Technical Appendix to Accompany
“On the Performance of Linear Contracts”
by
Arup Bose, Debashis Pal, and David E. M. Sappington

This technical appendix to accompany “On the Performance of Linear Contracts” con-
sists of two parts. Appendix A states and proves conclusions that supplement the formal
conclusions reported in the text of the paper. Appendix B provides detailed proofs of the

formal conclusions in the paper.

Appendix A. Additional Conclusions

Lemma Al provides the equations that characterize the solution to [P]. Finding Al
extends Finding 3 in the text to the case where f(x|a) is given by the two-parameter gamma
density:

2P—1 efm/a

f(zla) = T

for x € [0,00), where I'(p) = /e_“up_l du. (1)
0

Proposition Al extends Proposition 1 in the text to allow for § € (1,2). Propositions A2

and A3 provide the corresponding extension of Proposition 2 in the text.

Lemma A1. The solution to [P] is characterized by the solution to the following equations:
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where 7 = min {x >0 A p {J;j((;'s))} > o} . (6)

Finding A1. Suppose f(z|a) is as specified in (1). Then at the solution to [P-L]:

0
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[6 g2<cz;>] s awfi-glis = [l e nne @

where  g(c) :? Oo[y—C]e‘lysO(y) dy;  gac) = /Oo[y—C]sO(y) dy; (8)
ply) = 6_;(3;:)_1 for p>0 and y >0; and (9)

60

6—06
M} attains its minimum value in the range [0, ¢3],
p 0g(c3)]®

where ¢3 is the value of ¢ that solves:

¢4 is the point at which p(c3) = [

[5—9]/ et Pt = c9/ ettt + Pt (10)
0 0

Proof. It is readily verified that the first-order approach to solving [P-L] is valid under the

maintained assumptions. Consequently, [P-L] can be written as:

Maximige I = /Omxf(g;|a)dx+/:[x—(x—x())ﬁ]f(m)dx (11)
subject to: / o fw@)]f (xla)dz —a® > 0, and (12)
/x:o2[w(x)]9fa (zla) dz — 6a>! = 0. (13)

Define  a(c) = / o) dy  and  cs = o (14)

(8), (9), and (14) imply that when y = ¥, (12) can be written as:

aé
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(15)

(1) and (9) imply:



f(zla) = (2) @ (2) (16)

Letting ¢ (z) = 222) (16) implies:

oz
W) g - Lo(@)-50(). o
(17) implies that (13) can be written as:
/:02[@ — 20)3)° [—%gp (g) — [%] ¢’ (2)} dr = §a’ " (18)

Since y = £, (18) can be written as:

/cw2[(“y_x0>ﬁ]9 [—%w(y) - [%] ¢’ (y)] aldy = §a!

2g a3
a

5a6—0

& B(’/w[y—c:a]g[—l] o (y) +ye' (y)]dy = 5 (19)

Integrating by parts and using the fact that ¢ (y) decays exponentially, (19) can be written

as:

(5(16_9

o) 60—0 %
609/ y=csl e dy = —— B9(cs) =’ & B = [a } - (20)

Since y = £ and c3 = ¢ from (14), (11) can be written as:

= [ ly-aldew)y = ap— ()] - [ - (9”)] (21)

c3 9(03)%

(15), (20), and (21) imply that [P-L] can be written as:

Maximize a |p— m a7 (22)
@ B, es g(c3)e
subject to:  2a(c3) > g(es) and  Bg(c3) = a7 (23)
Letting t = y — ¢, (8) and (14) imply:
o) = [ - ety = [ pte+dr, and (24)
c 0



ga(c) = [2%] g(c) :/Coo[y—c]glycp(y)dy :/Ooot"l[c+t]<,p(t+c)dt.

(25)

We will now prove: (i) a(0) = g4(0); (ii) 2% is a decreasing function of ¢ for all p > 0;

ga(c)

and (7i7) there exists a unique ¢3 such that 2« (¢3) = g (¢3).

