Appendix to Accompany
 "Designing Optimal Gain Sharing Plans to Promote Energy Conservation"
 by Leon Yang Chu and David E. M. Sappington

The two problems considered in the text are the following:
Problem [P]

$$
\begin{equation*}
\underset{s_{i}, F_{i} \geq-\underline{F}}{\operatorname{Maximize}} \sum_{i=1}^{2} \phi_{i}\left\{\left[1-s_{i}\right] G_{i}-F_{i}+\alpha \pi_{i}\left(F_{i}, s_{i}\right)\right\} \tag{1}
\end{equation*}
$$

subject to, for $j \neq i, \quad i, j \in\{1,2\}$:

$$
\begin{align*}
\pi_{i}\left(F_{i}, s_{i}\right) & \equiv F_{i}+s_{i} G_{i}-K\left(G_{i}, k_{i}\right) \geq 0 ; \text { and } \tag{2}\\
\pi_{i}\left(F_{i}, s_{i}\right) & \geq F_{j}+s_{j} G_{j i}-K\left(G_{j i}, k_{i}\right) \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
G_{j i}=\underset{G}{\arg \max }\left\{F_{j}+s_{j} G-K\left(G, k_{i}\right)\right\} \quad \text { and } \quad G_{i}=G_{i i} \tag{4}
\end{equation*}
$$

Problem [P-1]

$$
\begin{equation*}
\underset{s, F \geq-\underline{F}}{\operatorname{Maximize}} \sum_{i=1}^{2} \phi_{i}\left\{[1-s] G_{i}-F+\alpha\left[F+s G_{i}-K\left(G_{i}, k_{i}\right)\right]\right\} \tag{5}
\end{equation*}
$$

subject to, for $i=1,2$:

$$
\begin{equation*}
F+s G_{i}-K\left(G_{i}, k_{i}\right) \geq 0 \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{i}=\underset{G}{\arg \max }\left\{F+s G-K\left(G, k_{i}\right)\right\} . \tag{7}
\end{equation*}
$$

Observation 1. Suppose $\underline{F} \geq G_{i}^{*}-K\left(G_{i}^{*}, k_{i}\right)$ and the regulator knows $k=k_{i}$. Then she can secure the same expected payoff she achieves in the full information setting by awarding the firm the entire realized gain (so $s=1$) and setting the fixed payment to ensure exactly zero expected profit for the firm (i.e., $\left.F=-\left\{G_{i}^{*}-K\left(G_{i}^{*}, k_{i}\right)\right\}\right)$.

Proof. It is apparent from (4) that the firm will implement expected gain G_{i}^{*} when $s=1$. The firm's expected profit will be $F+G_{i}^{*}-K\left(G_{i}^{*}, k_{i}\right)=0$ when $F=-\left\{G_{i}^{*}-K\left(G_{i}^{*}, k_{i}\right)\right\}$. This gain sharing plan is feasible under the maintained assumptions. Because the plan maximizes the total expected surplus $\left(G-K\left(G, k_{i}\right)\right)$ and eliminates the firm's rent, the plan secures for the regulator the same expected payoff she achieves in the full information setting.

Observation 2. Suppose $\underline{F}<G_{i}^{*}-K\left(G_{i}^{*}, k_{i}\right)$ and the regulator knows the prevailing cost environment $\left(k_{i}\right)$. Then the regulator optimally sets $F=\underline{F}$ and $s<1$. The share of the realized gain delivered to the firm (s) declines as the maximum loss the firm can be compelled to bear (\underline{F}) declines.

Proof. Let [P-k] denote the regulator's problem when she knows the prevailing cost parameter is k. This problem is:

$$
\begin{array}{ll}
\underset{s, F \geq-\underline{F}}{\text { Maximize }} & -F+[1-s] G+\alpha\{F+s G-K(G, k)\} \\
\text { subject to: } & F+s G-K(G, k) \geq 0 \\
\text { where } & K_{G}(G, k)=s
\end{array}
$$

Let λ denote the Lagrange multiplier associated with constraint (8), and let $\underline{\lambda}$ denote the Lagrange multiplier associated with the $F \geq-\underline{F}$ constraint. Then the necessary conditions for a solution to $[\mathrm{P}-\mathrm{k}]$ are:

$$
\begin{array}{ll}
s: & G[-1+\alpha+\lambda]+[1-s] \frac{d G}{d s}=0 ; \quad \text { and } \\
F: & -1+\alpha+\lambda+\underline{\lambda}=0 . \tag{11}
\end{array}
$$

From (9):

$$
\begin{equation*}
\frac{d G}{d s}=\frac{1}{K_{G G}(G, k)}>0 \tag{12}
\end{equation*}
$$

It is readily verified that the $F \geq-\underline{F}$ constraint binds at the solution to [P-k] when $\underline{F}<G_{i}^{*}-K\left(G_{i}^{*}, k_{i}\right)$. Consequently, $\underline{\lambda}>0$. Therefore, from (10), (11), and (12):

$$
[1-s] \frac{d G}{d s}=G \underline{\lambda}>0 \quad \Rightarrow \quad s<1
$$

If \underline{F} is sufficiently small that constraint (8) does not bind at the solution to [P-k], then $\lambda=0$, and so $\underline{\lambda}=1-\alpha>0$, from (11). Consequently, $F=\underline{F}$. Furthermore, from (10) and (12):

$$
\begin{aligned}
\frac{1-s}{K_{G G}(G, k)} & =[1-\alpha] G \Rightarrow 1-s=[1-\alpha] G K_{G G}(G, k) \\
& \Rightarrow s=1-[1-\alpha] G K_{G G}(G, k) \equiv \widetilde{s}
\end{aligned}
$$

Let \underline{F}^{o} denote the largest value of \underline{F} for which constraint (8) does not bind at the solution to $[\mathrm{P}-\mathrm{k}]$. Then as \underline{F} increases from \underline{F}^{o} to $\underline{F}^{*} \equiv G_{i}^{*}-K\left(G_{i}^{*}, k_{i}\right), \quad s$ increases monotonically from \widetilde{s} to 1 . This is the case because the $F \geq-\underline{F}$ constraint and constraint (8) both bind at the solution to $[\mathrm{P}-\mathrm{k}]$ for all $\underline{F} \in\left(\underline{F}^{o}, \underline{F}^{*}\right)$. Therefore:

$$
\begin{equation*}
-\underline{F}+s G-K(G, k)=0 . \tag{13}
\end{equation*}
$$

Differentiating (13) and using (9) provides:

$$
\begin{aligned}
& -d \underline{F}+\left\{G+\left[s-K_{G}(G, k)\right] \frac{d G}{d s}\right\} d s=0 \\
\Rightarrow & -d \underline{F}+G d s=0 \quad \Rightarrow \quad \frac{d s}{d \underline{F}}=\frac{1}{G}>0
\end{aligned}
$$

Lemma 1. $\Delta \pi(F, s)$ is strictly increasing in s.
Proof.

$$
\begin{equation*}
\Delta \pi(F, s)=\max _{G}\left\{F+s G-K\left(G, k_{1}\right)\right\}-\max _{G}\left\{F+s G-K\left(G, k_{2}\right)\right\} . \tag{14}
\end{equation*}
$$

(14) and the envelope theorem imply:

$$
\begin{equation*}
\frac{d \Delta \pi(F, s)}{d s}=G_{1}(s)-G_{2}(s)>0, \text { where } G_{i}(s)=\max _{G}\left\{s G-K\left(G, k_{i}\right)\right\} \tag{15}
\end{equation*}
$$

The inequality in (15) holds because $K_{G}\left(G_{1}(s), k_{1}\right)=s=K_{G}\left(G_{2}(s), k_{2}\right), K_{G G}\left(G, k_{i}\right)>0$ for $i=1,2$, and $K_{G}\left(G, k_{2}\right)>K_{G}\left(G, k_{1}\right)$ for all $G>0$.

