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by David P. Brown and David E. M. Sappington

Part I of this Technical Appendix provides additional explanation of the analysis in the

Alberta setting. Part II provides additional coefficient estimates for the fringe and import

supply function.

I. Additional Explanation of the Analysis in the Alberta Setting.

Setting where Only SFCs are Feasible

We first describe the analysis when SFCs are the only feasible forward contract. Then

we review the analysis when both SFCs and LFFCs are feasible. Finally, we note how

equilibrium outcomes are characterized when forward contracting is not feasible. We analyze

a two-stage game in each of T periods. In each period, generators choose SFCs in the first

stage and outputs in the second stage. For notational ease, the following analysis omits the

time subscript.

We employ backward induction to characterize the solution to the model. In the second

stage, taking its SFCs (Si) as given, Generator i (Gi) chooses its output (qi) to maximize:

πi(q1, ..., q4) = P (Q, ε) [ qi + qmri − Si ]− Ci(qi) + pS Si

subject to: qi ≥ 0 (1)

where qmri denotes Gi’s must-run output.

Let λi ≥ 0 denote the Lagrange multiplier associated with the constraint in (1). Also let

⊥ denote complementarity. Then (1) implies that Gi’s output decision is characterized by

the following mixed complementarity conditions for i = 1, ..., 4:

∂P (·)
∂Q

[ qi + qmri − Si ] + P (Q, ε)− C ′i(qi) + λi = 0 ;

0 ≤ qi ⊥ λi ≥ 0 . (2)

To account for the complementarity constraints in (2) in our two-stage numerical analysis,

we follow Xian et al. (2004) and employ a nonlinear complementarity function that has the

following property:

ψ(a, b) =
√
a2 + b2 − a− b = 0 ⇔ a ≥ 0 ⊥ b ≥ 0 . (3)



(3) implies that for i = 1, ..., 4, (2) can be written as:

∂P (·)
∂Q

[ qi + qmri − Si ] + P (Q, ε)− C ′i(qi) + λi = 0 ;

√
(qi)2 + (λi)2 − qi − λi = 0 . (4)

The generators choose SFCs in the first stage. Gi chooses Si to maximize its expected

profit, taking rivals’ SFCs as given and anticipating the subsequent wholesale output choices.

Gi’s problem is:

max
Si

E{ πi(q∗1(S1, ..., S4, ε), ..., q
∗
4(S1, ..., S4, ε), Si, ε) } (5)

where q∗j (S1, ..., S4, ε) are characterized by (4) for j ∈ {1, 2, 3, 4}.

Define ~q(ε) ≡ {q1(ε), ..., q4(ε)} and ~λ(ε) ≡ {λ1(ε), ..., λ4(ε)}. We formulate Gi’s choice of

Si as a stochastic mathematical program with equilibrium constraints (SMPEC) that treats

the output conditions in (4) as constraints that must hold for each ε:

max
Si, ~q(ε), ~λ(ε)

E{ πi(q1, ..., q4, Si, ε) }

subject to, for each ε ∈ [ ε, ε ] and for j ∈ {1, 2, 3, 4}:

∂P (·)
∂Q

[
qj + qmrj − Sj

]
+ P (Q, ε)− C ′j(qj) + λj = 0 ;

√
(qj)2 + (λj)2 − qj − λj = 0 . (6)

Following the stochastic programming literature (e.g., Yao et al., 2007; Birge and Louveaux,

2011), we approximate the solution to the SMPEC in (6) by assuming ε has a discrete uniform

distribution with n <∞ equally likely possible values, {ε1, ε2, ..., εn}. Using (6), the Discrete

SMPEC (D-SMPEC) can be written as:

max
Si, ~q(ε), ~λ(ε)

n∑
l=1

1

n
πil(q1l, ..., q4l, Si, εl)

subject to, for j ∈ {1, ..., 4} and l ∈ {1, ..., n}:

∂Pl(·)
∂Ql

[
qjl + qmrj − Sj

]
+ Pl(Ql, εl)− C ′j(qjl) + λjl = 0 ;

√
(qjl)

2 + (λjl)
2 − qjl − λjl = 0 . (7)
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The D-SMPEC in (7) is mathematically equivalent to a standard deterministic mathematical

program with equilibrium constraints (MPEC). Because Gi’s choice of Si is represented by

the MPEC in (7), the overall problem is an equilibrium problem with equilibrium constraints

(EPEC) (DeMiguel and Xu, 2009; Leyffer and Munson, 2010). A solution to this EPEC

requires the simultaneous solution of the four MPECs.

