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�Designing Optimal Gain Sharing Plans to Promote Energy Conservation�

by Leon Yang Chu and David E. M. Sappington

The two problems considered in the text are the following:

Problem [P]

Maximize
si; Fi��F

2X
i=1

�i f [1� si] Gi � Fi + � �i (Fi; si) g (1)

subject to, for j 6= i, i; j 2 f1; 2g:

�i (Fi; si) � Fi + siGi �K(Gi; ki) � 0 ; and (2)

�i (Fi; si) � Fj + sj Gji �K(Gji; ki) , (3)

where
Gji = argmax

G
fFj + sj G�K(G; ki) g and Gi = Gii . (4)

Problem [P-1]

Maximize
s; F ��F

2X
i=1

�i f [1� s] Gi � F + � [F + sGi �K(Gi; ki)] g (5)

subject to, for i = 1; 2:

F + sGi �K(Gi; ki) � 0 , (6)

where
Gi = argmax

G
fF + sG�K(G; ki) g . (7)

Observation 1. Suppose F � G�i �K(G�i ; ki) and the regulator knows k = ki. Then she
can secure the same expected payo¤ she achieves in the full information setting by awarding
the �rm the entire realized gain (so s = 1) and setting the �xed payment to ensure exactly
zero expected pro�t for the �rm (i.e., F = �fG�i �K(G�i ; ki)g).

Proof . It is apparent from (4) that the �rm will implement expected gain G�i when s = 1.
The �rm�s expected pro�t will be F + G�i �K(G�i ; ki) = 0 when F = �fG�i �K(G�i ; ki)g.
This gain sharing plan is feasible under the maintained assumptions. Because the plan
maximizes the total expected surplus (G � K(G; ki)) and eliminates the �rm�s rent, the
plan secures for the regulator the same expected payo¤ she achieves in the full information
setting. �



Observation 2. Suppose F < G�i �K(G�i ; ki) and the regulator knows the prevailing cost
environment (ki). Then the regulator optimally sets F = F and s < 1. The share of the
realized gain delivered to the �rm (s) declines as the maximum loss the �rm can be compelled
to bear (F ) declines.

Proof . Let [P-k] denote the regulator�s problem when she knows the prevailing cost para-
meter is k. This problem is:

Maximize
s; F ��F

� F + [1� s]G+ � fF + sG �K(G; k) g

subject to: F + sG �K(G; k) � 0 , (8)

where KG(G; k) = s . (9)

Let � denote the Lagrange multiplier associated with constraint (8), and let � denote the
Lagrange multiplier associated with the F � �F constraint. Then the necessary conditions
for a solution to [P-k] are:

s : G [�1 + �+ � ] + [1� s] dG
ds

= 0 ; and (10)

F : � 1 + �+ � + � = 0 . (11)

From (9):
dG

ds
=

1

KGG(G; k)
> 0. (12)

It is readily veri�ed that the F � �F constraint binds at the solution to [P-k] when
F < G�i �K(G�i ; ki). Consequently, � > 0. Therefore, from (10), (11), and (12):

[1� s] dG
ds

= G� > 0 ) s < 1 .

If F is su¢ ciently small that constraint (8) does not bind at the solution to [P-k], then
� = 0, and so � = 1 � � > 0, from (11). Consequently, F = F . Furthermore, from (10)
and (12):

1� s
KGG(G; k)

= [1� �]G ) 1� s = [1� �]GKGG(G; k)

) s = 1� [1� �]GKGG(G; k) � es .
Let F o denote the largest value of F for which constraint (8) does not bind at the

solution to [P-k]. Then as F increases from F o to F � � G�i � K(G�i ; ki), s increases
monotonically from es to 1. This is the case because the F � �F constraint and constraint
(8) both bind at the solution to [P-k] for all F 2 (F o; F �). Therefore:

�F + sG�K(G; k) = 0 . (13)
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Di¤erentiating (13) and using (9) provides:

�dF +
�
G+ [ s�KG(G; k) ]

dG

ds

�
ds = 0

) � dF + G ds = 0 ) ds

dF
=

1

G
> 0 . �

Lemma 1. ��(F; s) is strictly increasing in s.

Proof .

