Technical Appendix to Accompany "Designing Compensation for Distributed Solar Generation: Is Net Metering Ever Optimal?"
 by
 David P. Brown and David E. M. Sappington

Appendix A. Proofs of the Formal Conclusions

Proof of Proposition 1.

Let $\lambda_{F} \geq 0$ denote the Lagrange multiplier associated with constraint (6). Then at an interior solution to [RP-F]:

$$
\begin{align*}
& K_{G}: \lambda_{F}\left[\int_{\underline{\theta}}^{\bar{\theta}}\left(-\frac{\partial C^{G}(\cdot)}{\partial Q^{v}} \frac{d Q^{v}}{d K_{G}}-\frac{\partial C^{G}(\cdot)}{\partial K_{G}}\right) d F(\theta)-C^{K \prime}\left(K_{G}\right)-\frac{\partial T(\cdot)}{\partial K_{G}}\right]=0 \tag{20}\\
& w: \quad \int_{\underline{\theta}}^{\bar{\theta}} \theta K_{D} d F(\theta)-\lambda_{F}\left[\int_{\underline{\theta}}^{\bar{\theta}} \theta K_{D} d F(\theta)\right. \\
&\left.+\int_{\underline{\theta}}^{\bar{\theta}}\left(w \theta+\frac{\partial C^{G}(\cdot)}{\partial Q^{v}} \frac{\partial Q^{v}}{\partial K_{D}}\right) \frac{\partial K_{D}}{\partial w} d F(\theta)+\frac{\partial T(\cdot)}{\partial K_{D}} \frac{\partial K_{D}}{\partial w}\right]=0 \tag{21}\\
& R: \quad 2+2 \lambda_{F}=0 ; \tag{22}\\
& r: \quad \sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}}\left(\left[\frac{\partial V^{j}\left(X^{j}(\cdot)\right)}{\partial X^{j}}-r\right] \frac{\partial X^{j}}{\partial r}-X^{j}(\cdot)\right) d F(\theta) \\
&+\lambda_{F}\left[\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}}\left(r \frac{\partial X^{j}}{\partial r}+X^{j}(\cdot)\right) d F(\theta)\right. \\
&\left.\quad-\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} \frac{\partial C^{G}(\cdot)}{\partial Q^{v}} \frac{\partial Q^{v}}{\partial X^{j}} \frac{\partial X^{j}}{\partial r} d F(\theta)\right]=0 \tag{23}
\end{align*}
$$

$\frac{\partial V^{j}\left(X^{j}(r), \theta\right)}{\partial X^{j}}=r$ for $j \in\{D, N\}$ since $V^{j}(X, \theta)$ is the gross surplus consumer j derives from output X in state θ. Also, $\lambda_{F}=1$ from (22) and $\frac{\partial Q^{v}}{\partial X^{j}}=1$ because $Q^{v}(\cdot, \theta)=$ $X(\cdot)-\theta K_{D}$. Therefore, (23) can be written as (9).

Since $\lambda_{F}=1$ and $\frac{d Q^{v}}{\partial K_{G}}=0$, (20) can be written as (7). Since $\lambda_{F}=1$ and $\frac{\partial K_{D}}{\partial w}$ is
not a function of θ, (21) can be written as:

$$
\begin{equation*}
\left[\int_{\underline{\theta}}^{\bar{\theta}}\left(w \theta+\frac{\partial C^{G}(\cdot)}{\partial Q^{v}} \frac{\partial Q^{v}}{\partial K_{D}}\right) d F(\theta)+\frac{\partial T(\cdot)}{\partial K_{D}}\right] \frac{\partial K_{D}}{\partial w}=0 . \tag{24}
\end{equation*}
$$

Because $\frac{\partial Q^{v}(\cdot, \theta)}{\partial K_{D}}=-\theta$, (24) can be written as (8).
Since $\lambda_{F}=1$, (4) implies that (10) holds.

Proof of Corollary 1

The proof follows immediately from (8) and (9).

