Technical Appendix to Accompany
 "On the Design of Piece-Rate Contracts"

by
Arup Bose, Debashis Pal, and David E. M. Sappington

Let $\bar{U}_{2}=\bar{U}_{1}\left(\frac{\delta}{\theta}\right)^{\frac{\theta \delta}{\delta-\theta}}$ denote the largest value of \bar{U} for which the principal's expected payoff at the solution to $[\mathrm{P}-\mathrm{R}]$ is non-negative. ${ }^{1}$ Then we have the following Conclusion.

Conclusion. Suppose $\bar{U} \in\left(\bar{U}_{1}, \bar{U}_{2}\right]$. Then $\beta=\frac{\theta}{\delta}\left[\frac{\bar{U}}{\bar{U}_{1}}\right]^{\frac{\delta-\theta}{\theta \delta}}$ at the solution to $[\mathrm{P}]$.
Proof. The proof of Proposition 1 in the text reveals that constraint (3) binds at the solution to $[\mathrm{P}]$ when $\bar{U}>\bar{U}_{1}$. Equations (2) - (4) in the text reveal that, the principal's problem in this case is to:

$$
\begin{gather*}
\underset{\beta, \widetilde{a}}{\operatorname{Maximize}} \quad \int_{0}^{\infty}[x-\beta x] f(x \mid \widetilde{a}) d x=[1-\beta] \widetilde{a} p \tag{A1}\\
\text { where } \widetilde{a}=\left[\frac{2 \theta(\beta)^{\theta}}{\delta}\left(\frac{\Gamma(p+\theta)}{\Gamma(p)}\right)\right]^{\frac{1}{\delta-\theta}}, \text { and } \tag{A2}\\
2(\beta)^{\theta}\left[\widetilde{a}^{\theta}\right] \frac{\Gamma(p+\theta)}{\Gamma(p)}-\widetilde{a}^{\delta}=\bar{U} . \tag{A3}
\end{gather*}
$$

Equations (A2) and (A3) imply that at the solution to $[\mathrm{P}-\mathrm{R}]$:

$$
\begin{gather*}
\widetilde{a}^{\delta}\left[2(\beta)^{\theta}\left[\widetilde{a}^{\theta-\delta}\right] \frac{\Gamma(p+\theta)}{\Gamma(p)}-1\right]=\bar{U} \quad \Rightarrow \quad \widetilde{a}^{\delta}\left[\frac{2(\beta)^{\theta}\left(\frac{\Gamma(p+\theta)}{\Gamma(p)}\right)}{\frac{2 \theta(\beta)^{\theta}}{\delta}\left(\frac{\Gamma(p+\theta)}{\Gamma(p)}\right)}-1\right]=\bar{U} \\
\Rightarrow \quad \widetilde{a}^{\delta}\left[\frac{\delta}{\theta}-1\right] \Rightarrow \bar{U} \quad \Rightarrow \quad \widetilde{a}=\left[\frac{\theta \bar{U}}{\delta-\theta}\right]^{\frac{1}{\delta}} \tag{A4}
\end{gather*}
$$

Equations (A2) and (A4) imply:

[^0]\[

$$
\begin{align*}
{\left[\frac{2 \theta(\beta)^{\theta}}{\delta}\left(\frac{\Gamma(p+\theta)}{\Gamma(p)}\right)\right]^{\frac{1}{\delta-\theta}} } & =\left[\frac{\theta \bar{U}}{\delta-\theta}\right]^{\frac{1}{\delta}} \Rightarrow \frac{2 \theta(\beta)^{\theta}}{\delta}\left(\frac{\Gamma(p+\theta)}{\Gamma(p)}\right)=\left[\frac{\theta \bar{U}}{\delta-\theta}\right]^{\frac{\delta-\theta}{\delta}} \\
\Rightarrow \quad(\beta)^{\theta} & =\frac{\delta \Gamma(p)}{2 \theta \Gamma(p+\theta)}\left[\frac{\theta}{\delta-\theta}\right]^{\frac{\delta-\theta}{\delta}}[\bar{U}]^{\frac{\delta-\theta}{\delta}} \tag{A5}
\end{align*}
$$
\]

From the definition of \bar{U}_{1} :

$$
\begin{align*}
& {\left[\bar{U}_{1}\right]^{\frac{\theta-\delta}{\delta}}=\left[\frac{\delta-\theta}{\theta}\right]^{\frac{\theta-\delta}{\delta}}\left[\frac{\Gamma(p)}{2 \Gamma(p+\theta)}\left(\frac{\delta}{\theta}\right)\right]\left(\frac{\delta}{\theta}\right)^{\theta} } \\
\Rightarrow \quad & {\left[\frac{1}{\bar{U}_{1}}\right]^{\frac{\delta-\theta}{\delta}}=\left[\frac{\theta}{\delta-\theta}\right]^{\frac{\delta-\theta}{\delta}}\left[\frac{\delta \Gamma(p)}{2 \theta \Gamma(p+\theta)}\right]\left(\frac{\delta}{\theta}\right)^{\theta} } \\
\Rightarrow & {\left[\frac{\theta}{\delta-\theta}\right]^{\frac{\delta-\theta}{\delta}}\left[\frac{\delta \Gamma(p)}{2 \theta \Gamma(p+\theta)}\right]=\left(\frac{\theta}{\delta}\right)^{\theta}\left[\frac{1}{\bar{U}_{1}}\right]^{\frac{\delta-\theta}{\delta}} . } \tag{A6}
\end{align*}
$$

Equations (A5) and (A6) imply:

$$
(\beta)^{\theta}=\left(\frac{\theta}{\delta}\right)^{\theta}\left[\frac{1}{\bar{U}_{1}}\right]^{\frac{\delta-\theta}{\delta}}[\bar{U}]^{\frac{\delta-\theta}{\delta}} \Rightarrow \beta=\left(\frac{\theta}{\delta}\right)\left[\overline{\bar{U}} \overline{\bar{U}_{1}}\right]^{\frac{\delta-\theta}{\sigma \delta}}
$$

[^0]: ${ }^{1}$ The following Conclusion reveals that $\beta=\frac{\theta}{\delta}\left[\frac{\bar{U}}{U_{1}}\right]^{\frac{\delta-\theta}{\theta \delta}}$ when constraint (3) binds at the solution to [P]. It is never profitable for the principal to increase β above 1. Therefore, $\left(\frac{\theta}{\delta}\right)\left[\frac{\bar{U}_{2}}{U_{1}}\right]^{\frac{\delta-\theta}{\theta \delta}}=1 \Rightarrow \bar{U}_{2}=\bar{U}_{1}\left(\frac{\delta}{\theta}\right)^{\frac{\theta \delta}{\partial-\theta}}$.

