Appendix to Accompany
“Designing Optimal Gain Sharing Plans to Promote Energy Conservation”

by Leon Yang Chu and David E. M. Sappington

The two problems considered in the text are the following:

Problem [P]

2
Maximize Y ¢,{[1—s;] Gi — Fi+ o m; (F;,5;) } (1)

8i, Fy > —F —
=

subject to, for j #1i, 1, j€ {1,2}:

mi (F,si) > Fj+5;Gy5 — K(Gji, ki) (3)
where
Gji = argmax {Fj+s,G—K(G,k;))} and G, = G;. (4)
G
Problem [P-1]
2
l\gagclzrglée Z 0, {[1—s| G —F+a[F+sG; — K(Gi,k;)] } (5)

i=1
subject to, for i = 1, 2:

where

Gy = argmax{F +sG— K(G,k;) } . (7)
€

Observation 1. Suppose F > Gi — K(G}, k;) and the requlator knows k = k;. Then she
can secure the same expected payoff she achieves in the full information setting by awarding

the firm the entire realized gain (so s = 1) and setting the fized payment to ensure exactly
zero expected profit for the firm (i.e., F = —{Gf — K(G}, k;)}).

Proof. It is apparent from (4) that the firm will implement expected gain G when s = 1.
The firm’s expected profit will be F' + Gf — K(G},k;) = 0 when F = —{G}f — K(G}, k;)}.
This gain sharing plan is feasible under the maintained assumptions. Because the plan
maximizes the total expected surplus (G — K(G,k;)) and eliminates the firm’s rent, the
plan secures for the regulator the same expected payoff she achieves in the full information
setting. W



Observation 2. Suppose F' < Gf — K(G!, k;) and the regulator knows the prevailing cost
environment (k;). Then the regulator optimally sets F' = F and s < 1. The share of the
realized gain delivered to the firm (s) declines as the maximum loss the firm can be compelled
to bear (F) declines.

Proof. Let [P-k]| denote the regulator’s problem when she knows the prevailing cost para-
meter is k. This problem is:

Maximize —F+[1—s]|G+a{F+sG —K(G,k)}

s, F>—-F
subject to:  F+sG — K(G,k) > 0, (8)
where Ko(G k) = s. (9)

Let A\ denote the Lagrange multiplier associated with constraint (8), and let A denote the
Lagrange multiplier associated with the F' > — I constraint. Then the necessary conditions
for a solution to [P-k| are:

dG

s : G[—1+a+)\]+[1—s]E = 0; and (10)
F: —l4+a+X+A =0. (11)
From (9):
1
LS > 0. (12)

ds  Kao(G k)

It is readily verified that the F' > — I constraint binds at the solution to [P-k] when
F < Gf — K(G}, k;). Consequently, A > 0. Therefore, from (10), (11), and (12):

dG
l—s]— = GA >0 = s < 1.
ds
If F is sufficiently small that constraint (8) does not bind at the solution to [P-k], then
A=0,andso A = 1—a > 0, from (11). Consequently, F' = F. Furthermore, from (10)
and (12):
1—s

eyl 1-a]G = 1-s5 = [1-0a]GKga(G,k)

= s = 1—[1—&]GKgg(G,k) = 3.
Let F? denote the largest value of F for which constraint (8) does not bind at the
solution to [P-k]. Then as F increases from F° to F* = Gf — K(G},k;), s increases
monotonically from s to 1. This is the case because the F' > — F' constraint and constraint

(8) both bind at the solution to [P-k] for all F € (F°, F*). Therefore:

~F+sG—K(Gk) = 0. (13)



Differentiating (13) and using (9) provides:

d
—dE+{G+[s—KG(G,k)]d—f}ds ~ 0
ds 1
= —dF+Gds =0 = —dE—5>0. [ |

Lemma 1. An(F,s) is strictly increasing in s.

