
Appendix to Accompany

�The Political Economy of Voluntary Public Service�

by Arup Bose, Debashis Pal, and David Sappington

Part I of this Appendix provides the proofs of the formal conclusions in the paper, after
re-stating key equations from the paper. Part II of this Appendix has three sections. Section
II.A presents additional numerical solutions to supplement those reported in Section 4 of the
paper. Section II.B states and proves the additional analytic conclusions noted in Sections 3
and 4 of the paper. Section III.C states and proves the analytic conclusions noted in Section
5 of the paper.

I. Proofs of Formal Conclusions in the Paper

Key Equations in the Paper

N

cZ
c

WM(c) dG(c) = � T ce, where ce �
cZ
c

c dG(c) . (1)

Wi(c ) > Wo(c ) , T

Ni
[w � c ] > �F . (2)

Wi(bc ) = Wo(bc ) , bc = w +
F Ni
T

. (3)

T w + A = [ 1�G(bc ) ]N F . (4)

N G(bc ) � T . (5)

N

bcZ
c

T

Ni
[w � c ] dG(c)�N [ 1�G(bc ) ]F � A . (6)

G(c2( eN))�G(ec1( eN)) = 1

2
(7)

where c1(N) � bc � AW
N � T , c2(N) � bc+ AW

N
, and

ec1(N) � c1(2T )� [ c2(2T )� c2(N) ]. (8)

Lemma 1. When an optimal VJS replaces MJS: (i) welfare increases for individuals with
the lowest c�s (c 2 [ c ; c1 ] where c1 � bc � A

N �T ) and the highest c�s (c 2 [ c2; c ] where
c2 � bc + A

T
); whereas (ii) welfare declines for individuals with intermediate c�s (c 2 (c1; c2)).



Lemma 2. Under an optimal VJS, the rate at which an individual�s expected increase in
welfare from VJS (relative to MJS) varies with c is:

W 0
�i(c) � W 0

i (c)�W 0
M(c) = � N � T

N
< 0 for c 2 [ c ;bc ) ; (9)

W 0
�o(c) � W 0

o(c)�W 0
M(c) =

T

N
> 0 for c 2 (bc ; c ] . (10)

Corollary 1. jW 0
�i(c) j R jW 0

�o(c) j , N � T
N

R T

N
, N R 2T . (11)

Proof. (2) and (3) imply that individuals with c 2 [ c ; bc ] opt in whereas individuals with
c 2 (bc ; c ] opt out under VJS. Also, Wi(c) = w� c (because G(bc ) = T

N
) and Wo(c) = �F .

Therefore:

W�i(c) = Wi(c)�WM(c) = w � c�
�
� T

N
c

�
= w �

�
N � T
N

�
c

) W 0
�i(c) = � N � T

N
< 0 for c 2 [ c ;bc ) ; and

W�o(c) = Wo(c)�WM(c) = �F �
�
� T

N
c

�
= �F + T

N
c

) W 0
�o(c) =

T

N
> 0 for c 2 (bc ; c ] , (12)

so Lemma 2 holds.

Because G(bc ) = T
N
, the de�nition of bc implies:

w � bc = �F , F = bc� w . (13)

c1 is the largest realization of c 2 (c ;bc ) for which Wi(c) � WM(c). Therefore, (12)
implies:

w � c1 = � T

N
c1 ) c1

�
N � T
N

�
= w1 ) c1 =

�
N

N � T

�
w . (14)

Because G(bc ) = T
N
and the �nancing constraint holds:

T w + A = [N � T ]F ) T w + A = [N � T ] [bc� w ]
) T w + A = [N � T ]bc�N w + T w ) w =

1

N
[ (N � T ) bc� A ] . (15)

The second equality in the �rst line of (15) re�ects (13). (14) and (15) imply:

c1 =

�
N

N � T

�
1

N
[ (N � T ) bc � A ] = bc � A

N � T . (16)

c2 is the smallest realization of c 2 (bc ; c ) for which W0(c) � WM(c). Therefore, (12)
2



implies:

�F = � T

N
c2 ) c2 =

N F

T
. (17)

(13) and (15) imply:

F = bc� 1

N
[ (N � T )bc � A ] = T

N
bc + A

N
. (18)

(17) and (18) imply:

c2 =
N

T

�
T

N
bc + A

N

�
= bc + A

T
. (19)

Lemma 1 follows from (12), (16), and (19). �

Lemma 3. If A = 0, then VJS can be designed to ensure that every individual secures at
least the level of expected welfare he secures under MJS, and that nearly all individuals secure
strictly higher levels of expected welfare.

Proof. As demonstrated in the text, the �nancing and adequate jury pool constraints are
satis�ed as equalities when F = T

N
bc and w = � N �T

N

� bc. Furthermore, (3) implies Wi(bc ) =
Wo(bc ) because:

w + F
Ni
T

=

�
N � T
N

�bc + T

N
bc � T
T

�
= bc :

Therefore, because c1 = c2 = bc when A = 0, Lemma 1 implies the proof is complete if
WV (bc ) = WM(bc ). This equality holds because:

WV (bc ) = WM(bc ) , w � bc = � T

N
bc

,
�
N � T
N

�bc � bc = � T

N
bc , � T

N
bc = � T

N
bc . �

Lemma 4. Suppose A > 0. Then a VJS policy that secures a strict increase in expected
welfare for some individuals (relative to MJS) necessarily reduces the expected welfare of
some other individuals.

Proof. Under an optimal VJS that ensures WV (c) > WM(c) for some c 2 [ c ; c ], there exists
a bc 2 ( c ; c ) de�ned by:

Wi(bc ) = Wo(bc ) , w � bc = �F , w = bc � F . (20)

Suppose the VJS policy can be designed to ensure WV (c) � WM(c) for all c 2 [ c ; c ].
Then it must be the case that:

WV (bc ) � WM(bc ) , w � bc � � T

N
bc , w �

�
N � T
N

�bc (21)
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, bc � F �
�
N � T
N

�bc , T

N
bc � F , N F � T bc . (22)

The �rst equivalence in (22) re�ects (20). Because G(bc ) = T
N
, the last inequality in (21)

implies:

[ 1�G(bc ) ]N F � w T � [ 1�G(bc ) ]N F � � N � T
N

�bc T
=

�
N � T
N

�
N F �

�
N � T
N

�bc T =

�
N � T
N

�
[N F � T bc ] � 0 . (23)

The inequality in (23) re�ects (22). (23) implies that (4) cannot hold for any A > 0.
Therefore, it cannot be the case that the VJS policy ensures WV (c) � WM(c) for all c 2
[ c ; c ]. �

Proposition 1. Suppose A = 0. Then all individuals (weakly) prefer an optimal VJS policy
to MJS, and majority rule always implements the optimal VJS policy.

Proof. The proof follows immediately from the associated discussion in the text. �

Proposition 2. In the limit as T=N ! 0, majority rule favors MJS when ce > cd, favors
VJS when ce < cd, and favors neither MJS nor VJS when ce = cd (i.e., AM T AW ,
ce S cd).

Proof. The average expected cost that individuals incur under VJS is T
N

R bc
c c dG(c)

G(bc) +A
N
. The

corresponding average expected cost under MJS is T
N
ce. Therefore, the average expected

net gain from VJS is:
T

N
ce � T

N

R bc
c
c dG(c)

G(bc) � A

N
. (24)

(24) and the de�nition of AW imply:

T

N
ce � T

N

R bc
c
c dG(c)

G(bc) � AW
N

= 0 ) AW
T

= ce �
R bc
c
c dG(c)

G(bc ) . (25)

De�ne: c1 (A) = bc� A

N � T and c2 (A) = bc+ A
T
. (26)

Lemma 1 and the de�nitions of AM and AW imply:

AM T AW , G (c2(AW ))�G (c1(AW )) S 1

2
, and (27)
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AM Q AW ,
Z c2(AW )

c1(AW )

dG(c) R 1

2
. (28)

From (25): bc+ AW
T

= bc+ ce � R bcc c dG(c)
G(bc ) . (29)

L�Hôpital�s Rule implies:

limbc! c

" R bc
c
c dG(c)

G(bc )
#
= limbc! c

� bc g(bc )
g(bc )

�
= limbc! c

[ bc ] = c . (30)

Because G(bc ) = T
N
, (29) and (30) imply that as T=N ! 0:

bc+ AW
T

! limbc! c

�bc+ AW
T

�
= limbc! c

"bc+ ce � R bcc c dG(c)
G(bc )

#

= c+ ce � c = ce . (31)

From (25):

bc � AW
N � T = bc� � T

N � T

�
AW
T

= bc� T

N � T

"
ce �

R bc
c
c dG(c)

G(bc )
#
. (32)

Because G(bc ) = T
N
, (30) and (32) imply that as T=N ! 0:

bc � AW
N � T ! lim

T=N! 0

�bc� AW
N � T

�

= lim
T=N! 0

"bc� � T

N � T

� 
ce �

R bc
c
c dG(c)

G(bc )
!#

= c� [ 0 ] [ ce � c ] = c . (33)

(27), (31), and (33) imply that when T=N is su¢ ciently small:

AM T AW , G (ce)�G (c ) S 1

2
, G (ce) S G

�
cd
�
, ce S cd . �

Proposition 3. In the limit as T=N ! 1, majority rule favors VJS when ce > cd, favors
MJS when ce < cd, and favors neither MJS nor VJS when ce = cd (i.e., AM Q AW ,
ce S cd ).

Proof. As N ! T , nearly all individuals must opt in under VJS to ensure that every trial
has a juror. Consequently: bc ! c as N ! T . (34)
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(25) and (34) imply that as N ! T :

AW
T

= ce �
R bc
c
c dG(c)

G (bc) ! ce �
R c
c
c dG(c)

G (c)
= ce � c

e

1
= 0

) AW ! 0 as N ! T . (35)

(26) and the de�nition of AM imply:

G

�bc+ AM
T

�
�G

�bc� AM
N � T

�
=
1

2
. (36)

(34) and (35) imply:

G

�bc+ AM
T

�
! 1 as N ! T . (37)

(26), (34), and (35) imply:

c2 (AW ) = bc+ AW
T

! c as N ! T . (38)

(26), (36), and (37) imply:

G

�bc� AM
N � T

�
= G (c1(AM)) ! 1

2
) c1(AM) ! cd as N ! T . (39)

(26) and (34) imply:

lim
N!T

c1 (AW ) = c � lim
N!T

�
AW
N � T

�
. (40)

From Finding 4 in the proof of Proposition 5 below:

@AW
@N

=

Z bc
c

G(c) dc : (41)

(34), (35), (40), (41), and L�Hôpital�s Rule imply:

lim
N!T

�
AW
N � T

�
= lim

N!T

Z bc
c

G(c) dc = lim
N!T

�
G(c) c jbcc �

Z bc
c

c g(c) dc

�

= G(c) c jcc �
Z c

c

c g(c) dc = c� ce. (42)

(40) and (42) imply:
lim
N!T

c1(AW ) = ce . (43)

From (27):
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AW R AM , G (c2 (AW ))�G (c1 (AW )) R
1

2
. (44)

(38) and (43) imply that as N ! T :

G (c2 (AW ))�G (c1 (AW )) ! 1�G (ce) . (45)

(44) and (45) imply that as N ! T :

AW R AM , 1�G (ce) R 1

2
, G (ce) Q 1

2
= G

�
cd
�
, ce Q cd . �

Proposition 4. Majority rule favors neither MJS nor VJS (so AM = AW ) when g(c) is
the uniform density.

Proof. For expositional ease, suppose c = 0, so g(c) = 1
c
. (We prove below that this

normalization is without loss of generality.) Because G (bc ) = T
N
:bc

c
=

T

N
) bc = T

N
c : (46)

From (25):

AW
T

= ce �
R bc
0
c dG (c)

G (bc) =
c

2
�

(bc)2
2bc =

1

2
[ c� bc ] . (47)

(26) and (47) imply:

c2 (AW ) = bc+ AW
T

= bc+ 1
2
[ c� bc ] = 1

2
[ c+ bc ] . (48)

(26) and (47) also imply:

c1 (AW ) = bc� AW
N � T = bc� AW

T

�
T

N � T

�
= bc� 1

2
[ c� bc ] T

N � T

= bc � 1 + 1
2

�
T

N � T

��
� c T

2 [N � T ] =
bc [ 2N � T ]� c T

2 [N � T ] . (49)

(48) and (49) imply:Z c2(AW )

c1(AW )

dG (c) =
1

c
[ c2 (AW )� c1 (AW ) ] =

1

c

�
[N � T ] [ c+ bc ]� bc [ 2N � T ] + c T

2 [N � T ]

�

=
bc [N � T � 2N + T ] + c N

2 c [N � T ] =
N [ c� bc ]
2 c [N � T ] . (50)

(27) and (50) imply:
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AM Q AW , N [ c� bc ]
2 c [N � T ] R

1

2
, N [ c� bc ] R c [N � T ]

, N bc Q T c , bc Q T

N
c . (51)

(46) and (51) imply AM = AW . �

Observation. The expected welfare gain from VJS is proportional to AW �A when g(c) is
the uniform density.

Proof . As in the proof of Proposition 4, assume c = 0 without loss of generality. Then
G (bc ) = T

N
and bc = T

N
c when g(c) is the uniform density. The expected welfare gain from

VJS (relative to MJS) given c is:

WV (c)�WM(c) = w � c� T

N
[� c ] = w �

�
N � T
N

�
c for c 2 [ 0;bc ]; and

WV (c)�WM(c) = �F � T

N
[� c ] = �F +

�
T

N

�
c for c 2 [ bc ; c ]. (52)

(52) implies:Z T
N
c

0

�
w �

�
N � T
N

�
c

�
dc =

T

N
c

�
w � c

2

T

N

�
N � T
N

��
, and

Z c

T
N
c

�
�F +

�
T

N

�
c

�
dc =

�
N � T
N

�
c

�
�F + c

2

T

N

�
N + T

N

��
. (53)

(53) implies:Z c

0

(WV (c)�WM(c) ) dc = c

�
T

N
w �

�
N � T
N

�
F +

c

2

T

N

�
N � T
N

��
N + T

N
� T

N

��

= c

�
T

N
w �

�
N � T
N

�
F +

c

2

T

N

�
N � T
N

��

=
c

N

�
T w �

�
N � T
N

�
N F +

c

2
T

�
N � T
N

��

=
c

N

�
T w � (1�G (bc ))N F + c

2
T (1�G (bc )) �

=
c

N

�
�A+ c

2
T

�
c� bc
c

��
=

c

N
[AW � A ] . (54)

(54) re�ects (4) and (47). �

8



Proposition 5. Suppose g(c) is symmetric about its mean, non-decreasing below its median,
and strictly log concave. Then there exists a eN > 2T such that majority rule favors MJS
(i.e., AM < AW ) for all N 2 [ 2T; eN ).
Proof. Without loss of generality, assume c = 0 and c = 1, so ce = 1

2
. G(c) is strictly log

concave when g(c) is strictly log concave (Bagnoli and Bergstrom, 2005). Therefore:

@

@c

�
g(c)

G(c)

�
< 0 , @

@c

�
G(c)

g(c)

�
> 0 for all c 2 [ 0; 1 ] . (55)

Suppose A = AW . Then Lemma 1 implies:

c1 = bc� AW
N � T and c2 = bc+ AW

T
. (56)

The de�nitions of AW and AM imply:

AW > AM , G (c2)�G (c1) >
1

2
. (57)

Findings 1 �12 below demonstrate that G (c2)�G (c1) > 1
2
for all N 2 [ 2T; eN ) under the

speci�ed conditions, where eN is de�ned in (7) above.

Finding 1. bc � 1
2
:

Proof. G(bc ) = T
N
� 1

2
when N � 2T . Therefore, bc � 1

2
because g (c) is symmetric and

strictly increasing. �

Finding 2. @ bc
@N

= � T
N2g(bc ) = � 1

T
[G(bc ) ]2
g(bc ) < 0 for all bc > 0.