Conclusion 1. There exist two distinct values of \underline{F}, namely $\underline{F}_{L}<\underline{F}_{H}$, such that at the solution to $[P-1]$, the optimal single gain sharing plan has the following features:
(i) If $\underline{F} \geq \underline{F}_{H}$, then $s=\bar{s}<1$, $\frac{d \bar{s}}{d \underline{F}}=0$, and $\pi_{2}=0$.
(ii) If $\underline{F} \in\left(\underline{F}_{L}, \underline{F}_{H}\right)$, then $s \in(\underline{s}, \bar{s}), \frac{d s}{d \underline{F}}>0, \quad F=-\underline{F}$, and $\pi_{2}=0$.
(iii) If $\underline{F} \leq \underline{F}_{L}$, then $s=\underline{s}<\bar{s}, \quad \frac{d s}{d \underline{F}}=0, \quad F=-\underline{F}$, and $\pi_{2} \geq 0$, with strict inequality if and only if $\underline{F}<\underline{F}_{L}$.

Proof. Let λ_{i} denote the Lagrange multiplier associated with constraint (6), and let $\underline{\lambda}$ denote the Lagrange multiplier associated with the $F \geq-\underline{F}$ constraint. Then the necessary conditions for a solution to [P-1] include:

$$
\begin{array}{ll}
s: & \sum_{i=1}^{2} G_{i}\left[-\phi_{i}(1-\alpha)+\lambda_{i}\right]+\sum_{i=1}^{2} \phi_{i}[1-s] \frac{d G_{i}}{d s}=0 ; \text { and } \\
F: & -1+\alpha+\lambda_{1}+\lambda_{2}+\underline{\lambda}=0 . \tag{17}
\end{array}
$$

From (7):

$$
\begin{equation*}
s=K_{G}\left(G_{i}, k_{i}\right) \Rightarrow \frac{d G_{i}}{d s}=\frac{1}{K_{G G}\left(G_{i}, k_{i}\right)}>0 \tag{18}
\end{equation*}
$$

Since $K\left(G, k_{2}\right)>K\left(G, k_{1}\right)$ for all $G>0$, constraint (6) does not bind for $i=1$. Therefore, $\lambda_{1}=0$ at the solution to [P-1]. Consequently, (17) provides:

$$
\begin{equation*}
\lambda_{2}=1-\alpha-\underline{\lambda} . \tag{19}
\end{equation*}
$$

Define problem $[\mathrm{P}-1]^{\prime}$ to be problem [P-1] without the participation constraints (6) imposed. (19) implies that $\underline{\lambda}=1-\alpha>0$ at the solution to $[\mathrm{P}-1]^{\prime}$, and so $F=-\underline{F}$. Furthermore, from (16):

$$
\begin{equation*}
[1-s] \sum_{i=1}^{2} \phi_{i} \frac{d G_{i}}{d s}=\phi_{1}[1-\alpha] G_{1}+\phi_{2}[1-\alpha] G_{2} \tag{20}
\end{equation*}
$$

Let \underline{s} denote the value of s that solves (20). Then $(-\underline{F}, \underline{s})$ is the solution to $[\mathrm{P}-1]^{\prime}$.
Define \underline{F}_{L} to be the largest value of \underline{F} for which no participation constraint binds at the solution to $[\mathrm{P}-1]$ (so $\underline{F}_{L}=\max _{G}\left\{\underline{s} G-K\left(G, k_{2}\right)\right\}$). Observe that if $\underline{F} \leq \underline{F}_{L}$, then $(-\underline{F}, \underline{s})$, the solution to $[\mathrm{P}-1]^{\prime}$, is a feasible solution to $[\mathrm{P}-1]$, and so is the solution to $[\mathrm{P}-1]$. Note from (20) that $\frac{d s}{d \underline{F}}=0$ when $\underline{F}<\underline{F}_{L}$.

Now define problem $[\mathrm{P}-1]^{\prime \prime}$ to be problem [P-1] without the $F \geq-\underline{F}$ constraint imposed. (19) implies that $\lambda_{2}=1-\alpha>0$ at the solution to $[\mathrm{P}-1]^{\prime \prime}$, and so $\pi_{2}=0$. Furthermore, from (16):

$$
\begin{array}{ll}
& -\phi_{1}[1-\alpha] G_{1}+[1-\alpha] G_{2}\left[1-\phi_{2}\right]+[1-s] \sum_{i=1}^{2} \phi_{i} \frac{d G_{i}}{d s}=0 \\
\Leftrightarrow & {[1-s] \sum_{i=1}^{2} \phi_{i} \frac{d G_{i}}{d s}=\phi_{1}[1-\alpha]\left[G_{1}-G_{2}\right]>0} \tag{21}
\end{array}
$$

The inequality in (21) holds because $G_{1}>G_{2}$ from (7), since $K_{G}\left(G, k_{2}\right)>K_{G}\left(G, k_{1}\right)$. Since $\frac{d G_{i}}{d s}>0$ for $i=1,2$ from (18), (21) implies that $s<1$. Let \bar{s} denote the value of s that solves the equality in (21).

Define \underline{F}_{H} to be the smallest value of \underline{F} for which the solution to $[\mathrm{P}-1]^{\prime \prime}$ is a feasible solution (and thus the solution) to [P-1].

It remains to show that $\underline{s}<\bar{s}$, and so $\underline{F}_{L}<\underline{F}_{H}$, since:

$$
\begin{aligned}
& -\underline{F}_{L}+\max _{G}\left\{\underline{s} G-K\left(G, k_{2}\right)\right\}=0=-\underline{F}_{H}+\max _{G}\left\{\bar{s} G-K\left(G, k_{2}\right)\right\} \\
\Rightarrow & \underline{F}_{L}=\underline{F}_{H}+\max _{G}\left\{\underline{s} G-K\left(G, k_{2}\right)\right\}-\max _{G}\left\{\bar{s} G-K\left(G, k_{2}\right)\right\}<\underline{F}_{H} \text { when } \underline{s}<\bar{s} .
\end{aligned}
$$

First observe from (20) and (21) that $\bar{s} \neq \underline{s}$. Now suppose that $\underline{s}>\bar{s}$, and so $\underline{F}_{L}>\underline{F}_{H}$. Consider two values of \underline{F}, namely \underline{F}_{1} and \underline{F}_{2}, such that $\underline{F}_{1} \neq \underline{F}_{2}$ and $\underline{F}_{1}, \underline{F}_{2} \in\left(\underline{F}_{H}, \underline{F}_{L}\right)$. If $\underline{F}=\underline{F}_{i}$ for $i=1$ or $i=2$, then $\left(-\underline{F}_{H}, \bar{s}\right)$, the solution to $[\mathrm{P}-1]^{\prime}$, remains a feasible solution to [P-1] since $\underline{F}_{i}>\underline{F}_{H}$. Hence, $\left(-\underline{F}_{H}, \bar{s}\right)$ is a solution to $[\mathrm{P}-1]$.

Furthermore, $\left(-\underline{F}_{i}, \underline{s}\right)$, the solution to $[\mathrm{P}-1]^{\prime \prime}$ when $\underline{F}=\underline{F}_{i}$, remains a feasible solution to $[\mathrm{P}-1]$ since $\underline{F}_{i}<\underline{F}_{L}$. Hence, $\left(-\underline{F}_{i}, \underline{s}\right)$ is a solution to $[\mathrm{P}-1]$. Therefore, the regulator is indifferent between the $\left(-\underline{F}_{H}, \bar{s}\right)$ and the $\left(-\underline{F}_{i}, \underline{s}\right)$ plans for $i=1$ and $i=2$. Consequently, the regulator must be indifferent between the $\left(-\underline{F}_{1}, \underline{s}\right)$ plan and the $\left(-\underline{F}_{2}, \underline{s}\right)$ plan. However, the regulator strictly prefers the $\left(-\underline{F}_{2}, \underline{s}\right)$ plan to the $\left(-\underline{F}_{1}, \underline{s}\right)$ plan because the former
provides systematically less compensation for the firm and the two plans generate the same total expected surplus. Therefore, by contradiction, it must be the case that $\underline{s}<\bar{s}$, and so $\underline{F}_{L}<\underline{F}_{H}$.

