TECHNICAL APPENDIX TO ACCOMPANY “SIMPLE COST SHARING CONTRACTS”

Proof of Lemma 1.

The choice of an optimal LCSCR contract involves the choice of an x, such that the
supplier chooses the LCS option when x < x, and the CR option when x > x,. When he

selects the LCS option and his innate cost realization is x, the supplier’s choice of cost reduction
is determined by:

1
Maximize [l — a]ly — — y° . L1.1
i [ 1y g (L1.1)
(L1.1) implies:
y,(x) = 2k[1 - «a]. (L1.2)

(L1.2) implies that when he chooses the LCS option, the supplier’s profit under the LCS option
at the cut-off value of innate costs, x, , is:

T(x,) + a[x, = y(x)] = C(¥(x,)) — [x, — ¥(x,)]
= T(x,) - [1-allx, - 2k(1 - a)] - 2[2k(1 - &) (L1.3)

Because the supplier is indifferent between the two options when his innate cost
realization is x, and since his profit is always zero under the CR option, (L1.3) implies that:

T(x,) = [1-alx, —k[1-al’. (L1.4)

(L1.4) implies that the buyer’s procurement cost when x = x, is:

T(x,)) +a[x, — y(x,)] = T(x,) + ax, — a2k[l — a] = x, — k[1 -a’].(L15)

From (L1.2) and (L1.5), the buyer’s procurement cost when x < x, :
T(x,)) +a[x —y(x)] = T(x,) + ax — a2k[l - «]
= ax + [l - alx, - k[1 - a’]. (L1.6)

The reduction in expected procurement costs from the LCSCR contract with cost
reimbursement fraction « relative to the CR contract is:

Gy = IL[(I —a)(x - x,) + k(1 - a®)]dF(x). (L1.7)

x

From (L1.7):



0G4 2 i
- = k[l-a’lf(x) - [1 = a] | dF(x)
X, g
= [1 - all(l + a)kf(x,) — F(x;)]. (L1.8)
. . aGLa F(X ) <
[a] 2 L =
(L1.8) implies ax, Z 0 as 70 s [+ alk. (L1.9)

Because F(-)/ f(-) is monotonically increasing, (L1.9) implies the unique value of x, that
maximizes G, 1s:

X; () = minimum{x + [1+a]kS, x}. m (L1.10)

Proof of Lemma 2.

The buyer’s problem of minimizing the expected cost of securing one unit of the good is:

Minimize jx T(x) dF(x) (L2.1)
T(x), y(x) g
subjectto:  u(x|x) = 0  forall x e[x,X] ; and (L2.2)
u(x|x) = u(k|x) forallx, £ e[x,X] , (L2.3)
where u(%|x) = T(X) - [ - y(&|x)] - C(¥(E|x)), (L2.4)
x - y&|x) = 2 - y(&), and (L2.5)
C» = 47"

Differentiating (L2.5) with respect to x provides:

dy _
Tl = L (L2.6)

Defining u(x) = u(x|x) , it follows from (L2.3), (L2.4), and (L2.6) that at the solution to the

buyer’s problem:



~C'(y(x)) < 0. (L2.7)

X=X

iy = - 4C0ETD

Since (L2.7) implies the supplier’s utility declines with x, the buyer optimally sets u(x) = 0.
(L2.8)

Therefore:
u@x) = [ C(y@)d3.

(L2.7) and (L2.8) imply that the supplier’s expected utility under the optimal contract is:
X , F(x
F(x)du(x) = I C'(y(x)) fEx; dF(x). (L2.9)

x

f u(x)dF(x) = u(x)F(x)|’;‘ -

I ——

The first equality in (L2.9) follows from integration by parts. The second equality in (L2.9)
= 0.

holds because u(x) F(x) |i u(x)F(x) — u(x)F(x)
Because the agent’s utility is the difference between the payment he receives and the
(L2.10)

costs he incurs:
T(x) = x = y(x) + C(¥(x) + u(x).