Proof.
G(bc ) = T

N
) g(bc ) � @bc

@N

�
= � T

N2

) @bc
@N

= � T

N2 g(bc ) = � 1

T

�
T 2

N2 g(bc )
�
= � 1

T

[G(bc ) ]2
g(bc ) . �

Finding 3. AW
T
= 1

2
�bc + N

T

R bc
0
G(c) dc .

Proof. From (25):
AW
T

= ce �
R bc
0
c g(c) dc

G(bc ) =
1

2
�
R bc
0
c g(c) dc

G(bc ) . (58)

Integration by parts provides:Z bc
0

c g(c) dc = [ c G(c) ]bc0 �
Z bc
0

G(c) dc = bc G(bc )� Z bc
0

G(c) dc . (59)
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(58) and (59) imply:

AW
T

=
1

2
�
R bc
0
c g(c) dc

G(bc ) =
1

2
�
bc G(bc )� R bc

0
G(c) dc

G(bc )
=
1

2
� bc+ R bc0 G(c) dc

G(bc ) =
1

2
� bc+ N

T

Z bc
0

G(c) dc . �

Finding 4. @AW
@N

=
R bc
0
G(c) dc .

Proof. Finding 3 implies:

@AW
@N

=
@

@N

�
T

�
1

2
� bc�+N Z bc

0

G(c) dc

�

= � T
@bc
@N

+

Z bc
0

G(c) dc+N

�
G(bc ) @bc

@N

�

= T
@bc
@N

�
� 1 +

N

T
G(bc ) �+ Z bc

0

G(c) dc =

Z bc
0

G(c) dc . � (60)

Finding 5. @
@c

�
G(c)
g(c)

�
> 0 for all c ) g(ec )G(c)� g(c)G(ec ) < 0 for c < ec .

Proof. For c < ec :
@

@c

�
G (c)

g (c)

�
> 0 ) G(c)

g(c)
<
G(ec )
g(ec ) ) g(ec )G(c)� g(c)G(ec ) < 0 . �

Finding 6. @c2
@N
< 0 .

Proof. (56) and Findings 2 and 3 imply:

c2 = bc+ AW
T

= bc+ 1
2
� bc+ N

T

Z bc
0

G(c) dc =
1

2
+
N

T

Z bc
0

G(c) dc

) @c2
@N

=
1

T

Z bc
0

G(c) dc+
N

T
G (bc) � @bc

@N

�
=

1

T

Z bc
0

G(c) dc+
@bc
@N

=
1

T

Z bc
0

G(c) dc� 1

T

[G(bc ) ]2
g(bc ) =

1

T g(bc )
�
g(bc )Z bc

0

G(c) dc� (G(bc ))2 �

=
1

T g(bc )
� Z bc

0

[ g(bc )G(c)� g(c)G(bc ) ] dc � < 0 . (61)
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The inequality in (61) re�ects Finding 5. �

Finding 7. @c1
@N
< 0 .

Proof. Finding 3 implies:

AW = T

�
1

2
� bc �+N Z bc

0

G(c) dc :

Therefore, (56) and Findings 2 �4 imply:

@c1
@N

=
@

@N

�bc� AW
N � T

�
=

@bc
@N

+
AW

[N � T ]2
�
�

1

N � T

�
@AW
@N

= � 1

T

[G(bc ) ]2
g(bc ) +

AW

[N � T ]2
� 1

N � T

Z bc
0

G(c) dc

= � 1

T

[G(bc ) ]2
g(bc ) � 1

N � T

Z bc
0

G(c) dc+
1

[N � T ]2
�
T

�
1

2
� bc�+N Z bc

0

G(c) dc

�

= � 1

T

[G(bc ) ]2
g(bc ) +

T

[N � T ]2
�
1

2
� bc �+ Z bc

0

G(c) dc

�
N

(N � T )2
� 1

N � T

�

= � 1

T

[G(bc ) ]2
g(bc ) +

T

[N � T ]2
�
1

2
� bc �+ T

[N � T ]2
Z bc
0

G(c) dc

=
1

T [N � T ]2 g(bc )
�
� (N � T )2 (G(bc ))2 + T 2 g(bc )�1

2
� bc�+ T 2 g(bc )Z bc

0

G(c) dc

�

=
N2

T [N � T ]2 g(bc )
"
�
�
1� T

N

�2
(G(bc ))2 + � T

N

�2
g(bc )�1

2
� bc�+ � T

N

�2
g(bc )Z bc

0

G(c) dc

#

=
N2

T [N � T ]2 g(bc )
�
� (1�G(bc ))2 (G(bc ))2 + (G(bc ))2 g(bc )�1

2
� bc�+ (G(bc ))2 g(bc )Z bc

0

G(c) dc

�

=
N2 [G(bc ) ]2

T [N � T ]2 g(bc )
�
� (1�G(bc ))2 + g(bc )�1

2
� bc�+ g(bc )Z bc

0

G(c) dc

�

=
N2 [G(bc ) ]2

T [N � T ]2 g (bc)
�
� 1 + 2G(bc ) + g(bc )�1

2
� bc�� (G(bc ))2 + g(bc )Z bc

0

G(c) dc

�

=
N2 [G(bc ) ]2

T [N � T ]2 g(bc )
�
� 1 + 2G(bc ) + g(bc )�1

2
� bc�� Z bc

0

G(bc ) g (c) dc+ Z bc
0

g(bc )G(c) dc �
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=
[G(bc ) ]2

T
�
1� T

N

�2
g(bc )

�
� 1 + 2G(bc ) + g(bc )�1

2
� bc�� Z bc

0

[G(bc ) g (c)� g(bc )G (c) ] dc �

=
[G(bc ) ]2

T [ 1�G(bc ) ]2 g(bc )
�
� 1 + 2G(bc ) + g(bc )�1

2
� bc�� Z bc

0

[G(bc ) g (c)� g(bc )G (c) ] dc � .
(62)

Because @
@c

�
G(c)
g(c)

�
> 0, Finding 5 implies that G(bc ) g(c) � g(bc )G (c) > 0 for c < bc .

Therefore, the expression in (62) is negative if � 1 + 2G(bc ) + g(bc ) � 1
2
� bc �< 0.

De�ne
f(x) = � 1 + 2G (x) + g (x)

�
1

2
� x

�
for x 2

�
0;
1

2

�
.

Observe that f(0) = � 1 + g(0)
2
< 0. This inequality holds because g is unimodal and

symmetric around 1
2
. Also:

f

�
1

2

�
= � 1 + 2G

�
1

2

�
+ g

�
1

2

��
1

2
� 1
2

�
= 0 , and

f 0(x) = 2 g(x) + g0(x)

�
1

2
� x

�
� g(x) = g(x) + g0(x)

�
1

2
� x

�
. (63)

(63) implies that f 0(x) > 0 for all x 2
�
0; 1

2

�
because g(x) is increasing on

�
0; 1

2

�
. Therefore,

f(0) < 0; f
�
1
2

�
= 0; and f 0(x) > 0 for all x 2

�
0; 1

2

�
; which implies that f(x) < 0 for all

x 2
�
0; 1

2

�
: Hence, @c1

@N
< 0, from (62). �

Finding 8.
�
1
2
�G (c)

� R c
0
G (y) dy � 1

2
[G (c) ]2

�
1
2
� c

�
for all c 2 [ 0; 1

2
].

Proof. The intermediate value theorem ensures there exists � 2 ( c; 1
2
) such that

1

2
�G(c) = G(

1

2
)�G (c) =

�
1

2
� c

�
G0(�) =

�
1

2
� c

�
g(�) . (64)

g(�) � g(c) because g(c) is increasing in c and � 2 ( c; 1
2
). Therefore, (64) implies:

1

2
�G(c) �

�
1

2
� c

�
g(c)

)
�
1

2
�G(c)

� Z c

0

G(y) dy �
�
1

2
� c

�
g(c)

Z c

0

G(y) dy . (65)

(65) implies the Finding holds if:�
1

2
� c

�
g(c)

Z c

0

G(y) dy � 1

2
[G(c) ]2

�
1

2
� c

�
12



, R (c) � g(c)

Z c

0

G(y) dy � 1
2
[G(c) ]2 � 0 . (66)

Di¤erentiating R(c) provides:

R0 (c) = g(c)G(c) + g0(c)

Z c

0

G(y) dy �G(c) g(c) = g0(c)

Z c

0

G(y) dy � 0 . (67)

The inequality in (67) holds because g(c) is increasing for c < 1
2
. Because R (0) = 0 from

(66), (67) implies R (c) � 0 for all c 2
�
0; 1

2

�
. �

Finding 9.
�� @c1
@N

�� � �� @c2
@N

��
Proof. From (56):

c2 � c1 = bc+ AW
T
�
�bc� AW

N � T

�
=
AW
T

�
1 +

T

N � T

�
=
AW
T

�
N

N � T

�

) @ (c2 � c1)
@N

=

�
N

N � T

�
@

@N

�
AW
T

�
� AW

T

�
T

(N � T )2
�

=
1

N � T

�
N

T

@

@N
(AW )�

AW
N � T

�

) @ (c2 � c1)
@N

� 0 , N

T

@

@N
(AW ) � AW

N � T . (68)

(68) and Findings 3 and 4 imply:

@ (c2 � c1)
@N

� 0 , N

T

Z bc
0

G(c) dc � T

N � T

�
1

2
� bc+ N

T

Z bc
0

G(c) dc

�

, N

T

�
1� T

N � T

� Z bc
0

G(c) dc � T

N � T

�
1

2
� bc �

, N

T
[N � 2T ]

Z bc
0

G(c) dc � T

�
1

2
� bc �

,
�
N � 2T
N

� Z bc
0

G(c) dc � T 2

N2

�
1

2
� bc �

,
�
1� 2 T

N

� Z bc
0

G(c) dc �
�
T

N

�2 �
1

2
� bc �

, [ 1� 2G(bc ) ] Z bc
0

G(c) dc � [G(bc ) ]2 � 1
2
� bc �

13



,
�
1

2
�G(bc ) � Z bc

0

G(c) dc � 1

2
[G(bc ) ]2 � 1

2
� bc � .

Finding 8 implies that this inequality holds. �

Finding 10. AW > AM if N = 2T:

Proof. bc = G( T
N
) = G(1

2
) = 1

2
when N = 2T: Furthermore, from (56), when N = 2T :

c1 = bc� AW
N � T =

1

2
� AW

T
:

Therefore, (56) and (57) imply:

AW > AM , G

�
1

2
+
AW
T

�
�G

�
1

2
� AW

T

�
>
1

2
: (69)

From (58):

AW
T

=
1

2
�
R bc
0
c g (c) dc

G(bc ) ) 1

2
+
AW
T

= 1�
R 1

2

0
c g(c) dc

G
�
1
2

� = 1� 2
Z 1

2

0

c g(c) dc

) 1

2
� AW

T
=
1

2
� 1
2
+

R bc
0
c g(c) dc

G(bc ) =

R 1
2

0
c g(c) dc

G
�
1
2

� = 2

Z 1
2

0

c g(c) dc . (70)

G(c) = 1�G(1� c) because g (c) is symmetric. Therefore:

G

 
1� 2

Z 1
2

0

c g(c) dc

!
= 1�G

 
2

Z 1
2

0

c g(c) dc

!
. (71)

(69) �(71) imply:

AW > AM , G

�
1

2
+
AW
T

�
�G

�
1

2
� AW

T

�
>
1

2

, 1�G
 
2

Z 1
2

0

c g(c) dc

!
�G

 
2

Z 1
2

0

c g(c) dc

!
>
1

2

, 1� 2G
 
2

Z 1
2

0

c g(c) dc

!
>
1

2
, 2G

 
2

Z 1
2

0

c g(c) dc

!
<
1

2
: (72)

De�ne H(c) = 2G(c) for 0 � c � 1

2
. Then:

h(c) � H 0(c) = 2G0(c) = 2 g(c) for 0 � c � 1

2
. (73)

(73) implies that H(c) is a distribution function on
�
0; 1

2

�
with corresponding density func-

14



tion h (c) :

Let Y be a random variable on
�
0; 1

2

�
with density function h(c): Then:

E (Y ) =

Z 1
2

0

c h(c) dc = 2

Z 1
2

0

c g(c) dc . (74)

(73) and (74) imply that (72) holds if and only if

H (E (Y )) <
1

2
. (75)

Let M (Y ) denote the median of Y , so H (M(Y )) = 1
2
: Then:

H (E (Y )) <
1

2
, H (E (Y )) < H (M(Y )) , E(Y ) < M(Y ) . (76)

E(Y ) < M(Y ) because h(c) is strictly increasing in c for c 2
�
0; 1

2

�
(e.g., van Zwet 1979;

Dharmadhikari and Joag-Dev, 1983). Therefore, AW > AM . �

We have shown that c1 and c2 both decline as N increases. We now determine how
G(c2)�G(c1) changes when c1 and c2 decline by the same amount (x).

Finding 11.
@

@x
[G (c2 � x)�G (c1 � x) ] < 0 for x 2 ( 0; c2 �

1

2
) . (77)

Proof.
@

@x
[G(c2 � x)�G(c1 � x) ] = � g(c2 � x) + g(c1 � x) < 0 :

The inequality holds here because (56) implies that when N = 2T :

c2 =
1

2
+
AW
T

>
1

2
and c1 =

1

2
� AW

T
<
1

2
.

Therefore, g(c2) = g(c1) when N = 2T because g is symmetric around 1
2
. Furthermore, g(c)

is strictly increasing for c � 1
2
and strictly decreasing for c � 1

2
: Hence, if both c2 and c1

decrease by x, g(c2� x) > g(c2); and g(c1) > g(c1� x): Consequently, g(c2� x) > g(c1� x).
�

Finding 12. There exists a eN > 2T such that G(c2)�G(c1) > 1
2
for all N 2 [ 2T; eN ).

Proof. Express c1 and c2 as functions of N , as in (8). (57) and Finding 10 imply:

G(c2(2T ))�G(c1(2T )) >
1

2
. (78)

Furthermore, Findings 6 and 7 imply c2(N) < c2(2T ) and c1(N) < c1(2T ) for N > 2T .

De�ne:
15



ec1(N) � c1(2T )� [ c2(2T )� c2(N) ] for N � 2T . (79)

(79) implies ec1(2T ) = c1(2T ). For N > 2T , c2(N) is less than c2(2T ) by the amount
c2(2T )�c2(N). (79) implies that ec1(N) is less than c1(2T ) by the identical amount because
c1(2T ) � ec1(N) = c2(2T ) � c2(N). Because ec1(N) and c2(N) decline by the same amount
as N increases above 2T , G(c2(N))�G(ec1(N)) is a decreasing function of N , from Finding
11.

Finding 9 implies that c1(N) declines more rapidly than c2(N) declines as N increases
above 2T . Therefore, ec1(N) > c1(N) for N > 2T . Consequently, because G(c) is strictly
increasing in c:

G(c2(N))�G(c1(N)) >
1

2
if G(c2(N))�G(ec1(N)) � 1

2
for N > 2T . (80)

We next prove:

There exists a �nite eN such that G(c2(N))�G(ec1(N)) = 1

2
. (81)

To prove (81), observe initially that because ec1(2T ) = c1(2T ), (78) implies:

G(c2(2T ))�G(ec1(2T )) = G(c2(2T ))�G(c1(2T )) >
1

2
. (82)

Because G(c2(N))�G(ec1(N)) is a decreasing function of N , (82) implies that (81) holds if:
lim
N!1

fG(c2(N))�G(ec1(N)) g � 1

2
. (83)

To show that (83) holds, �rst observe that when N = 2T , G(bc ) = T
N
= 1

2
) bc = 1

2
.