Proof.
Arn(F,s) = max {F+sG—-K(G,k)} — max {F+sG—-K(G, k) }. (14)

(14) and the envelope theorem imply:
dAT(F,s)
ds

The inequality in (15) holds because Kg(G1(s),k1) = s = Ka(Ga(s), k2), Kaa(G, ki) >0
fori =1,2, and Ko(G,ks) > Ko(G k) forallG >0. W

= G1(s) — Ga(s) > 0, where Gi(s) = ncl;ax{sG—K(G,ki)}. (15)

Conclusion 1. There exist two distinct values of ', namely F; < Fy, such that at the
solution to [P-1], the optimal single gain sharing plan has the following features:

(i) If F > Fy,then s =735 <1, & =0,and m = 0.

) dF
(i) If F e (F.,Fy), then s € (s,5), 5—2>0, F =—F,and 73 =0.
W) If F < F,, then s = s < 5, £ =0, F=—F, and 75 > 0, with strict
L aF

wnequality if and only if F < F;.

Proof. Let \; denote the Lagrange multiplier associated with constraint (6), and let A
denote the Lagrange multiplier associated with the F' > —F' constraint. Then the necessary
conditions for a solution to [P-1] include:

2 2

G,
5 ;Gi[—@u—a)ﬂ,ﬁ;¢i[1—s] o~ =0; and (16)
F —1+Oé—|—)\1+/\2+A:O. (17)
From (7):
; 1
S = Kg<Gz,]€Z) = 4G, = > 0. (18)

dS KGg(Gi, k?z)

Since K(G,ky) > K(G,ky) for all G > 0, constraint (6) does not bind for i = 1.
Therefore, A\; =0 at the solution to [P-1]. Consequently, (17) provides:
3



A = 1—a—A. (19)

Define problem [P-1]" to be problem [P-1] without the participation constraints (6) im-
posed. (19) implies that A = 1 —a > 0 at the solution to [P-1]’, and so F = —F.
Furthermore, from (16):

2

-5 6,250 — 61— a] Gy + 6,1 - 0] G (20)

: ds
=1

Let s denote the value of s that solves (20). Then (— F, s) is the solution to [P-1] .

Define F; to be the largest value of F' for which no participation constraint binds at
the solution to [P-1] (so F, = max {sG — K(G,k2)}). Observe that if F < F,, then

(— F, 5), the solution to [P-1], is a feasible solution to [P-1], and so is the solution to [P-1].
Note from (20) that j—lf = 0 when F < F;.

Now define problem [P-1]" to be problem [P-1] without the F' > — F' constraint imposed.
(19) implies that Ay = 1 —a > 0 at the solution to [P-1]", and so my = 0. Furthermore,
from (16): 2

—¢1[1—a]G1+[1—a}G2[1—¢2]+[1—S]Z¢idd_cj _ 0
& [1—3]2@‘2—?:@[1—@][@—@] > 0. (21)

=1

The inequality in (21) holds because G; > Go from (7), since Kqg(G,ky) > Ka(G, k).
Since % >0 for i =1,2 from (18), (21) implies that s < 1. Let 5 denote the value of s

that solves the equality in (21).

Define F'j; to be the smallest value of F for which the solution to [P-1]" is a feasible
solution (and thus the solution) to [P-1].

It remains to show that s < s, and so F; < Iy, since:

—EL+mC?,X{§G—K(G,k2)} =0 = —EH—}—mC?X{EG—K(G,kQ)}
= F, = Fy+ max {sG— K(G,ky)} — max {sG—K(G,ky)} < Fy when s < 5.

First observe from (20) and (21) that 5 # s. Now suppose that s > 5, and so F; > F.
Consider two values of F, namely F; and F,, such that F'; # F, and F,, F, € (Fy, F}).
If F=F,fori=1ori=2,then (—F,3), the solution to [P-1]', remains a feasible solution
to [P-1] since F; > F'j;. Hence, (—F,3) is a solution to [P-1].