(L2.10) implies the expected payment to the supplier is:

[ T dFex) = [ [x = @) + Co(x) + u(x) |dF(x). (L2.11)
(L2.9) and (L2.11) imply:
: F(x)
[ Teyar = | {x — 3% + CH() + C'() T dF(x). (L2.12)
The derivative of (L2.12) with respect to y(x) is:
S+ CO) + Cvy B (L2.13)
S(x)
Because C(y) = 41—ky2 and F(x) :()_C_éj , (L2.13) can be written as:
X—-x
(L2.14)

EPTI(C R W
1+2k+2k[5

} = S [-2k5 + 500 + x - x].



Because (L2.14) implies —1 + C'(y) + C"(y)? > 0 when x > x + 2k0, it follows that

expected procurement costs are minimized when y(x) = 0 forall x > x + 2kJ.

(L2.14) implies that when x < x + 2ko, expected procurement costs initially decline
and then increase with x. Therefore, the optimal cost reduction is interior, and is determined by

—-2ké6 + 0y(x) + x — x = 0. (L2.15)
(L2.15) implies:
X—x

y(x) = 2k — 5 when x < x + 2k0. ] (L2.16)

Proof of Lemma 3.

Let G, denote the reduction in the buyer’s expected procurement costs under the optimal

contract relative to the cost reimbursement contract. To analyze G, it is necessary to consider

two cases. In the first case (case I), A = x — x is relatively large, and so x + 2ko < Xx.
Consequently, the supplier is optimally induced to supply strictly positive effort levels for small
x’s and to supply no effort for large x ’s. In the second case (Case II), A is relatively small, and
so the supplier is induced to supply a strictly positive level of effort for all realizations of A.

Casel: X > x +2k6 (or T =545 21).
3+2k8 F(X)

G, = I {J’(x) - Cy(x) — C'(») %} dF (x) (L3.1)
. {y(x) ~ ) - %[Tﬂ dF () (L32)
= | [(2k6t + x) ~ C(y(2kS1 + x)) - y(2k61 + z)t]d(@)ﬁ (L3.3)

1 )
= | [26(1 = 1) = k(1 = ) = 2k(1 - z)t]d(%&j (L3.4)
)
= k5[¥j } [1 - 2t + t2]1¢% lar (L3.5)
0



_ 266\ (4 ) |
- ké‘( A) (5 TR (L3.6)

_ 265 Y0 )
_ k( i j ((5+1)(5+2) j (L3.7)

(L3.3) follows from (L3.2) above by letting ¢ = [x — x]/(2k5) . Notice that ¢ varies from 0 to 1
as x varies from x to x + 2ko. (L3.4) follows from (L2.16).

Casell: x <x + 2ko (or T <1).

G, = f [y(x) —-C(y(x) - C'(») %] dF (x) (L3.8)
= j [y(x) - C(x) - 7 (x) [x 5’“} }dF(x) (L3.9)
= | [»(2k5t + x) = p(2k5t + x)1] d(%j (L3.10)
- j [2k(1 = 1) = k(1 = )% — 2k(1 - z)t]d(zl‘j’j (L3.11)
= koT [[1-20 v 2] (L3.12)
= kST (%) - 25Tj+ll + I i;j (L3.13)

_ 1_2r 12 L3.14
= ké(& 5+1+5+2j t3.149)
Notice again that (L3.10) follows from (L3.9) by letting # = [x — x]/(2k5) . Also notice that

t varies from 0 to 7" as x varies from x to x. (L3.11) follows from (L2.16).

