Appendix to Accompany

"Designing Optimal Gain Sharing Plans to Promote Energy Conservation" by Leon Yang Chu and David E. M. Sappington

The two problems considered in the text are the following:

Problem [P]

$$\underset{s_{i}, F_{i} \geq -\underline{F}}{\text{Maximize}} \quad \sum_{i=1}^{2} \phi_{i} \left\{ \left[1 - s_{i} \right] G_{i} - F_{i} + \alpha \ \pi_{i} \left(F_{i}, s_{i} \right) \right\}$$
(1)

subject to, for $j \neq i$, $i, j \in \{1, 2\}$:

$$\pi_i(F_i, s_i) \equiv F_i + s_i G_i - K(G_i, k_i) \ge 0; \text{ and}$$
(2)

$$\pi_i(F_i, s_i) \geq F_j + s_j G_{ji} - K(G_{ji}, k_i),$$
(3)

where

$$G_{ji} = \underset{G}{\operatorname{arg\,max}} \{ F_j + s_j G - K(G, k_i) \} \text{ and } G_i = G_{ii}.$$
 (4)

Problem [P-1]

$$\underset{s, F \geq -\underline{F}}{\text{Maximize}} \quad \sum_{i=1}^{2} \phi_i \left\{ \left[1 - s \right] G_i - F + \alpha \left[F + s G_i - K(G_i, k_i) \right] \right\}$$
(5)

subject to, for i = 1, 2:

$$F + s G_i - K(G_i, k_i) \geq 0, \qquad (6)$$

where

$$G_i = \arg \max_G \left\{ F + s G - K(G, k_i) \right\}.$$
(7)

Observation 1. Suppose $\underline{F} \geq G_i^* - K(G_i^*, k_i)$ and the regulator knows $k = k_i$. Then she can secure the same expected payoff she achieves in the full information setting by awarding the firm the entire realized gain (so s = 1) and setting the fixed payment to ensure exactly zero expected profit for the firm (i.e., $F = -\{G_i^* - K(G_i^*, k_i)\})$.

Proof. It is apparent from (4) that the firm will implement expected gain G_i^* when s = 1. The firm's expected profit will be $F + G_i^* - K(G_i^*, k_i) = 0$ when $F = -\{G_i^* - K(G_i^*, k_i)\}$. This gain sharing plan is feasible under the maintained assumptions. Because the plan maximizes the total expected surplus $(G - K(G, k_i))$ and eliminates the firm's rent, the plan secures for the regulator the same expected payoff she achieves in the full information setting.

Observation 2. Suppose $\underline{F} < G_i^* - K(G_i^*, k_i)$ and the regulator knows the prevailing cost environment (k_i) . Then the regulator optimally sets $F = \underline{F}$ and s < 1. The share of the realized gain delivered to the firm (s) declines as the maximum loss the firm can be compelled to bear (\underline{F}) declines.

<u>**Proof**</u>. Let [P-k] denote the regulator's problem when she knows the prevailing cost parameter is k. This problem is:

$$\begin{aligned} \underset{s, F \geq -\underline{F}}{\text{Maximize}} & -F + [1 - s]G + \alpha \left\{ F + sG - K(G, k) \right\} \\ \text{subject to:} & F + sG - K(G, k) \geq 0, \end{aligned}$$

$$\begin{aligned} \text{where} & K_G(G, k) = s. \end{aligned}$$

$$(9)$$

Let λ denote the Lagrange multiplier associated with constraint (8), and let $\underline{\lambda}$ denote the Lagrange multiplier associated with the $F \geq -\underline{F}$ constraint. Then the necessary conditions for a solution to [P-k] are:

$$s: \qquad G\left[-1+\alpha+\lambda\right] + \left[1-s\right]\frac{dG}{ds} = 0; \quad \text{and} \tag{10}$$

$$F: \qquad -1 + \alpha + \lambda + \underline{\lambda} = 0. \tag{11}$$

From (9):

$$\frac{dG}{ds} = \frac{1}{K_{GG}(G,k)} > 0.$$
(12)

It is readily verified that the $F \ge -\underline{F}$ constraint binds at the solution to [P-k] when $\underline{F} < G_i^* - K(G_i^*, k_i)$. Consequently, $\underline{\lambda} > 0$. Therefore, from (10), (11), and (12):

$$[1-s] \frac{dG}{ds} = G \underline{\lambda} > 0 \quad \Rightarrow \quad s < 1.$$

If \underline{F} is sufficiently small that constraint (8) does not bind at the solution to [P-k], then $\lambda = 0$, and so $\underline{\lambda} = 1 - \alpha > 0$, from (11). Consequently, $F = \underline{F}$. Furthermore, from (10) and (12):

$$\frac{1-s}{K_{GG}(G,k)} = [1-\alpha]G \implies 1-s = [1-\alpha]GK_{GG}(G,k)$$
$$\implies s = 1-[1-\alpha]GK_{GG}(G,k) \equiv \tilde{s}.$$

Let \underline{F}^{o} denote the largest value of \underline{F} for which constraint (8) does not bind at the solution to [P-k]. Then as \underline{F} increases from \underline{F}^{o} to $\underline{F}^{*} \equiv G_{i}^{*} - K(G_{i}^{*}, k_{i})$, s increases monotonically from \tilde{s} to 1. This is the case because the $F \geq -\underline{F}$ constraint and constraint (8) both bind at the solution to [P-k] for all $\underline{F} \in (\underline{F}^{o}, \underline{F}^{*})$. Therefore:

$$-\underline{F} + s G - K(G,k) = 0.$$
⁽¹³⁾

Differentiating (13) and using (9) provides:

$$-d\underline{F} + \left\{ G + \left[s - K_G(G,k) \right] \frac{dG}{ds} \right\} ds = 0$$

$$\Rightarrow \quad -d\underline{F} + G \, ds = 0 \quad \Rightarrow \quad \frac{ds}{d\underline{F}} = \frac{1}{G} > 0. \quad \blacksquare$$

Lemma 1. $\Delta \pi(F, s)$ is strictly increasing in s.

Proof.

$$\Delta \pi(F,s) = \max_{G} \{F + sG - K(G,k_1)\} - \max_{G} \{F + sG - K(G,k_2)\}.$$
(14)

(14) and the envelope theorem imply:

$$\frac{d\Delta\pi(F,s)}{ds} = G_1(s) - G_2(s) > 0, \text{ where } G_i(s) = \max_G \{s G - K(G,k_i)\}.$$
(15)

The inequality in (15) holds because $K_G(G_1(s), k_1) = s = K_G(G_2(s), k_2), K_{GG}(G, k_i) > 0$ for i = 1, 2, and $K_G(G, k_2) > K_G(G, k_1)$ for all G > 0.