To begin, define s(t) = " for ¢ > 0 and ¢ > 0. From (9) and (14):

L'(p)
00 eV 1 o 0 et
ate) = [T Sy = [T et B

= e_c/oot [t +c]s(t)dt

00—t 40 [t + C]pr

['(p) o

From (9) and (25):
galc) =

“ly—d" "ty e7ydy = /OO ()" [t + ff e ()
['(p 0

)

Therefore:

(26) and (28) imply: 0
a(0) = /0 s (t)dt = g4(0).

To show that

gi((?) is a decreasing function of ¢, it suffices to show:

o (¢) ga(c) = galc)a(c) < 0.

Define: oy = / st)dt; o = / ts(t)dt; and ay = / 25 (t) dt.
0 0 0

(26) — (29) imply:

alc) = e lecart+ag];  a'(c) = —ale)+[p—1] e a;

ga(c) = e “[ga+2car+as]; and gj(c) = —ga(c) +pe “leap+aq].

(26)

(31)



Therefore, the inequality in (31) holds if and only if:

[—ale) + (p— 1) eau] ga(c) < [—galc) +pe™®(cag+a)] a(c)
& [p—1le“aglc) < pe“lcag+ ai] a(c)
& p—1] [cgao + 2caq + 042} a; < pleag + as) lcag + ]
& [p—1][Gaas +2cai + man] < p[Porag+ cal + cagas + ar as]

& Fajag+cal2—pl+aas+peagas > 0. (32)

Since, vy, a1, and «ay are strictly positive, (32) holds if p < 2.

Now suppose p > 2. The Cauchy - Schwartz inequality implies:

o = /Ooots(t)dt - /f(t\/%) (M)dt

< [/Om(t\/%)zdtr{/om( s(t))zdtr
- {/Ooot%(t)dtr{/oooS(t)dt} = (o)

o < aqpay = call2—p] > c[2—p|lagas. (34)
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(33) implies:

Using (34) in (32) provides:
Cajagtead 2 —pltaiaztpeagay > oy agtcl2 — plagaytag astpeagas
= Pajag+2cagas+ajay > 0.

Therefore, (32) holds for p > 2 as well.

Finally, note that 20‘(?) ¢ > 1 and that 26; ? is a decreasing function of ¢ for all p > 0.

Furthermore, from (8), 2;2(5) — 0 as p — oo. Hence, there exists a unique ¢ such that

2a(c;3) =g (c3).

These conclusions facilitate a restatement of [P-L]. When (23) holds:

CL(; a6—0

2a%«(e3) = g (c3)

= 2a(c) > g(ez) = ¢ < G (35)



(22), (23), and (35) imply that [P-L] can be written as:

Maximize L = a —
a, c3<C3

g2 (c3)

mwaﬁ“el'

Because L is concave in a, the unconstrained optimum for a occurs where
oL

. . ga (63) 5—6
da p

[ﬂ@wae‘%iﬁﬁﬁéﬂa*9=o

o () [0] BN P32l
M@QF{A v l ]

d ga(cs)
(36) and (37) imply that the solution to [P-L] is given by:

- [F4B] et ]
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where ¢} is the point at which p(c3) = {
0, ¢3].

5
0. g2(c3)

5-0
o oea)l} } attains its minimum value in the range
p 0lg(c3)|o

We next show that ¢3 is the value of ¢ that solves (10). To demonstrate this conclusion,
recall that by definition, 2 a (c)

g (c) at ¢é3. Therefore, from (8) and (26):
pere [Tl
0

L (p) dt = {25—9} ¢ /Ooo O+ P et

dt.
' (p)
Let 1(t) = ()" ' [t+ " " e'. Then (39) implies:

(39)

(5/ ti(t)dt = 9/ [t+c] l(t)dt < [5—9]/ ti(t)dt = 09/ I(t)dt
0 0 0 0
Substituting for I(t) in (40) provides (10).

Finally, notice that 8 = [“5_8

a(<3)

(40)

6
} and zo = acj, from (14) and (20). W

Proposition Al. Suppose p =1 and § > 1. Then at the solution to [P-L]:

0
1 5—6
207 ,—cj *1) 0
Tt = a{l—g} where a = g([5]6 L) [0+ ci])

p
e %

(37)
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and c¢; = (42)

|H

5—0 if § <

Proof. The proof follows from substituting into (38) the expressions for ¢} identified in
Observation A3 below. The proof of Observation A3 employs the conclusions recorded as
Observations A1l and A2.