It follows from (L1.7) and (L1.10) that the expected gain from the optimal FPCR contract
relative to the CR contract is:



G, = | [x~-x, + k]dF(x). (L3.15)

I —

where x, = minimum {x + k&, X}. (L3.16)

To analyze the expected gain in (L3.15), it is convenient to consider two cases. In the
first case (Case I), A = X — x is relatively large, and so x + k6 < x. Consequently, x is
interior, and so the agent chooses the fixed price contract for low x’s and the cost

reimbursement contract for high x’s. In the second case, A is relatively small, and so the agent
chooses the fixed price contract for all realizations of x .

Casel: x 2 x+ ko (orT > %).

It follows from (L.3.15) and (L3.16) that:
xX+ko
G, = j [x —x + k(1 — )] dF (x) (L3.17)

j [kSt + k(1 - 5)]d(%j (L3.18)

0

o 1
= ké(@J j[5t+1 — 51407 at
A

0

(L3.19)
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(L3.18) follows from (L3.17) by letting ¢ = [x — x]/(k5). Notice that ¢ varies from 0 to 1 as
x varies from x to x + k0.

Casell: X < x+ k& (orT < 1)
It follows from (L3.15) and (L3.16) that:

G, = [x — % + k]dF(x) (L3.21)

I C—y



x+kST

= j [x —x — koT + k]dF(x) (L3.22)
7 s
= [ kot - kST + k]d(%) (L3.23)
0
~ f ~ o
= kST j [6t— 8T +1]¢° " dt (L3.24)
0
_ gef |[OT7N L pen [ T0 1325
B o +1 TS (L3.25)
5T

where 7 = [x —x]/(k5).

Again, (L3.23) follows from (L3.22) by letting ¢ = [x—x]/(k5). Notice that ¢ varies

from 0 to 7 as x varies from x to X .

To complete the proof, we analyze separately the three cases implied by the analysis
immediately above and the analysis in the proof of Lemma 2.

Casel. A >22ko (or T = 1).

Case 1 here corresponds to Case I in both the analysis of the optimal contract and the
analysis of the FPCR contract. Therefore, from (L3.7) and (L3.20):

9% Hk}[wﬂ /Mzwﬂ 2 ﬂ Ty
GO S+1|L A A (8 +1)(S +2) Do+l

Case2. A e[k&,2k8] (or T €[4, 1)).

Case 2 here corresponds to Case II in the analysis of the optimal contract and to Case I in
the analysis of the optimal FPCR contract. Therefore, from (L3.14) and (L3.20):

G k5 ) 2
—F_ | [E2) Kk 1 _2r T
G [[AJ 5+1} kg{é S+1 5+2J (L3.28)




s P o+l 542
R N TR A A S . (L3.29)
A 0+1 0 0+1 0+2

(L3.29) reveals that G, /G, declines with T in this case if D(T) = L& — 2070 4 1°7

o+1 + o+2 18

an increasing function of 7. D(-) is an increasing function of 7 because:
DT =T°"'=-21° +7°"" = T°°'M1-2T+T°] = T°'[T -1 >0. (L3.30)

Case3. A e (0,k5) (or T e (0,1)).
Case 3 here corresponds to Case II in the analysis of both the optimal contract and the

FPCR contract. Therefore, from (L3.14) and (L3.26):

-1

G 2
20T 1 2T T _ S 72
F = — — -
G [k(l 5+1H k5[5 5+1 " 5+2 b+ o+ 2 {1_25[ -(L3.31)

o+1

. 20T, . . . . .
Notice that 77 /[l — ﬁ] increases with 7' because the numerator of this term increases with
+

T while the denominator decreases with 7. Also notice that since 7 € (0, %) in Case 3,

20T
— > —
o+1 o+1

function of 7' in this case. m

> 0. Therefore, it follows from (L3.31) that G, /G, is a decreasing

Proof of Lemma 4.
T =1 when § = A/(2k). Therefore, from (L3.27):

o GF limit o+ 2
limit el = mt Sl = 0. (L4.1)
o> 0 O —>

The last equality in (L4.1) follows from L’Hopital’s Rule. =

Proof of Proposition 1.

