
Optimal Revenue Adjustment in the Presence of

Exogenous Demand Variation

by

David E. M. Sappington*

Abstract

We consider optimal adjustments to a regulated �rm�s revenue when realized revenue diverges
from expected revenue. The adjustments we consider include those that arise under two
popular forms of incentive regulation �price cap regulation (PCR) and revenue cap regulation
(RCR). We show that the optimal revenue adjustment re�ects the �rm�s Lerner Index. The
optimal policy di¤ers from both PCR and RCR, but more closely resembles PCR (RCR)
when the prevailing �xed charge for the �rm�s service is large (small).

Keywords: regulatory policy; ex post revenue adjustment; demand uncertainty.

JEL Codes: L51, L97

January 2024

* Department of Economics, University of Florida, Gainesville, Florida 32611
(sapping@u�.edu).

I am grateful to Dennis Weisman for his extremely detailed and insightful feedback on earlier
versions of this paper.



1 Introduction.

Considerable uncertainty prevails about the demand for energy services in the coming

years. Governments around the world are encouraging expanded consumption of electricity

generated by renewable resources while discouraging the use of fossil fuels. The nature, scope,

and impact of the associated government policies are di¢ cult to predict. Consequently, it

is presently challenging to predict future demand for electricity and natural gas in many

jurisdictions.1

The purpose of this article is to examine the optimal design of regulatory policy in settings

where the regulated �rm faces potentially large variation in the demand for its service (e.g.,

electricity supply). We consider a class of regulatory policies that includes two popular forms

of incentive regulation �price cap regulation (PCR) and revenue cap regulation (RCR).2 A

key di¤erence between PCR and RCR is the extent to which the �rm�s revenue is adjusted

when demand, and thus revenue, diverge from their expected levels. No revenue adjustment

is implemented under PCR. In contrast, RCR entails full revenue adjustment in the following

sense. If the �rm�s realized revenue falls below expected revenue in one year, a surcharge

that fully o¤sets the �rm�s revenue �shortfall�is imposed on consumers in the following year.

Alternatively, if realized revenue exceeds expected revenue in some year, the regulated �rm

is e¤ectively required to rebate the entire �excess�revenue it has collected to its customers

in the following year.

In our model, the regulator chooses the fraction of any realized revenue �shortfall�that is

awarded to the �rm and the corresponding fraction of any �excess�revenue that is returned

to consumers. The regulator acts to maximize expected consumer welfare while ensuring the

operation of a risk averse �rm that faces potentially substantial exogenous demand variation.3

1See Bovera et al. (2021), Cave (2024), Duma et al. (2024), and Joskow (2024), for example. The New
Zealand Commerce Commission (2019, §4.1) observes that �substantial changes are occurring in the elec-
tricity sector, driven by an increasing focus on decarbonisation as well as increasing a¤ordability of certain
technologies that provide new opportunities to distributors and consumers. However, there is uncertainty
as to the extent, timing, and impact of these changes.�
2In reviewing the Council of European Energy Regulators (2022) report on regulation in 36 European energy
networks, London Economics International (2023, p. 25) observes that some form of PCR was employed
in nearly 20% of these networks in 2021 and some form of RCR was employed in more than 45% of these
networks. London Economics International (2023, p. 26) also documents the use of PCR and RCR in other
electricity networks around the world, including those in Australia, Canada, New Zealand, and the United
States.
3The New Zealand Commerce Commission (2019, p. 3) observes that it implemented �a revenue cap (as
opposed to the previous price cap) [in part to] give distributors greater certainty about revenue recovery.�
Such increased certainty can bene�t consumers by reducing the regulated �rm�s cost of capital. Under the
Hope Standard, a regulated �rm in the U.S. is entitled to a �return ... su¢ cient to assure con�dence in
the �nancial integrity of the enterprise ... and to compensate its investors for the risks assumed.�See Fed.
Power Comm�n v. Hope Nat. Gas Co., 320 U.S. 591, 603, 605 (1944).
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We �nd that the optimal policy in this setting is neither PCR nor RCR. The optimal

policy implements a partial revenue adjustment, where the optimal adjustment re�ects the

�rm�s Lerner Index.4 The optimal adjustment eliminates variation in the �rm�s pro�t, which

both obviates the need for any risk premium to ensure the �rm�s operation and reduces

the �rm�s cost of capital. The optimal policy more closely resembles PCR when the �xed

charge for the �rm�s service is large and the �rm�s per-unit price is close to its marginal cost.

The optimal policy more closely resembles RCR when �xed charges are small and the �rm�s

per-unit price substantially exceeds its marginal cost.

One might expect RCR to systematically manage the risk induced by demand variation

better than PCR because RCR eliminates variation in the �rm�s revenue. However, revenue

variation is only one component of pro�t variation, and fully correcting for revenue variation

can increase pro�t variation if the pricing structure itself su¢ ciently limits the impact of

demand variation on pro�t. Speci�cally, when the �rm�s unit price is close to its marginal

cost, demand variation induces little pro�t variation under PCR.

Many studies document drawbacks to RCR. For example, Crew and Kleindorfer (1996)

identify conditions under which RCR can induce a regulated enterprise to set a price for

its service that exceeds the price an unregulated monopolist would set. Other studies,

including Armstrong et al. (1994), Comnes et al. (1995), De Villemeur et al. (2003), Raineri

and Giaconi (2005), Decker (2009), and Campbell (2018), demonstrate that RCR can induce

a multiproduct �rm to set prices that diverge considerably from Ramsey prices,5 and so can

reduce consumer welfare substantially below the level that would arise under PCR.6 Our

analysis di¤ers from these studies in at least two respects. First, rather than examine the

performance of RCR or compare the performance of PCR and RCR, we characterize the

optimal regulatory policy in a class of policies that includes PCR and RCR. Second, the

studies identi�ed above abstract from risk aversion, which plays a central role in our analysis.