Observation A1l. ¢3 = 0 — 0 when p=1.

Proof. When p = 1:

[5—9]/ [t P Ndt = [5— 0] T (04 1)
0

and c6 ettt PNt = AT (). (43)
Since 0T" (0) = T' (0 + 1), (9) and (43) imply:

-0 T@O+1) = cT'(0+1) = ¢ =0—-0. O
50
Observation A2. Suppose p = 1. Then p(c3) = [%] attains its global minimum
p 0 g(c3)|®

1—0+6

at c3 = —F-5-

Proof. From (8) and (9):

galc) = /m[y—cmw dy = /w[y—c] ey (44)

Substituting y — ¢ = t into (44) provides:
p—1

g = [Tttt oty ]
g2(c) /Ot ) dt F(p)/ot [t + )P dt. (45)

(45) implies that if p = 1, then ¢a2(c) = e °.

0 L0 e—(t+c) .
From (25), g4(c) = [;7t7 e+ )P %dt. Hence, if p =1, then:

ga(c) = e_c/ e+ tletdt = e ° [c/ 101 e_tdt+/ #? e_tdt}
0 0 0

= e cl@)+T(0+1) = e “TO)[0+ . (46)

(25) and (46) imply:



dgs(c de ¢ e~ ¢
g2 (cs) - = — [—1] (47)
pOlg(ca)le 9 [(2) eeT(8) (0 + c3)]? [e=< (0 + c3)]°
4]
where ky = —.
0
0[5 T(0)]
Note that: 5 | 4
In —92(03>1 = lnk‘g—03+§——n(c3+ )
pOlg (cs)]o 0 0
Let v(cs) = ln{ Dga(cs) } Then
pOlg(cs)]®
0v(cs) 1 1 9?v(c3) 1
= —14+-——-——— and = > 0. 48
dcs 0 0lcs+0] d (c3)? 0 [cs + 6] (48)
(48) implies that %CC;’) < 0, % > 0, and v(c3) is convex. Therefore, v(c3)
c3=0 c3—00
reaches its minimum at c3, where:
1 1 _ 1-0+0
_1 _—_——_—— . = _ . I:,
MR 1—¢

Observation A3. Suppose p=1and 0 < % Then:

. _ 2 ~ .
(i) =155 when § > {45, and ¢ = ¢3 if #=1 and § =2.

(i) ¢ =073 =6 —0 when § < .

Proof. From Observations Al and A2:

. 2
s<a e <50 6 1040 < L0 -0)

& 1-04+02 < 5-00-0+60> & 1 < 6[1-6. (49)
The result follows from (49), since v (c3) is a convex function, from (48). O

Finally, notice that if p = 1, then (47) implies:

pOlg(@)F  0[(2)eSTO) (6+c3)]”

§ ga2(c%) ) e
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Proposition A2. Suppose p =1 and 6 = % Then for all § € (1,2):

_1
25—1

nlk (2 +1] 7 -(-3)
— > [ — . 50
T ( 4 ‘ (50)
Proof. Since = 5 and 6 € (1,2), § < 1%0. Hence, from Proposition Al:
N
0 ([3] e sT0) [0+c3])°
ay = —([5]6 EH ) and ¢ = 6 —6. (51)
) e
Substituting for ¢ and ¢} in (51) provides:
-y ) sl =T .
B 1 (6 2 F(g)) 1 (1) 1“(1) 2 B (ﬂ_ (6%))m
R 1T S — |26 2 BT
Therefore from Finding 3:
1 s 1 ﬁ
L _ _ (T (-3)
4 [1 25] (256 > ' (52)
From Finding 2: ) 5 T
< |1-—=| | ————= . 53
rs [i-5 (5[1”2}) (53)

(52) and (53) imply that the inequality in (50) holds. W

Proposition A3. % > 0.9495 for all 6 > 1 when p=1 and 0 = %

Proof. From Proposition 2, " > 0.9495 for all § > 2 when 0 = % Therefore, from

™

Proposition A2, it will suffice to prove that for all § € (1,2), the minimum value of

