Technical Appendix to Accompany
 "Load-Following Forward Contracts" by David P. Brown and David E. M. Sappington

Part I of this Technical Appendix provides additional explanation of the analysis in the Alberta setting. Part II provides additional coefficient estimates for the fringe and import supply function.

I. Additional Explanation of the Analysis in the Alberta Setting.

Setting where Only SFCs are Feasible
We first describe the analysis when SFCs are the only feasible forward contract. Then we review the analysis when both SFCs and LFFCs are feasible. Finally, we note how equilibrium outcomes are characterized when forward contracting is not feasible. We analyze a two-stage game in each of T periods. In each period, generators choose SFCs in the first stage and outputs in the second stage. For notational ease, the following analysis omits the time subscript.

We employ backward induction to characterize the solution to the model. In the second stage, taking its SFCs $\left(S_{i}\right)$ as given, Generator $i(\mathrm{G} i)$ chooses its output $\left(q_{i}\right)$ to maximize:

$$
\begin{align*}
\pi_{i}\left(q_{1}, \ldots, q_{4}\right)= & P(Q, \varepsilon)\left[q_{i}+q_{i}^{m r}-S_{i}\right]-C_{i}\left(q_{i}\right)+p^{S} S_{i} \\
& \text { subject to: } q_{i} \geq 0 \tag{1}
\end{align*}
$$

where $q_{i}^{m r}$ denotes Gi's must-run output.
Let $\lambda_{i} \geq 0$ denote the Lagrange multiplier associated with the constraint in (1). Also let \perp denote complementarity. Then (1) implies that Gi's output decision is characterized by the following mixed complementarity conditions for $i=1, \ldots, 4$:

$$
\begin{align*}
& \frac{\partial P(\cdot)}{\partial Q}\left[q_{i}+q_{i}^{m r}-S_{i}\right]+P(Q, \varepsilon)-C_{i}^{\prime}\left(q_{i}\right)+\lambda_{i}=0 \\
& 0 \leq q_{i} \perp \lambda_{i} \geq 0 \tag{2}
\end{align*}
$$

To account for the complementarity constraints in (2) in our two-stage numerical analysis, we follow Xian et al. (2004) and employ a nonlinear complementarity function that has the following property:

$$
\begin{equation*}
\psi(a, b)=\sqrt{a^{2}+b^{2}}-a-b=0 \quad \Leftrightarrow \quad a \geq 0 \perp b \geq 0 \tag{3}
\end{equation*}
$$

(3) implies that for $i=1, \ldots, 4$, (2) can be written as:

$$
\begin{align*}
& \frac{\partial P(\cdot)}{\partial Q}\left[q_{i}+q_{i}^{m r}-S_{i}\right]+P(Q, \varepsilon)-C_{i}^{\prime}\left(q_{i}\right)+\lambda_{i}=0 \\
& \sqrt{\left(q_{i}\right)^{2}+\left(\lambda_{i}\right)^{2}}-q_{i}-\lambda_{i}=0 \tag{4}
\end{align*}
$$

The generators choose SFCs in the first stage. Gi chooses S_{i} to maximize its expected profit, taking rivals' SFCs as given and anticipating the subsequent wholesale output choices. Gi's problem is:

$$
\begin{equation*}
\max _{S_{i}} E\left\{\pi_{i}\left(q_{1}^{*}\left(S_{1}, \ldots, S_{4}, \varepsilon\right), \ldots, q_{4}^{*}\left(S_{1}, \ldots, S_{4}, \varepsilon\right), S_{i}, \varepsilon\right)\right\} \tag{5}
\end{equation*}
$$

where $q_{j}^{*}\left(S_{1}, \ldots, S_{4}, \varepsilon\right)$ are characterized by (4) for $j \in\{1,2,3,4\}$.
Define $\vec{q}(\varepsilon) \equiv\left\{q_{1}(\varepsilon), \ldots, q_{4}(\varepsilon)\right\}$ and $\vec{\lambda}(\varepsilon) \equiv\left\{\lambda_{1}(\varepsilon), \ldots, \lambda_{4}(\varepsilon)\right\}$. We formulate Gi's choice of S_{i} as a stochastic mathematical program with equilibrium constraints (SMPEC) that treats the output conditions in (4) as constraints that must hold for each ε :

$$
\max _{S_{i}, \vec{q}(\varepsilon), \vec{\lambda}(\varepsilon)} E\left\{\pi_{i}\left(q_{1}, \ldots, q_{4}, S_{i}, \varepsilon\right)\right\}
$$

subject to, for each $\varepsilon \in[\underline{\varepsilon}, \bar{\varepsilon}]$ and for $j \in\{1,2,3,4\}$:

$$
\begin{align*}
& \frac{\partial P(\cdot)}{\partial Q}\left[q_{j}+q_{j}^{m r}-S_{j}\right]+P(Q, \varepsilon)-C_{j}^{\prime}\left(q_{j}\right)+\lambda_{j}=0 \\
& \sqrt{\left(q_{j}\right)^{2}+\left(\lambda_{j}\right)^{2}}-q_{j}-\lambda_{j}=0 \tag{6}
\end{align*}
$$