Therefore, Finding 2 implies:

c2(N) �
1

2
for all N � 2T and lim

N!1
c2(N) =

1

2
. (84)

Next observe that Finding 3 implies:

AW (2T )

T
= 2

Z 1
2

0

G(c) dc � 1

4
: (85)

The inequality in (85) holds because:

G(c) � c for all c 2 [ 0; 1
2
] (86)

)
Z 1

2

0

G(c) dc �
Z 1

2

0

c dc =
1

2
c2
���� 12
0

=
1

8
:

To prove that (86) holds, de�ne �(c) � G(c)� c. Observe that:

�(0) = �(
1

2
) = 0 . (87)
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In addition:
�0(c) = g(c)� 1 ) �00(c) = g0(c) � 0 , and

�0(0) = g(0)� 1 � 0 . (88)

(87) and (88) imply that �(c) � 0 for all c 2
�
0; 1

2

�
, so (86) holds.

(56) and (85) imply:

c2(2T ) = bc (2T ) + AW (2T )
T

� 1

2
+
1

4
=
3

4
, and

c1(2T ) = bc (2T )� AW (2T )
T

� 1

2
� 1
4
=
1

4

) c1(2T ) � c2(2T )�
1

2
. (89)

Because lim
N! 1

c2(N) =
1
2
, (79) and (89) imply:

lim
N! 1

ec1 (N) = c1(2T )�
h
c2(2T )� lim

N! 1
c2(N)

i
= c1(2T )� [ c2(2T )�

1

2
] � 0 . (90)

(84) and (90) imply that (83) holds. � �

II.A. Additional Numerical Solutions.

Table A1 supplements Table 3 in the text by considering additional Beta densities with
ce > cd. Table A1 provides further evidence that majority rule often favors MJS whenever
N=T is even slightly larger than 1. The �rst two columns in Table A1 specify the relevant
values of the parameters of the Beta density, � and �. The third and fourth columns present
the mean (ce) and median (cd) of the density. The last column reports the smallest value of
N=T ( eN

T
) for which Am

Aw
> 1 for N=T 2 (1; eN

T
) and Am

Aw
< 1 for N=T > eN

T
(so majority rule

favors MJS when N=T > eN
T
).

� � ce cd
eN
T

1 2 0:33333 0:29289 1:03030
1 3 0:25000 0:20630 1:00660
1 4 0:20000 0:15910 1:00180
2 3 0:40000 0:38573 1:00070
2 4 0:33333 0:31381 1:00040
2 5 0:28571 0:26445 1:00015
3 4 0:42857 0:42141 1:00002
3 5 0:37500 0:36412 1:00002
3 6 0:33333 0:32052 1:00001

Table A1. Favoritism of MJS when N=T >
eN
T
.
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Table A2 considers the same variables presented in Table A1, this time for settings where
the Beta density has ce < cd. Proposition 3 in the text suggests that majority rule may favor
VJS in these settings when N=T is large. Table A2 indicates that when cd=ce is close to 1
(e.g., when � = 4 and � = 3 or when � = 5 and � = 4), favoritism of VJS emerges only
when N=T is pronounced (e.g., greater than 40; 000). In contrast, when cd=ce is considerably
larger than 1 (e.g., when � = 2 and � = 1), favoritism of VJS can arise for substantially
smaller values of N=T (e.g., 34).

� � ce cd
eN
T

2 1 0:66667 0:70711 34
3 2 0:60000 0:61427 1; 323
3 1 0:75000 0:79370 151
4 3 0:57134 0:57859 44; 320
4 2 0:66667 0:68619 2; 424
4 1 0:80000 0:84090 531
5 4 0:55556 0:55985 1; 766; 300
5 3 0:62500 0:63588 48; 320
5 2 0:71429 0:73555 5; 883
5 1 0:83333 0:87055 1; 754

Table A2. Favoritism of VJS when N=T >
eN
T
.

II.B. Additional Analytic Results.

Conclusion. G(bc ) = T
N
under an optimal VJS policy.

Proof. From (3):

w � bc = � F N G(bc )
T

, T [w � bc ] + F N G(bc ) = 0

) dbc
dF

=
N G(bc )

T � F N g(bc ) and
dbc
dw

=
T

T � F N g(bc ) . (91)

Per-capita expected welfare is:

J �
bcZ
c

T

N G(bc ) [w � c ] dG(c)� [ 1�G(bc ) ]F � A

N

=
T

N
w � T

N G(bc )
bcZ
c

c dG(c)� [ 1�G(bc ) ]F � A

N
(92)
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) @J

@bc = � T

N

26664
G(bc ) bc g(bc )� g(bc ) bcR

c

c dG(c)

[G(bc ) ]2
37775+ g(bc )F

= g(bc )
24F � T

N [G(bc ) ]2
bcZ
c

[ bc� c ] dG(c)
35 . (93)

An optimal VJS policy is the solution to the following problem, [P]:

Maximize
w;F

J

subject to the adequate jury pool constraint and the �nancing constraint.

Let �1 and �2 denote the Lagrange multipliers associated with the adequate jury pool
constraint and the �nancing constraint, respectively. Then the necessary conditions for a
solution to [P] include:

w :
T

N
[ 1� �2N ] +

�
@J

@bc + �1N g(bc )� �2 F N g(bc )
�
dbc
dw

= 0 ; and (94)

F : � [ 1�G(bc ) ] [ 1� �2N ] + � @J
@bc + �1N g(bc )� �2 F N g(bc )

�
dbc
dF

= 0 . (95)

(91) implies that dbc
dF

s
= dbc

dw
. Therefore, (94) and (95) imply:

T

N
[ 1� �2N ]

s
= � [ 1�G(bc ) ] [ 1� �2N ] ) �2 =

1

N
> 0 .

Because �2 = 1
N
, (93) and (94) imply:

@J

@bc + �1N g(bc )� �2 F N g(bc ) = 0

) �1N g(bc ) = F g(bc )� g(bc )F + T g(bc )
N [G(bc ) ]2

bcZ
c

[ bc� c ] dG(c)
=

T g(bc )
N [G(bc ) ]2

bcZ
c

[ bc� c ] dG(c) > 0 ) �1 > 0 .

Therefore, the adequate jury pool constraint binds, so G(bc ) = T
N
. �

Proposition B1 considers the setting where g (c) is a piecewise linear density with an
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inverted-V shape. Formally, [ c ; c ] is normalized to be [ 0; 2 ] without loss of generality,1 and,
a 2 [ 0; 1

2
):

g (c) =

(
a+ [ 1� 2 a ] c if 0 � c � 1

a+ [ 1� 2 a ] [ 2� c ] if 1 � c � 2 .
(96)

This density increases at the constant rate 1� 2 a > 0 on [ c ; ce ] and declines at the corre-
sponding rate on [ce; c ].

Proposition B1. For any �nite N=T > 1 and a 2 [ 0; 1
2
), majority rule favors MJS (so

Am < Aw) when g(c) is as speci�ed in expression (96).

Proof. We �rst prove that [ c ; c ] can be normalized to [ 0; 2 ] without loss of generality. To do
so, consider a random variable X that is distributed on [ c ; c ] with cumulative distribution
function GX . De�ne a random variable Y = 2 [X�c ]

c�c . (Observe that Y is distributed on
[ 0; 2 ].) Let GY be the cumulative distribution function for Y . Then, by de�nition:

GY

�
2 [ x� c ]
c� c

�
= P

�
Y � 2 [ x� c ]

c� c

�
= P

�
2 [X � c ]
c� c � 2 [ x� c ]

c� c

�
= P [X � x ] = GX (x) . (97)

De�ne bc�X and bc�Y by:
GX(bc�X) = T

N
and GY (bc�Y ) = T

N
) GX(bc�X) = GY (bc�Y ) . (98)

(97) and (98) imply: bc�Y =
2 [bc�X � c ]
c� c . (99)

Let gX and gY be the density functions for the random variables X and Y , respectively.
(97) implies:

gY

�
2 [ x� c ]
c� c

��
2

c� c

�
= gX(x) ) gY

�
2 [ x� c ]
c� c

�
=

�
c� c
2

�
gX(x) . (100)

De�ne:

Aw(X)

T
= E [X]�

R bc�X
c
t gX(t) dt

GX(bc�X) and
Aw (Y )

T
= E [Y ]�

R bc�Y
0
t gY (t) dt

GY (bc�Y )
) bc�Y + Aw(Y )T

= bc�Y + E [Y ]� R bc�Y0 t gY (t) dt

GY (bc�Y )
1The proof of Proposition B1 demonstrates that this normalization is without loss of generality.
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=
2 [bc�X � c ]
c� c +

2 [E [X]� c ]
c� c �

R bc�Y
0
t gY (t) dt

GX (bc�X) . (101)

De�ne t =
2 [ x� c ]
c� c ) dt =

�
2

c� c

�
dx

)
Z bc�Y
0

t gY (t) dt =

Z bc�X
c

�
2 [ x� c ]
c� c

�
gY

�
2 [ x� c ]
c� c

��
2

c� c

�
dx

=

Z bc�X
c

�
2 [ x� c ]
c� c

��
c� c
2

�
gX(x)

�
2

c� c

�
dx =

Z bc�X
c

2 [ x� c ]
c� c gX(x) dx

=

Z bc�X
c

�
2x

c� c

�
gX(x)dx�

�
2 c

c� c

�
GX (bc�X) . (102)

The second equality in (102) re�ects (100). (101) and (102) imply:

bc�Y + Aw (Y )T
=
2 [bc�X � c ]
c� c +

2 [E [X]� c ]
c� c

� 1

GX(bc�X)
� Z bc�X

c

�
2x

c� c

�
gX(x) dx�

�
2 c

c� c

�
GX(bc�X) �

=
2 [bc�X � c ]
c� c +

2 [E [X]� c ]
c� c �

�
2

c� c

� R bc�X
c
x gX(x) dx

GX(bc�X) +
2 c

c� c

=
2

c� c

"bc�X � c+ E [X]�
R bc�X
c
x gX(x) dx

GX(bc�X)
#

) GY

�bc�Y + Aw (Y )T

�
= P

�
Y � bc�Y + Aw(Y )T

�

= P

"
2 [X � c ]
c� c � 2

c� c

"bc�X � c+ E [X]�
R bc�X
c
x gX(x) dx

GX(bc�X)
##

= P

"
X � bc�X + E [X]�

R bc�X
c
x gX(x) dx

GX(bc�X)
#
= GX

�bc�X + Aw(X)T

�
. (103)
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Analogous arguments reveal:

GY

�bc�Y � Aw(Y )N � T

�
= GX

�bc�X � Aw(X)N � T

�
. (104)

(103) and (104) imply:

GY

�bc�Y + Aw(Y )T

�
�GY

�bc�Y � Aw(Y )N � T

�

= GX

�bc�X + Aw(X)T

�
�GX

�bc�X � Aw(X)N � T

�

) GY

�bc�Y + Aw(Y )T

�
�GY

�bc�Y � Aw(Y )N � T

�
T 1

2

, GX

�bc�X + Aw(X)T

�
�GX

�bc�X � Aw(X)N � T

�
T 1

2
. (105)

(105) implies that the support of c can be taken to be [ 0; 2 ] without loss of generality when
assessing whether majority rule favors MJS or VJS.

To specify the distribution function corresponding to g(c), observe from (96) that when
c 2 [ 0; 1 ]:

G (c) =

Z c

0

( a+ [ 1� 2 a ]ec ) dec = �
aec+ ( 1� 2 a )� ec2

2

��c
0

= a c+ [ 1� 2 a ] c
2

2
.

For c 2 [ 1; 2 ]:

G (c) =

Z 1

0

( a+ [ 1� 2 a ] c ) dc+
Z c

1

( a+ [ 1� 2 a ] [ 2� ec ] ) dec
=
1

2
+ a [ c� 1 ] + [ 1� 2 a ]

�
2 ec� ec 2

2

�c
1

=
1

2
+ a [ c� 1 ] + [ 1� 2 a ]

�
2 (c� 1)� c

2 � 1
2

�

=
1

2
+ a [ c� 1 ] +

�
1� 2 a
2

� �
1�

�
c2 � 4 c+ 4

� �
=
1

2
+ a [ c� 1 ] +

�
1� 2 a
2

� �
1� (2� c )2

�
.
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In summary, the distribution function for the density function in (96) is:

G (c) =

8<: a c+ [ 1� 2 a ] c2
2

if 0 � c � 1

1
2
+ a [ c� 1 ] +

�
1� 2 a
2

� �
1� (2� c)2

�
if 1 � c � 2 .

(106)

Case 1. N � 2T .

De�ne y � T
N
. bc � 1 because: (i) G (bc) = y ; (ii) y � 1

2
by assumption; and (iii)

G(1) = 1
2
due to the symmetry in (96). Therefore, from (106):

abc+ [ 1� 2 a ] (bc)2
2

= y , [ 1� 2 a ] (bc)2 + 2 abc� 2 y = 0 . (107)

It is apparent from (107) that bc = 2 y when a = 1
2
. If a 6= 1

2
, then (107) implies:

bc = � 2 a+
q
(2 a)2 + 8 y [ 1� 2 a ]
2 [ 1� 2 a] =

� a+
q
(a)2 + 2 y [ 1� 2 a ]
1� 2 a .

In summary:

bc =
8<:

� a+
p
a2+2 y[ 1�2 a ]
1� 2 a if a 6= 1

2

2 y if a = 1
2
.

(108)

(96) and (107) imply that when a 6= 1
2
:

Aw
T

= ce �
R bc
0
c dG(c)

G (bc) = 1�
R bc
0
c ( a+ [ 1� 2 a ] c ) dc

y

= 1� 1
y

"
a

�
c2

2

�bc
0

+ (1� 2 a)
�
c3

3

�bc
0

#
= 1� 1

y

"
a

2
(bc)2 + [ 1� 2 a ] (bc)3

3

#

= 1� bc
y

"
a

2
(bc) + [ 1� 2 a ] (bc)2

3

#
= 1� bc

y

�
a

2
(bc) + 2

3
( y � abc ) �

= 1� 2 bc
3
� a

2 y
(bc)2 + 2 a

3 y
(bc)2 = 1� 2 bc

3
+
a

6 y
(bc)2

= 1� 2 bc
3
+
a

6 y

�
2 (y � abc)
1� 2 a

�
= 1� 2 bc

3
+
a

3 y

�
y � abc
1� 2 a

�

= 1� 2 bc
3
+
1

3

�
a

1� 2 a

�
� a2 bc
3 y [ 1� 2 a ]
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= 1 +
1

3

�
a

1� 2 a

�
� bc
3

�
2 +

a2

y ( 1� 2 a )

�

= 1 +
a

3 [ 1� 2 a ] �
bc

3 y [ 1� 2 a ]
�
a2 + 2 y (1� 2 a)

�
. (109)

Furthermore, (96) and (108) imply that when a = 1
2
:

Aw
T

= ce �
R bc
0
c dG(c)

G (bc) = 1�
R bc
0
c
2
dc

y
= 1� 1

y

�
c2

4

�bc
0

= 1� 1

4 y
(bc)2

= 1� 1

4 y
[ 2 y ]2 = 1� y .