_1 _1
26—-1 26—1

2 r —(s-3 2 -
(%e $ ?)) is greater than or equal to 0.9495. Let B (0) = (%e S j))

Then:

In (B (9)) = 25%1 [ln(52—|—1) +ln(7r)—5+%—21n(2)]



d1n (B (6)) 1 [25 ]

= ~1
6 20 —16%2+1

2 ) 1
_m{ln((s +1)+1n(7r)—5+§—2ln(2)}
IBON - _ ol @t -2 > 0; and (54)
0 s—1 2
O0ln (B (0)) 1[4 2 1
We will now show that there exists a unique ¢ € [1,2] such that % = (. This fact,

(54), and (55) imply that B (J) is minimized either at 6 = 1 or § = 2. To show that there

exists a unique 0 such that % = 0, note that % =0 if and only if:
1 26 2 1
—1| - ———= In(®+1) +In(r) =6+ = —2In(2)| =
{25—1] [52+1 ] [25_1]2{n((5—|— ) 4+ In(7) 5+2 n(2) 0
& M) =2°-6—[1+6][In(0*°+1)+In(r) —2In(2)] = 0. (56)

(56) implies:
M@G=1 =2-1-2[n(2)+In(r)—2In(2)] > 0;

M@G=2) =8-2-5[n(5)+In(r)—2In(2)] <0; and

462
M"(5) = 1484 —21In (1+6%) — —.
(¥) n ) 1+ 6°
Since 1 + §% and 146:52 are both increasing functions of ¢, it follows that M" (§) < 1.484 —

21n (2) — 2 < 0. Therefore, there exists a unique § such that M (§) = 0.
Hence, when p =1, 0 = %, and 1 < 0 < 2, the lower bound of % is minimized either at
0 =2 or as 6 — 0. From the proof of Proposition 2, the lower bound of % is minimized at

0 = 2.55899 when p =1, 0 = %, and § > 2. Therefore, it will suffice to compare the lower

bounds of % and é . The lower bound of % =Ze * =0.95225 > 0.94955
5=2.55899 51 51
= the lower bound of %‘ . Therefore, % > 0.94955 for all 6 > 1 when p = 1 and
§=2.55899

0= |

N =

10



Appendix B. Proofs of Conclusions in the Text

This appendix provides detailed proofs of the formal conclusions in the paper. The formal

conclusions are the following:

Finding 1. 7 < a[1— %], where a = [(%) (2)%} = [(F(i—g_;)l_e} ﬂ.

25—1
Finding 2. 7 <[l — 55|, wherea = ( 2 ) when 0 = 1.

Finding 3. At the solution to [P-LJ:

2 —_ 2 —_
5 — (Q) = {ﬂ} o and = — [6 9] w57

J

Corollary 1. a < 1 at the solution to [P-L].

Corollary 2. % < 0 and % > 0 at the solution to [P-L]. Furthermore, % > 0 and

% >0 whendzélei.

Corollary 3. % > 0 at the solution to [P-L].

1

—(1-6+62 50
Proposition 1. % > [(g) [1;5];(F<(29)))1F(99)] > 743 for all 6 € (0,1] and 6 > 2.
—O(T (=g

1
25—1

2 7T67§
Proposition 2. % > (M—2) > 0.9495 for all 6 > 2 when 0 = %

11



Proof of Finding 1.

The principal’s problem [P] is:

M?U:E:j)?zize L = /0 [z —w (2)] f(x]|a) dx (59)
subject to: /000 2 (w ()’ f (z]a) dz —a® > 0, and (60)
/0 Ty (w ()’ fa (z]a) dz — 6a°~ = 0. (61)

Let X be a random variable denoting output, and let = denote a specific value of X.

The density function for X is:
1 -
f(zla) = 7T ) o lema  forx > 0.