Conclusion 1. There exist two distinct values of \underline{F} , namely $\underline{F}_L < \underline{F}_H$, such that at the solution to [P-1], the optimal single gain sharing plan has the following features:

- (i) If $\underline{F} \geq \underline{F}_H$, then $s = \overline{s} < 1$, $\frac{d\overline{s}}{d\underline{F}} = 0$, and $\pi_2 = 0$.
- (*ii*) If $\underline{F} \in (\underline{F}_L, \underline{F}_H)$, then $s \in (\underline{s}, \overline{s})$, $\frac{ds}{d\underline{F}} > 0$, $F = -\underline{F}$, and $\pi_2 = 0$.

(iii) If $\underline{F} \leq \underline{F}_L$, then $s = \underline{s} < \overline{s}$, $\frac{d\underline{s}}{d\underline{F}} = 0$, $F = -\underline{F}$, and $\pi_2 \geq 0$, with strict inequality if and only if $\underline{F} < \underline{F}_L$.

<u>**Proof**</u>. Let λ_i denote the Lagrange multiplier associated with constraint (6), and let $\underline{\lambda}$ denote the Lagrange multiplier associated with the $F \geq -\underline{F}$ constraint. Then the necessary conditions for a solution to [P-1] include:

$$s: \qquad \sum_{i=1}^{2} G_{i} \left[-\phi_{i} \left(1-\alpha \right) + \lambda_{i} \right] + \sum_{i=1}^{2} \phi_{i} \left[1-s \right] \frac{dG_{i}}{ds} = 0; \quad \text{and} \qquad (16)$$

$$F: \qquad -1 + \alpha + \lambda_1 + \lambda_2 + \underline{\lambda} = 0.$$
⁽¹⁷⁾

From (7):

$$s = K_G(G_i, k_i) \quad \Rightarrow \quad \frac{dG_i}{ds} = \frac{1}{K_{GG}(G_i, k_i)} > 0.$$
(18)

Since $K(G, k_2) > K(G, k_1)$ for all G > 0, constraint (6) does not bind for i = 1. Therefore, $\lambda_1 = 0$ at the solution to [P-1]. Consequently, (17) provides:

$$\lambda_2 = 1 - \alpha - \underline{\lambda} \,. \tag{19}$$

Define problem [P-1]' to be problem [P-1] without the participation constraints (6) imposed. (19) implies that $\underline{\lambda} = 1 - \alpha > 0$ at the solution to [P-1]', and so $F = -\underline{F}$. Furthermore, from (16):

$$[1-s]\sum_{i=1}^{2} \phi_{i} \frac{dG_{i}}{ds} = \phi_{1} [1-\alpha] G_{1} + \phi_{2} [1-\alpha] G_{2}$$
(20)

Let <u>s</u> denote the value of s that solves (20). Then $(-\underline{F}, \underline{s})$ is the solution to [P-1]'.

Define \underline{F}_L to be the largest value of \underline{F} for which no participation constraint binds at the solution to [P-1] (so $\underline{F}_L = \max_G \{\underline{s} G - K(G, k_2)\}$). Observe that if $\underline{F} \leq \underline{F}_L$, then $(-\underline{F}, \underline{s})$, the solution to [P-1]', is a feasible solution to [P-1], and so is the solution to [P-1]. Note from (20) that $\frac{ds}{dF} = 0$ when $\underline{F} < \underline{F}_L$.

Now define problem [P-1]" to be problem [P-1] without the $F \ge -\underline{F}$ constraint imposed. (19) implies that $\lambda_2 = 1 - \alpha > 0$ at the solution to [P-1]", and so $\pi_2 = 0$. Furthermore, from (16):

$$-\phi_{1}[1-\alpha]G_{1} + [1-\alpha]G_{2}[1-\phi_{2}] + [1-s]\sum_{i=1}^{2}\phi_{i}\frac{dG_{i}}{ds} = 0$$

$$\Leftrightarrow \quad [1-s]\sum_{i=1}^{2}\phi_{i}\frac{dG_{i}}{ds} = \phi_{1}[1-\alpha][G_{1}-G_{2}] > 0.$$
(21)

The inequality in (21) holds because $G_1 > G_2$ from (7), since $K_G(G, k_2) > K_G(G, k_1)$. Since $\frac{dG_i}{ds} > 0$ for i = 1, 2 from (18), (21) implies that s < 1. Let \overline{s} denote the value of s that solves the equality in (21).

Define \underline{F}_H to be the smallest value of \underline{F} for which the solution to [P-1]'' is a feasible solution (and thus the solution) to [P-1].

It remains to show that $\underline{s} < \overline{s}$, and so $\underline{F}_L < \underline{F}_H$, since:

$$-\underline{F}_{L} + \max_{G} \left\{ \underline{s} \, G - K(G, k_{2}) \right\} = 0 = -\underline{F}_{H} + \max_{G} \left\{ \overline{s} \, G - K(G, k_{2}) \right\}$$

$$\Rightarrow \underline{F}_{L} = \underline{F}_{H} + \max_{G} \left\{ \underline{s} \, G - K(G, k_{2}) \right\} - \max_{G} \left\{ \overline{s} \, G - K(G, k_{2}) \right\} < \underline{F}_{H} \quad \text{when } \underline{s} < \overline{s}$$

First observe from (20) and (21) that $\overline{s} \neq \underline{s}$. Now suppose that $\underline{s} > \overline{s}$, and so $\underline{F}_L > \underline{F}_H$. Consider two values of \underline{F} , namely \underline{F}_1 and \underline{F}_2 , such that $\underline{F}_1 \neq \underline{F}_2$ and $\underline{F}_1, \underline{F}_2 \in (\underline{F}_H, \underline{F}_L)$. If $\underline{F} = \underline{F}_i$ for i = 1 or i = 2, then $(-\underline{F}_H, \overline{s})$, the solution to [P-1]', remains a feasible solution to [P-1] since $\underline{F}_i > \underline{F}_H$. Hence, $(-\underline{F}_H, \overline{s})$ is a solution to [P-1].

Furthermore, $(-\underline{F}_i, \underline{s})$, the solution to [P-1]'' when $\underline{F} = \underline{F}_i$, remains a feasible solution to [P-1] since $\underline{F}_i < \underline{F}_L$. Hence, $(-\underline{F}_i, \underline{s})$ is a solution to [P-1]. Therefore, the regulator is indifferent between the $(-\underline{F}_H, \overline{s})$ and the $(-\underline{F}_i, \underline{s})$ plans for i = 1 and i = 2. Consequently, the regulator must be indifferent between the $(-\underline{F}_1, \underline{s})$ plan and the $(-\underline{F}_2, \underline{s})$ plan. However, the regulator strictly prefers the $(-\underline{F}_2, \underline{s})$ plan to the $(-\underline{F}_1, \underline{s})$ plan because the former provides systematically less compensation for the firm and the two plans generate the same total expected surplus. Therefore, by contradiction, it must be the case that $\underline{s} < \overline{s}$, and so $\underline{F}_L < \underline{F}_H$.

