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TECHNICAL APPENDIX TO ACCOMPANY “SIMPLE COST SHARING CONTRACTS” 
 
Proof of Lemma 1. 

 The choice of an optimal LCSCR contract involves the choice of an Lx  such that the 
supplier chooses the LCS option when Lxx ≤  and the CR option when Lxx > .  When he 
selects the LCS option and his innate cost realization is x , the supplier’s choice of cost reduction 
is determined by: 
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4
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]1[Maximize yy

ky −− α  .    (L1.1) 

(L1.1) implies: 
  ]1[2)( α−= kxyL  .     (L1.2) 

 
(L1.2) implies that when he chooses the LCS option, the supplier’s profit under the LCS option 
at the cut-off value of innate costs, Lx , is: 
 

)]([))(()]([)( LLLLLL xyxxyCxyxxT −−−−+ α  
 

2)]1(2[)]1(2[]1[)( 4
1 ααα −−−−−−= kkxxT kLL .   (L1.3) 

 
 Because the supplier is indifferent between the two options when his innate cost 
realization is Lx  and since his profit is always zero under the CR option, (L1.3) implies that: 

2]1[]1[)( αα −−−= kxxT LL .     (L1.4) 
 
(L1.4) implies that the buyer’s procurement cost when Lxx =  is: 

]1[]1[2)()]([)( 2ααααα −−=−−+=−+ kxkxxTxyxxT LLLLLL .  (L1.5) 

 
From (L1.2) and (L1.5), the buyer’s procurement cost when Lxx ≤  : 
 

]1[2)()]([)( αααα −−+=−+ kxxTxyxxT LL  
 

        ].1[]1[ 2ααα −−−+= kxx L                                        (L1.6) 
 
 The reduction in expected procurement costs from the LCSCR contract with cost 
reimbursement fraction α  relative to the CR contract is: 
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From (L1.7): 
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xF     > +≤ k]1[ α .                                       (L1.9) 

Because )(/)( ⋅⋅ fF  is monotonically increasing, (L1.9) implies the unique value of Lx  that 
maximizes ][αLG  is: 

  },]1[{minimum)( xkxxL δαα ++=∗ . ■   (L1.10)                        
 
Proof of Lemma 2.  

The buyer’s problem of minimizing the expected cost of securing one unit of the good is: 

)(),(
Minimize

xyxT
     )()( xdFxT

x

x
∫                              (L2.1) 

 

   subject to:      0)( ≥xxu        for all   ],[ xxx ∈   ;  and               (L2.2) 
 

  )ˆ()( xxuxxu ≥  for all ],[ˆ, xxxx ∈  ,              (L2.3) 
 
 

where    ))ˆ((])ˆ(ˆ[)ˆ()ˆ( xxyCxxyxxTxxu −−−≡ ,          (L2.4) 
 

    )ˆ(ˆ)ˆ( xyxxxyx −=− ,  and           (L2.5) 
 

    2
4
1)( yyC k= . 

 
Differentiating (L2.5) with respect to x  provides:                           

 

1ˆ ==xxdx
dy .       (L2.6) 

 
Defining )()( xxuxu ≡ , it follows from (L2.3), (L2.4), and (L2.6) that at the solution to the 
buyer’s problem: 
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     xxdx
xxyCd

xu =−=′ ˆ

))ˆ((
)( =   ≤′− ))(( xyC   0 .   (L2.7) 

 
Since (L2.7) implies the supplier’s utility declines with x , the buyer optimally sets 0)( =xu .   
Therefore: 

     xdxyCxu
x

x

~))~(()( ′= ∫ .     (L2.8) 

(L2.7) and (L2.8) imply that the supplier’s expected utility under the optimal contract is: 
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The first equality in (L2.9) follows from integration by parts.  The second equality in (L2.9) 

holds because 0)()()()()()( =−= xFxuxFxuxFxu x
x

. 

 
Because the agent’s utility is the difference between the payment he receives and the 

costs he incurs: 

 )())(()()( xuxyCxyxxT ++−= .     (L2.10) 
 
(L2.10) implies the expected payment to the supplier is: 
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(L2.9) and (L2.11) imply: 
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The derivative of (L2.12) with respect to )(xy  is: 
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Because 2
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Because (L2.14) implies 0)()(1 ≥′′+′+−
f
FyCyC  when δkxx 2+≥ , it follows that 

expected procurement costs are minimized when 0)( =xy  for all δkxx 2+≥ . 
 