Following the stochastic programming literature (e.g., Yao et al., 2007; Birge and Louveaux, 2011), we approximate the solution to the SMPEC in (6) by assuming ε has a discrete uniform distribution with $n<\infty$ equally likely possible values, $\left\{\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right\}$. Using (6), the Discrete SMPEC (D-SMPEC) can be written as:

$$
\max _{S_{i}, \vec{q}(\varepsilon), \vec{\lambda}(\varepsilon)} \sum_{l=1}^{n} \frac{1}{n} \pi_{i l}\left(q_{1 l}, \ldots, q_{4 l}, S_{i}, \varepsilon_{l}\right)
$$

subject to, for $j \in\{1, \ldots, 4\}$ and $l \in\{1, \ldots, n\}$:

$$
\begin{align*}
& \frac{\partial P_{l}(\cdot)}{\partial Q_{l}}\left[q_{j l}+q_{j}^{m r}-S_{j}\right]+P_{l}\left(Q_{l}, \varepsilon_{l}\right)-C_{j}^{\prime}\left(q_{j l}\right)+\lambda_{j l}=0 \\
& \sqrt{\left(q_{j l}\right)^{2}+\left(\lambda_{j l}\right)^{2}}-q_{j l}-\lambda_{j l}=0 \tag{7}
\end{align*}
$$

The D-SMPEC in (7) is mathematically equivalent to a standard deterministic mathematical program with equilibrium constraints (MPEC). Because Gi's choice of S_{i} is represented by the MPEC in (7), the overall problem is an equilibrium problem with equilibrium constraints (EPEC) (DeMiguel and Xu, 2009; Leyffer and Munson, 2010). A solution to this EPEC requires the simultaneous solution of the four MPECs.

Following Hu (2002), Hu and Ralph (2007), and DeMiguel and Xu (2009), we characterize the Karush-Kuhn-Tucker conditions associated with (7) for Generators 1, 2, 3, and 4. Formally, let $\rho_{i j l}$ and $\psi_{i j l}$ denote the Lagrange multipliers associated with the first and second constraints in (7), respectively. Then the Lagrangian function for Gi's D-SMPEC in (7) is:

$$
\begin{align*}
\mathcal{L}^{i}=\sum_{l=1}^{n} & \frac{1}{n} \pi_{i l}\left(q_{1 l}, \ldots, q_{4 l}, S_{i}, \varepsilon_{l}\right) \\
& +\sum_{j=1}^{4} \sum_{l=1}^{n} \rho_{i j l}\left[\frac{\partial P_{l}(\cdot)}{\partial Q_{l}}\left(q_{j l}+q_{j}^{m r}-S_{j}\right)+P_{l}\left(Q_{l}, \varepsilon_{l}\right)-C_{j}^{\prime}\left(q_{j l}\right)+\lambda_{j l}\right] \\
& +\sum_{j=1}^{4} \sum_{l=1}^{n} \psi_{i j l}\left[\sqrt{\left(q_{j l}\right)^{2}+\left(\lambda_{j l}\right)^{2}}-q_{j l}-\lambda_{j l}\right] . \tag{8}
\end{align*}
$$

Recall from the text that in this setting:

$$
\begin{equation*}
p^{S}=E\{P(Q, \varepsilon)\} \approx \frac{1}{n} \sum_{l=1}^{n} P\left(Q_{l}, \varepsilon_{l}\right) \tag{9}
\end{equation*}
$$

(9) implies that (8) can be written as:

$$
\begin{align*}
\mathcal{L}^{i}=\sum_{l=1}^{n} & \frac{1}{n}\left\{P_{l}\left(Q_{l}\right)\left[q_{i l}+q_{i}^{m r}\right]-C_{i}\left(q_{i l}\right)\right\} \\
& +\sum_{j=1}^{4} \sum_{l=1}^{n} \rho_{i j l}\left[\frac{\partial P_{l}(\cdot)}{\partial Q_{l}}\left(q_{j l}+q_{j}^{m r}-S_{j}\right)+P_{l}\left(Q_{l}, \varepsilon_{l}\right)-C_{j}^{\prime}\left(q_{j l}\right)+\lambda_{j l}\right] \\
& +\sum_{j=1}^{4} \sum_{l=1}^{n} \psi_{i j l}\left[\sqrt{\left(q_{j l}\right)^{2}+\left(\lambda_{j l}\right)^{2}}-q_{j l}-\lambda_{j l}\right] . \tag{10}
\end{align*}
$$

