Technical Appendix to Accompany
 "On the Performance of Linear Contracts" by

Arup Bose, Debashis Pal, and David E. M. Sappington

This technical appendix to accompany "On the Performance of Linear Contracts" consists of two parts. Appendix A states and proves conclusions that supplement the formal conclusions reported in the text of the paper. Appendix B provides detailed proofs of the formal conclusions in the paper.

Appendix A. Additional Conclusions

Lemma A1 provides the equations that characterize the solution to [P]. Finding A1 extends Finding 3 in the text to the case where $f(x \mid a)$ is given by the two-parameter gamma density:

$$
\begin{equation*}
f(x \mid a)=\frac{x^{p-1} e^{-x / a}}{a^{p} \Gamma(p)} \quad \text { for } x \in[0, \infty), \quad \text { where } \Gamma(p)=\int_{0}^{\infty} e^{-u} u^{p-1} d u \tag{1}
\end{equation*}
$$

Proposition A1 extends Proposition 1 in the text to allow for $\delta \in(1,2)$. Propositions A2 and A3 provide the corresponding extension of Proposition 2 in the text.

Lemma A1. The solution to $[\mathrm{P}]$ is characterized by the solution to the following equations:

$$
\begin{align*}
& w(x)= \begin{cases}0 & \text { if } x<\widehat{x} \\
{\left[2 \theta\left(\lambda+\mu\left[\frac{f_{a}(x \mid a)}{f(x \mid a)}\right]\right)\right]^{\frac{1}{1-\theta}}} & \text { if } x \geq \widehat{x} ;\end{cases} \tag{2}\\
& \int_{\widehat{x}}^{\infty} 2[w(x)]^{\theta} f(x \mid a) d x-a^{\delta}=0 ; \tag{3}\\
& \int_{\widehat{x}}^{\infty} 2[w(x)]^{\theta} f_{a}(x \mid a) d x-\delta a^{\delta-1}=0 ; \quad \text { and } \tag{4}\\
& \quad+\mu\left[\int_{\widehat{x}}^{\widehat{x}} 2[w(x)]^{\theta} f_{a a}(x \mid a) d x-\delta[\delta-1] a^{\delta-2}\right]=0
\end{align*}
$$

$$
\begin{equation*}
\text { where } \quad \widehat{x}=\min \left\{x \geq 0 \left\lvert\, \lambda+\mu\left[\frac{f_{a}(x \mid a)}{f(x \mid a)}\right] \geq 0\right.\right\} \tag{6}
\end{equation*}
$$

Finding A1. Suppose $f(x \mid a)$ is as specified in (1). Then at the solution to [P-L]:

$$
\begin{equation*}
a=\left[\frac{p \theta}{\delta} \frac{\left[g\left(c_{3}^{*}\right)\right]^{\frac{1}{\theta}}}{g_{2}\left(c_{3}^{*}\right)}\right]^{\frac{\theta}{\delta-\theta}} ; \pi^{L}=a p\left[1-\frac{\theta}{\delta}\right] ; \beta=\left[\frac{a^{\delta-\theta}}{g\left(c_{3}^{*}\right)}\right]^{\frac{1}{\theta}} ; \text { and } x_{0}=a c_{3}^{*} \tag{7}
\end{equation*}
$$

where $g(c)=\frac{2 \theta}{\delta} \int_{c}^{\infty}[y-c]^{\theta-1} y \varphi(y) d y ; \quad g_{2}(c)=\int_{c}^{\infty}[y-c] \varphi(y) d y ;$

$$
\varphi(y)=\frac{e^{-y} y^{p-1}}{\Gamma(p)} \quad \text { for } p>0 \text { and } y>0 ; \quad \text { and }
$$

c_{3}^{*} is the point at which $\rho\left(c_{3}\right) \equiv\left[\frac{\delta g_{2}\left(c_{3}\right)}{p \theta\left[g\left(c_{3}\right)\right]^{\frac{1}{\theta}}}\right]^{\frac{\delta \theta}{\delta-\theta}}$ attains its minimum value in the range $\left[0, \widehat{c}_{3}\right]$, where \hat{c}_{3} is the value of c that solves:

$$
\begin{equation*}
[\delta-\theta] \int_{0}^{\infty} e^{-t} t^{\theta}[t+c]^{p-1} d t=c \theta \int_{0}^{\infty} e^{-t} t^{\theta-1}[t+c]^{p-1} d t \tag{10}
\end{equation*}
$$