Three possibilities arise at the solution to [P-1]: (i) the participation constraint (6) when $k = k_2$ is the unique binding constraint; (ii) the $F \ge -\underline{F}$ constraint is the unique binding constraint; or (iii) both constraints bind. We have shown that possibility (i) arises if and only if $\underline{F} \ge \underline{F}_H$. We have also shown that possibility (ii) arises if and only if $\underline{F} \le \underline{F}_L$. Therefore, possibility (iii) arises if and only if $\underline{F} \in (\underline{F}_L, \underline{F}_H)$. In this case, $F = -\underline{F}$ and:

$$-\underline{F} + s G_2 - K(G_2, k_2) = 0 \quad \Rightarrow \quad -d\underline{F} + G_2 ds = 0 \quad \Rightarrow \quad \frac{ds}{d\underline{F}} = \frac{1}{G_2} > 0. \quad \blacksquare$$

Conclusion 2. There exist two values of \underline{F} , namely $\underline{F}_L < \widehat{\underline{F}}_H$, such that, at the solution to [P], the optimal pair of gain sharing plans $\{(F_1, s_1), (F_2, s_2)\}$ has the following properties:

(i) If $\underline{F} \geq \underline{\widehat{F}}_{H}$, then $s_{1} = 1$, $s_{2} = \overline{s}_{2} < 1$, $F_{1} < F_{2}$, $\frac{d \, \overline{s}_{2}}{d F} = 0$, and $\hat{\pi}_{2} = 0$.

(ii) If $\underline{F} \in [\underline{F}_L, \widehat{\underline{F}}_H)$, then $s_2 \leq s_1 < 1$, $F_2 \geq F_1 = -\underline{F}$, and $\widehat{\pi}_2 = 0$. In addition, if $K_{GGG}(G, k_i) \geq 0$ and $K_{GG}(G, k_2) \geq K_{GG}(G, k_1)$ for all G and for $k_i \in \{k_1, k_2\}$, then there exists an $\underline{\widehat{F}}_L \in [\underline{F}_L, \underline{\widehat{F}}_H)$, such that $s_1 = s_2$ for $\underline{F} \in [\underline{F}_L, \underline{\widehat{F}}_L]$, whereas $s_2 < s_1$ for $\underline{F} \in (\underline{\widehat{F}}_L, \underline{\widehat{F}}_H)$. Furthermore, $\frac{ds_1}{d\underline{F}} = \frac{ds_2}{d\underline{F}} > 0$ for $\underline{F} \in (\underline{F}_L, \underline{\widehat{F}}_L)$, whereas $\frac{ds_1}{d\underline{F}} > 0$, $\frac{ds_2}{d\underline{F}} < 0$, $\frac{dF_1}{d\underline{F}} < 0$, and $\frac{dF_2}{d\underline{F}} > 0$ for $\underline{F} \in (\underline{\widehat{F}}_L, \underline{\widehat{F}}_H)$. (iii) If $\underline{F} < \underline{F}_L$, then $s_1 = s_2 = \underline{s}$, $F_1 = F_2 = -\underline{F}$, $\frac{d\underline{s}}{d\underline{F}} = 0$, and $\widehat{\pi}_2 > 0$.

<u>**Proof**</u>. Let λ_i and λ_{ij} denote the Lagrange multipliers associated with constraints (2) and (3), respectively. Also let $\underline{\lambda}_i$ denote the Lagrange multiplier associated with the $F_i \geq -\underline{F}$ constraint. Then the necessary conditions for a solution to [P] include:

$$s_i: \quad G_i\left[-\phi_i\left(1-\alpha\right)+\lambda_i+\lambda_{ij}\right]-\lambda_{ji}G_{ij}+\phi_i\left[1-s_i\right]\frac{dG_i}{ds_i} = 0; \text{ and} \qquad (22)$$

$$F_i: \quad -\phi_i \left[1 - \alpha\right] + \lambda_i + \lambda_{ij} - \lambda_{ji} + \underline{\lambda}_i = 0.$$
(23)

(22) and (23) provide:

$$\phi_i \left[1 - s_i \right] \frac{dG_i}{ds_i} = \lambda_{ji} \left[G_{ij} - G_i \right] + \underline{\lambda}_i G_i \quad \text{for } j \neq i, \quad i, j \in \{1, 2\}.$$

$$(24)$$

From (4):

$$K_G(G_i, k_i) = s_i \text{ and } K_G(G_{ij}, k_j) = s_i \Rightarrow G_{21} \ge G_2 \text{ and } G_1 \ge G_{12}.$$
 (25)

The inequalities in (25) hold because $K_G(G, k_1) < K_G(G, k_2)$ and $K(\cdot)$ is an increasing, convex function of G. The inequalities in (25) hold as strict inequalities if a positive expected gain is induced when $k = k_1$.

The following lemmas constitute the remainder of the proof of the Conclusion.

Lemma A1. The participation constraint (2) when $k = k_1$ does not bind at the solution to [P].

<u>Proof</u>. The conclusion holds because the firm's expected profit is strictly higher when $k = k_1$ than when $k = k_2$ under any non-trivial gain sharing plan.¹

Lemma A2. $G_1 > G_2$, $F_2 \ge F_1$, and $s_2 \le s_1$ under any feasible solution to [P] that entails a non-trivial gain sharing plan.

<u>Proof.</u> To show that $G_1 > G_2$, observe that the incentive compatibility constraints (3) ensure: $\pi_1(s_1, E_1) = \pi_1(s_2, E_2) > 0 > \pi_2(s_1, E_1) = \pi_2(s_2, E_2)$

$$\pi_1(s_1, F_1) - \pi_1(s_2, F_2) \ge 0 \ge \pi_2(s_1, F_1) - \pi_2(s_2, F_2)$$

$$\pi_1(s_1, F_1) + \pi_2(s_2, F_2) \ge \pi_2(s_1, F_1) + \pi_1(s_2, F_2).$$
(26)

Further observe that:

 \Rightarrow

$$\pi_1(s_1, F_1) + \pi_2(s_2, F_2) = F_1 + s_1 G_1 - K(G_1, k_1) + F_2 + s_2 G_2 - K(G_2, k_2); \text{ and } (27)$$

$$\pi_2(s_1, F_1) + \pi_1(s_2, F_2) \geq F_1 + s_1 G_1 - K(G_1, k_2) + F_2 + s_2 G_2 - K(G_2, k_1).$$
(28)

The inequality in (28) holds because G_i is not necessarily the profit-maximizing expected gain under the (s_i, F_i) gain sharing plan when $k = k_j$ for $j \neq i$. (26), (27), and (28) provide:

$$0 \leq \pi_{1}(s_{1}, F_{1}) + \pi_{2}(s_{2}, F_{2}) - [\pi_{2}(s_{1}, F_{1}) + \pi_{1}(s_{2}, F_{2})]$$

$$\leq K(G_{1}, k_{2}) - K(G_{2}, k_{2}) - [K(G_{1}, k_{1}) - K(G_{2}, k_{1})]$$

$$= \int_{G_{2}}^{G_{1}} \left[\frac{\partial}{\partial G} K(G, k_{2}) - \frac{\partial}{\partial G} K(G, k_{1}) \right] dG \quad \Rightarrow \quad G_{1} > G_{2}.$$
(29)