Proof of Corollary 2

(8) and (9) imply:

$$
\begin{gathered}
r>w \Leftrightarrow \frac{\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} \frac{\partial C^{G}(\cdot)}{\partial Q^{v}} \frac{\partial X^{j}}{\partial r} d F(\theta)}{\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} \frac{\partial X^{j}}{\partial r} d F(\theta)}>\frac{1}{\theta^{E}}\left[\int_{\underline{\theta}}^{\bar{\theta}} \frac{\partial C^{G}(\cdot)}{\partial Q^{v}} \theta d F(\theta)-\frac{\partial T(\cdot)}{\partial K_{D}}\right] \\
\Leftrightarrow \frac{\partial T(\cdot)}{\partial K_{D}}>\int_{\underline{\theta}}^{\bar{\theta}} \frac{\partial C^{G}(\cdot)}{\partial Q^{v}} \theta d F(\theta)-\frac{\theta^{E} \sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} \frac{\partial C^{G}(\cdot)}{\partial Q^{v}} \frac{\partial X^{j}}{\partial r} d F(\theta)}{\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} \frac{\partial X^{j}}{\partial r} d F(\theta)} . \square
\end{gathered}
$$

Proof of Proposition 2

At an interior solution to [RP-r]:

$$
\begin{align*}
K_{G}: & \lambda_{r}\left[\int_{\underline{\theta}}^{\bar{\theta}}\left(-\frac{\partial C^{G}(\cdot)}{\partial Q^{v}} \frac{d Q^{v}}{d K_{G}}-\frac{\partial C^{G}(\cdot)}{\partial K_{G}}\right) d F(\theta)-C^{K^{\prime}}\left(K_{G}\right)-\frac{\partial T(\cdot)}{\partial K_{G}}\right]=0 \tag{25}\\
w: & \int_{\underline{\theta}}^{\bar{\theta}} \theta K_{D} d F(\theta)-\lambda_{r}\left[\int_{\underline{\theta}}^{\bar{\theta}} \theta K_{D} d F(\theta)\right. \\
& \left.\quad+\int_{\underline{\theta}}^{\bar{\theta}}\left(w \theta+\frac{\partial C^{G}(\cdot)}{\partial Q^{v}} \frac{\partial Q^{v}}{\partial K_{D}}\right) \frac{\partial K_{D}}{\partial w} d F(\theta)+\frac{\partial T(\cdot)}{\partial K_{D}} \frac{\partial K_{D}}{\partial w}\right]=0 \tag{26}\\
r: & \sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}}\left(\left[\frac{\partial V^{j}\left(X^{j}(\cdot)\right)}{\partial X^{j}}-r\right] \frac{\partial X^{j}}{\partial r}-X^{j}(\cdot)\right) d F(\theta)
\end{align*}
$$

$$
\begin{align*}
&+\lambda_{r}\left[\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}}\left(r \frac{\partial X^{j}}{\partial r}+X^{j}(\cdot)\right) d F(\theta)\right. \\
&\left.-\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} \frac{\partial C^{G}(\cdot)}{\partial Q^{v}} \frac{\partial Q^{v}}{\partial X^{j}} \frac{\partial X^{j}}{\partial r} d F(\theta)\right]=0 . \tag{27}
\end{align*}
$$

Because $\frac{\partial Q^{v}}{\partial X^{j}}=1,(27)$ can be written as:

$$
\begin{align*}
\lambda_{r}\left[\sum_{j \in\{D, N\}} \int_{\underline{\theta}}(r-\right. & \left.\left.\frac{\partial C^{G}(\cdot)}{\partial Q^{v}}\right) \frac{\partial X^{j}}{\partial r} d F(\theta)\right] \\
& +\left[\lambda_{r}-1\right]\left[\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} X^{j}(\cdot) d F(\theta)\right]=0 . \tag{28}
\end{align*}
$$

If $\lambda_{r}=0$, then $\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} X^{j}(\cdot) d F(\theta)=0$, from (28). But this contradicts the maintained assumption that $X^{j}(\cdot)>0$ for all $\theta \in[\underline{\theta}, \bar{\theta}]$. Therefore, $\lambda_{r}>0$, and so (13) follows from (4).

Since $\lambda_{r}>0$ and $\frac{d Q^{v}}{\partial K_{G}}=0$, (25) can be written as (7). Since $\frac{\partial Q^{v}(\cdot)}{\partial K_{D}}=-\theta$ and $\frac{\partial K_{D}}{\partial w}$ is not a function of θ, (26) can be written as:

$$
\left[1-\lambda_{r}\right] \int_{\underline{\theta}}^{\bar{\theta}} \theta K_{D} d F(\theta)-\lambda_{r}\left[\int_{\underline{\theta}}^{\bar{\theta}}\left(w-\frac{\partial C^{G}(\cdot)}{\partial Q^{v}}\right) \theta d F(\theta)+\frac{\partial T(\cdot)}{\partial K_{D}}\right] \frac{\partial K_{D}}{\partial w}=0
$$