(L1.7) and (L1.10) imply that, relative to the cost reimbursement contract, the expected
gain from the optimal LCSCR contract (givena.), G is:



fL [ - a)(x —x;) + k(1 —a’)] dF(x). (P1.1)

To analyze this expected gain, we need to consider two cases. In the first case (Case I),
A = Xx — x isrelatively large, and so the supplier chooses the LCS option for low x’s and the

CR option for high x’s. In the second case (Case II), A is relatively small, and so the agent
chooses the LCS option for all realizations of x.

Casel: x > x + [l + alké (orT’EW > 1).

x+k(l+a)8

Gy = | |0 - @)lx = + @)ks —x1+ k(1 - &*)] dF(x). (P1.2)
= k[1 - a]j (1 +a)5(t -1) + (1 - a)]d[(k(HTa)&j ] (P1.3)
= k1 - a2]5(@j [ @ +1 - &)yar (P1.4)
- k)1 - az]é(k(lza)éj (5i C+ 1 ‘55) (P1.5)
- )1 - az](k(lza)gj e (P1.6)

(P1.3) follows from (P1.2) by letting ¢ = [x — x|/(kS[1 + «]). Notice that ¢ varies
from 0 to 1 as x varies from x to x +kd[l+a].

Casell: x < x+[1+ alkd (orT'" <1).

Gy = j [(1 = a)(x = x}) + k(1 = )] dF (). (P1.7)
x+(1+a)ksT'
= [1 - «] j [x —x — (1 + &)kéT' + k(I + a)]dF(x) (P1.8)

= [1 -« j [ +a)kst — A+ a)kST' + k(l+a)]d[((l+a—)k5tj J (P1.9)

A



= k[1 - a?]s@)” jT (5t — 6T + 1) dr (P1.10)

0

- [t - &l (%ﬁf“ Ty o+ (7;)5) (P1.11)
= &1 - aZ](l - (?TTJ’ (P1.12)

where 7' = A/[(l +a)kd].

Again, (P1.8) follows from (P1.7) by letting ¢ = [x - g] / [k5 (1 + a)] . Notice that ¢
varies from 0 to x + [kS(l + @)]T" as x varies from x to X .

For given x, X and ¢, the optimal LCSCR contract is derived by choosing « optimally.

Casel: A>2kS (orT =505 > 1)

k1+a)s
Gy = k[1 - az]( ( A ) } = (P1.13)

Since (l - az) = (1 - a)(1 + @), the sign of the partial derivative of G, with respect to a

has the same sign as the derivative of (1 — &)1 + @)’", whichis (1 + a)’ [§ — (5 + 2)a].
Setting this derivative equal to zero reveals that the value of o that uniquely maximizes Gy
1s:

. o

= . P1.14
¢ o+ 2 ( )

Substituting (P1.14) into (P1.13) provides:

5 J+1
G, = G . = o2k} [oF] 2 . (P1.15)
Le’] A S+2 (5+1)(5+2)
5+ 1 i S+1
Casell: A e [(ﬁ)zz«s, 2k5_ (or T e [m’ 1}).

Case IA: o < A/(k5) — 1.

(P1.16)

k[1+a]5j5 1
A S+ 1

Gy = k[1- al’ (

10



Again, the partial derivative with respect to a of the expression in GL[a] has the same sign as the

expression (1 — )’ [§ — (5 + 2)a].

When o = A/ (kS) - 1:

§— (0 +2)a = 6-1[6+2][A/(ks) - 1]

5—(5+ 2)&?3](%} - 1} - 0. (P1.17)

The inequality in (P1.17) holds because we are in Case II.

