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This Technical Appendix provides detailed proofs of the formal conclusions in the text.

Lemma 1. When the �rm operates under IRIS, it implements immediately any cost reduc-
tion it achieves.

Proof of Lemma 1. Under IRIS, if the �rm �rst implements the achieved cost reduction
in period bt 2 f1; :::; 5g, then pt = c0 for t = 1; :::;bt + 1 and pt = c0 � � for t = bt +
2; :::; 6.1 Suppose the �rm achieves the � cost reduction in period t 2 f1; 2g. If the �rm
implements the cost reduction immediately, the discounted present value (PDV) of its pro�t
is � [Qt(c0) + � Qt+1(c0) ]. If the �rm delays the implementation to period t+ l, the PDV of
its pro�t is �l� [Qt+l(c0) + � Qt+l+1(c0) ]. Therefore, the �rm will implement the achieved
cost reduction immediately if:

� [Qt(c0) + � Qt+1(c0) ] � �l� [Qt+l(c0) + � Qt+l+1(c0) ]

, Qt(c0) + � Qt+1(c0) � �l [Qt+l(c0) + � Qt+l+1(c0) ] . (1)

The inequality in (1) holds because Assumption D implies:

Qt(c0) > �Qt+1(c0) � ::: � �lQt+l(c0) for all l 2 f1; :::; 6� t g , and

� Qt+1(c0) > �2Qt+2(c0) � ::: � �l+1Qt+l+1(c0) for all l 2 f1; :::; 6� t� 1g . �

Lemma 2. Suppose the �rm operates under SR. If the �rm achieves the cost reduction in

period 1, it implements the cost reduction immediately. If the �rm achieves the cost reduction

in period 2, it implements the cost reduction immediately if

Q2(c0) � � [Q3(c0) + � Q4(c0) ] (2)

and otherwise implements the cost reduction in period 3.

Proof of Lemma 2. The proof consists of three Conclusions (A, B, and C). Each Conclusion
pertains to the setting where the �rm operates under SR.

Conclusion A. The �rm always implements immediately a cost reduction achieved in

period 1.

1The �rm will not delay the implementation of an achieved cost reduction to period 6. The discounted
present value (PDV) of the �rm�s pro�t from such a delay is �5�Q6(c0). The PDV of the �rm�s pro�t
from implementing the cost reduction in period 5 is �4� [Q5(c0) + � Q6(c0) ] > �

5�Q6(c0).



Proof. If the �rm implements the cost reduction achieved in period 1 immediately, the PDV of
its pro�t is �1 � � [Q1(c0) + � Q2(c0) ] because p1 = p2 = c0 and p3 = p4 = p5 = p6 = c0��.

If the �rm �rst implements in period 2 the cost reduction achieved in period 1, the PDV
of its pro�t is �2 � ��Q2(c0) because p1 = p2 = c0 and p3 = p4 = p5 = p6 = c0 ��. It is
apparent that �2 = �1 ��Q1(c0) < �1.

If the �rm �rst implements in period 3 the cost reduction achieved in period 1, the
PDV of its pro�t is �3 � �2� [Q3(c0) + � Q4(c0) ] because p1 = p2 = p3 = p4 = c0 and
p5 = p6 = c0 ��. Assumption D implies:

�3 = ��
�
� Q3(c0) + �

2Q4(c0)
�
< �� [Q2(c0) + � Q3(c0) ]

= �
�
� Q2(c0) + �

2Q3(c0)
�
< � [Q1(c0) + � Q2(c0) ] = �1 .

If the �rm �rst implements in period 4 the cost reduction achieved in period 1, the PDV
of its pro�t is �4 � �3�Q4(c0) because p1 = p2 = p3 = p4 = c0 and p5 = p6 = c0 ��. It is
apparent that �4 = �3 � �2�Q3(c0) < �3 (< �1).

If the �rm implements in period 5 the cost reduction achieved in period 1, the PDV of
its pro�t is �5 � �4� [Q5(c0) + � Q6(c0) ] because p1 = p2 = p3 = p4 = p5 = p6 = c0.
Assumption D implies:

�5 = �3�
�
� Q5(c0) + �

2Q6(c0)
�
< �3� [Q4(c0) + � Q5(c0) ]

= �2�
�
� Q4(c0) + �

2Q5(c0)
�
< �2� [Q3(c0) + � Q4(c0) ] = �3 (< �1) .

If the �rm implements in period 6 the � cost reduction achieved in period 1, the PDV
of its pro�t is �6 � �5�Q6(c0) because p1 = p2 = p3 = p4 = p5 = p6 = c0. It is apparent
that �6 = �5 � �4�Q5(c0) < �5 (< �1). �

Conclusion B. The �rm never delays beyond period 3 the implementation of a cost reduc-

tion achieved in period 2.

Proof. If the �rm implements in period 3 the cost reduction it achieves in period 2, the
PDV of its pro�t is �L � �� [Q3(c0) + � Q4(c0) ] because p1 = p2 = p3 = p4 = c0 and
p5 = p6 = c0 � �. We will show that the maximum PDV of pro�t the �rm can secure by
delaying the implementation of the achieved cost reduction beyond period 3 is always less
�L.

If the �rm delays to period 4 the implementation of the cost reduction achieved in period
2, the PDV of its pro�t is �2�Q4(c0) because p1 = p2 = p3 = p4 = c0 and p5 = p6 = c0��.
It is apparent that �2�Q4(c0) < �� [Q3(c0) + � Q4(c0) ] = �L.

If the �rm delays to period 5 the implementation of the cost reduction achieved in period
2, the PDV of its pro�t is �3� [Q5(c0) + � Q6(c0)] because p1 = p2 = p3 = p4 = p5 = p6 = c0.
Assumption D implies:

�3� [Q5(c0) + � Q6(c0) ] = �2�
�
� Q5(c0) + �

2Q6(c0)
�
< �2� [Q4(c0) + � Q5(c0) ]
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= ��
�
� Q4(c0) + �

2Q5(c0)
�
< �� [Q3(c0) + � Q4(c0) ] = �L . (3)

If the �rm delays to period 6 the implementation of the � cost reduction achieved in
period 2, the PDV of its pro�t is �4�Q6(c0) because p1 = p2 = p3 = p4 = p5 = p6 = c0. It
is apparent that:

�4�Q6(c0) < �3� [Q5(c0) + � Q6(c0) ] < �� [Q3(c0) + � Q4(c0) ] = �L . (4)

The last inequality in (4) re�ects (3). �

Conclusion C. If the �rm achieves the cost reduction in period 2, it implements the cost

reduction immediately if (2) holds, and otherwise implements the cost reduction in period

3.

Proof. If the �rm implements the achieved cost reduction in period 2, the PDV of its pro�t
is �Q2(c0) because p1 = p2 = c0 and p3 = p4 = p5 = p6 = c0 � �. If the �rm delays the
implementation the achieved cost reduction in period 2 to period 3, the PDV of its pro�t is
�� [Q3(c0) + � Q4(c0) ] because p1 = p2 = p3 = p4 = c0 and p5 = p6 = c0 � �. Therefore,
Conclusion B implies that the �rm will implement the cost reduction immediately if the
inequality in (2) holds, and otherwise delay the implementation to period 3. � �

Corollary to Lemma 2. Suppose Assumption G holds in the setting of Lemma 2. Then if

the �rm achieves the cost reduction in period 2, it implements the cost reduction immediately

if and only if e� � � g � be� = 1
2

�p
5� 1

�
� 0:618.

Proof of the Corollary to Lemma 2. De�ne Q0 � Q1(c0). Then when Assumption G holds,
the inequality in (2) holds if and only if:

� g2Q0 + �
2 g3Q0 � g Q0 , � g + �2 g2 � 1 , e�2 + e� � 1 � 0

, e� � 1

2

h
� 1 +

p
1 + 4

i
=
1

2

hp
5� 1

i
� 0:618 . �

Proposition 1. 0 < �S2 < �I2 < 1.

Proof of Proposition 1. First consider the �rm�s problem in period 2 of the NID setting after
no cost reduction is achieved in period 1. Under SR in this setting, the �rm retains the full
bene�t of a cost reduction that is achieved in period 2 only for that period. Therefore, the
�rm�s problem is: Maximize

�2
�2�Q2(c0)�K2(�2)

) K 0
2(�

S
2 ) = �Q2(c0) at an interior optimum. (5)

Under IRIS, if no cost reduction is achieved in period 1, the �rm retains the full bene�t
of a cost reduction achieved in period 2 during both period 2 and period 3. Therefore, the
�rm�s problem in period 2 (in both the ID setting and the NID setting) is:
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Maximize
�2

�2� [Q2(c0) + � Q3(c0) ]�K2(�2)

) K 0
2(�

I
2) = � [Q2(c0) + � Q3(c0) ] at an interior optimum. (6)

First suppose that �S2 = 0. Then (5) implies that �Q2(c0) � K 0
2(0), which violates the

maintained assumption that K 0
2(0) = 0. Therefore, �S2 > 0.

Now suppose that �I2 = 0. Then (6) implies that � [Q2(c0) + � Q3(c0) ] � K 0
2(0), which

violates the maintained assumption that K 0
2(0) = 0. Therefore, �I2 > 0.

Next suppose that �S2 = 1. Then (5) implies that K
0
2(1) � �Q2(c0), which violates the

maintained assumption that K 0
2(1) > � [Q2(c0) + � Q3(c0) ]. Therefore, �

S
2 < 1.

Finally suppose that �I2 = 1. Then (6) implies that K 0
2(1) � � [Q2(c0) + � Q3(c0) ],

which violates the maintained assumption that K 0
2(1) > � [Q2(c0) + � Q3(c0) ]. Therefore,

�I2 < 1.

Because �S2 2 (0; 1) and �I2 2 (0; 1), (5) and (6) imply that K 0
2(�

I
2) > K 0

2(�
S
2 ) )

�I2 > �S2 . The conclusion here re�ects the convexity of K2(�).

Now consider the �rm�s problem in period 2 of the ID setting after no cost reduction is
achieved in period 1. Under SR in this setting, the �rm delays to period 3 the implementation
of a cost reduction achieved in period 2. Therefore, the �rm�s problem is:

Maximize
�2

�2 �� [Q3(c0) + � Q4(c0) ]�K2(�2)

) K 0
2(�

S
2 ) = �� [Q3(c0) + � Q4(c0) ] at an interior optimum. (7)

First suppose that �S2 = 0. Then (7) implies that �� [Q3(c0) + � Q4(c0) ] � K 0
2(0), which

violates the maintained assumption that K 0
2(0) = 0. Therefore, �S2 > 0.

Next suppose that �S2 = 1. Then (7) implies that K 0
2(1) � �� [Q3(c0) + � Q4(c0) ],

which violates the maintained assumption that K 0
2(1) > �� [Q3(c0) + � Q4(c0) ]. Therefore,

�S2 < 1.