Some studies identify potential bene�ts of RCR. For example, Brennan (2010) demon-

strates that policies like RCR can encourage energy suppliers to promote energy conservation.

We document a distinct potential bene�t of RCR, namely, its ability to reduce variation in

the regulated �rm�s pro�t under certain conditions. However, we also show that RCR is not

the best policy to reduce pro�t variation.7 As we explain in Section 3, policies akin to net

4See Lerner (1934). Formally, the optimal adjustment is proportional to p� c
p , where p denotes the unit price

of the �rm�s service and c denotes the �rm�s marginal cost.
5See Ramsey (1927) and Baumol and Bradford (1970).
6Weisman (2023) demonstrates that relative to PCR, RCR often leads to higher prices, lower service quality,
and less cost-reducing innovation.
7Brennan and Crew (2015) explain how to adjust the parameters of a PCR plan when the demand for a
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lost revenue adjustment mechanisms (e.g., Baxter, 1995) can better serve this function.

Our analysis of these issues proceeds as follows. Section 2 describes our basic model,

which takes the �rm�s cost structure to be exogenous and assumes that the regulator and

the �rm share the same imperfect information about the demand for the �rm�s service.

Section 3 presents our primary �ndings in this setting. Section 4 extends the analysis to

consider endogenous cost structures and asymmetric knowledge of industry demand. Section

5 summarizes our key �ndings and suggests directions for future research. The Appendix

provides the proofs of all formal conclusions.

2 The Model

We consider a setting in which a regulator oversees the operations of a monopoly supplier

of a single service (e.g., electricity supply). The regulated �rm requiresK > 0 units of capital

to serve its customers. The total cost of this capital is kK, where k > 0 is the �rm�s unit

cost of capital. The �rm also incurs a unit production cost, c > 0. Consequently, when it

supplies Q > 0 units of output, the �rm incurs total cost cQ+ kK.

p > 0 is the unit price that the regulated �rm charges for its service. Customers also

pay a �xed charge, T , for the right to purchase the �rm�s service at unit price p.8 T > 0 is

the maximum feasible �xed charge. The upper bound on the �xed charge re�ects standard

concerns with potentially regressive rate structures: a large �xed charge imposed on all

households could compel low-income households to spend an unduly large fraction of their

limited income on an essential regulated service.9

Consumer demand for the regulated service is stochastic. " 2 f"1; :::; "ng is the realization
of an exogenous demand parameter, where "1 < ::: < "n. Realized demand, Q(p; "), increases

as " increases or as p declines.10 �i 2 (0; 1) is the probability that " = "i for i = 1; :::; n.

Therefore, expected demand when the regulated unit price is p is Qe(p) =
Pn

i=1 �iQ(p; "i).

We consider a class of regulatory policies in which a �revenue adjustment� is imple-

regulated service (e.g., postal delivery) is declining in a known, deterministic manner. (Also see Decker
(2016).) In contrast, uncertainty about future demand plays a central role in our analysis.
8For simplicity, the number of consumers is normalized to 1.
9Low-income households typically consume relatively small amounts of essential regulated services like elec-
tricity. Consequently, per-unit charges (as opposed to a common �xed charge for all households) can help to
reduce the total bill incurred by low-income households. In principle, targeted subsidies might be employed
to help ensure that low-income customers can a¤ord essential services. However, in practice, residential
electricity customers in the U.S. generally face per-unit charges that exceed the marginal cost of supplying
electricity. See Borenstein and Bushnell (2022) and Borenstein et al. (2022), for example.
10Formally, for any p > 0, Q(p; "i) Q Q(p; "h) , "i Q "h for i; h 2 f1; :::; ng (h 6= i). Furthermore, for each
" 2 f"1; :::; "ng, Qp(p; ") < 0, where the subscript p denotes the partial derivative with respect to p.
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mented if the �rm�s realized (variable) revenue (pQ(p; "i) ) di¤ers from its expected revenue

(pQe(p) ). The revenue adjustment is the product of a parameter, � � 0, and the di¤erence
between expected revenue and realized revenue. Formally, when demand parameter "i is

realized, revenue adjustment Ri = � p [Qe(p)�Q(p; "i) ] is collected from consumers and

delivered to the �rm.11 When � = 0, no revenue adjustment is implemented, as is the case

under PCR. When � = 1, full revenue adjustment is implemented in the sense that the

regulated �rm�s realized revenue coincides with its expected revenue because: (i) consumers

�reimburse� the �rm for any shortfall of realized revenue (pQ(p; "i) ) below expected rev-

enue (pQe(p) ); and (ii) the �rm �reimburses�consumers for any excess of realized revenue

above expected revenue. The regulatory policy with full revenue adjustment can be viewed

as RCR.12 For analytic ease, we assume that consumer demand does not vary with T or Ri.13

Including any revenue adjustment that is implemented, the �rm�s pro�t when the realized

demand parameter is "i is:

�i = [ p� c ]Q(p; "i)� kK + T + � p [Qe(p)�Q(p; "i) ] . (1)

U(�i) is the utility the �rm derives from pro�t �i. The �rm values pro�t and is risk

averse, so U(�) is a strictly increasing, strictly concave function of �i (i.e., U 0(�) > 0 and

U 00(�) < 0 ). U is the �rm�s reservation level of expected utility, i.e., the minimum expected

utility that will induce the �rm to operate in the regulated industry.

The timing in the model is the following. The regulator �rst speci�es p, T , and �. Then

the demand parameter "i is realized. Next, the �rm serves all realized demand. Finally, the

revenue adjustment is implemented.

The regulator chooses p, T , and � to maximize expected consumer surplus while ensuring

that the �rm�s expected utility is at least U . S(p; "i) denotes the surplus that consumers

secure given p and "i, not counting the �xed charge T or the revenue adjustment Ri. The

regulator�s problem, [RP], is:

Maximize
p; T; �

nX
i=1

�i fS(p; "i)� � p [Qe(p)�Q(p; "i) ] g � T

11If Ri < 0, the �rm delivers a payment to its customers to o¤set the fraction � of the di¤erence between
the �rm�s realized revenue and its expected revenue.