��(F; s) = max
G

fF + sG�K(G; k1) g � max
G

fF + sG�K(G; k2) g . (14)

(14) and the envelope theorem imply:

d��(F; s)

ds
= G1(s)�G2(s) > 0 , where Gi(s) = max

G
f sG�K(G; ki) g . (15)

The inequality in (15) holds because KG(G1(s); k1) = s = KG(G2(s); k2), KGG(G; ki) > 0
for i = 1; 2, and KG(G; k2) > KG(G; k1) for all G > 0. �

Conclusion 1. There exist two distinct values of F , namely FL < FH , such that at the
solution to [P-1], the optimal single gain sharing plan has the following features:

(i) If F � FH , then s = s < 1, ds
dF
= 0, and �2 = 0.

(ii) If F 2 (FL; FH), then s 2 (s; s), ds
dF
> 0, F = �F , and �2 = 0.

(iii) If F � FL, then s = s < s, ds
dF
= 0, F = �F , and �2 � 0, with strict

inequality if and only if F < FL.

Proof . Let �i denote the Lagrange multiplier associated with constraint (6), and let �
denote the Lagrange multiplier associated with the F � �F constraint. Then the necessary
conditions for a solution to [P-1] include:

s :

2X
i=1

Gi [��i (1� �) + �i] +
2X

i=1

�i [1� s]
dGi
ds

= 0 ; and (16)

F : � 1 + �+ �1 + �2 + � = 0 . (17)

From (7):
s = KG(Gi; ki) ) dGi

ds
=

1

KGG(Gi; ki)
> 0 . (18)

Since K(G; k2) > K(G; k1) for all G > 0, constraint (6) does not bind for i = 1.
Therefore, �1 = 0 at the solution to [P-1]. Consequently, (17) provides:
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�2 = 1� �� � . (19)

De�ne problem [P-1]
0
to be problem [P-1] without the participation constraints (6) im-

posed. (19) implies that � = 1 � � > 0 at the solution to [P-1]0, and so F = �F .
Furthermore, from (16):

[1� s]
2X

i=1

�i
dGi
ds

= �1 [1� �]G1 + �2 [1� �]G2 (20)

Let s denote the value of s that solves (20). Then (�F; s) is the solution to [P-1]0.

De�ne FL to be the largest value of F for which no participation constraint binds at
the solution to [P-1] (so FL = max

G
f sG�K(G; k2)g ). Observe that if F � FL, then

(�F; s), the solution to [P-1]0, is a feasible solution to [P-1], and so is the solution to [P-1].
Note from (20) that d s

dF
= 0 when F < FL.

Now de�ne problem [P-1]00 to be problem [P-1] without the F � �F constraint imposed.
(19) implies that �2 = 1 � � > 0 at the solution to [P-1]00, and so �2 = 0. Furthermore,
from (16):

��1 [1� �]G1 + [1� �]G2 [1� �2] + [1� s]
2X

i=1

�i
dGi
ds

= 0

, [1� s]
2X

i=1

�i
dGi
ds

= �1 [1� �] [G1 �G2] > 0 . (21)

The inequality in (21) holds because G1 > G2 from (7), since KG(G; k2) > KG(G; k1).
Since dGi

ds
> 0 for i = 1; 2 from (18), (21) implies that s < 1. Let s denote the value of s

that solves the equality in (21).

De�ne FH to be the smallest value of F for which the solution to [P-1]00 is a feasible
solution (and thus the solution) to [P-1].

It remains to show that s < s, and so FL < FH , since:

�FL + max
G

fsG�K(G; k2)g = 0 = � FH + max
G

f sG�K(G; k2)g

) FL = FH + max
G

fsG�K(G; k2)g � max
G

fsG�K(G; k2)g < FH when s < s .

First observe from (20) and (21) that s 6= s. Now suppose that s > s, and so FL > FH .
Consider two values of F , namely F 1 and F 2, such that F 1 6= F 2 and F 1, F 2 2 (FH ; FL).
If F = F i for i = 1 or i = 2, then (�FH ; s), the solution to [P-1]0, remains a feasible solution
to [P-1] since F i > FH . Hence, (�FH ; s) is a solution to [P-1].

Furthermore, (�F i; s), the solution to [P-1]
00
when F = F i, remains a feasible solution

to [P-1] since F i < FL. Hence, (�F i; s) is a solution to [P-1]. Therefore, the regulator is
indi¤erent between the (�FH ; s) and the (�F i; s) plans for i = 1 and i = 2. Consequently,
the regulator must be indi¤erent between the (�F 1; s) plan and the (�F 2; s) plan. However,
the regulator strictly prefers the (�F 2; s) plan to the (�F 1; s) plan because the former
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provides systematically less compensation for the �rm and the two plans generate the same
total expected surplus. Therefore, by contradiction, it must be the case that s < s, and so
FL < FH .