Following Hu (2002), Hu and Ralph (2007), and DeMiguel and Xu (2009), we characterize

the Karush-Kuhn-Tucker conditions associated with (7) for Generators 1, 2, 3, and 4.

Formally, let ρijl and ψijl denote the Lagrange multipliers associated with the first and

second constraints in (7), respectively. Then the Lagrangian function for Gi’s D-SMPEC in

(7) is:

Li =
n∑

l=1

1

n
πil(q1l, ..., q4l, Si, εl)

+
4∑

j=1

n∑
l=1

ρijl

[
∂Pl(·)
∂Ql

(
qjl + qmrj − Sj

)
+ Pl(Ql, εl)− C ′j(qjl) + λjl

]

+
4∑

j=1

n∑
l=1

ψijl

[√
(qjl)

2 + (λjl)
2 − qjl − λjl

]
. (8)

Recall from the text that in this setting:

pS = E {P (Q, ε) } ≈ 1

n

n∑
l=1

P (Ql, εl) . (9)

(9) implies that (8) can be written as:

Li =
n∑

l=1

1

n
{Pl(Ql) [ qil + qmri ]− Ci(qil) }

+
4∑

j=1

n∑
l=1

ρijl

[
∂Pl(·)
∂Ql

(
qjl + qmrj − Sj

)
+ Pl(Ql, εl)− C ′j(qjl) + λjl

]

+
4∑

j=1

n∑
l=1

ψijl

[√
(qjl)

2 + (λjl)
2 − qjl − λjl

]
. (10)

Differentiating (10) provides:

∂Li

∂Si
= −

n∑
l=1

ρiil
∂P (Ql, εl)

∂Ql

= 0 ; (11)
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∂Li

∂qil
=

1

n

[
∂Pl(·)
∂Ql

[ qil + qmri ] + Pl(Ql, εl)− C ′i(qil)
]

+
4∑

j=1
i 6= j

ρijl

[
∂2Pl(·)
∂Q2

l

[
qjl + qmrj − Sj

]
+
∂Pl(Ql, εl)

∂Ql

]

+ ρiil

[
∂2Pl(·)
∂Q2

l

[ qil + qmri − Si ] + 2
∂Pl(Ql, εl)

∂Ql

− C ′′i (qil)

]

+ ψiil

[ (
[ qil ]

2 + [λil ]
2 )− 1

2 qil − 1
]

= 0 for l = 1, ..., n ; (12)

∂Li

∂qkl
=

1

n

[
∂Pl(·)
∂Ql

( qil + qmri )

]

+
4∑

j=1
j 6= k

ρijl

[
∂2Pl(·)
∂Q2

l

(
qjl + qmrj − Sj

)
+
∂Pl(Ql, εl)

∂Ql

]

+ ρikl

[
∂2Pl(·)
∂Q2

l

( qkl + qmrk − Sk ) + 2
∂Pl(Ql, εl)

∂Ql

− C ′′k (qkl)

]

+ ψikl

[ (
[ qkl ]

2 + [λkl ]
2 )− 1

2 qkl − 1
]

= 0

for l = 1, ..., n and k = 1, ..., 4 (k 6= i) ; (13)

∂Li

∂λkl
= ρikl + ψikl

{ (
[ qkl ]

2 + [λkl ]
2 )− 1

2 λkl − 1
}

= 0

for k = 1, ..., 4 and l = 1, ..., n ; (14)

∂Li

∂ρikl
=

∂Pl(·)
∂Ql

[ qkl + qmrk − Sk ] + Pl(Ql, εl)− C ′j(qkl) + λkl = 0

for k = 1, ..., 4 and l = 1, ..., n ; (15)

∂Li

∂ψikl
=
√

(qkl)2 + (λkl)2 − qkl − λkl = 0

for k = 1, ..., 4 and l = 1, ..., n . (16)

The solution to the EPEC is characterized by solving the conditions in (11) – (16) for

Generators 1, 2, 3, and 4 simultaneously. There are 4 + 40n endogenous variables: (i) the

4 generators’ forward quantities (S1, S2, S3, S4); (ii) the 4n realized outputs (q11, ..., q1n, ...,
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q41, ..., q4n); (iii) the 4n Lagrange multipliers {λ11..., λ1n, ..., λ41, ..., λ4n}; and (iv) the 32n

Lagrange multipliers ({ρ111, ...., ρ11n, ρ121, ...., ρ44n; ψ111, ...., ψ11n, ψ121, ...., ψ44n}). There are

also 4 + 40n unique equations because equations (15) and (16) are the same in the MPECs

of Generators 1, 2, 3, and 4. Thus, we have a square constrained non-linear system where

the number of conditions equal the number of endogenous variables. This system can be

solved using the PATH algorithm using the GAMS software.