IN

When ¢ =0, o6 —[0+ 2]Ja > 0. Therefore, the value of o that uniquely
maximizes G, . in this range is:

L]
. 5
- . P1.18
o+ 2 ( )
Substituting (P1.18) into (P1.16) provides
o o 268 (6 + 1) 2 o110
=S s ) Geneea) ®1.19)
Case lIB: a > A/(kd) - 1.
26T
G, = kl-a]|l+a- 1| (P1.20)

The sign of the partial derivative with respect to a of the expression for GL[a] in (P1.20) is the

same as the sign of the derivative of [l — «] {1 +a - ng}, which is —2a + 201 This
o+1 o+1

derivative is negative because:

20T

-2a + <0 (P1.21)
o +1
o +1 A o +1
= T o = — < o
o 2ko o

e A< {5 - IHA - 1} (P1.22)

11



o oFl o fyforh A o 5+1§(5+2)i
5 5 2k6 2k6
{5”}21{5 < AL (P1.23)
o+2

(P1.23) holds because we are in Case II. (P1.22) holds because we are in Case IIB. The
negative derivative implies the optimal & will never lie in this range.

Case lll: A < [5“}2/{5 (or T e|:0, 5”}).
o+2 o+2

Case INA: a < A/(kS) - 1.

k(1 + a)aj 1 (P1.24)

G,.. = k[l - a? .
Heal [ ]( A S+1

The partial derivative with respect to o of the expression for G in (P1.24) has the same sign

as the derivative of (1 - a)(l + 05)5+1 , which is (1 + a)5 (5 —(5 + 2)a). This derivative
is positive because:

5 B A
1+ a)[d—(5+2 >0 < > = > — -1 P1.25
(I+a)ylo -(o+2)a] s+2 ¢ 5+2 ko (#1.23)
2642, A 04D s s, (P1.26)
5+2 ko (5+2)

The last equivalence in (P1.26) holds, given that we are in Case III. The last equivalence in
(P1.25) holds because we are in Case IIIA. The positive derivative implies the optimal « will
not lie in the specified range.

Case IIB: « > A/(kS) — 1.

(P1.27)

G = K[l - a]{l +a - 25@.

o+1
The partial derivative of the expression for G, with respect to o in (P1.27) has the same sign

20T
o +1

26T
S+1

as the derivative of (1 — «) (1 +a - J, whichis - 2a +

Notice that when o = A/(kS) — 1,

12



20T 2A 20 A
-2a + = + 2 + _

5+1 k6 5+1) ko
20 A o+1
= 2+ -4 = 2|1 -— A/|—[2kJ]|| 2 O. (P1.28)
o+1 2ko 0+2
. 20T . .
Also notice that —2a + 511 < 0 when o =1. Consequently, the optimal value of & in
_l_
: , : 20T : -
this range is the solution to: —2a + 51 = 0. Therefore, the unique maximizer of Gy
+
in this case is:
o' = AQk[5+1]) . (P1.29)

Substituting (P1.29) into (P1.27) provides:

A 2
G, = 1{1 - m} . (P1.30)

G
It is now useful to prove that for given o, —L isa non-increasing function of A. The

o
proof proceeds by examining three cases:

Casel: A>2ko (orT >1).

In this case:
5 o+l S S+1
G, _ (2/«5) 5+l 4k (2k§} 2k o9 pran
G, A )\s+2) (6+1)(5+2) A ) (5+1)(5+2) 5+2
Casell: A E[[E][Zkﬂ, 2k5} (or T € orl 1} ).
0+2
G, _ 2]{21{5) 5+1 2 PR
G, A 5+2) (5+1)(5+2) 5 S+l 5+2
5 §+1 5 5 542
_ 2(2/«5} 5+1 2 S[T° 2 | T . (P1.32)
A 5+2) (5+1)(5+2) 5 S+l 5+2

13




) 2T§+1 T5+2

. . T . . . .
(P1.32) implies it suffices to show that — — + 1s an increasing function of 7.
o o+1 0+2

This fact follows because the derivative of this function is:

7°° 210 T = T§_1[1—2T+T2} = 7°°'N1-1T)? = 0. (P1.33)

o+1 S+1
Caselll: AL (—jﬂcé (or T € {0, }).
0+2 5+2

Qe
1
N\
N
7\
[u—
|
| o,
¥y
—,
N—
VR
=
>,
VR
S| —
|

<,

+"§

[E—

+

N

[\)
N—
N—

1 - 5T)
- 5( o )5 2 (P1.34)
(1 B ﬁT) T eree)
Since (1 - % T ) is a decreasing function of 7 while T° is an increasing function of T,

(P1.34) implies G, /G, is a decreasing function of 7.