 (L2.14) implies that when δkxx 2+≤ , expected procurement costs initially decline 
and then increase with x .  Therefore, the optimal cost reduction is interior, and is determined by  

 
0)(2 =−++− xxxyk δδ .     (L2.15) 

 
(L2.15) implies: 

δ
xxkxy −−= 2)(     when δkxx 2+≤ .      ■   (L2.16) 

 
Proof of Lemma 3. 

 Let OG  denote the reduction in the buyer’s expected procurement costs under the optimal 
contract relative to the cost reimbursement contract.  To analyze OG , it is necessary to consider 
two cases.  In the first case (case I), xx −≡∆  is relatively large, and so xkx <+ δ2 .  
Consequently, the supplier is optimally induced to supply strictly positive effort levels for small 
x ’s and to supply no effort for large x ’s.  In the second case (Case II), ∆  is relatively small, and 
so the supplier is induced to supply a strictly positive level of effort for all realizations of ∆ . 
 
Case I:    δkxx 2+≥   (or  12 ≥≡ ∆

δkT ). 
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(L3.3) follows from (L3.2) above by letting )2(][ δkxxt −= .  Notice that t  varies from 0 to 1 
as x  varies from  x  to δkx 2+ .  (L3.4) follows from (L2.16). 
 
Case II:  δkxx 2+<   (or 1<T ). 
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Notice again that (L3.10) follows from (L3.9) by letting )2(][ δkxxt −= .  Also notice that  
t  varies from 0 to T  as x  varies from x  to x .  (L3.11) follows from (L2.16). 
 
 It follows from (L1.7) and (L1.10) that the expected gain from the optimal FPCR contract 
relative to the CR contract is: 
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where *
Fx  =  minimum },{ xkx δ+ .      (L3.16) 

 
 To analyze the expected gain in (L3.15), it is convenient to consider two cases.  In the 
first case (Case I), xx −≡∆  is relatively large, and so xkx <+ δ .  Consequently, ∗

Fx  is 
interior, and so the agent chooses the fixed price contract for low x ’s and the cost 
reimbursement contract for high x ’s.  In the second case, ∆  is relatively small, and so the agent 
chooses the fixed price contract for all realizations of x . 
 
Case I:   δkxx +≥    (or 2

1≥T ).   
 
 It follows from (L3.15) and (L3.16) that: 
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(L3.18) follows from (L3.17) by letting )(][ δkxxt −= .  Notice that t  varies from 0 to 1 as 
x  varies from x  to δkx + . 
 
Case II:  δkxx +<    (or 2

1<T ). 

 It follows from (L3.15) and (L3.16) that: 
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1 δ
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where  )(][ˆ δkxxT −= . 
 
 Again, (L3.23) follows from (L3.22) by letting )(][ δkxxt −= .  Notice that t  varies 
from 0 to T̂  as x  varies from x  to x . 
 
 To complete the proof, we analyze separately the three cases implied by the analysis 
immediately above and the analysis in the proof of Lemma 2. 
 
Case 1.  δk2≥∆   (or 1≥T ). 

 Case 1 here corresponds to Case I in both the analysis of the optimal contract and the 
analysis of the FPCR contract.  Therefore, from (L3.7) and (L3.20): 
 

12
2

)2)(1(
22

1 +

+
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡

++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆
=

+ δ

δ
δδ

δδδδ
δ

kkkk

O

F
G
G

.  (L3.27) 

 

Case 2.  ]2,[ δδ kk∈∆  (or )1,[ 2
1∈T ). 

 Case 2 here corresponds to Case II in the analysis of the optimal contract and to Case I in 
the analysis of the optimal FPCR contract.  Therefore, from (L3.14) and (L3.20): 
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(L3.29) reveals that OF GG /  declines with T  in this case if  21
2 21

)( ++
++

+−≡ δδδ
δδδ TTTTD   is 

an increasing function of T .  )( ⋅D  is an increasing function of T  because: 
 

0]1[]21[2)( 212111 ≥−=+−=+−=′ −−+− TTTTTTTTTD δδδδδ .        (L3.30) 
 

Case 3.   ),0( δk∈∆   (or ),0( 2
1∈T ). 

Case 3 here corresponds to Case II in the analysis of both the optimal contract and the 
FPCR contract.  Therefore, from (L3.14) and (L3.26): 
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T (L3.31)                         

Notice that ]1[/
1

22

+
−
δ
δTT   increases with T  because the numerator of this term increases with 

T  while the denominator decreases with T .  Also notice that since ),0( 2
1∈T  in Case 3,  

1
1

1
2

1
+

−>
+

−
δ
δ

δ
δT   >  0.   Therefore, it follows from (L3.31) that  OF GG /   is a decreasing 

function of T  in this case.   ■ 
 
Proof of Lemma 4. 