Furthermore, (—F;, s), the solution to [P-1]" when F = F,, remains a feasible solution
to [P-1] since F; < F;. Hence, (—F,,s) is a solution to [P-1]. Therefore, the regulator is
indifferent between the (—F,s) and the (—F,, s) plans for i = 1 and i = 2. Consequently,
the regulator must be indifferent between the (—F, s) plan and the (—F,, s) plan. However,
the regulator strictly prefers the (—F,,s) plan to the (—F,,s) plan because the former

4



provides systematically less compensation for the firm and the two plans generate the same
total expected surplus. Therefore, by contradiction, it must be the case that s <, and so
Fp,<Fy.

Three possibilities arise at the solution to [P-1]: (i) the participation constraint (6) when

k = ks is the unique binding constraint; (ii) the F' > — F constraint is the unique binding

constraint; or (iii) both constraints bind. We have shown that possibility (i) arises if and

only if ¥ > Fy. We have also shown that possibility (ii) arises if and only if £ < F;.

Therefore, possibility (iii) arises if and only if F € (F,, F'j;). In this case, F' = — F and:
ds 1

—F — K ko) = —dF ds = — = — . N
_+SG2 (GQ, 2) 0 = _+G2 S 0 = dE G2 > 0

Conclusion 2. There exist two values of F', namely F; < E 1, such that, at the solution
to [P], the optimal pair of gain sharing plans {(Fi, s1), (Fs, s2)} has the following properties:

(Z) IfEZEH,then 81:1, Sg = §9 < 1, F < Fg, %:O, and /7%2:0

(ii) If FE€[F,,Fy), then s < s1 <1, Fy > F, =—F, and 7, = 0. In addition,
if Keoa(G ki) > 0 and Kaa(G,k2) > Kaa(G, ki) for all G and for k; € {ki,k2}, then
there exists an F, € [F,,F ), such that s; = sy for F € [F,,F,], whereas sy < s; for

F e (EL,EH) Furthermore, % = fl—sﬁ >0 for F € (EL,EL), whereas % > 0, ‘%2 <0,

4 <0, and % >0 for Fe (F,, Fp).

(iii) If F < Fy, then s1 = s, = s, 1 = F, =—F, 4

|\<n

=0, and 7T, > 0.

e

Proof. Let \; and \;; denote the Lagrange multipliers associated with constraints (2) and
(3), respectively. Also let )\, denote the Lagrange multiplier associated with the F; > — F
constraint. Then the necessary conditions for a solution to [P] include:

(22) and (23) provide:
dG; S
$i[l=si] —— = XilGij = Gl + A, Gi for j#14, 4,5 €{1,2}. (24)

From (4):
KG(qukz) = §; and Kg(Gij,kj) =3 = G21 2 G2 and Gl 2 Glg. (25)
The inequalities in (25) hold because Kq(G, k1) < Kg(G,ke) and K(-) is an increasing,
convex function of G. The inequalities in (25) hold as strict inequalities if a positive expected

gain is induced when k = k.
5



The following lemmas constitute the remainder of the proof of the Conclusion.

Lemma A1. The participation constraint (2) when k = k; does not bind at the solution to
[P].

Proof. The conclusion holds because the firm’s expected profit is strictly higher when k = &,
than when k = ky under any non-trivial gain sharing plan.! O

Lemma A2. G; > Gy, F, > Fi, and s; < s; under any feasible solution to [P] that
entails a non-trivial gain sharing plan.
Proof. To show that G; > G4, observe that the incentive compatibility constraints (3)
ensure:
mi(s1, F1) — mi(s2, Fo) > 0 > ma(s1, F1) — ma(s2, F2)
= mi(s1, F1) + ma(se, Fo) > ma(s1, F1) + mi(sg, F2) . (26)

Further observe that:
7T1(81,F1)+7T2(82,F2) = F1+Sl Gl—K(Gl,kl) + Fz—l—SQGg—K(GQ,/{?g); and (27)
7T2(81,F1)+7T1(82,F2) Z Fl—l—SlGl—K(Gl,/{?z) + F2+82G2—K(G2,/€1). (28)

The inequality in (28) holds because G; is not necessarily the profit-maximizing expected
gain under the (s;, F;) gain sharing plan when k = k; for j # i. (26), (27), and (28) provide:

0 < mi(s1, Fi) 4 ma(se, Fy) — [ma(s1, F1) + m1(se, )]

< K(Gh,ks) — K(Ga, k) — [K(Gr, k1) — K (Go, k1)) (29)

“Giro 0
/;2 [@K(G,kz)—@K(G,kl) dG = Gl > Gg.