12In practice, RCR adjusts revenue over time, raising (reducing) p in one year to o¤set the extent to which
revenue fell below (exceeded) expected revenue in the preceeding year. Our static model captures this
intertemporal adjustment process as a revenue adjustment that occurs after consumers have made their
one-time consumption decisions.

13Eto et al. (1994) and NARUC (2007) report that the revenue adjustments that arise in practice under
policies of the type analyzed here generally constitute a very small fraction of the typical consumer�s
monthly utility bill.
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subject to:
nX
i=1

�i U(�i) � U and T � T . (2)

3 Primary Findings

To derive the solution to [RP], it is helpful to consider how � a¤ects the manner in

which the �rm�s pro�t varies with realized demand. Lemma 1 refers to Qi � Q(p; "i) for

i 2 f1; :::; ng.

Lemma 1. For all h > i ( i; h 2 f1; :::; ng): (i) �h Q �i , � R p� c
p
; and (ii)

�i��h
p [Qh�Qi ] = �� p� c

p
.

Conclusion (i) in Lemma 1 implies that the �rm�s pro�t does not vary with the realization

of the demand parameter ("i) if � =
p� c
p
. In this case, the fraction of any revenue �short-

fall�(p [Qe(p)�Q(p; "i) ] ) that is awarded to the �rm is the �rm�s proportionate price-cost
margin (i.e., the �rm�s Lerner Index). Conclusion (i) in Lemma 1 also reports that the �rm�s

pro�t increases as "i increases if � < p� c
p
, as is the case under PCR, for example, where

� = 0. Furthermore, the �rm�s pro�t declines as "i increases if � > p� c
p
, as is the case

under RCR, for example, where � = 1.

To explain these observations, assume that the �rm�s price-cost margin is positive (so

p > c ), as is typically the case in practice. First consider the case where � is relatively small

(i.e., � < p� c
p
). Any revenue adjustment that is implemented in this case is relatively small.

Consequently, the �rm�s positive price-cost margin ensures that the �rm�s pro�t increases as

demand increases. Now consider the case where � is relatively large (i.e., � > p� c
p
). In this

case, the relatively pronounced revenue adjustment ensures that the �rm�s post-adjustment

revenue is relatively close to expected revenue. Consequently, the primary e¤ect of increased

demand is to increase the �rm�s costs, which causes the �rm�s pro�t to decline.

Conclusion (ii) in Lemma 1 considers the sensitivity of the �rm�s pro�t to demand varia-

tion, Vih �
��� �i��hQh�Qi

���. As noted above, the �rm�s pro�t does not vary with realized demand
when � = p� c

p
, so Vih = 0 in this case. Further recall that: (i) the �rm�s pro�t increases as

demand increases (so �h > �i when Qh > Qi) if � <
p� c
p
; and (ii) the �rm�s pro�t declines

as demand increases (so �h < �i when Qh > Qi) if � >
p� c
p
. Consequently, conclusion (ii)

in Lemma 1 implies that Vih is 0 when � =
p� c
p
, Vih increases as � increases when � >

p� c
p
,

and Vih declines as � increases when � <
p� c
p
.14 Therefore, Vih is a convex function of �

with a unique minimum at � = p� c
p
.

14Conclusion (ii) in Lemma 1 implies that Vih = �h��i
Qh�Qi

s
= p� c

p � � ) @Vih
@� = � 1 when � < p� c

p . This

conclusion also implies that Vih = �i��h
Qh�Qi

s
= �� p� c

p ) @Vih
@� = 1 when � > p� c

p .
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In practice, a �rm�s cost of capital often increases as the variation in its pro�t increases,

ceteris paribus.15 Consequently, we introduce Assumption 1, which implicitly presumes that

the �rm�s unit cost of capital, k, re�ects the sensitivity of the �rm�s pro�t to the demand

variation it faces.

Assumption 1. k is a convex function of � with a unique minimum at � = p� c
p
.

We also introduce Assumption 2 to re�ect common settings in which T is su¢ ciently

small relative to kK that the �rm�s participation constraint (the �rst constraint in (2)) can

only be met if the �rm secures some variable pro�t from sales (i.e., if p > c ).

Assumption 2. U(T � kK ) < U , where k � min
�
k(�):16

Proposition 1 now identi�es the revenue adjustment parameter, �, that the regulator

implements at the solution to [RP].

Proposition 1. Suppose Assumptions 1 and 2 hold. Then � = p� c
p
2 (0; 1), �1 = ::: =

�n � �, and U(� ) = U at the solution to [RP].

Proposition 1 implies that the optimal regulatory policy in the present setting e¤ectively

reimburses the regulated �rm for the fraction p� c
p

2 (0; 1) of any revenue �shortfall� it

experiences.17 The policy also e¤ectively reimburses consumers for the fraction p� c
p
of any

�excess� revenue payment (i.e., revenue payment in excess of expected revenue payment)

they make. This �partial�adjustment for revenue variation serves to eliminate the variation

in the �rm�s pro�t caused by exogenous variation in demand. In other words, after the

optimal revenue adjustment is implemented, the �rm�s realized pro�t is the same for all

demand realizations. This is the case because (1) implies that when � = p� c
p
:

�i = [ p� c ]Q(p; "i) + T � kK +

�
p � c

p

�
p [Qe(p)�Q(p; "i) ]

= [ p� c ]Qe(p) + T � kK � � . (3)

(3) implies that �1 = ::: = �n = � when � =
p� c
p
.

15See Pedell (2006) and Biggar (2023), for example.
16If the �rm were risk neutral (so U(T � kK ) = T � kK ) and if the �rm�s reservation pro�t level (U )
were normalized to zero, then Assumption 2 would state that the maximum �xed charge (T ) is always
less than the �rm�s �xed cost. (Recall that the number of customers is normalized to one.)