Differentiating (10) provides:

$$
\begin{equation*}
\frac{\partial \mathcal{L}^{i}}{\partial S_{i}}=-\sum_{l=1}^{n} \rho_{i i l} \frac{\partial P\left(Q_{l}, \varepsilon_{l}\right)}{\partial Q_{l}}=0 \tag{11}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial \mathcal{L}^{i}}{\partial q_{i l}}=\frac{1}{n}\left[\frac{\partial P_{l}(\cdot)}{\partial Q_{l}}\left[q_{i l}+q_{i}^{m r}\right]+P_{l}\left(Q_{l}, \varepsilon_{l}\right)-C_{i}^{\prime}\left(q_{i l}\right)\right] \\
& +\sum_{\substack{j=1 \\
i \neq j}}^{4} \rho_{i j l}\left[\frac{\partial^{2} P_{l}(\cdot)}{\partial Q_{l}^{2}}\left[q_{j l}+q_{j}^{m r}-S_{j}\right]+\frac{\partial P_{l}\left(Q_{l}, \varepsilon_{l}\right)}{\partial Q_{l}}\right] \\
& +\rho_{i i l}\left[\frac{\partial^{2} P_{l}(\cdot)}{\partial Q_{l}^{2}}\left[q_{i l}+q_{i}^{m r}-S_{i}\right]+2 \frac{\partial P_{l}\left(Q_{l}, \varepsilon_{l}\right)}{\partial Q_{l}}-C_{i}^{\prime \prime}\left(q_{i l}\right)\right] \\
& +\psi_{i i l}\left[\left(\left[q_{i l}\right]^{2}+\left[\lambda_{i l}\right]^{2}\right)^{-\frac{1}{2}} q_{i l}-1\right]=0 \text { for } l=1, \ldots, n \text {; } \tag{12}\\
& \frac{\partial \mathcal{L}^{i}}{\partial q_{k l}}=\frac{1}{n}\left[\frac{\partial P_{l}(\cdot)}{\partial Q_{l}}\left(q_{i l}+q_{i}^{m r}\right)\right] \\
& +\sum_{\substack{j=1 \\
j \neq k}}^{4} \rho_{i j l}\left[\frac{\partial^{2} P_{l}(\cdot)}{\partial Q_{l}^{2}}\left(q_{j l}+q_{j}^{m r}-S_{j}\right)+\frac{\partial P_{l}\left(Q_{l}, \varepsilon_{l}\right)}{\partial Q_{l}}\right] \\
& +\rho_{i k l}\left[\frac{\partial^{2} P_{l}(\cdot)}{\partial Q_{l}^{2}}\left(q_{k l}+q_{k}^{m r}-S_{k}\right)+2 \frac{\partial P_{l}\left(Q_{l}, \varepsilon_{l}\right)}{\partial Q_{l}}-C_{k}^{\prime \prime}\left(q_{k l}\right)\right] \\
& +\psi_{i k l}\left[\left(\left[q_{k l}\right]^{2}+\left[\lambda_{k l}\right]^{2}\right)^{-\frac{1}{2}} q_{k l}-1\right]=0 \\
& \text { for } l=1, \ldots, n \text { and } k=1, \ldots, 4(k \neq i) \text {; } \tag{13}\\
& \frac{\partial \mathcal{L}^{i}}{\partial \lambda_{k l}}=\rho_{i k l}+\psi_{i k l}\left\{\left(\left[q_{k l}\right]^{2}+\left[\lambda_{k l}\right]^{2}\right)^{-\frac{1}{2}} \lambda_{k l}-1\right\}=0 \\
& \text { for } k=1, \ldots, 4 \text { and } l=1, \ldots, n \text {; } \tag{14}\\
& \frac{\partial \mathcal{L}^{i}}{\partial \rho_{i k l}}=\frac{\partial P_{l}(\cdot)}{\partial Q_{l}}\left[q_{k l}+q_{k}^{m r}-S_{k}\right]+P_{l}\left(Q_{l}, \varepsilon_{l}\right)-C_{j}^{\prime}\left(q_{k l}\right)+\lambda_{k l}=0 \\
& \text { for } k=1, \ldots, 4 \text { and } l=1, \ldots, n \text {; } \tag{15}\\
& \frac{\partial \mathcal{L}^{i}}{\partial \psi_{i k l}}=\sqrt{\left(q_{k l}\right)^{2}+\left(\lambda_{k l}\right)^{2}}-q_{k l}-\lambda_{k l}=0 \\
& \text { for } k=1, \ldots, 4 \text { and } l=1, \ldots, n \text {. } \tag{16}
\end{align*}
$$

The solution to the EPEC is characterized by solving the conditions in (11) - (16) for Generators $1,2,3$, and 4 simultaneously. There are $4+40 n$ endogenous variables: (i) the 4 generators' forward quantities $\left(S_{1}, S_{2}, S_{3}, S_{4}\right)$; (ii) the $4 n$ realized outputs ($q_{11}, \ldots, q_{1 n}, \ldots$,
$q_{41}, \ldots, q_{4 n}$); (iii) the $4 n$ Lagrange multipliers $\left\{\lambda_{11} \ldots, \lambda_{1 n}, \ldots, \lambda_{41}, \ldots, \lambda_{4 n}\right\}$; and (iv) the $32 n$ Lagrange multipliers $\left(\left\{\rho_{111}, \ldots ., \rho_{11 n}, \rho_{121}, \ldots ., \rho_{44 n} ; \psi_{111}, \ldots ., \psi_{11 n}, \psi_{121}, \ldots ., \psi_{44 n}\right\}\right)$. There are also $4+40 n$ unique equations because equations (15) and (16) are the same in the MPECs of Generators $1,2,3$, and 4 . Thus, we have a square constrained non-linear system where the number of conditions equal the number of endogenous variables. This system can be solved using the PATH algorithm using the GAMS software.