(109) implies that when a 6= 1
2
:

bc+ Aw
T

= bc+ 1 + a

3 [ 1� 2 a ] �
bc

3 y [ 1� 2 a ]
�
a2 + 2 y (1� 2 a)

�
= 1 +

a

3 [ 1� 2 a ] + bc
�
1� a

2 + 2 y (1� 2a)
3 y (1� 2a)

�

= 1 +
a

3 [ 1� 2 a ] + bc
�
3 y (1� 2 a)� a2 � 2 y (1� 2 a)

3 y (1� 2 a)

�

= 1 +
a

3 [ 1� 2 a ] + bc
�
y (1� 2 a)� a2
3 y (1� 2 a)

�
= �2 + �2 bc ,

where �2 � 1 +
a

3 [ 1� 2 a ] and �2 �
y [ 1� 2 a ]� a2
3 y [ 1� 2 a ] . (110)

(109) also implies that when a 6= 1
2
:

bc� Aw
N � T = bc� Aw

T

�
T

N � T

�
= bc� Aw

T

�
y

1� y

�

= bc� y

1� y

�
1 +

a

3 (1� 2 a) �
bc

3 y (1� 2 a)
�
a2 + 2y (1� 2 a)

� �

= � y

1� y

�
1 +

a

3 (1� 2 a)

�
+ bc � 1 + a2 + 2 y (1� 2 a)

3 (1� y) (1� 2 a)

�

= �
�

y

1� y

�
�2 + bc � 3 (1� y) (1� 2 a) + a2 + 2 y (1� 2a)3 (1� y) (1� 2 a)

�

= �
�

y

1� y

�
�2 + bc � (1� 2 a) (3� 3 y + 2 y) + a23 (1� y) (1� 2 a)

�
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= �
�

y

1� y

�
�2 + bc � (1� 2 a) (3� y) + a23 (1� y) (1� 2 a)

�
= �

�
y

1� y

�
�2 + �1 bc ,

where �1 �
[ 1� 2 a ] (3� y) + a2
3 [ 1� y ] [ 1� 2 a ] . (111)

bc � 1 because y � 1
2
, by assumption. Therefore:

bc� Aw
N � T � 1 . (112)

(110) implies that for a 6= 1
2
:

bc+ Aw
T

� 1 , 1 +
1

3

�
a

1� 2 a

�
+ bc �y (1� 2 a)� a2

3 y (1� 2a)

�
� 1

, bc �y (1� 2 a)� a2
3 y (1� 2a)

�
� � 1

3

�
a

1� 2 a

�
, bc � y (1� 2 a)� a2

y

�
� � a

, bc � y (1� 2 a)� a2 � � � a y , bc y [ 1� 2 a ]� bc a2 + a y � 0

, bc y [ 1� 2 a ] + a y � a2 bc � 0 . (113)

Because a � 1
2
, the inequality in (113) holds if:

a y � a2 bc � 0 .

(107) implies:

y � abc = [ 1� 2 a ] (bc)2
2

) a y � a2 bc = a [ 1� 2 a ] (bc)2
2

� 0 .

Therefore, the inequality in (113) holds, so:

bc+ Aw
T

� 1 . (114)

Because bc+ Aw
T
� 1 from (114), (106) and (110) imply:

G

�bc+ Aw
T

�
= G (�2 + �2 bc)
=
1

2
+ a [ �2 + �2 bc� 1 ] + � 1� 2 a2

� �
1� (2� �2 � �2 bc)2 � . (115)

Because bc� Aw
N �T � 1 from (112), (106) and (111) imply:

G

�bc� Aw
N � T

�
= G

�
�
�

y

1� y

�
�2 + �1 bc�
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= a

�
� y �2
1� y + �1 bc

�
+

�
1� 2 a
2

� �
� y �2
1� y + �1 bc

�2
. (116)

(115) and (116) imply:

G

�bc+ Aw
T

�
�G

�bc� Aw
N � T

�

=
1

2
+ a [ �2 + �2 bc� 1 ] + 12 � a�

�
1� 2 a
2

�
[ 2� �2 � �2 bc ]2

� a

�
� y �2
1� y + �1 bc

�
�
�
1� 2 a
2

� �
� y �2
1� y + �1 bc

�2

= 1 + a

�
�2 + �2 bc� 2� �1 bc+ y �2

1� y

�

�
�
1� 2 a
2

�"
(2� �2 � �2 bc)2 + �� y �2

1� y + �1 bc
�2#

= 1� 2 a+ a [�2 � �1 ]bc+ a �2 � 1 + y

1� y

�

�
�
1� 2 a
2

�"
(2� �2 � �2 bc)2 + �� y �2

1� y + �1 bc
�2 #

= 1� 2 a+ a [�2 � �1 ]bc+ a �2
1� y

�
�
1� 2 a
2

�"
(2� �2 � �2 bc)2 + �� y �2

1� y + �1 bc
�2#

� Z1. (117)

Aw > Am if Z1 > 1
2
. Mathematica reveals that this is the case for all y 2

�
0; 1

2

�
and

a 2
�
0; 1

2

�
. Therefore, Aw > Am for any �nite N � 2T and a 2

�
0; 1

2

�
.

Case 2. N < 2T .bc � 1 because: (i) G (bc) = y ; (ii) y � T
N
> 1

2
by assumption; and (iii) G(1) = 1

2
due

to the symmetry in (96). Therefore:

1

2
+ a [bc� 1 ] + 1� 2 a

2

�
1� (2� bc)2 �� y = 0

) [ 1� 2 a ]
�
1� (2� bc)2 �+ 2 a [bc� 1 ] + 1� 2 y = 0

) � [ 1� 2 a ] [ 2� bc ]2 + 2 a [bc� 1 ] + 2� 2 a� 2 y = 0

) � [ 1� 2 a ] (bc)2 + 2 a [bc� 1 ] + 4bc [ 1� 2 a ]� 4 [ 1� 2 a ] + 2� 2 a� 2 y = 0
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) � [ 1� 2 a ] (bc)2 + bc [ 4� 6 a ] + 4 a� 2� 2 y = 0

) 1

2
[ 2 a� 1 ] (bc)2 + [ 2� 3 a ]bc+ 2 a� 1� y = 0 . (118)

Observe that:

[ 2� 3 a ]2 � 4
�
1

2

�
[ 2 a� 1 ] [ 2 a� 1� y ] = 4� 12 a+ 9 a2 + [ 2� 4 a ] [ 2 a� 1� y ]

= 4� 12 a+ 9 a2 + 4 a� 2� 2 y � 8 a2 + 4 a+ 4 a y = a2 + 4 a y � 4 a� 2 y + 2 .

Therefore, because a 6= 1
2
, (118) implies:

bc = � 2 + 3 a+
p
a2 + 4 a y � 4 a� 2 y + 2
2 a� 1 .

(96) implies:

Aw
T

= ce �
R bc
0
c dG(c)

G (bc) = 1�
R 1
0
c [ a+ (1� 2 a) c ] dc+

R bc
1
c [ a+ (1� 2 a) (2� c) ] dc

y

= 1� 1
y

"
1

2
a c2

����1
0

+
1

3
[ 1� 2 a ] c3

����1
0

+
1

2
( a+ 2 [ 1� 2 a ] ) c2

����bc
1

� 1

3
[ 1� 2 a ] c3

����bc
1

#

= 1� 1
y

�
1

2
a+

1

3
(1� 2 a) + 1

2
( a+ 2 [ 1� 2 a ] ) (bc)2 � 1

2
( a+ 2 [ 1� 2 a ] )

� 1
3
( 1� 2 a ) (bc)3 + 1

3
( 1� 2 a )

�

= 1� 1
y

�
� 1
3
( 1� 2 a ) + (bc)2 (1� 3 a

2
)� 1

3
( 1� 2 a ) (bc)3 � . (119)

(119) implies:

c2 = bc+ Aw
T
= bc+ 1 + 1

y

�
1

3
( 1� 2 a )� (bc)2�1� 3 a

2

�
+
1

3
( 1� 2 a ) (bc)3 �

= bc+ 1 + 1

6 y

�
2 ( 1� 2 a )� 6 (bc)2�1� 3 a

2

�
+ 2 ( 1� 2 a ) (bc)3 �

=
1

6 y

�
2� 4 a + 6 y (1 + bc)� 6 (bc)2 + 9 a (bc)2 + 2 ( 1� 2 a ) (bc)3 �

=
1

6 y

�
2 ( 1� 2 a ) (bc)3 + 3 (3 a� 2) (bc)2 + 6 y bc+ 2 (1� 2 a+ 3 y) � (120)

and
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c1 = bc� Aw
N � T = bc� Aw

T

�
T

N � T

�
= bc� � y

1� y

�
Aw
T

= bc� y

1� y +
1

1� y

�
� 1
3
( 1� 2 a ) + (bc)2 (1� 3 a

2
)� 1

3
( 1� 2 a ) (bc)3 �

=
1

1� y

�
� 1
3
( 1� 2 a ) + (bc)2 (1� 3 a

2
)� 1

3
( 1� 2 a ) (bc)3 + (1� y)bc� y �

=
1

6 [ y � 1 ]

�
2 ( 1� 2 a )� 6 (bc)2 (1� 3 a

2
) + 2 ( 1� 2 a ) (bc)3 � 6 (1� y)bc+ 6 y �

=
1

6 [ y � 1 ]
�
2� 4 a� 6 (bc)2 + 9 a (bc)2 + 2 ( 1� 2 a ) (bc)3 � 6 (1� y)bc+ 6 y �

=
1

6 [ y � 1 ]
�
2 ( 1� 2 a ) (bc)3 � 3 (2� 3 a) (bc)2 � 6 (1� y)bc+ 2 (1� 2 a+ 3 y) � . (121)

From (106):

G

�bc+ Aw
T

�
�G

�bc� Aw
N � T

�
� 1
2
= Z2 ,

where
Z2 � a [ c2 � 1 ] +

1� 2 a
2

�
1� (2� c2)2

�
� a c1 �

�
1� 2 a
2

�
(c1)

2 . (122)

and where c1 and c2 are de�ned in (120) and (121).

Mathematica reveals that Z2 > 1
2
(so Am < Aw) for all y 2 (12 ; 1). �

Proposition B2 considers the setting where the piecewise linear density in (96) approaches
the uniform density. Proposition B2 develops a parallel with Proposition 4 in the text.

Proposition B2. Am ! Aw as �! 1
2
when g(c) is as speci�ed in (96) with a 2 [ 0; 1

2
).

Proof. (107) implies that for a 6= 1
2
:

2 y � 2 a bc = [ 1� 2 a ] (bc)2 ) bc ! 2 y as a ! 1

2
. (123)

(109) implies:

Aw
T

= 1 +
a

3 [ 1� 2 a ] �
a2 bc

3 [ 1� 2 a ] y �
2 bc
3

= 1� 2 bc
3
+

a

3 [ 1� 2 a ]

"
1� a (bc)2

y

#

= 1� 2 bc
3
+
a

6 y

�
2 y � 2 a bc
1� 2 a

�
= 1� 2 bc

3
+
a

6 y
(bc)2 . (124)
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The equality in (124) re�ects (123). (123) and (124) imply that as a! 1
2
:

Aw
T

! 1� 2
3
[ 2 y ] +

1

12 y
[ 2 y ]2 = 1� 4 y

3
+
y

3
= 1� y . (125)

(123) and (125) imply that as a! 1
2
:

bc+ Aw
T

! 2 y + 1� y = 1 + y , and

bc� � y

1� y

�
Aw
T

! 2 y �
�

y

1� y

�
[ 1� y ] = y . (126)

(106) and (126) imply that as a! 1
2
:

G

�bc+ Aw
T

�
! G (1 + y) =

1

2
+
1

2
[ 1 + y � 1 ] = 1 + y

2
, and

G

�bc� Aw
N � T

�
! G (y) =

y

2

) G

�bc+ Aw
T

�
�G

�bc� Aw
N � T

�
! 1 + y

2
� y
2
=
1

2
. �

Proposition B3 considers a piecewise linear, symmetric, V -shaped density (with ce = cd)
on the normalized support [ 0; 2 ].2 Formally, for a 2 [ 0; 1

2
):

g (c) =

(
1� a+ [ 2 a� 1 ] c if 0 � c � 1

3 a� 1 + [ 1� 2 a ] c if 1 � c � 2 .
(127)

This density declines at the constant rate 1�2 a on [ 0; 1 ] and increases at the corresponding
rate on [ 1; 2 ]. The two segments of the symmetric density become more steeply sloped as a
declines to 0.

Proposition B3 indicates that majority rule favors VJS in this setting when g(c) has a
moderate slope (i.e., for a 2 [ 0:042; 0:5)). However, majority rule may favor MJS when g(c)
has a more pronounced slope if N=T > 1 is relatively small or if N=T is �nite and su¢ ciently
large.

Proposition B3. If a 2 [ 0:042; 0:5) for the density speci�ed in (127), then Am > Aw for

all �nite N=T > 1. If a = 0 for this density, then: (i) Am > Aw if N=T 2 (1:7; 2:414);
whereas (ii) Am < Aw if N=T 2 (1; 1:7) or if �nite N=T � 2:44.3

2This focus on the [ 0; 2 ] support is without loss of generality.
3If a 2 ( 0; 0:042), Am�Aw can be either positive or negative, depending on the value of N=T . To illustrate,
when a = 0:02, Am < Aw when NT 2 (1:098; 1:6) [ (2:665; 11:161), and Am > Aw otherwise.
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Proof. For the density in (127):

G (c) =

Z c

0

( 1� a+ [ 2 a� 1 ] � ) d� = [ 1� a ] c+ c
2

2
[ 2 a� 1 ] for c 2 [ 0; 1 ] . (128)

G (c) =

Z 1

0

( 1� a+ [ 2 a� 1 ] c ) dc+
Z c

1

( 3 a� 1 + [ 1� 2 a ] � ) d�

=
1

2
+ [ 3 a� 1 ] [ c� 1 ] + 1

2
[ 1� 2 a ]

�
c2 � 1

�
for c 2 [ 1; 2 ] . (129)

Case 1. N � 2T .

De�ne y � T
N
. bc � 1 because: (i) G (bc) = y ; (ii) y � 1

2
by assumption; and (iii)

G(1) = 1
2
due to the symmetry in (127). Therefore, from (128):

G (bc ) = y ) [ 1� a ]bc+ 1
2
[ 2 a� 1 ] (bc)2 = y

) 2 [ 1� a ]
2 a� 1 bc+ (bc )2 =

2 y

2 a� 1 ) (bc )2 =
2 y

2 a� 1 �
2 [ 1� a ]
2 a� 1 bc . (130)

Observe that:

Aw
T

= ce �
R bc
0
c g(c) dc

G (bc )
) bc+ Aw

T
= bc+ ce � R bc0 c g(c) dc

G (bc ) = ce + bc� R bc0 c g(c) dc
G (bc ) (131)

= ce +
1

G (bc )
�bcG (bc )� Z bc

0

c g(c) dc

�
� ce = 1 . (132)

Because bc � 1, (127) implies:Z bc
0

c g(c) dc =

Z bc
0

c [ 1� a+ ( 2 a� 1 ) c ] dc

=
1

2
[ 1� a ] (bc)2 + 1

3
[ 2 a� 1 ] (bc)3 . (133)

(130), (131), and (133) imply:

c2 � bc+ Aw
T

= 1 + bc� 1
y

�
1

2
( 1� a ) (bc)2 + 1

3
( 2 a� 1 ) (bc)3 �

= bc+ 1� (bc)2
y

�
1

2
( 1� a ) + 1

3
( 2 a� 1 ) bc �

= bc+ 1� 1
y

�
1� a
2

+

�
2 a� 1
3

� bc � � 2 y

2 a� 1 �
2 ( 1� a )
2 a� 1 bc �
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= bc+ 1� 1
y

�
1� a
2

� �
2 y

2 a� 1

�
� 1

y

�
2 a� 1
3

�bc � 2 y

2 a� 1

�

+
1

y

�
1� a
2

� �
2 (1� a)
2 a� 1

�bc+ 1
y

�
2 a� 1
3

� �
2 (1� a)
2 a� 1

�
(bc)2

= bc+ 1� 1� a
2 a� 1 �

2

3
bc+ [ 1� a ]2

y [ 2 a� 1 ] bc+ 2 [ 1� a ]3 y
(bc)2

= 1� 1� a
2 a� 1 + bc

"
1

3
+

( 1� a )2

y ( 2 a� 1 )

#
+
2 [ 1� a ]
3 y

�
2 y

2 a� 1 �
2 ( 1� a )
2 a� 1 bc �

= 1� 1� a
2 a� 1 +

4

3

�
1� a
2 a� 1

�
+ bc" 1

3
+

( 1� a )2

y ( 2 a� 1 ) �
4 ( 1� a )2

3 y ( 2 a� 1 )

#

= 1 +
1

3

�
1� a
2 a� 1

�
+ bc" 1

3
� ( 1� a )2

3 y ( 2 a� 1 )

#

= 1 +
1

3

�
1� a
2 a� 1

�
+
bc
3

"
1� ( 1� a )2

y ( 2 a� 1 )

#
= A2 +B2 bc (134)

where A2 � 1 +
1

3

�
1� a
2 a� 1

�
and B2 �

1

3

"
1� ( 1� a )2

y ( 2 a� 1 )

#
.

(134) implies:

c1 � bc� Aw
N � T = bc� Aw

T

�
T

N � T

�
= bc� Aw

T

"
T
N

1� T
N

#

= bc� Aw
T

�
y

1� y

�
= bc� � y

1� y

�
[A2 +B2 bc� bc ] (135)

=

�
1 + (1�B2)

�
y

1� y

��bc� � y

1� y

�
A2 = A1 +B1 bc (136)

where A1 � �
�

y

1� y

�
A2 and B1 � 1 + [ 1�B2 ]

�
y

1� y

�
.