Three possibilities arise at the solution to [P-1]: (i) the participation constraint (6) when
k = k2 is the unique binding constraint; (ii) the F � �F constraint is the unique binding
constraint; or (iii) both constraints bind. We have shown that possibility (i) arises if and
only if F � FH . We have also shown that possibility (ii) arises if and only if F � FL.
Therefore, possibility (iii) arises if and only if F 2 (FL; FH). In this case, F = �F and:

�F + sG2 �K(G2; k2) = 0 ) � dF +G2 ds = 0 ) ds

dF
=

1

G2
> 0 . �

Conclusion 2. There exist two values of F , namely FL < bFH , such that, at the solution
to [P], the optimal pair of gain sharing plans f(F1; s1); (F2; s2)g has the following properties:
(i) If F � bFH , then s1 = 1, s2 = s2 < 1, F1 < F2 , d s2

dF
= 0, and b�2 = 0.

(ii) If F 2 [FL; bFH), then s2 � s1 < 1, F2 � F1 = �F , and b�2 = 0. In addition,
if KGGG(G; ki) � 0 and KGG(G; k2) � KGG(G; k1) for all G and for ki 2 fk1; k2g, then
there exists an bFL 2 [FL; bFH), such that s1 = s2 for F 2 [FL; bFL], whereas s2 < s1 for

F 2 ( bFL; bFH). Furthermore, ds1
dF
= ds2

dF
> 0 for F 2 (FL; bFL), whereas ds1

dF
> 0, ds2

dF
< 0,

dF1
dF
< 0, and dF2

dF
> 0 for F 2 ( bFL; bFH).

(iii) If F < FL, then s1 = s2 = s , F1 = F2 = �F , d s
dF
= 0, and b�2 > 0 .

Proof . Let �i and �ij denote the Lagrange multipliers associated with constraints (2) and
(3), respectively. Also let �i denote the Lagrange multiplier associated with the Fi � �F
constraint. Then the necessary conditions for a solution to [P] include:

si : Gi [��i (1� �) + �i + �ij]� �jiGij + �i [1� si]
dGi
dsi

= 0 ; and (22)

Fi : � �i [1� �] + �i + �ij � �ji + �i = 0 . (23)

(22) and (23) provide:

�i [1� si]
dGi
dsi

= �ji [Gij �Gi] + �iGi for j 6= i, i; j 2 f1; 2g . (24)

From (4):

KG(Gi; ki) = si and KG(Gij; kj) = si ) G21 � G2 and G1 � G12 . (25)

The inequalities in (25) hold because KG(G; k1) < KG(G; k2) and K(�) is an increasing,
convex function of G. The inequalities in (25) hold as strict inequalities if a positive expected
gain is induced when k = k1.
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The following lemmas constitute the remainder of the proof of the Conclusion.

Lemma A1. The participation constraint (2) when k = k1 does not bind at the solution to
[P].

Proof. The conclusion holds because the �rm�s expected pro�t is strictly higher when k = k1
than when k = k2 under any non-trivial gain sharing plan.1 �

Lemma A2. G1 > G2, F2 � F1, and s2 � s1 under any feasible solution to [P] that
entails a non-trivial gain sharing plan.

Proof. To show that G1 > G2, observe that the incentive compatibility constraints (3)
ensure:

�1(s1; F1)� �1(s2; F2) � 0 � �2(s1; F1)� �2(s2; F2)

) �1(s1; F1) + �2(s2; F2) � �2(s1; F1) + �1(s2; F2) . (26)

Further observe that:

�1(s1; F1) + �2(s2; F2) = F1 + s1G1 �K(G1; k1) + F2 + s2G2 �K(G2; k2) ; and (27)

�2(s1; F1) + �1(s2; F2) � F1 + s1G1 �K(G1; k2) + F2 + s2G2 �K(G2; k1) . (28)

The inequality in (28) holds because Gi is not necessarily the pro�t-maximizing expected
gain under the (si; Fi) gain sharing plan when k = kj for j 6= i. (26), (27), and (28) provide:

0 � �1(s1; F1) + �2(s2; F2)� [�2(s1; F1) + �1(s2; F2)]

� K(G1; k2)�K(G2; k2)� [K(G1; k1)�K(G2; k1)] (29)

=

Z G1

G2

�
@

@G
K(G; k2)�

@

@G
K(G; k1)

�
dG ) G1 > G2 .