Because �S2 2 (0; 1) and �I2 2 (0; 1), (6) and (7) imply that K 0
2(�

I
2) > K 0

2(�
S
2 ) )

�I2 > �S2 . The conclusion here re�ects the convexity of K2(�). �

Proposition 2. 0 < �I1 < �S1 < 1.

Proof of Proposition 2. Under SR in the NID setting, the �rm retains the full bene�t of a
cost reduction that is achieved in period 1 both in period 1 and in period 2. Therefore, (5)
implies that the �rm�s problem in period 1 under SR is:

Maximize
�1

�1� [Q1(c0) + � Q2(c0) ] + [ 1� �1 ] �
�
�S2 �Q2(c0)�K2(�

S
2 )
�
�K1(�1) . (8)

(8) implies that at an interior solution to this problem:

K 0
1(�

S
1 ) = � [Q1(c0) + � Q2(c0) ]� �

�
�S2 �Q2(c0)�K2(�

S
2 )
�
. (9)
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Under IRIS in both the NID setting and the ID setting, the �rm retains for two periods
the full bene�t of an achieved cost reduction, whether the reduction is achieved in period 1
or period 2. Therefore, (6) implies that the �rm�s problem in period 1 under IRIS is:

Maximize
�1

�1� [Q1(c0) + � Q2(c0) ]

+ [ 1� �1 ] �
�
�I2� [Q2(c0) + � Q3(c0) ]�K2(�

I
2)
	
�K1(�1) . (10)

(10) implies that at an interior solution to this problem:

K 0
1(�

I
1) = � [Q1(c0) + � Q2(c0) ]� �

�
�I2� [Q2(c0) + � Q3(c0) ]�K2(�

I
2)
	
. (11)

Observe that:

�I2� [Q2(c0) + � Q3(c0) ]�K2(�
I
2) = max

�2
f�2� [Q2(c0) + � Q3(c0) ]�K2(�2) g

> �S2 � [Q2(c0) + � Q3(c0) ]�K2(�
S
2 ) > �S2 �Q2(c0)�K2(�

S
2 ) . (12)

The �rst inequality in (12) holds because �S2 6= �I2, from Proposition 1.

(10) implies that �I1 > 0 in the NID setting if:

� [Q1(c0) + � Q2(c0) ]� �
�
�I2�(Q2(c0) + � Q3(c0) )�K2(�

I
2)
�
> K 0

1(0) . (13)

Because K 0
1(0) = 0 by assumption, the inequality in (13) holds if:

� [Q1(c0) + � Q2(c0) ] > �
�
�I2�(Q2(c0) + � Q3(c0) )�K2(�

I
2)
�
.

This inequality holds because Assumption D implies:

Q1(c0) + � Q2(c0) > �Q2(c0) + �
2Q3(c0)

) Q1(c0) + � Q2(c0) > �I2
�
� Q2(c0) + �

2Q3(c0)
�

) � [Q1(c0) + � Q2(c0) ] > � �I2� [Q2(c0) + � Q3(c0) ]

) � [Q1(c0) + � Q2(c0) ] > �
�
�I2�(Q2(c0) + � Q3(c0) )�K2(�

I
2)
�
.

(10) implies that �I1 < 1 in the NID setting if:

� [Q1(c0) + � Q2(c0) ]� �
�
�I2� [Q2(c0) + � Q3(c0) ]�K2(�

I
2)
	
< K 0

1(1) . (14)

� [Q1(c0) + � Q2(c0) ] < K 0
1(1), by assumption. Furthermore, �

I
2� [Q2(c0) + � Q3(c0) ] �

K2(�
I
2) � 0 because �I2 = argmax� f�� [Q2(c0) + � Q3(c0) ]�K2(�) g and K2(0) = 0.

Therefore, the inequality in (14) holds.

(8) implies that �S1 > 0 in the NID setting if:

� [Q1(c0) + � Q2(c0) ]� �
�
�S2 �Q2(c0)�K2(�

S
2 )
�
> K 0

1(0) : (15)

5



K 0
1(0) = 0 by assumption. Therefore, (15) holds if:

� [Q1(c0) + � Q2(c0) ]� �
�
�S2 �Q2(c0)�K2(�

S
2 )
�
> 0 :

This inequality holds because:

Q1(c0) + � Q2(c0) > �Q2(c0) ) Q1(c0) + � Q2(c0) > �S2 � Q2(c0)

) � [Q1(c0) + � Q2(c0) ]� � �S2 �Q2(c0) > 0

) � [Q1(c0) + � Q2(c0) ]� �
�
�S2 �Q2(c0)�K2(�

S
2 )
�
> 0 .

(8) implies that �S1 < 1 in the NID setting if:

� [Q1(c0) + � Q2(c0) ]� �
�
�S2 �Q2(c0)�K2(�

S
2 )
�
< K 0

1(1) . (16)

� [Q1(c0) + � Q2(c0) ] < K 0
1(1) , by assumption. Furthermore, �

S
2 �Q2(c0) � K2(�

S
2 ) � 0

because �S2 = argmax� f��Q2(c0)�K2(�) g and K2(0) = 0. Therefore, the inequality
in (16) holds.

To prove that �I1 < �S1 in the NID setting, observe that:

�I1 = argmax
�

f�� [Q1(c0) + � Q2(c0) ]

+ [ 1� � ] �
�
�I2�(Q2(c0) + � Q3(c0) )�K2(�

I
2)
�
�K1(�) g

< argmax
�

f�� [Q1(c0) + � Q2(c0) ]

+ [ 1� � ] �
�
�S2 �Q2(c0)�K2(�

S
2 )
�
�K1(�) g = �S1 . (17)

The equalities in (17) re�ect (9) and (11) since �S1 2 (0; 1) and �I1 2 (0; 1). The inequality
in (17) re�ects (12) and the fact that the �rm�s pro�t-maximizing choice of �1 increases as
the �rm�s expected pro�t following �rst-period failure to achieve a cost reduction declines,
holding constant the �rm�s expected pro�t following �rst period success in securing a cost
reduction.2

(7) implies that the �rm�s problem in period 1 under SR in the ID setting is:

Maximize
�1

�1� [Q1(c0) + � Q2(c0) ]

+ [ 1� �1 ]
�
�S2 �

�
�2Q3(c0) + �

3Q4(c0)
�
� � K2(�

S
2 )
�
�K1(�1) . (18)

(18) implies that at an interior solution to this problem:

K 0
1(�

S
1 ) = � [Q1(c0) + � Q2(c0) ]� �

�
�S2 �

�
� Q3(c0) + �

2Q4(c0)
�
�K2(�

S
2 )
�
. (19)

(18) implies that �S1 > 0 in the ID setting if:

2Formally, if �1 2 (0; 1) = argmax
�

f�A+ [ 1� � ]B �K1(�) g, then A�B = K 0
1(�1))

d�1
dB = � 1

K00
1 (�1)

<

0.
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� [Q1(c0) + � Q2(c0) ]�
�
�S2 �

�
�2Q3(c0) + �

3Q4(c0)
�
� � K2(�

S
2 )
�
> K 0

1(0) : (20)

K 0
1(0) = 0 by assumption. Therefore, (20) holds if:

� [Q1(c0) + � Q2(c0) ]�
�
�S2 �

�
�2Q3(c0) + �

3Q4(c0)
�
� � K2(�

S
2 )
�
> 0 :

This inequality holds because:

Q1(c0) + � Q2(c0) > �2Q3(c0) + �
3Q4(c0)

) � [Q1(c0) + � Q2(c0) ] > �
�
�2Q3(c0) + �

3Q4(c0)
�

) � [Q1(c0) + � Q2(c0) ]� �S2 �
�
�2Q3(c0) + �

3Q4(c0)
�
> 0

) � [Q1(c0) + � Q2(c0) ]�
�
�S2 �

�
�2Q3(c0) + �

3Q4(c0)
�
� � K2(�

S
2 )
�
> 0. (21)

The �rst inequality in (21) holds because Assumption D implies that Q1(c0) > �Q2(c0) >
�2Q3(c0) and Q2(c0) > �Q3(c0) > �

2Q4(c0).

(18) implies that �S1 < 1 in the ID setting if:

� [Q1(c0) + � Q2(c0) ]�
�
�S2 �

�
�2Q3(c0) + �

3Q4(c0)
�
� � K2(�

S
2 )
�
< K 0

1(1) . (22)

� [Q1(c0) + � Q2(c0) ] < K 0
1(1) , by assumption. Furthermore, �

S
2 � [ �

2Q3(c0)+�
3Q4(c0) ]

� � K2(�
S
2 ) � 0 because �S2 = argmax�

�
��

�
� Q3(c0) + �

2Q4(c0)
�
�K2(�)

	
in the ID

setting (from (7)) and because K2(0) = 0. Therefore, the inequality in (22) holds.

To prove that �I1 < �S1 in the ID setting, �rst observe that:

�I2� [Q2(c0) + � Q3(c0) ]�K2(�
I
2) = max

�2
f�2� [Q2(c0) + � Q3(c0) ]�K2(�2) g

> �S2 � [Q2(c0) + � Q3(c0) ]�K2(�
S
2 ) > �S2 � � [Q3(c0) + � Q4(c0) ]�K2(�

S
2 ) . (23)

The equality in (23) re�ects (7). The �rst inequality in (23) holds because �I2 6= �S2 , from
Proposition 1. The last inequality in (23) re�ects Assumption D.