(129) and (134) imply:

G (c2) =
1

2
+ [ 3 a� 1 ] [A2 +B2 bc� 1 ] + 1

2
[ 1� 2 a ]

�
(A2 +B2 bc)2 � 1 � . (137)

(128) and (136) imply:

G (c1) = [ 1� a ] [A1 +B1 bc ] + 1
2
[ 2 a� 1 ] [A1 +B1 bc ]2 . (138)
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(137) and (138) imply:

G (c2)�G (c1) =
1

2
+ [ 3 a� 1 ] [A2 +B2 bc� 1 ] + � 1� 2 a

2

� �
(A2 +B2 bc)2 � 1 �

� [ 1� a ] [A1 +B1 bc ]� � 2 a� 1
2

�
[A1 +B1 bc ]2

=
1

2
� (3 a� 1)�

�
1� 2 a
2

�
+ [ 3 a� 1 ] [A2 +B2 bc ] + � 1� 2 a

2

�
[A2 +B2 bc ]2

� [ 1� a ] [A1 +B1 bc ] + � 1� 2 a
2

�
[A1 +B1 bc ]2 � 	1(a) ,

where bc is the solution to (130), so:
bc = 1

2

"
� 2 [ 1� a ]
2 a� 1 +

s
4 [ 1� a ]2

[ 2 a� 1 ]2
+

8 y

2 a� 1

#

=
1

2

�
� 2 [ 1� a ]
2 a� 1 +

1

2 a� 1

q
4 [ 1� a ]2 + 8 y [ 2 a� 1 ]

�

=
� (1� a) +

q
[ 1� a ]2 + 2 y [ 2 a� 1 ]
2 a� 1 . (139)

Mathematica reveals that for all a 2 [ 0:042; 0:5), 	1(a) < 1
2
(so Am > Aw) for all

y 2 (0; 1
2
). Mathematica also reveals that if a = 0, then: (i) 	1(a) > 1

2
for all y 2 (0; 0:41),

i.e., for all �nite N
T
� 2:44; and (ii) 	1(a) < 1

2
for all y 2 [ 0:41; 0:5), i.e., for N

T
2 (1; 2:44).

Case 2. N < 2T .bc � 1 because: (i) G (bc) = y ; (ii) y � T
N
> 1

2
by assumption; and (iii) G(1) = 1

2
due

to the symmetry in (127). Therefore, (127) implies:Z bc
0

c g(c) dc =

Z 1

0

c [ 1� a+ ( 2 a� 1 ) c ] dc+
Z bc
1

c [ 3 a� 1 + ( 1� 2 a ) c ] dc

= [ 1� a ]
�
c2

2

�1
0

+ [ 2 a� 1 ]
�
c3

3

�1
0

+ [ 3 a� 1 ]
�
c2

2

�bc
1

+ [ 1� 2 a ]
�
c3

3

�bc
1

=
1� a
2

+
2 a� 1
3

� 3 a� 1
2

� 1� 2 a
3

+
3 a� 1
2

(bc)2 + 1� 2 a
3

(bc)3
=
3� 3 a+ 4 a� 2� 9 a+ 3� 2 + 4 a

6
+
3a� 1
2

(bc)2 + 1� 2 a
3

(bc)3
=
1� 2 a
3

+
3 a� 1
2

(bc)2 + 1� 2 a
3

(bc)3 . (140)

(131) and (140) imply:
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c2 � bc+ Aw
T

= bc+ 1� 1
y

�
1� 2 a
3

+
3 a� 1
2

(bc)2 + 1� 2 a
3

(bc)3 � , (141)

where bc is determined by:
G(bc ) = 1

2
+ [ 3 a� 1 ] [bc� 1 ] + � 1� 2 a

2

� �
(bc)2 � 1 � = y

) 1

2
+ [ 3 a� 1 ] bc� (3 a� 1)� 1� 2 a

2
+

�
1� 2 a
2

�
(bc)2 = y

)
�
1� 2 a
2

�
(bc)2 + [ 3 a� 1 ] bc+ 1� 2 a� y = 0

) (bc )2 + 2 [ 3 a� 1 ]
1� 2 a bc+ 2 [ 1� 2 a� y ]

1� 2 a = 0

) bc = 1

2

"
� 2 [ 3 a� 1 ]

1� 2 a +

s
4 [ 3 a� 1 ]2

[ 1� 2 a ]2
� 8 [ 1� 2 a� y ]

1� 2 a

#

=
1

2

�
� 2 [ 3 a� 1 ]

1� 2 a +
2

1� 2 a

q
[ 3 a� 1 ]2 � 2 [ 1� 2 a� y ] [ 1� 2 a ]

�

=
� (3 a� 1) +

p
a2 + 2 a+ 2 y � 4 a y � 1
1� 2 a . (142)

(135) and (141) imply:

c1 � bc� Aw
T

�
y

1� y

�
= bc� y

1� y [ c2 � bc ]
= bc � 1 + y

1� y

�
� y c2
1� y =

bc
1� y �

y c2
1� y . (143)

(129) and (141) imply:

G (c2) =
1

2
+ [ 3 a� 1 ] [ c2 � 1 ] +

�
1� 2 a
2

� �
(c2)

2 � 1
�
. (144)

(128) and (143) imply:

G (c1) = [ 1� a ] c1 +
�
2 a� 1
2

�
(c1)

2 . (145)

(144) and (145) imply:

G (c2)�G (c1) =
1

2
+[ 3 a� 1 ] [ c2 � 1 ]+

�
1� 2 a
2

� �
(c2)

2 � 1
�
�[ 1� a ] c1�

�
2 a� 1
2

�
(c1)

2
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=
1

2
� (3 a� 1)�

�
1� 2 a
2

�
+ [ 3 a� 1 ] c2+

�
1� 2 a
2

�
(c2)

2� [ 1� a ] c1�
�
2 a� 1
2

�
(c1)

2

= 1� 2 a+ [ 3 a� 1 ] c2 � [ 1� a ] c1 +
�
1� 2 a
2

� �
(c2)

2 + (c1)
2 � � 	2(a) .

Mathematica reveals that for all a 2 [ 0:042; 0:5), 	2(a) < 1
2
(so Aw < Am) for all

y 2
�
1
2
; 1
�
. Mathematica also reveals that if a = 0, then: (i) 	2(a) > 1

2
for all y � 0:586,

i.e., for N
T
2 (1; 1:7 ]; and (ii) 	2(a) < 1

2
for all y 2 (0:5; 0:586), i.e., for N

T
2 (1; 1:7). �

II.C. The Modi�ed VJS Policy.

The ensuing analysis pertains to the modi�ed VJS policy in which an individual�s request
for exemption from jury service is approved with probability p 2 (0; p ], where p < 1. The
proofs of the primary �ndings that follow, Propositions C1 �C3, rely upon Lemmas 5 �10
and Conclusions 1 �5.

Under the modi�ed VJS policy, a �type c�individual (i.e., one who incurs cost c if he
performs jury service) will �opt out�(i.e., request an exemption from jury service) if, wheneN individuals remain eligible for jury service:

p [�F ] + [ 1� p ] TeN [w � c ] > TeN [w � c ] , � pF > p
TeN [w � c ] . (146)

In contrast, a type c individual will �opt in� (i.e., not request an exemption) if, when eN
individuals are eligible for jury service:

TeN [w � c ] � p [�F ] + [ 1� p ] TeN [w � c ] , p
TeN [w � c ] � � pF . (147)

Lemma 5. Suppose p > 0, w, and F are such that some type bc 2 [ c ; c ] is indi¤erent

between opting in and opting out under VJS. Then types c 2 [ c ; bc ] will opt in and types
c 2 (bc ; c ] will opt out.
Proof. (146) and (147) imply that if p > 0 and if eN 2 (0; N) individuals are eligible for
jury service, then the type that is indi¤erent between opting in and opting out (bc ) is given
by:

F =
TeN [bc� w ] . (148)

Observe that when p > 0 and eN 2 (0; N) , (146) will be satis�ed for all c 2 (bc ; c ], whereas
(147) will be satis�ed for all c 2 [ c ; bc ]. �

Lemma 5 implies that the (expected) number of individuals that are eligible for jury
service is: bN � N [G(bc ) + ( 1� p ) ( 1�G(bc ) ) ] = N [ 1� p ( 1�G(bc ) ) ] : (149)
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Therefore, from (148), the type bc 2 [ c ; c ] that is indi¤erent between opting in and opting
out is given by:

T [bc� w ] = F bN . (150)

Observe from (149) that d bN
dbc = N p g(bc ). Therefore, di¤erentiating (150) provides:

[T � F N p g(bc ) ] dbc� T dw = 0 ) dbc
dw

����
dF = dp=0

=
T

T � F N p g(bc ) ; (151)

[T � F N p g(bc ) ] dbc� bN dF = 0 ) dbc
dF

����
dw= dp=0

=
bN

T � F N p g(bc ) ; (152)

[T � F N p g(bc ) ] dbc+ F N [ 1�G(bc ) ] dp = 0

) dbc
dp

����
dw= dF =0

= � F N [ 1�G(bc ) ]
T � F N p g(bc ) . (153)

Expected social welfare (per capita) under VJS given bc is:
W =

bcZ
c

TbN [w � c ] dG(c) +
cZ
bc
�
p [�F ] + [ 1� p ] TbN [w � c ]

�
dG(c)� A

N

=
TbN

cZ
c

[w � c ] dG(c)� TbN
cZ
bc
[w � c ] dG(c)

� pF
cZ
bc
dG(c) + [ 1� p ] TbN

cZ
bc
[w � c ] dG(c)� A

N

=
TbN

cZ
c

[w � c ] dG(c)� p
cZ
bc
�
F +

TbN [w � c ]
�
dG(c)� A

N
. (154)

A modi�ed VJS policy in which only types c 2 [bc ; c ] attempt to opt out will be self-
�nancing in the sense that the expected payments to jurors and the administrative cost (A)
do not exceed the expected revenue from opt-out fees if:

p [ 1�G(bc ) ]N F � T w + A . (155)

The expression in (154) can be written as:

TbN Z � pF
cZ
bc
dG(c)� A

N
(156)

where:
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Z �
bcZ
c

[w � c ] dG(c) + [ 1� p ]
cZ
bc
[w � c ] dG(c) . (157)

(155) and (157) imply that [P], the social problem in this setting, is:

Maximize
w;F; p2 [ 0; p ]

TbN Z � pF

cZ
bc
dG(c)� A

N

subject to:
p [ 1�G(bc ) ]N F � T w + A , and (158)

bN = N [ 1� p ( 1�G(bc ) ) ] � T , (159)

where bc is de�ned by (150).
Let �f denote the Lagrange multiplier associated with the �self-�nancing� constraint

(158), and let �t denote the Lagrange multiplier associated with the �adequate jury pool�
constraint, (159). Then the necessary conditions for a solution to [P] include:

F : � p
cZ
bc
dG(c)� T Z� bN�2 N p g(bc )

dbc
dF

+
TbN p [w � bc ] g(bc ) dbc

dF
+ pF g(bc ) dbc

dF

+ �f p [ 1�G(bc ) ]N � �f pN F g(bc ) dbc
dF

+ �t pN g(bc ) dbc
dF

= 0

) � p
cZ
bc
dG(c) + �f p [ 1�G(bc ) ]N � pN g(bc ) dbc

dF

264 T Z� bN�2 + �f F � �t
375

+ g(bc ) dbc
dF

p

�
TbN (w � bc ) + F � = 0 ; (160)

w :
TbN
24 cZ
c

dG(c)� p
cZ
bc
dG(c)

35� T Z� bN�2 N p g(bc )
dbc
dw

+
TbN p [w � bc ] g(bc ) dbc

dw

+ pF g(bc ) dbc
dw

� �f T � �f pN F g(bc ) dbc
dw

+ �t pN g(bc ) dbc
dw

= 0

)
cZ
c

dG(c)� p
cZ
bc
dG(c)� �f bN � pN g(bc ) dbc

dw

bN
T

264 T Z� bN�2 + �f F � �t
375
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+ g(bc ) dbc
dw

bN
T
p

�
TbN (w � bc ) + F � = 0 . (161)

(151) and (152) imply that (161) can be written as:

cZ
c

dG(c)� p
cZ
bc
dG(c)� �f bN � pN g(bc ) dbc

dF

264 T Z� bN�2 + �f F � �t
375

+ g(bc ) dbc
dF

p

�
TbN (w � bc ) + F � = 0 . (162)

Subtracting (160) from (162) and using (150) provides:
cZ
c

dG(c)� �f
h bN + p ( 1�G(bc ) )N i = 0 ) �f =

1

N

cZ
c

dG(c) > 0 . (163)

Because the self-�nancing constraint binds (�f > 0), (158) implies:

p [ 1�G(bc ) ]N F = T w + A ) w = p [ 1�G(bc ) ] N
T
F � A

T
. (164)

Also, from (150):
F =

TbN [bc � w ] . (165)

Combining (164) and (165) and using (149) provides:

w = p [ 1�G(bc ) ] NbN [bc � w ]� A
T

) w

�
1 + p ( 1�G(bc ) ) NbN

�
= p [ 1�G(bc ) ] NbN bc � A

T

) w
h bN + p ( 1�G(bc ) )N i = p [ 1�G(bc ) ]N bc � A

T
bN

) w = p [ 1�G(bc ) ] bc � A

N

bN
T
. (166)

(150) and (166) imply:

bc � w = [ 1� p ( 1�G(bc ) ) ] bc + A

N

bN
T

=
bN
N

�bc + A
T

�
. (167)

(165) and (167) provide:
F =

T

N

�bc + A
T

�
. (168)
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Letting �p denote the Lagrange multiplier associated with the constraint p � p, the
necessary condition for an optimum with respect to p is:

p : � TbN
cZ
bc
[w � c ] dG(c)� F

cZ
bc
dG(c)� T Z� bN�2

"
@ bN
@p

+
@ bN
@bc dbcdp

#
+

TbN p [w � bc ] g(bc ) dbc
dp

+ pF g(bc ) dbc
dp
+ �f N F

�
1�G(bc )� p g(bc ) dbc

dp

�
+�t

"
@ bN
@p

+
@ bN
@bc dbcdp

#
��p = 0 . (169)

Using (165), (169) can be written as:

p : � TbN
cZ
bc
[w � c+ bc � w ] dG(c)� T Z� bN�2

�
�N [ 1�G(bc ) ] + pN g(bc ) dbc

dp

�

+ g(bc ) dbc
dp
p

�
� TbN (bc� w ) + F �+ �t pN g(bc ) dbc

dp
� �p

+ �f N F [ 1�G(bc ) ]� �tN [ 1�G(bc ) ]� �f N F p g(bc ) dbc
dp

= 0

) TbN
cZ
bc
[ c � bc ] dG(c) +N [ 1�G(bc ) ]

264 T Z� bN�2 + �f F � �t
375

� pN g(bc ) dbc
dp

264 T Z� bN�2 + �f F � �t
375� �p = 0

) TbN
cZ
bc
[ c � bc ] dG(c)� d bN

dp

264 T Z� bN�2 + �f F � �t
375� �p = 0 (170)

where
d bN
dp

= � N [ 1�G(bc ) ] + pN g(bc ) dbc
dp
.