To show that s; > sy, observe that:

7T2(51, F1> + 7T1(52, FQ) 2 Fl + S1 G2 — K(GQ, ]{32) + FQ + S92 Gl — K(Gl, ]{72) . (30)

The inequality in (30) holds because G; is not necessarily the profit-maximizing expected
gain under the (s;, F;) gain sharing plan when k = k; for j # i. (26), (27), and (30) provide:
0 < mi(s1, F1) + ma(se, Fo) — [ma(s1, F1) + mi(s2, F2)] < [Gr— Gy[s1 — so]. (31)

(31) implies that s; > sg, since G; > G5. Therefore, because incentive compatibility ensures
it cannot be the case that F; > F, and s; > s9, it must be the case that Fy, > F;. 0O

'A non-trivial gain sharing plan (F,s) is one: (i) that the firm selects either when k = ki or when k = ko;
and (ii) in which the firm implements a strictly positive expected gain (G > 0) when it operates under the
plan.



Lemma A3. The F;, > —F limited liability constraint does not bind at the solution to
[P].

Proof. From Lemma A2, F;, > F) under any feasible nontrivial gain sharing plan. Con-
sequently, the F, > —F limited liability constraint will be satisfied at the solution to [P]
as long as the F; > —F constraint is imposed. Therefore, the Fy > —F limited liability
constraint does not bind at the solution to [P]. O

Lemmas Al and A3 imply that A; =0 and ), = 0 at the solution to [P].

Lemma A4. When the regulator offers two distinct, non-trivial gain sharing plans to the

firm, the firm cannot be indifferent between the two plans both when & = k; and when
k = ks.

Proof.

The inequality in (32), which follows from (25), implies that:
max {$1G—K(G,ky)} — max {$1G — K(G,ko)}

> max {$2G — K(G,k1)} — max {$2G — K(G,ka)}. (33)

When the firm is indifferent between the two plans both when £ = k; and when k = ks,
the weak inequality in (33) will hold as an equality. Consequently, it must be the case that a
zero expected gain (G = 0) is induced under both plans. But then the plans are not distinct,
non-trivial plans. Therefore, when the regulator offers two distinct, non-trivial gain sharing
plans to the firm, only one of the incentive compatibility constraints will bind. [

Lemma A5. If neither participation constraint (2) binds at the solution to [P], then the
regulator optimally offers only a single gain sharing plan.

Proof. If neither participation constraint binds at the solution to [P], then A\; = Ay = 0.
Consequently, from (23):

Al = [1 — CY] ¢1 + )\21 - )\12 and AQ = [1 — Ck] ¢2 + )\12 — )\21 . (34)
Since Ay, = 0 from Lemma A3, (34) implies that Ay; > 0. (34) also implies that \; =
A+ Ay = 1—a > 0. Therefore, F} = —F.
(24) and (25) imply:
dG
Bo [1 — 59] d_2 = M2 [Ga1 — Ga] + Xy G

S92

= sy < lifandonlyif Ay, >0 or A3 >0. (35)



Lemma A4 implies that A;5 = 0, since Aoy > 0. Consequently, so = 1, from (35). But
then it cannot be optimal for the regulator to offer two distinct gain sharing plans because
the single (F3, s9) plan would deliver no more rent to the firm and would generate a higher
level of expected total surplus. [J

Lemma A6. Suppose F' is sufficiently large that the F; > — F constraints do not bind
at the solution to [P]. Then sy < s; = 1, Ag >0, and A2 > 0 at the solution to [P].