Now observe that:

�I1 = argmax
�

f�� [Q1(c0) + � Q2(c0) ]

+ [ 1� � ] �
�
�I2 �(Q2(c0) + � Q3(c0) )�K2(�

I
2)
�
�K1(�) g

< argmax
�

f�� [Q1(c0) + � Q2(c0) ]

+ [ 1� � ] �
�
�S2 �� (Q3(c0) + � Q4(c0) )�K2(�

S
2 )
�
�K1(�) g

= �S1 . (24)

The equalities in (24) re�ect (10) and (18). The inequality in (24) re�ects (23) and the
fact that the �rm�s pro�t-maximizing choice of �1 increases as the �rm�s expected pro�t
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following �rst-period �failure�declines, holding constant the �rm�s expected pro�t following
�rst period �success.� �

De�nition. �j � �j1 + [ 1� �
j
1 ]�

j
2 for j 2 fS;Rg . (25)

Lemma 3. Suppose Assumption G holds and Assumption K with  = 2 holds. Then:

�S R �I , GNID R 0 in the NID setting; and

�S R �I , GID R 0 in the ID setting , where (26)

GNID � �Q0

n
[ 2 + 4e� + (e� )2 ] k2 � g [ ( 1 + e� )3 � 1 ]�Q0 o� 2 k1 k2 and

GID � �Q0 [ 1 + e� ] n [ 2� e� � (e� )3 ]ek2 � e� [ 1 + e� ] [ 1� (e� )3 ] �Q0 o� 2 [ 1� e� ] k1 ek2 .
Proof of Lemma 3. De�ne Qt � Qt(c0) for t = 1; :::; 6. (5) and (6) imply that under the
maintained assumptions in the NID setting:

�S2 =
�

k2
Q2 =

� g

k2
Q0 and

�I2 =
�

k2
[Q2 + � Q3 ] =

�

k2

�
g Q0 + � g

2Q0
�
=
� g [ 1 + � g ]

k2
Q0 . (27)

(9) implies that in the NID setting:

�S1 =
1

k1

�
� [Q1 + � Q2 ]� �

�
�S2 �Q2 �K2(�

S
2 )
� 	

=
1

k1

�
� [Q0 + � g Q0 ]� �

�
�S2 � g Q0 �K2(�

S
2 )
� 	

=
1

k1

�
� [ 1 + � g ]Q0 � �

�
�S2 � g Q0 �K2(�

S
2 )
� 	
. (28)

(11) implies:

�I1 =
1

k1

�
� [Q1 + � Q2 ]� �

�
�I2 �(Q2 + � Q3)�K2(�

I
2)
� 	

=
1

k1

�
� [Q0 + � g Q0 ]� �

�
�I2 �

�
g Q0 + � g

2Q0
�
�K2(�

I
2)
� 	

=
1

k1

�
� [ 1 + � g ]Q0 � �

�
�I2 � g (1 + � g)Q0 �K2(�

I
2)
� 	
. (29)

(27) implies:

K2(�
S
2 ) =

k2
2

�
� g

k2
Q0

� 2
=
�2 g2

2 k2
[Q0 ]

2 ;

8



K2(�
I
2) =

k2
2

�
� g (1 + � g)

k2
Q0

� 2
=
�2 g2

2 k2
[ 1 + � g ] 2 [Q0 ]

2 . (30)

(27) and (30) imply:

�S2 �Q2(c0)�K2(�
S
2 ) =

� g

k2
Q0 � g Q0 �

�2 g2

2 k2
[Q0 ]

2 =
�2 g2

2 k2
[Q0 ]

2 . (31)

(27) and (30) also imply:

�I2� [Q2 + � Q3 ]�K2(�
I
2)

=
� g [ 1 + � g ]

k2
Q0�

�
g Q0 + � g

2Q0
�
� �

2 g2

2 k2
[ 1 + � g ] 2 [Q0 ]

2

=
� g [ 1 + � g ]

k2
Q0� g [ 1 + � g ]Q0 �

�2 g2

2 k2
[ 1 + � g ] 2 [Q0 ]

2

=
�2 g2

2 k2
[ 1 + � g ] 2 [Q0 ]

2 . (32)

(28) and (31) imply:

�S1 =
�

k1
[ 1 + � g ]Q0 �

�

k1

�
�2 g2

2 k2

�
[Q0 ]

2 =
�Q0
k1

�
1 + � g � �� g

2

2 k2
Q0

�
. (33)

(27) and (33) imply:

�S1 �
S
2 =

�2 g

k1 k2

�
1 + � g � �� g

2

2 k2
Q0

�
[Q0 ]

2 . (34)

(29) and (32) imply:

�I1 =
�

k1
[ 1 + � g ]Q0 �

�

k1

�
�2 g2

2 k2

�
[ 1 + � g ] 2 [Q0 ]

2

=
�Q0
k1

�
1 + � g � �� g

2

2 k2
(1 + � g )2 Q0

�
. (35)

(27) and (35) imply:

�I1 �
I
2 =

�2 g [ 1 + � g ]

k1 k2

�
1 + � g � �� g

2

2 k2
(1 + � g )2 Q0

�
[Q0 ]

2 . (36)

(25), (27), (33), and (34) imply:

�S = �S1 + �
S
2 � �S1 �S2 =

�Q0
k1

�
1 + � g � �� g

2

2 k2
Q0

�
+
� g

k2
Q0

� �2 g

k1 k2

�
1 + � g � �� g

2

2 k2
Q0

�
[Q0 ]

2 . (37)

9



(25), (27), (35), and (36) imply:

�I = �I1 + �
I
2 � �I1 �I2 =

�Q0
k1

�
1 + � g � �� g

2

2 k2
(1 + � g )2 Q0

�
+
� g [ 1 + � g ]

k2
Q0

� �2 g [ 1 + � g ]

k1 k2

�
1 + � g � �� g

2

2 k2
(1 + � g )2 Q0

�
[Q0 ]

2 . (38)

(37) and (38) imply that because � > 0:

�S � �I = �Q0
k1

�
�� g2

2 k2

�
Q0
�
(1 + � g )2 � 1

�
� � g
k2

Q0 [ 1 + � g � 1 ]

+
�2 g [ 1 + � g ]

k1 k2

�
1 + � g � �� g

2

2 k2
(1 + � g )2 Q0

�
[Q0 ]

2

� �2 g

k1 k2

�
1 + � g � �� g

2

2 k2
Q0

�
[Q0 ]

2

=
��2 g2

2 k1 k2
[Q0 ]

2 � 2 � g + �2 g2 �� � � g2
k2

Q0

+
�2 g

k1 k2
[Q0 ]

2

�
[ 1 + � g ]

�
1 + � g � �� g

2

2 k2
(1 + � g )2 Q0

�
�
�
1 + � g � �� g

2

2 k2
Q0

��

=
�2�2 g3

2 k1 k2
[Q0 ]

2 [ 2 + � g ]� � � g
2

k2
Q0

+
�2 g

k1 k2
[Q0 ]

2

�
[ 1 + � g ] [ 1 + � g � 1 ] + �� g

2

2 k2

�
1� (1 + � g )3

�
Q0

�
s
=
�2� g2Q0
2 k1

[ 2 + � g ]� � g

+
�Q0
k1

�
� g [ 1 + � g ]� �� g

2

2 k2

�
(1 + � g )3 � 1

�
Q0

�
s
= � �2 g2Q0 [ 2 + � g ] k2 � 2 � g k1 k2 + 2 k2�Q0 � g [ 1 + � g ]

� ��2 g2
�
(1 + � g )3 � 1

�
[Q0 ]

2

s
= � � g Q0 [ 2 + � g ] k2 � 2 k1 k2 + 2 k2�Q0 [ 1 + � g ]

� �2 g
�
(1 + � g )3 � 1

�
[Q0 ]

2

10



= �Q0
�
� g [ 2 + � g ] k2 + 2 k2 [ 1 + � g ]� g

�
(1 + � g )3 � 1

�
�Q0

	
� 2 k1 k2

= �Q0
�
[ � g (2 + � g) + 2 (1 + � g) ] k2 � g

�
(1 + � g )3 � 1

�
�Q0

	
� 2 k1 k2

= �Q0
� �
2 + 4 � g + (� g)2

�
k2 � g

�
(1 + � g )3 � 1

�
�Q0

	
� 2 k1 k2 . (39)

(7) implies that under the maintained conditions in the ID setting:

�S2 =
� � [Q3(c0) + � Q4(c0) ]

k2
=
� � Q0 [ g

2 + � g3 ]

k2

=
�Q0 � g

2 [ 1 + � g ]

k2
=
�Q0 � g [ 1 + � g ]

k2=g
=
�Q0e� [ 1 + e� ]ek2 . (40)

When Assumption G holds and the ID setting prevails, the PDV of the �rm�s pro�t in
period 2 when it achieves the � cost reduction in that period is:

�S2 = � � [Q3(c0) + � Q4(c0) ] = � �
�
g2Q0 + � g

3Q0
�

= � g2 � Q0 [ 1 + � g ] = �Q0 g e� [ 1 + e� ]. (41)

(40) and (41) imply:

�S2 �
S
2 �K(�S2 ) =

�Q0e� [ 1 + e� ]ek2 �Q0 g e� [ 1 + e� ]� k2
2

"
�Q0e� ( 1 + e� )ek2

#2

=
1ek2
h
�Q0e� ( 1 + e� ) i2 � g � k2

2ek2
�
=

1ek2
h
�Q0e� ( 1 + e� ) i2 h g � g

2

i

=
g
h
�Q0e� ( 1 + e� ) i2

2ek2 . (42)

(19) and (42) imply:

�S1 =
1

k1

�
� [Q1(c0) + � Q2(c0) ]� �

�
�S2 �

S
2 �K(�S2 )

� 	

=
1

k1

8><>:�Q0 [ 1 + � g ]� �
g
h
�Q0e� ( 1 + e� ) i2

2ek2
9>=>;

=
1

k1

8><>:�Q0 [ 1 + e� ]� � g
h
�Q0e� ( 1 + e� ) i2

2ek2
9>=>;

11



=
1

k1

(
�Q0 [ 1 + e� ]� e�

2ek2
h
�Q0e� ( 1 + e� ) i2)

=
�Q0 [ 1 + e� ]

k1

"
1� (

e� )3
2ek2 �Q0 ( 1 + e� )

#
. (43)

(6) implies that under the speci�ed conditions:

�I2 =
� [Q2(c0) + � Q3(c0) ]

k2
=
�Q0 [ g + � g

2 ]

k2

=
�Q0 g [ 1 + � g ]

k2
=
�Q0 [ 1 + � g ]

k2=g
=
�Q0 [ 1 + e� ]ek2 . (44)

(44) implies:

�I2�Q0 g [ 1 + � g ]�K(�I2) =
�Q0 [ 1 + e� ]ek2 �Q0 g [ 1 + e� ]� k2

2

"
�Q0 ( 1 + e� )ek2

#2

= g ek2 " �Q0 ( 1 + e� )ek2
#2
� k2
2

"
�Q0 ( 1 + e� )ek2

#2

= g ek2 " �Q0 ( 1 + e� )ek2
#2
� g

ek2
2

"
�Q0 ( 1 + e� )ek2

#2

=
g ek2
2

"
�Q0 ( 1 + e� )ek2

#2
=

g

2ek2
h
�Q0 ( 1 + e� ) i2 . (45)

(11) and (45) imply:

�I1 =
1

k1

�
� [Q1(c0) + � Q2(c0) ]� �

�
�I2� g Q0 (1 + g �)�K(�I2)

� 	
=

1

k1

�
�Q0 [ 1 + g � ]� �

g

2ek2
h
�Q0 ( 1 + e� ) i2�

=
1

k1

(
�Q0 [ 1 + e� ]� e�

2ek2
h
�Q0 ( 1 + e� ) i2)

=
�Q0 [ 1 + e� ]

k1

"
1�

e�
2ek2 �Q0 ( 1 + e� )

#
. (46)

(40) and (43) imply:

12



�S1 �
S
2 =

e� [ �Q0 ( 1 + e� ) ]2
k1 ek2

"
1� (

e� )3
2ek2 �Q0 ( 1 + e� )

#
. (47)

(44) and (46) imply:

�I1 �
I
2 =

[�Q0 ( 1 + e� ) ]2
k1 ek2

"
1�

e�
2ek2 �Q0 ( 1 + e� )

#
. (48)

(25), (40), (43), and (47) imply:

�S = �S1 + �
S
2 � �S1 �S2

=
�Q0 [ 1 + e� ]

k1

"
1� (

e� )3
2ek2 �Q0 ( 1 + e� )

#
+
�Q0e� [ 1 + e� ]ek2

�
e� [ �Q0 ( 1 + e� ) ]2

k1 ek2
"
1� (

e� )3
2ek2 �Q0 ( 1 + e� )

#
. (49)

(25), (44), (46), and (48) imply:

�I = �I1 + �
I
2 � �I1 �I2

=
�Q0 [ 1 + e� ]

k1

"
1�

e�
2ek2 �Q0 ( 1 + e� )

#
+
�Q0 [ 1 + e� ]ek2

� [ �Q0 ( 1 + e� ) ]2
k1 ek2

"
1�

e�
2ek2 �Q0 ( 1 + e� )

#
. (50)

(49) and (50) imply:

�S � �I =
e�

2 k1 ek2
h
�Q0 ( 1 + e� ) i2 [ 1� (e� )2 ] � �Q0 [ 1 + e� ]ek2 [ 1� e� ]

+

h
�Q0 ( 1 + e� ) i2

k1 ek2 [ 1� e� ]�
h
�Q0 ( 1 + e� ) i3

k1 ek2
e�
2ek2 [ 1� (e� )3 ]

s
=

e�
2 k1 ek2 �Q0 [ 1 + e� ] [ 1� (e� )2 ]� 1�

e�ek2
+
�Q0 [ 1 + e� ] [ 1� e� ]

k1 ek2 �

h
�Q0 ( 1 + e� ) i2
2 k1 (ek2 )2 e� [ 1� (e� )3 ]

13



= �Q0 [ 1 + e� ] ( e� [ 1� (e� )2 ]
2 k1 ek2 +

1� e�
k1 ek2 �

e� [ 1� (e� )3 ]
2 k1 (ek2 )2 �Q0 [ 1 + e� ])� 1� e�ek2

s
= �Q0 [ 1 + e� ] ne� [ 1� (e� )2 ]ek2 + 2 [ 1� e� ]ek2 � e� [ 1� (e� )3 ] �Q0 [ 1 + e� ]o

� 2 k1 ek2 [ 1� e� ]
s
= �Q0 [ 1 + e� ] n [e� � (e� )3 + 2 � 2e� ]ek2 � e� [ 1 + e� ] [ 1� (e� )3 ] �Q0 o

� 2 k1 ek2 [ 1� e� ]
s
= �Q0 [ 1 + e� ] n [ 2 � e� � (e� )3 ]ek2 � e� [ 1 + e� ] [ 1� (e� )3 ] �Q0 o

� 2 [ 1� e� ] k1 ek2 . � (51)

Proposition 3. Suppose Assumption G with g = 1 and Assumption K with  = 2 holds.

Then �S > �I in the NID setting if �Q0 >
p
k1 k2 .

Proof of Proposition 3. When g = 1, the �rst term in GNID (as de�ned below (26)) is:

�Q0
� �
2 + 4 � + �2

�
k2 �

�
3 + 3 � + �2

�
��Q0

�
> �Q0

� �
2 + 4 � + �2

�
Q (1 + �)��

�
3 + 3 � + �2

�
��Q0

�
(52)

= [�Q0 ]
2 � �2 + 4 � + �2� (1 + �)� �3 + 3 � + �2� � �

= [�Q0 ]
2 � 2 + 4 � + �2 + �2 + 4 � + �2� � � �3 + 3 � + �2� � �

= [�Q0 ]
2 � 2 + 4 � + �2 + (� 1 + �) � �

= [�Q0 ]
2 � 2 + 4 � + �2 � � + �2 � = �2 (Q0)

2 � 2 + 3 � + 2 �2 � . (53)

The inequality in (52) re�ects the maintained assumption that for t 2 f2; 3g, K 0
2(1) = k2 >

� [Qt(c0) + � Qt+1(c0) ] = � [ 1 + � ]Q0 ) Q0 <
k2

[ 1+ � ]�
. (53) and Lemma 3 imply that

�S > �I if:

�2 (Q0)
2 � 2 + 3 � + 2 �2 � > 2 k1 k2 , , �Q0 >

r
2 k1 k2

2 + 3 � + 2 �2
. (54)

The inequality in (54) holds if �Q0 >
p
k1 k2 because 2 + 3 � + 2 �

2 > 2.

Let Q denote Q0 in the ensuing analysis. Then Lemma 3 implies that when g = 1,
�S > �I in the ID setting if:

14



� � [ 1 + � ] �Q
� �
2� � � �3

�
k2 �� � [ 1 + � ]

�
1� �3

�
Q
	

� 2 [ 1� � ] k1 k2 > 0 . (55)

The maintained assumption thatK 0
2(1) > max f� [Q2(c0) + � Q3(c0) ] ; � [Q3(c0)+� Q4(c0) ] g

implies that Q � k2
[ 1+ � ]�

in the present setting, which, in turn, implies:

� � [ 1 + � ] �Q
� �
2� � � �3

�
[ 1 + � ] �Q�� � [ 1 + � ]

�
1� �3

�
Q
	
� 2 [ 1� � ] k1 k2

= [ 1 + � ]2 [ �Q ]2
�
2� � � �3 � �

�
1� �3

� �
� 2 [ 1� � ] k1 k2

= [ 1 + � ]2 [ �Q ]2
�
2� � � �3 � � + �4

�
� 2 [ 1� � ] k1 k2

= [ 1 + � ]2 [ �Q ]2
�
2 (1� �)� �3 (1� �)

�
� 2 [ 1� � ] k1 k2

= [ 1 + � ]2 [ 1� � ]
�
2� �3

�
[ �Q ]2 � 2 [ 1� � ] k1 k2

> 0 if [ 1 + � ]2 [ 1� � ]
�
2� �3

�
[ �Q ]2 > 2 [ 1� � ] k1 k2

, [ 1 + � ]2
�
2� �3

�
[ �Q ]2 > 2 k1 k2

, Q2 >
2 k1 k2

�2 [ 1 + � ]2
�
2� �3

� , �Q >

s
2 k1 k2

[ 1 + � ]2
�
2� �3

� . (56)

De�ne g(�) � [ 1 + � ]2
�
2� �3

�
. The conclusion in the Proposition follows from (55)

and (56) if g(�) � 2 for all � 2 (0; 1). Observe that:
g(0) = 2 ; g(1) = 4 ; and

g0(�) = � 3 �2 [ 1 + � ]2 + 2
�
2� �3

�
[ 1 + � ]

= [ 1 + � ]
�
2
�
2� �3

�
� 3 �2 [ 1 + � ]

	
= [ 1 + � ]

�
4� 3 �2 � 5 �3

�
) g0(0) = 4 and g0(1) = � 8 . (57)

(57) implies:

g00(�) = � [ 1 + � ]
�
6 � + 15 �2

�
+ 4� 3 �2 � 5 �3

= 4� 3 �2 � 5 �3 � 6 � � 15 �2 � 6 �2 � 15 �3 = 4� 6 � � 24 �2 � 20 �3 . (58)

(57) and (58) imply that: (i) g(0) = 2 < 4 = g(1); (ii) g(�) is increasing for small �;
and (ii) g(�) is decreasing for large �. Consequently, g(�) � 2 for all � 2 (0; 1). �

Proposition 4. Suppose Assumption G with g = 1 and Assumption K with  = 2 holds.

Then �S > �I in the ID setting if g
�
1 + g �2

�
< 1 and �Q0 [ 1 + g � ] is su¢ ciently close

to k1 = k2.
15



Proof of Proposition 4. Lemma 3 implies that �S > �I in the ID setting when k1 = k2 =
�Q0 [ 1 + g � ] if:

[ 1 + � g ] �Q0

��
2� � g � (� g)3

� k2
g
�� g � [ 1 + g � ]

�
1� (g �)3

�
Q0

�
> 2 [ 1� g � ] k1

k2
g

(59)

, k1

��
2� � g � (� g)3

� k1
g
� k1 g �

�
1� (g �)3

��
> 2

1

g
[ 1� g � ] [ k1 ]2 (60)

,
�
2� � g � (� g)3

� 1
g
[ k1 ]

2 � [ k1 ]2 g �
�
1� (g �)3

�
> 2

1

g
[ 1� g � ] [ k1 ]2

, 1

g

�
2� � g � (� g)3 � 2 (1� g �)

�
[ k1 ]

2 � [ k1 ]2 g �
�
1� (g �)3

�
> 0

, 1

g

�
2� � g � (� g)3 � 2 (1� g �)

�
� g �

�
1� (g �)3

�
> 0

, 1

g

�
2� � g � (� g)3 � 2 + 2 g �

�
� g �

�
1� (g �)3

�
> 0

, 1

g

�
� g � (� g)3

�
� g �

�
1� (g �)3

�
> 0

, � � �3 g2 � g � + (g �)4 > 0 , 1� �2 g2 � g + g4 �3 > 0 . (61)

(60) re�ects the assumption that k1 = k2 = �Q0 [ 1 + g � ]. The last inequality in (61)
holds because 1� �2 g2 � g = 1� g

�
1 + g �2

�
> 0, by assumption.

The inequality in (59) will continue to hold when k1 = k2 is increased marginally to
ensure that �Q0 [ 1 + g � ] < min fk1; k2 g. �

Proposition 5. EdfW Sg > EdfW Ig in the NID setting if �S > �I .

