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The buyer�s problem [BP] is:

Minimize
p(�);e(�)

Z �

�

p(�)dF (�) (1)

subject to: u(�j�) � 0 for all � 2 [�; �] , and (2)

u(�j�) � u(�̂j�) for all �; �̂ 2 [�; �] , (3)

where u(�̂j�) = p(�̂)� [�̂ � e(�̂)]� C(e(�̂j�); �) , and (4)

� � e(�̂j�) = �̂ � e(�̂). (5)

De�ne [BP]0 to be this same problem except that the global incentive compatibility (GIC)

constraints (3) are replaced by the local incentive compatibility constraints (@u(�̂j�)
@�̂

j�̂=� = 0
for all � 2

�
�; �

�
) which simply ensure that the supplier will not misrepresent his innate cost

locally.

Di¤erentiating (5) with respect to � provides:

1� de(�̂j�)
d�

= 0; which implies
de(�̂j�)
d�

j�̂=� = 1: (6)

De�ne u(�) � u(�j�). Assuming u(�j�) is di¤erentiable almost everywhere, (4) and (6)
imply that the rate at which the supplier�s utility increases with � at the solution to [BP]0

is:

u0(�) = �dC(e(�̂j�); �)
d�

j�̂=� = �[C1(e; �) + C2(e; �)]: (7)

Recall Assumptions 1 - 3:

Assumption 1. C(e; �) = K
h
��e�
��e�
i
e2 where e� � �.

Assumption 2. K � [� � e�]�1:
Assumption 3. �2 �  � �1:

The text considers the special case of Assumption 1 in which ~� = �: The proof proceeds

here for the more general case where ~� � � because some of the conclusions reported in the
text re�ect this more general analysis.

1



Unless otherwise noted, Assumptions 1 - 3 are assumed to hold throughout the ensuing

analysis. Assumption 1 implies:

C1(e; �) = 2K

"
� � e�
� � e�

#
e ; C2(e; �) =

K

� � e�
"
� � e�
� � e�

#
e2 ; (8)

C11(�) = 2K
"
� � e�
� � e�

#
; C12(�) =

2K

� � e�
"
� � e�
� � e�

#
e ; (9)

C111(�) = 0; and C112(�) =
2K

� � e�
"
� � e�
� � e�

#
: (10)

The structure of the solution to [BP] depends on the sign of u0(�), which is considered

in Lemma 1 .

Lemma 1 u0(�) � 0 and e(�) � � � ~� for all � 2
�
�; �

�
at the solution to [BP ]0.

Proof of Lemma 1 . From (7), u0(�) � 0 for all � 2 [�; �] is ensured if C1(e; �)+C2(e; �) �
0 for all � 2 [�; �]. From (8), when Assumption 1 holds:

C1(e; �) + C2(e; �) � 0 , K

"
� � e�
� � e�

#
e

�
2 +

e

� � e�
�
� 0

, 2� jje
� � e� � 0 , e(�) � 2[� � e�]

jj . (11)

To prove u0(�) � 0 for all � 2 [�; �], we consider any feasible contract, and construct an
alternative contract that has lower expected payment and satis�es e(�) � [� � e�] � 2[��e�]

jj

for each innate cost realization, � (and so u0(�) � 0 for all � 2 [�; �], from (11)).

First recall that when Assumption 1 holds, the �rst-best e¤ort level is:

e�(�) = argminf� � e+ C(e; �)g =
"
2K

"
� � e�
� � e�

##�1
. (12)

Therefore, because K � [� � e�]�1 and jj � 1 from Assumptions 2 and 3, (12) implies:

2e�(�) =
1

K
h
��e�
��e�
i �

"
� � e�
� � e�

#jj�1
[� � e�] � � � e� . (13)
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(13) implies: e� � � � 2e�(�) . (14)

A contract is a set of cost-payment pairs. For each individually rational contract f(ci; pi)
j i 2 Ig, consider a new contract f(�; �) j � 2 [�; �]g [ f(ci; pi) j pi � �; ci � e�; i 2 Ig.
Assume that when multiple (c; p) pairs deliver the same expected utility to the supplier

under the new contract, the supplier selects the pair that he would choose under the original

contract. The new contract is individually rational because when his innate cost is �, the

supplier can always secure non-negative utility by choosing e¤ort level 0 and cost level �.

When the buyer o¤ers the supplier the new contract, one of three possibilities arise:

� The supplier always chooses the same (c; p) pair under the new contract that he would
choose under the original contract. In this case, there is no change in realized payment

under the new contract.

� The supplier with innate cost � chooses (c0; p0) under the original contract and (�; �)
under the new contract. We will now show that p0 � � in this case, and so the buyer
will pay the supplier the same amount or less under the new contract.

Because (c0; p0) is not chosen under the new contract, it is not available under this

contract. Consequently, either p0 � � � �, or c0 < e�. Since p0 � � in the former

case, we need only consider the latter case. In this case, p0 � c0+C(�� c0; �) because
the supplier chooses (c0; p0) under the original contract, and so secures non-negative

utility by doing so.

(12) implies that when Assumption 1 holds:

C(2e�(�); �) = K

"
� � e�
� � �

# "
2K

"
� � e�
� � �

##�2
=

1

4K

"
� � e�
� � �

#�

= 2

"
2K

"
� � e�
� � �

##�1
= 2e�(�) . (15)

Because c0 < e� in the case presently under consideration, (14) implies:
c0 < e� � � � 2e�(�): (16)

Hence:

p0 � c0 + C(� � c0; �) > � � 2e�(�) + C(2e�(�); �) = �: (17)
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The weak inequality in (17) re�ects the case presently under consideration. The strict

inequality in (17) holds because c + C(� � c; �) is a convex, quadratic function of c
that achieves its minimum at � � e�. Therefore, because c0 is less than � � 2e�(�)
which, in turn, is less than � � e�(�), it must be the case that c0 + C(� � c0; �) >
[� � 2e�(�)] + C(2e�(�); �) (> � � e�(�) + C(e�(�); �)). The equality in (17) follows
from (15). Consequently, p0 � �.

� The supplier with innate cost � chooses (c0; p0) under the original contract, and (c1; p1)
under the new contract. We will now show that p0 � p1 in this case, and so the buyer
will deliver either the same or a smaller payment under the new contract.