Proof. Since A, = A\, = 0 in this case, (23) and Lemma Al imply that Ao = A\; + X\ =
1—a > 0. (23) also implies that A\js = Ag; + [1 —a] ¢, > 0. Therefore, \y; = 0, from
Lemma A4. Consequently, from (24):

dG
9151[1—31]?11 =0 = s =1.
(24) implies that when )\, = 0:
dG
¢2 [1 — 82] Ej = Ao [Ggl — GQ] >0 = 5 < 1. (36)

The first inequality in (36) reflects (25). O

Lemma A7. Suppose the participation constraint (2) when k& = ky and the F} > — F
limited liability constraint both bind at the solution to [P]. Then sy < s; < 1.

Proof. Since \; > 0 in this case, (24) implies:

dGq
¢1[1—81]d—81 >0 = s < 1.
Furthermore, sy < s; from Lemma A2. Therefore, since A, > 0 from Lemma A3, (24)
implies that A5 > 0. [

Define E 5 to be the smallest value of F' for which the F} > —F constraint does not bind
at the solution to [P]. Then Lemma A6 implies that when F > F iy, S2<s1=1, T3 =0,
> F = —E 1, and the firm secures the same expected profit under the two gain sharing
plans in the low cost environment at the solution to [P].

Recall that F; = max {sG — K(G, k2)} is the largest value of F for which no partici-

pation constraint binds at the solution to [P-1]. Lemma A5 implies that the solution to [P] is
the solution to [P-1] when F < F';. Therefore, from the proof of Conclusion 1, s; = s5 = s,

I =F=—F, j—; =0, and 72 > 0 at the solution to [P] when F < F';.

The definition of F; and Lemma Al imply that 7y = 0 at the solution to [P] when
F > F;. Furthermore, if the F; > —F constraint binds and s; = sy = 5 at the solution to

[P], it must be the case that j—f: > (0 (to ensure 7o = 0) when F > F;.



Lemma AS. ﬁL < ﬁH

Proof. We first show that F P, # F Fp. To do so, suppose F F, = = F F . Lemma A5 and
(34) imply that (—F,,s) is the optimal plan when F = F, = F,. Furthermore, 3 < 1

and 7, = 0 under this plan. Lemma A6 implies that the {(F, s3), (—Fy,1)} gain sharing
program is also optimal and 7 T2 = 0 under this program. Notice that the firm strictly prefers
the (— FH, 1) plan to the (— FL, s) plan because FL = FH and s < 1. Therefore, it cannot

be the case that 7, = 0 under both plans. Hence, by contradiction, E . 7 E -

Now suppose EL > EH, and consider a value of F € (EH,EL) Since F > EH , the
{(F3, s2), (—E i, 1)} gain sharing program identified in Lemma A6 is a solution to [P]. Since
F<F 1, the (—F,3) gain sharing plan identified in Lemma A5 is also a solution to [P].
As F increases in this range, the regulator’s expected payoff increases under the (—F,3)
plan because the payment to the firm (—F') declines. In contrast, the regulator’s expected
payoff does not change under the {(Fb, s5), (—F;, 1)} program because this program does
not change as I increases. Therefore, both of the identified solutions cannot be optimal and
so, by contradiction, FL <F Fy.

Since EL§EH and EL%EH,itmustbethecasethat EL<EH. U

Lemma A9. Suppose F € [EL,EH). Then s < s < 1, Fy, > Fy = —F, and
7o = 0. In addition, if Kgea(G, ki) > 0 and Kgo(G,ks) > Kga(G, k) for all G and for
ki € {ki,ky}, then there exists an F, € [F,,F}), such that s; = s, for F € [F,, F,],

whereas sy < s; for F € (EL,EH) Furthermore, % = ffﬁ > 0 for I € (EL,EL),

d d dF dF.
whereas % >0, 07 <0, 77 <0, and 7 >0 for EE(EL,EH).

Proof. If F € [F,,F}), then the participation constraint (2) when k = ky and the F, >
— F constraint both bind at the solution to [P]. Consequently, 7o = 0 and F; = — F.
Furthermore: (i) F, > F; from Lemma A2; (ii) sy < s; < 1 from Lemma A7; and (iii)
A12 > 0 from the proof of Lemma A7.