Proof of Proposition 5. Under the speci�ed conditions, when the �rm operates under SR in
the NID setting: (i) p1 = p2 = c0; (ii) p3 = p4 = p5 = p6 = c0 if the �rm never achieves a cost
reduction; and (iii) p3 = p4 = p5 = p6 = c0 � � if the �rm ever achieves a cost reduction.
Therefore, the PDV of expected consumer surplus under SR in this setting is:

EdfW Sg = W1(c0) + � W2(c0)

+ �S
�
�2W3(c0 ��) + �3W4(c0 ��) + �4W5(c0 ��) + �5W6(c0 ��)

�
+
�
1� �S

� �
�2W3(c0) + �

3W4(c0) + �
4W5(c0) + �

5W6(c0)
�

= W1(c0) + � W2(c0) + �
2W3(c0) + �

3W4(c0) + �
4W5(c0) + �

5W6(c0)
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+ �S �2 [W3(c0 ��)�W3(c0) ] + �
S �3 [W4(c0 ��)�W4(c0) ]

+ �S �4 [W5(c0 ��)�W5(c0) ] + �
S �5 [W6(c0 ��)�W6(c0) ] . (62)

Under the speci�ed conditions, when the �rm operates under IRIS: (i) p1 = p2 = c0; (ii)
p5 = p6 = c0 if the �rm never achieves success; (iii) p5 = p6 = c0�� if the �rm ever achieves
success; (iv) p3 = c0 �� if the �rm achieves success in period 1; (v) p3 = c0 if the �rm does
not achieve success in period 1; (vi) p4 = c0 � � if the �rm achieves success (in period 1
or period 2); and (vii) p4 = c0 if the �rm does not achieve success. Therefore, the PDV of
expected consumer surplus under IRIS in this setting is:

EdfW Ig = W1(c0) + � W2(c0) + �
I
1 �

2W3(c0 ��) +
�
1� �I1

�
�2W3(c0)

+ �I �3W4(c0 ��) + �3
�
1� �I

�
W4(c0) + �I�4W5(c0 ��)

+ �4
�
1� �I

�
W5(c0) + �

I�5W6(c0 ��) + �5
�
1� �I

�
W6(c0)

= W1(c0) + � W2(c0) + �
2W3(c0) + �

3W4(c0) + �
4W5(c0) + �

5W6(c0)

+ �I1 �
2 [W3(c0 ��)�W3(c0) ] + �

3�I [W4(c0 ��)�W4(c0) ]

+ �4�I [W5(c0 ��)�W5(c0) ] + �
5�I [W6(c0 ��)�W6(c0) ] : (63)

(62) and (63) imply:

EdfW Sg � EdfW Ig =
�
�S � �I1

�
�2 [W3(c0 ��)�W3(c0) ]

+
�
�S � �I

�
f �3 [W4(c0 ��)�W4(c0) ] + �

4 [W5(c0 ��)�W5(c0) ]

+ �5 [W6(c0 ��)�W6(c0) ] g. (64)

If �S > �I , then �S > �I1. Consequently, (64) implies that EdfW Sg > EdfW Ig when
�S > �I (because � > 0, by assumption). �

Proposition 6. Suppose Assumptions G and K hold. Then EdfW Sg > EdfW Ig in the
NID setting if e� [ 1 + e� ] 1

�1 < 1.3

Proof of Proposition 6. (6) and (7) imply that under the speci�ed conditions:

k2
�
�S2
��1

= � g Q0 ) �S2 =

�
� g Q0
k2

� 1
� 1

=

�
�Q0ek2

� 1
� 1

and

k2
�
�I2
��1

= �
�
g Q0 + g

2 � Q0
�

3Recall that e� � g �.
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) �I2 =

24 �Q0 g
�
1 + e��

k2

35
1

� 1

=

24 �Q0
�
1 + e��ek2

35
1

� 1

) �I2 = [ 1 + e� ] 1
�1

�
�Q0ek2

� 1
� 1

= �S2 [ 1 +
e� ] 1

�1 . (65)

When Assumption G holds, Wt(p) = gWt(p). Therefore, (64) implies:

EdfW Sg > EdfW Ig if �S � �I1 +
�
�S � �I

�
[e� + e�2 + e�3 ] > 0 . (66)

First suppose that �S � �I . Proposition 2 implies that �S > �I1. Therefore, (66) implies
that EdfW Sg > EdfW Ig when �S � �I .

Now suppose that �S < �I . (66) holds in this case if:

�S � �I1 +
�
�S � �I

�
[e� + e�2 + e�3 + e�4 + : : : ] > 0

, �S � �I1 +
�
�S � �I

� e�
1� e� > 0

,
�
�S � �I1

� h
1� e� i+ e� ��S � �I � > 0

,
h
1� e� i ��S1 + �S2 �1� �S1 �� �I1�

+ e� ��S1 + �S2 �1� �S1 �� ��I1 + �I2 � 1� �I1 �� � > 0

, �S1 + �
S
2

�
1� �S1

�
� �I1 � e� ��S1 + �S2 �1� �S1 �� �I1 �

+ e� ��S1 + �S2 �1� �S1 �� ��I1 + �I2 � 1� �I1 � � � > 0

, �S1 + �
S
2

�
1� �S1

�
� �I1 � e� �I2 � 1� �I1 � > 0

, �
�
1� �S1

�
+ �S2

�
1� �S1

�
+ 1� �I1 � e� �I2 � 1� �I1 � > 0

,
�
1� �I1

� h
1� e� �I2 i� � 1� �S1 � � 1� �S2 � > 0 . (67)

Proposition 2 implies:
1� �I1 > 1� �S1 . (68)

(65) implies that when e� [ 1 + e� ] 1
�1 < 1:

�S2 � e� �I2 = �S2 � e� �S2 [ 1 + e� ] 1
�1 = �S2

�
1� e� �1 + e�� 1

�1
�
> 0

) �S2 > e� �I2 ) 1� e� �I2 > 1� �S2 . (69)
18



(68) and (69) imply that the inequality in (67) holds. �

Corollary to Proposition 6. Suppose Assumptions G and K hold. Then EdfW Sg >
EdfW Ig in the NID setting if  � 2.

Proof of the Corollary to Proposition 6.

The Corollary follows directly from Proposition 6 because e� [ 1 + e� ] 1
�1 < 1 under the

speci�ed conditions. This is the case because:e� [ 1 + e� ] 1
�1 � e� [ 1 + e� ] < 1 .

The �rst inequality here holds because  � 2, by assumption. The last inequality here holds
because e� = g � <

be� in the NID setting and because be� [ 1 + be� ] = 1, by de�nition. (Recall
the proof of the Corollary to Lemma 2.) �

Proposition 7. Suppose Assumption K holds, Assumption G with g = 1 holds, and � > be�.
Then EdfW Ig > EdfW Sg when � is su¢ ciently large (in the ID setting).

Proof of Proposition 7. Lemma 2 implies that when the �rm operates under SR in the
ID setting: (i) p1 = p2 = c0; (ii) p5 = p6 = c0 if the �rm never achieves success;4 (iii)
p5 = p6 = c0 �� if the �rm ever achieves success; (iv) p3 = p4 = c0 �� if the �rm achieves
success in period 1; and (v) p3 = p4 = c0 if the �rm does not achieve success in period 1.
Therefore, expected consumer surplus under SR in this setting is:

EdfW Sg = W1(c0) + � W2(c0) + �
S
1

�
�2W3(c0 ��) + �3W4(c0 ��)

�
+
�
1� �S1

� �
�2W3(c0) + �

3W4(c0)
�
+
�
1� �S

� �
�4W5(c0) + �

5W6(c0)
�

+ �S
�
�4W5(c0 ��) + �5W6(c0 ��)

�
= W1(c0) + � W2(c0) + �

2W3(c0) + �
3W4(c0) + �

4W5(c0) + �
5W6(c0)

+ �2 �S1 [W3(c0 ��)�W3(c0) ] + �
3 �S1 [W4(c0 ��)�W4(c0) ]

+ �4�S [W5(c0 ��)�W5(c0) ] + �
5�S [W6(c0 ��)�W6(c0) ] . (70)

(63) and (70) imply that in the ID setting:

EdfW Sg � EdfW Ig = �2
�
�S1 � �I1

�
[W3(c0 ��)�W3(c0) ]

+ �3
�
�S1 � �I

�
[W4(c0 ��)�W4(c0) ]

4The �rm achieves �success�when it achieves the � cost reduction.
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+ �4
�
�S � �I

�
[W5(c0 ��)�W5(c0) ]

+ �5
�
�S � �I

�
[W6(c0 ��)�W6(c0) ]

s
=
�
�S1 � �I1

�
[W3(c0 ��)�W3(c0) ] + �

�
�S1 � �I

�
[W4(c0 ��)�W4(c0) ]

+ �2
�
�S � �I

�
[W5(c0 ��)�W5(c0) ] + �

3
�
�S � �I

�
[W6(c0 ��)�W6(c0) ] : (71)

De�ne Q0 � Q(c0). (6) implies that under the speci�ed conditions:

k2
�
�I2
��1

= �
�
g Q0 + g

2 � Q0
�
) �I2 =

�
�Q0 g (1 + g �)

k2

� 1
� 1

. (72)

(7) implies that under the maintained conditions:

k2
�
�S2
��1

= � �
�
g2Q0 + g

3 � Q0
�
) �S2 =

�
�Q0 � g

2 (1 + g �)

k2

� 1
� 1

) �S2 = (� g)
1

�1

�
�Q0 g (1 + g �)

k2

� 1
� 1

= �I2 (� g)
1

� 1 . (73)

De�ne �Lim2 �
�
2�Q0
k2

� 1
�1
. Then (72) and (73) imply that under the speci�ed conditions:

�I2 =

�
�Q0 [ 1 + � ]

k2

� 1
�1

! �Lim2 as � ! 1 and

�S2 =

�
�Q0 � [ 1 + � ]

k2

� 1
�1

! �Lim2 as � ! 1

) lim
�! 1

�
�I2 � �S2

�
= 0 . (74)

De�ne �Lim1 �
�
2�Q0�[ 2�Lim2 �Q0�K2(�

Lim
2 ) ]

k1

� 1
�1

. (9), (11), and (74) imply that under

the speci�ed conditions:

�S1 =

 
�Q0 [ 1 + � ]� �

�
�S2 �Q0 � (1 + � )�K2(�

S
2 )
�

k1

! 1
�1

!
 
2�Q0 �

�
2�Lim2 �Q0 �K2(�

Lim
2 )

�
k1

! 1
�1

= �Lim1 as � ! 1 ;

�I1 =

 
�Q0 [ 1 + � ]� �

�
�I2�Q0 (1 + � )�K2(�

I
2)
�

k1

! 1
�1
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!
 
2�Q0 �

�
2�Lim2 �Q0 �K2(�

Lim
2 )

�
k1

! 1
�1

= �Lim1 as � ! 1

) lim
�! 1

�
�I1 � �S1

�
= 0 . (75)

(74) and (75) imply:
lim
�! 1

�
�I � �S

�
= 0 : (76)

(71), (75), and (76) imply:

lim
�! 1

�
EdfW Sg � EdfW Ig

�
= lim

�! 1
�2
�
�S1 � �I1

�
[W3(c0 ��)�W3(c0) ]

+ lim
�! 1

�3
�
�S1 � �I

�
[W4(c0 ��)�W4(c0) ]

+ lim
�! 1

�4
�
�S � �I

�
[W5(c0 ��)�W5(c0) ]

+ lim
�! 1

�5
�
�S � �I

�
[W6(c0 ��)�W6(c0) ]

= lim
�! 1

�3
�
�S1 � �I

�
[W4(c0 ��)�W4(c0) ]

< lim
�! 1

�3
�
�S � �I

�
[W4(c0 ��)�W4(c0) ] = 0 .

The inequality here holds because, from (25), �S = �S1 + �
S
2

�
1� �I1

�
> �S1 . �

Proposition 8. Suppose Assumption K holds, Assumption G holds, and e� � be�. Then
EdfW Ig > EdfW Sg for su¢ ciently large k1 (in the ID setting).