Setting where SFCs and LFFCs are Feasible

We analyze a two-stage game in each of T periods. In each period, generators choose

SFCs and LFFCs in the first stage and outputs in the second stage. For notational ease, the

following analysis omits the time subscript.

We employ backward induction to characterize the solution to the model. In the second

stage, taking its SFCs and LFFCs (Si and Li) as given, Generator i (Gi) chooses its output

(qi) to maximize:

πi(q1, ..., q4) = P (Q, ε) [ qi + qmri − αLiQ− Si ]− Ci(qi) + pL αLiQ+ pS Si

subject to: qi ≥ 0 . (17)

Let λi ≥ 0 denote the Lagrange multipliers associated with the first and second constraints

in (17), respectively. Also let ⊥ denote complementarity. Then (17) implies that Gi’s output

decision is characterized by the following mixed complementarity conditions for i = 1, ..., 4:

∂P (·)
∂Q

[ qi + qmri − αLiQ− Si ] + P (Q, ε) [ 1− αLi ]− C ′i(qi) + pL αLi + λi = 0 ;

qi ≥ 0 ⊥ λi ≥ 0 . (18)

Following Xian et al. (2004), we utilize the transformation in (3) to write (18) as:

∂P (·)
∂Q

[ qi + qmri − αLiQ− Si ] + P (Q, ε) [ 1− αLi ]− C ′i(qi) + pL αLi + λi = 0 ;

√
(qi)2 + (λi)2 − qi − λi = 0 for i = 1, ..., 4 . (19)

Gi chooses Si and Li to maximize its expected profits, taking rival’s SFCs and LFFCs as

given and anticipating the subsequent wholesale output choices. Gi’s problem is:

max
Si, Li

E{ πi(q∗1(S1, ..., S4, L1, ..., L4, ε), ..., q
∗
4(S1, ..., S4, L1, ..., L4, ε), Si, Li, ε) } (20)
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where q∗j (S1, ..., S4, L1, ..., L4, ε) are characterized by (19) for j = 1, ..., 4.

Define ~q(ε) = {q1(ε), ..., q4(ε)} and ~λ(ε) = {λ1(ε), ..., λ4(ε)}. We formulate Gi’s choice

of Si and Li as a stochastic mathematical program with equilibrium constraints (SMPEC)

that treats the wholesale output conditions in (19) as constraints that must hold for each

possible realization of ε:

max
Si, Li, ~q(ε), ~λ(ε)

E{ πi(q1, ..., q4, Si, Li, ε) }

subject to, for each ε ∈ [ ε, ε ] and for j ∈ {1, 2, 3, 4}:

∂P (·)
∂Q

[
qj + qmrj − αLj Q− Sj

]
+ P (Q, ε) [ 1− αLj ]− C ′j(qj) + pL αLj + λj = 0 ;

√
(qj)2 + (λj)2 − qj − λj = 0 . (21)

Following the stochastic programming literature (e.g., Yao et al., 2007; Birge and Louveaux,

2011), we approximate the solution to the SMPEC in (21) by assuming that ε has a discrete

distribution with n < ∞ possible equally likely realizations, {ε1, ε2, ..., εn}. Using (21), the

discrete SMPEC (D-SMPEC) can be written as:

max
Si, Li, ~q(ε), ~λ(ε)

n∑
l=1

1

n
πil(q1l, ..., q4l, Si, Li, εl)

subject to, for j ∈ {1, ..., 4} and l ∈ {1, ..., n}:

∂Pl(·)
∂Ql

[
qjl + qmrj − αLj Ql − Sj

]
+ Pl(Ql, εl)[ 1− αLj ]− C ′j(qjl) + pL αLj + λjl = 0

√
(qjl)2 + (λjl)2 − qjl − λjl = 0 . (22)

The D-SMPEC in (22) is mathematically equivalent to a standard deterministic mathematical

program with equilibrium constraints (MPEC). Because Gi’s choices of Si and Li are represented

by the MPEC in (22), the overall problem is an equilibrium problem with equilibrium

constraints (EPEC) (DeMiguel and Xu, 2009; Leyffer and Munson, 2010). A solution to

this EPEC requires the simultaneous solution of the four MPECs.