Setting where SFCs and LFFCs are Feasible

We analyze a two-stage game in each of T periods. In each period, generators choose SFCs and LFFCs in the first stage and outputs in the second stage. For notational ease, the following analysis omits the time subscript.

We employ backward induction to characterize the solution to the model. In the second stage, taking its SFCs and LFFCs $\left(S_{i}\right.$ and $\left.L_{i}\right)$ as given, Generator $i(\mathrm{G} i)$ chooses its output $\left(q_{i}\right)$ to maximize:

$$
\begin{align*}
\pi_{i}\left(q_{1}, \ldots, q_{4}\right)= & P(Q, \varepsilon)\left[q_{i}+q_{i}^{m r}-\alpha L_{i} Q-S_{i}\right]-C_{i}\left(q_{i}\right)+p^{L} \alpha L_{i} Q+p^{S} S_{i} \\
& \text { subject to: } \quad q_{i} \geq 0 \tag{17}
\end{align*}
$$

Let $\lambda_{i} \geq 0$ denote the Lagrange multipliers associated with the first and second constraints in (17), respectively. Also let \perp denote complementarity. Then (17) implies that Gi's output decision is characterized by the following mixed complementarity conditions for $i=1, \ldots, 4$:

$$
\begin{align*}
& \frac{\partial P(\cdot)}{\partial Q}\left[q_{i}+q_{i}^{m r}-\alpha L_{i} Q-S_{i}\right]+P(Q, \varepsilon)\left[1-\alpha L_{i}\right]-C_{i}^{\prime}\left(q_{i}\right)+p^{L} \alpha L_{i}+\lambda_{i}=0 \\
& q_{i} \geq 0 \quad \perp \quad \lambda_{i} \geq 0 . \tag{18}
\end{align*}
$$

Following Xian et al. (2004), we utilize the transformation in (3) to write (18) as:

$$
\begin{align*}
& \frac{\partial P(\cdot)}{\partial Q}\left[q_{i}+q_{i}^{m r}-\alpha L_{i} Q-S_{i}\right]+P(Q, \varepsilon)\left[1-\alpha L_{i}\right]-C_{i}^{\prime}\left(q_{i}\right)+p^{L} \alpha L_{i}+\lambda_{i}=0 \\
& \sqrt{\left(q_{i}\right)^{2}+\left(\lambda_{i}\right)^{2}}-q_{i}-\lambda_{i}=0 \quad \text { for } i=1, \ldots, 4 \tag{19}
\end{align*}
$$

Gi chooses S_{i} and L_{i} to maximize its expected profits, taking rival's SFCs and LFFCs as given and anticipating the subsequent wholesale output choices. Gi's problem is:

$$
\begin{equation*}
\max _{S_{i}, L_{i}} E\left\{\pi_{i}\left(q_{1}^{*}\left(S_{1}, \ldots, S_{4}, L_{1}, \ldots, L_{4}, \varepsilon\right), \ldots, q_{4}^{*}\left(S_{1}, \ldots, S_{4}, L_{1}, \ldots, L_{4}, \varepsilon\right), S_{i}, L_{i}, \varepsilon\right)\right\} \tag{20}
\end{equation*}
$$

where $q_{j}^{*}\left(S_{1}, \ldots, S_{4}, L_{1}, \ldots, L_{4}, \varepsilon\right)$ are characterized by (19) for $j=1, \ldots, 4$.
Define $\vec{q}(\varepsilon)=\left\{q_{1}(\varepsilon), \ldots, q_{4}(\varepsilon)\right\}$ and $\vec{\lambda}(\varepsilon)=\left\{\lambda_{1}(\varepsilon), \ldots, \lambda_{4}(\varepsilon)\right\}$. We formulate Gi's choice of S_{i} and L_{i} as a stochastic mathematical program with equilibrium constraints (SMPEC) that treats the wholesale output conditions in (19) as constraints that must hold for each possible realization of ε :

$$
\max _{S_{i}, L_{i}, \vec{q}(\varepsilon), \vec{\lambda}(\varepsilon)} E\left\{\pi_{i}\left(q_{1}, \ldots, q_{4}, S_{i}, L_{i}, \varepsilon\right)\right\}
$$

subject to, for each $\varepsilon \in[\underline{\varepsilon}, \bar{\varepsilon}]$ and for $j \in\{1,2,3,4\}$:

$$
\begin{align*}
& \frac{\partial P(\cdot)}{\partial Q}\left[q_{j}+q_{j}^{m r}-\alpha L_{j} Q-S_{j}\right]+P(Q, \varepsilon)\left[1-\alpha L_{j}\right]-C_{j}^{\prime}\left(q_{j}\right)+p^{L} \alpha L_{j}+\lambda_{j}=0 \\
& \sqrt{\left(q_{j}\right)^{2}+\left(\lambda_{j}\right)^{2}}-q_{j}-\lambda_{j}=0 \tag{21}
\end{align*}
$$