 1=T  when )2( k∆=δ .  Therefore, from (L3.27): 

∞→δ O

F
G
G

limit        =        
∞→

+

+

δ
δ

δ
12

2
limit      =     0.     (L4.1) 

The last equality in (L4.1) follows from L’Hopital’s Rule.    ■ 
 
 

Proof of Proposition 1. 

 (L1.7) and (L1.10) imply that, relative to the cost reimbursement contract, the expected 
gain from the optimal LCSCR contract (givenα ),  ][αLG , is: 
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    (P1.1) 

 To analyze this expected gain, we need to consider two cases.  In the first case (Case I), 
xx −≡∆  is relatively large, and so the supplier chooses the LCS option for low x ’s and the 

CR option for high x ’s.  In the second case (Case II), ∆  is relatively small, and so the agent 
chooses the LCS option for all realizations of x . 
 
Case I:   δα kxx ]1[ ++≥   (or 1)1( ≥≡′ +

∆
δα kT ).   
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(P1.3) follows from (P1.2) by letting [ ] [ ]( )αδ +−= 1kxxt .  Notice that t  varies 

from 0 to 1 as x  varies from x  to [ ]αδ ++ 1kx . 
 

Case II:   δα kxx ]1[ ++<   (or 1<′T ). 
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⎜
⎝
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+
′
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δ
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where  ( )[ ]δkαT +=′ 1/∆ .    
 

Again, (P1.8) follows from (P1.7) by letting [ ] ( )[ ]αδ +−= 1kxxt .  Notice that t  
varies from 0 to ( )[ ]Tkx ′++ αδ 1  as x  varies from x  to x . 

 
For given x , x and δ , the optimal LCSCR contract is derived by choosing α  optimally. 
 

Case I:   δk2≥∆   (or 12 ≥≡ ∆
δkT ). 

[ ] 1
1)1(1 2

][ +⎟
⎠
⎞

⎜
⎝
⎛

∆
+

−= δ
δαα

δ

α
kkGL  .       (P1.13) 

Since ( ) ( )( )ααα +−=− 111 2  , the sign of the partial derivative of ][αLG  with respect to α  

has the same sign as the derivative of ( )( ) 111 ++− δαα , which is ( ) ])2([1 αδδα δ +−+ .  
Setting this derivative equal to zero reveals that the value of α  that uniquely maximizes ][αLG  
is: 

  
2+

=∗

δ
δα   .        (P1.14) 

Substituting (P1.14) into (P1.13) provides: 
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Case II:   ⎥⎦
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⎛∈ +

+ δkδkδ
δ 2,2∆ 2

1    (or ⎥⎦
⎤

⎢⎣
⎡∈ +

+ 1,2
1

δ
δT ). 

 
Case IIA:   ( ) 1−∆≤ δα k . 
 

 
1

1]1[]1[ 2
][ +

⎟
⎠
⎞

⎜
⎝
⎛

∆
+

−=
δ

δαα
δ

α
kkGL .     (P1.16) 
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Again, the partial derivative with respect to α  of the expression in ][αLG  has the same sign as the 

expression ( ) ( ) ]2[1 αδδα δ +−− . 
 
 When ( ) 1−∆= δα k : 
 

( )[ ]1]2[)2( −∆+−=+− δδδαδδ k  

   012
2
1)2( =⎥

⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

+−≤
δ
δ

δ
δδδ

k
k .    (P1.17) 

The inequality in (P1.17) holds because we are in Case II. 
 
 When 0=α ,   0]2[ >+− αδδ .  Therefore, the value of α  that uniquely 
maximizes ][αLG  in this range is: 

2+
=∗

δ
δα   .       (P1.18) 

Substituting (P1.18) into (P1.16) provides  
 

( ) ( )21
2

2
12

2
1

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+

δδδ
δ

∆
δ δδk

kGL  .    (P1.19) 

 
Case IIB:   ( ) 1∆ −> δkα . 