Because (c0; p0) is not chosen under the new contract, it is not available under this

contract. Consequently, either p0 � � � p1, or c0 < e�. (� � p1 because the (c1; p1)
pair is chosen under the new contract.) In the former case, p0 � p1. Therefore, it only
remains to consider the latter case. In this case:

p0 � [c0 + C(� � c0; �)] � p1 � [c1 + C(� � c1; �)] . (18)

(18) holds because the supplier chose (c0; p0) rather than (c1; p1) under the original

contract when both pairs were available. Also notice that c1 � e� because (c1; p1) is one
of the pairs o¤ered in the new contract. In addition, since e(�) � 0 for all �, c1 � �.
In summary, since c0 < e� in the case presently under consideration, we have:

c0 < e� � c1 � � . (19)

Since c+C(�� c; �) is a convex, quadratic function of c that achieves its minimum at
� � e�, (19) implies:

j(� � e�)� c1j � maxfj(� � e�)� e�j; j� � (� � e�)jg
= j(� � e�)� e�j < j(� � e�)� c0j . (20)

(20) implies c0 + C(� � c0; �) > c1 + C(� � c1; �) (since c + C(� � c; �) is a convex,
quadratic function of c that achieves its minimum at ��e�). Consequently, (18) implies
p0 � p1. (Otherwise, the supplier would secure a higher utility by realizing cost c1 �

which entails lower total production cost for the supplier �and receiving the higher

payment p1.)
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Therefore, in all three cases, the buyer makes the same or a smaller payment under the

new contract. Consequently, we can assume without loss of generality that u0(�) � 0 for all
� 2 [�; �] when Assumptions 1 - 3 hold. �

When u0(�) � 0 for all � 2 [�; �], it is optimal to set u(�) = 0 in order to satisfy (2).
Therefore, from (7), u(�) =

R �
�
[C1(e; �

0)+C2(e; �
0)]d�0, and so the supplier�s expected utility

under the optimal contract is:Z �

�

u(�)dF (�) = u(�)F (�)j���
Z �

�

u0(�)F (�)du =

Z �

�

[C1(e; �)+C2(e; �)]
F (�)

f(�)
dF (�): (21)

(The �rst equality in (21) follows from integration by parts. The second equality in (21)

holds because u(�)F (�)j�� = u(�)F (�)� u(�)F (�) = 0 under the maintained assumptions.)
Since the supplier�s utility is the di¤erence between the payment he receives and the costs

he incurs:

p(�) = � � e(�) + C(e(�); �) + u(�): (22)

(22) implies the expected payment to the supplier is:

P �
Z �

�

p(�)dF (�) =

Z �

�

[� � e(�) + C(e(�); �) + u(�)]dF (�) . (23)

Substituting (21) into (23) provides the following expression for expected payments to

the supplier under the optimal contract:

P =

Z �

�

R(e(�))dF (�) , where (24)

R(e(�)) � � � e(�) + C(e(�); �) + [C1(e; �) + C2(e; �)]
F (�)

f(�)
. (25)

The buyer seeks to minimize (24). To identify the optimal level of induced e¤ort, di¤er-

entiate (24) with respect to e(�): Doing so reveals that under the optimal contract:

@P

@e
= �1 + C1(e; �) + [C11(e; �) + C12(e; �)]

F (�)

f(�)
� 0 ; e(�)[�] = 0: (26)

Di¤erentiating (26) with respect to e(�) provides:

@2P

@e2
= C11(e; �) + [C111(e; �) + C112(e; �)]

F (�)

f(�)
. (27)
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(8) �(10) imply that when Assumption 1 holds, the expressions in (26) and (27) can be

written as:

@P

@e
= �1 + 2K

"
� � e�
� � e�

#
F (�)

f(�)
+ e2K

"
� � e�
� � e�

# �
1 +

�


� � e�
�
F (�)

f(�)

�
, and (28)

@2P

@e2
= 2K

"
� � e�
� � e�

# �
1 +

�


� � e�
�
F (�)

f(�)

�
. (29)

Observation 1 e(�) = 0 at the solution to [BP ]0 if and only if �1 + 2K
h
��e�
��e�
i

F (�)
f(�)

� 0.

Proof of Observation 1 . Recall from Lemma 1 that u0(�) � 0 and e(�) � � � e� for all
� 2 [�; �] at the solution to [BP]0 when Assumptions 1 �3 hold. For a �xed �, the term
in (29) is independent of e. If this term is non-positive, expected payment is a concave

function of e under the optimal contract. Consequently, the optimal e is achieved at a

boundary: either zero or � � e�. (Although e < 0 is feasible, the supplier always delivers

non-negative e¤ort. Negative e¤ort increases �nal production cost at least as rapidly as it

increases the payment from the buyer, and so is not advantageous for the supplier.) We

need to check whether zero or � � e� induces a lower value for R(e) (de�ned in (25)) when
2K
h
��e�
��e�
i h

1 + ( 

��e� )F (�)f(�)

i
< 0.

(25) and (8) reveal that when Assumption 1 holds, R(e) is a quadratic function of e with

R(0) = � and

R0(0) = �1 + 2K
"
� � e�
� � e�

#
F (�)

f(�)
> 0: (30)

The inequality in (30) holds because, by assumption in the case presently under consider-

ation, 2K
h
��e�
��e�
i h

1 + 

��e� F (�)f(�)

i
< 0. Therefore, 1+ 

��e� F (�)f(�)
< 0, which implies jj

��e� F (�)f(�)
> 1:

Consequently:

�1 + 2K
"
� � e�
� � e�

#
F (�)

f(�)
� �1 + 2[� � e�]�1 "� � e�

� � e�
#jj

F (�)

f(�)
(31)

� �1 + jj[� � e�]�1 "� � e�
� � e�

#1
F (�)

f(�)
= �1 + jj

� � e� F (�)f(�)
> 0 . (32)

The inequality in (31) holds because K � [� � e�]�1, by Assumption 2. The weak

inequality in (32) holds because jj � 2 by Assumption 3, and because �� e� � �� e� for all
�.
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Since R0(0) > 0 and R(e) is a quadratic function of e, we can conclude that R(0) �
R(� � e�) if R(�) achieves its critical point on [ (��e�)

2
; (� � e�)] instead of [0; (��e�)

2
]. Notice

from (28) that R0(e) = 0 at e =
1�2K

h
��e�
��e�

i
F (�)
f(�)

2K
h
��e�
��e�

ih
1+( 

��e� )F (�)f(�)

i : Therefore, we seek to show:
1� 2K

h
��e�
��e�
i

F (�)
f(�)

2K
h
��e�
��e�
i h

1 + ( 

��e� )F (�)f(�)

i � (� � e�)
2

. (33)

Notice that:

1 � [K(� � e�)]"� � e�
� � e�

#+1
(34)

, 1 � 2K
"
� � e�
� � e�

# "
(� � e�)
2

#

) 1 � 2K
"
� � e�
� � e�

# "
(� � e�)
2

+


2
(
F (�)

f(�)
) +

F (�)

f(�)

#
(35)

, 1� 2K
"
� � e�
� � e�

#
F (�)

f(�)
� 2K

"
� � e�
� � e�

#
(� � e�)
2

�
1 +



2
[
2

� � e� ]F (�)f(�)

�

,
1� 2K

h
��e�
��e�
i

F (�)
f(�)

2K
h
��e�
��e�
i h

1 + ( 

��e� )F (�)f(�)

i � (� � e�)
2

. (36)

(34) holds because K[� � e�] � 1 from Assumption 2 and because ��e�
��e� 2 [0; 1), and soh

��e�
��e�
i+1

� 1, since  + 1 2 [�1; 0] from Assumption 3. (35) holds because 2 � jj
2

� 0 since
jj � 2, from Assumption 3. The direction of the inequality in (36) follows from the fact

that we are considering the case where 2K
h
��e�
��e�
i h

1 + ( 

��e� )F (�)f(�)

i
< 0.

