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Appendix A. Proofs of the Formal Conclusions

Proof of Proposition 1.

Let �F � 0 denote the Lagrange multiplier associated with constraint (6). Then at an

interior solution to [RP-F]:
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j(X, ✓) is the gross surplus consumer j derives
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not a function of ✓, (21) can be written as:
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Because @Qv(·,✓)
@KD

= � ✓ , (24) can be written as (8).

Since �F = 1, (4) implies that (10) holds. ⌅

Proof of Corollary 1

The proof follows immediately from (8) and (9). ⌅

Proof of Corollary 2

(8) and (9) imply:
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Proof of Proposition 2

At an interior solution to [RP-r]:
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Because @Qv

@Xj = 1, (27) can be written as:
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If �r = 0, then
P

j 2 {D,N}

R ✓

✓ X

j(·) dF (✓) = 0, from (28). But this contradicts the main-

tained assumption that X

j(·) > 0 for all ✓ 2 [ ✓, ✓ ]. Therefore, �r > 0, and so (13) follows

from (4).

Since �r > 0 and dQv

@KG
= 0 , (25) can be written as (7). Since @Qv(·)

@KD
= � ✓ and @KD

@w

is not a function of ✓, (26) can be written as:

[ 1� �r ]

Z ✓

✓

✓KD dF (✓)� �r

"

Z ✓

✓

✓

w � @C

G(·)
@Q

v

◆

✓ dF (✓) +
@T (·)
@KD

#

@KD

@w

= 0 ,

which implies that (11) holds. ⌅

Proof of Proposition 3 From (28), when Assumption 2 holds:
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Assumption 1 implies X

j(r, ✓) > 0 for all r and ✓. Therefore, (29) implies �r ! 1 as

↵j ! 0 for j = D, N .

When ↵j = 0 for j = D,N , (27) implies:
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Since �r = 1, (26) implies that w is as specified in (8). (8) and (13) imply:
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As bi ! 0 for all i = 2, .., n, inequality (31) holds if:
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Proof of Proposition 4

Let � � 0 denote the Lagrange multiplier associated with constraint (6). Then at an

interior solution to [RP]:

w :

Z ✓

✓

✓KD dF (✓) �
Z ✓

✓

✓

@L(·)
@Q

v

@Q

v

@KD

@KD

@w

+
@L(·)
@Q

D

@Q

D

@KD

@KD

@w

◆

dF (✓)

� �



Z ✓

✓

✓KD dF (✓)

+

Z ✓

✓

✓

w ✓ +
@C

G(·)
@Q

v

@Q

v

@KD

◆

@KD

@w

dF (✓) +
@T (·)
@KD

@KD

@w

�

= 0 ; (33)



r :
X

j 2 {D,N}

Z ✓

✓

✓

@V

j(Xj(·))
@X

j
� r

�

@X

j

@r

�X

j(·)
◆

dF (✓)

�
Z ✓

✓

@L(·)
@Q

v

X

j 2 {D,N}

@Q

v

@X

j

@X

j

@r

dF (✓)

+ �



X

j 2 {D,N}

Z ✓

✓

✓

r

@X

j

@r

+X

j(·)
◆

dF (✓)

�
X

j 2 {D,N}

Z ✓

✓

@C

G(·)
@Q

v

@Q

v

@X

j

@X

j

@r

dF (✓)

�

= 0 . (34)

Conditions (20) and (22) also hold at the solution to [RP].
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Proof of Corollary 3
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Proof of Corollary 4

The proof follows immediately from (14) and (15). ⌅



Appendix B. Numerical Solutions – Small Market Setting   
 

 This Appendix presents a sensitivity analysis for the “smaller market setting.” The 
figures that follow demonstrate how outcomes change as key model parameters change.1 The 
values of parameters other than the one being changed remain fixed at their levels in the smaller 
market setting. 
 
 
 
The Effects of Changes in the VIP’s Variable Production Cost (𝑏𝑣) 
 
 
 

 
 
Figure B1.  Impact of Changes in 𝒃𝒗 on Retail Electricity Prices and DG Compensation 
 
 
 

                                                                 
1  Throughout the ensuing analysis, “(NM)” denotes the relevant variable under a net metering mandate 

(which requires 𝑤 = 𝑟). Variables without the “(NM)” designation denote variables under the optimal 
policy when no net metering mandate is imposed. 



