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Proof. The proof of Proposition 1 in the text reveals that constraint (3) binds at the solution

to [P] when U > U1. Equations (2) �(4) in the text reveal that, the principal�s problem in

this case is to:
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Equations (A2) and (A3) imply that at the solution to [P-R]:
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Equations (A2) and (A4) imply:
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From the de�nition of U1:
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Equations (A5) and (A6) imply:
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