From ( 1) the regulator maximizes:

Z¢{ ) Gi— Fi+ am; (F,s)}

Z ¢ {Gi — K(Gi, ki) = [1 — o] mi(Fi,si) } - (37)

When sy < s1, the regulator can be viewed as choosing the optimal value of s,. The
corresponding optimal values of Fy and s; are then readily determined because 7o = 0 and
A12 > 0. Differentiating (37), recognizing that dﬂz() = 0, provides:

2

Z@{ | — Ko(Gi k)] 2 }dsz b1 [1— a] G, ds,

ds;
i=1 i



2
=D 4 [1;((;1;@(;@];/;)} dsi— 61 [l— o] Grdss = 0. (38)
i=1 )

The first equality in (38) holds because ‘2—% = m, since Kg(Gi,k;) = s; from (25).
Since ™, = 0:
F2+82G2—K<G2,k2) =0 = dF2—|—G2d82 = 0. (39)
Since A2 > O:
_E+81G1—K(G1,]{51) = F2+82G21—K(G21,]{31). (40)
Differentiating (40), using (39), provides:
Gl d81 = dF2 -+ G21 dSQ == [Ggl — GQ] ng . (41)
(38) and (41) imply that when sy < s; at the solution to [P]:

é {1_KG<G1;k1) 1_KG(G27]{52)} [ Gy 1d$
" Keo(Gy, k) Kea(Ge, k2) Gy —Ga| !

}G1d51+¢2[

— ¢ [1—a]Gids; = 0

Tt |65 * T | (o) -l =0

:>¢1[

G5 and (97 are readily calculated for any given ss. Given Gy and G91, (7 can be derived
from (42). We now show that Gy (and therefore s;) is uniquely determined by s, and that
s1 is a monotone decreasing function of ss.

Differentiating (42) provides:

o{[Fteny] [
n —KZc(Gr k) — [;(é—;((gl(illa)kl)] Kaaa(Gy, ki) {Gl}} {dGl} ds,

t o { 1l_<c[§éi2/;j)2) {(G21 i G2)2]

4= K2o(Ga, ks) — [1 — Ka(Ga, k)] Ko (Ga, ks) { 1 ] } dG, s
K2 (Ga, ko) Go1 — G dsy  °
1 _KG(G27k2):| |: 1 :| |:dG21:|
+ — dss = 0. 43
¢2 |: KGG(G27 kZ) (G21 — G2)2 dSQ *2 ( )

10



Since ‘fi—i? = m, the terms that multiply ds; in (43) can be written as:
) 2
—1-K ky)| K, k1) — G1 K, k
Kg;g(Gh ]{31> G% { { G’(Gh 1)} GG(Gl, 1) G1 GG<G17 1)
1
— G111 = Kg(Gh, k)] KGGG(Gl,k‘l)}mdSl < 0. (44)

The inequality in (44) holds when Kgge(-) > 0 because Kg(Gh, k1) = s1 < 1.

Similarly, the terms that multiply ds; in (43) can be written as:

by
K26(G2, ko) [Gor — G

5 {11 — Ka(Ga, k2)] Kaa(Ga, k) — [Gar — Ga] K2(Ga, ks)

— [Ga1 — Go] [1 = Ko(Ga, b)) Ko (G k) } m
1 — Kq(Ga, ko) 1 1
+¢2 |: KGG(G2a k2) :| |:_ (Ggl — G2)2:| K@Q(Ggl,kl)
Py [1 — Ka(Ga, k) 1 1
KGG’(G2, kz) [021 - G2]2 {Kgg(Gg, k‘g) B KGG(G21, k’l):| < 0. (45)

The first inequality in (45) holds when Kgga(G,k) > 0 since Kg(Ga,ks) = s9 < 1
and Gg1 > Ga. The last inequality in (45) holds because Kga(Gar, k1) < Koa(Ga, k2)
when Koaa(G, ki) >0 and Kgg(G,ks) > Kaa(G, k) for all G and for k; € {kq, ka}.
(43), (44), and (45) imply that for each sg, there is a unique s; that decreases as so
increases (so g—i; < 0) at the solution to [P]. Lemma 1 implies that the firm’s profit in
the low cost environment at the solution to [P] increases as s, increases and s; decreases.