17A revenue �shortfall� is the di¤erence between expected revenue ( pQe(p) ) and realized revenue
( pQ(p; "i) ).
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A complete adjustment for realized revenue variation (i.e., � = 1, as under RCR) would

cause the �rm�s pro�t to decline as demand increases (so �1 > ::: > �n). As noted above,

this is the case because the �rm�s production costs increase as demand increases. Therefore,

the �rm�s pro�t would decline as demand increases if the �rm�s revenue did not vary with

demand. In contrast, no adjustment for unanticipated revenue variation (i.e., � = 0, as

under PCR) would cause the �rm�s pro�t to increase as demand increases (so �1 < ::: < �n).

The pro�t increase re�ects the �rm�s positive price-cost margin (p� c > 0 ).18

These observations imply that the optimal revenue adjustment policy (i.e., the solution

to [RP]) is neither PCR nor RCR. Instead, the optimal policy can be viewed as a type of

�net lost revenue adjustment mechanism�that eliminates all variation in the �rm�s pro�t.19

The absence of pro�t variation minimizes the �rm�s unit cost of capital and thereby ben-

e�ts consumers by reducing the smallest value of p and/or T that will ensure the �rm�s

operation.20

Proposition 1 implies that the optimal revenue adjustment policy varies with the pre-

vailing rate structure. The optimal policy entails less revenue adjustment (i.e., � declines

toward 0), and so more closely resembles PCR, when a high T permits a unit price (p)

close to marginal cost (c ).21 In contrast, the optimal policy entails more revenue adjustment

(i.e., � increases toward 1), and so more closely resembles RCR, when a low T requires p

to substantially exceed c. Proposition 1 thereby implies that if the regulator were restricted

to implementing either RCR or PCR: (i) RCR would better limit the variation in the �rm�s

pro�t if �xed charges were relatively small, so the �rm�s price-cost margin was relatively

large; whereas (ii) PCR would better limit the variation in the �rm�s pro�t if �xed charges

18If Assumption 2 did not hold and the regulator set p = c, then the optimal revenue adjustment policy
would be PCR (because � = 0). When p = c, the �rm�s pro�t does not change as demand changes, so
PCR eliminates all variation in pro�t due to exogenous variation in demand. Of course, a regulator who
seeks to promote energy conservation might prefer to set p above c in order to discourage consumption.

19Technically, a net lost revenue adjustment mechanism adjusts the �rm�s pro�t to eliminate pro�t variation
induced by the �rm�s demand-side management activities (Hirst and Blank, 1994; Hirst et al., 1994; Baxter,
1995). Here, the revenue adjustment policy with � = p� c

p eliminates pro�t variation that arises from all
sources of (exogenous) demand variation.

20The absence of pro�t variation can eliminate the need for earnings sharing or �nancial re-openers to
avoid particularly high or low earnings due to exogenous demand variation. (A �nancial re-opener is a
re-examination of key elements of a regulatory plan designed to identify the likely causes of particularly
high or low earnings. See Alberta Utilities Commission (2012, {819) and Ontario Energy Board (2008,
§2.7), for example.) A regulator might continue to include earnings sharing or �nancial re-openers in a
regulatory plan if high earnings �even high earnings realized on the merits �are politically problematic.
However, because the use of these instruments can diminish incentives for cost-reducing innovation, such
use may not serve the long-term interests of consumers.

21(3) implies that [ p� c ]Qe(p) = � + kK � T . Therefore, as long as the �rm�s expected variable pro�t
([ p� c ]Qe(p)) increases as p increases, the price that ensures pro�t � for the �rm declines as T increases.
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were relatively high, so the �rm�s price-cost margin was relatively small.

Proposition 1 characterizes the optimal regulatory policy when the regulator can choose

the rate structure (i.e., p and T ) and the revenue adjustment policy (i.e., �) simultaneously.

As is apparent from the proof of Proposition 1, the optimal revenue adjustment policy

continues to be � = p� c
p
if the regulator considers p and T to be exogenous parameters when

she determines �. Consequently, in settings where a regulator designs a revenue adjustment

policy after the �rm�s rate structure has been determined, the established rate structure will

a¤ect the optimal revenue adjustment policy. To illustrate, suppose a small �xed charge

(F ) and a relatively high per-unit charge (p > c ) have been implemented, perhaps in an

attempt to achieve a¤ordability objectives. The resulting relatively high value of � = p� c
p

implies that the optimal policy will entail a relatively pronounced adjustment for di¤erences

between realized and expected revenue, as under RCR, for example.22

4 Model Extensions

We now consider two extensions of the streamlined setting considered above.

The Setting with Endogenous Costs

The foregoing analysis treated the �rm�s marginal cost (c ) and capital requirement (K )

as exogenous parameters. In practice, a regulated �rm may be able to undertake e¤ort

designed to reduce its marginal cost and/or reduce the amount of capital required to serve

its customers. Indeed, incentive regulation plans like PCR and RCR often are advocated on

the grounds that they can motivate the �rm to exert non-contractible e¤ort to reduce its

costs.

Recall that under the solution to [RP], the partial adjustment for revenue variation

(� = p� c
p
) renders the �rm�s measured pro�t invariant to realized demand. One might

suspect that this pro�t invariance would limit the �rm�s incentive to deliver non-contractible

e¤ort that serves to reduce c and/or K. However, this is not the case. Even though the

�rm�s pro�t does not vary with demand when � = p� c
p
, the constant level of pro�t the �rm

secures increases as its costs decline. Consequently, the �rm may �nd it pro�table to deliver

cost-reducing e¤ort even when the e¤ort is non-contractible, so the regulator cannot directly

compensate the �rm for any e¤ort it supplies.