To show that s1 � s2 , observe that:

�2(s1; F1) + �1(s2; F2) � F1 + s1G2 �K(G2; k2) + F2 + s2G1 �K(G1; k2) . (30)

The inequality in (30) holds because Gj is not necessarily the pro�t-maximizing expected
gain under the (si; Fi) gain sharing plan when k = kj for j 6= i. (26), (27), and (30) provide:

0 � �1(s1; F1) + �2(s2; F2)� [�2(s1; F1) + �1(s2; F2)] � [G1 �G2][s1 � s2]. (31)

(31) implies that s1 � s2, since G1 > G2. Therefore, because incentive compatibility ensures
it cannot be the case that F1 > F2 and s1 > s2, it must be the case that F2 � F1. �

1A non-trivial gain sharing plan (F; s) is one: (i) that the �rm selects either when k = k1 or when k = k2;
and (ii) in which the �rm implements a strictly positive expected gain (G > 0) when it operates under the
plan.
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Lemma A3. The F2 � �F limited liability constraint does not bind at the solution to
[P].

Proof. From Lemma A2, F2 � F1 under any feasible nontrivial gain sharing plan. Con-
sequently, the F2 � �F limited liability constraint will be satis�ed at the solution to [P]
as long as the F1 � �F constraint is imposed. Therefore, the F2 � �F limited liability
constraint does not bind at the solution to [P]. �

Lemmas A1 and A3 imply that �1 = 0 and �2 = 0 at the solution to [P].

Lemma A4. When the regulator o¤ers two distinct, non-trivial gain sharing plans to the
�rm, the �rm cannot be indi¤erent between the two plans both when k = k1 and when
k = k2.

Proof.

@

@s

�
max
Gi

[ sGi �K(Gi; k1)] � max
Gi

[ sGi �K(Gi; k2)]
�

= Gi1 �Gi2 � 0 . (32)

The inequality in (32), which follows from (25), implies that:

max
G

f s1G�K(G; k1)g � max
G

f s1G�K(G; k2)g

� max
G

f s2G�K(G; k1)g � max
G

f s2G�K(G; k2)g . (33)

When the �rm is indi¤erent between the two plans both when k = k1 and when k = k2,
the weak inequality in (33) will hold as an equality. Consequently, it must be the case that a
zero expected gain (G = 0) is induced under both plans. But then the plans are not distinct,
non-trivial plans. Therefore, when the regulator o¤ers two distinct, non-trivial gain sharing
plans to the �rm, only one of the incentive compatibility constraints will bind. �

Lemma A5. If neither participation constraint (2) binds at the solution to [P], then the
regulator optimally o¤ers only a single gain sharing plan.

Proof. If neither participation constraint binds at the solution to [P], then �1 = �2 = 0.
Consequently, from (23):

�1 = [1� �]�1 + �21 � �12 and �2 = [1� �]�2 + �12 � �21 . (34)

Since �2 = 0 from Lemma A3, (34) implies that �21 > 0. (34) also implies that �1 =
�1 + �2 = 1� � > 0. Therefore, F1 = �F .

(24) and (25) imply:

�2 [1� s2]
dG2
ds2

= �12 [G21 �G2] + �2G2

) s2 < 1 if and only if �2 > 0 or �12 > 0 . (35)
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Lemma A4 implies that �12 = 0, since �21 > 0. Consequently, s2 = 1, from (35). But
then it cannot be optimal for the regulator to o¤er two distinct gain sharing plans because
the single (F2; s2) plan would deliver no more rent to the �rm and would generate a higher
level of expected total surplus. �

Lemma A6. Suppose F is su¢ ciently large that the Fi � �F constraints do not bind
at the solution to [P]. Then s2 < s1 = 1, �2 > 0, and �12 > 0 at the solution to [P].

Proof. Since �1 = �2 = 0 in this case, (23) and Lemma A1 imply that �2 = �1 + �2 =
1 � � > 0. (23) also implies that �12 = �21 + [1� �]�1 > 0. Therefore, �21 = 0, from
Lemma A4. Consequently, from (24):

�1 [1� s1]
dG1
ds1

= 0 ) s1 = 1 .

(24) implies that when �2 = 0:

�2 [1� s2]
dG2
ds2

= �12 [G21 �G2] > 0 ) s2 < 1 . (36)

The �rst inequality in (36) re�ects (25). �

Lemma A7. Suppose the participation constraint (2) when k = k2 and the F1 � �F
limited liability constraint both bind at the solution to [P]. Then s2 � s1 < 1.