 [ ] ⎥
⎦

⎤
⎢
⎣

⎡

+
−+−=

1
2

11][ δ
δ

ααα

T
kGL .    (P1.20) 

 
The sign of the partial derivative with respect to α  of the expression for ][αLG  in (P1.20) is the 

same as the sign of the derivative of [ ] ⎥
⎦

⎤
⎢
⎣

⎡
−+−

+ 1

211
δ

δαα T , which is 
1

22
+

+−
δ

δα T .  This 

derivative is negative because: 
 

 0
1

2
2 <

+
+−
δ
δ

α
T

                                                      (P1.21) 

 

⇔         α
δ

δ
⎥⎦
⎤

⎢⎣
⎡ +

<
1T        ⇔    ⎟

⎠
⎞

⎜
⎝
⎛ +

<
∆

δ
δ

δ
1

2k
α   

 

⇐    ⎥⎦
⎤

⎢⎣
⎡ +

≤
∆

δ
δ

δ
1

2k ⎥
⎦

⎤
⎢
⎣

⎡
−

∆ 1
δk

                  (P1.22) 
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⇔    
δδ

δ
δ

δ
k2

1121 ∆
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛ +

≤
+      ⇔    ( )

δ
δδ

k2
21 ∆

+≤+  

 

⇔    ∆≤⎥
⎦

⎤
⎢
⎣

⎡
+
+ δ

δ
δ k2

2
1  .                               (P1.23) 

 
(P1.23) holds because we are in Case II.  (P1.22) holds because we are in Case IIB.  The 
negative derivative implies the optimal α  will never lie in this range. 
 

Case III:  δ
δ
δ k2

2
1
⎥⎦
⎤

⎢⎣
⎡∆

+

+
≤   (or ⎥⎦

⎤
⎢⎣
⎡

+

+
∈

2
1

,0
δ
δT ). 

 
Case IIIA:   ( ) 1−∆< δα k . 

1
1)1(]1[ 2

][ +
⎟
⎠
⎞

⎜
⎝
⎛

∆
+

−=
δ

δαα
δ

α
kkGL .     (P1.24) 

 
The partial derivative with respect to α  of the expression for ][αLG  in (P1.24) has the same sign 

as the derivative of ( )( ) 111 ++− δαα , which is ( ) ( )( )αδδα δ 21 +−+ .  This derivative 
is positive because: 

0])2([)1( >+−+ αδδα δ     ⇔    α
δ
δ

>
+ 2

    ⇐    1
∆

2
−≥

+ δkδ
δ

         (P1.25) 

       

 ⇔    
δδ

δ
k
∆

≥
+
+

2
22       ⇔      ( )

( ) ∆≥
+
+ δ

δ
δ k2

2
1  .               (P1.26) 

 
The last equivalence in (P1.26) holds, given that we are in Case III.  The last equivalence in 
(P1.25) holds because we are in Case IIIA.  The positive derivative implies the optimal α  will 
not lie in the specified range. 
 
Case IIIB:   ( ) 1−∆≥ δα k . 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
+

−+−=
1

211][ δ
δααα
TkGL .     (P1.27) 

The partial derivative of the expression for ][αLG  with respect to α  in (P1.27) has the same sign 

as the derivative of ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−

+ 1

211
δ

δαα T , which is 
1

22
+

+−
δ

δα T . 

 
Notice that when ( ) 1−∆= δα k , 
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δkδ
δ

δkδ
Tδ

α
∆

1
2

2
∆2

1
2

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
++−=

+
+−  

 

         0]2[∆12
2
∆

4
1

2
2

2

1
≥

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=⎥

⎦

⎤
⎢
⎣

⎡
−

+
+=

+

+
δk

δkδ
δ

δ

δ
.   (P1.28) 

 

Also notice that 
1

22
+

+−
δ
δα T  <  0   when 1=α .  Consequently, the optimal value of α  in 

this range is the solution to:    0
1

2
2 =

+
+−

δ
δ

α
T

.  Therefore, the unique maximizer of ][αLG  

in this case is: 

 ])1[2(∆ +=∗ δkα  .                  (P1.29) 

Substituting (P1.29) into (P1.27) provides: 

( )

2

12
1 ⎥

⎦

⎤
⎢
⎣

⎡
+

∆
−=

δk
kGL .        (P1.30) 

It is now useful to prove that for given δ , 
O

L

G

G
 is a non-increasing function of ∆ .   The 

proof proceeds by examining three cases: 
 
Case I:   δk2≥∆   (or 1≥T ). 
 