Following the stochastic programming literature (e.g., Yao et al., 2007; Birge and Louveaux, 2011), we approximate the solution to the SMPEC in (21) by assuming that ε has a discrete distribution with $n<\infty$ possible equally likely realizations, $\left\{\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right\}$. Using (21), the discrete SMPEC (D-SMPEC) can be written as:

$$
\max _{S_{i}, L_{i}, \vec{q}(\varepsilon), \vec{\lambda}(\varepsilon)} \sum_{l=1}^{n} \frac{1}{n} \pi_{i l}\left(q_{1 l}, \ldots, q_{4 l}, S_{i}, L_{i}, \varepsilon_{l}\right)
$$

subject to, for $j \in\{1, \ldots, 4\}$ and $l \in\{1, \ldots, n\}$:

$$
\begin{align*}
& \frac{\partial P_{l}(\cdot)}{\partial Q_{l}}\left[q_{j l}+q_{j}^{m r}-\alpha L_{j} Q_{l}-S_{j}\right]+P_{l}\left(Q_{l}, \varepsilon_{l}\right)\left[1-\alpha L_{j}\right]-C_{j}^{\prime}\left(q_{j l}\right)+p^{L} \alpha L_{j}+\lambda_{j l}=0 \\
& \sqrt{\left(q_{j l}\right)^{2}+\left(\lambda_{j l}\right)^{2}}-q_{j l}-\lambda_{j l}=0 \tag{22}
\end{align*}
$$

The D-SMPEC in (22) is mathematically equivalent to a standard deterministic mathematical program with equilibrium constraints (MPEC). Because Gi's choices of S_{i} and L_{i} are represented by the MPEC in (22), the overall problem is an equilibrium problem with equilibrium constraints (EPEC) (DeMiguel and Xu, 2009; Leyffer and Munson, 2010). A solution to this EPEC requires the simultaneous solution of the four MPECs.

Following Hu (2002), Hu and Ralph (2007), and DeMiguel and Xu (2009), we characterize the Karush-Kuhn-Tucker conditions associated with (22) for the generators. Let $\rho_{i j l}$ and $\psi_{i j l}$ denote the Lagrange multipliers associated with the first and second constraints in (22), respectively. Then the Lagrangian function for Generator i 's D-SMPEC in (7) is:

$$
\begin{align*}
& \mathcal{L}^{i}=\sum_{l=1}^{n} \frac{1}{n} \pi_{i l}\left(q_{1 l}, \ldots, q_{4 l}, S_{i}, L_{i}, \varepsilon_{l}\right) \\
& \quad+\sum_{j=1}^{4} \sum_{l=1}^{n} \rho_{i j l}\left\{\frac{\partial P_{l}(\cdot)}{\partial Q_{l}}\left[q_{j l}+q_{j}^{m r}-\alpha L_{j} Q_{l}-S_{j}\right]\right. \\
& \\
& \left.\quad+P_{l}\left(Q_{l}, \varepsilon_{l}\right)\left[1-\alpha L_{j}\right]-C_{j}^{\prime}\left(q_{j l}\right)+p^{L} \alpha L_{j}+\lambda_{j l}\right\} \tag{23}
\end{align*}
$$

Recall from the text that in the present setting:

$$
\begin{align*}
& p^{S}=E\left\{P\left(Q^{*}, \varepsilon\right)\right\}=\frac{1}{n} \sum_{l=1}^{n} P\left(Q_{l}, \varepsilon_{l}\right) ; \text { and } \\
& p^{L}=\frac{E\left\{P\left(Q^{*}, \varepsilon\right) Q^{*}\right\}}{E\left\{Q^{*}\right\}}=\frac{\sum_{l=1}^{n} P_{l}\left(Q_{l}, \varepsilon_{l}\right) Q_{l}}{\sum_{l=1}^{n} Q_{l}} . \tag{24}
\end{align*}
$$

(24) implies:

$$
\begin{equation*}
\frac{\partial p^{L}}{\partial q_{j l}}=\left[\frac{1}{\sum_{k=1}^{n} Q_{k}}\right]^{2}\left[\left(\frac{\partial P_{l}(\cdot)}{\partial Q_{l}} Q_{l}+P_{l}(\cdot)\right) \sum_{k=1}^{n} Q_{k}-\sum_{k=1}^{n} P_{k}(\cdot) Q_{k}\right] \tag{25}
\end{equation*}
$$

(24) implies that (23) can be written as:

$$
\begin{align*}
\mathcal{L}^{i}= & \sum_{l=1}^{n} \frac{1}{n}\left[P\left(Q_{l}, \varepsilon_{l}\right)\left[q_{i l}+q_{i}^{m r}\right]-C_{i}\left(q_{i l}\right)\right] \\
& +\sum_{j=1}^{4} \sum_{l=1}^{n} \rho_{i j l}\left\{\frac{\partial P_{l}(\cdot)}{\partial Q_{l}}\left[q_{j l}+q_{j}^{m r}-\alpha L_{j} Q_{l}-S_{j}\right]\right. \\
& \left.+P_{l}\left(Q_{l}, \varepsilon_{l}\right)\left[1-\alpha L_{j}\right]-C_{j}^{\prime}\left(q_{j l}\right)+p^{L} \alpha L_{j}+\lambda_{j l}\right\}
\end{aligned} \quad \begin{aligned}
& \quad+\sum_{j=1}^{4} \sum_{l=1}^{n} \psi_{i j l}\left[\sqrt{\left(q_{j l}\right)^{2}+\left(\lambda_{j l}\right)^{2}}-q_{j l}-\lambda_{j l}\right] .
\end{align*}
$$