To show that $s_1 \geq s_2$, observe that:

$$\pi_2(s_1, F_1) + \pi_1(s_2, F_2) \geq F_1 + s_1 G_2 - K(G_2, k_2) + F_2 + s_2 G_1 - K(G_1, k_2).$$
(30)

The inequality in (30) holds because G_j is not necessarily the profit-maximizing expected gain under the (s_i, F_i) gain sharing plan when $k = k_j$ for $j \neq i$. (26), (27), and (30) provide:

$$0 \leq \pi_1(s_1, F_1) + \pi_2(s_2, F_2) - [\pi_2(s_1, F_1) + \pi_1(s_2, F_2)] \leq [G_1 - G_2][s_1 - s_2].$$
(31)

(31) implies that $s_1 \ge s_2$, since $G_1 > G_2$. Therefore, because incentive compatibility ensures it cannot be the case that $F_1 > F_2$ and $s_1 > s_2$, it must be the case that $F_2 \ge F_1$. \Box

¹A non-trivial gain sharing plan (F, s) is one: (i) that the firm selects either when $k = k_1$ or when $k = k_2$; and (ii) in which the firm implements a strictly positive expected gain (G > 0) when it operates under the plan.

Lemma A3. The $F_2 \ge -\underline{F}$ limited liability constraint does not bind at the solution to [P].

<u>Proof.</u> From Lemma A2, $F_2 \ge F_1$ under any feasible nontrivial gain sharing plan. Consequently, the $F_2 \ge -\underline{F}$ limited liability constraint will be satisfied at the solution to [P] as long as the $F_1 \ge -\underline{F}$ constraint is imposed. Therefore, the $F_2 \ge -\underline{F}$ limited liability constraint does not bind at the solution to [P]. \Box

Lemmas A1 and A3 imply that $\lambda_1 = 0$ and $\underline{\lambda}_2 = 0$ at the solution to [P].

Lemma A4. When the regulator offers two distinct, non-trivial gain sharing plans to the firm, the firm cannot be indifferent between the two plans both when $k = k_1$ and when $k = k_2$.

<u>Proof</u>.

$$\frac{\partial}{\partial s} \left\{ \max_{G_i} \left[s \, G_i - K(G_i, k_1) \right] - \max_{G_i} \left[s \, G_i - K(G_i, k_2) \right] \right\} = G_{i1} - G_{i2} \ge 0.$$
(32)

The inequality in (32), which follows from (25), implies that:

$$\max_{G} \{ s_1 G - K(G, k_1) \} - \max_{G} \{ s_1 G - K(G, k_2) \}$$

$$\geq \max_{G} \{ s_2 G - K(G, k_1) \} - \max_{G} \{ s_2 G - K(G, k_2) \}.$$
(33)

When the firm is indifferent between the two plans both when $k = k_1$ and when $k = k_2$, the weak inequality in (33) will hold as an equality. Consequently, it must be the case that a zero expected gain (G = 0) is induced under both plans. But then the plans are not distinct, non-trivial plans. Therefore, when the regulator offers two distinct, non-trivial gain sharing plans to the firm, only one of the incentive compatibility constraints will bind. \Box

Lemma A5. If neither participation constraint (2) binds at the solution to [P], then the regulator optimally offers only a single gain sharing plan.

<u>Proof.</u> If neither participation constraint binds at the solution to [P], then $\lambda_1 = \lambda_2 = 0$. Consequently, from (23):

$$\underline{\lambda}_1 = [1 - \alpha] \phi_1 + \lambda_{21} - \lambda_{12} \quad \text{and} \quad \underline{\lambda}_2 = [1 - \alpha] \phi_2 + \lambda_{12} - \lambda_{21}.$$
(34)

Since $\underline{\lambda}_2 = 0$ from Lemma A3, (34) implies that $\lambda_{21} > 0$. (34) also implies that $\underline{\lambda}_1 = \underline{\lambda}_1 + \underline{\lambda}_2 = 1 - \alpha > 0$. Therefore, $F_1 = -\underline{F}$.

(24) and (25) imply:

$$\phi_2 [1 - s_2] \frac{dG_2}{ds_2} = \lambda_{12} [G_{21} - G_2] + \underline{\lambda}_2 G_2$$

$$\Rightarrow s_2 < 1 \text{ if and only if } \underline{\lambda}_2 > 0 \text{ or } \lambda_{12} > 0.$$
(35)

Lemma A4 implies that $\lambda_{12} = 0$, since $\lambda_{21} > 0$. Consequently, $s_2 = 1$, from (35). But then it cannot be optimal for the regulator to offer two distinct gain sharing plans because the single (F_2, s_2) plan would deliver no more rent to the firm and would generate a higher level of expected total surplus. \Box

Lemma A6. Suppose <u>F</u> is sufficiently large that the $F_i \ge -\underline{F}$ constraints do not bind at the solution to [P]. Then $s_2 < s_1 = 1$, $\lambda_2 > 0$, and $\lambda_{12} > 0$ at the solution to [P].

<u>Proof.</u> Since $\underline{\lambda}_1 = \underline{\lambda}_2 = 0$ in this case, (23) and Lemma A1 imply that $\lambda_2 = \lambda_1 + \lambda_2 = 1 - \alpha > 0$. (23) also implies that $\lambda_{12} = \lambda_{21} + [1 - \alpha] \phi_1 > 0$. Therefore, $\lambda_{21} = 0$, from Lemma A4. Consequently, from (24):

$$\phi_1 \left[1 - s_1 \right] \frac{dG_1}{ds_1} = 0 \quad \Rightarrow \quad s_1 = 1.$$

(24) implies that when $\underline{\lambda}_2 = 0$:

$$\phi_2 \left[1 - s_2 \right] \frac{dG_2}{ds_2} = \lambda_{12} \left[G_{21} - G_2 \right] > 0 \quad \Rightarrow \quad s_2 < 1.$$
(36)

The first inequality in (36) reflects (25). \Box

Lemma A7. Suppose the participation constraint (2) when $k = k_2$ and the $F_1 \ge -\underline{F}$ limited liability constraint both bind at the solution to [P]. Then $s_2 \le s_1 < 1$.