which implies that (11) holds.
$\underline{\text { Proof of Proposition } 3}$ From (28), when Assumption 2 holds:

$$
\begin{aligned}
{\left[\lambda_{r}-1\right] } & \sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} X^{j}(r, \theta) d F(\theta) \\
& +\lambda_{r} \sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}}\left[r-c\left(K_{G}\right)-\sum_{i=2}^{n} i b_{i}\left(Q^{v}\right)^{i-1}\right] \frac{\partial X^{j}(\cdot)}{\partial r} d F(\theta)=0 \\
\Rightarrow & \lambda_{r} \sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}}\left[\frac{r-c\left(K_{G}\right)-\sum_{i=2}^{n} i b_{i}\left(Q^{v}\right)^{i-1}}{r}\right] \frac{\partial X^{j}(\cdot)}{\partial r} \frac{r}{X^{j}(\cdot)} X^{j}(\cdot) d F(\theta)
\end{aligned}
$$

$$
\begin{gather*}
=\left[1-\lambda_{r}\right] \sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} X^{j}(r, \theta) d F(\theta) \\
\Leftrightarrow \lambda_{r} \sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}}\left[\frac{\left.r-c\left(K_{G}\right)-\sum_{i=2}^{n} i b_{i}\left(Q^{v}\right)^{i-1}\right]}{r}\right] \alpha_{j} X^{j}(\cdot) d F(\theta) \\
=\left[1-\lambda_{r}\right] \sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} X^{j}(r, \theta) d F(\theta) \tag{29}
\end{gather*}
$$

Assumption 1 implies $X^{j}(r, \theta)>0$ for all r and θ. Therefore, (29) implies $\lambda_{r} \rightarrow 1$ as $\alpha_{j} \rightarrow 0$ for $j=D, N$.

When $\alpha_{j}=0$ for $j=D, N$, (27) implies:

$$
\left[\lambda_{r}-1\right]\left[\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} X^{j}(\cdot) d F(\theta)\right]=0 \quad \Rightarrow \quad \lambda_{r}=1
$$

Since $\lambda_{r}=1,(26)$ implies that w is as specified in (8). (8) and (13) imply:

$$
\begin{array}{r}
r>w \Leftrightarrow \frac{\int_{\underline{\theta}}^{\bar{\theta}} C^{G}\left(Q^{v}(\cdot, \theta), K_{G}\right) d F(\theta)+C^{K}\left(K_{G}\right)+T\left(K_{G}, K_{D}\right)}{\int_{\underline{\theta}}^{\bar{\theta}} X(\cdot, \theta) d F(\theta)} \\
>w\left[1-\frac{\theta^{E} K_{D}}{\int_{\underline{\theta}}^{\bar{\theta}} X(\cdot, \theta) d F(\theta)}\right] \\
\Leftrightarrow \quad \int_{\underline{\theta}}^{\bar{\theta}} C^{G}\left(Q^{v}(\cdot, \theta), K_{G}\right) d F(\theta)+C^{K}\left(K_{G}\right)+T\left(K_{G}, K_{D}\right)>w E\left\{Q^{v}(\cdot)\right\} \\
\Leftrightarrow \quad \int_{\underline{\theta}}^{\bar{\theta}} C^{G}\left(Q^{v}(\cdot, \theta), K_{G}\right) d F(\theta)+C^{K}\left(K_{G}\right)+T\left(K_{G}, K_{D}\right) \\
\Leftrightarrow \frac{1}{\theta^{E}}\left[\int_{\underline{\theta}}^{\bar{\theta}} \frac{\partial C^{G}(\cdot)}{\partial Q^{v}} \theta d F(\theta)-\frac{\partial T(\cdot)}{\partial K_{D}}\right] E\left\{Q^{v}(\cdot)\right\} \tag{30}\\
\Leftrightarrow \quad \int_{\underline{\theta}}^{\bar{\theta}}\left(c\left(K_{G}\right) Q^{v}(\cdot)+\sum_{i=2}^{n} b_{i}\left[Q^{v}(\cdot)\right]^{i}\right) d F(\theta)+C^{K}\left(K_{G}\right)+T\left(K_{G}, K_{D}\right)
\end{array}
$$