The corresponding solution to firm i 's D-SMPEC is characterized by:

$$
\begin{equation*}
\frac{\partial \mathcal{L}^{i}}{\partial S_{i}}=-\sum_{l=1}^{n} \rho_{i i l} \frac{\partial P\left(Q_{l}, \varepsilon_{l}\right)}{\partial Q_{l}}=0 \tag{27}
\end{equation*}
$$

$$
\begin{align*}
\frac{\partial \mathcal{L}^{i}}{\partial L_{i}}= & -\sum_{l=1}^{n} \rho_{i i l}\left[\frac{\partial P_{l}\left(Q_{l}, \varepsilon_{l}\right)}{\partial Q_{l}} \alpha Q_{l}+P\left(Q_{l}, \varepsilon_{l}\right) \alpha-\alpha p^{L}\right]=0 \tag{28}\\
\frac{\partial \mathcal{L}^{i}}{\partial q_{i l}}= & \frac{1}{n}\left[\frac{\partial P_{l}(\cdot)}{\partial Q_{l}}\left[q_{i l}+q_{i}^{m r}\right]+P_{l}\left(Q_{l}, \varepsilon_{l}\right)-C_{i}^{\prime}\left(q_{i l}\right)\right] \\
& +\sum_{\substack{j=1 \\
i \neq j}}^{4} \rho_{i j l}\left\{\frac{\partial^{2} P_{l}(\cdot)}{\partial Q_{l}^{2}}\left[q_{j l}+q_{j}^{m r}-L_{j} \alpha Q_{l}-S_{j}\right]+\frac{\partial P_{l}\left(Q_{l}, \varepsilon_{l}\right)}{\partial Q_{l}}\left[-\alpha L_{j}\right]\right. \\
& \left.+\frac{\partial P_{l}\left(Q_{l}, \varepsilon_{l}\right)}{\partial Q_{l}}\left[1-\alpha L_{j}\right]+\frac{\partial p^{L}}{\partial q_{i l}} \alpha L_{j}\right\} \\
+ & \rho_{i i l}\left\{\frac{\partial P_{l}^{2}(\cdot)}{\partial Q_{l}^{2}}\left[q_{i l}+q_{i}^{m r}-L_{i} \alpha Q_{l}-S_{i}\right]+2 \frac{\partial P_{l}\left(Q_{l}, \varepsilon_{l}\right)}{\partial Q_{l}}\left[1-\alpha L_{i}\right]\right. \\
& +\psi_{i i l}\left[\left(\left[q_{i l}\right]^{2}+\left[\lambda_{i l}\right]^{2}\right)^{-\frac{1}{2}} q_{i l}-1\right]=0 \text { for } l=1, \ldots, n ;
\end{align*}
$$

$$
\frac{\partial \mathcal{L}^{i}}{\partial q_{k l}}=\frac{1}{n} \frac{\partial P_{l}(\cdot)}{\partial Q_{l}}\left[q_{i l}+q_{i}^{m r}\right]
$$

$$
+\sum_{\substack{j=1 \\ j \neq k}}^{4} \rho_{i j l}\left\{\frac{\partial^{2} P_{l}(\cdot)}{\partial Q_{l}^{2}}\left[q_{j l}+q_{j}^{m r}-\alpha L_{j} Q_{l}-S_{j}\right]+\frac{\partial P_{l}\left(Q_{l}, \varepsilon_{l}\right)}{\partial Q_{l}}\left[-\alpha L_{j}\right]\right.
$$

$$
\left.+\frac{\partial P_{l}\left(Q_{l}, \varepsilon_{l}\right)}{\partial Q_{l}}\left[1-\alpha L_{j}\right]+\frac{\partial p^{L}}{\partial q_{k l}} \alpha L_{j}\right\}
$$

$$
+\rho_{i k l}\left\{\frac{\partial^{2} P_{l}(\cdot)}{\partial Q_{l}^{2}}\left[q_{k l}+q_{k}^{m r}-\alpha L_{k} Q_{l}-S_{k}\right]+2 \frac{\partial P_{l}\left(Q_{l}, \varepsilon_{l}\right)}{\partial Q_{l}}\left[1-\alpha L_{k}\right]\right.
$$

$$
\left.-C_{k}^{\prime \prime}\left(q_{k l}\right)+\frac{\partial p^{L}}{\partial q_{k l}} \alpha L_{k}\right\}
$$

$$
+\psi_{i k l}\left\{\left[\left(q_{k l}\right)^{2}+\left(\lambda_{k l}\right)^{2}\right]^{-\frac{1}{2}} q_{k l}-1\right\}=0
$$