In summary, we have shown that if the term in (29) is negative, e is 0 at the solution to

[P]0. Therefore, @P
@e
= �1 + 2K

h
��e�
��e�
i

F (�)
f(�)

� 0, from (26) and (28).

If the term in (29) is positive, expected payment is a convex function of e under the

optimal contract. In this case, if the expression in (28) is non-negative at e = 0, then e is

optimally 0. Again, then, @P
@e
= �1 + 2K

h
��e�
��e�
i

F (�)
f(�)

� 0, from (26) and (28). In contrast,

if the expression in (28) is negative at e = 0 (so �1 + 2K
h
��e�
��e�
i

F (�)
f(�)

< 0 ), then e¤ort is

optimally positive.

Therefore, e¤ort is optimally 0 if and only if �1 + 2K
h
��e�
��e�
i

F (�)
f(�)

� 0. �
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Lemma 2 e0(�) =
(1�2K

h
��e�
��e�

i
F (�)
f(�)

)+

2K
h
��e�
��e�

ih
1+( 

��e� )F (�)f(�)

i at the solution to [BP ]0, where (1�2K h��e�
��e�
i

F (�)
f(�)

)+ =

maxf0; 1� 2K
h
��e�
��e�
i

F (�)
f(�)

g.

Proof of Lemma 2 . From Observation 1, e = 0 if 1 � 2K
h
��e�
��e�
i

F (�)
f(�)

� 0. Observation

1 also implies that if 1 � 2K
h
��e�
��e�
i

F (�)
f(�)

> 0, the optimal e is the value of e at which the

expression in (28) is zero. This value is as speci�ed in the Lemma. �

Lemma 3

e0(�) �
(1� 2K

h
��e�
��e�
i

F (�)
f(�)

)+

2K
h
��e�
��e�
i h

1 + ( 

��e� )F (�)f(�)

i � e�(�) � 1

2K
h
��e�
��e�
i for all � 2

�
�; �

�
. (37)

Proof of Lemma 3. From Observation 1, e0(�) = 0 if 1� 2K
h
��e�
��e�
i

F (�)
f(�)

� 0. Therefore,

e0(�) � e�(�) when 1� 2K
h
��e�
��e�
i

F (�)
f(�)

� 0.

When 1� 2K
h
��e�
��e�
i

F (�)
f(�)

> 0,

e0(�) � e�(�) , 1� 2K
"
� � e�
� � e�

#
F (�)

f(�)
� 1 +

�


� � e�
�
F (�)

f(�)
(38)

, 2K

"
� � e�
� � e�

#
� jj
� � e� . (39)

(39) holds because: (1) K � [� � e�]�1 by Assumption 2, and so K [��e�]+1
[��e�] �

h
��e�
��e�
i+1

;

and (2)
h
��e�
��e�
i+1

� 1 � jj
2
since  + 1 � 0 and jj � 2 by Assumption 3. �

Observation 2 � � e�(�) is monotonically increasing in � on [�; �].

Proof of Observation 2. e�0(�) = 1

2K
h
��e�
��e�

i jj
��e� . Also, 2K

h
��e�
��e�
i
� jj

��e� , from (39).

Therefore, e�0(�) � 1 and so � � e�(�) is monotonically increasing in �. �

Lemma 4 If e00(�) � 1 for all � 2
�
�; �

�
at the solution to [BP ]�, then e0(�) is the e¤ort

supply at the solution to [BP ].
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Proof of Lemma 4. We will show that under the maintained conditions:

@u(�̂j�)
@�̂

� 0 for �̂ < � and
@u(�̂j�)
@�̂

� 0 for �̂ > � (40)

at the solution to [BP]0. If (40) holds, the GIC constraints will be satis�ed at the solution

to [BP]0, and so this solution will constitute the solution to [BP].

First consider �̂ < �. From (7):

@u(�̂j�)
@�̂

=
@u(�̂j�̂)
@�̂

+

Z �

�̂

@2u(�̂j�0)
@�̂@�

d�0 =

Z �

�̂

@2u(�̂j�0)
@�̂@�

d�0 (41)

=

Z �

�̂

�@2C(e(�̂j�0); �0)
@�̂@�

d�0 =

Z �

�̂

�@e(�̂j�0)
@�̂

@C1(e(�̂j�0); �0)
@�

d�0 (42)

= [1� e0(�̂)]C1(e(�̂j�0); �0)j
�

�̂
. (43)

Because e00(�) � 1 (by assumption), 1 � e0(�̂) � 0. Therefore, to prove @u(�̂j�)
@�̂

� 0, (43)

implies we need to show C1(e(�̂j�0)); �0)j
�

�̂
� 0. From (8):

C1(e(�̂j�0)); �0)j
�

�̂
� 0, 2K

"
� � e�
� � e�

#
e(�̂j�)� 2K

"
�̂ � e�
� � e�

#
e(�̂j�̂) � 0 (44)

,
"
� � e�
� � e�

#
e(�̂)�

"
�̂ � e�
� � e�

#
e(�̂) +

"
� � e�
� � e�

#
[� � �̂] � 0: (45)

(45) follows from (44) because e(�̂j�) = e(�̂) + � � �̂ (and so e(�̂j�̂) = e(�̂)) from (5).

Because �̂ < � and  < 0, the expression in (45) is decreasing in e(�̂). Since e(�̂) � e�(�̂)
by assumption, (45) will hold if:"

� � e�
� � e�

#
e�(�̂)�

"
�̂ � e�
� � e�

#
e�(�̂) + [� � �̂]

"
� � e�
� � e�

#
� 0; (46)

,
"
�̂ � e�
� � e�

#jj
� 1 + 2K[� � �̂]

"
� � e�
� � e�

#jj
� 0: (47)

(47) is derived from (46) by dividing all terms by
h
�̂�e�
��e�
i
e�(�̂) (=

h
�̂�e�
��e�
i h

2K
h
�̂�e�
��e�
ii�1

from (37)). Because �̂ < � and K � [� � e�]�1, (47) will hold if:
J(�̂) �

"
�̂ � e�
� � e�

#jj
� 1 + 2[� � �̂][� � e�]�1 "� � e�

� � e�
#jj

� 0: (48)
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Notice that J(�) = 0: Furthermore:

J 0(�̂) =
jj(�̂ � e�)jj�1
(� � e�)jj � 2(� �

e�)jj�1
(� � e�)jj � 0 . (49)

The inequality in (49) holds because jj � 2, �̂� e� � �� e�, and jj � 1. Because J 0(�̂) � 0
and J(�) = 0, we know (48) holds for all �̂ < �. Therefore, C1(e(�̂j�0)); �0)j

�

�̂
� 0.