<u>Proof</u>. Since $\underline{\lambda}_1 > 0$ in this case, (24) implies:

$$\phi_1[1-s_1] \frac{dG_1}{ds_1} > 0 \implies s_1 < 1.$$

Furthermore, $s_2 \leq s_1$ from Lemma A2. Therefore, since $\underline{\lambda}_2 > 0$ from Lemma A3, (24) implies that $\lambda_{12} > 0$. \Box

Define $\underline{\widehat{F}}_H$ to be the smallest value of \underline{F} for which the $F_1 \ge -\underline{F}$ constraint does not bind at the solution to [P]. Then Lemma A6 implies that when $\underline{F} \ge \underline{\widehat{F}}_H$, $s_2 < s_1 = 1$, $\widehat{\pi}_2 = 0$, $F_2 > F_1 = -\underline{\widehat{F}}_H$, and the firm secures the same expected profit under the two gain sharing plans in the low cost environment at the solution to [P].

Recall that $\underline{F}_L = \max_G \{\underline{s} G - K(G, k_2)\}$ is the largest value of \underline{F} for which no participation constraint binds at the solution to [P-1]. Lemma A5 implies that the solution to [P] is the solution to [P-1] when $\underline{F} \leq \underline{F}_L$. Therefore, from the proof of Conclusion 1, $s_1 = s_2 = \underline{s}$, $F_1 = F_2 = -\underline{F}, \ \frac{ds}{dF} = 0$, and $\widehat{\pi}_2 > 0$ at the solution to [P] when $\underline{F} \leq \underline{F}_L$.

The definition of \underline{F}_L and Lemma A1 imply that $\widehat{\pi}_2 = 0$ at the solution to [P] when $\underline{F} > \underline{F}_L$. Furthermore, if the $F_1 \ge -\underline{F}$ constraint binds and $s_1 = s_2 = \widehat{s}$ at the solution to [P], it must be the case that $\frac{d\widehat{s}}{dF} > 0$ (to ensure $\widehat{\pi}_2 = 0$) when $\underline{F} > \underline{F}_L$.

Lemma A8. $\underline{\widehat{F}}_L < \underline{\widehat{F}}_H$.

<u>Proof.</u> We first show that $\hat{\underline{F}}_L \neq \hat{\underline{F}}_H$. To do so, suppose $\hat{\underline{F}}_L = \hat{\underline{F}}_H$. Lemma A5 and (34) imply that $(-\hat{\underline{F}}_L, \underline{s})$ is the optimal plan when $\underline{F} = \hat{\underline{F}}_L = \hat{\underline{F}}_H$. Furthermore, $\hat{\underline{s}} < 1$ and $\hat{\pi}_2 = 0$ under this plan. Lemma A6 implies that the $\{(F_2, s_2), (-\hat{\underline{F}}_H, 1)\}$ gain sharing program is also optimal and $\hat{\pi}_2 = 0$ under this program. Notice that the firm strictly prefers the $(-\hat{\underline{F}}_H, 1)$ plan to the $(-\hat{\underline{F}}_L, \underline{s})$ plan because $\hat{\underline{F}}_L = \hat{\underline{F}}_H$ and $\hat{\underline{s}} < 1$. Therefore, it cannot be the case that $\hat{\pi}_2 = 0$ under both plans. Hence, by contradiction, $\hat{\underline{F}}_L \neq \hat{\underline{F}}_H$.

Now suppose $\underline{\widehat{F}}_L > \underline{\widehat{F}}_H$, and consider a value of $\underline{F} \in (\underline{\widehat{F}}_H, \underline{\widehat{F}}_L)$. Since $\underline{F} > \underline{\widehat{F}}_H$, the $\{(F_2, s_2), (-\underline{\widehat{F}}_H, 1)\}$ gain sharing program identified in Lemma A6 is a solution to [P]. Since $\underline{F} < \underline{\widehat{F}}_L$, the $(-\underline{F}, \underline{\widehat{s}})$ gain sharing plan identified in Lemma A5 is also a solution to [P]. As \underline{F} increases in this range, the regulator's expected payoff increases under the $(-\underline{F}, \underline{\widehat{s}})$ plan because the payment to the firm $(-\underline{F})$ declines. In contrast, the regulator's expected payoff does not change under the $\{(F_2, s_2), (-\underline{\widehat{F}}_H, 1)\}$ program because this program does not change as \underline{F} increases. Therefore, both of the identified solutions cannot be optimal and so, by contradiction, $\underline{\widehat{F}}_L \leq \underline{\widehat{F}}_H$.

Since $\underline{\widehat{F}}_L \leq \underline{\widehat{F}}_H$ and $\underline{\widehat{F}}_L \neq \underline{\widehat{F}}_H$, it must be the case that $\underline{\widehat{F}}_L < \underline{\widehat{F}}_H$. \Box

Lemma A9. Suppose $\underline{F} \in [\underline{F}_L, \underline{\widehat{F}}_H)$. Then $s_2 \leq s_1 < 1$, $F_2 \geq F_1 = -\underline{F}$, and $\widehat{\pi}_2 = 0$. In addition, if $K_{GGG}(G, k_i) \geq 0$ and $K_{GG}(G, k_2) \geq K_{GG}(G, k_1)$ for all G and for $k_i \in \{k_1, k_2\}$, then there exists an $\underline{\widehat{F}}_L \in [\underline{F}_L, \underline{\widehat{F}}_H)$, such that $s_1 = s_2$ for $\underline{F} \in [\underline{F}_L, \underline{\widehat{F}}_L]$, whereas $s_2 < s_1$ for $\underline{F} \in (\underline{\widehat{F}}_L, \underline{\widehat{F}}_H)$. Furthermore, $\frac{ds_1}{d\underline{F}} = \frac{ds_2}{d\underline{F}} > 0$ for $\underline{F} \in (\underline{F}_L, \underline{\widehat{F}}_L)$, whereas $\frac{ds_1}{d\underline{F}} > 0$, $\frac{ds_2}{d\underline{F}} < 0$, and $\frac{dF_2}{d\underline{F}} > 0$ for $\underline{F} \in (\underline{\widehat{F}}_L, \underline{\widehat{F}}_H)$.

<u>Proof.</u> If $\underline{F} \in [\underline{F}_L, \widehat{\underline{F}}_H)$, then the participation constraint (2) when $k = k_2$ and the $F_1 \geq -\underline{F}$ constraint both bind at the solution to [P]. Consequently, $\widehat{\pi}_2 = 0$ and $F_1 = -\underline{F}$. Furthermore: (i) $F_2 \geq F_1$ from Lemma A2; (ii) $s_2 \leq s_1 < 1$ from Lemma A7; and (iii) $\lambda_{12} > 0$ from the proof of Lemma A7.