$$
\begin{equation*}
\text { for } l=1, \ldots, n \text { and } k=1, \ldots, 4(k \neq i) \tag{30}
\end{equation*}
$$

$$
\frac{\partial \mathcal{L}^{i}}{\partial \lambda_{k l}}=\rho_{i k l}+\psi_{i k l}\left[\left(\left[q_{k l}\right]^{2}+\left[\lambda_{k l}\right]^{2}\right)^{-\frac{1}{2}} \lambda_{k l}-1\right]=0
$$

$$
\begin{equation*}
\text { for } k=1, \ldots, 4 \text { and } l=1, \ldots, n \tag{31}
\end{equation*}
$$

$$
\begin{array}{r}
\frac{\partial \mathcal{L}^{i}}{\partial \rho_{i k l}}=\frac{\partial P_{l}(\cdot)}{\partial Q_{l}}\left[q_{k l}+q_{k}^{m r}-\alpha L_{k} Q_{l}-S_{k}\right]+P_{l}\left(Q_{l}, \varepsilon_{l}\right)\left[1-\alpha L_{k}\right]-C_{j}^{\prime}\left(q_{k l}\right) \\
+p^{L} \alpha L_{j}+\lambda_{k l}=0 \quad \text { for } k=1, \ldots, 4 \text { and } l=1, \ldots, n \\
\frac{\partial \mathcal{L}^{i}}{\partial \psi_{i k l}}=\sqrt{\left(q_{k l}\right)^{2}+\left(\lambda_{k l}\right)^{2}}-q_{k l}-\lambda_{k l}=0 \\
\quad \text { for } k=1, \ldots, 4 \text { and } l=1, \ldots, n \tag{33}
\end{array}
$$

The solution to the EPEC is characterized by solving the conditions in (27) - (33) for Generators $1,2,3$, and 4 simultaneously. There are $8+40 n$ endogenous variables: (i) the generators' SFCs $\left(S_{1}, S_{2}, S_{3}, S_{4}\right)$ and LFFCs $\left(L_{1}, L_{2}, L_{3}, L_{4}\right)$; (ii) the $4 n$ realized outputs $\left(q_{11}, \ldots, q_{1 n}, \ldots, q_{41}, \ldots, q_{4 n}\right)$; (iii) the $4 n$ Lagrange multipliers ($\left\{\lambda_{11} \ldots, \lambda_{1 n}, \ldots, \lambda_{41}, \ldots, \lambda_{4 n}\right\}$); and (iv) the $32 n$ Lagrange multipliers ($\left\{\rho_{111}, \ldots ., \rho_{11 n}, \rho_{121}, \ldots ., \rho_{44 n} ; \psi_{111}, \ldots ., \psi_{11 n}, \psi_{121}, \ldots ., \psi_{44 n}\right\}$). There are also $8+40 n$ unique equations because equations (32) and (33) are the same in the MPECs of Generators $1,2,3$, and 4 . Thus, we have a square constrained non-linear system with the same number of conditions and endogenous variables. This system can be solved using the PATH algorithm using the GAMS software.

To characterize equilibrium outcomes in the setting where forward contracting is not feasible, it is only necessary to identify the generators' equilibrium wholesale outputs. These outputs are characterized by the mixed complementarity problem (MCP) in (2) when $S_{i}=0$ for $i=1,2,3,4$. We solve this MCP using the PATH solver in GAMS.
II. Additional Coefficient Estimates for the Fringe and Import Supply Function.