In this case: 

( )( ) ( )( )

11

2
12

21
22

21
4

2
12

++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
⎟
⎠
⎞

⎜
⎝
⎛
∆⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

⎟
⎠
⎞

⎜
⎝
⎛
∆

=
δδδδ

δ
δ

δδ
δ

δδδ
δδ kkkk

G
G

O

L .   (P1.31) 

 

Case II:  ⎥
⎦

⎤
⎢
⎣

⎡
∈∆

+

+ δδ
δ
δ kk 2,][ 2[]

2
1  (or ⎥

⎦

⎤
⎢
⎣

⎡
∈

+

+ 1,
2
1

δ
δT ). 

 

( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

⎟
⎠
⎞

⎜
⎝
⎛
∆

=
+

21
21

21
2

2
122

21

δδδ
δ

δδδ
δδ

δδ TTkkk
G
G

O

L  

 

( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

⎟
⎠
⎞

⎜
⎝
⎛
∆

=
++

21
2

21
2

2
122

21

δδδ
δ

δδδ
δδ δδδδδ TTTk .  (P1.32) 
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(P1.32) implies it suffices to show that 
2

2

1

12
+

+
+

+

+
−

δ

δ

δ

δ

δ

δ TTT  is an increasing function of T .  

This fact follows because the derivative of this function is: 

      =+− +− 11 2 δδδ TTT     0]1[21 2121 ≥−=⎥⎦
⎤

⎢⎣
⎡ +− −− TTTTT δδ . (P1.33) 

 

Case III:   δk
δ

δ
2∆

2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤

+

+
  (or ⎥

⎦

⎤
⎢
⎣

⎡
∈

+

+

2

1,0
δ

δT ). 

 

 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

+
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−=

21
21

1
1

22

δδδ
δ

δ
δ TT

k
T

k
G
G

O

L  

 
( )

( ) ( ) ( )
2

21
2

1

2
1

21
1

TT
T

+++

+

+−

−
=

δδ
δ

δ
δ

δ
δ

 .        (P1.34) 

 

Since ⎟
⎠
⎞⎜

⎝
⎛

+− T11 δ
δ  is a decreasing function of T  while 2T  is an increasing function of T , 

(P1.34) implies OL GG /  is a decreasing function of T . 
 
 The foregoing analysis implies that OL GG /  attains its smallest value in Case I 
immediately above.  Consequently, the proof follows if: 

e22
1

2

1
>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+

+
δ

δ

δ .        (P1.35) 

To show that (P1.35) holds, first recall that ( )
∞→

+≡
w

w
we 11lim .  Now it will be useful to show 

that ( )( ) ( )ww
w w 11 11 lnln +=+  is an increasing function of w  on ( )∞,0 .  To do so, we will 

show that its derivative is declining with w , and is non-negative at ∞=w . 
  

     ( )}11{ ln ww
wd

d
+   =   ( ) ( ) ( ) wwww

ww +−+−
+

++ = 1
1111

11
111 lnln 2 .  (P1.36) 

 
As ∞→w ,  ( ) ( ) 0011

111 lnln =− −→++ ww .    (P1.37) 

 
 It remains to show that the derivative of ( ) ww +−+ 1

111ln is negative on ( )∞,0 .  This 

derivative is: 
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( ) ( ) ( )222

1

1
1

1

1

1
11

11

wwww
w

w ++++
− +−=+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛   

 
( )

( ) ( ) 2
2 1

1

1

1
ww

ww

ww
+−

+

+−
==    <   0 .     (P1.38) 

 
(P1.38) implies ( )ww

11 +  is an increasing function of w , whose limit as ∞→w  is e .  

Consequently, ( ) ew
w <+ 11  for ( )∞∈ ,0w .  Thus: 

 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

⎟
⎠
⎞

⎜
⎝
⎛

++
+

⎟
⎠
⎞

⎜
⎝
⎛

+
+

≥ +=

+

=

+

δδδ
δ

δ
δ δδ

1)]1/(11[
12

11
12

2
12

11

O

L

G
G    >  

e
2  .   ■ 

 
 
Proof of Proposition 2. 

 We first prove that ][/][ FOFL GGGG −−  is a non-increasing function of ∆ .  The proof 
proceeds by analyzing four distinct cases. 
 
Case I:   δk≤∆   (or 212 ≤≡ ∆

δkT ). 

 
From (L3.14), (P1.30), and (L3.26): 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+

−=
21

21
2

δ
δ

δ
δ TTkGO ,   ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−=
1

21
δ
δTkGF ,  and 

 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+

+
−=⎥

⎦

⎤
⎢
⎣

⎡
+

−=⎥
⎦

⎤
⎢
⎣

⎡
+

∆
−= 2

2222

11
21

1
1

12
1

δ
δ

δ
δ

δ
δ

δ
TTkTk

k
kGL . 

