)

The coe¢ cient on � qA in (115) is readily shown to be:

[ 1 + r ]
�
[ 2 b+ k ]

�
kN
�
kA + k

R
�
+ kA k

R
�
+ b kA [ 3 b+ 2 k ]� b2 [ b+ k ]

	
+ b [ b+ k ] [ b+ kN ] > 0 . (117)

(115) �(117) imply that if p� 2 (p0; pd), p� is determined by:

G� g p� = 0, where (118)

G � r b [ b+ k ] [ b+ kN ] qN

+ f 3 b2 + 2 b
�
k + kN + k

R
�
+ k

�
kN + k

R
�

+ r
�
b
�
b+ 2 kR

�
+ k

�
b+ kR

� �
g a

� b [ 2 b2 + b k + b kN + 2 b kR + k kR + b2r
+ 2 b r kR + b r k + r k kR ]Q
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� f [ 1 + r ]D + b [ b+ k ] [ b+ kN ] g qA , and

g � f 3 b2 + 2 b
�
k + kN + k

R
�
+ k

�
kN + k

R
�

+ r
�
3 b2 + 2 b

�
k + kN + k

R
�
+ k

�
kN + k

R
� �
g > 0 . (119)

To prove that d p�

dcA
> 0, observe from (119) that dg

d p
= 0. Therefore, (118) implies that

for parameter x:

[Gx � p� gx ] dx+ [Gp � g ] d p� = 0 ) d p�

dx
=
Gx � p gx
g �Gp

. (120)

(16) and (119) imply that because D > 0:

GcA = r b [ b+ k ] [ b+ kN ]
dqN
dcA

� b [ 2 b2 + b k + b kN + 2 b k
R + k kR + b2r + 2 b r kR + b r k + r k kR ]

dQ

dcA

� f [ 1 + r ]D + b [ b+ k ] [ b+ kN ] g
dqA
dcA

> 0 . (121)

The inequality in (121) holds because Lemma A2 implies that dqA
dcA

< 0 , dqN
dcA

> 0 , and dQ
dcA

< 0.

(16) and (119) imply:

Gp = r b [ b+ k ] [ b+ kN ]
dqN
dp

� b [ 2 b2 + b k + b kN + 2 b k
R + k kR + b2r + 2 b r kR + b r k + r k kR ]

dQ

dp

� f [ 1 + r ]D + b [ b+ k ] [ b+ kN ] g
dqA
dp

< 0 . (122)

The inequality in (121) holds because Lemma A2 implies that dqA
d p
> 0, dqN

d p
< 0, and dQ

d p
> 0.

(119) implies:
gcA = 0 . (123)

(119) �(123) imply that d p
�

dcA
=

GcA
g�Gp > 0.

The proofs of the remaining conclusions are similar, and so are omitted. �

C. The Benchmark Setting where R is a Monopoly Supplier.

Now consider the benchmark setting in which R is the sole supplier of the product.
Continue to assume that a > cN � cA > 0 and kN � kA � 0. To ensure that the second-
order condition in R�s problem is satis�ed in this setting, further assume that:�

kA + k
R
� �
2 b+ kN + k

R
�
>
�
b+ kR

�2
:
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Turner and Sappington (2024, Part B) show that in this setting, there is an interval of
price caps, p 2 (pdM ; pbM ], in which the price of the product sold without using A�s input,
P (Q), coincides with the cap on the price of the product sold using A�s input, p. In this
interval of price caps, R�s total output is:

QRdbM(p ) =
a� p

b
) @QRdbM(p )

@ p
= � 1

b
< 0 : (124)

Recall from (22) that R�s corresponding total output when p 2 (pd; pb ] and R faces a rival
is:

QRdb(p ) =
a [ b+ k ] + b c� p [ 2 b+ k ]

b [ b+ k ]
) @QRdb(p )

@ p
= � 2 b+ k

b [ b+ k ]
< 0 : (125)

(124) and (125) imply that R�s total output increases more rapidly as p declines in the
region where P (Q) = p when R faces a rival than when R is a monopolist because:���� @QRdbM(p )@ p

���� > ���� @QRdb(p )@ p

���� , 2 b+ k

b [ b+ k ]
>
1

b
, 2 b+ k < b+ k , b > 0 .

(124) implies that when R is a monopolist, R�s revenue when p 2 (pdM ; pbM ] is:

VdbM(p ) = p QRdbM(p ) = p

�
a� p

b

�
) @VdbM(p )

@ p
=
a� 2 p
b

. (126)

(125) implies that when R faces a rival, R�s revenue when p 2 (pd; pb ] is:

Vdb(p ) = p

�
a (b+ k) + b c� p (2 b+ k)

b (b+ k)

�

) @Vdb(p )

@ p
=
a [ b+ k ] + b c� 2 p [ 2 b+ k ]

b [ b+ k ]
. (127)

(126) and (127) imply that for values of p 2 (pd; pb ] for which R�s revenue increases as
p declines, the rate of increase is more pronounced when R faces a rival than when R is a
monopolist because:

@Vdb(p )

@ p
<
@VdbM(p )

@p
, a [ b+ k ] + b c� 2 p [ 2 b+ k ]

b [ b+ k ]
<
a� 2 p
b

, a [ b+ k ] + b c� 2 p [ 2 b+ k ] < [ b+ k ] [ a� 2 p ]

, b c+ 2 p [ b+ k � (2 b+ k) ] < 0 , b c < 2 b p , p >
c

2
.

The last inequality here holds because, by assumption, p � pd > c.
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                       Figure 1.  𝑹𝑹’s Equilibrium Outputs, 𝒒𝒒𝑨𝑨 and 𝒒𝒒𝑵𝑵, as a Function of  𝒑𝒑. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    



  
   
 

 
                      
                            Figure 2.  Consumer Surplus, 𝑺𝑺(𝒑𝒑), and 𝑹𝑹’s Revenue, 𝑽𝑽(𝒑𝒑). 
 
 
 
 
 
   
 
    
 
 
    
 
 
 
         
 



 
 
 

 
 

         Figure 3.  𝑹𝑹’s Revenue, 𝑽𝑽(𝒑𝒑), and Outputs, 𝒒𝒒𝑨𝑨 and 𝒒𝒒𝑵𝑵, in the Baseline Setting.* 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
*  The numbers on the vertical axes in Figure 3 are in billions. 

 



 
 
 

 
 
 

                     Figure 4.  Welfare 𝑾𝑾(𝒑𝒑) in the Baseline Setting when 𝒓𝒓 =  𝟏𝟏
𝟐𝟐
 . 

 
 
 
 
 
 
 
  



 
 
 

 
 

                                  Figure 5.  𝑹𝑹’s Profit, 𝚷𝚷𝑹𝑹(𝒑𝒑), in the Baseline Setting. 
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