	$\begin{gathered} \text { OLS } \\ Q_{t}^{f} \\ \hline \end{gathered}$	IV First Stage p_{t}	IV Second Stage Q_{t}^{f}
Price	$\begin{gathered} \hline 0.3074^{* * *} \\ (0.1295) \end{gathered}$		$\begin{gathered} 9.6954^{* * *} \\ (1.7319) \end{gathered}$
Import Capacity - BC	$\begin{aligned} & -0.2125 \\ & (0.1503) \end{aligned}$	$\begin{aligned} & -0.0469 \\ & (0.0395) \end{aligned}$	$\begin{gathered} 0.2910 \\ (0.3506) \end{gathered}$
Import Capacity - SK	$\begin{gathered} 0.0440 \\ (0.4324) \end{gathered}$	$\begin{aligned} & -0.0418 \\ & (0.0618) \end{aligned}$	$\begin{gathered} 0.8106 \\ (0.5766) \end{gathered}$
Import Capacity - MT	$\begin{gathered} 0.0486 \\ (0.3524) \end{gathered}$	$\begin{aligned} & -0.0761 \\ & (0.0914) \end{aligned}$	$\begin{gathered} 0.6057 \\ (0.8469) \end{gathered}$
HD - SK	$\begin{gathered} 14.6686^{* * *} \\ (4.6029) \end{gathered}$	$\begin{gathered} 0.9855 \\ (0.8686) \end{gathered}$	$\begin{aligned} & -2.2009 \\ & (8.6216) \end{aligned}$
HD ${ }^{2}$ - SK	$\begin{gathered} 0.0862 \\ (0.0874) \end{gathered}$	$\begin{aligned} & -0.0274 \\ & (0.0200) \end{aligned}$	$\begin{aligned} & 0.3727^{*} \\ & (0.2022) \end{aligned}$
CD - SK	$\begin{aligned} & 30.2307^{* *} \\ & (13.4403) \end{aligned}$	$\begin{gathered} 3.6731 \\ (6.3067) \end{gathered}$	$\begin{aligned} & -12.5904 \\ & (58.5129) \end{aligned}$
CD ${ }^{2}$ - SK	$\begin{gathered} -1.7684 \\ (1.4619) \end{gathered}$	$\begin{gathered} 0.6998 \\ (0.8120) \end{gathered}$	$\begin{aligned} & -8.2693 \\ & (7.1783) \end{aligned}$
HD - BC	$\begin{gathered} -27.7370^{* * *} \\ (8.7672) \end{gathered}$	$\begin{gathered} -7.4652^{* * *} \\ (2.5316) \end{gathered}$	$\begin{gathered} 41.5022 \\ (25.4536) \end{gathered}$
$\mathrm{HD}^{2}-\mathrm{BC}$	$\begin{gathered} 1.7276^{* * *} \\ (0.3508) \end{gathered}$	$\begin{gathered} 0.2850^{* *} \\ (0.1186) \end{gathered}$	$\begin{gathered} -1.2647 \\ (1.1710) \end{gathered}$
CD - BC	$\begin{aligned} & 37.5805^{*} \\ & (19.4069) \end{aligned}$	$\begin{gathered} 3.9337 \\ (9.1085) \end{gathered}$	$\begin{aligned} & -11.8414 \\ & (89.8061) \end{aligned}$
CD ${ }^{2}-\mathrm{BC}$	$\begin{gathered} -0.2593 \\ (2.47406) \end{gathered}$	$\begin{gathered} 0.4034 \\ (1.9700) \end{gathered}$	$\begin{gathered} -3.6596 \\ (19.4238) \end{gathered}$
HD - MT	$\begin{gathered} 7.7825 \\ (4.8434) \end{gathered}$	$\begin{gathered} -2.5974^{* *} \\ (1.2509) \end{gathered}$	$\begin{gathered} 34.9410^{* * *} \\ (12.2839) \end{gathered}$
HD ${ }^{2}$ - MT	$\begin{gathered} -0.3359^{* *} * \\ (0.1127) \end{gathered}$	$\begin{gathered} 0.0945^{* * *} \\ (0.0366) \end{gathered}$	$\begin{gathered} -1.3569^{* * *} \\ (0.3652) \end{gathered}$
CD - MT	$\begin{aligned} & 10.8734 \\ & (8.8343) \end{aligned}$	$\begin{gathered} -5.5025^{*} \\ (2.8991) \end{gathered}$	$\begin{gathered} 58.7032^{* *} \\ (28.1174) \end{gathered}$
CD ${ }^{2}-\mathrm{MT}$	$\begin{aligned} & -0.2121 \\ & (0.5287) \end{aligned}$	$\begin{gathered} 0.0654 \\ (0.2004) \end{gathered}$	$\begin{gathered} -1.1185 \\ (1.9303) \end{gathered}$
Demand Forecast		$\begin{gathered} 0.0489^{* * *} \\ (0.008) \\ \hline \end{gathered}$	
K-P Wald Statistic		$37.34^{* * *}$	
Calendar Fixed Effects	Y	Y	Y
Temperature Controls	Y	Y	Y
Sample Size	8,760	8,760	8,760

Notes. BC denotes British Columbia, SK denotes Saskatchewan, MT denotes Montana. HD denotes heating degrees and CD denotes cooling degrees. The calendar fixed effects include Hour, Month, Day (of the week), and Holiday. Standard errors appear in parentheses. ${ }^{* * *}$, ${ }^{* *}$, * denotes significance at the $1 \%, 5 \%$, and 10% levels, respectively.

Table TA1: Coefficient Estimates for the Fringe and Import Supply Function.

References.

Birge, J. and F. Louveaux (2011). Introduction to Stochastic Programming. Second Edition. Springer New York.

DeMiguel, V. and H. Xu (2009). "A Stochastic Multiple-Leader Stackelberg Model: Analysis, Computation, and Application," Operations Research, 57(5): 1220-1235.

Hu, X. (2002). Mathematical Programs with Complementarity Constraints and Game Theory in Electricity Markets. Ph.D. Dissertation, Department of Mathematics and Statistics, University of Melbourne, Melbourne, Australia.
Hu, X. and D. Ralph (2007). "Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices," Operations Research, 55(5): 809-827.

Leyffer, S. and T. Munson (2010). "Solving Multi-Leader-Common-Follower Games," Optimisation, Methods, \&3 Software, 25(4): 601-623.

Xian, W., Yuzeng, L., and Z. Shaohua (2004). "Oligopolistic Equilibrium Analysis for Electricity Markets: A Nonlinear Complementarity Approach," IEEE Transactions on Power Systems, 19(3): 1348-1355.

Yao, J., Oren, S., and I. Adler (2007). "Two-Settlement Electricity Markets with Price Caps and Cournot Generation Firms," European Journal of Operational Research, 181(3): 1279-1296.