Define the random variable Y = %, and let y denote a specific value of Y. It can be

shown that Y ~ ¢(y), where:

ply) = T Ep)

ylev  fory > 0.
Letting E/(-) denote “expectation,” (59) can be written as:

L= ety [Tu@i G = o [ w @l ds

—ar— [ wl@)ewdy = ap- B @), (62)
Similarly, (60) can be rewritten as:
/0002(10 (@) oy)dy—da® >0 o 2E <(w(aY))9> > dl. (63)

Furthermore, (61) can be rewritten as:

/OOOZ(w (ay))’ (ay - ap) o) dy = s

a?

o / 2w (ay) v () dy — / "2 (w(ay) pe () dy = 6d°

& 2F ((w(aY))9Y>—2pE ((w(aY))") = 6. (64)



Notice that:
28 ((w (@)’ V) = pa’ > 60 & F(w@)'y) > p+0a”

2

From Holder’s inequality, if X and Y are two non-negative functions, then:
1 1 1 1
E(XY) < [E(XP)]? [E(X?))s forallp>1, where — 4+ - = 1.
p q

Consequently:
0

B ((w(@)Y) < [E((uv(aY))@)é)] EICS
= E((w(aY)>9Y> < [E((w @) [E((Y)H))]l_e_
Notice that:

2 (@)’ [B (0] >

The equality in (67) holds because, since Y ~ I' (p):

E<(Y)ﬁ) - /Ooo(y)lig Lyt ey

(62) and (68) imply:

(65)

(66)

(69)

13



L < ap—kat = L,(a). (70)

We will now maximize L, (a) to derive an upper bound, L*, for the maximum value of L.

OLu(a) _ p_k(§> I [e_p]”, (71)

da 0

Using (71) in (70) provides:

L < a[p—ka%—l] - a[p—%q - 41—%] [z—ﬂﬁo. (72)

Substituting for k£ from (68) into (72) provides:

cev o[- (T )|

0| | 6

(73)

Proof of Finding 2.
Suppose 6 = % and f(z|a) is as specified in (1). Lemma Al in Appendix A implies that
if w(z) is not constrained to be non-negative for all realizations of z, then the solution to

the principal’s problem is determined by:

_ fa(x,a) 2. _ &6. — 5&6+1~
v = (el FEEl) -y - "
fo(z,a) T —ap 3 26-1 5—1 2
flwa) — @ and  0”a™" +2pAda” —2p° = 0. (76)

(75) and (76) imply that an upper bound (7*) for 7 is:

14



T — pa

T = E{r—w(z)} = ap—/ooo [Hu( ~ )rf(xm)dx
_ ap—/ooo A2+ 200 (x;fa)ﬂf <($_a#>2)] f (z]a) do

_ 9 S5+1 2
= ap — )\2+M_2p] :ap—[/\2+%<&; )]
L a a p

M 1 52 20 20 1
= ap— | A+ £—52a25+2} =ap— [ 4 a_] =ap — — [6%a® + pa®]

a? 4p? 4p 4 4p

1 1 2p? — 2pAda’~!
:ap—4—p[a52a25*1+pa25] :ap_zp[a[p ;’ }—i-pa%
1 [2ap? 5 26 1 [2ap® 5.5 26
= ap— — — 2pAa’ + pa = ap — — — pa’a’ + pa
dp | o dp | 6
1 [2ap? ap ap [20 — 1]
= e — = _— — g —_—
Py (¥ 26

(76) and (77) imply that when p = 1:

_1

1 2 26—1
m<a|l-—|, wherea = | =5 . i
26 6 [1+67]

Proof of Finding 3.

The proof follows directly from the proof of Proposition Al in Appendix A. W

Proof of Corollary 1.
From Finding 3, a < 1 at the solution to [P-L] if:

2O} ()7 o) <y

Since § > 2:

) (0) e < B




@) - ) e o

Lo +1) = / Tt = / Tetar — E{T°) (80)

0 0

Notice that:

where the density function for the random variable 7" is exponential with mean 1. (80) and

Holder’s inequality imply:

ro+1) = E{T%} < E{(Te)‘l’}e = B{T} =1 (81)
TO+1)] 0\ _(1_pe 1 AN
PG e s [ G) e @
(79) and (82) imply:
200)] [0\ (1 pie 1 AN
9l (5) s [l () )
0
Let z(0) = ln([l—ig] (g) 6(1“92))
= —In(1-6)+6In(0) —0n(2) — (1 — 6 +6? (84)
= 2'(0) = LJr1+1n(9)—ln(2)+1—2«9 = L+2[1—9]+1n(¢9)—ln(2) (85)
1-0 1-6
" _ 1 _ 1 1
= () = T 245 2 e (86)