From (1), the regulator maximizes:

$$\sum_{i=1}^{2} \phi_{i} \{ [1-s_{i}] G_{i} - F_{i} + \alpha \pi_{i} (F_{i}, s_{i}) \}$$

=
$$\sum_{i=1}^{2} \phi_{i} \{ G_{i} - K(G_{i}, k_{i}) - [1-\alpha] \pi_{i} (F_{i}, s_{i}) \} .$$
(37)

When $s_2 < s_1$, the regulator can be viewed as choosing the optimal value of s_2 . The corresponding optimal values of F_2 and s_1 are then readily determined because $\hat{\pi}_2 = 0$ and $\lambda_{12} > 0$. Differentiating (37), recognizing that $\frac{d\pi_2(\cdot)}{ds_2} = 0$, provides:

$$\sum_{i=1}^{2} \phi_{i} \left\{ \left[1 - K_{G}(G_{i}, k_{i}) \right] \frac{dG_{i}}{ds_{i}} \right\} ds_{i} - \phi_{1} \left[1 - \alpha \right] G_{1} ds_{1}$$

$$= \sum_{i=1}^{2} \phi_{i} \left[\frac{1 - K_{G}(G_{i}, k_{i})}{K_{GG}(G_{i}, k_{i})} \right] ds_{i} - \phi_{1} \left[1 - \alpha \right] G_{1} ds_{1} = 0.$$
(38)

The first equality in (38) holds because $\frac{dG_i}{ds_i} = \frac{1}{K_{GG}(G_i,k_i)}$, since $K_G(G_i,k_i) = s_i$ from (25).

Since $\widehat{\pi}_2 = 0$:

$$F_2 + s_2 G_2 - K(G_2, k_2) = 0 \implies dF_2 + G_2 ds_2 = 0.$$
(39)

Since $\lambda_{12} > 0$:

$$-\underline{F} + s_1 G_1 - K(G_1, k_1) = F_2 + s_2 G_{21} - K(G_{21}, k_1).$$
(40)

Differentiating (40), using (39), provides:

$$G_1 ds_1 = dF_2 + G_{21} ds_2 = [G_{21} - G_2] ds_2.$$
(41)

(38) and (41) imply that when $s_2 < s_1$ at the solution to [P]:

$$\phi_{1} \left[\frac{1 - K_{G}(G_{1}, k_{1})}{K_{GG}(G_{1}, k_{1})} \right] G_{1} ds_{1} + \phi_{2} \left[\frac{1 - K_{G}(G_{2}, k_{2})}{K_{GG}(G_{2}, k_{2})} \right] \left[\frac{G_{1}}{G_{21} - G_{2}} \right] ds_{1} - \phi_{1} \left[1 - \alpha \right] G_{1} ds_{1} = 0 \Rightarrow \phi_{1} \left[\frac{1 - K_{G}(G_{1}, k_{1})}{K_{GG}(G_{1}, k_{1})} \right] \frac{1}{G_{1}} + \phi_{2} \left[\frac{1 - K_{G}(G_{2}, k_{2})}{K_{GG}(G_{2}, k_{2})} \right] \left[\frac{1}{G_{21} - G_{2}} \right] - \phi_{1} \left[1 - \alpha \right] = 0.$$
(42)

 G_2 and G_{21} are readily calculated for any given s_2 . Given G_2 and G_{21} , G_1 can be derived from (42). We now show that G_1 (and therefore s_1) is uniquely determined by s_2 and that s_1 is a monotone decreasing function of s_2 .

Differentiating (42) provides:

$$\begin{split} \phi_1 \left\{ \left[\frac{1 - K_G(G_1, k_1)}{K_{GG}(G_1, k_1)} \right] \left[-\frac{1}{G_1^2} \right] \right. \\ \left. + \frac{-K_{GG}^2(G_1, k_1) - \left[1 - K_G(G_1, k_1) \right] K_{GGG}(G_1, k_1)}{K_{GG}^2(G_1, k_1)} \left[\frac{1}{G_1} \right] \right\} \left[\frac{dG_1}{ds_1} \right] ds_1 \end{split}$$

$$+ \phi_2 \left\{ \frac{1 - K_G(G_2, k_2)}{K_{GG}(G_2, k_2)} \left[\frac{1}{(G_{21} - G_2)^2} \right] \right. \\ \left. + \frac{- K_{GG}^2(G_2, k_2) - \left[1 - K_G(G_2, k_2) \right] K_{GGG}(G_2, k_2)}{K_{GG}^2(G_2, k_2)} \left[\frac{1}{G_{21} - G_2} \right] \right\} \frac{dG_2}{ds_2} ds_2$$

$$+ \phi_2 \left[\frac{1 - K_G(G_2, k_2)}{K_{GG}(G_2, k_2)} \right] \left[-\frac{1}{(G_{21} - G_2)^2} \right] \left[\frac{dG_{21}}{ds_2} \right] ds_2 = 0.$$
(43)

Since $\frac{dG_i}{ds_i} = \frac{1}{K_{GG}(G_i,k_i)}$, the terms that multiply ds_1 in (43) can be written as:

$$\frac{\phi_1}{K_{GG}^2(G_1,k_1)G_1^2} \left\{ -\left[1 - K_G(G_1,k_1)\right] K_{GG}(G_1,k_1) - G_1 K_{GG}^2(G_1,k_1) - G_1 \left[1 - K_G(G_1,k_1)\right] K_{GGG}(G_1,k_1) \right\} \frac{1}{K_{GG}(G_1,k_1)} ds_1 < 0.$$
(44)

The inequality in (44) holds when $K_{GGG}(\cdot) \geq 0$ because $K_G(G_1, k_1) = s_1 < 1$.

Similarly, the terms that multiply ds_2 in (43) can be written as:

$$\frac{\phi_2}{K_{GG}^2(G_2, k_2) [G_{21} - G_2]^2} \left\{ \left[1 - K_G(G_2, k_2) \right] K_{GG}(G_2, k_2) - \left[G_{21} - G_2 \right] K_{GG}^2(G_2, k_2) - \left[G_{21} - G_2 \right] K_{GG}^2(G_2, k_2) \right\} \frac{1}{K_{GG}(G_2, k_2)} \\
+ \phi_2 \left[\frac{1 - K_G(G_2, k_2)}{K_{GG}(G_2, k_2)} \right] \left[- \frac{1}{(G_{21} - G_2)^2} \right] \frac{1}{K_{GG}(G_{21}, k_1)} \\
< \frac{\phi_2 \left[1 - K_G(G_2, k_2) \right]}{K_{GG}(G_2, k_2) \left[G_{21} - G_2 \right]^2} \left[\frac{1}{K_{GG}(G_2, k_2)} - \frac{1}{K_{GG}(G_{21}, k_1)} \right] \le 0.$$
(45)

The first inequality in (45) holds when $K_{GGG}(G,k) \geq 0$ since $K_G(G_2,k_2) = s_2 < 1$ and $G_{21} > G_2$. The last inequality in (45) holds because $K_{GG}(G_{21},k_1) \leq K_{GG}(G_2,k_2)$ when $K_{GGG}(G,k_i) \geq 0$ and $K_{GG}(G,k_2) \geq K_{GG}(G,k_1)$ for all G and for $k_i \in \{k_1,k_2\}$.

(43), (44), and (45) imply that for each s_2 , there is a unique s_1 that decreases as s_2 increases (so $\frac{ds_1}{ds_2} < 0$) at the solution to [P]. Lemma 1 implies that the firm's profit in the low cost environment at the solution to [P] increases as s_2 increases and s_1 decreases. Therefore, since $\lambda_{12} > 0$, there is a unique F_1 that increases as s_2 increases.