Three possibilities arise at the solution to [P-1]: (i) the participation constraint (6) when $k=k_{2}$ is the unique binding constraint; (ii) the $F \geq-\underline{F}$ constraint is the unique binding constraint; or (iii) both constraints bind. We have shown that possibility (i) arises if and only if $\underline{F} \geq \underline{F}_{H}$. We have also shown that possibility (ii) arises if and only if $\underline{F} \leq \underline{F}_{L}$. Therefore, possibility (iii) arises if and only if $\underline{F} \in\left(\underline{F}_{L}, \underline{F}_{H}\right)$. In this case, $F=-\underline{F}$ and:

$$
-\underline{F}+s G_{2}-K\left(G_{2}, k_{2}\right)=0 \Rightarrow-d \underline{F}+G_{2} d s=0 \Rightarrow \frac{d s}{d \underline{F}}=\frac{1}{G_{2}}>0
$$

Conclusion 2. There exist two values of \underline{F}, namely $\underline{F}_{L}<\widehat{\underline{F}}_{H}$, such that, at the solution to $[P]$, the optimal pair of gain sharing plans $\left\{\left(F_{1}, s_{1}\right),\left(F_{2}, s_{2}\right)\right\}$ has the following properties:
(i) If $\underline{F} \geq \widehat{\underline{F}}_{H}$, then $s_{1}=1, s_{2}=\bar{s}_{2}<1, F_{1}<F_{2}, \frac{d \bar{s}_{2}}{d \underline{F}}=0$, and $\widehat{\pi}_{2}=0$.
(ii) If $\underline{F} \in\left[\underline{F}_{L}, \widehat{\widehat{F}}_{H}\right)$, then $s_{2} \leq s_{1}<1, \quad F_{2} \geq F_{1}=-\underline{F}$, and $\widehat{\pi}_{2}=0$. In addition, if $K_{G G G}\left(G, k_{i}\right) \geq 0$ and $K_{G G}\left(G, k_{2}\right) \geq K_{G G}\left(G, k_{1}\right)$ for all G and for $k_{i} \in\left\{k_{1}, k_{2}\right\}$, then there exists an $\widehat{\underline{F}}_{L} \in\left[\underline{F}_{L}, \widehat{\widehat{F}}_{H}\right)$, such that $s_{1}=s_{2}$ for $\underline{F} \in\left[\underline{F}_{L}, \widehat{\widehat{F}}_{L}\right]$, whereas $s_{2}<s_{1}$ for $\underline{F} \in\left(\underline{\widehat{F}}_{L}, \widehat{\underline{F}}_{H}\right)$. Furthermore, $\frac{d s_{1}}{d \underline{F}}=\frac{d s_{2}}{d \underline{F}}>0$ for $\underline{F} \in\left(\underline{F}_{L}, \widehat{\underline{F}}_{L}\right)$, whereas $\frac{d s_{1}}{d \underline{F}}>0, \frac{d s_{2}}{d \underline{F}}<0$, $\frac{d F_{1}}{d \underline{F}}<0$, and $\frac{d F_{2}}{d \underline{F}}>0$ for $\underline{F} \in\left(\widehat{\underline{F}}_{L}, \widehat{\underline{F}}_{H}\right)$.
(iii) If $\underline{F}<\underline{F}_{L}$, then $s_{1}=s_{2}=\underline{s}, F_{1}=F_{2}=-\underline{F}, \frac{d \underline{s}}{d \underline{F}}=0$, and $\widehat{\pi}_{2}>0$.

Proof. Let λ_{i} and $\lambda_{i j}$ denote the Lagrange multipliers associated with constraints (2) and (3), respectively. Also let $\underline{\lambda}_{i}$ denote the Lagrange multiplier associated with the $F_{i} \geq-\underline{F}$ constraint. Then the necessary conditions for a solution to $[\mathrm{P}]$ include:

$$
\begin{array}{ll}
s_{i}: & G_{i}\left[-\phi_{i}(1-\alpha)+\lambda_{i}+\lambda_{i j}\right]-\lambda_{j i} G_{i j}+\phi_{i}\left[1-s_{i}\right] \frac{d G_{i}}{d s_{i}}=0 ; \text { and } \\
F_{i}: & -\phi_{i}[1-\alpha]+\lambda_{i}+\lambda_{i j}-\lambda_{j i}+\underline{\lambda}_{i}=0 . \tag{23}
\end{array}
$$

(22) and (23) provide:

$$
\begin{equation*}
\phi_{i}\left[1-s_{i}\right] \frac{d G_{i}}{d s_{i}}=\lambda_{j i}\left[G_{i j}-G_{i}\right]+\underline{\lambda}_{i} G_{i} \text { for } j \neq i, \quad i, j \in\{1,2\} \tag{24}
\end{equation*}
$$

From (4):

$$
\begin{equation*}
K_{G}\left(G_{i}, k_{i}\right)=s_{i} \text { and } K_{G}\left(G_{i j}, k_{j}\right)=s_{i} \Rightarrow G_{21} \geq G_{2} \text { and } G_{1} \geq G_{12} \tag{25}
\end{equation*}
$$

The inequalities in (25) hold because $K_{G}\left(G, k_{1}\right)<K_{G}\left(G, k_{2}\right)$ and $K(\cdot)$ is an increasing, convex function of G. The inequalities in (25) hold as strict inequalities if a positive expected gain is induced when $k=k_{1}$.

The following lemmas constitute the remainder of the proof of the Conclusion.
Lemma A1. The participation constraint (2) when $k=k_{1}$ does not bind at the solution to [P].
Proof. The conclusion holds because the firm's expected profit is strictly higher when $k=k_{1}$ than when $k=k_{2}$ under any non-trivial gain sharing plan. ${ }^{1}$

Lemma A2. $G_{1}>G_{2}, F_{2} \geq F_{1}$, and $s_{2} \leq s_{1}$ under any feasible solution to [P] that entails a non-trivial gain sharing plan.

Proof. To show that $G_{1}>G_{2}$, observe that the incentive compatibility constraints (3) ensure:

$$
\begin{align*}
& \pi_{1}\left(s_{1}, F_{1}\right)-\pi_{1}\left(s_{2}, F_{2}\right) \geq 0 \geq \pi_{2}\left(s_{1}, F_{1}\right)-\pi_{2}\left(s_{2}, F_{2}\right) \\
\Rightarrow \quad & \pi_{1}\left(s_{1}, F_{1}\right)+\pi_{2}\left(s_{2}, F_{2}\right) \geq \pi_{2}\left(s_{1}, F_{1}\right)+\pi_{1}\left(s_{2}, F_{2}\right) \tag{26}
\end{align*}
$$

Further observe that:

$$
\begin{align*}
& \pi_{1}\left(s_{1}, F_{1}\right)+\pi_{2}\left(s_{2}, F_{2}\right)=F_{1}+s_{1} G_{1}-K\left(G_{1}, k_{1}\right)+F_{2}+s_{2} G_{2}-K\left(G_{2}, k_{2}\right) ; \text { and } \tag{27}\\
& \pi_{2}\left(s_{1}, F_{1}\right)+\pi_{1}\left(s_{2}, F_{2}\right) \geq F_{1}+s_{1} G_{1}-K\left(G_{1}, k_{2}\right)+F_{2}+s_{2} G_{2}-K\left(G_{2}, k_{1}\right) . \tag{28}
\end{align*}
$$

The inequality in (28) holds because G_{i} is not necessarily the profit-maximizing expected gain under the $\left(s_{i}, F_{i}\right)$ gain sharing plan when $k=k_{j}$ for $j \neq i$. (26), (27), and (28) provide:

$$
\begin{align*}
0 & \leq \pi_{1}\left(s_{1}, F_{1}\right)+\pi_{2}\left(s_{2}, F_{2}\right)-\left[\pi_{2}\left(s_{1}, F_{1}\right)+\pi_{1}\left(s_{2}, F_{2}\right)\right] \\
& \leq K\left(G_{1}, k_{2}\right)-K\left(G_{2}, k_{2}\right)-\left[K\left(G_{1}, k_{1}\right)-K\left(G_{2}, k_{1}\right)\right] \tag{29}\\
& =\int_{G_{2}}^{G_{1}}\left[\frac{\partial}{\partial G} K\left(G, k_{2}\right)-\frac{\partial}{\partial G} K\left(G, k_{1}\right)\right] d G \Rightarrow G_{1}>G_{2}
\end{align*}
$$