$$
\begin{align*}
&>\frac{1}{\theta^{E}}\left[\int_{\underline{\theta}}^{\bar{\theta}}\left(c\left(K_{G}\right)+\sum_{i=2}^{n} i b_{i}\left[Q^{v}(\cdot)\right]^{i-1}\right) \theta d F(\theta)\right] E\left\{Q^{v}(\cdot)\right\} \\
&-\frac{1}{\theta^{E}}\left[\frac{\partial T(\cdot)}{\partial K_{D}}\right] E\left\{Q^{v}(\cdot)\right\} \\
& \Leftrightarrow \quad c\left(K_{G}\right) \int_{\underline{\theta}}^{\bar{\theta}} Q^{v}(\cdot) d F(\theta)+\int_{\underline{\theta}}^{\bar{\theta}} \sum_{i=2}^{n} b_{i}\left[Q^{v}(\cdot)\right]^{i} d F(\theta)+C^{K}\left(K_{G}\right)+T\left(K_{G}, K_{D}\right) \\
&>c\left(K_{G}\right) E\left\{Q^{v}(\cdot)\right\}+\frac{1}{\theta^{E}}\left[\int_{\underline{\theta}}^{\bar{\theta}} \sum_{j=2}^{n} i b_{i}\left[Q^{v}(\cdot)\right]^{i-1} \theta d F(\theta)\right] E\left\{Q^{v}(\cdot)\right\} \\
&-\frac{1}{\theta^{E}}\left[\frac{\partial T(\cdot)}{\partial K_{D}}\right] E\left\{Q^{v}(\cdot)\right\} \\
& \Leftrightarrow C^{K}\left(K_{G}\right)+T\left(K_{G}, K_{D}\right)+\frac{1}{\theta^{E}}\left[\frac{\partial T(\cdot)}{\partial K_{D}}\right] E\left\{Q^{v}(\cdot)\right\} \\
&> \frac{1}{\theta^{E}}\left[\int_{\underline{\theta}}^{\bar{\theta}} \sum_{i=2}^{n} i b_{i}\left[Q^{v}(\cdot)\right]^{i-1} \theta d F(\theta)\right] E\left\{Q^{v}(\cdot)\right\}-\int_{\underline{\theta}}^{\bar{\theta}} \sum_{i=2}^{n} b_{i}\left[Q^{v}(\cdot)\right]^{i} d F(\theta) . \tag{31}
\end{align*}
$$

As $b_{i} \rightarrow 0$ for all $i=2, . ., n$, inequality (31) holds if:

$$
\begin{equation*}
C^{K}\left(K_{G}\right)+T\left(K_{G}, K_{D}\right)+\frac{1}{\theta^{E}}\left[\frac{\partial T(\cdot)}{\partial K_{D}}\right] E\left\{Q^{v}(\cdot)\right\}>0 \tag{32}
\end{equation*}
$$

Each of the terms in (32) is positive, so the inequality holds.
It is apparent that the inequality in (31) also holds if $C^{K}\left(K_{G}\right)+T\left(K_{G}, K_{D}\right)$ is sufficiently large.

$\underline{\text { Proof of Proposition } 4}$

Let $\lambda \geq 0$ denote the Lagrange multiplier associated with constraint (6). Then at an interior solution to $[\mathrm{RP}]$:

$$
\begin{align*}
& w: \quad \int_{\underline{\theta}}^{\bar{\theta}} \theta K_{D} d F(\theta)-\int_{\underline{\theta}}^{\bar{\theta}}\left(\frac{\partial L(\cdot)}{\partial Q^{v}} \frac{\partial Q^{v}}{\partial K_{D}} \frac{\partial K_{D}}{\partial w}+\frac{\partial L(\cdot)}{\partial Q^{D}} \frac{\partial Q^{D}}{\partial K_{D}} \frac{\partial K_{D}}{\partial w}\right) d F(\theta) \\
&-\lambda {\left[\int_{\underline{\theta}}^{\bar{\theta}} \theta K_{D} d F(\theta)\right.} \\
&\left.\quad+\int_{\underline{\theta}}^{\bar{\theta}}\left(w \theta+\frac{\partial C^{G}(\cdot)}{\partial Q^{v}} \frac{\partial Q^{v}}{\partial K_{D}}\right) \frac{\partial K_{D}}{\partial w} d F(\theta)+\frac{\partial T(\cdot)}{\partial K_{D}} \frac{\partial K_{D}}{\partial w}\right]=0 \tag{33}
\end{align*}
$$