(160), (163), and (165) imply:

� p
cZ
bc
dG(c) + �f p [ 1�G(bc ) ]N = pN g(bc ) dbc

dF

264 T Z� bN�2 + �f F � �t
375

) pN g(bc ) dbc
dF

264 T Z� bN�2 + �f F � �t
375 = p [ 1�G(bc ) ] cZ

c

dG(c)� p
cZ
bc
dG(c)
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= p

24 bcZ
c

dG(c)�G(bc ) cZ
c

dG(c)

35 . (171)

(171) implies that if p > 0 and dbc
dF

is well-de�ned, then:

T Z� bN�2 + �f F � �t =
bcR
c

dG(c)�G(bc ) cR
c

dG(c)

N g(bc ) dbc
dF

= 0 . (172)

Conclusion 1. If G(bc ) < 1, then p = p at the solution to [P].

Proof. (170) and (172) imply that �p > 0 under the speci�ed condition. Therefore, p = p,
by complementary slackness. �

From (166) and (168), the expected net payo¤ of a type c 2 (bc ; c ] individual is:
u(c) = p [�F ] + [ 1� p ] TbN [w � c ]

= � p
T

N

�bc + A
T

�
+ [ 1� p ] TbN

"
p [ 1�G(bc ) ] bc � A

N

bN
T
� c

#

= bc p T ��1� pbN
�
[ 1�G(bc ) ]� 1

N

�
� [ 1� p ] TbN c� p

A

N
� [ 1� p ] A

N

= p
T

N bN
h
( 1� p ) [ 1�G(bc ) ]N � bN i bc � [ 1� p ] TbN c� A

N

= p
T

N bN [�G(bc )N ] bc � [ 1� p ] TbN c� A

N

= � TbN [ p G(bc ) bc + ( 1� p ) c ]� A

N
. (173)

The �fth equality in (173) holds because, from (149):

[ 1� p ] [ 1�G(bc ) ]N � bN = [ 1� p ] [ 1�G(bc ) ]N �N [ 1� p ( 1�G(bc ) ) ]
= N f [ 1� p ] [ 1�G(bc ) ]� 1 + p [ 1�G(bc ) ] g = N [ 1�G(bc )� 1 ] = �N G(bc ) .
From (166) and using (149), the expected net payo¤ of a type c 2 [ c ; bc ] individual is:
u(c) =

TbN
"
p [ 1�G(bc ) ] bc � A

N

bN
T
� c

#
=

TbN [ p ( 1�G(bc ) ) bc � c ]� A

N
: (174)
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Conclusion 2. The individuals whose expected net payo¤ increases when an optimal mod-

i�ed VJS policy is implemented are those for whom c > bc + A
T

bN
pG(bc )N and c < bc �

A
T

bN
p [ 1�G(bc ) ]N .

Proof. From (173) and using (149), the expected net payo¤ of a type c 2 (bc ; c ] individual
increases when an optimal VJS policy is implemented if:

�
�
TbN [ p G(bc ) bc + ( 1� p ) c ] + A

N

�
> � T

N
c

, T

N
c >

TbN [ p G(bc ) bc + ( 1� p ) c ] + A

N

, TbN N c
h bN �N ( 1� p ) i >

TbN N pN G(bc ) bc + A bNbN N
, c [ N G(bc ) +N ( 1� p ) ( 1�G(bc ) )�N ( 1� p ) ] > pN G(bc ) bc + A bN

T

, pN G(bc ) c > pN G(bc ) bc + A bN
T

, c > bc + A
T

bN
p G(bc )N .

From (174) and using (149), the expected net payo¤ of a type c 2 [ c; bc ] individual
increases when an optimal VJS policy is implemented if:

TbN [ p ( 1�G(bc ) ) bc � c ]� A

N
> � T

N
c

, T

N
c >

TbN [ c� p ( 1�G(bc ) ) bc ] + A

N

, TbN N
h bN �N

i
c > � T NbN N p [ 1�G(bc ) ] bc + A bNbN N

, [N �G(bc )N � ( 1� p ) ( 1�G(bc ) )N ] c < pN [ 1�G(bc ) ] bc � A bN
T

, pN [ 1�G(bc ) ] c < pN [ 1�G(bc ) ] bc � A bN
T

, c < bc � A
T

bN
p [ 1�G(bc ) ]N . �

(173) and (174) imply that expected social welfare per capita, given p, is:

W (p) =

bcZ
c

�
TbN [ p ( 1�G(bc ) ) bc � c ]� A

N

�
dG(c)
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�
cZ
bc
�
TbN [ p G(bc ) bc + ( 1� p ) c ] + A

N

�
dG(c)

= � p bc G(bc ) TbN
cZ
c

dG(c) + p bc TbN
bcZ
c

dG(c)

� TbN
cZ
c

c dG(c) + p
TbN

cZ
bc
c dG(c)� A

N

cZ
c

dG(c)

= p bc TbN
24 bcZ
c

dG(c)�G(bc ) cZ
c

dG(c)

35
+ p

TbN
cZ
bc
c dG(c)� TbN

cZ
c

c dG(c)� A

N

cZ
c

dG(c) . (175)

(175) implies:

W (p) = p bc TbN
24 bcZ
c

dG(c)�G(bc ) cZ
c

dG(c)

35
+
TbN
24 p cZ

bc
c dG(c)�

cZ
c

c dG(c)

35� A

N

cZ
c

dG(c)

=
TbN
24 p cZ

bc
c dG(c)�

cZ
c

c dG(c)

35� A

N

= � TbN
24 bcZ
c

c dG(c) + [ 1� p ]
cZ
bc
c dG(c)

35� A

N
. (176)

Expected jury service cost is the product of the probability of being called for jury service
( TbN ) and E fc jI ; bcg, the expected personal cost of an individual who is in the jury pool, i.e.,

E fc jI ; bcg � bcZ
c

c dG(c) + [ 1� p ]
cZ
bc
c dG(c) . (177)

(176) and Conclusion 1 imply that maximizing average aggregate surplus is equivalent
to minimizing
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�W =
TbN
24 bcZ
c

c dG(c) + [ 1� p ]
cZ
bc
c dG(c)

35+ A

N
. (178)

The ensuing analysis assumes that p < 1 and N > T
1� p , so the adequate jury pool

constraint (159) does not bind.

Lemma 6. Average surplus is maximized when �W is minimized with respect to bc.
Proof. If p < 1; then 1� p [ 1�G(bc ) ] > 0 for all p � p and bc. Therefore, T

1�p [ 1�G(bc) ] is a
�nite number. Hence, if N exceeds T

1� p (which weakly exceeds
T

1�p [ 1�G(bc) ] for all p � p), then
(159) holds as a strict inequality. When (159) does not bind, average surplus is maximized
when bc is chosen to minimize �W . If the optimal bc lies in (c ; c), then the corresponding F
and w are uniquely determined by (148), (149), and p [ 1�G(bc ) ]N F = T w + A (which
is (158) with equality), with p = p. �

Conclusion 3. �fW is minimized at bc �; where
bc � = � (bc�)

� (bc�) =
bc �R
c

c dG(c) + [ 1� p ]
cR
bc� c dG(c)

G(bc �) + [ 1� p ] [ 1�G(bc� ) ] . (179)

Proof. To minimize �W with respect to bc, observe from (159) and (178) that:

�W =
T

N

26664
bcR
c

c dG(c) + [ 1� p ]
cR
bc c dG(c)

G(bc ) + [ 1� p ] [ 1�G(bc ) ]
37775+ A

N
. (180)

Therefore, to maximize average surplus, it su¢ ces to minimize:

�fW =
� (bc )
� (bc ) (181)

where:

� (bc ) �
bcZ
c

c dG(c) + [ 1� p ]
cZ
bc
c dG(c) and � (bc ) � G(bc ) + [ 1� p ] [ 1�G(bc ) ] .

(182)
From (181):

log
�
�fW �

= log (� (bc ) )� log (� (bc ) )
) @

@bc n log ��fW �o
=
�0 (bc )
� (bc ) � �0 (bc )� (bc ) . (183)
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From (182):

�0 (bc ) = bc g(bc )� [ 1� p ]bc g(bc ) = p bc g (bc ) , and
�0 (bc ) = g(bc )� [ 1� p ] g(bc ) = p g (bc ) . (184)

(183) and (184) imply:

@

@ bc n log ��fW�o = p g (bc ) � bc
� (bc ) � 1

� (bc )
�
=
p g (bc ) [bc � (bc )� � (bc ) ]

� (bc ) � (bc ) . (185)

De�ne 
 (bc ) � bc � (bc )� � (bc ) : Di¤erentiating 
 (bc ), using (184), provides:
@ 
 (bc )
@bc = � (bc ) + bc p g (bc )� p bc g (bc ) = � (bc ) > 0 . (186)

Also, from (182):


 (c) = c � (c)� � (c) = c [ 1� p ]� E fcg [ 1� p ] = [ 1� p ] [ c� E fcg ] < 0 ;


 (c) = c � (c)� � (c) = c� E fcg > 0 . (187)

(186) and (187) imply that there exists a unique bc � 2 (c ; c ) such that: (i) 
 (bc ) < 0 forbc < bc �; (ii) 
 (bc�) = 0; and (iii) 
 (bc ) > 0 for bc > bc �. Therefore, (185) implies that �fW is
minimized at bc �. �

Conclusion 4. bc � is independent of A. Furthermore, bc � < E fcg = ce, @
@p
fbc� g < 0,

and bc � ! c as p ! 1.

Proof. (180) and Conclusion 3 imply that under an optimal modi�ed VJS policy, average
surplus is:

W � = � T

N

26664
bc �R
c

c dG(c) + [ 1� p ]
cR
bc � c dG(c)

G(bc �) + [ 1� p ] [ 1�G(bc� ) ]
37775� A

N
= � T

N
bc � � A

N
. (188)

It is apparent from (179) that bc � is independent of A. From (188), average surplus
is � T

N
bc � � A

N
under an optimal modi�ed VJS policy. Average surplus is � T

N
ce under

mandatory jury service (MJS). Conclusion 2 implies that if A = 0, then all individuals are
better o¤ under the optimal modi�ed VJS policy. Therefore:

� T

N
bc � > � T

N
ce , bc � < ce .

From (179):

bc� [G(bc �) + ( 1� p ) ( 1�G(bc� ) ) ] = bc �Z
c

c dG(c) + [ 1� p ]
cZ

bc �
c dG(c) . (189)
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Di¤erentiating (189) provides:

@ bc�
@p

[G(bc �) + ( 1� p ) ( 1�G(bc � ) ) ]
+ bc� � g(bc �) @bc�

@p
� ( 1� p ) g(bc �) @bc�

@p
� ( 1�G(bc� ) ) �

= bc� g(bc �) @ bc �
@p

� [ 1� p ]bc� g(bc �) @bc�
@p

�
cZ

bc �
c dG(c)

) @ bc�
@p

[G(bc �) + ( 1� p ) ( 1�G(bc � ) ) ] = bc � [ 1�G(bc � ) ]� cZ
bc �
c dG(c)

) @ bc�
@p

=

bc� [ 1�G(bc � ) ]� cR
bc � c dG(c)

G(bc �) + [ 1� p ] [ 1�G(bc � ) ] < 0 . (190)

The inequality in (190) holds because: (i) bc � [ 1�G(bc � ) ]� cR
bc� c dG(c) =

cR
bc� [bc � � c ] dG(c) <

0; and (ii) G(bc �)+ [ 1� p ] [ 1�G(bc � ) ] > 0.
Finally, observe from (189) that if p ! 1; then:

bc �G(bc �) ! bc �Z
c

c dG(c) ,
bc �Z
c

[bc � � c ] dG(c) ! 0 , bc � ! c . �

From (149) and Conclusion 2, an individual prefers VJS to MJS if:

c > bc � + A
T

bN
pG (bc �) N or c < bc � � A

T

bN
p [ 1�G (bc �) ]N

, c > bc � + A
T
a2 or c < bc� � A

T
a1

where a1 �
1� p [ 1�G (bc �) ]
p [ 1�G (bc �) ] and a2 �

1� p [ 1�G (bc �) ]
p G (bc �) . (191)

(191) implies that the fraction of the population that prefers VJS to MJS is:

JO(A) � G

�bc � � A
T
a1

�
+ 1�G

�bc � + A
T
a2

�
whereas the fraction of the population that prefers MJS to VJS is:

JM(A) � 1�
�
G

�bc � + A
T
a2

�
+ 1�G

�bc � + A
T
a2

��
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= G

�bc � + A
T
a2

�
�G

�bc � + A
T
a2

�
.

Therefore, the di¤erence between the fraction of individuals that prefer the optimal VJS
policy and the fraction that prefer MJS is:

JO(A)�JM(A) = G

�bc � � A
T
a1

�
+1�G

�bc � + A
T
a2

�
+G

�bc � � A
T
a1

�
�G

�bc � + A
T
a2

�

= 1� 2
�
G

�bc � + A
T
a2

�
�G

�bc � � A
T
a1

��
� J (A) . (192)

If J (A) > 0; then a majority of the population prefers the optimal VJS policy. If J (A) < 0;
then a majority of the population prefers MJS.

Lemma 7. There exists a unique Am > 0 such that: (i) J (A) > 0 for all A < Am; (ii)

J (A) < 0 for all A > Am; and (iii) J (Am) = 0.

Proof. The conclusion holds because it is apparent from (192) that J(A) is a decreasing
function of A, J(0) = 1, and J(A)! �1 as A!1. �

From (188), average surplus is� T
N
bc�� A

N
under the optimal modi�ed VJS policy. Average

surplus is � T
N
ce under MJS. Therefore, aggregate surplus is greater under the optimal

modi�ed VJS policy than under MJS if and only if:

� T

N
bc� � A

N
> � T

N
ce , T

N
bc� + A

N
<

T

N
ce , bc� + A

T
< ce . (193)

De�ne H(A) � bc� + A
T
� ce . (194)

Lemma 8. There exists a unique Aw > 0, such that: (i) H (A) < 0 for all A < Aw; (ii)
H (A) > 0 for all A > Aw; and (iii) H (Aw) = 0.

Proof. It is apparent from (194) that H 0(A) > 0 and H(1) > 0. Conclusion 4 implies
H(0) = bc� � ce < 0. �

Lemmas 7 and 8 provide the following conclusions.

Lemma 9. If Am < Aw, then:

1. If A < Am; then a majority of individuals prefer the optimal modi�ed VJS policy,
which provides a higher level of aggregate surplus than MJS.

2. If A 2 (Am; Aw); then only a minority of individuals prefer the optimal modi�ed VJS
policy even though it secures a higher level of aggregate surplus than MJS.
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3. If A > Aw; then a majority of individuals prefer MJS, which secures a higher level of
aggregate surplus than the modi�ed VJS policy.

Lemma 10. If Am > Aw. Then:

1. If A < Aw; then a majority of individuals prefer the optimal modi�ed VJS policy,
which provides a higher level of aggregate surplus than MJS.

2. If A 2 (Aw; Am); then a majority of individuals prefer the optimal modi�ed VJS policy,
even though it secures a lower level of aggregate surplus than MJS.

3. If A > Am; then a majority of individuals prefer MJS, which secures a higher level of
aggregate surplus than the optimal modi�ed VJS policy.

Conclusion 5. A majority of the population prefers the surplus-maximizing policy if A <
Min fAm; Awg or A > Max fAm; Awg. Only a minority of the population prefers the surplus-
maximizing policy if A 2 (Min fAm; Awg, Max fAm; Awg ).