Proof. Since �1 > 0 in this case, (24) implies:

�1[1� s1]
dG1
ds1

> 0 ) s1 < 1 .

Furthermore, s2 � s1 from Lemma A2. Therefore, since �2 > 0 from Lemma A3, (24)
implies that �12 > 0. �

De�ne bFH to be the smallest value of F for which the F1 � �F constraint does not bind
at the solution to [P]. Then Lemma A6 implies that when F � bFH , s2 < s1 = 1, b�2 = 0,
F2 > F1 = � bFH , and the �rm secures the same expected pro�t under the two gain sharing
plans in the low cost environment at the solution to [P].

Recall that FL = max
G

f sG�K(G; k2)g is the largest value of F for which no partici-
pation constraint binds at the solution to [P-1]. Lemma A5 implies that the solution to [P] is
the solution to [P-1] when F � FL. Therefore, from the proof of Conclusion 1, s1 = s2 = s,
F1 = F2 = �F , d s

dF
= 0, and b�2 > 0 at the solution to [P] when F � FL.

The de�nition of FL and Lemma A1 imply that b�2 = 0 at the solution to [P] when
F > FL. Furthermore, if the F1 � �F constraint binds and s1 = s2 = bs at the solution to
[P], it must be the case that d bs

dF
> 0 (to ensure b�2 = 0) when F > FL.
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Lemma A8. bFL < bFH .
Proof. We �rst show that bFL 6= bFH . To do so, suppose bFL = bFH . Lemma A5 and
(34) imply that (� bFL; s) is the optimal plan when F = bFL = bFH . Furthermore, bs < 1

and b�2 = 0 under this plan. Lemma A6 implies that the f(F2; s2) ; (� bFH ; 1)g gain sharing
program is also optimal and b�2 = 0 under this program. Notice that the �rm strictly prefers
the (� bFH ; 1) plan to the (� bFL; s) plan because bFL = bFH and bs < 1. Therefore, it cannot
be the case that b�2 = 0 under both plans. Hence, by contradiction, bFL 6= bFH .
Now suppose bFL > bFH , and consider a value of F 2 ( bFH ; bFL). Since F > bFH , the

f(F2; s2) ; (�bFH ; 1)g gain sharing program identi�ed in Lemma A6 is a solution to [P]. Since
F < bFL, the (�F; bs) gain sharing plan identi�ed in Lemma A5 is also a solution to [P].
As F increases in this range, the regulator�s expected payo¤ increases under the (�F; bs )
plan because the payment to the �rm (�F ) declines. In contrast, the regulator�s expected
payo¤ does not change under the f(F2; s2) ; (�bFH ; 1)g program because this program does
not change as F increases. Therefore, both of the identi�ed solutions cannot be optimal and
so, by contradiction, bFL � bFH .
Since bFL � bFH and bFL 6= bFH , it must be the case that bFL < bFH . �

Lemma A9. Suppose F 2 [FL; bFH). Then s2 � s1 < 1, F2 � F1 = �F , andb�2 = 0. In addition, if KGGG(G; ki) � 0 and KGG(G; k2) � KGG(G; k1) for all G and for

ki 2 fk1; k2g, then there exists an bFL 2 [FL; bFH), such that s1 = s2 for F 2 [FL; bFL],
whereas s2 < s1 for F 2 ( bFL; bFH). Furthermore, ds1

dF
= ds2

dF
> 0 for F 2 (FL; bFL),

whereas ds1
dF
> 0, ds2

dF
< 0, dF1

dF
< 0, and dF2

dF
> 0 for F 2 ( bFL; bFH).

Proof. If F 2 [FL; bFH), then the participation constraint (2) when k = k2 and the F1 �
�F constraint both bind at the solution to [P]. Consequently, b�2 = 0 and F1 = �F .
Furthermore: (i) F2 � F1 from Lemma A2; (ii) s2 � s1 < 1 from Lemma A7; and (iii)
�12 > 0 from the proof of Lemma A7.

From (1), the regulator maximizes:
2X

i=1

�i f [1� si] Gi � Fi + � �i (Fi; si) g

=

2X
i=1

�i fGi �K(Gi; ki)� [1� �] �i (Fi; si) g : (37)

When s2 < s1, the regulator can be viewed as choosing the optimal value of s2. The
corresponding optimal values of F2 and s1 are then readily determined because b�2 = 0 and
�12 > 0. Di¤erentiating (37), recognizing that

d�2(�)
ds2

= 0, provides:

2X
i=1

�i

�
[1�KG(Gi; ki)]

dGi
dsi

�
dsi � �1 [1� �]G1 ds1
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=
2X

i=1

�i

�
1�KG(Gi; ki)

KGG(Gi; ki)

�
dsi � �1 [1� �]G1 ds1 = 0 . (38)

The �rst equality in (38) holds because dGi
dsi
= 1

KGG(Gi;ki)
, since KG(Gi; ki) = si from (25).