$$
\begin{align*}
& r: \quad \sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}}\left(\left[\frac{\partial V^{j}\left(X^{j}(\cdot)\right)}{\partial X^{j}}-r\right] \frac{\partial X^{j}}{\partial r}-X^{j}(\cdot)\right) d F(\theta) \\
&-\int_{\underline{\theta}}^{\bar{\theta}} \frac{\partial L(\cdot)}{\partial Q^{v}} \sum_{j \in\{D, N\}} \frac{\partial Q^{v}}{\partial X^{j}} \frac{\partial X^{j}}{\partial r} d F(\theta) \\
& \quad+\lambda\left[\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}}\left(r \frac{\partial X^{j}}{\partial r}+X^{j}(\cdot)\right) d F(\theta)\right. \\
&\left.\quad-\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} \frac{\partial C^{G}(\cdot)}{\partial Q^{v}} \frac{\partial Q^{v}}{\partial X^{j}} \frac{\partial X^{j}}{\partial r} d F(\theta)\right]=0 . \tag{34}
\end{align*}
$$

Conditions (20) and (22) also hold at the solution to [RP].
Because $\lambda=1$ from (22) and $\frac{\partial Q^{v}}{\partial X^{j}}=1$, (34) can be written as (15). Since $\lambda=1$ and $\frac{d Q^{v}}{\partial K_{G}}=0$, (10) holds and (20) can be written as (7). Because $\lambda=1$ and $\frac{\partial K_{D}}{\partial w}$ is not a function of θ, (33) can be written as:

$$
\begin{align*}
& {\left[\int_{\underline{\theta}}^{\bar{\theta}}\left(w \theta+\frac{\partial C^{G}(\cdot)}{\partial Q^{v}} \frac{\partial Q^{v}}{\partial K_{D}}+\frac{\partial L(\cdot)}{\partial Q^{v}} \frac{\partial Q^{v}}{\partial K_{D}}+\frac{\partial L(\cdot)}{\partial Q^{D}} \frac{\partial Q^{D}}{\partial K_{D}}\right) d F(\theta)\right.} \\
& \tag{35}\\
& \left.\quad+\frac{\partial T(\cdot)}{\partial K_{D}}\right] \frac{\partial K_{D}}{\partial w}=0
\end{align*}
$$

Because $\frac{\partial Q^{v}(\cdot, \theta)}{\partial K_{D}}=-\theta$ and $\frac{\partial Q^{D}(\cdot, \theta)}{\partial K_{D}}=\theta$, (35) can be written as (14).

Proof of Corollary 3

From (15):

$$
\begin{equation*}
r=\frac{\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}}\left(\frac{\partial C^{G}(\cdot)}{\partial Q^{v}}+\frac{\partial L(\cdot)}{\partial Q^{v}}\right) \frac{\partial X^{j}}{\partial r} d F(\theta)}{\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} \frac{\partial X^{j}}{\partial r} d F(\theta)} \tag{36}
\end{equation*}
$$

(14) and (15) imply:

$$
r>w \Leftrightarrow \frac{\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}}\left(\frac{\partial C^{G}(\cdot)}{\partial Q^{v}}+\frac{\partial L(\cdot)}{\partial Q^{v}}\right) \frac{\partial X^{j}}{\partial r} d F(\theta)}{\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} \frac{\partial X^{j}}{\partial r} d F(\theta)}
$$

$$
\begin{gathered}
>\frac{1}{\theta^{E}}\left[\int_{\underline{\theta}}^{\bar{\theta}}\left(\frac{\partial C^{G}(\cdot)}{\partial Q^{v}}+\frac{\partial L(\cdot)}{\partial Q^{v}}-\frac{\partial L(\cdot)}{\partial Q^{D}}\right) \theta d F(\theta)-\frac{\partial T(\cdot)}{\partial K_{D}}\right] \\
\Leftrightarrow \frac{\partial T(\cdot)}{\partial K_{D}}>\int_{\underline{\theta}}^{\bar{\theta}}\left(\frac{\partial C^{G}(\cdot)}{\partial Q^{v}}+\frac{\partial L(\cdot)}{\partial Q^{v}}-\frac{\partial L(\cdot)}{\partial Q^{D}}\right) \theta d F(\theta) \\
\\
\quad-\frac{\theta^{E} \sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}}\left(\frac{\partial C^{G}(\cdot)}{\partial Q^{v}}+\frac{\partial L(\cdot)}{\partial Q^{v}}\right) \frac{\partial X^{j}}{\partial r} d F(\theta)}{\sum_{j \in\{D, N\}} \int_{\underline{\theta}}^{\bar{\theta}} \frac{\partial X^{j}}{\partial r} d F(\theta)} .
\end{gathered}
$$

Proof of Corollary 4

The proof follows immediately from (14) and (15).