Proof of Proposition 8. (75) implies that under the speci�ed conditions:

lim
k1!1

�S1 = 0 and lim
k1!1

�I1 = 0 : (77)

(71) implies that under the speci�ed conditions:

EdfW Sg � EdfW Ig = �2
�
�S1 � �I1

�
DW3(c0;�) + �

3
�
�S1 � �I

�
DW4(c0;�)

+ �4
�
�S � �I

�
DW5(c0;�) + �

5
�
�S � �I

�
DW6(c0;�) (78)

where DWt(c0;�) = Wt(c0 � �) �Wt(c0) = gt�1DW1(c0;�) > 0 for t 2 f1; :::; 6g. (78)
implies:

EdfW Sg � EdfW Ig = A(k1)DW1(c0;�)

where A(k1) � e�2 ��S1 � �I1 �+ e�3 ��S1 � �I �+ e�4 ��S � �I �+ e�5 ��S � �I � . (79)

21



@DW1(c0;�)
@k1

= 0. Therefore, (79) implies:

lim
k1!1

�
EdfW Ig � EdfW Sg

�
> 0 if lim

k1!1
A(k1) < 0 :

(79) implies that limk1!1 A(k1) < 0 if: (i) limk1!1
�
�S1 � �I1

�
= 0 ; (ii) limk1!1

�
�S1 � �I

�
< 0 ; and (iii) limk1!1

�
�S � �I

�
< 0. We complete the proof by showing that (i), (ii),

and (iii) hold.

(77) implies that limk1!1
�
�S1 � �I1

�
= 0.

(25) and (77) imply:

lim
k1!1

�
�S1 � �I

�
= lim

k1!1

�
�S1 � �I1 �

�
1� �I1

�
�I2
�
= � lim

k1!1
�I2 = ��I2 < 0 :

(25) and (77) also imply:

lim
k1!1

�
�S � �I

�
= lim

k1!1

�
�S1 +

�
1� �S1

�
�S2 � �I1 �

�
1� �I1

�
�I2
�

= lim
k1!1

�
�S2 � �I2

�
= �S2 � �I2 < 0 .

The inequality here re�ects Proposition 1. �

Proposition 9. Suppose Assumption K with  = 2 holds and Assumption G holds. Then

EdfW Ig > EdfW Sg when �Q0 is su¢ ciently small or k1 = k2 � k is su¢ ciently large in

the ID setting.

Proof of Proposition 9. De�ne ek2 � k2
g
, x � �Q0ek2 = � g Q0

k2
, and e� � g �. (40) and (44)

imply that under the maintained assumptions:

�S2 =
�Q0 g

2 � [ 1 + g � ]

k2
= x g � [ 1 + g � ] = xe� [ 1 + e� ] and (80)

�I2 =
� g Q0 [ 1 + g � ]

k2
= x [ 1 + � g ] = x [ 1 + e� ]. (81)

(46) and (81) imply:

�I1 =
� [ 1 + g � ]Q0 � �

�
g (1 + g �)�Q0 �

I
2 �K2(�

I
2)
�

k1

=
� [ 1 + g � ]Q0 � �

h
k2
�
�I2
�2 � k2

2

�
�I2
�2 i

k1
=

� [ 1 + g � ]Q0 � �
�
k2(�I2)

2

2

�
k1
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=

� [ 1 + g � ]Q0 � � g
� ek2(�I2)2

2

�
k1

=
� [ 1 + e� ]Q0

k1
� e� ek2

k1

" �
�I2
�2
2

#

=
� [ 1 + e� ]Q0ek2

ek2
k1
� e� ek2

k1

" �
�I2
�2
2

#
. (82)

(81) and (82) imply:

�I1 = �I2
ek2
k1
� e� ek2

k1

�
�I2
�2
2

=
ek2
k1
�I2

"
1�

e�
2
�I2

#

= x
ek2
k1
[ 1 + e� ] " 1� e�

2
x
�
1 + e��# . (83)

(41) �(43) imply:

�S1 =
� [ 1 + g � ]Q0 � �

�
g2 � (1 + g �)�Q0 �

S
2 �K2(�

S
2 )
�

k1

=
� [ 1 + e� ]Q0 � � h k2 ��S2 �2 � k2

2

�
�S2
�2 i

k1

=
� [ 1 + e� ]Q0 � � � k22 (�S2 )2 �

k1
=
� [ 1 + e� ]Q0 � � g h ek22 ��S2 �2 i

k1

=
� [ 1 + e� ]Q0 � e� h ek22 (�S2 )2 i

k1
=
� [ 1 + e� ]Q0ek2

ek2
k1
� e� ek2

k1

�
1

2

�
�S2
�2 �

= [ 1 + e� ]x ek2
k1
� e� ek2

k1

�
1

2

�
�S2
�2 �

= x [ 1 + e� ] ek2
k1
�
e�
2

ek2
k1

h �
1 + e� �e� x i2 = ek2

k1
x [ 1 + e� ]

24 1� e�3
�
1 + e��
2

x

35 : (84)

(25), (80), (81), (83), and (84) imply:

�I = �I1 +
�
1� �I1

�
�I2 =

ek2
k1
x [ 1 + e� ] " 1� e�

2
x ( 1 + e� )#

+

"
1�

ek2
k1
x
�
1 + e�� 1� e�

2
x [ 1 + e� ]!# x [ 1 + e� ] ; (85)

�S = �S1 +
�
1� �S1

�
�S2 =

ek2
k1
x [ 1 + e� ] " 1� e�3 ( 1 + e� )

2
x

#
23



+

"
1�

ek2
k1
x
�
1 + e�� 1� e�3 [ 1 + e� ]

2
x

!#
[ 1 + e� ] e� x . (86)

(71) implies that in the ID setting:

EdfW Ig � EdfW Sg s
=
�
�I1 � �S1

�
DW3 + �

�
�I � �S1

�
DW4

+ �2
�
�I � �S

�
DW5 + �

3
�
�I � �S

�
DW6 (87)

where DWt � Wt(c0 � �) � Wt(c0) > 0. Assumption G implies that DWt = g DW (t�1).
Therefore, (87) implies:

EdfW Ig � EdfW Sg s
=
�
�I1 � �S1

�
DW3 + g �

�
�I � �S1

�
DW3

+ [ g � ]2
�
�I � �S

�
DW3 + [ g � ]

3 ��I � �S �DW3

s
= �I1 � �S1 + e� ��I � �S1 �+ e� 2 ��I � �S �+ e� 3 ��I � �S � (88)

where e� � � g. (88) implies:

EdfW Ig > EdfW Sg if

�I1 � �S1 + e� ��I � �S1 �+ e�2 ��I � �S �+ e�3 ��I � �S � > 0 : (89)

(83) �(86) and (89) imply that EdfW Ig > EdfW Sg if:

ek2
k1
x [ 1 + e� ] " 1� e�

2
x
�
1 + e��#� ek2

k1
x [ 1 + e� ]

24 1� e�3
�
1 + e��
2

x

35
+ e�( ek2

k1
x [ 1 + e� ] " 1� e�

2
x
�
1 + e�� #

+

"
1�

ek2
k1
x
�
1 + e�� 1� e�

2
x
h
1 + e� i! # x [ 1 + e� ]

�
ek2
k1
x [ 1 + e� ]

24 1� e�3
�
1 + e��
2

x

359=;
+
he�2 + e�3 i( ek2

k1
x [ 1 + e� ] " 1� e�

2
x
�
1 + e��#

+

"
1�

ek2
k1
x
�
1 + e�� 1� e�

2
x
h
1 + e� i!#x [ 1 + e� ]
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�
ek2
k1
x [ 1 + e� ]

24 1� e�3
�
1 + e��
2

x

35

�

24 1� ek2
k1
x
�
1 + e��

0@1� e�3
h
1 + e� i
2

x

1A35 [ 1 + e� ]e� x
9=; > 0 (90)

,
ek2
k1

"
1�

e�
2
x
�
1 + e��#� ek2

k1

"
1�

e�3 [ 1 + e� ]
2

x

#

+ e� " ek2
k1

 
1�

e�
2
x
h
1 + e� i!+ 1� ek2

k1
x
�
1 + e�� 1� e�

2
x
h
1 + e� i!

�
ek2
k1

0@1� e�3
h
1 + e� i
2

x

1A35
+
he�2 + e�3 i( ek2

k1

"
1�

e�
2
x
�
1 + e��#+ 1�

ek2
k1
x [ 1 + e� ] " 1� e�

2
x
�
1 + e��#

�
ek2
k1

24 1� e�3
�
1 + e��
2

x

35� e�
24 1� ek2

k1
x
�
1 + e��

0@1� e�3
h
1 + e� i
2

x

1A359=; > 0 (91)

,
ek2
k1

e�3 [ 1 + e� ]
2

x�
ek2
k1

e�
2
x [ 1 + e� ]

+ e�
24� e�

2

ek2
k1
x
�
1 + e��+ 1� ek2

k1
x
�
1 + e��  1� e�

2
x
h
1 + e� i!+ ek2

k1

e�3 �1 + e��
2

x

35
+
he�2 + e�3 i(� ek2

k1

e�
2
x [ 1 + e� ] + 1� ek2

k1
x [ 1 + e� ] " 1� e�

2
x
�
1 + e��#

+
ek2
k1

e�3 [ 1 + e� ]
2

x� e�
24 1� ek2

k1
x
�
1 + e��

0@1� e�3
h
1 + e� i
2

x

1A359=; > 0 :

(92)
(91) re�ects the fact that x [ 1 + e� ] > 0.

As x � �Q0ek2 ! 0, the inequality in (92) becomes:

e� + [e�2 + e�3 ] [ 1� e� ] > 0 . (93)

The inequality in (93) holds because Assumption G implies that e� < 1. Therefore, EdfW Ig >
25



EdfW Sg when �Q0 is su¢ ciently small.

Finally, suppose k1 = k2 � k, so
ek2
k1
= 1

g
. As k ! 1, x � � g Q0

k
! 0 and the inequality

in (92) becomes the inequality in (93). Because this inequality holds, EdfW Ig > EdfW Sg
when k is su¢ ciently large. �

Proposition 10. Suppose Assumption K with  = 2 holds, Assumption G holds, k2 � k1 g,
and e� > be�. Then EdfW Sg > EdfW Ig when e� is su¢ ciently close to be� and �Q0 g [ 1+

be� ]
k2

is

su¢ ciently close to 1 (in the ID setting).

Proof of Proposition 10. Recall from the proof of the Corollary to Lemma 2 that be� is the
value of g � for which:

g � [ 1 + g � ] = (g �)2 + � g = 1 : (94)

Initially suppose that � g = be� and �Q0 [ 1+
be� ]

k2
= 1. Then (81) implies that under the

speci�ed conditions:

�I2 =
�Q0 g [ 1 +

be� ]
k2

= 1 . (95)

(71) implies that under the speci�ed conditions:

EdfW Sg � EdfW Ig = AD DW

where AD � [ g � ]2
�
�S1 � �I1

�
+ [ g � ]3

�
�S1 � �I

�
+ [ g � ]4

�
�S � �I

�
+ [ g � ]5

�
�S � �I

�
and

DW � W (c0 ��)�W (c0) > 0 . (96)

We will show that EdfW Sg > EdfW Ig by showing that AD > 0 when �Q0 g [ 1+
be� ]

k2
= 1 and

� g =
be�. The continuity of EdfW Sg�EdfW Ig then ensures that EdfW Sg > EdfW Ig when

� is su¢ ciently close to be� and �Q0 g [ 1+
be� ]

k
is less than, but su¢ ciently close to, 1.