Let \overline{s}_2 denote the value of s_2 at the solution to [P] when $\underline{F} = \underline{\widehat{F}}_H$. Also let \widehat{s} denote the largest share of the realized gain awarded the supplier when $s_1 = s_2$ at the solution to [P]. In addition, let $\underline{\widehat{F}}_L \geq \underline{F}_L$ denote the value \underline{F}_L at which $s_1 = s_2 = \widehat{s}$ at the solution to [P]. Since $F_1 = -\underline{F}$ when $\underline{F} \in [\underline{F}_L, \underline{\widehat{F}}_H)$, it follows that s_2 increases from \overline{s}_2 to \widehat{s} as \underline{F} declines from $\underline{\widehat{F}}_H$ to \underline{F}_L . Therefore, $s_2 < s_1$ and $\frac{ds_1}{d\underline{F}} > 0$, $\frac{ds_2}{d\underline{F}} < 0$, $\frac{dF_1}{d\underline{F}} < 0$, and $\frac{dF_2}{d\underline{F}} > 0$ when $\underline{F} \in (\underline{\widehat{F}}_L, \underline{\widehat{F}}_H)$. $\Box \blacksquare$

<u>Condition 1</u>. $K_{GGk}(G,k) \ge K_{GGG}(G,k) \left[\frac{K_{Gk}(G,k)}{K_{GG}(G,k)}\right]$ for all G and k. <u>Condition 2</u>. $K_{GGk}(G,k) \le K_{GGG}(G,k) \left[\frac{K_{Gk}(G,k)}{K_{GG}(G,k)}\right]$ for all G and k.

Conclusion 3. Suppose the regulator's objective function is a concave function of s_2 . Then at the solution to [P]:

- (i) s_2 increases as ϕ_2 increases or as α increases;
- (ii) s_2 decreases as k_2 increases if Condition 1 holds; and

(iii) s_2 increases as k_1 increases if $\underline{F} > \underline{\widehat{F}}_H$ or if $\underline{F} \leq \underline{\widehat{F}}_L$ and Condition 2 holds.

<u>Proof</u>. Let (F_i, s_i) denote the gain sharing plan the firm chooses when $k = k_i$. Then consumer surplus when $k = k_i$ is:

$$CS_i \equiv -F_i + [1 - s_i]G_i.$$
 (46)

Total surplus when $k = k_i$ is:

$$T_i \equiv G_i - K(G_i, k_i). \tag{47}$$

The firm's rent when $k = k_i$ is:

$$R_i \equiv F_i + s_i G_i - K(G_i, k_i).$$

$$(48)$$

The regulator's objective is to maximize:

$$W \equiv \sum_{i=1}^{2} \phi_i \left[CS_i + \alpha R_i \right] = \sum_{i=1}^{2} \phi_i \left[T_i - (1 - \alpha) R_i \right].$$
(49)

 $\underline{\text{Case I}}. \quad \underline{F} \geq \underline{\widehat{F}}_H.$

The regulator can be viewed as determining the optimal s_2 . Conclusion 2 implies that once s_2 is determined, F_2 is set to ensure the firm earns no rent when $k = k_2$. Furthermore, $s_1 = 1$ and F_1 is chosen so that the firm is indifferent between the (F_1, s_1) plan and the (F_2, s_2) plan when $k = k_1$. This indifference implies:

$$R_1 = F_2 + s_2 G_{21} - K(G_{21}, k_1), \qquad (50)$$

where G_{21} is the success probability the firm would implement under the (F_2, s_2) plan in the low cost environment.

Because $R_2 = 0$:

$$0 = \frac{dR_2}{ds_2} = \frac{\partial R_2}{\partial s_2} + \frac{\partial R_2}{\partial G_2} \left[\frac{dG_2}{ds_2} \right] + \frac{\partial R_2}{\partial F_2} \left[\frac{dF_2}{ds_2} \right] = G_2 + \frac{dF_2}{ds_2} \Rightarrow \frac{dF_2}{ds_2} = -G_2.$$
(51)

The third equality in (51) reflects the envelope theorem and the fact that $\frac{\partial R_2}{\partial s_2} = G_2$ and $\frac{\partial R_2}{\partial F_2} = 1$, from (48).

 $\frac{dW}{ds_2} = 0$ at the solution to [P]. We will determine how changes in parameter values affect $\frac{dW}{ds_2}$. If $\frac{dW}{ds_2}$ becomes positive (negative) as a parameter increases, then the optimal s_2 will increase (decrease), given the presumed concavity of W.

From (48):

$$K_G(G_i, k_i) = s_i \quad \Rightarrow \quad \frac{dG_i}{ds_i} = \frac{1}{K_{GG}(G_i, k_i)} \quad \text{for } i = 1, 2.$$
(52)

Because $s_1 = 1$, T_1 is not affected by changes in s_2 , i.e., $\frac{dT_1}{ds_2} = 0$. From (47), using (52):

$$\frac{dT_2}{ds_2} = \frac{\partial T_2}{\partial s_2} + \frac{\partial T_2}{\partial G_2} \left[\frac{dG_2}{ds_2} \right] + \frac{\partial T_2}{\partial F_2} \left[\frac{dF_2}{ds_2} \right] = \frac{\partial T_2}{\partial G_2} \left[\frac{dG_2}{ds_2} \right]$$

$$= \left[1 - K_G(G_2, k_2) \right] \frac{dG_2}{ds_2} = \left[1 - s_2 \right] \frac{dG_2}{ds_2} = \frac{1 - s_2}{K_{GG}(G_2, k_2)}.$$
(53)

The second equality in (53) holds because $\frac{\partial T_2}{\partial s_2} = \frac{\partial T_2}{\partial F_2} = 0$, from (47). The last two equalities in (53) reflect (52). From (48):

$$\frac{dR_1}{ds_2} = \frac{\partial R_1}{\partial s_2} + \frac{\partial R_1}{\partial G_{21}} \left[\frac{dG_{21}}{ds_2} \right] + \frac{\partial R_1}{\partial F_2} \left[\frac{dF_2}{ds_2} \right]$$

$$= \frac{\partial R_1}{\partial s_2} + \frac{\partial R_1}{\partial F_2} \left[\frac{dF_2}{ds_2} \right] = G_{21} + \frac{dF_2}{ds_2} = G_{21} - G_2.$$
(54)

The second equality in (54) reflects the envelope theorem. The third equality in (54) follows from (50). The last equality in (54) reflects (51).

(49), (53), and (54) imply:

$$\frac{dW}{ds_2} = \phi_2 \left[\frac{1 - s_2}{K_{GG}(G_2, k_2)} \right] - \phi_1 \left[1 - \alpha \right] \left[G_{21} - G_2 \right] \,. \tag{55}$$

Differentiating (55) with respect to α provides:

$$\frac{d}{d\alpha} \left(\frac{dW}{ds_2} \right) = \phi_1 \left[G_{21} - G_2 \right] > 0.$$
(56)

The inequality in (56) implies that the optimal s_2 increases as α increases.