Proposition C1. Majority rule favors neither MJS nor the modi�ed VJS policy (so Am =

Aw ) for all p 2 (0; 1) if g(c) is the uniform density.

Proof. From (179), when g(c) = 1
c� c for all c 2 [ c ; c ]:

bc � [G(bc �) + ( 1� p ) ( 1�G(bc� ) ) ] = bc �Z
c

c dG(c) + [ 1� p ]
cZ

bc�
c dG(c)

, bc � � bc � � c
c� c + ( 1� p )

�
1� bc � � c

c� c

��
=

c2

2 [ c� c ]

����bc �
c

+ [ 1� p ] c2

2 [ c� c ]

����cbc �
=
[bc � � c ] [bc � + c ]

2 [ c� c ] + [ 1� p ] [ c� bc �] [ c+ bc � ]
2 [ c� c ]

, bc � �bc � � c
c� c + ( 1� p )

c� bc �
c� c

�
=
[bc � � c ] [bc � + c ]

2 [ c� c ] + [ 1� p ] [ c� bc �] [ c+ bc � ]
2 [ c� c ]

, bc � � bc � � c
c� c

�
� [bc � � c ] [bc � + c ]

2 [ c� c ] = [ 1� p ] [ c� bc � ] [ c+ bc � ]
2 [ c� c ] � [ 1� p ] bc � � c� bc �

c� c

�

, [bc � � c ] � bc �
c� c �

bc � + c
2 [ c� c ]

�
= [ 1� p ] [ c� bc � ] � c+ bc �

2 [ c� c ] �
bc �
c� c

�
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, [bc � � c ] 2 bc � � [bc � + c ]
2 [ c� c ] = [ 1� p ] [ c� bc � ] c+ bc � � 2 bc �

2 [ c� c ]

, [bc � � c ] bc � � c
2 [ c� c ] = [ 1� p ] [ c� bc � ] c� bc �

2 [ c� c ]

, [bc � � c ]2 = [ 1� p ] [ c� bc � ]2 , bc � � c = p
1� p [ c� bc � ]

, bc � + bc �p 1� p = c
p
1� p + c , bc � h 1 +p 1� p

i
= c+ c

p
1� p

, bc � = �
1

1 +
p
1� p

�
c+

� p
1� p

1 +
p
1� p

�
c . (195)

From (192), when g(c) = 1
c� c for all c 2 [ c ; c ]:

G

�bc � + Am
T
a2

�
�G

�bc � � Am
T
a1

�
=
1

2

,
bc � + Am

T
a2 � c

c� c �
bc � � Am

T
a1 � c

c� c =
1

2
,

�
1

c� c

�
Am
T
[ a1 + a2 ] =

1

2
. (196)

From (191):

a1 + a2 =
1� p [ 1�G (bc �) ]
p [ 1�G (bc �) ] +

1� p [ 1�G (bc �) ]
p G (bc �)

=
1� p [ 1�G (bc �) ]

p

�
1

1�G (bc �) + 1

G (bc �)
�
=

1� p [ 1�G (bc �) ]
p [ 1�G (bc �) ]G (bc �) . (197)

(196) and (197) imply:�
1

c� c

�
Am
T

1� p [ 1�G (bc �) ]
p [ 1�G (bc �) ]G (bc �) = 1

2

, Am
T

=

�
c� c
2

�
p [ 1�G (bc �) ]G (bc �)
1� p [ 1�G (bc �) ] =

c� c
2

24 p
h
1� bc �� c

c� c

i bc �� c
c� c

1� p
h
1� bc �� c

c�c

i
35

=
c� c
2

24 p
h
c�bc �
c�c

i bc �� c
c� c

1� p
h
c�bc �
c� c

i
35 = 1

2

�
p [ c� bc � ] [bc � � c ]
c� c� p [ c� bc � ]

�
. (198)

From (195):

c� bc � = c�
�

1

1 +
p
1� p

�
c �

� p
1� p

1 +
p
1� p

�
c
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=

�
1

1 +
p
1� p

�
c �

�
1

1 +
p
1� p

�
c =

c� c
1 +

p
1� p . (199)

Also:

bc � � c = �
1

1 +
p
1� p

�
c +

� p
1� p

1 +
p
1� p

�
c� c

=

� p
1� p

1 +
p
1� p

�
c �

� p
1� p

1 +
p
1� p

�
c =

[ c� c ]
p
1� p

1 +
p
1� p . (200)

(198), (199), and (200) imply:

Am
T

=
1

2

�
p [ c� bc � ] [bc � � c]
c� c� p [ c� bc � ]

�
=
1

2

0@ p
h

1
1+
p
1�p

i p
1�p

1+
p
1�p [ c� c ]

2

c� c� p
h

1
1+
p
1�p

i
[ c� c ]

1A

=
1

2

0@ p
h

1
1+
p
1�p

i h p
1�p

1+
p
1�p

i
[ c� c ]

1� p
h

1
1+
p
1�p

i
1A =

1

2

0@ p
h p

1�p
1+
p
1�p

i
[ c� c ]

1� p+
p
1� p

1A

=
1

2

0@ p
h p

1�p
1+
p
1�p

i
[ c� c ]

p
1� p

�
1 +

p
1� p

�
1A =

p [ c� c ]
2
�
1 +

p
1� p

�2 . (201)

(194) and (195) imply:

Aw
T

= ce � bc � = c+ c

2
�
�

1

1 +
p
1� p

�
c�

� p
1� p

1 +
p
1� p

�
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=
[ c+ c ]

�
1 +

p
1� p

�
� 2 c� 2 c

p
1� p

2
�
1 +

p
1� p

�
=
c
�
1 +

p
1� p � 2

p
1� p

�
+ c
�
1 +

p
1� p � 2

�
2
�
1 +

p
1� p

�
=
c
�
1�

p
1� p

�
� c

�
1�

p
1� p

�
2
�
1 +

p
1� p

� =

�
1�

p
1� p

�
[ c� c ]

2
�
1 +

p
1� p

�
=

�
1�

p
1� p

�
[ c� c ]

�
1 +

p
1� p

�
2
�
1 +

p
1� p

�2 =
p [ c� c ]

2
�
1 +

p
1� p

�2 . (202)

(201) and (202) imply:

Am
T

=
p [ c� c ]

2
�
1 +

p
1� p

�2 =
Aw
T

) Am = Aw. �
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Proposition C2 refers to the piecewise linear density with an inverted-V shape speci�ed
in (96).

Proposition C2. Majority rule favors MJS over the modi�ed VJS policy (so Am < Aw )

for all p 2 (0; 1) if g(c) is as speci�ed in (96) with a 2 (0; 1
2
).4

Proof. The analytic proof proceeds for the case where a = 0, so:

g (c) =

(
c if 0 � c � 1

2� c if 1 � c � 2 .
(203)

Mathematica demonstrates that the conclusion holds for a 2 (0; 1
2
).5

When (203) holds, the numerator in the expression for bc � < 1 in (179) is:
bc �Z
0

c dG(c) + [ 1� p ]

24 1Z
bc �
c dG(c) +

2Z
1

c dG(c)

35

=

bc �Z
0

c2 dc+ [ 1� p ]

24 1Z
bc �
c2 dc+

2Z
1

c ( 2� c ) dc

35
=

�
c3

3

�bc �
0

+ [ 1� p ]
"�

c3

3

�1
bc � +

�
c2
�2
1
�
�
c3

3

�2
1

#

=
(bc �)3
3

+ [ 1� p ]
"
1

3
� (bc �)3

3
+ 3� 7

3

#
=
(bc �)3
3

+ [ 1� p ]
"
1� (bc �)3

3

#
. (204)

When (203) holds, the denominator in the expression for bc � in (179) is:
G(bc �) + [ 1� p ] [ 1�G(bc� ) ] = bc �Z

0

c dc+ [ 1� p ]

24 1� bc �Z
0

c dc

35
=
(bc �)2
2

+ [ 1� p ]
"
1� (bc �)2

2

#
. (205)

(179), (204), and (205) imply that when (203) holds:

bc � " (bc �)2
2

+ [ 1� p ]
 
1� (bc �)2

2

!#
=
(bc �)3
3

+ [ 1� p ]
"
1� (bc �)3

3

#
4Proposition C2 implies that Am = Aw for all p 2 (0; 1) if a = 1

2 when g(c) is as speci�ed in (96).
5The Mathematica analysis has been conducted for all a between 0:001 and 0:499 (in increments of 0:001)
and for all p between 0:001 and 0:999 (in increments of 0:001).
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) (bc �)3
2

� (bc �)3
3

= [ 1� p ]
"
1� (bc �)3

3
� bc � + (bc �)3

2

#

) (bc �)3
6

� [ 1� p ]
"
1 +

(bc �)3
6

� bc � # = 0

) p (bc �)3
6

� [ 1� p ] [ 1� bc � ] = 0 ) p (bc �)3 = 6 [ 1� p ] [ 1� bc � ] . (206)

From (192), Am is de�ned by:

1� 2
�
G

�bc � + Am
T
a2

�
�G

�bc � � Am
T
a1

��
= 0 . (207)

Observe that:

Am < Aw , 1� 2
�
G

�bc � + Aw
T
a2

�
�G

�bc � � Aw
T
a1

��
< 0

, G

�bc � + Aw
T
a2

�
�G

�bc � � Aw
T
a1

�
>
1

2
. (208)

The �rst equivalence in (208) holds because the last inequality states that more than half
of the population prefers MJS to VJS when A = Aw. By de�nition, the same number of
individuals prefer MJS and VJS if A = Am. Therefore, Aw must exceed Am and so for
A 2 (Am; Aw), the majority will favor MJS even though welfare would be higher under VJS.

Because Aw
T
= ce � bc � from (194) and a2 � 1� p [ 1�G(bc �) ]

p G(bc �) from (191):

bc � + Aw
T
a2 = bc � + [ ce � bc � ] � 1� p [ 1�G (bc �) ]

p G (bc �)
�
= bc � + [ ce � bc � ] � 1 + 1� p

p G (bc �)
�

= bc � + ce � bc � + [ ce � bc � ] � 1� p
p G (bc �)

�
= ce + [ ce � bc � ] � 1� p

p G (bc �)
�
. (209)

Because Aw
T
= ce � bc � from (194) and a1 � 1� p [ 1�G(bc �) ]

p [ 1�G(bc �) ] from (191):

bc � � Aw
T
a1 = bc � � [ ce � bc � ] 1� p [ 1�G (bc �) ]

p [ 1�G (bc �) ] = bc � � [ ce � bc � ] � 1

p [ 1�G (bc �) ] � 1
�

= bc � + ce � bc � � [E fcg � bc � ] 1

p [ 1�G (bc �) ] = ce � [ ce � bc � ] 1

p [ 1�G (bc �) ] . (210)

(208), (209), and (210) imply:

Am < Aw if G (ce + [ce � bc � ]�2)� G (ce � [ce � bc � ]�1) >
1

2
(211)
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where �1 �
1

p [ 1�G (bc �) ] and �2 �
1� p
p G (bc �) . (212)

The left hand side of the second inequality in (211) is the area under g(c) for c between
ce � [ ce � bc� ]�1 and ce + [ ce � bc� ]�2: This area is the sum of the areas under g(c) for c
between: (i) ce � [ ce � bc� ]�1 and 1; and (ii) 1 and ce + [ ce � bc� ]�2.
From (203), the area under g(c) for c between ce � [ ce � bc� ]�1 and 1 is:

1Z
1�[ 1�bc�]�1

c dc =
c2

2

����1
1�[ 1�bc�]�1 =

1

2
� 1
2
[ 1� (1� bc �)�1 ]2 . (213)

From (203), the area under g(c) for c between 1 and ce + [ ce � bc� ]�2 is:
1+[ 1�bc�]�2Z

1

[ 2� c ] dc = 2 c j1+[1�bc�]�21 � c2

2

����1+[ 1�bc�]�2
1

= 2 [ 1� bc � ]�2 � 1
2
[ 1 + ( 1� bc � )�2 ]2 + 1

2

= 2 [ 1� bc � ]�2 � 1
2

�
1 + 2 ( 1� bc � )�2 + ( 1� bc �)2 (�2)2 �+ 1

2

=
1

2
� 1
2

�
1� 2 ( 1� bc � )�2 + ( 1� bc � )2 (�2)2 � = 1

2
� 1
2
[ 1� (1� bc �)�2 ]2 . (214)

(211), (213), and (214) imply:

Am < Aw , 1� 1
2
[ ce � (ce � bc �)�1 ]2 � 1

2
[ ce � (ce � bc �)�2 ]2 >

1

2

, [ ce � (ce � bc �)�1 ]2 + [ ce � (ce � bc �)�2 ]2 < 1

, [ 1� (1� bc �)�1 ]2 + [ 1� (1� bc �)�2 ]2 < 1

,
�
1� 2 (1� bc �)�1 + (1� bc�)2 �21 �+ � 1� 2 (1� bc �)�2 + (1� bc �)2 �22 � < 1

, 2� 2 [ 1� bc � ] [�1 + �2 ] + [ 1� bc � ]2 ��21 + �22 � < 1

, 1� 2 [ 1� bc � ] [�1 + �2 ] + [ 1� bc � ]2 ��21 + �22 � < 0 . (215)

Observe that:

1� 2 [ 1� bc � ] [�1 + �2 ] + [ 1� bc � ]2 ��21 + �22 �
= 1� 2 [ 1� bc � ] [�1 + �2 ] + [ 1� bc � ]2 ��21 + �22 + 2�1 �2 � 2�1 �2 �
= 1� 2 [ 1� bc � ] [�1 + �2 ] + [ 1� bc � ]2 � (�1 + �2)2 � 2�1 �2 �
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= 1� 2 [ 1� bc � ] [�1 + �2 ] + [ 1� bc � ]2 [�1 + �2 ]2 � 2 [ 1� bc� ]2 �1 �2
= [ 1� (1� bc�) (�1 + �2) ]2 � 2 [ 1� bc � ]2 �1 �2 . (216)

(215) and (216) imply:

Am < Aw , [ 1� (1� bc�) (�1 + �2) ]2 < 2 [ 1� bc � ]2 �1 �2
, 1� [ 1� bc � ] [�1 + �2 ] < p

2 [ 1� bc � ]p�1 �2 . (217)

(212) implies:

2 [ 1� bc � ]2 �1 �2 = 2 [ 1� bc � ]2 1

p [ 1�G (bc �) ] 1� p
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2

i
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p

1q
2� (bc �)2 . (218)

(212) also implies:
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1� (bc �)2

2

i
(bc �)2
2

=
2
�
2� p

�
2� (bc �)2� �

p
�
2� (bc �)2 � (bc �)2

) 1� [ 1� bc � ] [�1 + �2 ] = 1� [ 1� bc � ] 2 � 2� p �2� (bc �)2� �
p
�
2� (bc �)2 � (bc �)2 . (219)

(217), (218), and (219) imply:

Am < Aw , 1� [ 1� bc � ] 2 � 2� p �2� (bc �)2� �
p
�
2� (bc �)2 � (bc �)2 <

2
p
2 [ 1� bc � ]p 1� p
bc� pq 2� (bc�)2

, p
�
2� (bc �)2 � (bc �)2 � 2 [ 1� bc � ] � 2� p �2� (bc �)2� �
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<
p (bc �)2 � 2� (bc �)2 �
p bc�q 2� (bc�)2 2

p
2 [ 1� bc � ]p 1� p

= 2
p
2
p
1� p [bc � ] [ 1� bc � ]q 2� (bc �)2 . (220)

Observe that:

p
�
2� (bc �)2 � (bc �)2 � 2 [ 1� bc � ] � 2� p �2� (bc �)2� �
= p

�
2� (bc �)2 � (bc �)2 � 4 [ 1� bc � ] + 2 [ 1� bc � ] p � 2� (bc �)2 �

= p
�
2� (bc �)2� (bc �)2 � 4 [ 1� bc � ] + 4 p [ 1� bc� ]� 2 p [ 1� bc � ] (bc �)2