To show that $s_{1} \geq s_{2}$, observe that:

$$
\begin{equation*}
\pi_{2}\left(s_{1}, F_{1}\right)+\pi_{1}\left(s_{2}, F_{2}\right) \geq F_{1}+s_{1} G_{2}-K\left(G_{2}, k_{2}\right)+F_{2}+s_{2} G_{1}-K\left(G_{1}, k_{2}\right) \tag{30}
\end{equation*}
$$

The inequality in (30) holds because G_{j} is not necessarily the profit-maximizing expected gain under the $\left(s_{i}, F_{i}\right)$ gain sharing plan when $k=k_{j}$ for $j \neq i$. (26), (27), and (30) provide:

$$
\begin{equation*}
0 \leq \pi_{1}\left(s_{1}, F_{1}\right)+\pi_{2}\left(s_{2}, F_{2}\right)-\left[\pi_{2}\left(s_{1}, F_{1}\right)+\pi_{1}\left(s_{2}, F_{2}\right)\right] \leq\left[G_{1}-G_{2}\right]\left[s_{1}-s_{2}\right] \tag{31}
\end{equation*}
$$

(31) implies that $s_{1} \geq s_{2}$, since $G_{1}>G_{2}$. Therefore, because incentive compatibility ensures it cannot be the case that $F_{1}>F_{2}$ and $s_{1}>s_{2}$, it must be the case that $F_{2} \geq F_{1}$.

[^0]Lemma A3. The $F_{2} \geq-\underline{F}$ limited liability constraint does not bind at the solution to [P].

Proof. From Lemma A2, $F_{2} \geq F_{1}$ under any feasible nontrivial gain sharing plan. Consequently, the $F_{2} \geq-\underline{F}$ limited liability constraint will be satisfied at the solution to $[\mathrm{P}]$ as long as the $F_{1} \geq-\underline{F}$ constraint is imposed. Therefore, the $F_{2} \geq-\underline{F}$ limited liability constraint does not bind at the solution to $[\mathrm{P}]$.

Lemmas A1 and A3 imply that $\lambda_{1}=0$ and $\underline{\lambda}_{2}=0$ at the solution to $[\mathrm{P}]$.

Lemma A4. When the regulator offers two distinct, non-trivial gain sharing plans to the firm, the firm cannot be indifferent between the two plans both when $k=k_{1}$ and when $k=k_{2}$.

Proof.

$$
\begin{equation*}
\frac{\partial}{\partial s}\left\{\max _{G_{i}}\left[s G_{i}-K\left(G_{i}, k_{1}\right)\right]-\max _{G_{i}}\left[s G_{i}-K\left(G_{i}, k_{2}\right)\right]\right\}=G_{i 1}-G_{i 2} \geq 0 \tag{32}
\end{equation*}
$$

The inequality in (32), which follows from (25), implies that:

$$
\begin{align*}
\max _{G}\left\{s_{1} G-K\left(G, k_{1}\right)\right\} & -\max _{G}\left\{s_{1} G-K\left(G, k_{2}\right)\right\} \\
& \geq \max _{G}\left\{s_{2} G-K\left(G, k_{1}\right)\right\}-\max _{G}\left\{s_{2} G-K\left(G, k_{2}\right)\right\} \tag{33}
\end{align*}
$$

When the firm is indifferent between the two plans both when $k=k_{1}$ and when $k=k_{2}$, the weak inequality in (33) will hold as an equality. Consequently, it must be the case that a zero expected gain $(G=0)$ is induced under both plans. But then the plans are not distinct, non-trivial plans. Therefore, when the regulator offers two distinct, non-trivial gain sharing plans to the firm, only one of the incentive compatibility constraints will bind.

Lemma A5. If neither participation constraint (2) binds at the solution to [P], then the regulator optimally offers only a single gain sharing plan.

Proof. If neither participation constraint binds at the solution to [P], then $\lambda_{1}=\lambda_{2}=0$. Consequently, from (23):

$$
\begin{equation*}
\underline{\lambda}_{1}=[1-\alpha] \phi_{1}+\lambda_{21}-\lambda_{12} \quad \text { and } \quad \underline{\lambda}_{2}=[1-\alpha] \phi_{2}+\lambda_{12}-\lambda_{21} . \tag{34}
\end{equation*}
$$

Since $\underline{\lambda}_{2}=0$ from Lemma A3, (34) implies that $\lambda_{21}>0$. (34) also implies that $\underline{\lambda}_{1}=$ $\underline{\lambda}_{1}+\underline{\lambda}_{2}=1-\alpha>0$. Therefore, $F_{1}=-\underline{F}$.
(24) and (25) imply:

$$
\begin{align*}
\phi_{2}\left[1-s_{2}\right] \frac{d G_{2}}{d s_{2}} & =\lambda_{12}\left[G_{21}-G_{2}\right]+\underline{\lambda}_{2} G_{2} \\
& \Rightarrow s_{2}<1 \text { if and only if } \underline{\lambda}_{2}>0 \text { or } \lambda_{12}>0 \tag{35}
\end{align*}
$$

Lemma A4 implies that $\lambda_{12}=0$, since $\lambda_{21}>0$. Consequently, $s_{2}=1$, from (35). But then it cannot be optimal for the regulator to offer two distinct gain sharing plans because the single $\left(F_{2}, s_{2}\right)$ plan would deliver no more rent to the firm and would generate a higher level of expected total surplus.

Lemma A6. Suppose \underline{F} is sufficiently large that the $F_{i} \geq-\underline{F}$ constraints do not bind at the solution to $[\mathrm{P}]$. Then $s_{2}<s_{1}=1, \lambda_{2}>0$, and $\lambda_{12}>0$ at the solution to $[\mathrm{P}]$.
Proof. Since $\underline{\lambda}_{1}=\underline{\lambda}_{2}=0$ in this case, (23) and Lemma A1 imply that $\lambda_{2}=\lambda_{1}+\lambda_{2}=$ $1-\alpha>0$. (23) also implies that $\lambda_{12}=\lambda_{21}+[1-\alpha] \phi_{1}>0$. Therefore, $\lambda_{21}=0$, from Lemma A4. Consequently, from (24):

$$
\phi_{1}\left[1-s_{1}\right] \frac{d G_{1}}{d s_{1}}=0 \quad \Rightarrow \quad s_{1}=1
$$

(24) implies that when $\underline{\lambda}_{2}=0$:

$$
\begin{equation*}
\phi_{2}\left[1-s_{2}\right] \frac{d G_{2}}{d s_{2}}=\lambda_{12}\left[G_{21}-G_{2}\right]>0 \Rightarrow s_{2}<1 \tag{36}
\end{equation*}
$$

The first inequality in (36) reflects (25).

Lemma A7. Suppose the participation constraint (2) when $k=k_{2}$ and the $F_{1} \geq-\underline{F}$ limited liability constraint both bind at the solution to [P]. Then $s_{2} \leq s_{1}<1$.

Proof. Since $\underline{\lambda}_{1}>0$ in this case, (24) implies:

$$
\phi_{1}\left[1-s_{1}\right] \frac{d G_{1}}{d s_{1}}>0 \quad \Rightarrow \quad s_{1}<1
$$

Furthermore, $s_{2} \leq s_{1}$ from Lemma A2. Therefore, since $\underline{\lambda}_{2}>0$ from Lemma A3, (24) implies that $\lambda_{12}>0$.

Define $\widehat{\widehat{F}}_{H}$ to be the smallest value of \underline{F} for which the $F_{1} \geq-\underline{F}$ constraint does not bind at the solution to $[\mathrm{P}]$. Then Lemma A6 implies that when $\underline{F} \geq \underline{\widehat{F}}_{H}, s_{2}<s_{1}=1, \widehat{\pi}_{2}=0$, $F_{2}>F_{1}=-\widehat{\widehat{F}}_{H}$, and the firm secures the same expected profit under the two gain sharing plans in the low cost environment at the solution to $[\mathrm{P}]$.