Now suppose �̂ > �. In this case, (7) implies:

@u(�̂j�)
@�̂

=
@u(�̂j�̂)
@�̂

�
Z �̂

�

@2u(�̂j�0)
@�̂@�

d�0 = �
Z �̂

�

@2u(�̂j�0)
@�̂@�

d�0 (50)

=

Z �̂

�

@2C(e(�̂j�0); �0)
@�̂@�

d�0 =

Z �̂

�

@e(�̂j�0)
@�̂

@C1(e(�̂j�0); �0)
@�

d�0 (51)

= �[1� e0(�̂)]C1(e(�̂j�0); �0)j
�̂
� . (52)

Because e00(�) � 1 (by assumption), 1 � e0(�̂) � 0. Therefore, to prove @u(�̂j�)
@�̂

� 0, (50)

implies we need to show C1(e(�̂j�0)); �0)j
�

�̂
� 0. From (8):

C1(e(�̂j�0); �0)j
�̂
� � 0, 2K

"
�̂ � e�
� � e�

#
e(�̂j�̂)� 2K

"
� � e�
� � e�

#
e(�̂j�) � 0 (53)

,
"
� � e�
� � e�

#
e(�̂)�

"
�̂ � e�
� � e�

#
e(�̂) +

"
� � e�
� � e�

#
[� � �̂] � 0 . (54)

(54) follows from (53) because e(�̂j�) = e(�̂) + � � �̂ (and so e(�̂j�̂) = e(�̂)) from (5).

Because �̂ > � and  < 0, the expression in (54) is increasing in e(�̂). Since

e(�̂) � e�(�̂) by assumption, (54) will hold if:"
� � e�
� � e�

#
e�(�̂)�

"
�̂ � e�
� � e�

#
e�(�̂) + [� � �̂]

"
� � e�
� � e�

#
� 0; (55)

,
"
�̂ � e�
� � e�

#jj
� 1 + 2K[� � �̂]

"
� � e�
� � e�

#jj
� 0 . (56)

(56) is derived from (55) by dividing all terms by
h
�̂�e�
��e�
i
e�(�̂) (=

h
�̂�e�
��e�
i h

2K
h
�̂�e�
��e�
ii�1

from (37)). Because �̂ > � and K � [� � e�]�1, (56) will hold if:
J(�) �

"
�̂ � e�
� � e�

#jj
� 1 + 2[� � �̂][� � e�]�1 "� � e�

� � e�
#jj

� 0: (57)
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Again, since J(�) = 0 and J 0(�̂) � 0 (from (49)), we know (57) holds for all �̂ > �.

In summary, we have shown that (40) holds. Consequently, the GIC constraints are

satis�ed at the solution to [BP]�under the identi�ed conditions. �

We can now prove Findings 1 - 3.

Proof of Finding 1. Recall that in the setting of Finding 1: (i) e� = �; (ii) f(�) = 1
��� ;

(iii)  = �2; and (iv) K = 5
4
[� � �]�1.

Because Assumptions 1 - 3 are satis�ed, Lemma 1 ensures u0(�) � 0 for all � 2 [�; �].
Furthermore, F (�) =

���
��� and

F (�)
f(�)

= � � � for all � 2 [�; �].

Notice that 2K
h
��e�
��e�
i
[1 + ( 

��� )
F (�)
f(�)

] = 2K
h
��e�
��e�
i�2

[1 � 2] = �2(5
4
)[ 1
��� ][

���
��� ]

2 =

� 5[���]
2[���]2 < 0 in this setting. Therefore, (29) implies that expected payment is a concave

function of e. Consequently, as shown in the proof of Observation 1, e(�) is optimally 0 for

all � 2 [�; �]. That is, cost reimbursement is optimal in this setting, so the supplier will
optimally provide zero e¤ort. Furthermore, it is readily veri�ed that the GIC constraints are

satis�ed at this solution, so it is indeed the solution to [BP]. �

Proof of Finding 2. Recall that in the setting of Finding 2: (i) e� = �; (ii)  = �2; (iii)
f(�) =

3(���)2

(���)3 ; and (iv) K = 5
4
[� � �]�1.

By Lemma 1, u0(�) � 0 for all � 2 [�; �]. Also notice that F (�) = (
���
��� )

3, and
F (�)
f(�)

=
���
3
. Furthermore, from (29), expected payment is a convex function of e in this

setting, because 1 + 
��� [

F (�)
f(�)

] = 1 � 2
3
> 0. In addition, 1 � 2K

h
��e�
��e�
i

F (�)
f(�)

> 0 ,

1� 5
6
[
���
��� ] > 0.

Therefore, Observation 1 implies that at the solution to [BP]0: (i) no e¤ort is optimally

induced on [�; 5
6
� + 1

6
�]; and (ii) the optimal e¤ort on [5

6
� + 1

6
�; �] is:

e0(�) =
1� 5

6
[
���
��� ]

5
2
[� � �][� � �]�2[1� 2

3
]

=
6[� � �]2 � 5[� � �][� � �]

5[� � �]
=
6

5

[� � �]2

[� � �]
� [� � �]. (58)

However, the GIC constraints are not satis�ed at this solution to [BP]0. To see why,

notice that the local second order condition is:
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@2u(�̂j�)
@�̂

2

�����
�̂=�

� 0 . (59)

Recall that at the solution to [BP]0:

@u(�̂j�)
@�̂

�����
�̂=�

= 0 for all � 2 [�; �] . (60)

Because (60) holds for all � 2 [�; �]:

@

@�

"
@u(�̂j�)
@�̂

#�����
�̂=�

= 0 , @2u(�̂j�)
@�̂

2

�����
�̂=�

= �@
2u(�̂j�)
@�̂@�

�����
�̂=�

. (61)

(61) implies that (59) holds if and only if:

�@
2u(�̂j�)
@�̂@�

�����
�̂=�

� 0 , @2C(e(�̂j�); �)
@�̂@�

�����
�̂=�

� 0 . (62)

The equivalence in (62) follows from (4). Notice that:

@C(e(�̂j�); �)
@�̂

= C1(�)
@e(�̂)

@�̂
; and

@2C(e(�̂j�); �)
@�̂@�

= C1(�)
@

@�
(
@e(�)
@�̂

) +
@e(�)
@�̂

"
C11(�)

@e(�̂j�)
@�

+ C12(�)
#
. (63)