To analyze the �rm�s incentive to deliver non-contractible cost reducing e¤ort (r � 0)

under the policy that constitutes the solution to [RP], let D(r) denote the personal (and

non-contractible) cost the �rm incurs when it delivers cost-reducing e¤ort r. This personal
22The optimal revenue adjustment policy will not entail the full revenue adjustment that is implemented
under RCR because p� c

p < 1 whenever c > 0.
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cost increases with r at an increasing rate, so D0(r) > 0 and D00(r) > 0 for all r � 0.

The �rm�s cost-reducing e¤ort serves to reduce the �rm�s marginal cost and/or reduce the

amount of capital required to serve consumers. Formally, let c (r) and K(r), respectively,

denote the �rm�s marginal cost and the �rm�s capital requirement when it delivers r units

of cost-reducing e¤ort. We assume c0(r) < 0 and K 0(r) < 0 for all r � 0.

(3) implies that when � = p� c
p
, the �rm�s pro�t for each demand realization when it

supplies cost-reducing e¤ort r is:

� (r) = [ p� c(r) ]Qe(p) + T � kK(r)�D(r) . (4)

(4) implies that the level of r that maximizes the �rm�s expected utility when � = p� c
p
is:

r� = argmin f c (r)Qe(p) + kK(r) +D(r) g. (5)

(5) implies that when the �rm anticipates that the regulator will implement the solution

to [RP], the �rm will supply the e¢ cient level of cost-reducing e¤ort because the �rm�s

measured pro�t increases with r at the same rate that the �rm�s measured cost declines.23

The Setting with Asymmetric Knowledge of Demand

The analysis in Sections 2 and 3 implicitly assumes that the regulator and �rm share

the same imperfect knowledge of the demand for the �rm�s service. In practice, a regulated

�rm often has better information about consumer demand than does the regulator.24 To

determine the optimal regulatory policy under such circumstances, consider the following

setting with asymmetric knowledge of demand.

In this setting, prior to the start of its interaction with the regulator, the regulated �rm

(privately) observes an informative signal, s 2 fs1; :::; sNg, about the level of demand that
will ultimately arise. The larger is the realization of s, the greater is expected demand.

To state this normalization formally, let �ij 2 (0; 1) denote the conditional probability that
" = "i when s = sj, for i 2 f1; :::; ng and j 2 f1; :::; N g. Then Qe(p; sj) =

Pn
i=1 �ij Q(p; "i)

is the expected demand for the regulated �rm�s service when the unit price is p and the

signal is sj. Consequently, the maintained normalization is that Qe(p; sj) > Qe(p; sl) for all

p > 0, for any sj > sl. All elements of the setting with asymmetric knowledge of demand

other than the �rm�s initial private observation of the signal s 2 fs1; :::; sNg are as speci�ed
in Section 2.
23The e¢ cient level of r is the level that minimizes total expected cost, which is the sum of capital cost,
expected production cost, and e¤ort cost. (5) implies that when r� is strictly positive and �nite, it is
determined by D0(r�) = � [ c0(r�)Qe(p) + kK 0(r�) ]. (4) implies that the level of r that maximizes the
�rm�s pro�t is determined by D0(r) = � [ c0(r)Qe(p) + kK 0(r) ].

24See Lewis and Sappington (1988), for example.

9



Because the �rm observes the signal before the start of its interaction with the regulator,

the regulator can tailor the policy that she implements to the �rm�s report of the signal it

has observed. �j denotes the fraction of any realized revenue shortfall that is awarded to the

�rm when it reports that it observed signal sj.25 pj and Tj, respectively, denote the unit price

and the �xed charge that the regulator implements when the �rm claims to have observed

signal sj. The �rm�s pro�t when "i is realized after the �rm reports that it observed signal

sj is:
�ij = [ pj � c ]Q(pj; "i) + Tj � kK + �j pj [Q

e(pj; sj)�Q(pj; "i) ] . (6)

Let �j 2 (0; 1) denote the probability that s = sj, for j 2 f1; :::; N g. The regulator�s
problem in this setting with asymmetric knowledge of demand, [RP-A], is:

Maximize
�j ; pj ; Tj

NX
j=1

�j

"
nX
i=1

�ij fS(pj; "i)� �j pj [Qe(pj; sj)�Q(pj; "i) ] g � Tj

#
(7)

subject to, for j; l 2 f1; :::; N g:
nX
i=1

�ij U(�ij) � U ; (8)

nX
i=1

�ij U(�ij) �
nX
i=1

�ij U(�il) for l 6= j ; and (9)

Tj � T . (10)

(7) captures expected consumer welfare when the �rm truthfully reports the signal it

observes.26 (8) ensures that the �rm�s expected utility is at least U when it truthfully

reports the signal it has observed. (9) ensures that the �rm (weakly) prefers to truthfully

report the signal it has observed than to misrepresent this signal. (10) re�ects the upper

bounds on feasible �xed charges.27

Proposition 2 characterizes the solution to [RP-A].

Proposition 2. Suppose Assumptions 1 and 2 hold. Then at the solution to [RP-A], for

j = f1; :::; N g: (i) �j = pj � c
pj

> 0; (ii) �1j = ::: = �nj � �j; and (iii) U(�j) = U .

25When the �rm claims to have observed signal sj , the unit price is pj , and the realized demand parameter
is "i, the revenue shortfall is Qe(pj ; sj)� Q(pj ; "i).

26Expected consumer welfare here re�ects the expectation of the regulator, who does not know ex ante which
signal the �rm has observed.