(82) and (95) imply that under the speci�ed conditions:

�I1 =
�Q0 [ 1 + g � ]� �

�
�I2�Q0 g (1 + � g)�K2(�

I
2)
�

k1

=
�Q0 [ 1 + g � ]� � [ �Q0 g (1 + � g)�K2(1) ]

k1

=
�Q0 [ 1 + g � ]� �

�
�Q0 g (1 + g �)� k2

2

�
k1

=
�Q0 [ 1 + g � ] [ 1� g � ] + �

�
k2
2

�
k1

=

�
k2
k1

�
�Q0 [ 1 + g � ] [ 1� g � ] + �

�
k2
2

�
k2
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=

�
k2
k1

�
�Q0 [ 1 + g � ] [ 1� g � ]

k2
+

�
k2
k1

�
�

2

=
k2
k1

�
1

g
� � + �

2

�
=
k2
k1

�
1

g
� �
2

�
. (97)

The penultimate equality in (97) follows from (95) because � g = be�, by assumption.
(80) and (95) imply that when � g = e� under the speci�ed conditions:

�S2 =
�Q0 � g

2 [ 1 + g � ]

k2
= � g = e� : (98)

(84), (95), and (98) imply that when � g = be� under the speci�ed conditions:
�S1 =

�Q0 [ 1 + � g ]� �
�
�S2 �Q0 g

2 � (1 + g �)�K2(�
S
2 )
�

k1

=

�
k2
k1

�
�Q0 [ 1 + g � ]� �

�
�S2 �Q0 � g

2 (1 + g �)�K2(�
S
2 )
�

k2

=
k2
k1

"
1

g
�
�
�
�S2 �Q0 � g

2 (1 + g �)�K2(�
S
2 )
�

k2

#

=
k2
k1

"
1

g
�
�
�
��Q0 � g

2 (1 + g �)� k2
2
�2g2

�
k2

#

=
k2
k1

"
1

g
� � [ ��Q0 � g

2 (1 + g �) ]

k2
+

k2
2
�3 g2

k2

#
=
k2
k1

"
1

g
� �3 g +

k2
2
�3 g2

k2

#

=
k2
k1

�
1

g
� �3 g + 1

2
�3 g2

�
=
k2
k1

�
1

g
� 1
2
�3 g2

�

=
k2
g k1

�
1� 1

2
(e� )3 � < 1 . (99)

The inequality in (99) holds because e� < 1 and k2
g k1

� 1, by assumption.

(96) implies that when � g = be� and e� = g �:
AD

s
= �S1 � �I1 + e� ��S1 � �I �+ e� 2 ��S � �I �+ e� 3 ��S � �I � > 0

if �S1 � �I1 + e� ��S1 � �I �+ e� 2 ��S1 � �I �+ e� 3 ��S1 � �I � > 0

, �S1 � �I1 + e� ��S1 � 1 �+ e� 2 ��S1 � 1 �+ e� 3 ��S1 � 1 � > 0 . (100)
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The last equivalence here holds because �I = 1 when �I2 = 1 (from (95)).

Observe that when � g = be�:
�S1 � �I1 + e� ��S1 � 1 �+ e�2 ��S1 � 1 �+ e�3 ��S1 � 1 �
= �S1 � �I1 � e� � 1� �S1 � 2X

t=0

e� t = �S1 � �I1 � e� � 1� �S1 �
"
1� e�3
1� e�

#

= �S1 � �I1 � e� � 1� �S1 � [ 1� e� ] [ e�2 + e� + 1 ]
1� e�

= �S1 � �I1 � e� � 1� �S1 � h e�2 + e� + 1 i = �S1 � �I1 � 2 e� � 1� �S1 � . (101)

The last equality in (101) re�ects (94). (100) and (101) imply:

AD > 0 if �S1 � �I1 > 2 e� � 1� �S1 �
, k2

k1

�
1

g
� 1
2
�3 g2 �

�
1

g
� �
2

��
> 2 e� � 1� k2

k1

�
1

g
� 1
2
�3 g2

��

, �

2
� 1
2
�3g2 > 2 e� � k1

k2
�
�
1

g
� 1
2
�3 g2

��

, � g

2
� 1
2
�3g3 > 2 e� � k1 g

k2
�
�
1� 1

2
�3 g3

��

,
e�
2
� 1
2
e�3 > 2 e� � k1 g

k2
�
�
1� 1

2
e�3�� . (102)

Observe that:e�
2
� 1
2
e�3 > 2 e� � 1� �1� 1

2
e�3�� ,

e�
2
� 1
2
e�3 > 2 e� � 1

2
e�3 �

,
e�
2
� 1
2
e�3 > e�4 , 1� e�2 > 2e�3 , 1 > e�2 + 2 e�3 . (103)

The last inequality in (103) holds because:

e�2 + 2e�3 = e�2 [ 1 + e� ] + e�3 = e� + e�3 = e� [ 1 + e�2 ] < e� [ 1 + e� ] = 1 :

The second and last equalities here re�ect (94).

Because k1 g � k2 by assumption, (102) and (103) imply that AD > 0 when �I2 = 1 and
� g =

be�. �
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Proposition 11. Suppose Assumption K with  = 2 holds, Assumption G holds, and e� � be�.
Then EdfW Sg > EdfW Ig when k2 is su¢ ciently large and �Q0

k1
[ 1 + e� ] is su¢ ciently close

to 1 (in the ID setting).

Proof of Proposition 11. De�ne ek2 � k2
g
, x � � g Q0

k2
= �Q0ek2 , and e� � g �. Recall that

EdfW Sg > EdfW Ig if the inequality in (92) is reversed. Because x ek2 = �Q0, the
inequality in (92) is reversed if:

�Q0
k1

e�3 [ 1 + e� ]
2

� �Q0
k1

e�
2
[ 1 + e� ]

+ e�
24� e�

2

�Q0
k1

�
1 + e��+ 1� �Q0

k1

�
1 + e�� 1� e�

2
x [ 1 + e� ]!+ �Q0

k1

e�3 �1 + e��
2

35
+
he�2 + e�3 i(� �Q0

k1

e�
2
[ 1 + e� ] + 1� �Q0

k1
[ 1 + e� ] " 1� e�

2
x
�
1 + e��#

+
�Q0
k1

e�3 [ 1 + e� ]
2

� e� " 1� �Q0
k1

�
1 + e�� 1� e�3 [ 1 + e� ]

2
x

!#)
< 0 . (104)

x � � g Q0
k2

! 0 as k2 !1. Therefore, as k2 !1, the inequality in (104) holds if:

�Q0
k1

e�3 [ 1 + e� ]
2

� �Q0
k1

e�
2
[ 1 + e� ]

+ e�
24� e�

2

�Q0
k1

�
1 + e��+ 1� �Q0

k1

�
1 + e��+ �Q0

k1

e�3 �1 + e��
2

35
+
he�2 + e�3 i(� �Q0

k1

e�
2
[ 1 + e� ] + 1� �Q0

k1
[ 1 + e� ]

+
�Q0
k1

e�3 [ 1 + e� ]
2

� e� � 1� �Q0
k1

�
1 + e���) < 0 . (105)

De�ne y � �Q0
k1
[ 1 + e� ] . Then the inequality in (105) holds if:

e�
2
y [e�2 � 1 ] + e� " 1 + e�

2
y (e�2 � 1 ) � y #

+
h e�2 + e�3 i " 1� e� + y e�

2
(e�2 � 1 ) � y ( 1� e� )# < 0
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,
e�
2
y [ e�2 � 1 ] + e� " 1� y + e�

2
y (e�2 � 1 )#

+
h e�2 + e�3 i( [ 1� e� ] [ 1� y ] + y e�

2
[e�2 � 1 ]) < 0

,
e�
2
y [ 1� e�2 ] h 1 + e� + e�2 + e�3 i
>
n e� + [e�2 + e�3 ] [ 1� e� ]o [ 1� y ] . (106)

Assumption G requires g < 1
�
) e� = � g < 1. Therefore, the inequality in (106) holds as

y � �Q0
k1
[ 1 + e� ] ! 1. �

Proposition 12. �I1 < �S1 and �
I
2 > �S2 in the setting with innovation persistence.

Proof of Proposition 12. Initially suppose the NID setting prevails, so the �rm always im-
plements an achieved cost reduction immediately.

Under standard rebasing (SR) in this setting, the �rm retains the full bene�t of a cost
reduction that is achieved in period 2 only for that period. Therefore, the �rm�s problem in
period 2, given that it implemented �rst-period success probability �S1 but did not achieve a
cost reduction in period 1, is:

Maximize
�2

�
�2 + ��

S
1

�
�Q2(c0)�K2(�2)

) K 0
2(�

S
2 ) = �Q2(c0) at an interior optimum. (107)

Under IRIS in this setting, the �rm retains the full bene�t of a cost reduction achieved in
period 2 during both period 2 and period 3. Therefore, the �rm�s problem in period 2, given
that it implemented �rst-period success probability �I1 but did not achieve a cost reduction
in period 1, is:

Maximize
�2

�
�2 + ��

I
1

�
� [Q2(c0) + � Q3(c0) ]�K2(�2)

) K 0
2(�

I
2) = � [Q2(c0) + � Q3(c0) ] at an interior optimum. (108)

Under SR, the �rm retains the full bene�t of a cost reduction that is achieved in period
1 both in period 1 and in period 2. Therefore, the �rm�s problem in period 1 under SR in
the NID setting is:

Maximize
�1

�1� [Q1(c0) + � Q2(c0) ]

+ [ 1� �1 ] �
� �
�S2 + ��1

�
�Q2(c0)�K2(�

S
2 )
�
�K1(�1) . (109)
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(109) implies that at an interior solution to this problem:

K 0
1(�

S
1 ) = � [Q1(c0) + � Q2(c0) ]� �

� �
�S2 + ��

S
1

�
�Q2(c0)�K2(�

S
2 )
�

+ � �
�
1� �S1

�
�Q2(c0) . (110)

Under IRIS, the �rm retains for two periods the full bene�t of an achieved cost reduction,
whether the reduction is achieved in period 1 or period 2. Therefore, the �rm�s problem in
period 1 under IRIS is:

Maximize
�1

�1� [Q1(c0) + � Q2(c0) ]

+ [ 1� �1 ] �
� �
�I2 + ��1

�
� [Q2(c0) + � Q3(c0) ]�K2(�

I
2)
	
�K1(�1) . (111)

(111) implies that at an interior solution to this problem:

K 0
1(�

I
1) = � [Q1(c0) + � Q2(c0) ]� �

� �
�I2 + ��

I
1

�
� [Q2(c0) + � Q3(c0) ]�K2(�

I
2)
	

+ � �
�
1� �I1

�
� [Q2(c0) + � Q3(c0) ] . (112)

(107) and (108) imply:

K 0
2(�

I
2) = � [Q2(c0) + � Q3(c0) ] > �Q2(c0) = K 0

2(�
S
2 ) ) �I2 > �S2 . (113)

The implication ()) in (113) re�ects the convexity of K2(�).