 
Consequently: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
+

−=
−

−

1
21

21
21

1
21

)1(1
21

2

2

22

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ TkTTkTkTTk

GG
GG

FO

FL

 

      
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
=

21

2

2

22

δ
δ

δ
δ TT  ( )

( )21
2

+
+

=
δ
δδ  .      (P2.1) 
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Case II:  ⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛

+
+

∈ δkδk δ
δ

2
22∆ ,   (or ⎥

⎦

⎤
⎢
⎣

⎡
∈ +

+
2
1,

2

1
δ
δT ). 

 
From (L3.14), (P1.30), and (L3.20): 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

+
+

+ 21

2 2

1
δ

δ

δ

δ TTkGO ,  
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

+
+

+ 2

22

11

21
δ

δ

δ

δ TTkGL ,  and ( ) )1/(2 += − δδTkGF . 

 
Consequently: 
 

FO

LO

FO

FL

GG
GG

GG
GG

−

−
−=

−

−
1  

 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
+

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

+
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
+

−−=
−

1
)2(

21
2

1
11

2
1

21
2

11
2

2

22

δδ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ δTkTT

k
TT

k
TT

k  

 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+

−
+

+
+

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++
−=

−

1
)2(

21
2

1
21

1
2

2

2

δδ
δ

δ
δ

δδ
δ δTTTT  

 

( ) ( )

12
12

2 1
2

21
2

21
1

−−−−
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

+
+

−
++

−=
δδ

δ
δ
δ

δδ
δ δδ TTT .                     (P2.2) 

 

FO

FL

GG

GG

−

−
 is a decreasing function of T  if and only if 

FO

LO

GG

GG

−

−
 is an increasing function of T .  

This is the case if and only if ( )TR  is a decreasing function of T , where 
 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

+
+

+
−≡

−−−
−−

1
2

21
2 2

12

δδ
δ

δ
δ δδT
TTTR .   (P2.3) 

 
(Notice that ( ) 0>TR  for all relevant T .  Otherwise, it would follow from (P2.2) that 

OL EGEG > , which cannot be the case.) 

The derivative of ( )TR  with respect to T  on ⎥⎦
⎤

⎢⎣
⎡

+
+

2
1,21 δ

δ  is: 

 

)(
1
22

1
22

1
22

1
22 33323 TSTTTTTTT −−−−−−−−− ≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
+

+
+

+−=
+
+

+
+

+−
δ
δ

δ
δ

δ
δ

δ
δ δδδδ .     (P2.4) 
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We will now show that 0)( <TS for ( )2
1,21 +

+∈ δ
δT  by showing that it is strictly convex and the 

values of its ending points are non-positive.  Notice, first, that 

0
1
2

1
2)( =

+

+
+

+
+−=

δ
δ

δ
δ

TS   when 21=T  .   (P2.5) 

Next observe that )(TS  is convex because: 

      
( )

1

1
22

1
2

)( −−
−

+

+
−

+
=′ δ

δ

δ
δδ

δ
δ

TTS ,  and so  ( ) 022)( 2 >+=′′ −−− δδ δδ TTS .    (P2.6) 

Now note that when   
2

1

+

+
=

δ

δ
T : 

1
2

22
2)

2
4(

2
2

2
22

2
22)(

+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

+
+

−=
+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

+
+

+−=
−

δ
δ

δ
δ

δδ
δ

δ
δ

δ
δ

δδ

TS , which is non-

positive because: 
 

    ( )
( )

2
22

20)
1
2(

22
2)

2
4( 1

2

≤
+
+

⇔≤
+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

+
+

− +

+

δ

δδ

δ
δ

δ
δ

δ
δ

δ
 

 
( ) ( ) 2ln22ln]1[2ln]2[)( ≤++−++≡⇔ δδδδδZ .   (P2.7) 

 
Notice that ( ) ( ) 2ln2ln2ln2)0( =−=Z .  Therefore, to show that )(δZ 2ln≤  for all 

0≥δ , it suffices to show that  0)( ≤′ δZ  for all 0≥δ .  From (P2.7): 
 

( ) ( ) ( ) ( )22ln2ln122ln12ln)( +−+=−+−++=′ δδδδδZ   <  0 .                 (P2.8) 
 

(P2.8) implies 
FO

FL

GG

GG

−

−
  is a decreasing function of T  on  ⎥

⎦

⎤
⎢
⎣

⎡
+
+

2
1,

2

1
δ
δ . 