Recall that $\underline{F}_{L}=\max _{G}\left\{\underline{s} G-K\left(G, k_{2}\right)\right\}$ is the largest value of \underline{F} for which no participation constraint binds at the solution to [P-1]. Lemma A5 implies that the solution to $[\mathrm{P}]$ is the solution to $[\mathrm{P}-1]$ when $\underline{F} \leq \underline{F}_{L}$. Therefore, from the proof of Conclusion $1, s_{1}=s_{2}=\underline{s}$, $F_{1}=F_{2}=-\underline{F}, \frac{d \underline{s}}{d \underline{F}}=0$, and $\widehat{\pi}_{2}>0$ at the solution to $[\mathrm{P}]$ when $\underline{F} \leq \underline{F}_{L}$.

The definition of \underline{F}_{L} and Lemma A1 imply that $\widehat{\pi}_{2}=0$ at the solution to [P] when $\underline{F}>\underline{F}_{L}$. Furthermore, if the $F_{1} \geq-\underline{F}$ constraint binds and $s_{1}=s_{2}=\underline{\widehat{s}}$ at the solution to $[\overline{\mathrm{P}}]$, it must be the case that $\frac{d \widehat{\widehat{s}}}{d \underline{F}}>0$ (to ensure $\widehat{\pi}_{2}=0$) when $\underline{F}>\underline{F}_{L}$.

Lemma A8. $\underline{\widehat{F}}_{L}<\widehat{\widehat{F}}_{H}$.
Proof. We first show that $\widehat{\underline{F}}_{L} \neq \widehat{\widehat{F}}_{H}$. To do so, suppose $\widehat{\underline{F}}_{L}=\widehat{\widehat{F}}_{H}$. Lemma A5 and (34) imply that $\left(-\widehat{\widehat{F}}_{L}, \underline{s}\right)$ is the optimal plan when $\underline{F}=\widehat{\widehat{F}}_{L}=\widehat{\widehat{F}}_{H}$. Furthermore, $\underline{\widehat{s}}<1$ and $\widehat{\pi}_{2}=0$ under this plan. Lemma A6 implies that the $\left\{\left(F_{2}, s_{2}\right),\left(-\widehat{\underline{F}}_{H}, 1\right)\right\}$ gain sharing program is also optimal and $\widehat{\pi}_{2}=0$ under this program. Notice that the firm strictly prefers the $\left(-\widehat{\widehat{F}}_{H}, 1\right)$ plan to the $\left(-\underline{\widehat{F}}_{L}, \underline{s}\right)$ plan because $\widehat{\widehat{F}}_{L}=\widehat{\widehat{F}}_{H}$ and $\underline{\widehat{s}}<1$. Therefore, it cannot be the case that $\widehat{\pi}_{2}=0$ under both plans. Hence, by contradiction, $\widehat{\underline{F}}_{L} \neq \widehat{\underline{F}}_{H}$.

Now suppose $\widehat{\widehat{F}}_{L}>\underline{\widehat{F}}_{H}$, and consider a value of $\underline{F} \in\left(\widehat{\widehat{F}}_{H}, \widehat{\widehat{F}}_{L}\right)$. Since $\underline{F}>\underline{\widehat{F}}_{H}$, the $\left\{\left(F_{2}, s_{2}\right),\left(-\underline{\widehat{F}}_{H}, 1\right)\right\}$ gain sharing program identified in Lemma A6 is a solution to [P]. Since $\underline{F}<\underline{\widehat{F}}_{L}$, the $(-\underline{F}, \underline{\widehat{s}})$ gain sharing plan identified in Lemma A5 is also a solution to $[\mathrm{P}]$. As \underline{F} increases in this range, the regulator's expected payoff increases under the ($-\underline{F}, \underline{\widehat{s}}$) plan because the payment to the firm $(-\underline{F})$ declines. In contrast, the regulator's expected payoff does not change under the $\left\{\left(F_{2}, s_{2}\right),\left(-\widehat{\underline{F}}_{H}, 1\right)\right\}$ program because this program does not change as \underline{F} increases. Therefore, both of the identified solutions cannot be optimal and so, by contradiction, $\widehat{\widehat{F}}_{L} \leq \widehat{\underline{F}}_{H}$.

Since $\widehat{\widehat{F}}_{L} \leq \widehat{\widehat{F}}_{H}$ and $\widehat{\widehat{F}}_{L} \neq \widehat{\widehat{F}}_{H}$, it must be the case that $\underline{\widehat{F}}_{L}<\underline{\widehat{F}}_{H}$.

Lemma A9. Suppose $\underline{F} \in\left[\underline{F}_{L}, \widehat{\widehat{F}}_{H}\right)$. Then $s_{2} \leq s_{1}<1, F_{2} \geq F_{1}=-\underline{F}$, and $\widehat{\pi}_{2}=0$. In addition, if $K_{G G G}\left(G, k_{i}\right) \geq 0$ and $K_{G G}\left(G, k_{2}\right) \geq K_{G G}\left(G, k_{1}\right)$ for all G and for $k_{i} \in\left\{k_{1}, k_{2}\right\}$, then there exists an $\widehat{\widehat{F}}_{L} \in\left[\underline{F}_{L}, \widehat{\widehat{F}}_{H}\right)$, such that $s_{1}=s_{2}$ for $\underline{F} \in\left[\underline{F}_{L}, \widehat{\widehat{F}}_{L}\right]$, whereas $s_{2}<s_{1}$ for $\underline{F} \in\left(\widehat{\underline{F}}_{L}, \widehat{\widehat{F}}_{H}\right)$. Furthermore, $\frac{d s_{1}}{d \underline{F}}=\frac{d s_{2}}{d \underline{F}}>0$ for $\underline{F} \in\left(\underline{F}_{L}, \widehat{\underline{F}}_{L}\right)$, whereas $\frac{d s_{1}}{d F}>0, \frac{d s_{2}}{d F}<0, \frac{d F_{1}}{d F}<0$, and $\frac{d F_{2}}{d F}>0$ for $\underline{F} \in\left(\widehat{\widehat{F}}_{L}, \widehat{\widehat{F}}_{H}\right)$.

Proof. If $\underline{F} \in\left[\underline{F}_{L}, \widehat{\widehat{F}}_{H}\right)$, then the participation constraint (2) when $k=k_{2}$ and the $F_{1} \geq$ $-\underline{F}$ constraint both bind at the solution to $[\mathrm{P}]$. Consequently, $\widehat{\pi}_{2}=0$ and $F_{1}=-\underline{F}$. Furthermore: (i) $F_{2} \geq F_{1}$ from Lemma A2; (ii) $s_{2} \leq s_{1}<1$ from Lemma A7; and (iii) $\lambda_{12}>0$ from the proof of Lemma A7.

From (1), the regulator maximizes:

$$
\begin{align*}
\sum_{i=1}^{2} \phi_{i}\left\{\left[1-s_{i}\right]\right. & \left.G_{i}-F_{i}+\alpha \pi_{i}\left(F_{i}, s_{i}\right)\right\} \\
& =\sum_{i=1}^{2} \phi_{i}\left\{G_{i}-K\left(G_{i}, k_{i}\right)-[1-\alpha] \pi_{i}\left(F_{i}, s_{i}\right)\right\} \tag{37}
\end{align*}
$$

When $s_{2}<s_{1}$, the regulator can be viewed as choosing the optimal value of s_{2}. The corresponding optimal values of F_{2} and s_{1} are then readily determined because $\widehat{\pi}_{2}=0$ and $\lambda_{12}>0$. Differentiating (37), recognizing that $\frac{d \pi_{2}(\cdot)}{d s_{2}}=0$, provides:

$$
\sum_{i=1}^{2} \phi_{i}\left\{\left[1-K_{G}\left(G_{i}, k_{i}\right)\right] \frac{d G_{i}}{d s_{i}}\right\} d s_{i}-\phi_{1}[1-\alpha] G_{1} d s_{1}
$$

$$
\begin{equation*}
=\sum_{i=1}^{2} \phi_{i}\left[\frac{1-K_{G}\left(G_{i}, k_{i}\right)}{K_{G G}\left(G_{i}, k_{i}\right)}\right] d s_{i}-\phi_{1}[1-\alpha] G_{1} d s_{1}=0 . \tag{38}
\end{equation*}
$$