27The Revelation Principle (e.g., Myerson, 1979) ensures that this formulation of the regulator�s problem is
without loss of generality.
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Proposition 2 implies that the key conclusions reported in Proposition 1 persist in the

setting with asymmetric knowledge of demand. Proposition 2 indicates that, for any report

about expected demand that the �rmmight make (sj 2 fs1; :::; sN g), the regulator optimally
implements the values of p, T , and �, that she would implement if she were certain that the

�rm had reported sj accurately. These values eliminate all variation in the �rm�s realized

pro�t because (6) implies that when �j =
pj � c
pj
:

�ij = [ pj � c ]Q(pj; "i) + Tj � kK +

�
pj � c
pj

�
pj [Q

e(pj; sj)�Q(pj; "i) ]

= [ pj � c ]Qe(p) + T � kK � �j . (11)

The values of pj, Tj, and �j that the regulator implements also ensure that the �rm

secures exactly its reservation level of expected utility for each demand realization, i.e.:

U(�ij) = U(�j) = U for all i 2 f1; :::; ng , for each j 2 f1; :::; N g: (12)

The �rm has no incentive to misrepresent the level of expected demand when the regulator

pursues this strategy. To explain this conclusion, suppose the �rm observes signal sj. (11)

implies that if the �rm reports this signal truthfully, the �rm�s pro�t is �j for every demand

("i) realization. Therefore, (12) implies that the �rm�s expected utility is U(�j) = U . Now

suppose the �rm misrepresents expected demand by claiming to have observed signal sl 6= sj.
(11) implies that the �rm�s pro�t would be �l for each demand realization. Consequently,

(12) implies that the �rm�s expected utility would be U(�l) = U . Therefore, the �rm

cannot increase its expected utility by misrepresenting its private information about expected

demand.

One might suspect that the �rm could gain by understating expected demand to induce

the regulator to set a relatively high unit price in order to ensure the �rm�s operation. This

would be the case in the absence of a revenue adjustment. However, the revenue adjustment

that the regulator optimally implements ensures that the �rm�s pro�t does not vary with

the demand realization. Furthermore, for each demand realization, the �rm secures exactly

its reservation level of expected utility (U ), regardless of the regulator�s initial belief about

the ultimate demand realization.

5 Conclusions

We have examined the optimal design of regulatory policy in the presence of potentially

substantial variation in the �rm�s revenue induced by exogenous variation in the demand for

the regulated �rm�s service. We have shown that the optimal policy typically entails a partial

adjustment for revenue variation. This partial adjustment di¤ers from the full adjustment

11



that is implemented under RCR. It also di¤ers from the absence of adjustment that prevails

under PCR. The optimal revenue adjustment is proportional to the �rm�s Lerner Index,
p� c
p
. This �nding implies that the optimal revenue adjustment varies with the regulated

�rm�s rate structure. Speci�cally, the optimal policy more closely resembles PCR when the

prevailing �xed charge is large and the unit price is close to marginal cost. In contrast, the

optimal policy more closely resembles RCR when the prevailing �xed charge is small and

the unit price substantially exceeds marginal cost.

We have considered settings in which the prevailing demand variation is exogenous. The

optimal policy in this setting delivers the same pro�t to the regulated �rm for all demand

realizations. Consequently, the �rm has no strict incentive to increase or reduce demand.

If the regulator wished to induce the �rm to encourage its customers to reduce their con-

sumption of the �rm�s service (e.g., to undertake energy conservation), the regulator would

increase the revenue adjustment parameter, �, above p� c
p
, thereby implementing a policy

that more closely resembles RCR.28 Alternatively, if the regulator wished to encourage the

�rm to increase the level of demand-enhancing quality it supplies, the regulator would reduce

� below p� c
p
, ceteris paribus.29

To facilitate analytic tractability, we have abstracted from any potential impact of rev-

enue adjustment on the demand for the regulated service. In principle, a customer who is

well informed about aggregate industry demand might understand how her consumption de-

cision a¤ects the �rm�s revenue and thereby a¤ects the magnitude of the aggregate revenue

adjustment, a portion of which accrues to, or is borne by, the customer. In this event, in-

creased revenue adjustment (i.e., a larger value of �) could lead consumers to increase their

consumption of the regulated service because increased consumption increases the �rm�s

revenue, which either increases the �excess�revenue that the �rm returns to consumers or

reduces the revenue �shortfall�that consumers deliver to the �rm. If the increased demand

su¢ ciently enhances consumer welfare, then the regulator might optimally impose some

pro�t risk on the risk averse �rm by increasing � above p� c
p
:

We have also abstracted from consumer risk aversion in order to focus on the e¤ects of

�rm risk aversion and to facilitate analytic tractability. Risk sharing considerations arise

if the �rm and its customers are both risk averse. In such settings, the optimal regulatory
28Recall from Lemma 1 that when � > p� c

p , the �rm�s pro�t (after implementing the revenue adjustment)
increases as demand declines.

29The regulator faces a trade-o¤ in this regard. Although a higher value of � will enhance the regulated
�rm�s incentive to promote energy conservation, it will also reduce the �rm�s incentive to supply demand-
enhancing service quality. In practice, this trade-o¤ might be alleviated to some extent by employing
additional policy instruments (e.g., explicit �nancial penalties or rewards for particularly low or high levels
of realized service quality).

12



policy will expose the �rm to some pro�t variation if doing so reduces the risk that customers

experience. The precise impact of customer risk aversion on the optimal revenue adjustment

will vary with the nature and the extent of consumer aversion to risk.

In addition to analyzing these extensions of our model in detail, future research might

consider a broader class of regulatory policies and examine the e¤ects of consumer hetero-

geneity (e.g., income variation) and the associated distributional considerations.30 The key

qualitative e¤ects that arise in our streamlined model seem likely to persist more generally,

although the details of the optimal policy may di¤er.

30Future research might also consider non-constant marginal cost and allow the regulated �rm�s capital
investment to a¤ect its marginal cost.
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Appendix

This Appendix provides the proofs of the formal conclusions in the text.