The foregoing analysis implies that G, /G, attains its smallest value in Case I
immediately above. Consequently, the proof follows if:

S+l o+1
2 * >
o+2

To show that (P1.35) holds, first recall that e = lim (1 + %)w . Now it will be useful to show

w —> ©

(P1.35)

Qo

that ln((l + %)W) = wln(l + é) is an increasing function of w on (O, OO). To do so, we will

show that its derivative is declining with w, and is non-negative at w = oo.

d

E{wln(l sl = m(+ L)+ WHI% A () (P1.36)
Aswow, m(i+%) - & - (1) -0 = o. (P1.37)
It remains to show that the derivative of 1n(1 + %) - ﬁ is negative on (0, o). This

derivative is:

14



w—(l—i—w)

_ o
- o w(l+w)? < 0.

w(1+w)2

(P1.38)

(P1.38) implies (1 + %)W is an increasing function of w, whose limit as w —» © is e.

Consequently, (1 + %)W < eforwe (0, oo). Thus:

G, 2(5+1j5” i 2( S+1 j‘”l _, 1 U2
G, = \5+2 - T s+1+1 o\ n+ra+ o) e

Proof of Proposition 2.

We first prove that [G, — G.]/[G, — G, ] is a non-increasing function of A. The proof
proceeds by analyzing four distinct cases.

Casel: A<kS (or T =525 <1/2).

From (L3.14), (P1.30), and (L3.26):

2
GO _ k 1 25T + §T J’ GF — k(l _ M_T]’ and

- o+1 o+2

r 2 2
Gszl—L PRI S + .
 2k(5+1) 5+1 S+l (5+1)

Consequently:

G _G 22 2
L F:k1_25T+5T2 _k1_25T k1_25T+5T _k1_25T
G, - G, o+l (0+1]) o+1 o+l o0+2 o+1

i ((nglz)z]/(gi} B %Jrl)%)' (P2.1)

15



, 20+2 L s+1
Casell: A e [ké, (m)ké} (or T € [E, m}).
From (L3.14), (P1.30), and (L.3.20):

2 2 2
G, - k(l_M_T+ or j G, = k[l—M—T+5—T], and G, = kQT)° (S +1).

S+1  5+2 s+l (s+1)
Consequently:
GL - GF GO - GL
GO - GF - Go - GF

2 2 2 -0
L e[y 20T ST _k1_25T+5T2 W 26T, 6T ) k(2D)
S+l 5+2 S+l (5+1) 5+1  5+2 5+1

ST? 26T 6T (21)°
1 - | 1 - + —~
{(5+1)2(5+2)}/{ S+l S+2 S5+l }

562 \7!
ST S SN . (P2.2)
(5+1)(5+2) 5+1 5+2 S+1
GL _GF . . . . . GO _GL . . . .
—— is a decreasing function of 7 if and only if ———— 1is an increasing function of 7.
Go - GF Go - GF

This is the case if and only if R(T') is a decreasing function of 7', where

, 2 . 4 27
R(T) = |T7? - — T+ - : (P2.3)

o+1 o0+2 o+1

(Notice that R(T ) > 0 for all relevant 7. Otherwise, it would follow from (P2.2) that
EG, > EG,, which cannot be the case.)