Since b�2 = 0:

F2 + s2G2 �K(G2; k2) = 0 ) dF2 +G2 ds2 = 0 . (39)

Since �12 > 0:

�F + s1G1 �K(G1; k1) = F2 + s2G21 �K(G21; k1) . (40)

Di¤erentiating (40), using (39), provides:

G1 ds1 = dF2 +G21 ds2 = [G21 �G2] ds2 . (41)

(38) and (41) imply that when s2 < s1 at the solution to [P]:

�1

�
1�KG(G1; k1)

KGG(G1; k1)

�
G1 ds1 + �2

�
1�KG(G2; k2)

KGG(G2; k2)

� �
G1

G21 �G2

�
ds1

� �1 [1� �]G1 ds1 = 0

) �1

�
1�KG(G1; k1)

KGG(G1; k1)

�
1

G1
+ �2

�
1�KG(G2; k2)

KGG(G2; k2)

� �
1

G21 �G2

�
� �1 [1� �] = 0 . (42)

G2 and G21 are readily calculated for any given s2. Given G2 and G21, G1 can be derived
from (42). We now show that G1 (and therefore s1) is uniquely determined by s2 and that
s1 is a monotone decreasing function of s2.

Di¤erentiating (42) provides:

�1

��
1�KG(G1; k1)

KGG(G1; k1)

� �
� 1

G21

�

+
�K2

GG(G1; k1)� [1�KG(G1; k1)]KGGG(G1; k1)

K2
GG(G1; k1)

�
1

G1

���
dG1
ds1

�
ds1

+ �2

�
1�KG(G2; k2)

KGG(G2; k2)

�
1

(G21 �G2)2
�

+
�K2

GG(G2; k2)� [1�KG(G2; k2)]KGGG(G2; k2)

K2
GG(G2; k2)

�
1

G21 �G2

��
dG2
ds2

ds2

+ �2

�
1�KG(G2; k2)

KGG(G2; k2)

� �
� 1

(G21 �G2)2
� �
dG21
ds2

�
ds2 = 0 . (43)
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Since dGi
dsi
= 1

KGG(Gi;ki)
, the terms that multiply ds1 in (43) can be written as:

�1
K2
GG(G1; k1)G

2
1

f� [1�KG(G1; k1)]KGG(G1; k1)�G1K2
GG(G1; k1)

�G1 [1�KG(G1; k1)]KGGG(G1; k1) g
1

KGG(G1; k1)
ds1 < 0 . (44)

The inequality in (44) holds when KGGG(�) � 0 because KG(G1; k1) = s1 < 1.

Similarly, the terms that multiply ds2 in (43) can be written as:

�2
K2
GG(G2; k2) [G21 �G2]

2 f [1�KG(G2; k2)]KGG(G2; k2)� [G21 �G2]K2
GG(G2; k2)

� [G21 �G2] [1�KG(G2; k2)]KGGG(G2; k2) g
1

KGG(G2; k2)

+�2

�
1�KG(G2; k2)

KGG(G2; k2)

� �
� 1

(G21 �G2)2
�

1

KGG(G21; k1)

<
�2 [1�KG(G2; k2)]

KGG(G2; k2) [G21 �G2]2
�

1

KGG(G2; k2)
� 1

KGG(G21; k1)

�
� 0 . (45)

The �rst inequality in (45) holds when KGGG(G; k) � 0 since KG(G2; k2) = s2 < 1
and G21 > G2. The last inequality in (45) holds because KGG(G21; k1) � KGG(G2; k2)
when KGGG(G; ki) � 0 and KGG(G; k2) � KGG(G; k1) for all G and for ki 2 fk1; k2g.

(43), (44), and (45) imply that for each s2, there is a unique s1 that decreases as s2
increases (so ds1

ds2
< 0) at the solution to [P]. Lemma 1 implies that the �rm�s pro�t in

the low cost environment at the solution to [P] increases as s2 increases and s1 decreases.
Therefore, since �12 > 0, there is a unique F1 that increases as s2 increases.