To prove that �S1 > �I1, suppose that �
I
1 � �S1 . Then:�

�I2 + ��
I
1

�
� [Q2(c0) + � Q3(c0) ]�K2(�

I
2)

= max
�2

� �
�2 + ��

I
1

�
� [Q2(c0) + � Q3(c0) ]�K2(�2)

	
>
�
�S2 + ��

I
1

�
� [Q2(c0) + � Q3(c0) ]�K2(�

S
2 )

�
�
�S2 + ��

S
1

�
� [Q2(c0) + � Q3(c0) ]�K2(�

S
2 )

>
�
�S2 + ��

S
1

�
�Q2(c0)�K2(�

S
2 ) . (114)

The equality in (114) re�ects (108). The �rst inequality in (114) re�ects (113). The second
inequality in (114) re�ects the maintained assumption that �I1 � �S1 .

Observe that:

�I1 = argmax
�1

f�1� [Q1(c0) + � Q2(c0) ]

+ [ 1� �1 ] �
� �
�I2 + ��1

�
� [Q2(c0) + � Q3(c0) ]�K2(�

I
2)
	
�K1(�1) g

< argmax
�1

f�1� [Q1(c0) + � Q2(c0) ]

+ [ 1� �1 ] �
� �
�S2 + ��1

�
�Q2(c0)�K2(�

S
2 )
	
�K1(�1) g = �S1 . (115)
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The �rst equality in (115) re�ects (111). The inequality in (115) follows from (114) because
the value of �1 that maximizes the PDV of the �rm�s expected pro�t increases as the �rm�s
expected pro�t following �rst-period failure declines.5 The �nal equality in (115) re�ects
(109).

The conclusion in (115) that �I1 < �
S
1 contradicts the maintained assumption that �

I
1 �

�S1 . Therefore, by contradiction:
�S1 > �I1 : (116)

Now suppose the ID setting prevails. Then when the �rm operates under SR in this
setting, the �rm delays to period 3 the implementation of a cost reduction achieved in
period 2. Therefore, the �rm�s problem in period 2, given that it implemented �rst-period
success probability �S1 but did not achieve a cost reduction in period 1, is:

Maximize
�2

�
�2 + ��

S
1

�
� � [Q3(c0) + � Q4(c0) ]�K2(�2)

) K 0
2(�

S
2 ) = � � [Q3(c0) + � Q4(c0) ] at an interior optimum. (117)

The �rm�s choice of second-period success probability under IRIS in the ID setting is as
speci�ed in (108).

Under SR, the �rm retains the full bene�t of a cost reduction that is achieved in period 1
both in period 1 and in period 2. Therefore, (117) implies that the �rm�s problem in period
1 under SR in the ID setting is:

Maximize
�1

�1� [Q1(c0) + � Q2(c0) ]

+ [ 1� �1 ] �
� �
�S2 + ��1

�
��(Q3(c0) + � Q4(c0) )�K2(�

S
2 )
�
�K1(�1) . (118)

(118) implies that at an interior solution to this problem:

K 0
1(�

S
1 ) = � [Q1(c0) + � Q2(c0) ]� �

� �
�S2 + ��

S
1

�
��(Q3(c0) + � Q4(c0) )�K2(�

S
2 )
�

+ � �
�
1� �S1

�
�� [Q3(c0) + � Q4(c0) ] . (119)

The �rm�s choice of �rst-period success probability under IRIS in the ID setting is as
speci�ed in (108).

(108) and (117) imply:

K 0
2(�

I
2) = � [Q2(c0) + � Q3(c0) ]

> � � [Q3(c0) + � Q4(c0) ] = K 0
2(�

S
2 ) ) �I2 > �S2 . (120)

The inequality in (120) re�ects Assumption D. The implication in (120) re�ects the convexity
of K2(�).

5Formally, if �I1 2 (0; 1) = argmax
�1

f�1A+ [ 1� �1 ]B �K1(�1) g, then A � B = K 0
1(�

I
1) )

d�I1
dB =

� 1
K00
1 (�

I
1)
< 0.
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To prove that �S1 > �
I
1, suppose that �

I
1 � �S1 . Then:�

�I2 + ��
I
1

�
� [Q2(c0) + � Q3(c0) ]�K2(�

I
2)

= max
�2

� �
�2 + ��

I
1

�
� [Q2(c0) + � Q3(c0) ]�K2(�2)

	
>
�
�S2 + ��

I
1

�
� [Q2(c0) + � Q3(c0) ]�K2(�

S
2 )

�
�
�S2 + ��

S
1

�
� [Q2(c0) + � Q3(c0) ]�K2(�

S
2 )

>
�
�S2 + ��

S
1

�
� � [Q3(c0) + � Q4(c0) ]�K2(�

S
2 ) . (121)

The equality in (121) re�ects (108). The �rst inequality in (121) re�ects (120). The second
inequality in (121) re�ects the maintained assumption that �I1 � �S1 . The last inequality in
(121) re�ects Assumption D.

Observe that:

�I1 = argmax
�1

f�1� [Q1(c0) + � Q2(c0) ]

+ [ 1� �1 ] �
� �
�I2 + ��1

�
� [Q2(c0) + � Q3(c0) ]�K2(�

I
2)
	
�K1(�1) g

< argmax
�1

f�1� [Q1(c0) + � Q2(c0) ]

+ [ 1� �1 ] �
� �
�S2 + ��1

�
� � [Q3(c0) + � Q4(c0) ]�K2(�

S
2 )
	
�K1(�1) g

= �S1 . (122)

The �rst equality in (122) re�ects (111). The inequality in (122) follows from (121) because
the value of �1 that maximizes the PDV of the �rm�s expected pro�t increases as the �rm�s
expected pro�t following �rst-period failure declines. The �nal equality in (122) re�ects
(118).

The conclusion in (122) that �I1 < �
S
1 contradicts the maintained assumption that �

I
1 �

�S1 . Therefore, by contradiction:
�S1 > �I1 . � (123)

Proposition 13. Suppose Assumptions G and K hold. Then when the NID setting prevails,

EdfW Sg > EdfW Ig if e� [ 1 + e� ] 1
�1 < 1 in the setting with innovation persistence.

Proof of Proposition 13. (107) and (108) imply that in the NID setting:

k2
�
�S2
��1

= � g Q0 ) �S2 =

�
� g Q0
k2

� 1
� 1

=

�
� Q0ek2

� 1
� 1

and

k2
�
�I2
��1

= �
�
g Q0 + g

2 � Q0
�
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) �I2 =

24 �Q0 g
�
1 + e��

k2

35
1

� 1

=

24 �Q0
�
1 + e��ek2

35
1

� 1

= [ 1 + e� ] 1
�1

�
�Q0ek2

� 1
� 1

= �S2 [ 1 +
e� ] 1

�1 . (124)

(25) implies that in the setting with innovation persistence:

�j = �S1 +
�
1� �S1

� �
�S2 + ��

S
1

�
for j 2 fS; I g . (125)

(64) implies that under the speci�ed conditions:

Ed
�
W S
	
> Ed

�
W I
	
if

e�2 ��S � �I1 � [S0(c0 ��)� S0(c0) ]
+
�
�S � �I

�
[S0(c0 ��)� S0(c0) ] [e�3 + e�4 + e�5 ] > 0

, �S � �I1 +
�
�S � �I

�
[e� + e�2 + e�3 ] > 0 . (126)

First suppose that �S � �I . (123) implies that �S > �I1. Therefore, (126) implies that
Ed
�
W S
	
> Ed

�
W I
	
when �S � �I .

Now suppose that �S < �I . (125) implies that (126) holds in this case if:

�S � �I1 +
�
�S � �I

�
[e� + e�2 + e�3 + e�4 + : : : ] > 0

, �S � �I1 +
�
�S � �I

� e�
1� e� > 0

,
�
�S � �I1

� h
1� e� i+ e� ��S � �I � > 0

,
h
1� e� i ��S1 + �S2 �1� �S1 �+ ��S1 �1� �S1 �� �I1 �
+ e� [�S1 + �S2 �1� �S1 �+ ��S1 �1� �S1 �

�
�
�I1 + �

I
2

�
1� �I1

�
+ ��I1

�
1� �I1

��
] > 0

, �S1 + �
S
2

�
1� �S1

�
+ ��S1

�
1� �S1

�
� �I1

� e� ��S1 + �S2 �1� �S1 �+ ��S1 �1� �S1 �� �I1 �
+ e� [�S1 + �S2 �1� �S1 �+ ��S1 �1� �S1 �

�
�
�I1 + �

I
2

�
1� �I1

�
+ ��I1

�
1� �I1

� �
] > 0
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, �S1 + �
S
2

�
1� �S1

�
+ ��S1

�
1� �S1

�
� �I1 � e� �I2 � 1� �I1 �

� �e� �I1 � 1� �I1 � > 0

, �
�
1� �S1

�
+ �S2

�
1� �S1

�
+ ��S1

�
1� �S1

�
+ 1� �I1 � e� �I2 � 1� �I1 �

� �e� �I1 � 1� �I1 � > 0

,
�
1� �I1

� h
1� e� �I2 � �e� �I1 i� � 1� �S1 � � 1� �S2 � ��S1 � > 0 . (127)

(123) implies:
1� �I1 > 1� �S1 . (128)

Furthermore, (124) implies that when e� [ 1 + e� ] 1
�1 < 1:

�S2 � e� �I2 = �S2 � e� �S2 [ 1 + e� ] 1
�1 = �S2

�
1� e� �1 + e�� 1

�1
�
> 0 . (129)

e� � 1 because e� [ 1 + e� ] 1
�1 < 1. Therefore, (123) implies:

�I1 < �S1 ) ��I1 < ��S1 ) �e� �I1 < ��S1 : (130)

Because �S2 + ��
S
1 < 1, by assumption, (129) and(130) imply:

1� e� �I2 � �e� �I1 > 1� �S2 � ��S1 > 0 : (131)

(128) and (131) imply that the inequality in (127) holds. �

Corollary to Proposition 13. Suppose Assumptions G and K hold. Then when the NID

setting prevails, EdfW Sg > EdfW Ig if  � 2 in the setting with innovation persistence.

Proof of the Corollary to Proposition 13. The Corollary follows directly from Proposition

13 because e� [ 1 + e� ] 1
�1 < 1 under the speci�ed conditions. This is the case because:e� [ 1 + e� ] 1

�1 � e� [ 1 + e� ] < 1 .

The weak inequality here holds because  � 2. The strict inequality here holds becausee� = g � < e� in the NID setting and because e� [ 1 + e� ] = 1, by de�nition. �
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