Since e(�̂j�) = � � �̂ + e(�̂) from (5), it follows that:

@e(�̂j�)
@�̂

= e0(�̂)� 1; @e(�̂j�)
@�

= 1; and
@

@�

�
@e(�)
@�̂

�
= 0 . (64)

Substituting from (64) into (63) provides:

@2C(e(�̂j�); �)
@�̂@�

�����
�̂=�

� 0 , [C11(e; �) + C12(e; �)][e
0(�)� 1] � 0. (65)

From (10):

C11(e; �) + C12(e; �) = 2K

"
� � �
� � �

# �
1� jje

� � �

�
> 0: (66)

The inequality in (66) holds because when e(�) = e0(�):
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� � � � jje = � � � � jj[6
5

(� � �)2

(� � �)
� (� � �)] = [� � �][1 + jj]� 6

5
jj
(� � �)2

(� � �)

= 3[� � �]� 12
5

(� � �)2

(� � �)
� 3[� � �]� 12

5
[� � �] > 0. (67)

The �rst equality in (67) follows from (58). The last equality in (67) holds because  = �2
in the setting under consideration. (67) ensures 1 � jje

��� > 0, and so the inequality in (66)

holds. Therefore, we need e0(�) � 1 for all � 2 [�; �] to ensure (65) is satis�ed.
(58) implies that at the identi�ed solution, for � 2 (1

6
� + 5

6
�; �]:

e0(�) =
12

5

[� � �]
[� � �]

� 1 > 12

5

�
5

6

�
� 1 = 1: (68)

(66) and (68) imply that (65) does not hold at the identi�ed solution in this setting.

To derive the optimal contract, we consider the following alternative formulation of the

buyer�s problem, called [AF].

Minimize
e(�)

Z �

�

f� � e(�) + C(e(�); �) + [C1(e; �) + C2(e; �)]
F (�)

f(�)
gdF (�) (69)

subject to: �1 � e(�1) � �2 � e(�2) for all �1 � �2. (70)

Constraint (70) implies that realized cost, c(�) = �� e(�); is (weakly) increasing in � at
the solution to [AF].

We now characterize the solution to [AF] and prove it is a solution to [BP] in the present

setting. The proof proceeds in two steps. Step 1 demonstrates that for any feasible solution

to [BP], there is a solution to [AF] that ensures lower expected payment for the buyer. Step

2 solves [AF] and demonstrates that the solution to [AF] satis�es the GIC constraints.

Step 1. For each e¤ort function ê(�) satisfying the GIC constraints, we will construct an

e¤ort function ~e(�) such that: (1) � � ~e(�) is weakly increasing in �, and (2) R(~e(�)) �
R(ê(�)) for all �, where R(e), de�ned in (25), is the expected payment to the supplier under

e¤ort supply e.

Consider an e¤ort function ê(�) satisfying the GIC constraints, and let B = f� j ê(�) �
e�(�)g. First, we show that if �1; �2 2 B and �1 < �2, then, �1 � ê(�1) � �2 � ê(�2).
Since ê(�) satis�es the GIC constraints:
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u(�1j�1) � u(�2j�1), and (71)

u(�2j�2) � u(�1j�2). (72)

Using (4), (71) and (72) can be rewritten as:

p(�1)� [�1 � ê(�1)]� C(ê(�1); �1) � p(�2)� [�2 � ê(�2)]� C(ê(�2j�1); �1), and (73)

p(�1)� [�1 � ê(�1)]� C(ê(�1j�2); �2) � p(�2)� [�2 � ê(�2)]� C(ê(�2); �2) . (74)

Subtracting (74) from (73) and rearranging terms provides:

C(ê(�2j�1); �1)� C(ê(�1); �1) � C(ê(�2); �2)� C(ê(�1j�2); �2) . (75)

Recall from (5) that:

ê(�2j�1) = �1 � �2 + ê(�2) and ê(�1j�2) = �2 � �1 + ê(�1) . (76)

Assumption 1 implies that (75) can be rewritten as:

K

"
�1 � e�
� � e�

#
[ê(�2j�1)2 � ê(�1)2] � K

"
�2 � e�
� � e�

#
[ê(�2)

2 � ê(�1j�2)2]

, [�1 � e�][ê(�2j�1) + ê(�1)][ê(�2j�1)� ê(�1)]
� [�2 � e�][ê(�2) + ê(�1j�2)][ê(�2)� ê(�1j�2)] . (77)

Using (76), (77) can be rewritten as:

D(ê(�2)) � [�2 � e�] [ê(�2) + �2 � �1 + ê(�1)] [[�1 � ê(�1)]� [�2 � ê(�2)]]
�[�1 � e�] [ê(�1) + �1 � �2 + ê(�2)] [[�1 � ê(�1)]� [�2 � ê(�2)]] � 0 . (78)

It is apparent from (78) that D(ê(�2)) is a quadratic function of ê(�2) for given �1; �2;

and ê(�1). Therefore, the equation D(ê(�2)) = 0 will have at most two real roots. Denote

these roots by ê1 and ê2:

Notice that the coe¢ cient of the ê(�2)
2 term in (78) is �[�1 � e�] + [�2 � e�] < 0. This

coe¢ cient is negative because  < 0 and �1 < �2. The negative coe¢ cient implies D(�)
is a concave function of ê(�2). Because (78) requires D(ê(�2)) � 0, this concavity ensures

we have one of two cases: Case A: ê(�2) is (weakly) less than the smaller of ê1 and ê2; or

Case B: ê(�2) is (weakly) greater than the larger of ê1 and ê2.
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Notice from (78) that D(ê(�2)) = 0 when ê(�2) = ê(�1)� �1 + �2. Therefore, one of the
roots of this equation is ê(�1) � �1 + �2. Consequently, if we are in Case A so that ê(�2)
is (weakly) less than the smaller of ê1 and ê2, we know ê(�2) � ê(�1) � �1 + �2, and so
�1 � ê(�1) � �2 � ê(�2).
We now show that ê(�2) must be less than the greater of ê1 and ê2, and so Case B is not

relevant. To show that ê(�2) is less than the greater of ê1 and ê2, it su¢ ces to show that

ê(�2) is less than the average of the two roots. ê(�2) will be less than the average of the two

roots if this average exceeds �2�
e�

2
. This is the case because:

ê(�2) � e�(�2) �
�2 � e�
2

. (79)

The �rst inequality in (79) holds because e(�) � e�(�) since �2 2 B. The second inequality
in (79) holds because:

e�(�2) =
[�2 � e�]jj
2K[� � e�]jj � [�2 � e�]jj

2[� � e�]jj�1 � [�2 � e�]jj
2[�2 � e�]jj�1 = �2 � e�

2
. (80)

The �rst equality in (80) follows from (37). The �rst inequality in (80) follows from

Assumption 2. The second inequality in (80) holds because �2 � �.
It is readily shown that the two roots of the equationD(ê(�2)) = 0 are ê(�1)+�2��1 and

�ê(�1) +
h
[�1�e�]+[�2�e�]
[�1�e�]�[�2�e�]

i
[�2 � �1]. The average of these roots is

h
[�1�e�]

[�1�e�]�[�2�e�]
i
[�2 � �1].