 

Figure B2.  Impact of Changes in 𝒃𝒗 on Capacity Investments 
 
 
 
 

 
Figure B3.  Impact of Changes in 𝒃𝒗 on Consumer Welfare 
 
 
 
As the VIP’s variable cost (𝑏𝑣) increases, the value of a unit of solar DG capacity increases. The 
regulator increases 𝑤 to induce increased investment in DG capacity. 𝑟 also increases in light of 
the increased marginal cost of generating electricity. The increase in 𝑟 reduces the welfare of 
consumer 𝑁. The increase in 𝑤 induces increased investment in DG capacity (𝐾𝐷). Investment in 
centralized capacity (𝐾𝐺) declines as 𝑏𝑣 increases because the VIP produces less output as its 
variable cost increases. The net metering mandate reduces the unit price of electricity (and the 
unit DG compensation) below both 𝑟 and 𝑤.  



The Effects of Changes in the Cost of Centralized Capacity (𝑏𝐾) 
 

 

Figure B4.  Impact of Changes in 𝒃𝑲 on Retail Electricity Prices and DG Compensation 
 
 
 

 

Figure B5.  Impact of Changes in 𝒃𝑲 on Capacity Investments 



 
 

 

Figure B6.  Impact of Changes in 𝒃𝑲 on Consumer Welfare 
 
 
 
As the cost of centralized capacity (𝑏𝐾) increases, 𝑟 is increased to ensure the VIP’s solvency 
despite its increased operating costs. The increase in 𝑟 reduces the welfare of consumer 𝑁.  𝑤 is 
increased as centralized capacity becomes more expense to induce additional investment in DG 
capacity.  
 

  



The Effects of Changes in the Cost of DG Capacity (𝑏𝐷) 
 
 

 

Figure B7.  Impact of Changes in 𝒃𝑫 on Retail Electricity Prices and DG Compensation 
 
 
 
 
 

 

Figure B8.  Impact of Changes in 𝒃𝑫 on Capacity Investments  
 
 



 

Figure B9.  Impact of Changes in 𝒃𝑫 on Consumer Welfare  
 
 
 
As the cost of DG capacity (𝑏𝐷) increases, the amount of DG capacity investment (𝐾𝐷) decreases 
and the amount of centralized capacity (𝐾𝐺) increases. The reduction in 𝐾𝐷 arises despite an 
increase in 𝑤 which is implemented to avoid an excessive reduction in DG capacity investment 
as its cost increases. 
 
  



The Effects of Changes in TDM Costs (𝑎𝑇
𝐷) 

 
 

 

Figure B10.  Impact of Changes in 𝒂𝑻
𝑫 on Retail Electricity Prices and DG Compensation 

 
 
 
 

 

Figure B11.  Impact of Changes in 𝒂𝑻
𝑫 on Capacity Investments 

 
 



 
 
 
 
 

 

Figure B12.  Impact of Changes in 𝒂𝑻
𝑫 on Consumer Welfare 

 
 
As TDM costs (𝑎𝑇

𝐷) increase,  𝑤 is reduced to induce less investment in DG capacity. Centralized 
capacity is increased as DG capacity declines. The impact of a change in 𝑎𝑇

𝐷 on capacity 
investment becomes less pronounced when net metering is mandated. 
 
 
  



The Effects of Changes in Marginal Losses from Environmental Externalities (𝑒𝑣) 
 
 

 
Figure B13.  Impact of Changes in 𝒆𝒗 on Retail Electricity Prices and DG Compensation 
 
 
 
 
 

 
 
Figure B14.  Impact of Changes in 𝒆𝒗 on Capacity Investments 
 
 



 
 
 
Figure B15.  Impact of Changes in 𝒆𝒗 on Consumer Welfare 
 
 
As the marginal social loss due to environmental externalities from centralized production (𝑒𝑣) 
increase, 𝑟 is increased to reduce electricity consumption and 𝑤 is increased to induce increased 
DG production. In addition, investment in DG capacity increases and investment in centralized 
capacity declines as 𝑒𝑣 increases. 