Let s2 denote the value of s2 at the solution to [P] when F = bFH . Also let bs denote the
largest share of the realized gain awarded the supplier when s1 = s2 at the solution to [P].
In addition, let bFL � FL denote the value FL at which s1 = s2 = bs at the solution to [P].
Since F1 = �F when F 2 [FL; bFH), it follows that s2 increases from s2 to bs as F declines
from bFH to FL. Therefore, s2 < s1 and ds1

dF
> 0, ds2

dF
< 0, dF1

dF
< 0, and dF2

dF
> 0 when

F 2 ( bFL; bFH). � �
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Condition 1. KGGk(G; k) � KGGG(G; k)
h
KGk(G;k)
KGG(G;k)

i
for all G and k.

Condition 2. KGGk(G; k) � KGGG(G; k)
h
KGk(G;k)
KGG(G;k)

i
for all G and k.

Conclusion 3. Suppose the regulator�s objective function is a concave function of s2. Then
at the solution to [P]:

(i) s2 increases as �2 increases or as � increases;

(ii) s2 decreases as k2 increases if Condition 1 holds; and

(iii) s2 increases as k1 increases if F > bFH or if F � bFL and Condition 2 holds.
Proof . Let (Fi; si) denote the gain sharing plan the �rm chooses when k = ki. Then
consumer surplus when k = ki is:

CSi � � Fi + [1� si]Gi . (46)

Total surplus when k = ki is:

Ti � Gi �K(Gi; ki). (47)

The �rm�s rent when k = ki is:

Ri � Fi + siGi �K(Gi; ki) . (48)

The regulator�s objective is to maximize:

W �
2X
i=1

�i [CSi + �Ri] =
2X
i=1

�i [Ti � (1� �)Ri] : (49)

Case I. F � bFH .
The regulator can be viewed as determining the optimal s2. Conclusion 2 implies that

once s2 is determined, F2 is set to ensure the �rm earns no rent when k = k2. Furthermore,
s1 = 1 and F1 is chosen so that the �rm is indi¤erent between the (F1; s1) plan and the
(F2; s2) plan when k = k1. This indi¤erence implies:

R1 = F2 + s2G21 �K(G21; k1) , (50)

where G21 is the success probability the �rm would implement under the (F2; s2) plan in the
low cost environment.

Because R2 = 0:

0 =
dR2
ds2

=
@R2
@s2

+
@R2
@G2

�
dG2
ds2

�
+
@R2
@F2

�
dF2
ds2

�
= G2 +

dF2
ds2

) dF2
ds2

= � G2 . (51)

The third equality in (51) re�ects the envelope theorem and the fact that @R2
@s2

= G2 and
@R2
@F2

= 1, from (48).
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dW
ds2
= 0 at the solution to [P]. We will determine how changes in parameter values a¤ect

dW
ds2
. If dW

ds2
becomes positive (negative) as a parameter increases, then the optimal s2 will

increase (decrease), given the presumed concavity of W .

From (48):

KG(Gi; ki) = si ) dGi
dsi

=
1

KGG(Gi; ki)
for i = 1; 2 . (52)

Because s1 = 1, T1 is not a¤ected by changes in s2, i.e., dT1ds2
= 0.

From (47), using (52):

dT2
ds2

=
@T2
@s2

+
@T2
@G2

�
dG2
ds2

�
+
@T2
@F2

�
dF2
ds2

�
=

@T2
@G2

�
dG2
ds2

�

= [1�KG(G2; k2)]
dG2
ds2

= [1� s2]
dG2
ds2

=
1� s2

KGG(G2; k2)
. (53)

The second equality in (53) holds because @T2
@s2

= @T2
@F2

= 0, from (47). The last two equalities
in (53) re�ect (52). From (48):

dR1
ds2

=
@R1
@s2

+
@R1
@G21

�
dG21
ds2

�
+
@R1
@F2

�
dF2
ds2

�

=
@R1
@s2

+
@R1
@F2

�
dF2
ds2

�
= G21 +

dF2
ds2

= G21 �G2 . (54)

The second equality in (54) re�ects the envelope theorem. The third equality in (54) follows
from (50). The last equality in (54) re�ects (51).

(49), (53), and (54) imply:

dW

ds2
= �2

�
1� s2

KGG(G2; k2)

�
� �1 [1� �] [G21 �G2] . (55)

Di¤erentiating (55) with respect to � provides:

d

d�

�
dW

ds2

�
= �1 [G21 �G2] > 0. (56)

The inequality in (56) implies that the optimal s2 increases as � increases.