Following Hu (2002), Hu and Ralph (2007), and DeMiguel and Xu (2009), we characterize

the Karush-Kuhn-Tucker conditions associated with (22) for the generators. Let ρijl and

ψijl denote the Lagrange multipliers associated with the first and second constraints in (22),

respectively. Then the Lagrangian function for Generator i’s D-SMPEC in (7) is:
6



Li =
n∑
l=1

1

n
πil(q1l, ..., q4l, Si, Li, εl)

+
4∑

j=1

n∑
l=1

ρijl

{
∂Pl(·)
∂Ql

[
qjl + qmrj − αLj Ql − Sj

]
+ Pl(Ql, εl) [ 1− αLj ]− C ′j(qjl) + pL αLj + λjl

}

+
4∑

j=1

n∑
l=1

ψijl

[√
(qjl)

2 + (λjl)
2 − qjl − λjl

]
. (23)

Recall from the text that in the present setting:

pS = E {P (Q∗, ε) } =
1

n

n∑
l=1

P (Ql, εl) ; and

pL =
E {P (Q∗, ε)Q∗ }

E {Q∗ }
=

∑n
l=1 Pl(Ql, εl)Ql∑n

l=1 Ql

. (24)

(24) implies:

∂pL

∂qjl
=

[
1∑n

k=1 Qk

]2 [(
∂Pl(·)
∂Ql

Ql + Pl(·)
) n∑
k=1

Qk −
n∑

k=1

Pk(·)Qk

]
. (25)

(24) implies that (23) can be written as:

Li =
n∑

l=1

1

n
[P (Ql, εl)[ qil + qmri ]− Ci(qil) ]

+
4∑

j=1

n∑
l=1

ρijl

{
∂Pl(·)
∂Ql

[
qjl + qmrj − αLj Ql − Sj

]
+ Pl(Ql, εl) [ 1− αLj ]− C ′j(qjl) + pL αLj + λjl

}

+
4∑

j=1

n∑
l=1

ψijl

[√
(qjl)2 + (λjl)2 − qjl − λjl

]
. (26)

The corresponding solution to firm i’s D-SMPEC is characterized by:

∂Li

∂Si
= −

n∑
l=1

ρiil
∂P (Ql, εl)

∂Ql

= 0 ; (27)
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∂Li

∂Li
= −

n∑
l=1

ρiil

[
∂Pl(Ql, εl)

∂Ql

αQl + P (Ql, εl)α− α pL
]

= 0 ; (28)

∂Li

∂qil
=

1

n

[
∂Pl(·)
∂Ql

[ qil + qmri ] + Pl(Ql, εl)− C ′i(qil)
]

+
4∑

j=1
i 6= j

ρijl

{
∂2Pl(·)
∂Q2

l

[
qjl + qmrj − Lj αQl − Sj

]
+
∂Pl(Ql, εl)

∂Ql

[−αLj ]

+
∂Pl(Ql, εl)

∂Ql

[ 1− αLj ] +
∂pL

∂qil
αLj

}

+ ρiil

{
∂P 2

l (·)
∂Q2

l

[ qil + qmri − Li αQl − Si ] + 2
∂Pl(Ql, εl)

∂Ql

[ 1− αLi ]

− C ′′i (qil) +
∂pL

∂qil
αLi

}
+ ψiil

[ (
[ qil ]

2 + [λil ]
2 )− 1

2 qil − 1
]

= 0 for l = 1, ..., n ; (29)

∂Li

∂qkl
=

1

n

∂Pl(·)
∂Ql

[ qil + qmri ]

+
4∑

j=1
j 6= k

ρijl

{
∂2Pl(·)
∂Q2

l

[
qjl + qmrj − αLj Ql − Sj

]
+
∂Pl(Ql, εl)

∂Ql

[−αLj ]

+
∂Pl(Ql, εl)

∂Ql

[ 1− αLj ] +
∂pL

∂qkl
αLj

}

+ ρikl

{
∂2Pl(·)
∂Q2

l

[ qkl + qmrk − αLkQl − Sk ] + 2
∂Pl(Ql, εl)

∂Ql

[ 1− αLk ]

− C ′′k (qkl) +
∂pL

∂qkl
αLk

}
+ ψikl

{[
( qkl )

2 + (λkl )
2 ]− 1

2 qkl − 1
}

= 0

for l = 1, ..., n and k = 1, ..., 4 (k 6= i) ; (30)

∂Li

∂λkl
= ρikl + ψikl

[ (
[ qkl ]