= p (bc �)2 � 2� (bc �)2 � 2 (1� bc �) �� 4 [ 1� bc � ] [ 1� p ]
= p (bc �)3 [ 2� bc � ]� 4 [ 1� bc � ] [ 1� p ]
= 6 [ 1� p ] [ 1� bc � ] [ 2� bc � ]� 4 [ 1� bc � ] [ 1� p ] (221)

= 2 [ 1� bc � ] [ 1� p ] [ 3 (2� bc �)� 2 ] = 2 [ 1� bc � ] [ 1� p ] [ 4� 3 bc � ] . (222)

The equality in (221) follows from (206). (220) and (222) imply:

Am < Aw , 2 [ 1� bc � ] [ 1� p ] [ 4� 3 bc � ]
< 2

p
2
p
1� p [bc � ] [ 1� bc � ]q 2� (bc �)2 . (223)

From (206):

p (bc �)3 � 6 [ 1� p ] [ 1� bc � ] = 0 ) p (bc �)3 + 6 p [ 1� bc � ]� 6 [ 1� bc � ] = 0

) p
�
(bc �)3 + 6 (1� bc �)� = 6 [ 1� bc � ]

) p =
6 [ 1� bc � ]

(bc �)3 + 6 [ 1� bc � ] ) 1� p = (bc �)3
(bc �)3 + 6 [ 1� bc � ] . (224)

(224) implies:

dp

dbc � s
= �

�
(bc �)3 + 6 (1� bc �) �� [ 1� bc � ] � 3 (bc �)2 � 6 �

= � (bc �)3 � 3 [ 1� bc � ] (bc �)2 < 0 for bc � 2 ( 0; 1 ] ;
bc � ! 1 as p ! 0 ; and bc � ! 0 as p ! 1 . (225)

(224) and (225) imply that bc � 2 (0; 1) if p 2 (0; 1). Consequently, (223) implies that for
p 2 (0; 1):
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Am < Aw , [ 1� p ] [ 4� 3 bc � ] < p
2
p
1� p [bc � ]q 2� (bc �)2

,
p
1� p [ 4� 3 bc � ] < p

2 [bc � ]q 2� (bc �)2
) Am < Aw if f (bc �) � 2 (bc �)2 � 2� (bc �)2�� [ 1� p ] [ 4� 3 bc � ]2 > 0 . (226)

(224) and (226) imply that for p 2 (0; 1):

f (bc �) = 2 (bc �)2 � 2� (bc �)2 �� (bc �)3 [ 4� 3 bc � ]2
(bc �)3 + 6 [ 1� bc � ] > 0

, � (bc �) � 2
�
(bc �)3 + 6 (1� bc �) � � 2� (bc �)2 �� bc � [ 4� 3 bc � ]2 > 0 . (227)

Observe that:

� (bc �) = 2
�
2 (bc �)3 + 12 (1� bc �)� (bc �)5 � 6 (1� bc �) (bc �)2 �
� bc � � 16� 24bc � + 9 (bc �)2 �

= 4 (bc �)3 + 24� 24 bc � � 2 (bc �)5 � 12 (bc �)2 + 12 (bc �)3
� 16 bc � + 24 (bc �)2 � 9 (bc �)3

= 24� 40 bc � + 12 (bc �)2 + 7 (bc �)3 � 2 (bc �)5 . (228)

Di¤erentiating (228) provides:

�0 (bc �) = � 40 + 24bc � + 21 (bc �)2 � 10 (bc �)4
) �00 (bc �) = 24 + 42bc � � 40 (bc �)3 = 24 + 2 bc � + 40 bc � � 1� (bc �)2 �

> 0 for all bc � 2 [ 0; 1 ]. (229)

(229) implies that � (bc �) is a strictly convex function of bc � for all bc � 2 ( 0; 1 ). Also, from
(228) and (229):

� (0) = 24 > 0 ; � (1) = 24� 40 + 12 + 7� 2 = 1 > 0 ;

�0 (0) = � 40 < 0 ; and �0 (1) = � 40 + 24 + 21� 10 = � 5 < 0 . (230)

(229) and (230) imply that � (bc �) > 0 for all bc � 2 (0; 1), so (226) holds. Therefore, (226)
and (227) imply that Am < Aw if p 2 (0; 1). �
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Proposition C3 considers the setting where g (c) is a piecewise linear, V -shaped density.

Proposition C3. Am Q Aw as p R 0:75 if:

g (c) =

(
1� c if 0 � c � 1

c� 1 if 1 � c � 2 .
(231)

Proof. When (231) holds, the numerator in the expression for bc � < 1 in (179) is:
bc �Z
0

c dG(c) + [ 1� p ]

24 1Z
bc �
c dG(c) +

2Z
1

c dG(c)

35

=

bc �Z
0

c [ 1� c ] dc + [ 1� p ]

24 1Z
bc �
c (1� c) dc+

2Z
1

c (c� 1) dc

35

=

bc �Z
0

c dc �
bc �Z
0

c2 dc + [ 1� p ]

24 1Z
bc �
c dc�

1Z
bc �
c2 dc+

2Z
1

�
c2 � c

�
dc

35
=

�
c2

2

�bc �
0

�
�
c3

3

�bc �
0

+ [ 1� p ]
"�

c2

2

�1
bc � �

�
c3

3

�1
bc � +

�
c3

3

�2
1

�
�
c2

2

�2
1

#

=
(bc �)2
2

� (bc �)3
3

+ [ 1� p ]
"
1

2
� (bc �)2

2
� 1
3
+
(bc �)3
3

+
8

3
� 1
3
� 2 + 1

2

#

=
(bc �)2
2

� (bc �)3
3

+ [ 1� p ]
"
1� (bc �)2

2
+
(bc �)3
3

#
. (232)

When (231) holds, the denominator in the expression for bc � in (179) is:
G(bc �) + [ 1� p ] [ 1�G(bc� ) ] = bc �Z

0

[ 1� c ] dc+ [ 1� p ]

24 1� bc �Z
0

(1� c) dc

35
= bc � � (bc �)2

2
+ [ 1� p ]

"
1� bc � + (bc �)2

2

#
. (233)

(179), (232), and (233) imply that when (231) holds, the welfare-maximizing value of bc �
is determined by:

bc � "bc � � (bc �)2
2

+ [ 1� p ]
 
1� bc � + (bc �)2

2

!#
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=
(bc �)2
2

� (bc �)3
3

+ [ 1� p ]
"
1� (bc �)2

2
+
(bc �)3
3

#

) (bc �)2 � (bc �)2
2

� (bc �)3
2

+
(bc �)3
3

= [ 1� p ]
"
1� (bc �)2

2
+
(bc �)3
3

+ (bc �)2 � bc � � (bc �)3
2

#

) (bc �)2
2

� (bc �)3
6

� [ 1� p ]
"
1 +

(bc �)2
2

� (bc �)3
6

� bc � # = 0

) (bc �)2
2

� (bc �)3
6

� 1� (bc �)2
2

+
(bc �)3
6

+ bc � + p

"
1 +

(bc �)2
2

� (bc �)3
6

� bc � # = 0

) � 1 + bc � + p " 1 + (bc �)2
2

� (bc �)3
6

� bc � # = 0

) p

"
1 +

(bc �)2
2

� (bc �)3
6

� bc � # = 1� bc �
) p

�
6 (1� bc �) + (bc �)2 (3� bc �) � = 6 [ 1� bc � ]

) p =
6 [ 1� bc � ]

6 [ 1� bc � ] + (bc �)2 [ 3� bc � ] . (234)

From (192), Am is de�ned by:

1� 2
�
G

�bc � + Am
T
a2

�
�G

�bc � � Am
T
a1

��
= 0 . (235)

Observe that:

Am R Aw , 1� 2
�
G

�bc � + Aw
T
a2

�
�G

�bc � � Aw
T
a1

��
R 0

, G

�bc � + Aw
T
a2

�
�G

�bc � � Aw
T
a1

�
Q 1

2
. (236)

The �rst equivalence in (236) holds because the last inequality states that more than half
of the population prefers MJS to VJS when A = Aw. By de�nition, the same number of
individuals prefer MJS and VJS if A = Am. Therefore, Am must exceed Aw and so for
A 2 (Aw; Am), the majority will favor VJS even though welfare would be higher under MJS.

56



Because Aw
T
= ce � bc � from (194) and a2 � 1� p [ 1�G(bc �) ]

p G(bc �) from (191):

bc � + Aw
T
a2 = bc � + [ ce � bc � ] � 1� p [ 1�G(bc �) ]

p G(bc �)
�
= bc � + [ ce � bc � ] � 1 + 1� p

p G(bc �)
�

= bc � + ce � bc � + [ ce � bc � ] � 1� p
p G(bc �)

�
= ce + [ ce � bc � ] � 1� p

p G(bc �)
�
. (237)

Because Aw
T
= ce � bc � from (194) and a1 � 1� p [ 1�G(bc �) ]

p [ 1�G(bc �) ] from (191):

bc � � Aw
T
a1 = bc � � [ ce � bc � ] 1� p [ 1�G(bc �) ]

p [ 1�G(bc �) ] = bc � � [ ce � bc � ] � 1

p [ 1�G(bc �) ] � 1
�

= bc � + ce � bc � � [ ce � bc � ] 1

p [ 1�G(bc �) ] = ce � [ ce � bc � ] 1

p [ 1�G(bc �) ] . (238)

(236), (237), and (238) imply:

Am R Aw as G (ce + [ce � bc � ]�2)� G (ce � [ce � bc � ]�1) Q 1

2
(239)

where �1 �
1

p [ 1�G(bc �) ] and �2 �
1� p
p G(bc �) . (240)

The left hand side of the second inequality in (239) is the area under g(c) for c between
ce � [ ce � bc� ]�1 and ce + [ ce � bc� ]�2: This area is the sum of the areas under g(c) for c
between: (i) ce � [ ce � bc� ]�1 and 1; and (ii) 1 and ce + [ ce � bc� ]�2.
From (231), the area under g(c) for c between ce � [ ce � bc� ]�1 and 1 is:

1Z
1�[ 1�bc�]�1

[ 1� c ] dc = c j11�[ 1�bc� ]�1 � c2

2

����1
1�[ 1�bc�]�1

= 1� (1� [ 1� bc� ]�1)� 1
2
+
( 1� [ 1� bc� ]�1)2

2

= [ 1� bc� ]�1 � 1
2
+
1

2
� 2 [ 1� bc� ]�1

2
+
( [ 1� bc� ]�1)2

2

= [ 1� bc� ]�1 � [ 1� bc� ]�1 + ( [ 1� bc� ]�1)2
2

=
( [ 1� bc� ]�1)2

2
. (241)

From (231), the area under g(c) for c between 1 and ce + [ ce � bc� ]�2 is:
1+[ 1�bc�]�2Z

1

[ c� 1 ] dc = c2

2

����1+[ 1�bc�]�2
1

� c j1+[ 1�bc�]�21
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=
( 1 + [ 1� bc� ]�2)2

2
� 1
2
� (1 + [ 1� bc�]�2) + 1

=
1

2
+
2 [ 1� bc� ]�2

2
+
( [ 1� bc� ]�2)2

2
� 1
2
� 1� [ 1� bc� ]�2 + 1

= [ 1� bc� ]�2 + ( [ 1� bc� ]�2)2
2

� [ 1� bc� ]�2 = ( [ 1� bc� ]�2)2
2

. (242)

(239), (241), and (242) imply:

Am R Aw , ( [ 1� bc� ]�1)2
2

+
( [ 1� bc� ]�2)2

2
Q 1

2

, [ 1� bc� ]2 (�1)2 + [ 1� bc� ]2 (�2)2 Q 1

, [ 1� bc� ]2 � (�1)2 + (�2)2 � Q 1 . (243)

Recall from (233) that G (bc �) = bc � � (bc �)2
2

when (231) holds. Therefore, From (240):

(�1)
2 + (�2)

2 =

�
1

p [ 1�G(bc �) ]
�2
+

�
1� p
p G(bc �)

�2

=
1

(p)2

(�
1

[ 1�G(bc �) ]2
�
+
(1� p)2

[G(bc �) ]2
)

=
1

(p)2

8><>:
264 1h

1� bc � + (bc �)2
2

i2
375+

264 (1� p)2hbc � � (bc �)2
2

i2
375
9>=>;

=
1

(p)2

8><>:
264 1h

2� 2 bc � + (bc �)2
2

i2
375+

264 (1� p)2h
2 bc � � (bc �)2

2

i2
375
9>=>;

=
4

(p)2
�
2� 2bc � + (bc �)2 �2 + 4 [ 1� p ]2

(p)2
�
2bc � � (bc �)2 �2 . (244)

From (234):

1� p
p

=
1� 6[ 1�bc � ]

6 [ 1�bc � ]+(bc �)2[ 3�bc � ]
6 [ 1�bc � ]

6 [ 1�bc � ]+(bc �)2[ 3�bc � ]
=
(bc �)2 [ 3� bc � ]
6 [ 1� bc � ] . (245)

(234), (244), and (245) imply:
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(�1)
2 + (�2)

2 =
4

(p)2
�
1� 2bc � + (bc �)2 �2 +

"
(bc �)2 (3� bc �)
6 (1� bc �)

#2
4�

2 bc � � (bc �)2 �2
=

4

(p)2
�
2� 2bc � + (bc �)2 �2 + (bc �)2 [ 3� bc � ]2

9 [ 1� bc � ]2 [ 2� bc � ]2
=

�
6 (1� bc �) + (bc �)2 (3� bc �) �2

36 [ 1� bc � ]2 4�
2� 2bc � + (bc �)2 �2 + (bc �)2 [ 3� bc � ]2

9 [ 1� bc � ]2 [ 2� bc � ]2
=

�
6 (1� bc �) + (bc �)2 (3� bc �) �2

9 [ 1� bc � ]2 � 2� 2bc � + (bc �)2 �2 + (bc �)2 [ 3� bc � ]2
9 [ 1� bc � ]2 [ 2� bc � ]2

) [ 1� bc� ]2 � (�1)2 + (�2)2 �
=

�
6 (1� bc �) + (bc �)2 (3� bc �) �2
9
�
2� 2bc � + (bc �)2 �2 +

(bc �)2 [ 3� bc � ]2
9 [ 2� bc � ]2 . (246)

(243) and (246) imply:

[ 1� bc� ]2 � (�1)2 + (�2)2 � Q 1 , ' (bc �) R 0, where, for bc � 2 [ 0; 1 ], (247)

' (bc �) � 1�
�
6 (1� bc �) + (bc �)2 (3� bc �) �2
9
�
2� 2bc � + (bc �)2 �2 � (bc �)2 [ 3� bc � ]2

9 [ 2� bc � ]2 . (248)

(243) implies that Am Q Aw as ' (bc �) Q 0.

(248) implies:

' (0) = 1� [ 6 ]2

9 [ 2 ]2
= 0 and ' (1) = 1� [ 2 ]

2

9
� [ 2 ]

2

9
=
1

9
> 0 . (249)

Furthermore, it can be veri�ed that for bc � 2 (0; 1 ], ' (bc �) Q 0 as bc � Q ec1 � 0:585786. In
addition, (234) implies that p = 0:75 when bc � = ec1. Also, from (234):

@ p

@ bc � s
= � 6 [ 1� bc � ]� (bc �)2 [ 3� bc � ]� [ 1� bc � ] �� 6 + 6bc � � 3 (bc �)2 �
= � (bc �)2 [ 3� bc � ]� [ 1� bc � ] � 6bc � � 3 (bc �)2 �
= � 3 (bc �)2 + (bc �)3 � 6bc � + 3 (bc �)2 + 6 (bc �)2 � 3 (bc �)3
= � 6bc � [ 1� bc � ]� 2 (bc �)3 < 0 .

Because p and bc � vary inversely, it follows that ' (bc �) Q 0 as p R 0:75. �
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