Therefore, since A2 > 0, there is a unique Fj that increases as ss increases.

Let S5 denote the value of sy at the solution to [P] when F = E ;- Also let 5 denote the
largest share of the realized gain awarded the supplier when s; = s, at the solution to [P].
In addition, let 7, > F, denote the value F; at which s; = s, = 3 at the solution to [P].
Since F; = —F when F € [F;, E 1), it follows that s, increases from 3, to 5 as F declines
from EH to F';. Therefore, sy < s; and % > 0, ‘2—55 < 0, ‘fl—lg < 0, and ‘2—% > 0 when
Fe (ELaEH) Om
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Condition 1. Kaen(G, k) > Kooe(G, k) [ gggﬁg’;ﬂ for all G and k.

Condition 2. Kaon(G k) < Kooe(G, k) [ jgg;(gm for all G and k.

Conclusion 3. Suppose the regulator’s objective function is a concave function of sy. Then
at the solution to [P]:

(i)  sq increases as ¢, increases or as o increases;
(ii) so decreases as ks increases if Condition 1 holds; and

(11i) sy increases as ky increases if F > EH orif I < EL and Condition 2 holds.

Proof. Let (F},s;) denote the gain sharing plan the firm chooses when k& = k;. Then
consumer surplus when k = k; is:

Total surplus when k = k; is:

The firm’s rent when k£ = k; is:

The regulator’s objective is to maximize:
2 2
W =) ¢[CS+aR] = ) ¢[Ti—-(1-a)R]. (49)
i=1 i=1

~

Casel. F > Fy.

The regulator can be viewed as determining the optimal s;. Conclusion 2 implies that
once s is determined, F5 is set to ensure the firm earns no rent when k = ky. Furthermore,
s1 = 1 and Fj is chosen so that the firm is indifferent between the (F},s;) plan and the
(Fy, s9) plan when k = k;. This indifference implies:

Ry = Fy+8yGa — K(Goy, k1), (50)
where (5 is the success probability the firm would implement under the (F5, s3) plan in the
low cost environment.

Because R, = 0:

o _ Ry _ OBy ORy[dGy]  ORy[dR] _ . dF, _ dFR
N dSQ N 882 8G2 d82 (9F2 dSQ N 2 d82 d82

— — G,. (51)

The third equality in (51) reflects the envelope theorem and the fact that %—f; = Gy and

g—’;; =1, from (48).
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aw

dsa
aw

= 0 at the solution to [P]. We will determine how changes in parameter values affect
dso *

If % becomes positive (negative) as a parameter increases, then the optimal sy will
increase (decrease), given the presumed concavity of W.

From (48):
dG; 1
o ) = ds; Kaa(Gi, ki) o (52)
Because s; =1, T is not affected by changes in s,, i.e., ‘;—2 =0.
From (47), using (52):

d1s 0Ty, 0Ty [ dGs Ty | dF, Ty | dGo
d_82 = + + ==

882 8G2

dSQ 8F2 dSQ 8_G2 d_SQ
dGQ dGQ 1-— S92
1 — Ka(Goy k)] o2 = [1— - .
[ G(G27 2)} dSQ [ 82] dSQ KGG(G27]€2) (53)
The second equality in (53) holds because g—fj = g—g =0, from (47). The last two equalities
in (53) reflect (52). From (48):

dR1 . aRl 1 8R1 dG21 +8R1 dF2
d82 n 852 8G21

d82 8F2 d82
8R1 aRl sz dF2
= =G — = Go —Gs. 54
882 * 0F2 |:d82:| 2 d32 . ’ ( )
The second equality in (54) reflects the envelope theorem. The third equality in (54) follows
from (50). The last equality in (54) reflects (51).
(49), (53), and (54) imply:
aw 1-— S92
s g 2 | [1—a][Ga — G . 55
= 0 || - allGa - G (55)

Differentiating (55) with respect to o provides:

d (dW
o (d_32> = ¢ [Ga1 —Go| > 0.