To conclude that the average of these roots is greater than �2�e�
2
, we must show:"

[�1 � e�]
[�1 � e�] � [�2 � e�]

#
[�2 � �1] >

�2 � e�
2

(81)

, [�2 � �1][�2 � e�]jj
[�2 � e�]jj � [�1 � e�]jj >

"
�2 � e�
2

#
(82)

, 1 >

"
�2 � e�
2

# �
1

�2 � �1

�241� �1 � e�
�2 � e�

!jj35 . (83)

Since e� � �1 < �2,
�1�e�
�2�e� � 1. Therefore, since jj � 2,

h
�1�e�
�2�e�

i2
�
h
�1�e�
�2�e�

ijj
, and so

1�
h
�1�e�
�2�e�

ijj
� 1�

h
�1�e�
�2�e�

i2
. Consequently, (83) will hold if:

1 >

"
�2 � e�
2

# �
1

�2 � �1

�241� �1 � e�
�2 � e�

!235 . (84)
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Notice that:

[�2 � e�]2 � [�1 � e�]2 = [(�2 � e�)� (�1 � e�)][(�2 � e�) + (�1 � e�)]
= [�2 � �1][�2 + �1 � 2e�] . (85)

Therefore, (84) holds if and only if:

1 >

"
�2 � e�
2

# �
1

�2 � �1

�
[�2 � �1][�2 + �1 � 2e�]

(�2 � e�)2 (86)

, 2[�2 � e�] > �2 + �1 � 2e� , �2 > �1 . (87)

Since �2 > �1 by assumption, we have shown (81) holds, and so the average of the roots

the equation D(ê(�2)) = 0 is greater than
�2�e�
2
. Consequently, ê(�2) must be less than the

greater of ê1 and ê2, and so Case A is the only relevant case. Therefore, �1�ê(�1) � �2�ê(�2)
for all �1; �2 2 B and �1 < �2.
Now de�ne ~e(�) such that � � ~e(�) = maxf� � e�(�); sup�0��;�02Bf�0 � ê(�0)gg. Since

both � � e�(�) and sup�0��;�02Bf�0 � ê(�0)g are (weakly) increasing functions, � � ~e(�) is
weakly increasing in �.

Recall that B = f� j ê(�) � e�(�)g, and for all �1; �2 2 B and �1 < �2, �1 � ê(�1) �
�2 � ê(�2). Therefore, ~e(�) = ê(�) for � 2 B and ~e(�) < ê(�) otherwise.
Finally, we will show that ~e(�) ensures lower expected payment than ê(�) by verifying

that R(~e(�)) � R(ê(�)) for each � 2 [�; �]nB, where, recall from (25):

R(e) = � � e(�) + C(e(�); �) + [C1(e; �) + C2(e; �)]
F (�)

f(�)
: (88)

Recall that in the setting of Finding 2, F (�) = (
���
��� )

3, and F (�)
f(�)

=
���
3
. Furthermore,

from (29), expected payment is a convex, quadratic function of e, because 1 + 
��� [

F (�)
f(�)

] =

1� 2
3
> 0. Therefore, to show R(~e(�)) � R(ê(�)), it su¢ ces to show j~e� e0j � jê� e0j.

There are three cases to consider:

Case 1. ~e(�) = ê(�).

In this case, R(~e(�)) = R(ê(�)).

Case 2. ~e(�) = e�(�) < ê(�).

Because e0 � e�(�) from Lemma 3, e0(�) � ~e(�) < ê(�) in this case. Therefore, j~e� e0j
� jê� e0j, and so R(~e(�)) � R(ê(�)).
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Case 3. ~e(�) < e�(�) < ê(�).

We will show that 1
2
[~e(�) + ê(�)] > e�(�) in this case. Consequently, since e0(�) < e�(�)

from Lemma 3, j~e� e0j � jê� e0j in this case, and so R(~e(�)) � R(ê(�)).
To begin, let �1 = supf�̂ j �̂ < �; �̂ 2 Bg, and e1 such that �1 � e1 = supf�̂ � ê(�̂)j�̂ <

�; �̂ 2 Bg. Notice that �1 < � since ~e(�) < e�(�). Also recall that inequality (78) holds for
ê(�). The two roots of D(ê(�)) = 0 are ê(�1)+���1 and �ê(�1)+

h
[�1�e�]+[��e�]
[�1�e�]�[��e�]

i
[���1].

There are two cases to consider: Case (i) �1 2 B; and Case (ii) �1 2= B. In Case (i),
e1 = ê(�1) and ~e(�) = ê(�1) + � � �1. Because ê(�) > ~e(�), ê(�) is greater than both roots
in this case. Because the average of the roots exceeds e�(�), 1

2
[~e(�) + ê(�)] > e�(�). An

analogous argument holds in Case (ii), where a series of ��s converging to �1 is considered

instead of a single �1.

Therefore, since j~e� e0j � jê� e0j in all relevant cases in this setting, R(~e(�)) � R(ê(�)).

Step 2. We now characterize the solution to [AF] and demonstrate that it satis�es the GIC

constraints. In particular, we will show that at the solution to [AF], there exists a �� such

that:

e(�) =

�
0 for � 2 [�; ��)

� � �� for � 2 [��; �]: (89)

Notice that � � e(�) is a strictly increasing function of � on [�; ��) and does not vary with
� for � 2 [��; �]: Therefore, the solution identi�ed in (89) satis�es (70).
We now show that for any feasible solution to [AF], a solution of the form identi�ed in

(89) ensures the same or lower expected payment. Recall from (58) that if constraint (70) is

ignored, the expression in (69) is minimized in the present setting when

e0(�) =

(
0 for � 2 [�; 1

6
� + 5

6
�)

6
5

h
���
���

i2
� (� � �) for � 2 [1

6
� + 5

6
�; �]:

(90)

(90) implies e00(�) � 1 and so � � e0(�) is strictly decreasing on (16� +
5
6
�; �]: Thus, this

solution is not a feasible solution to [AF].