Di¤erentiating (55) with respect to �1 provides:

d

d�1

�
dW

ds2

�
= � [1� s2]

1

KGG(G2; k2)
� [1� �] [G21 �G2] < 0.

This inequality implies that the optimal s2 decreases as �1 increases.
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Di¤erentiating (55) with respect to k2 provides:

d

dk2

�
dW

ds2

�
= �1 [1� �]

dG2
dk2

� �2 [1� s2]
KGGG(G2; k2)

dG2
dk2
+KGGk(G2; k2)

[KGG(G2; k2)]
2 < 0. (57)

The inequality in (57) holds when Condition 1 holds because dG2
dk2

= � KGk(G2;k2)
KGG(G2;k2)

< 0, since
s2 = KG(G2; k2). The inequality in (57) implies that the optimal s2 decreases as k2 increases.

Di¤erentiating (55) with respect to k1 provides:

d

dk1

�
dW

ds2

�
= � �1 [1� �]

dG21
dk1

> 0. (58)

The inequality in (58) holds because dG21
dk1

= � KGk(G21;k1)
KGG(G21;k1)

< 0, since KG(G21; k1) = s2. The
inequality in (58) implies that the optimal s2 increases as k1 increases.

Case II. F 2 ( bFL; bFH) .
The regulator can again be viewed as determining the optimal s2. Conclusion 2 implies

that once s2 is determined, F2 is set to ensure the �rm earns no rent when k = k2. Further-
more, F1 = �F and s1 is chosen so that the �rm is indi¤erent between the (F1; s1) and
(F2; s2) plans when k = k1.

dT2
ds2

in this case is as speci�ed in (53). Furthermore, from (47), using (52):

dT1
ds2

=
@T1
@G1

�
dG1
ds2

�
= [1�KG(G1; k1)]

dG1
ds2

= [1� s1]
dG1
ds1

�
ds1
ds2

�
=

�
1� s1

KGG(G1; k1)

�
ds1
ds2

. (59)

From (50), (51), and the envelope theorem:

�F + s1G1 �K(G1; k1) = F2 + s2G21 �K(G21; k1)

) G1
ds1
ds2

=
dF2
ds2

+G21 ) ds1
ds2

=
G21 �G2
G1

> 0 . (60)

In addition, from (50):

dR1
ds2

=
@R1
@s2

+
@R1
@G21

�
dG21
ds2

�
+
@R1
@F2

�
dF2
ds2

�

=
@R1
@s2

+
@R1
@F2

�
dF2
ds2

�
= G21 +

dF2
ds2

= G21 �G2 . (61)

The second equality in (61) re�ects the envelope theorem. The third equality in (61) holds
because @R1

@s2
= G21 and @R1

@F2
= 1, from (50). The last equality in (61) re�ects (51).
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(49), (53), (59), and (61) imply:

dW

ds2
= �1

�
1� s1

KGG(G1; k1)

�
ds1
ds2

+ �2

�
1� s2

KGG(G2; k2)

�
� �1 [1� �] [G21 �G2] . (62)

Di¤erentiating (62) with respect to � provides:

d

d�

�
dW

ds2

�
= �1 [G21 �G2] > 0 .

This inequality implies that the optimal s2 increases as � increases.

Di¤erentiating (62) with respect to �1 provides:

d

d�1

�
dW

ds2

�
= � [1� �] [G21 �G2]�

1� s2
KGG(G2; k2)

+
1� s1

KGG(G1; k1)

�
ds1
ds2

�

= � 1� s2
KGG(G2; k2)

� �2
�1

�
1� s2

KGG(G2; k2)

�
< 0 . (63)

The last equality in (63) follows from (62), since dW
ds2

= 0 at the optimal value of s2. The
inequality in (63) implies that the optimal s2 decreases as �1 increases.

Di¤erentiating (62) with respect to k2 provides:

d

dk2

�
dW

ds2

�
= �1 [1� �]

dG2
dk2

� �2 [1� s2]
KGGG(G2; k2)

dG2
dk2
+KGGk(G2; k2)

[KGG(G2; k2)]
2 < 0 .

This inequality holds when Condition 1 holds because dG2
dk2

= � KGk(G2;k2)
KGG(G2;k2)

< 0, since s2 =
KG(G2; k2). The inequality implies that the optimal s2 decreases as k2 increases.

The proofs for the settings in which F � bFL are analogous, and so are omitted. �
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