Proof. It is readily verified that the first-order approach to solving [P-L] is valid under the maintained assumptions. Consequently, [P-L] can be written as:

$$
\begin{align*}
\underset{x_{0}, a, \beta}{\operatorname{Maximize}} \widetilde{L}= & \int_{0}^{x_{0}} x f(x \mid a) d x+\int_{x_{0}}^{\infty}\left[x-\left(x-x_{0}\right) \beta\right] f(x \mid a) d x \tag{11}\\
\text { subject to: } & \int_{x_{0}}^{\infty} 2[w(x)]^{\theta} f(x \mid a) d x-a^{\delta} \geq 0, \text { and } \tag{12}\\
& \int_{x_{0}}^{\infty} 2[w(x)]^{\theta} f_{a}(x \mid a) d x-\delta a^{\delta-1}=0 \tag{13}
\end{align*}
$$

Define $\quad \alpha(c)=\int_{c}^{\infty}[y-c]^{\theta} \varphi(y) d y \quad$ and $\quad c_{3}=\frac{x_{0}}{a}$.
(8), (9), and (14) imply that when $y=\frac{x}{a}$, (12) can be written as:
$2 a^{\theta} \beta^{\theta} \int_{c_{3}}^{\infty}\left[y-c_{3}\right]^{\theta} \varphi(y) d y \geq a^{\delta} \Leftrightarrow 2 a^{\theta} \beta^{\theta} \alpha\left(c_{3}\right) \geq a^{\delta} \Leftrightarrow \beta^{\theta} \geq \frac{a^{\delta}}{2 a^{\theta} \alpha\left(c_{3}\right)}$.
(1) and (9) imply:

$$
\begin{equation*}
f(x \mid a)=\left(\frac{1}{a}\right) \varphi\left(\frac{x}{a}\right) . \tag{16}
\end{equation*}
$$

Letting $\varphi^{\prime}(x)=\frac{\partial \varphi(x)}{\partial x},(16)$ implies:

$$
\begin{equation*}
\frac{\partial f(x \mid a)}{\partial a}=f_{a}(x \mid a)=-\frac{1}{a^{2}} \varphi\left(\frac{x}{a}\right)-\frac{x}{a^{3}} \varphi^{\prime}\left(\frac{x}{a}\right) \tag{17}
\end{equation*}
$$

(17) implies that (13) can be written as:

$$
\begin{equation*}
\int_{x_{0}}^{\infty} 2\left[\left(x-x_{0}\right) \beta\right]^{\theta}\left[-\frac{1}{a^{2}} \varphi\left(\frac{x}{a}\right)-\left[\frac{x}{a^{3}}\right] \varphi^{\prime}\left(\frac{x}{a}\right)\right] d x=\delta a^{\delta-1} . \tag{18}
\end{equation*}
$$

Since $y=\frac{x}{a}$, (18) can be written as:

$$
\begin{align*}
& \int_{\frac{x_{0}}{a}}^{\infty} 2\left[\left(a y-x_{0}\right) \beta\right]^{\theta}\left[-\frac{1}{a^{2}} \varphi(y)-\left[\frac{a y}{a^{3}}\right] \varphi^{\prime}(y)\right][a] d y=\delta a^{\delta-1} \\
& \quad \Leftrightarrow \quad \beta^{\theta} \int_{c_{3}}^{\infty}\left[y-c_{3}\right]^{\theta}[-1]\left[\varphi(y)+y \varphi^{\prime}(y)\right] d y=\frac{\delta a^{\delta-\theta}}{2} \tag{19}
\end{align*}
$$

Integrating by parts and using the fact that $\varphi(y)$ decays exponentially, (19) can be written as:

$$
\begin{equation*}
\beta^{\theta} \theta \int_{c_{3}}^{\infty}\left[y-c_{3}\right]^{\theta-1} y \varphi(y) d y=\frac{\delta a^{\delta-\theta}}{2} \Leftrightarrow \beta^{\theta} g\left(c_{3}\right)=a^{\delta-\theta} \Leftrightarrow \beta=\left[\frac{a^{\delta-\theta}}{g\left(c_{3}\right)}\right]^{\frac{1}{\theta}} \tag{20}
\end{equation*}
$$

Since $y=\frac{x}{a}$ and $c_{3}=\frac{x_{0}}{a}$ from (14), (11) can be written as:

$$
\begin{equation*}
\widetilde{L}=a p-\int_{c_{3}}^{\infty}\left[a y-x_{0}\right] \beta \varphi(y) d y=a\left[p-\beta g_{2}\left(c_{3}\right)\right]=a\left[p-\left(\frac{g_{2}\left(c_{3}\right)}{g\left(c_{3}\right)^{\frac{1}{\theta}}}\right) a^{\frac{\delta-\theta}{\theta}}\right] \tag{21}
\end{equation*}
$$