Consider a feasible solution to [AF], ê(�), where ê(1
6
� + 5

6
�) � 0 = e0(16� +

5
6
�): De�ne

�0 2 (16� +
5
6
�; �] as the realization of � such that:

� � ê(�) � �0 � e0(�0) > � � e0(�) for � 2
�
�0; �

�
(91)

and

� � ê(�) � �0 � e0(�0) < � � e0(�0) for � 2 (1
6
� +

5

6
�; �0) . (92)
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Such a �0 exists as long as ê(�) � e0(�), since ĉ(�) � � � ê(�) is (weakly) increasing in
� (by (70), since ê(�) is a feasible solution to [AF]) and c0(�) � � � e0(�) is decreasing on�
1
6
� + 5

6
�; �

�
(since e00(�) � 1 in this region). If ê(�) > e0(�) (so that c0(�) = � � e0(�) >

ĉ(�) = � � ê(�)), de�ne �0 as �.
Now consider the following feasible solution to [AF]:

~e(�) =

�
0 for � < �0 � e(�0)

� � [�0 � e0(�0)] for � � �0 � e(�0)
(93)

We will show that ~e(�) ensures lower expected payment than ê(�) by verifying thatR(~e(�)) �
R(ê(�)) for each � 2 [�; �], where, recall from (25):

R(e) = � � e(�) + C(e(�); �) + [C1(e; �) + C2(e; �)]
F (�)

f(�)
. (94)

Recall that R(�) is either an increasing function or a convex, quadratic function of e(�) that
attains its minimum value at e0(�). Consequently, to demonstrate that ~e(�) secures a lower
value of R(�) than ê(�), it su¢ ces to show that:

jê(�)� e0(�)j � j~e(�)� e0(�)j for all � 2
�
�; �

�
: (95)

Because e0(�) = 0 for � 2
�
�; 1

6
� + 5

6
�
�
and e00(�) � 1 for � 2

�
1
6
� + 5

6
�; �

�
, we know

�0 � e0(�0) � 1
6
� + 5

6
�: Consequently, we have �ve relevant regions to consider.

Region 1. � 2 [�; �0 � e0(�0)].
R(�) is minimized at e0(�) = 0 for all � in this region. Furthermore, ~e(�) equals 0 for all

� in this region. Consequently, jê(�)� e0(�)j � j~e(�)� e0(�)j = 0 for all � in this region.

Region 2. � 2 (�0 � e0(�0); 16� +
5
6
�].

Since � < 1
6
� + 5

6
�, R(�) is minimized at e0(�) = 0 for all � in this region. Therefore,

~e(�) � � � [�0 � e0(�0)] = � � �0. Furthermore, because � < �0 and ~e(�) � 0, � � ê(�) �
�0 � e0(�0) . Therefore, 0 � ~e(�) = � � �0 � ê(�) � e0(�0) = ê(�). In summary, we have
e0(�) = 0 � ~e(�) � ê(�). Consequently, jê(�) � e0(�)j � j~e(�) � e0(�)j for all � in this
region.

Region 3. � 2 (1
6
� + 5

6
�; �0).

(92) implies � � ê(�) � �0� e0(�0) in this region. Therefore, ~e(�) = � � [�0� e0(�0)] �
ê(�). Furthermore, since e00(�) � 1 in this region, e0(�0) � e0(�) � �0 � � for all � in this
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region. Consequently, e0(�) � �� [�0�e0(�0)] = ~e(�). In summary, we have e0(�) � ~e(�) �
ê(�). Consequently, jê(�)� e0(�)j � j~e(�)� e0(�)j for all � in this region.

Region 4. � = �0.

~e(�) � �� [�0�e0(�0)] = e0(�0) in this region. Therefore, jê(�)�e0(�)j � j~e(�)�e0(�)j
= 0 in this region.

Region 5. � 2 (�0; �].
(91) implies ��ê(�) � �0�e0(�0) in this region. Consequently, ~e(�) = ��[�0�e0(�0)] �

ê(�). Furthermore, since e00(�) � 1 in this region, e0(�0) � e0(�) � �0 � �, which implies
e0(�) � � � [�0 � e0(�0)] = ~e(�). In summary, we have e0(�) � ~e(�) � ê(�). Consequently,
jê(�)� e0(�)j � j~e(�)� e0(�)j for all � in this region.

Therefore, we have shown that ~e(�) secures lower expected payment than ê(�) in all �ve

regions, and thus for all � 2 [�; �]. Under the optimal contract, no e¤ort is induced on
[�; ��), and e¤ort � � �� is induced on [��; �].
To derive the value of ��, notice that expected payment in the present setting is:

[�� +K(� � ��)2][1� F (��)] +
Z ��

�

[� +K(� � ��)2]dF (�): (96)

Letting x� � ����
��� , the expression in (96) is proportional to

[x� +
5

4
(1� x�)2][1� x3] +

Z x�

0

[t+
5

4
(1� x�)2]d(t3): (97)

To see why, notice that F (��) = [x�]3 in this example. Also:

�� +K[� � ��]2 = �� + 5
4
[� � �]�1

"
� � � � (�� � �)

� � �

#2
[� � �]2

= [� � �]
"
��

� � �
+
5

4
[1� x�]2

#
= [� � �]

�
x� +

5

4
[1� x�]2

�
+ � . (98)

Furthermore, let � � � � � and t = ���
�
, so that t varies from 0 to x� as � varies from
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� to ��. Notice that d� = �dt. Consequently:Z ��

�

[� +K(� � ��)2]dF (�)

=

Z ��

�

f� + 5
4
[� � �]�1[� � ��]2g3

[� � �]2

[� � �]3
d�

=

Z ��

�

f� + 5
4
��1

"
� � � � (�� � �)

�

#2
�2g3

[� � �]2

�2

�
1

�

�
d�

=

Z x�

0

f� + 5
4
[1� x�]2�g 1

�
3t2�dt = �

Z x�

0

f �
�
+
5

4
[1� x�]2gd(t3)

= �

Z x�

0

ft+
�

�
+
5

4
[1� x�]2gd(t3) = �

Z x�

0

ft+ 5
4
[1� x�]2gd(t3) + �

Z x�

0

d(t3). (99)

(98) and (99) imply:

[�� +K(� � ��)2][1� F (��)] +
Z ��

�

[� +K(� � ��)2]dF (�)

= �

�
x� +

5

4
[1� x�]2

�
[1� (x�)3] + �[1� (x�)3] + �

Z x�

0

ft+ 5
4
[1� x�]2gd(t3) + �[x�]3

= �

�
x� +

5

4
[1� x�]2

�
[1� (x�)3] +

Z x�

0

ft+ 5
4
[1� x�]2gd(t3)g+ � . (100)

To identify the optimal ��, we can �nd the value of x� that minimizes (97). Notice that:

@

@x
f[x+ 5

4
(1� x)2][1� x3] +

Z x

0

[t+
5

4
(1� x)2]d(t3)g =

[1�5
2
(1�x)][1�x3]+[x+5

4
(1�x)2][�3x2]+[x+5

4
(1�x)2]3x2+

Z x

0

[�5
2
(1�x)]d(t3) = 0 (101)

, [1� 5
2
(1� x)][1� x3]� 5

2
[1� x]x3 = 0 (102)