Proof of Lemma 1. De�ne Qi � Q(p; "i) for i = 1; :::; n. Then (1) implies:

�i � �j = p [ 1� � ]Qi � cQi � (p [ 1� � ]Qj � cQj )

= [ p (1� �)� c ] [Qi �Qj ] = [ p�� p+ c ] [Qj �Qi ]

= p

�
�� p� c

p

�
[Qj �Qi ]

) �i � �j
p [Qj �Qi ]

= �� p� c
p

. (13)

Suppose j > i, without loss of generality. Then (13) implies that because Qj > Qi, �j Q �i
, � R p� c

p
. �

Proof of Proposition 1. (1) implies:

@�i
@�

= p [Qe(p)�Q(p; "i) ]� k0(�)K ;
@�i
@T

= 1 ;

@�i
@p

= �Qe(p) + [ 1� � ]Q(p; "i)

+ p

�
�
@Qe(p)

@p
+ (1� �) @Q(p; "i)

@p

�
� c @Q(p; "i)

@p
. (14)

Let � � 0 and  � 0 denote the Lagrange multipliers associated with the �rst and second
constraints in (2), respectively. Then because Qe(p) =

Pn
i=1 �iQ(p; "i), (2) implies that the

Lagrangian function associated with [RP] is:

L =

nX
i=1

�i S(p; "i)� T + �
"

nX
i=1

�i U(�i)� U

#
+ 

�
T � T

�
. (15)

(15) implies that the necessary conditions for a solution to [RP] include:

@L
@T

= � 1 + �
nX
i=1

�i U
0(�i)�  = 0 ; (16)

@L
@�

= �
nX
i=1

�i U
0(�i)

@�i
@�

= 0 ; (17)

@L
@p

=

nX
i=1

�i
@S(p; "i)

@p
+ �

nX
i=1

�i U
0(�i)

@�i
@p

= 0 . (18)
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(16) re�ects the fact that @�i
@T
= 1, from (14).

(16) implies that � > 0. Therefore, (14) and (17) imply:
nX
i=1

�i U
0(�i) f p [Qe �Qi ]� k0(�)K g = 0 (19)

(13) implies:

If Qi > Qj, then �i > �j , p [ 1� � ] > c ; and

If Qi < Qj, then �i > �j , p [ 1� � ] < c . (20)

First suppose that p [ 1� � ] > c. Then (20) implies that because Q1 < ::: < Qn, it must
be the case that �1 < ::: < �n. Consequently, because U

00
(�i) < 0:

U 0(�1) > ::: > U 0(�n) . (21)Pn
i=1 �i [Q

e �Qi ] = 0 and Qe �Qi is strictly decreasing in i. Therefore, (21) implies:
nX
i=1

�i U
0(�i) p [Q

e �Qi ] > 0. (22)

(19) and (22) imply that k0(�) > 0. Consequently, Assumption 1 implies:

� >
p� c
p

) � p > p� c ) p [ 1� � ] < c .

This contradiction implies that p [ 1� � ] � c.

Now suppose that p [ 1� � ] < c. Then (20) implies that because Q1 < ::: < Qn, it must
be the case that �1 > ::: > �n. Consequently, because U

00
(�i) < 0:

U 0(�1) < ::: < U 0(�n) . (23)Pn
i=1 �i [Q

e �Qi ] = 0 and Qe �Qi is strictly decreasing in i. Therefore, (23) implies:
nX
i=1

�i U
0(�i) p [Q

e �Qi ] < 0. (24)

(19) and (24) imply that k0(�) < 0. Consequently, Assumption 1 implies:

� <
p� c
p

) � p < p� c ) p [ 1� � ] > c .

This contradiction implies that p [ 1� � ] � c.

Because p [ 1� � ] � c and p [ 1� � ] � c, it follows that:

p [ 1� � ] = c ) 1� � =
c

p
) � = 1� c

p
) � =

p� c
p

. (25)

(1) and (25) imply that �1 = :::�n � �. Therefore, U(�) = U because � > 0.
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Suppose p � c. Then (1) and (25) imply:

�i = p [�Qe + (1� �)Qi ] + T � cQi � kK

= [ p� c ]Qe + cQi + T � cQi � kK

= [ p� c ]Qe + T � kK � T � kK . (26)

The inequality in (26) holds because p � c, by assumption, and because k(�) � k, by
de�nition. Assumption 2, the second constraint in (2), and (26) imply:

nX
i=1

�i U(�i) � U(T � kK) � U(T � kK) < U . (27)

(27) violates the �rst constraint in (2). Therefore, by contradiction, p > c. �

Lemma 2 is employed in the proof of Proposition 2.

Lemma 2. For each j 2 f1; :::; Ng, for all h > i ( i; h 2 f1; :::; ng), �hj Q �ij ,
�j R pj � c

pj
.

Proof. De�ne Qij � Q(pj; "i) for i = 1; :::; n and j 2 f1; ::; Ng. Then (6) implies:

�ij � �hj = pj [ 1� �j ]Qij � cQij � (pj [ 1� �j ]Qhj � cQhj )

= [ pj (1� �j)� c ] [Qij �Qhj ] = [ pj �j � pj + c ] [Qhj �Qij ]

= pj

�
�j �

pj � c
pj

�
[Qhj �Qij ]

) �ij � �lj
pj [Qhj �Qij ]

= �j �
pj � c
pj

. (28)

Suppose h > i, without loss of generality. Then (28) implies that because Qhj > Qij,
�hj Q �ij , �j R pj � c

pj
. �

Proof of Proposition 2. To characterize the solution to [RP-A], we will characterize the
solution to the following relaxed problem, [RP-A]0.

Maximize
�j ; pj ; Tj

NX
j=1

�j

"
nX
i=1

�ij fS(pj; "i)� �j pj [Qe(pj; sj)�Q(pj; "i) ] g � Tj

#
(29)

subject to, for j 2 f1; :::; N g:
nX
i=1

�ij U(�ij) � U ; (30)

Tj � T . (31)
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We will show that the solution to [RP-A]0 satis�es all of the constraints in [RP-A], and
so constitutes a solution to [RP-A].