The inequality in (86) holds because 3 > 2, since § < 1. (86) implies that z (6) is convex in

0 for all § € [0,1]. Furthermore, from (84) and (85):

1 3
2(0=0)=-1<0; 2'(0=0)=—oc; z<0:§):—1 < 0; and (87)

Y (9:%) - 2+1+1n<%>—ln(2) _ 3+ln(i) - 0. (88)

(87) and (88) imply that z (#) < 0 for all § € [0, 3] . Therefore, from (84):

ln([1425}<g>66_0_%ﬂﬂ> < 0 forallfe P,%}

16



N {ﬁ} (g)ee_(1_9+92) < 1 forallfe {o, %} (89)

(83) and (89) imply that the inequality in (78) holds, so a < 1 for all § € [0,3]. W

Proof of Corollary 2.

Recall from Finding 3 that at the solution to [P-Ll:

] - 6+1 =
8= [g] elflgj) and 7¥ = a F 5 01 , where a = [(%@) (g) 6_(1_6+92)] - (90)

. dB
It is apparent from (90) that 9z < 0.

to = ﬁ%@} <§)9+1 e~ (1-0+0%), (91)

To show % > 0, let:

(90) and (91) imply:

In(7") = In(6—06)—In(5) + {519} In (o)

Oln (’/TL) 1 1 In(ty) 1 146
T T 5-60 5 [-0F [5—9} [ 5 }
= [0(6-0)] m“a—@ = 6[6—0]—(0—0)>=61n(ty) — [0 — 0] [1 + 0]
— [6-0][6—(0—0)—(1+0)]—6ln(t)) = —[6—0]—dn(t). (92)
(92) implies:
alna((;r )20 o §—0+6(ty) < 0. (93)
(81) and (91) imply:
_ 2T+ 17 0 _(ese 2 10" _(oe
"= { 16 ](5)9“6( ") s {ﬂ} (5)9“6( " o
= In(ty) < In(2)—In(1—0)+0In(0)—[0+1]In(5) — (1 —60+6°). (95)
(93) and (95) imply: I
O (rh) g b(6) < 0, (96)

96
where b(0) = §—0+6 [In(2) —In(1 —0) + 0 () — [0+ 1]In () — (1 — 0+ 6%)] . (97)
17



From (97):
b(0) = d+0[In(2) —In(1) —In(6) — 1] = J[In(2) —In(9)]. (98)

Since 6 > 2, (98) implies:
b(0) < 0 foralld>2. (99)

From (97):
) - -deoia Q) 3n) oY v

(100) impies:
b = 2-g+2fozsorz- (F)m@)| o (101)

Differentiating (100) provides:

B (0) = 0.28972 — <;> In (5) — g <0 forall6 > 1. (102)
(100) — (102) imply: 1
b (5) <0 foralld > 2. (103)
Also, differentiating (97) provides:
1
= b0 (0) = (5[ ! —1—1—2} >0, since 6 € {O 11 (104)
(1-0)" 0 7 2]
(99), (103), and (104) imply:
b() < 0 forall 6 ¢ lo, %} and § > 2. (105)
(96) and (105) imply:
dln (mh)

1
> = > 2.
2 > 0 forall § € [0, 2} and § > 2

It remains to prove that ‘;—‘g >0 and dd% >0 when § > 4ei. We will first show that if

there exists a 0 such that 22

ag‘az’g > 0, then % >0 forall §>6. From (90):

In(a) = {ﬁ} [In(20(0) —In(1—6) + [0+ 1]In(8) — [0 + 1] In () — (1 — 6 + 6?)]

18



- [555| WO -6+ ymo), (106)

where k(0) = In(2T(0)) —In(1—60)+ [0+ 1]In(6) — (1 — 0 +6°). (107)

Differentiating (106) provides:

H%] _ (ﬁ) [k (6) — [0+ 1] In (5)] — [5%9] [%]
[5 - 9} {%

(108) implies that if 5%|.

