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Let Uy = Uy (g) *=% denote the largest value of U for which the principal’s expected

payoff at the solution to [P-R] is non-negative.! Then we have the following Conclusion.
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Conclusion. Suppose U € (Uy,U,). Then 3 = & [%] " at the solution to [P].

Proof. The proof of Proposition 1 in the text reveals that constraint (3) binds at the solution
to [P] when U > U,. Equations (2) — (4) in the text reveal that, the principal’s problem in

this case is to:

Mcm/:gz;%n'ze /o [x — Bz| f(z|a)de = [1—p]ap, (A1)
_ 208" (T(p+90) 7o

where a@ = [ 5 ( T ) ) , and (A2)

2 @] 10 _m _ 7 (A3)

I'(p)

Equations (A2) and (A3) imply that at the solution to [P-R]:
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Equations (A2) and (A4) imply:
!The following Conclusion reveals that 3 = g [%] ﬁ when constraint (3) binds at the solution to [P]. It is
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never profitable for the principal to increase 3 above 1. Therefore, (%) [g—ﬂ
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From the definition of Uj:
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Equations (A5) and (A6) imply:
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