(6) implies:

@�ij
@�j

= pj [Q
e(pj; sj)�Q(pj; "i) ]� k0(�j)K ;

@�ij
@Tj

= 1 ;

@�ij
@pj

= �j Q
e(pj; sj) + [ 1� �j ]Q(pj; "i)

+ pj

�
�j
Qe(pj; sj)

@pj
+ (1� �j)

@Q(pj; "i)

@pj

�
� c @Q(pj; "i)

@pj
. (32)

Let �j � 0 denote the Lagrange multiplier associated with constraint (30). Also let
j � 0 denote the Lagrange multiplier- associated with constraint (31). Then becausePn

i=1 �ij Q
e(pj; sj) = Qe(pj; sj) =

Pn
i=1 �iQ(pj; "i), (29) �(31) imply that the Lagrangian

function associated with [RP-A]0 is:

L =
NX
j=1

�j

"
nX
i=1

�ij S(pj; "i)� Tj

#
+

NX
j=1

�j

"
nX
i=1

�ij U(�ij)� U

#

+
NX
j=1

j
�
T � Tj

�
. (33)

(33) implies that the necessary conditions for a solution to [RP-A]0 include, for j 2
f1; :::; N g:

@L
@Tj

= � �j + �j
nX
i=1

�ij U
0(�ij)� j = 0 ; (34)

@L
@�j

= �j

nX
i=1

�ij U
0(�ij)

@�ij
@�j

= 0 ; (35)

@L
@pj

= �j

nX
i=1

�ij
@S(pj; "i)

@pj
+ �j

nX
i=1

�ij U
0(�ij)

@�ij
@pj

= 0 . (36)

(34) re�ects the fact that @�ij
@Tj

= 1 for j 2 f1; :::; N g, from (32).

Because �j > 0 and j � 0 for j 2 f1; :::; N g, (34) implies that �j > 0 for j 2 f1; :::; N g.
Therefore:

nX
i=1

�ij U(�ij) = U for all j 2 f1; :::; N g . (37)

Furthermore, (32) and (35) imply:
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nX
i=1

�ij U
0(�ij) f pj [Qe(pj; sj)�Q(pj; "i) ]� k0(�j)K g = 0 for all j 2 f1; :::; N g. (38)

(28) implies that for i; h 2 f1; :::; ng and j 2 f1; :::; N g:

If Qij > Qhj, then �ij > �hj , �j <
pj � c
pj

, pj [ 1� �j ] > c ; and

If Qij < Qhj, then �ij > �hj , �j >
pj � c
pj

, pj [ 1� �j ] < c . (39)

First suppose that pj [ 1� �j ] > c for some j 2 f1; :::; N g. Then (39) implies that
because Q1j < ::: < Qnj, it must be the case that �1j < ::: < �nj. Consequently, because
U

00
(�ij) < 0:

U 0(�1j) > ::: > U 0(�nj) . (40)Pn
i=1 �ij

�
Qej �Qij

�
= 0 and Qej �Qij is strictly decreasing in i, where Qej �

Pn
i=1 �ij Qij

for j 2 f1; :::; N g. Therefore, (40) implies:
nX
i=1

�ij U
0(�ij) pj

�
Qej �Qij

�
> 0. (41)

(38) and (41) imply that k0(�j) > 0. Consequently, Assumption 1 implies:

�j >
pj � c
pj

) �j pj > pj � c ) pj [ 1� �j ] < c .

This contradiction implies that pj [ 1� �j ] � c.

Now suppose that pj [ 1� �j ] < c. Then (39) implies that because Q1j < ::: < Qnj, it
must be the case that �1j > ::: > �nj. Consequently, because U

00
(�ij) < 0:

U 0(�1j) < ::: < U 0(�nj) . (42)Pn
i=1 �ij

�
Qej �Qij

�
= 0 and Qej �Qij is strictly decreasing in i, for j 2 f1; :::; N g. There-

fore, (42) implies: nX
i=1

�ij U
0(�ij) pj

�
Qej �Qij

�
< 0. (43)

(38) and (43) imply that k0(�j) < 0. Consequently, Assumption 1 implies:

�j <
pj � c
pj

) �j pj < pj � c ) pj [ 1� �j ] > c .

This contradiction implies that pj [ 1� �j ] � c.

Because pj [ 1� �j ] � c and pj [ 1� �j ] � c, it follows that for j 2 f1; :::; N g:

pj [ 1� �j ] = c ) 1� �j =
c

pj
) �j = 1� c

pj
) �j =

pj � c
pj

. (44)

(44) and Assumption 1 imply:
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k(�j) = k for all j 2 f1; :::; N g . (45)

(6), (44), and (45) imply:

�ij = [ pj � c ]Qij + Tj � k(�j)K + [ pj � c ]
�
Qej �Qij

�
= [ pj � c ]Qej + Tj � kK � �j . (46)

(37) and (46) imply that for j 2 f1; :::; N g:
nX
i=1

�ij U(�ij) = U(�j) = U ) �j = U�1(U ) . (47)

Suppose pj � c. Then (6), (44), and (45) imply:

�ij = pj
�
�j Q

e
j + (1� �j)Qij

�
+ Tj � cQij � k(�j)K

= [ pj � c ]Qej + cQij + Tj � cQij � kK

= [ pj � c ]Qej + Tj � kK � Tj � kK . (48)

The inequality in (48) holds because pj � c, by assumption. (31), (48), and Assumption 2
imply that for j 2 f1; :::; N g:

nX
i=1

�ij U(�ij) � U(Tj � kK) � U(T � kK) < U . (49)

(49) violates the constraint in (30). Therefore, by contradiction, pj > c for j 2 f1; :::; N g.

It remains to verify that the constraints in (9) are satis�ed at the solution to [RP-A]0.
(47) implies that for j; l 2 f1; :::; N g (l 6= j):

nX
i=1

�ij U(�il) =
nX
i=1

�ij U(�l) = U(�l) = U(U�1(U )) = U . (50)

(37) and (50) imply that the constraints in (9) are satis�ed at the solution to [RP-A]0 because:
nX
i=1

�ij U(�il) = U =

nX
i=1

�ij U(�il) for j; l 2 f1; :::; N g ( l 6= j) . �
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