Appendix B. Numerical Solutions - Small Market Setting

This Appendix presents a sensitivity analysis for the "smaller market setting." The figures that follow demonstrate how outcomes change as key model parameters change. ${ }^{1}$ The values of parameters other than the one being changed remain fixed at their levels in the smaller market setting.

The Effects of Changes in the VIP's Variable Production Cost $\left(b_{v}\right)$

Figure B1. Impact of Changes in $\boldsymbol{b}_{\boldsymbol{v}}$ on Retail Electricity Prices and DG Compensation

[^0]

Figure B2. Impact of Changes in $\boldsymbol{b}_{\boldsymbol{v}}$ on Capacity Investments

Figure B3. Impact of Changes in $\boldsymbol{b}_{\boldsymbol{v}}$ on Consumer Welfare

As the VIP's variable cost $\left(b_{v}\right)$ increases, the value of a unit of solar DG capacity increases. The regulator increases w to induce increased investment in DG capacity. r also increases in light of the increased marginal cost of generating electricity. The increase in r reduces the welfare of consumer N. The increase in w induces increased investment in DG capacity (K_{D}). Investment in centralized capacity $\left(K_{G}\right)$ declines as b_{v} increases because the VIP produces less output as its variable cost increases. The net metering mandate reduces the unit price of electricity (and the unit DG compensation) below both r and w.

The Effects of Changes in the Cost of Centralized Capacity $\left(b_{K}\right)$

Figure B4. Impact of Changes in $\boldsymbol{b}_{\boldsymbol{K}}$ on Retail Electricity Prices and DG Compensation

Figure B5. Impact of Changes in $\boldsymbol{b}_{\boldsymbol{K}}$ on Capacity Investments

Figure B6. Impact of Changes in $\boldsymbol{b}_{\boldsymbol{K}}$ on Consumer Welfare

As the cost of centralized capacity $\left(b_{K}\right)$ increases, r is increased to ensure the VIP's solvency despite its increased operating costs. The increase in r reduces the welfare of consumer $N . w$ is increased as centralized capacity becomes more expense to induce additional investment in DG capacity.

The Effects of Changes in the Cost of DG Capacity $\left(b_{D}\right)$

Figure B7. Impact of Changes in $\boldsymbol{b}_{\boldsymbol{D}}$ on Retail Electricity Prices and DG Compensation

Figure B8. Impact of Changes in $\boldsymbol{b}_{\boldsymbol{D}}$ on Capacity Investments

Figure B9. Impact of Changes in $\boldsymbol{b}_{\boldsymbol{D}}$ on Consumer Welfare

As the cost of DG capacity $\left(b_{D}\right)$ increases, the amount of DG capacity investment $\left(K_{D}\right)$ decreases and the amount of centralized capacity $\left(K_{G}\right)$ increases. The reduction in K_{D} arises despite an increase in w which is implemented to avoid an excessive reduction in DG capacity investment as its cost increases.

The Effects of Changes in TDM Costs $\left(a_{T}^{D}\right)$

Figure B10. Impact of Changes in a_{T}^{D} on Retail Electricity Prices and DG Compensation

Figure B11. Impact of Changes in a_{T}^{D} on Capacity Investments

Figure B12. Impact of Changes in a_{T}^{D} on Consumer Welfare

As TDM costs $\left(a_{T}^{D}\right)$ increase, w is reduced to induce less investment in DG capacity. Centralized capacity is increased as DG capacity declines. The impact of a change in a_{T}^{D} on capacity investment becomes less pronounced when net metering is mandated.

The Effects of Changes in Marginal Losses from Environmental Externalities $\left(e_{v}\right)$

Figure B13. Impact of Changes in e_{v} on Retail Electricity Prices and DG Compensation

Figure B14. Impact of Changes in e_{v} on Capacity Investments

Figure B15. Impact of Changes in e_{v} on Consumer Welfare

As the marginal social loss due to environmental externalities from centralized production $\left(e_{v}\right)$ increase, r is increased to reduce electricity consumption and w is increased to induce increased DG production. In addition, investment in DG capacity increases and investment in centralized capacity declines as e_{v} increases.

[^0]: ${ }^{1}$ Throughout the ensuing analysis, "(NM)" denotes the relevant variable under a net metering mandate (which requires $w=r$). Variables without the "(NM)" designation denote variables under the optimal policy when no net metering mandate is imposed.