Differentiating (55) with respect to ϕ_1 provides:

$$\frac{d}{d\phi_1} \left(\frac{dW}{ds_2} \right) = -\left[1 - s_2 \right] \frac{1}{K_{GG}(G_2, k_2)} - \left[1 - \alpha \right] \left[G_{21} - G_2 \right] < 0.$$

This inequality implies that the optimal s_2 decreases as ϕ_1 increases.

Differentiating (55) with respect to k_2 provides:

$$\frac{d}{dk_2} \left(\frac{dW}{ds_2} \right) = \phi_1 \left[1 - \alpha \right] \frac{dG_2}{dk_2} - \phi_2 \left[1 - s_2 \right] \frac{K_{GGG}(G_2, k_2) \frac{dG_2}{dk_2} + K_{GGk}(G_2, k_2)}{\left[K_{GG}(G_2, k_2) \right]^2} < 0.$$
(57)

The inequality in (57) holds when Condition 1 holds because $\frac{dG_2}{dk_2} = -\frac{K_{Gk}(G_2,k_2)}{K_{GG}(G_2,k_2)} < 0$, since $s_2 = K_G(G_2, k_2)$. The inequality in (57) implies that the optimal s_2 decreases as k_2 increases.

Differentiating (55) with respect to k_1 provides:

$$\frac{d}{dk_1}\left(\frac{dW}{ds_2}\right) = -\phi_1 \left[1-\alpha\right] \frac{dG_{21}}{dk_1} > 0.$$
(58)

The inequality in (58) holds because $\frac{dG_{21}}{dk_1} = -\frac{K_{Gk}(G_{21},k_1)}{K_{GG}(G_{21},k_1)} < 0$, since $K_G(G_{21},k_1) = s_2$. The inequality in (58) implies that the optimal s_2 increases as k_1 increases.

<u>Case II</u>. $\underline{F} \in (\underline{\widehat{F}}_L, \underline{\widehat{F}}_H)$.

The regulator can again be viewed as determining the optimal s_2 . Conclusion 2 implies that once s_2 is determined, F_2 is set to ensure the firm earns no rent when $k = k_2$. Furthermore, $F_1 = -\underline{F}$ and s_1 is chosen so that the firm is indifferent between the (F_1, s_1) and (F_2, s_2) plans when $k = k_1$.

 $\frac{dT_2}{ds_2}$ in this case is as specified in (53). Furthermore, from (47), using (52):

$$\frac{dT_1}{ds_2} = \frac{\partial T_1}{\partial G_1} \left[\frac{dG_1}{ds_2} \right] = \left[1 - K_G(G_1, k_1) \right] \frac{dG_1}{ds_2} \\
= \left[1 - s_1 \right] \frac{dG_1}{ds_1} \left[\frac{ds_1}{ds_2} \right] = \left[\frac{1 - s_1}{K_{GG}(G_1, k_1)} \right] \frac{ds_1}{ds_2}.$$
(59)

From (50), (51), and the envelope theorem:

$$-\underline{F} + s_1 G_1 - K(G_1, k_1) = F_2 + s_2 G_{21} - K(G_{21}, k_1)$$

$$\Rightarrow \quad G_1 \frac{ds_1}{ds_2} = \frac{dF_2}{ds_2} + G_{21} \quad \Rightarrow \quad \frac{ds_1}{ds_2} = \frac{G_{21} - G_2}{G_1} > 0.$$
(60)

In addition, from (50):

$$\frac{dR_1}{ds_2} = \frac{\partial R_1}{\partial s_2} + \frac{\partial R_1}{\partial G_{21}} \left[\frac{dG_{21}}{ds_2} \right] + \frac{\partial R_1}{\partial F_2} \left[\frac{dF_2}{ds_2} \right]$$

$$= \frac{\partial R_1}{\partial s_2} + \frac{\partial R_1}{\partial F_2} \left[\frac{dF_2}{ds_2} \right] = G_{21} + \frac{dF_2}{ds_2} = G_{21} - G_2.$$
(61)

The second equality in (61) reflects the envelope theorem. The third equality in (61) holds because $\frac{\partial R_1}{\partial s_2} = G_{21}$ and $\frac{\partial R_1}{\partial F_2} = 1$, from (50). The last equality in (61) reflects (51).

(49), (53), (59), and (61) imply:

$$\frac{dW}{ds_2} = \phi_1 \left[\frac{1 - s_1}{K_{GG}(G_1, k_1)} \right] \frac{ds_1}{ds_2} + \phi_2 \left[\frac{1 - s_2}{K_{GG}(G_2, k_2)} \right] - \phi_1 \left[1 - \alpha \right] \left[G_{21} - G_2 \right] .$$
(62)

Differentiating (62) with respect to α provides:

$$\frac{d}{d\alpha} \left(\frac{dW}{ds_2} \right) = \phi_1 \left[G_{21} - G_2 \right] > 0.$$

This inequality implies that the optimal s_2 increases as α increases.

Differentiating (62) with respect to ϕ_1 provides:

$$\frac{d}{d\phi_1} \left(\frac{dW}{ds_2} \right) = -\left[1 - \alpha \right] \left[G_{21} - G_2 \right] - \frac{1 - s_2}{K_{GG}(G_2, k_2)} + \frac{1 - s_1}{K_{GG}(G_1, k_1)} \left[\frac{ds_1}{ds_2} \right] \\
= -\frac{1 - s_2}{K_{GG}(G_2, k_2)} - \frac{\phi_2}{\phi_1} \left[\frac{1 - s_2}{K_{GG}(G_2, k_2)} \right] < 0.$$
(63)

The last equality in (63) follows from (62), since $\frac{dW}{ds_2} = 0$ at the optimal value of s_2 . The inequality in (63) implies that the optimal s_2 decreases as ϕ_1 increases.

Differentiating (62) with respect to k_2 provides:

$$\frac{d}{dk_2} \left(\frac{dW}{ds_2} \right) = \phi_1 \left[1 - \alpha \right] \frac{dG_2}{dk_2} - \phi_2 \left[1 - s_2 \right] \frac{K_{GGG}(G_2, k_2) \frac{dG_2}{dk_2} + K_{GGk}(G_2, k_2)}{\left[K_{GG}(G_2, k_2) \right]^2} < 0$$

This inequality holds when Condition 1 holds because $\frac{dG_2}{dk_2} = -\frac{K_{Gk}(G_2,k_2)}{K_{GG}(G_2,k_2)} < 0$, since $s_2 = K_G(G_2,k_2)$. The inequality implies that the optimal s_2 decreases as k_2 increases.

The proofs for the settings in which $\underline{F} \leq \underline{\widehat{F}}_L$ are analogous, and so are omitted.