 

Case III:   ⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛∈ +

+ δδ∆ δ
δ kk 2,2

22  (or ⎥⎦
⎤

⎢⎣
⎡∈ +

+ 1,2
1

δ
δT ). 

 
From (L3.14), (P1.19), and (L3.20): 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

+
+

+ 21

2 2

1
δ

δ

δ

δ TTkGO , ( )( )212

1 4
1

+++

+
+

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

δδδ

δ
δ

δkTGL ,  and ( )
1

2
+

=
−

δ

δTkGF . 

 
Consequently: 
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( )

( )( )
( ) ( )

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
+

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=
−

− −−+

−

1
2

21
2

1
1

2
21

4
2
1 21

δδ
δ

δ
δ

δδδδ
δ δδδ

δ TkTT
k

Tk
Tk

GG
GG

FO

FL  

 
( )

( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+

+
+

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=
−

++
−+

1
2)

2
()

1
2

(
1

2
21

4
2
1 21

1

δδ
δ

δ
δ

δδδδ
δ δ

δδδ
δδ

TTT .      (P2.9) 

 

To show 
FO

FL

GG

GG

−

−
 is a decreasing function of T , it suffices to show ( )TW  is an increasing 

function of T , where: 
 

 ( ) 21

21
2

++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
−≡ δδδ

δ
δ

δ
δ

TTTTW .     (P2.10) 

 
( ) [ ] [ ] [ ] 01212 212111 ≥−=+−=+−=′ −−+− TTTTTTTTTW δδδδδ δδδ .   (P2.11) 

 
 
Case IV:  δk2≥∆ (or 1≥T ). 
 
From (L3.7), (P1.15), and (L3.20): 

( )( )21

2
++

−=
δδ

δTkGO ,  ( )( )21

4
2
1

1

++

+

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=
δδ

δ
δ

δ
δTkGL ,  and ( )

1
2
+

=
−

δ

δTkGF . 

Consequently: 
 

( )( )
( )

( )( )
( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
−

++⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=
−

− −−−−+

1
2

21
2

1
2

21
4

2
1

1

δδδδδδδ
δ δδδδδ

TkTkTkTk
GG
GG

FO

FL  

 

( )( ) ( )( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
++⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

=
−−+

1
2

21
2

1
2

21
4

2
1

1

δδδδδδδ
δ δδδ

 

 

⎟
⎠
⎞

⎜
⎝
⎛ +

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
+

=
++

+

11

1

2
2

1
2

2
2
1

2 δδ

δ
δδ

δ
δ .                (P2.12) 

 
Notice that the expression in (P2.12) is independent of T . 

In summary, we have shown 
FO

FL

GG

GG

−

−
 is a non-increasing function of ∆  in all four cases. 
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 Because 
FO

FL

GG

GG

−

−
 declines as T  increases, it suffices to show that 2

1>
−

−

FO

FL

GG

GG
 in 

Case IV above.  Therefore, from (P2.12),  to complete the proof, it suffices to show: 
 

2
1)

2
2

(1
2

2
2
1

2 11

1

>⎥⎦
⎤

⎢⎣
⎡ +

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
+

++

+

δδ

δ
δδ

δ
δ      for    1≥δ .   (P2.13) 

 
(P2.13) holds if and only if: 
 

⎥⎦
⎤

⎢⎣
⎡ +

−>
+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

++

+

11

1

2
21

2
1

2
2

2
12 δδ

δ
δδ

δ
δ                              (P2.14) 

 

 ⇔    1

1

2
21

2
14 +

+
+

+>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

δ

δ
δ

δ
δ                              (P2.15) 

 

 ⇔    1
2

21
1
2

4
1)( 1

1

<⎥⎦
⎤

⎢⎣
⎡ +

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

≡ +

+

δ

δ
δ

δ
δδM .                           (P2.16) 

 

From the proof of Proposition 1, 
1

1

2
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
δ

δ

δ is increasing in δ  and is bounded above by e .  Also 

notice that: 
 

   ( ) ( )[ ]2ln2222
2

2 1112
1

+++−
+ +−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

∂

∂
δδδ

δ δ
δ

δ
 

  ( ) ( )[ ] ( ) ( )( )[ ]69.2122ln212 11 +−<+−= +−+− δδ δδ  

 
 ( ) ( )[ ] 069.212 1 <−< +− δ .                   (P2.17) 

(P2.17) implies  12
2

+

+
δ

δ
  is a decreasing function of δ . 

 
 We will now demonstrate that )(δM  < 1 over all relevant intervals in which 1≤δ . 