E(@)—(@+1)In(0) 60+1
5—0 5

(108)

5 >0, then:

_k(@)—[eﬂ]ln(g) 041

= > 0
o—10 )
& —S[k(e)—(9+1)1n(5)]—[5—9} 0+1] > 0
& 3|0 w3 - (5-0) =0
k(0
1

e O @] -(1-8) 20 = wG) L s 2O (109)
e iCIRGS) )+

+

9 6 6 1] 6

2 (i oy -2 1t .
&5(““”5) 5 5{ 5} >0

Since In (5) + % is increasing in ¢ while % + 1 is independent of 4, it follows from (109)

Notice that:

that % >0 forall § > 9. Therefore, to show that % > 0 for all § > e for all 0 € (0, %], it
suffices to show that %}5 _ 4.1 > 0forall 6 € (0, 3.

From (107):

k(@) = In <29PT@) —In(1-60)+[0+1]In(0) — (1 —6+6

In (2 r'e+1)

7 )—ln(1—9)+[9+1]ln(9)—(1—9+02)

= In@2)+WmT@+1)-In(1-0)+0(0) — (1—0+06). (110)

19



Since I'(0 + 1) < 1 and In (#) < 0, (110) implies:

k() < m(2)-In(1-0)—(1-0+6%) < 1n(2)—1n(%)—(1—0+02)

— () - (1-0+0) < 2111(2)—Z:> — k(o) > —21n(2)+z. (111)

(108) and (111) imply:

a

[5(5—9)2] {%} = S[—k(0)+ (0 +1)In(8) —0— 1] +0[0+1]

> (5{—21n(2)+z+(9—|—1)ln(5)—9—1 +01[0+1]

_ [—2111(2) +§] b1 (n(8) — 1)+ 4. (112)

The expression in (112) is an increasing function of 8. Therefore, it will suffice to find 5 such

that:

> 5[—2111(2)_}1“11(5)} > 0. (113)

5(6—0)°| da
a 6

§=46
6[—2In(2) — 1 + In(d)] is an increasing function of §. Also —2In(2) — 1 +In(4) > 0 <
§ > 4ei. Therefore, (113) implies that [M} Oa 1 >0,and so & 1 >0 for all

a 96 ls — ez 1§ =4
0 e (03]

Finally, recall from Finding 3 that zy = [%_592] a at the solution to [P-L]. Therefore,

% > 0 for all § > 4ei and 0 € (0,%] since % > 0 for all § > 4dei and 6 € (0,%]_ ]

Proof of Corollary 3.

From (90):
In(B) = 1n(0)—1n(5)+%
olm(B) 1 [1—-0[-1+20+1-60+6> 1 06[2—6
a0 —54‘ [1_9]2 —§+[1—0]2 > 0. N

Proof of Proposition 1.
(73) implies that when p = 1:
20



m < {1—%} Kg) (2)5}‘& [%2)5)1_9] i . (114)

Finding 3 implies that when p = 1:

[\

01 ( (0 ((Fle“r®) [0+a))° 1— 0+ 0

L: 1—— — g 3 h *:—-
: {5](@

= 7t = [1_2} Kg) @) ] [((%) e—c§r€<_ec)§ [9+c§])§]{09
— :1 — g (g) (2)?;: = (g) =10 T(9) [9+C§]Ti9

SO0 R R

(114) and (115) imply that when p = 1:

1

7T_L . (%) 6_(1—9+92)F(9) (%) _ _ [(Q) 14 ] 6_(1—9—1—02){1‘53)]—0. 6)
' 1= (T ()

=

J

[1 +5] 67(170+92)1—\(0)
-G

Define d(0) = (g) and note that: (117)

1467 e )@y 1 1
() = [ 5 ] (1_9)@(%))”] N {Hé}r(@)’ (118)
where 1 (0) = Oe (1040 )P(9>

1-a(r ()"
Notice from (116) that [d (5)]%9 < 1 since = < 1. Therefore, d(5) < 1. Consequently,
since 1+ 3 > 1, (118) implies that 7 () < 1.