The first equality in (38) holds because $\frac{d G_{i}}{d s_{i}}=\frac{1}{K_{G G}\left(G_{i}, k_{i}\right)}$, since $K_{G}\left(G_{i}, k_{i}\right)=s_{i}$ from (25).
Since $\widehat{\pi}_{2}=0$:

$$
\begin{equation*}
F_{2}+s_{2} G_{2}-K\left(G_{2}, k_{2}\right)=0 \Rightarrow d F_{2}+G_{2} d s_{2}=0 \tag{39}
\end{equation*}
$$

Since $\lambda_{12}>0$:

$$
\begin{equation*}
-\underline{F}+s_{1} G_{1}-K\left(G_{1}, k_{1}\right)=F_{2}+s_{2} G_{21}-K\left(G_{21}, k_{1}\right) . \tag{40}
\end{equation*}
$$

Differentiating (40), using (39), provides:

$$
\begin{equation*}
G_{1} d s_{1}=d F_{2}+G_{21} d s_{2}=\left[G_{21}-G_{2}\right] d s_{2} \tag{41}
\end{equation*}
$$

(38) and (41) imply that when $s_{2}<s_{1}$ at the solution to $[\mathrm{P}]$:

$$
\begin{align*}
& \phi_{1}\left[\frac{1-K_{G}\left(G_{1}, k_{1}\right)}{K_{G G}\left(G_{1}, k_{1}\right)}\right] G_{1} d s_{1}+\phi_{2}\left[\frac{1-K_{G}\left(G_{2}, k_{2}\right)}{K_{G G}\left(G_{2}, k_{2}\right)}\right]
\end{align*}
$$

G_{2} and G_{21} are readily calculated for any given s_{2}. Given G_{2} and G_{21}, G_{1} can be derived from (42). We now show that G_{1} (and therefore s_{1}) is uniquely determined by s_{2} and that s_{1} is a monotone decreasing function of s_{2}.

Differentiating (42) provides:

$$
\begin{align*}
& \phi_{1}\left\{\left[\frac{1-K_{G}\left(G_{1}, k_{1}\right)}{K_{G G}\left(G_{1}, k_{1}\right)}\right]\left[-\frac{1}{G_{1}^{2}}\right]\right. \\
& \left.\quad+\frac{-K_{G G}^{2}\left(G_{1}, k_{1}\right)-\left[1-K_{G}\left(G_{1}, k_{1}\right)\right] K_{G G G}\left(G_{1}, k_{1}\right)}{K_{G G}^{2}\left(G_{1}, k_{1}\right)}\left[\frac{1}{G_{1}}\right]\right\}\left[\frac{d G_{1}}{d s_{1}}\right] d s_{1} \\
& +\phi_{2}\left\{\frac{1-K_{G}\left(G_{2}, k_{2}\right)}{K_{G G}\left(G_{2}, k_{2}\right)}\left[\frac{1}{\left(G_{21}-G_{2}\right)^{2}}\right]\right. \\
& \left.\quad+\frac{-K_{G G}^{2}\left(G_{2}, k_{2}\right)-\left[1-K_{G}\left(G_{2}, k_{2}\right)\right] K_{G G G}\left(G_{2}, k_{2}\right)}{K_{G G}^{2}\left(G_{2}, k_{2}\right)}\left[\frac{1}{G_{21}-G_{2}}\right]\right\} \frac{d G_{2}}{d s_{2}} d s_{2} \\
& +\phi_{2}\left[\frac{1-K_{G}\left(G_{2}, k_{2}\right)}{K_{G G}\left(G_{2}, k_{2}\right)}\right]\left[-\frac{1}{\left(G_{21}-G_{2}\right)^{2}}\right]\left[\frac{d G_{21}}{d s_{2}}\right] d s_{2}=0 . \tag{43}
\end{align*}
$$

Since $\frac{d G_{i}}{d s_{i}}=\frac{1}{K_{G G}\left(G_{i}, k_{i}\right)}$, the terms that multiply $d s_{1}$ in (43) can be written as:

$$
\begin{align*}
\frac{\phi_{1}}{K_{G G}^{2}\left(G_{1}, k_{1}\right) G_{1}^{2}}\{ & -\left[1-K_{G}\left(G_{1}, k_{1}\right)\right] K_{G G}\left(G_{1}, k_{1}\right)-G_{1} K_{G G}^{2}\left(G_{1}, k_{1}\right) \\
& \left.-G_{1}\left[1-K_{G}\left(G_{1}, k_{1}\right)\right] K_{G G G}\left(G_{1}, k_{1}\right)\right\} \frac{1}{K_{G G}\left(G_{1}, k_{1}\right)} d s_{1}<0 \tag{44}
\end{align*}
$$

The inequality in (44) holds when $K_{G G G}(\cdot) \geq 0$ because $K_{G}\left(G_{1}, k_{1}\right)=s_{1}<1$.
Similarly, the terms that multiply $d s_{2}$ in (43) can be written as:

$$
\begin{gather*}
\frac{\phi_{2}}{K_{G G}^{2}\left(G_{2}, k_{2}\right)\left[G_{21}-G_{2}\right]^{2}}\left\{\begin{array}{l}
{\left[1-K_{G}\left(G_{2}, k_{2}\right)\right] K_{G G}\left(G_{2}, k_{2}\right)-\left[G_{21}-G_{2}\right] K_{G G}^{2}\left(G_{2}, k_{2}\right)} \\
\left.\quad-\left[G_{21}-G_{2}\right]\left[1-K_{G}\left(G_{2}, k_{2}\right)\right] K_{G G G}\left(G_{2}, k_{2}\right)\right\} \frac{1}{K_{G G}\left(G_{2}, k_{2}\right)} \\
+\phi_{2}\left[\frac{1-K_{G}\left(G_{2}, k_{2}\right)}{K_{G G}\left(G_{2}, k_{2}\right)}\right]\left[-\frac{1}{\left(G_{21}-G_{2}\right)^{2}}\right] \frac{1}{K_{G G}\left(G_{21}, k_{1}\right)} \\
<\frac{\phi_{2}\left[1-K_{G}\left(G_{2}, k_{2}\right)\right]}{K_{G G}\left(G_{2}, k_{2}\right)\left[G_{21}-G_{2}\right]^{2}}\left[\frac{1}{K_{G G}\left(G_{2}, k_{2}\right)}-\frac{1}{K_{G G}\left(G_{21}, k_{1}\right)}\right] \leq 0
\end{array} .\right.
\end{gather*}
$$

The first inequality in (45) holds when $K_{G G G}(G, k) \geq 0$ since $K_{G}\left(G_{2}, k_{2}\right)=s_{2}<1$ and $G_{21}>G_{2}$. The last inequality in (45) holds because $K_{G G}\left(G_{21}, k_{1}\right) \leq K_{G G}\left(G_{2}, k_{2}\right)$ when $K_{G G G}\left(G, k_{i}\right) \geq 0$ and $K_{G G}\left(G, k_{2}\right) \geq K_{G G}\left(G, k_{1}\right)$ for all G and for $k_{i} \in\left\{k_{1}, k_{2}\right\}$.
(43), (44), and (45) imply that for each s_{2}, there is a unique s_{1} that decreases as s_{2} increases (so $\frac{d s_{1}}{d s_{2}}<0$) at the solution to $[\mathrm{P}]$. Lemma 1 implies that the firm's profit in the low cost environment at the solution to $[\mathrm{P}]$ increases as s_{2} increases and s_{1} decreases. Therefore, since $\lambda_{12}>0$, there is a unique F_{1} that increases as s_{2} increases.