2 + [λkl ]
2 )− 1

2 λkl − 1
]

= 0

for k = 1, ..., 4 and l = 1, ..., n ; (31)
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∂Li

∂ρikl
=

∂Pl(·)
∂Ql

[ qkl + qmrk − αLkQl − Sk ] + Pl(Ql, εl) [ 1− αLk ]− C ′j(qkl)

+ pL αLj + λkl = 0 for k = 1, ..., 4 and l = 1, ..., n ; (32)

∂Li

∂ψikl
=
√

(qkl)2 + (λkl)2 − qkl − λkl = 0

for k = 1, ..., 4 and l = 1, ..., n . (33)

The solution to the EPEC is characterized by solving the conditions in (27) – (33) for

Generators 1, 2, 3, and 4 simultaneously. There are 8 + 40n endogenous variables: (i) the

generators’ SFCs (S1, S2, S3, S4) and LFFCs (L1, L2, L3, L4); (ii) the 4n realized outputs

(q11, ..., q1n, ..., q41, ..., q4n); (iii) the 4n Lagrange multipliers ({λ11..., λ1n, ..., λ41, ..., λ4n}); and

(iv) the 32n Lagrange multipliers ({ρ111, ...., ρ11n, ρ121, ...., ρ44n; ψ111, ...., ψ11n, ψ121, ...., ψ44n}).
There are also 8+40n unique equations because equations (32) and (33) are the same in the

MPECs of Generators 1, 2, 3, and 4. Thus, we have a square constrained non-linear system

with the same number of conditions and endogenous variables. This system can be solved

using the PATH algorithm using the GAMS software.

To characterize equilibrium outcomes in the setting where forward contracting is not

feasible, it is only necessary to identify the generators’ equilibrium wholesale outputs. These

outputs are characterized by the mixed complementarity problem (MCP) in (2) when Si = 0

for i = 1, 2, 3, 4. We solve this MCP using the PATH solver in GAMS.
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II. Additional Coefficient Estimates for the Fringe and Import Supply Function.

OLS IV First Stage IV Second Stage

Qf
t pt Qf

t

Price 0.3074*** 9.6954***
(0.1295) (1.7319)

Import Capacity - BC -0.2125 -0.0469 0.2910
(0.1503) (0.0395) (0.3506)

Import Capacity - SK 0.0440 -0.0418 0.8106
(0.4324) (0.0618) (0.5766)

Import Capacity - MT 0.0486 -0.0761 0.6057
(0.3524) (0.0914) (0.8469)

HD - SK 14.6686*** 0.9855 -2.2009
(4.6029) (0.8686) (8.6216)

HD2 - SK 0.0862 -0.0274 0.3727*
(0.0874) (0.0200) (0.2022)

CD - SK 30.2307** 3.6731 -12.5904
(13.4403) (6.3067) (58.5129)

CD2 - SK -1.7684 0.6998 -8.2693
(1.4619) (0.8120) (7.1783)

HD - BC -27.7370*** -7.4652*** 41.5022
(8.7672) (2.5316) (25.4536)

HD2 - BC 1.7276*** 0.2850** -1.2647
(0.3508) (0.1186) (1.1710)

CD - BC 37.5805* 3.9337 -11.8414
(19.4069) (9.1085) (89.8061)

CD2 - BC -0.2593 0.4034 -3.6596
(2.47406) (1.9700) (19.4238)

HD - MT 7.7825 -2.5974** 34.9410***
(4.8434) (1.2509) (12.2839)

HD2 - MT -0.3359*** 0.0945*** -1.3569***
(0.1127) (0.0366) (0.3652)

CD - MT 10.8734 -5.5025* 58.7032**
(8.8343) (2.8991) (28.1174)

CD2 - MT -0.2121 0.0654 -1.1185
(0.5287) (0.2004) (1.9303)

Demand Forecast 0.0489***
(0.008)

K-P Wald Statistic 37.34***
Calendar Fixed Effects Y Y Y
Temperature Controls Y Y Y
Sample Size 8,760 8,760 8,760

Notes. BC denotes British Columbia, SK denotes Saskatchewan, MT denotes Montana. HD
denotes heating degrees and CD denotes cooling degrees. The calendar fixed effects include
Hour, Month, Day (of the week), and Holiday. Standard errors appear in parentheses. ∗∗∗,
∗∗, ∗ denotes significance at the 1%, 5%, and 10% levels, respectively.

Table TA1: Coefficient Estimates for the Fringe and Import Supply Function.
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