The inequality in (56) implies that the optimal s, increases as « increases.

Differentiating (55) with respect to ¢, provides:

(56)

d (dW 1
(@) = Uy 0 eloa el <o

This inequality implies that the optimal s, decreases as ¢, increases.
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Differentiating (55) with respect to ko provides:

d [dW e Keaa(Gay ko) %2 + Kaar(Ga, k
'_<_J — of—a) 9 g, gy BoolCr e, Kol By )
dky \ dss dks [Kaa(Ge, ko))

The inequality in (57) holds when Condition 1 holds because Cfif? = — % < 0, since

= K¢(Ga, ko). The inequality in (57) implies that the optimal s, decreases as ks increases.

Differentiating (55) with respect to k; provides:

d (dW dGy

(2 = - - .

() = —a-a% s (59)
The inequality in (58) holds because dgf = — ?gg((gzllill)) < 0, since Kg(Gar, k1) = s9. The

inequality in (58) implies that the optimal s, increases as ki increases.

CaseII. F e (F,, Fp).

The regulator can again be viewed as determining the optimal s;. Conclusion 2 implies
that once sy is determined, F3 is set to ensure the firm earns no rent when k& = ky. Further-
more, F; = —F and s; is chosen so that the firm is indifferent between the (F,s;) and
(Fy, s2) plans when k = kj.

j? in this case is as specified in (53). Furthermore, from (47), using (52):
dT1 8T1 dGl dGl
— = — |—| = [1-K, k
d82 8G1 |: d82 ‘| [ G(Gh 1)] d82
dGl dSl 1— 51 dsl
S QP [ sl (R (R S (2 59
L=l LZSJ {KGG(Gl, kl)] dss (59)

From (50), (51), and the envelope theorem:
—F+5G,— K(G1,k1) = Fo 452G — K(Ga, k1)

d81 . dF2 d81 . G21_G2
= Gld_Sg = d—s2—|—G21 = d_82 = G, > 0. (60)

In addition, from (50):
dR, OR; 0R; {dGm] OR; {dFQ}

d82 N 882 +6G21

d82 8F2 d82
. aRl 8R1 sz o dF2
= s 0 [dsz] Gntgs, = Gu= G (61)

The second equality in (61) reflects the envelope theorem. The third equality in (61) holds
because %Rl = (51 and ‘Z—];; =1, from (50). The last equality in (61) reflects (51).
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(49), (53), (59), and (61) imply:

dW 1— s ds; 1— 59
= ¢ ¢2

= o) T ) oL olGa -Gl @

Differentiating (62) with respect to « provides:
d (dW
do \ dss

) = ¢1[G21—G2] > 0.

This inequality implies that the optimal s, increases as « increases.

Differentiating (62) with respect to ¢, provides:

d (dW 1— s 1— s [dsl}
—(— ) = —[1-0a][Ga — G2 — + ——
oy (d> el =Gl G )t Kaa(@r) s
1-— S9 §b2 |i 1-— S9
S Sk B ) " R 63
Koa(Ga k2) &1 [ Kaa(Ga, k) %)
The last equality in (63) follows from (62), since % = 0 at the optimal value of s,. The

inequality in (63) implies that the optimal sy decreases as ¢, increases.

Differentiating (62) with respect to ko provides:
Gy (LU I e B R Kago(Ga, ka) it + Kan(Ga, k)
1 dks 2 2

dky \ dsy [Kea(Ga, ko)
This inequality holds when Condition 1 holds because 42 — — Ker(Gake) g ginee g, =
q Y dk2 — Kgg(Gak2) ’ 2

Kg(Ga, k2). The inequality implies that the optimal s, decreases as ko increases.

The proofs for the settings in which F < E ; are analogous, and so are omitted. MW

15