Let G(5) = Wm[d@®)]™® = G = {519} In[d (5)] (119)

S G0 - - s [] [59)]
21



= [0—60°G (6) = —In[d(d)]+[6— 6] {Z((;))] :
From (118):
, B 1 d) -1/ 1
70 = - [?} e T B TR A T
Substituting from (121) into (120) and using (117) provides:
G- 027G () = —Ild(d)]+[5— 0] [—ﬁ]
= —[In(146)—In(d)+Inr ()] — 5?1;95]
= —In(1+6)+n(5) - ﬁ —1Inr(0)
(122) implies:
G0)z0 & —In(1+0)+1In(0)— 5([51_4_95] —Inr(@) =0
& In(1+6)—In(d) + 5([51;95] < —1Inr(0)
< R() = —Inr(0),
where R () = In(146)—1n(d) + 6([51:_65].
From (124): R() =0 as 06— oo.
Differentiating (124) provides:
, 11 140 —[6—0[t+2d]  [0—0][1+29]
O =155t 6% [1+ 6] a 82 [1+ 4]

< 0.

(120)

(121)

(122)

(123)

(124)

(125)

(126)

Furthermore, —Inr (0) > 0 since 7 () < 1. Therefore, (123) — (126) imply that for a given

6, there exists a dq (f) such that G (0) is decreasing for all § < 0y (f) and G (0) is increasing

for all § > d¢ (0). If §¢ (A) < 2 for a given 6, then the lower bound of % is reached at 6 = 2

since § > 2 by assumption. Alternatively, if o () > 2 for a given 6, then the lower bound

of % is reached at 0 = dp (0), where dq () is found by solving s (0) = —Inr (6).

To determine a lower bound for % for all 6 € (0,3] and 0 > 2, define:

22



[1+ 0] e (=4°) (6 + 1) v
sl -0)(r (=)

(127)

/oy et g
o= [(5> u—eur(%))”] -

It can be shown that H' (f) > 0 and so the minimum value of H () is reached as # — 0

for any fixed § € [2,00). To determine the limiting value of H (#) as 6 — 0, note that:

H() — Kl%é) <%>r as 6 — 0. (128)

Since [(IT*‘S) (é)]% is an increasing function of 9, [(léﬂ) (%)]% attains its minimum value

when § = 2. From (128), H () — (3 (1))® = 0.74285 as # — 0 when 6 = 2. Consequently,

from (116), = > .743 forall # € (0,1] and 6 >2. W

72

Proof of Proposition 2.

Finding 2 and Proposition 1 imply that when 6 = %:

1 2 122 3 w1 251

o 1= <5—3 7] 67) [62 +1] 2272

LI I : - (129)
T ) ) -1 76

[ o %] 5[6%+1]
o1
2 -3
Let B(0) = (%) . Then:

= Dm(B() = {251_1} ([115;])_2[1“(”5%)““ (?ﬂ [251112

- {25_1“ <1+ 1)+1 <22 —3>} (130)
= — n = nl—ez2||.
26 —1)° [ 6%+ 6 7
(130) implies:
0 ~ —~ 20 — 1 1 22 3
%ID(B<5)) = 0 when M(J) = m—i—ln (1—1—?) +1n (76 2) = 0. (131)
Note that:

0 (26 —1
—(=—=) £ 2[682+06] —[26 —1][36%2+1] = 262 +20 —65% — 20 + 362 + 1
85(63+5> [ 4] = | | [38° +1] * et

23



= —458+38°+1 < -8 +1 < 0. (132)

(131) and (132) imply that M'(8) < 0 for all § > 2. It can be verified that M (2.55899) = 0.
Hence, M(6) > 0 if § < 2.55899, and M(6) < 0 if § > 2.55899. Therefore, B'(§) < 0 if
§ < 2.55899, B'(8) < 0if § > 2.55899, and B'() = 0 if § = 2.55899. Hence, (130) and (131)

imply that for all § > 2:

1
4.118

~ _ [ [7.5485][3.14159]
B(0) = B(255899) ~ ([6.5485][4.4817])

~ (.808026)2'%1 ~ .94955. W
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