Let \bar{s}_{2} denote the value of s_{2} at the solution to $[\mathrm{P}]$ when $\underline{F}=\underline{\widehat{F}}_{H}$. Also let \widehat{s} denote the largest share of the realized gain awarded the supplier when $s_{1}=s_{2}$ at the solution to [P]. In addition, let $\widehat{\widehat{F}}_{L} \geq \underline{F}_{L}$ denote the value \underline{F}_{L} at which $s_{1}=s_{2}=\widehat{s}$ at the solution to [P]. Since $F_{1}=-\underline{F}$ when $\underline{F} \in\left[\underline{F}_{L}, \widehat{\underline{F}}_{H}\right.$), it follows that s_{2} increases from \bar{s}_{2} to \widehat{s} as \underline{F} declines from $\widehat{\widehat{F}}_{H}$ to \underline{F}_{L}. Therefore, $s_{2}<s_{1}$ and $\frac{d s_{1}}{d \underline{F}}>0, \frac{d s_{2}}{d \underline{F}}<0, \frac{d F_{1}}{d \underline{F}}<0$, and $\frac{d F_{2}}{d \underline{F}}>0$ when $\underline{F} \in\left(\widehat{\widehat{F}}_{L}, \widehat{\widehat{F}}_{H}\right)$.

Condition 1. $\quad K_{G G k}(G, k) \geq K_{G G G}(G, k)\left[\frac{K_{G k}(G, k)}{K_{G G}(G, k)}\right]$ for all G and k.
Condition 2. $\quad K_{G G k}(G, k) \leq K_{G G G}(G, k)\left[\frac{K_{G k}(G, k)}{K_{G G}(G, k)}\right]$ for all G and k.

Conclusion 3. Suppose the regulator's objective function is a concave function of s_{2}. Then at the solution to $[P]$:
(i) s_{2} increases as ϕ_{2} increases or as α increases;
(ii) s_{2} decreases as k_{2} increases if Condition 1 holds; and
(iii) s_{2} increases as k_{1} increases if $\underline{F}>\underline{\underline{F}}_{H}$ or if $\underline{F} \leq \widehat{\underline{F}}_{L}$ and Condition 2 holds.

Proof. Let $\left(F_{i}, s_{i}\right)$ denote the gain sharing plan the firm chooses when $k=k_{i}$. Then consumer surplus when $k=k_{i}$ is:

$$
\begin{equation*}
C S_{i} \equiv-F_{i}+\left[1-s_{i}\right] G_{i} \tag{46}
\end{equation*}
$$

Total surplus when $k=k_{i}$ is:

$$
\begin{equation*}
T_{i} \equiv G_{i}-K\left(G_{i}, k_{i}\right) \tag{47}
\end{equation*}
$$

The firm's rent when $k=k_{i}$ is:

$$
\begin{equation*}
R_{i} \equiv F_{i}+s_{i} G_{i}-K\left(G_{i}, k_{i}\right) \tag{48}
\end{equation*}
$$

The regulator's objective is to maximize:

$$
\begin{equation*}
W \equiv \sum_{i=1}^{2} \phi_{i}\left[C S_{i}+\alpha R_{i}\right]=\sum_{i=1}^{2} \phi_{i}\left[T_{i}-(1-\alpha) R_{i}\right] . \tag{49}
\end{equation*}
$$

Case I. $\underline{F} \geq \widehat{\widehat{F}}_{H}$.
The regulator can be viewed as determining the optimal s_{2}. Conclusion 2 implies that once s_{2} is determined, F_{2} is set to ensure the firm earns no rent when $k=k_{2}$. Furthermore, $s_{1}=1$ and F_{1} is chosen so that the firm is indifferent between the (F_{1}, s_{1}) plan and the (F_{2}, s_{2}) plan when $k=k_{1}$. This indifference implies:

$$
\begin{equation*}
R_{1}=F_{2}+s_{2} G_{21}-K\left(G_{21}, k_{1}\right), \tag{50}
\end{equation*}
$$

where G_{21} is the success probability the firm would implement under the (F_{2}, s_{2}) plan in the low cost environment.

Because $R_{2}=0$:

$$
\begin{equation*}
0=\frac{d R_{2}}{d s_{2}}=\frac{\partial R_{2}}{\partial s_{2}}+\frac{\partial R_{2}}{\partial G_{2}}\left[\frac{d G_{2}}{d s_{2}}\right]+\frac{\partial R_{2}}{\partial F_{2}}\left[\frac{d F_{2}}{d s_{2}}\right]=G_{2}+\frac{d F_{2}}{d s_{2}} \Rightarrow \frac{d F_{2}}{d s_{2}}=-G_{2} . \tag{51}
\end{equation*}
$$

The third equality in (51) reflects the envelope theorem and the fact that $\frac{\partial R_{2}}{\partial s_{2}}=G_{2}$ and $\frac{\partial R_{2}}{\partial F_{2}}=1$, from (48).
$\frac{d W}{d s_{2}}=0$ at the solution to $[\mathrm{P}]$. We will determine how changes in parameter values affect $\frac{d W}{d s_{2}}$. If $\frac{d W}{d s_{2}}$ becomes positive (negative) as a parameter increases, then the optimal s_{2} will increase (decrease), given the presumed concavity of W.

From (48):

$$
\begin{equation*}
K_{G}\left(G_{i}, k_{i}\right)=s_{i} \quad \Rightarrow \quad \frac{d G_{i}}{d s_{i}}=\frac{1}{K_{G G}\left(G_{i}, k_{i}\right)} \text { for } i=1,2 \tag{52}
\end{equation*}
$$

Because $s_{1}=1, T_{1}$ is not affected by changes in s_{2}, i.e., $\frac{d T_{1}}{d s_{2}}=0$.
From (47), using (52):

$$
\begin{align*}
\frac{d T_{2}}{d s_{2}} & =\frac{\partial T_{2}}{\partial s_{2}}+\frac{\partial T_{2}}{\partial G_{2}}\left[\frac{d G_{2}}{d s_{2}}\right]+\frac{\partial T_{2}}{\partial F_{2}}\left[\frac{d F_{2}}{d s_{2}}\right]=\frac{\partial T_{2}}{\partial G_{2}}\left[\frac{d G_{2}}{d s_{2}}\right] \\
& =\left[1-K_{G}\left(G_{2}, k_{2}\right)\right] \frac{d G_{2}}{d s_{2}}=\left[1-s_{2}\right] \frac{d G_{2}}{d s_{2}}=\frac{1-s_{2}}{K_{G G}\left(G_{2}, k_{2}\right)} \tag{53}
\end{align*}
$$

The second equality in (53) holds because $\frac{\partial T_{2}}{\partial s_{2}}=\frac{\partial T_{2}}{\partial F_{2}}=0$, from (47). The last two equalities in (53) reflect (52). From (48):

$$
\begin{align*}
\frac{d R_{1}}{d s_{2}} & =\frac{\partial R_{1}}{\partial s_{2}}+\frac{\partial R_{1}}{\partial G_{21}}\left[\frac{d G_{21}}{d s_{2}}\right]+\frac{\partial R_{1}}{\partial F_{2}}\left[\frac{d F_{2}}{d s_{2}}\right] \\
& =\frac{\partial R_{1}}{\partial s_{2}}+\frac{\partial R_{1}}{\partial F_{2}}\left[\frac{d F_{2}}{d s_{2}}\right]=G_{21}+\frac{d F_{2}}{d s_{2}}=G_{21}-G_{2} \tag{54}
\end{align*}
$$

The second equality in (54) reflects the envelope theorem. The third equality in (54) follows from (50). The last equality in (54) reflects (51).
(49), (53), and (54) imply:

$$
\begin{equation*}
\frac{d W}{d s_{2}}=\phi_{2}\left[\frac{1-s_{2}}{K_{G G}\left(G_{2}, k_{2}\right)}\right]-\phi_{1}[1-\alpha]\left[G_{21}-G_{2}\right] . \tag{55}
\end{equation*}
$$

Differentiating (55) with respect to α provides:

$$
\begin{equation*}
\frac{d}{d \alpha}\left(\frac{d W}{d s_{2}}\right)=\phi_{1}\left[G_{21}-G_{2}\right]>0 \tag{56}
\end{equation*}
$$

The inequality in (56) implies that the optimal s_{2} increases as α increases.
Differentiating (55) with respect to ϕ_{1} provides:

$$
\frac{d}{d \phi_{1}}\left(\frac{d W}{d s_{2}}\right)=-\left[1-s_{2}\right] \frac{1}{K_{G G}\left(G_{2}, k_{2}\right)}-[1-\alpha]\left[G_{21}-G_{2}\right]<0
$$

This inequality implies that the optimal s_{2} decreases as ϕ_{1} increases.

