Proof of Claim in

"On the Profitability of Self-Sabotage"
by David P. Brown and David E. M. Sappington

Claim. Our focus on a single (\underline{r}, \bar{r}) compensation structure is without essential loss of generality. More precisely, the buyer's maximum expected payoff with one (\underline{r}, \bar{r}) pair is the same as the maximum expected payoff she could achieve if she offered two (\underline{r}, \bar{r}) pairs, one for each possible supplier report of his cost of delivering cost-reducing effort ($k \in\{\underline{k}, \bar{k}\}$).

Proof. The Claim follows from the following two observations.
First, Lemmas 2 and 3 report that the supplier secures no rent both when he never delivers cost-reducing effort and when he delivers this effort selectively. Therefore, the buyer secures with a single (\underline{r}, \bar{r}) pair her maximum potential expected payoff when she induces these two patterns of effort delivery.

Second, the buyer also secures with a single (\underline{r}, \bar{r}) pair her maximum potential expected payoff when she induces the supplier to always deliver cost-reducing effort. To see why, note that Lemma i reports that when the buyer employs a single (\underline{r}, \bar{r}) pair, the supplier earns no rent when $k=\bar{k}$ and he earns rent $\bar{k}-\underline{k}$ when $k=\underline{k}$. It remains to verify that the supplier secures at least these rent levels when the buyer employs two (\underline{r}, \bar{r}) pairs.

To prove this conclusion, consider the following notation. Let $\underline{r}_{L}\left(\bar{r}_{L}\right)$ denote the payment to the supplier when he reports $k=\underline{k}$ and project $\operatorname{cost} \underline{c}(\bar{c})$ is subsequently realized. Similarly, let $\underline{r}_{H}\left(\bar{r}_{H}\right)$ denote the payment to the supplier when he reports $k=\bar{k}$ and project cost $\underline{c}(\bar{c})$ is subsequently realized. To ensure the supplier secures non-negative expected profit when he reports $k=\bar{k}$ (truthfully), it must be the case that:

$$
\begin{equation*}
p_{L}\left[\underline{r}_{H}-\underline{c}\right]+\left[1-p_{L}\right]\left[\bar{r}_{H}-\bar{c}\right]-\bar{k} \geq 0 . \tag{I}
\end{equation*}
$$

To ensure the supplier truthfully reports $k=\underline{k}$ and delivers cost-reducing effort rather than reporting $k=\bar{k}$ and delivering this effort, it must be the case that:

$$
\begin{equation*}
p_{L}\left[\underline{r}_{L}-\underline{c}\right]+\left[1-p_{L}\right]\left[\bar{r}_{L}-\bar{c}\right]-\underline{k} \geq p_{L}\left[\underline{r}_{H}-\underline{c}\right]+\left[1-p_{L}\right]\left[\bar{r}_{H}-\bar{c}\right]-\underline{k} \geq \bar{k}-\underline{k} . \tag{2}
\end{equation*}
$$

The last inequality in expression (2) reflects expression (I). Expressions (I) and (2) (and Lemma i) imply that when the buyer always induces the supplier to deliver cost-reducing effort, her expected payoff when she employs a single (\underline{r}, \bar{r}) pair optimally is at least as large as her expected payoff when she employs two (\underline{r}, \bar{r}) pairs.

In settings where the buyer can employ multiple (\underline{r}, \bar{r}) pairs, the (\underline{r}, \bar{r}) pair identified in Lemma 2 is not the unique solution to the buyer's problem when she induces the supplier to deliver cost-reducing effort selectively. The buyer can secure the same expected payoff, for example, by setting $\underline{r}_{H}=\underline{c}, \bar{r}_{H}=\bar{c}$, and $\underline{r}_{L}=\bar{r}_{L}=p_{L} \underline{c}+\left[1-p_{L}\right] \bar{c}+\underline{k}_{L}$. However, this pair of reward structures generates the same expected payoff for the buyer as the single reward structure specified in Lemma 2.