(15), (20), and (21) imply that [P-L] can be written as:

$$
\begin{equation*}
\underset{a, \beta_{1}, c_{3}}{\operatorname{Maximize}} \quad a\left[p-\left(\frac{g_{2}\left(c_{3}\right)}{g\left(c_{3}\right)^{\frac{1}{\theta}}}\right) a^{\frac{\delta-\theta}{\theta}}\right] \tag{22}
\end{equation*}
$$

subject to: $2 \alpha\left(c_{3}\right) \geq g\left(c_{3}\right)$ and $\beta^{\theta} g\left(c_{3}\right)=a^{\delta-\theta}$.
Letting $t=y-c$, (8) and (14) imply:

$$
\begin{equation*}
\alpha(c)=\int_{c}^{\infty}[y-c]^{\theta} \varphi(y) d y=\int_{0}^{\infty} t^{\theta} \varphi(t+c) d t, \quad \text { and } \tag{24}
\end{equation*}
$$

$$
\begin{equation*}
g_{4}(c) \equiv\left[\frac{\delta}{2 \theta}\right] g(c)=\int_{c}^{\infty}[y-c]^{\theta-1} y \varphi(y) d y=\int_{0}^{\infty} t^{\theta-1}[c+t] \varphi(t+c) d t . \tag{25}
\end{equation*}
$$

We will now prove: $(i) \alpha(0)=g_{4}(0) ;(i i) \frac{\alpha(c)}{g_{4}(c)}$ is a decreasing function of c for all $p>0$; and (iii) there exists a unique \widehat{c}_{3} such that $2 \alpha\left(\widehat{c}_{3}\right)=g\left(\widehat{c}_{3}\right)$.

To begin, define $s(t) \equiv \frac{e^{-t} t^{\theta-1}[t+c]^{p-2}}{\Gamma(p)}$ for $c>0$ and $t \geq 0$. From (9) and (14):

$$
\begin{align*}
& \alpha(c)= \int_{c}^{\infty}[y-c]^{\theta} \frac{e^{-y} y^{p-1}}{\Gamma(p)} d y=\int_{0}^{\infty} e^{-(t+c)} \frac{(t)^{\theta}[t+c]^{p-1}}{\Gamma(p)} d t \\
&=e^{-c} \int_{0}^{\infty} t[t+c] s(t) d t \tag{26}\\
& \Rightarrow \quad \alpha^{\prime}(c)=-\alpha(c)+[p-1] e^{-c} \int_{0}^{\infty} \frac{e^{-t} t^{\theta}[t+c]^{p-2}}{\Gamma(p)} d t \\
&=-\alpha(c)+[p-1] e^{-c} \int_{0}^{\infty} t s(t) d t \tag{27}
\end{align*}
$$

From (9) and (25):

$$
\begin{align*}
g_{4}(c)=\int_{c}^{\infty} \frac{[y-c]^{\theta-1} y^{p} e^{-y}}{\Gamma(p)} d y & =\int_{0}^{\infty} \frac{(t)^{\theta-1}[t+c]^{p} e^{-(t+c)}}{\Gamma(p)} d t \\
& =e^{-c} \int_{0}^{\infty}[t+c]^{2} s(t) d t \tag{28}
\end{align*}
$$

Therefore:

$$
\begin{equation*}
g_{4}^{\prime}(c)=-g_{4}(c)+p e^{-c} \int_{0}^{\infty}[t+c] s(t) d t . \tag{29}
\end{equation*}
$$

(26) and (28) imply:

$$
\begin{equation*}
\alpha(0)=\int_{0}^{\infty} t^{2} s(t) d t=g_{4}(0) \tag{30}
\end{equation*}
$$

To show that $\frac{\alpha(c)}{g_{4}(c)}$ is a decreasing function of c, it suffices to show:

$$
\begin{equation*}
\alpha^{\prime}(c) g_{4}(c)-g_{4}^{\prime}(c) \alpha(c)<0 \tag{31}
\end{equation*}
$$

Define: $\quad \alpha_{0}=\int_{0}^{\infty} s(t) d t ; \quad \alpha_{1}=\int_{0}^{\infty} t s(t) d t ; \quad$ and $\quad \alpha_{2}=\int_{0}^{\infty} t^{2} s(t) d t$.
(26) - (29) imply:

$$
\begin{aligned}
& \alpha(c)=e^{-c}\left[c \alpha_{1}+\alpha_{2}\right] ; \quad \alpha^{\prime}(c)=-\alpha(c)+[p-1] e^{-c} \alpha_{1} ; \\
& g_{4}(c)=e^{-c}\left[c_{0}^{2} \alpha+2 c \alpha_{1}+\alpha_{2}\right] ; \quad \text { and } \quad g_{4}^{\prime}(c)=-g_{4}(c)+p e^{-c}\left[c \alpha_{0}+\alpha_{1}\right] .
\end{aligned}
$$