Differentiating (55) with respect to k_{2} provides:

$$
\begin{equation*}
\frac{d}{d k_{2}}\left(\frac{d W}{d s_{2}}\right)=\phi_{1}[1-\alpha] \frac{d G_{2}}{d k_{2}}-\phi_{2}\left[1-s_{2}\right] \frac{K_{G G G}\left(G_{2}, k_{2}\right) \frac{d G_{2}}{d k_{2}}+K_{G G k}\left(G_{2}, k_{2}\right)}{\left[K_{G G}\left(G_{2}, k_{2}\right)\right]^{2}}<0 \tag{57}
\end{equation*}
$$

The inequality in (57) holds when Condition 1 holds because $\frac{d G_{2}}{d k_{2}}=-\frac{K_{G k}\left(G_{2}, k_{2}\right)}{K_{G G}\left(G_{2}, k_{2}\right)}<0$, since $s_{2}=K_{G}\left(G_{2}, k_{2}\right)$. The inequality in (57) implies that the optimal s_{2} decreases as k_{2} increases.

Differentiating (55) with respect to k_{1} provides:

$$
\begin{equation*}
\frac{d}{d k_{1}}\left(\frac{d W}{d s_{2}}\right)=-\phi_{1}[1-\alpha] \frac{d G_{21}}{d k_{1}}>0 \tag{58}
\end{equation*}
$$

The inequality in (58) holds because $\frac{d G_{21}}{d k_{1}}=-\frac{K_{G k}\left(G_{21}, k_{1}\right)}{K_{G G}\left(G_{21}, k_{1}\right)}<0$, since $K_{G}\left(G_{21}, k_{1}\right)=s_{2}$. The inequality in (58) implies that the optimal s_{2} increases as k_{1} increases.

Case II. $\underline{F} \in\left(\widehat{\underline{F}}_{L}, \widehat{\widehat{F}}_{H}\right)$.
The regulator can again be viewed as determining the optimal s_{2}. Conclusion 2 implies that once s_{2} is determined, F_{2} is set to ensure the firm earns no rent when $k=k_{2}$. Furthermore, $F_{1}=-\underline{F}$ and s_{1} is chosen so that the firm is indifferent between the (F_{1}, s_{1}) and (F_{2}, s_{2}) plans when $k=k_{1}$.
$\frac{d T_{2}}{d s_{2}}$ in this case is as specified in (53). Furthermore, from (47), using (52):

$$
\begin{align*}
\frac{d T_{1}}{d s_{2}} & =\frac{\partial T_{1}}{\partial G_{1}}\left[\frac{d G_{1}}{d s_{2}}\right]=\left[1-K_{G}\left(G_{1}, k_{1}\right)\right] \frac{d G_{1}}{d s_{2}} \\
& =\left[1-s_{1}\right] \frac{d G_{1}}{d s_{1}}\left[\frac{d s_{1}}{d s_{2}}\right]=\left[\frac{1-s_{1}}{K_{G G}\left(G_{1}, k_{1}\right)}\right] \frac{d s_{1}}{d s_{2}} \tag{59}
\end{align*}
$$

From (50), (51), and the envelope theorem:

$$
\begin{align*}
-\underline{F}+s_{1} G_{1}-K\left(G_{1}, k_{1}\right) & =F_{2}+s_{2} G_{21}-K\left(G_{21}, k_{1}\right) \\
\Rightarrow \quad & G_{1} \frac{d s_{1}}{d s_{2}}=\frac{d F_{2}}{d s_{2}}+G_{21} \quad \Rightarrow \quad \frac{d s_{1}}{d s_{2}}=\frac{G_{21}-G_{2}}{G_{1}}>0 . \tag{60}
\end{align*}
$$

In addition, from (50):

$$
\begin{align*}
\frac{d R_{1}}{d s_{2}} & =\frac{\partial R_{1}}{\partial s_{2}}+\frac{\partial R_{1}}{\partial G_{21}}\left[\frac{d G_{21}}{d s_{2}}\right]+\frac{\partial R_{1}}{\partial F_{2}}\left[\frac{d F_{2}}{d s_{2}}\right] \\
& =\frac{\partial R_{1}}{\partial s_{2}}+\frac{\partial R_{1}}{\partial F_{2}}\left[\frac{d F_{2}}{d s_{2}}\right]=G_{21}+\frac{d F_{2}}{d s_{2}}=G_{21}-G_{2} . \tag{61}
\end{align*}
$$

The second equality in (61) reflects the envelope theorem. The third equality in (61) holds because $\frac{\partial R_{1}}{\partial s_{2}}=G_{21}$ and $\frac{\partial R_{1}}{\partial F_{2}}=1$, from (50). The last equality in (61) reflects (51).
(49), (53), (59), and (61) imply:

$$
\begin{equation*}
\frac{d W}{d s_{2}}=\phi_{1}\left[\frac{1-s_{1}}{K_{G G}\left(G_{1}, k_{1}\right)}\right] \frac{d s_{1}}{d s_{2}}+\phi_{2}\left[\frac{1-s_{2}}{K_{G G}\left(G_{2}, k_{2}\right)}\right]-\phi_{1}[1-\alpha]\left[G_{21}-G_{2}\right] . \tag{62}
\end{equation*}
$$

Differentiating (62) with respect to α provides:

$$
\frac{d}{d \alpha}\left(\frac{d W}{d s_{2}}\right)=\phi_{1}\left[G_{21}-G_{2}\right]>0 .
$$

This inequality implies that the optimal s_{2} increases as α increases.
Differentiating (62) with respect to ϕ_{1} provides:

$$
\begin{align*}
\frac{d}{d \phi_{1}}\left(\frac{d W}{d s_{2}}\right) & =-[1-\alpha]\left[G_{21}-G_{2}\right]-\frac{1-s_{2}}{K_{G G}\left(G_{2}, k_{2}\right)}+\frac{1-s_{1}}{K_{G G}\left(G_{1}, k_{1}\right)}\left[\frac{d s_{1}}{d s_{2}}\right] \\
& =-\frac{1-s_{2}}{K_{G G}\left(G_{2}, k_{2}\right)}-\frac{\phi_{2}}{\phi_{1}}\left[\frac{1-s_{2}}{K_{G G}\left(G_{2}, k_{2}\right)}\right]<0 \tag{63}
\end{align*}
$$

The last equality in (63) follows from (62), since $\frac{d W}{d s_{2}}=0$ at the optimal value of s_{2}. The inequality in (63) implies that the optimal s_{2} decreases as ϕ_{1} increases.

Differentiating (62) with respect to k_{2} provides:

$$
\frac{d}{d k_{2}}\left(\frac{d W}{d s_{2}}\right)=\phi_{1}[1-\alpha] \frac{d G_{2}}{d k_{2}}-\phi_{2}\left[1-s_{2}\right] \frac{K_{G G G}\left(G_{2}, k_{2}\right) \frac{d G_{2}}{d k_{2}}+K_{G G k}\left(G_{2}, k_{2}\right)}{\left[K_{G G}\left(G_{2}, k_{2}\right)\right]^{2}}<0
$$

This inequality holds when Condition 1 holds because $\frac{d G_{2}}{d k_{2}}=-\frac{K_{G k}\left(G_{2}, k_{2}\right)}{K_{G G}\left(G_{2}, k_{2}\right)}<0$, since $s_{2}=$ $K_{G}\left(G_{2}, k_{2}\right)$. The inequality implies that the optimal s_{2} decreases as k_{2} increases.

The proofs for the settings in which $\underline{F} \leq \widehat{\widehat{F}}_{L}$ are analogous, and so are omitted.

[^0]: ${ }^{1}$ A non-trivial gain sharing plan (F, s) is one: (i) that the firm selects either when $k=k_{1}$ or when $k=k_{2}$; and (ii) in which the firm implements a strictly positive expected gain $(G>0)$ when it operates under the plan.