Initially, suppose 2.2≥δ .  Because 
1

1
2 +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

+ δ

δ
δ

 <  e  <  2.718, and because 12
2

+

+
δ

δ
 is decreasing 

in δ , we know that in this range: 
 

 ( ) [ ][ ] [ ] 196.3
4
1718.2457.1

4
1718.2

2
2.41

4
1)( 2.3 <<<⎥⎦

⎤
⎢⎣
⎡ +<δM . (P2.18) 
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 Now suppose [ )2.2,3.1∈δ .  Because 
1

1
2

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

δ

δ
δ  is increasing in δ , 

1

1
2

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

δ

δ
δ  < 

2.3

2.3
2.4
⎟
⎠
⎞

⎜
⎝
⎛  <  2.3)3125.1(   <  2.3874 in this range.  Also, since 12

2
+

+
δ

δ  is decreasing in δ ,   

12
21 +

+
+ δ

δ   ≤   3.22
3.31 +   <  1.67  in this range.  Therefore,  )(δM  <  [1.67][2.3874]/4  <  3.99/4  

<  1  in this range. 

 Now suppose [ )3.1,1.1∈δ .  Because 
1

1
2

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

δ

δ
δ  is increasing in δ , 

1

1
2

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

δ

δ
δ  <  

3.2

3.2
3.3
⎟
⎠
⎞

⎜
⎝
⎛  <  3.2)43478.1(  < 2.29407 in this range.  Also, since 12

2
+

+
δ

δ  is decreasing in δ ,   

12
21 +

+
+ δ

δ  1.22
1.31+≤  <   1.7231 in this range.  Therefore, )(δM   <  [2.29407][1.7231]/4  <  

(3.953)/4  <  1  in this range. 

 Finally, suppose [ )1.1,1∈δ .  Because 
1

1
2

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

δ

δ
δ  is increasing in δ ,  

1

1
2

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

δ

δ
δ   < 

1.2

1.2
1.3
⎟
⎠
⎞

⎜
⎝
⎛  <  2.265  in this range.  Also, since 12

2
+

+
δ

δ  is decreasing in δ ,  ≤
+

+ +12
21 δ

δ  1  +  ¾  

=  1.75  in this range.  Therefore, )(δM   <  [2.265][1.75]/4  <  (3.964)/4  <  1 in this range.   ■ 
 
 
 
 
The simulations in Appendix B reflect the following analysis. From (A3) in Appendix A: 
 

[ ] )()()())(( 2
)(

4
1 2 xdFxyxyxyG

Ox

x
O f

F
k
xy

k∫
∗

⎥⎦
⎤

⎢⎣
⎡ −−=  .                                (B1) 

 
Maximizing ))(( xyGO  with respect to )(xy  provides: 
 

)(/)(2)( xfxFkxyO −= .                                                          (B2) 
 

Substituting  )(xyO  into )( ⋅OG  provides: 
 

∫ ⎥
⎦

⎤
⎢
⎣

⎡
−=

*
0

)(
)(
)(2

4
1

2

0

x

x

xdF
xf
xFk

k
G ,                                              (B3) 
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where, from (B2): 

 )(/)(2 **
OO xfxFk = .                                                              (B4) 

 
From (A6) in Appendix A: 

)(][
*

* xdFkxxG
Fx

x
FF ∫ +−=  .                                            (B5) 

 
Maximizing FG  with respect to *

Fx  provides: 
 

)(/)( **
FF xfxFk = .                                                              (B4) 

 
From (A2) in Appendix A: 

)(])1()()1([ 2
][ xdFkxxG

Lx

x
LL ∫ −+−−= ααα  .                          (B5) 

 
Maximizing ][αLG  with respect to Lx  provides: 

)(/)(]1[ LL xfxFk =+ α .                                                          (B6) 

 
Solving (B6) for α  provides: 

1
)(

)(
−=

L

L

xfk
xF

α .                                                          (B7) 

 
Maximizing ][αLG  with respect to α  provides: 

dxxFxFk
Lx

x
L ∫= )()(2 α .                                                              (B8) 

(B8) follows in part from the fact that  dxxFxdFxx
LL x

x

x

x
L ∫∫ =− )()(][ . 

 
Substituting (B7) into (B8) reveals: 

)](2[/)()(/)( L

x

x
LL xFdxxFxfxFk

L

∫−= .                                                 (B9) 

 
The simulations identify the optimal values of Lx  (from (B9)) and α  (from (B7)). 
 