The derivative of R(T") with respectto T on [1/2 51;] is:

op 4 20 gy g 0t2 g o (20T g OF2)_ pagy (P
o+1 o+1 5+1 o+1

16



We will now show that S(7') < Ofor T e (1/ 2, %) by showing that it is strictly convex and the

values of its ending points are non-positive. Notice, first, that

fo) o+2
STy = -2 + + = 0 whenT = 1/2 ) (P2.5)
o+1 o+1

Next observe that S(7') is convex because:

26 27°68(6+2)

S(T) = —~ 77" andso S"(T) = 27°8(6+2)T°* > 0. (P2.6
M = 5 S andso S"(T) (6+2) (P2.6)
o+1
Now note that when 7T = :
o+2
-0 )
STy = -2+ 26 N 26+2) o0+2 - ¢ 4 N o+2 5+2,whichisnon-
o+2 o+2 o+2 o+2 20+2) oO+1
positive because:
) .
4 o0+2 o+2 0+2)°+?
—() =0 < (—)“ =
5+2 26+2) " S5+1 (25+2)
o Z(6)=[6+2]In(s + 2) = [6+1]11n(26 + 2) < In2. (P2.7)

Notice that Z(0) = 2In(2) — In(2) = In2. Therefore, to show that Z(5)< In2 for all
o > 0, it suffices to show that Z'(8) < 0 forall 6 > 0. From (P2.7):

7@ = (e +2) +1-1Q25 +2) -1 = In(§ +2) - (26 +2) <0. (P2.8)
G, -G 1

(P2.8) implies T isa decreasing function of 7' on {5, %}
o YF

_ 25+2 S+l
Caselll: 4 e [(}?TITZ{)kéL 2k]5} (Or T e [ETITZ’I}).

From (L3.14), (P1.19), and (L.3.20):

2
1
G, - k(1—25—T+5T j,GL :kT5(5+

o+1 -5
4 k(2T)
o+l  5+2 6+2 (5+1)(5+2)’ '

o+1

and G, =

Consequently:
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G =Gy [ (61 4 k) ([, 28T 6T _K(21)’
G,- G, 5+2 (5+1)(5+2)  S+1 S+l 5+2 5+1

(6+1) -5 -5
[ (s 4 2 1o - (2O ey (O ype 20 (P29)
5+2 B+1)5+2) &+1 S+1 5+2 s+l

G, -G
To show ﬁ is a decreasing function of T, it suffices to show W(T) is an increasing
o~ F
function of 7', where:
. 20 ) o '
wT) = 1° - | —|T°" + | —|T°"2. (P2.10)
o+1 o+2

wi(r) = s[ro = 21° + 17 = ST 1- 21 + 77| = ST [T - 1]* 2 0. (P2.11)

CaselV: A >22k6 (or T >1).

From (L3.7), (P1.15), and (L3.20):

J+1 =J

G, —kT*— 2 G, =-kr|oF] 4 adG, - Mar)”
+ + + + + +
(5+1)(5+2) 5+2) (5+1)(5+2) 5+1

Consequently:

G, -G, ((s+1)"" 4kT®  k(21)’ 2kT k(21)?
G,- G, |\6+2) (6+1)(6+2) &+1 (5+1)(5+2) 5+1
() 4 2 2 2

|\ ls+2) (s+1)(5+2) oS+1 (5+1)(5+2)  5+1

5+1
_ 2 o+l _ o+2 1 — o+2 ) (P212)
5+2 25+1 25+1

Notice that the expression in (P2.12) is independent of 7.