, 1� x3 = 5

2
[1� x][1� x3] + 5

2
[1� x]x3 (103)

, 1� x3 = 5

2
[1� x] . (104)

For �� 2 (�; �), x� 2 (0; 1). Therefore, dividing both sides of (104) by 1� x provides:

1 + x+ x2 =
5

2
; or x =

p
7� 1
2

. (105)
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Since x� =
����
��� , �

� = � + [� � �]x�, and so:

�� = � + [� � �]
"p

7� 1
2

#
=

"p
7� 1
2

#
� +

"
2� (

p
7� 1)
2

#
� . (106)

(106) implies:

�� = �0 � e0(�0) = [
3�

p
7

2
]� + [

p
7� 1
2

]� . (107)

It remains to verify that the GIC constraints are satis�ed at the identi�ed solution. To

begin, notice that with innate cost � 2
�
�; ��

�
the supplier will not deliver any cost-reducing

e¤ot because realized costs are fully reimbrused in this range. When � 2 (��; �], the supplier
will not deliver e¤ort in excess of ����: Such e¤ort would simply reduce realized cost below
��, and thereby reduce the supplier�s payment. Thus, it only remains to show that for any

� 2 (��; �], the supplier will deliver e¤ort � � ��:
The supplier is o¤ered a �xed payment, ��, for any cost realization c 2

�
��; �

�
. Therefore,

the supplier will maximize his utility by delivering e¤ort equal to the minimum of e�(�) and

���� for all � 2 (��; �]. Consequently, the GIC constraints will be satis�ed if e�(�) > ����

or �� > � � e�(�) for all � 2 (��; �]. This will be the case if: (1) �� > � � e�(�); and (2)
� � e�(�) > � � e�(�) for all � 2 (��; �]
The �rst condition holds because, from (37):

� � e�(�) = � � 1

2K
h
���
���

i = � � 1

2K
= � �

4[� � �]
(2)5

(108)

= � � 2
5
� +

2

5
� =

3

5
� +

2

5
� . (109)

(107) and (109) imply:

�� > � � e�(�), [
3�

p
7

2
]� + [

p
7� 1
2

]� >
3

5
� +

2

5
� (110)

,
"p

7

2
� 1
2
� 3
5

#
� �

"p
7

2
+
2

5
� 3
2

#
� > 0,

h
5
p
7� 11

i
[� � �] > 0 . (111)

The last inequality in (111) holds because 5
p
7 � 11 > 13 � 11 > 0. Consequently,

21



�� > � � e�(�). To show that the second condition holds, notice that (37) and (109) imply:

� � e�(�) > � � e�(�), � � 1

2K
h
���
���

i > � � 1

2K
h
���
���

i (112)

, � �
2[� � �]
5

> � �
2[� � �]
5

"
� � �
� � �

#2
= � �

2[� � �]2

5[� � �]
(113)

, � � � > 2

5[� � �]
�
[� � �]2 � [� � �]2

�
(114)

, � � � > 2

5[� � �]

h
�
2 � �2 � 2�(� � �)

i
(115)

, 5

2
[� � �] >

"
� � �
� � �

#
[� + � � 2�], 5

2
[� � �] > � � � + � � � (116)

, 3

2
[� � �] > � � � , � < � +

3

2
[� � �] = � + 1

2
[� � �] . (117)

(117) implies that � � e�(�) > � � e�(�) for all relevant �, since � � � < � + 1
2
[� � �] .

In summary, we have shown that e(�) � e�(�) for all � 2 [�; �], and so the GIC con-
straints are satis�ed in the present setting.

To ensure ~e(�) = 0 for all � < �0 � e0(�0), it su¢ ces to reimburse the supplier fully
for realized cost in the range [�; ��). One way to ensure e¤ort ~e(�) = � � [�0 � e0(�0)]
for � 2 [��; �] is to pay the supplier �� for any cost realization � 2 [��; �]. Under this
reward structure, the supplier will never deliver more e¤ort than is required to ensure cost

realization ��. Additional e¤ort would secure a smaller realized cost, and thereby ensure a

lower payment for the supplier. Since �� > �� e�(�) for � > ��, the supplier with high cost
will deliver su¢ cient e¤ort to ensure cost ��. �

Proof of Finding 3. Recall that in the setting of Finding 3: (i) e� = �; (ii)  = �2;
(iii) f(�) =

30[���]4[���]
[���]6 ; and (iv) K = [� � �]�1.

By Lemma 1, u0(�) � 0 for all � 2 [�; �]. Letting � � � � �, notice that F (�) =

6(
���
��� )

5 � 5(���
��� )

6 =
[���]5
�6

�
6�� 5[� � �]

�
. Therefore, F (�)

f(�)
=

6[���][���]�5[���]2

30[���] .

De�ne x � ���
�
2 [0; 1]. In this setting:
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1� 2K
"
� � e�
� � e�

#
F (�)

f(�)
> 0 (118)

, 1� 2

�

�
� � �
�

�2 �6�(� � �)� 5[� � �]2
30[� � �]

�
> 0

, 1� 2
�
1

x2

�"
6(� � �)� 5x2�
30[� � � � (� � �)]

#
, 1� 2

�
1

x2

� �
6x� 5x2
30(1� x)

�
> 0

, 1� 1

15

�
6� 5x
x(1� x)

�
> 0 , 15x2 � 20x+ 6 < 0 (119)

, 20�
p
40

30
< x <

20 +
p
40

30

, � +

"
20�

p
40

30

#
[� � �] � � � � +

"
20 +

p
40

30

#
[� � �] (120)

,
"
5 +

p
10

15

#
� +

"
10�

p
10

15

#
� < � <

"
5�

p
10

15

#
� +

"
10 +

p
10

15

#
�: (121)

(121) and Observation 2 imply that at the solution to [BP]0, no e¤ort is optimally induced

for the lower and the higher innate cost realizations where the probability density is low.

Lemma 2 also implies that on the interval
hh

5+
p
10

15

i
� +

h
10�

p
10

15

i
�;
h
5�
p
10

15

i
� +

h
10+

p
10

15

i
�
i
:

e0(�) =

24 1� 1
15

h
6�5x
x(1�x)

i
2 1
x2
[1� ( 2

x
)( 6x�5x

2

30(1�x))]

35 [� � �] =
24 15x(1�x)�(6�5x)

15x(1�x)

2
x2

h
15x(1�x)�(6x�5x2)

15x(1�x)

i
35 (122)

�
[�15x2 + 20x� 6] [x2]

2[�10x2 + 9x]

�
[� � �] =

�
[�15x2 + 20x� 6]x

2[9� 10x]

�
[� � �] . (123)

It is tedious but straightforward to verify that e00(�) < 1. Therefore, by Lemmas 3 and

4, the GIC constraints are satis�ed, and e0(�) is the solution to [BP]. �
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