GL - GF . . . . .
In summary, we have shown ———— is a non-increasing function of A in all four cases.
G, -G
o F

18



GL - GF . . . GL - GF
Because ————— declines as T increases, it suffices to show that —— >

GO GF GO - GF
Case IV above. Therefore, from (P2.12), to complete the proof, it suffices to show:

S+1
o AR B S A PR I S S (P2.13)
o+2 20+ 20+ 2

(P2.13) holds if and only if:

1
2lIl

5+1
o+1 o+2 1 o+2
5+1
4(?;] > 1+ % (P2.15)
+
1(s5+2)" 5+2
o M@©) = |22 |1+ 222 <. P2.16
©) 4[5+1j { 2(’“} (F2.16)

o+1
" o+2 .. . .
From the proof of Proposition 1, [; lj is increasing in 0 and is bounded above by e. Also
+

notice that:

0 (0+2 ) )
5(25—:] _ 2—2(5+1)[2f>+1 - (§+2)2‘”1ln2]

= 201 - (5+2)In2] < 271 — (5+2)(69)]

< 27001 - 2(69)] < 0. (P2.17)
o+2

25+1

(P2.17) implies is a decreasing function of o .

We will now demonstrate that M () < 1 over all relevant intervals in which 6 < 1.

- s+2)" 5+2 .
Initially, suppose 6 > 2.2. Because 571 < e < 2.718, and because o is decreasing
+
in 0, we know that in this range:
1 4.2 1 1
M@) < o |1+ =55 (2.718) < Z[1.457][2.718] < Z[3.96] < 1. (P2.18)
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5+2J5+1
<

o+1
2 . o
Now suppose & € [I.3, 2.2). Because [5+ J is increasing in o, (

o+l o+1
32
. . . b 2 1 1 1
[%j < (1.3125)° < 2.3874 in this range. Also, since ;% is decreasing in J,
0+2 3.3 o
1+ —— < 1+ =5 < 167 inthis range. Therefore, M(5) < [1.67][2.3874]/4 < 3.99/4
2 2=

< 1 in this range.

o+1
5+2]
<

o+1
2
Now suppose o € [1.1, 1.3). Because (—?'_ J is increasing in o, (—5 |
+

+1

2.3
(2] < (1.43478)*° < 2.29407 in this range. Also, since 0+2 is decreasing in &,

2.3 20+

L+ 222 < 102 o 19230 in this range. Therefore, M(8) < [229407][1.7231)4 <

2§+1 22.1
(3.953)/4 < 1 in this range.

5+2jé‘+1

o+1

o+l
Finally, suppose ¢ € [1, l.l). Because [i+?j is increasing in &, (
+

2.1
(ﬂj < 2.265 1n this range. Also, since —i‘:l is decreasingin 6, 1 + % <1+ %

= 1.75 in this range. Therefore, M (o) < [2.265][1.75]/4 < (3.964)/4 < 1 in this range. =

The simulations in Appendix B reflect the following analysis. From (A3) in Appendix A:

N
Yo

Go(y(x) = | {y(x) - AP - %ﬂ dF (x) . (B1)

X

Maximizing G, (y(x)) with respect to y(x) provides:

Yo(¥) = 2k = F(x)/ f(x). (B2)

Substituting y,(x) into G, (-) provides:

Ly s F@)
Go = o j {2]« f(x)} dF (x), (B3)
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where, from (B2):
2k = F(xp)/ f(x5).

From (A6) in Appendix A:

G, = j[x—x’;+k]dF(x).

Maximizing G, with respect to x,. provides:

k= F(xp)/ f(xp).

From (A2) in Appendix A:

L

Gy =

a]

15 Cm—

Maximizing G, with respect to x, provides:
k[l +al = F(x,)/ f(x,).
Solving (B6) for o provides:

AN
K/(x,)

Maximizing G, with respect to & provides:

2kaF(x,) = [F(x)dx.
(B8) follows in part from the fact that j [x, - x]dF(x) = j F(x)dx.

Substituting (B7) into (B8) reveals:

k= Fu)l f(x) — [FOde/2F ()],

The simulations identify the optimal values of x, (from (B9)) and o (from (B7)).

[(1 - a)(x —x,)+ k(1- a’)]dF(x) .

(B4)

(BS)

(B4)

(BS)

(B6)

(B7)

(B8)

(B9)
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