Therefore, the inequality in (31) holds if and only if:

$$
\begin{align*}
& {\left[-\alpha(c)+(p-1) e^{-c} \alpha_{1}\right] g_{4}(c)<\left[-g_{4}(c)+p e^{-c}\left(c \alpha_{0}+\alpha_{1}\right)\right] \alpha(c) } \\
\Leftrightarrow & {[p-1] e^{-c} \alpha g_{4}(c)<p e^{-c}\left[c \alpha_{0}+\alpha_{1}\right] \alpha(c) } \\
\Leftrightarrow & {[p-1]\left[c_{0}^{2} \alpha_{0}+2 c \alpha_{1}+\alpha_{2}\right] \alpha_{1}<p\left[c \alpha_{1}+\alpha_{2}\right]\left[c \alpha_{0}+\alpha_{1}\right] } \\
\Leftrightarrow & {[p-1]\left[c_{0}^{2} \alpha_{0} \alpha_{1}+2 c \alpha_{1}^{2}+\alpha_{1} \alpha_{2}\right]<p\left[c^{2} \alpha_{1} \alpha_{0}+c \alpha_{1}^{2}+c \alpha_{0} \alpha_{2}+\alpha_{1} \alpha_{2}\right] } \\
\Leftrightarrow & c^{2} \alpha_{1} \alpha_{0}+c \alpha_{1}^{2}[2-p]+\alpha_{1} \alpha_{2}+p c \alpha_{0} \alpha_{2}>0 . \tag{32}
\end{align*}
$$

Since, α_{0}, α_{1}, and α_{2} are strictly positive, (32) holds if $p \leq 2$.
Now suppose $p>2$. The Cauchy - Schwartz inequality implies:

$$
\begin{align*}
\alpha_{1} & =\int_{0}^{\infty} t s(t) d t=\int_{0}^{\infty}(t \sqrt{s(t)})(\sqrt{s(t)}) d t \\
& \leq\left[\int_{0}^{\infty}(t \sqrt{s(t)})^{2} d t\right]^{\frac{1}{2}}\left[\int_{0}^{\infty}(\sqrt{s(t)})^{2} d t\right]^{\frac{1}{2}} \\
& =\left[\int_{0}^{\infty} t^{2} s(t) d t\right]^{\frac{1}{2}}\left[\int_{0}^{\infty} s(t) d t\right]^{\frac{1}{2}}=\left(\alpha_{0}\right)^{\frac{1}{2}}\left(\alpha_{2}\right)^{\frac{1}{2}} . \tag{33}
\end{align*}
$$

(33) implies:

$$
\begin{equation*}
\alpha_{1}^{2} \leq \alpha_{0} \alpha_{2} \Rightarrow c \alpha_{1}^{2}[2-p] \geq c[2-p] \alpha_{0} \alpha_{2} \tag{34}
\end{equation*}
$$

Using (34) in (32) provides:

$$
\begin{aligned}
c^{2} \alpha_{1} \alpha_{0}+c \alpha_{1}^{2}[2-p]+\alpha_{1} \alpha_{2}+p c \alpha_{0} \alpha_{2} & \geq c^{2} \alpha_{1} \alpha_{0}+c[2-p] \alpha_{0} \alpha_{2}+\alpha_{1} \alpha_{2}+p c \alpha_{0} \alpha_{2} \\
& =c^{2} \alpha_{1} \alpha_{0}+2 c \alpha_{0} \alpha_{2}+\alpha_{1} \alpha_{2}>0 .
\end{aligned}
$$

Therefore, (32) holds for $p>2$ as well.
Finally, note that $\frac{2 \alpha(0)}{g(0)}=\frac{\delta}{\theta}>1$ and that $\frac{2 \alpha(c)}{g(c)}$ is a decreasing function of c for all $p>0$. Furthermore, from (8), $\frac{2 \alpha(c)}{g(c)} \rightarrow 0$ as $p \rightarrow \infty$. Hence, there exists a unique $\widehat{c_{3}}$ such that $2 \alpha\left(\widehat{c}_{3}\right)=g\left(\widehat{c}_{3}\right)$.

These conclusions facilitate a restatement of [P-L]. When (23) holds:

$$
\begin{equation*}
\frac{a^{\delta}}{2 a^{\theta} \alpha\left(c_{3}\right)} \leq \frac{a^{\delta-\theta}}{g\left(c_{3}\right)} \Rightarrow 2 \alpha\left(c_{3}\right) \geq g\left(c_{3}\right) \Rightarrow c_{3} \leq \widehat{c}_{3} . \tag{35}
\end{equation*}
$$

(22), (23), and (35) imply that [P-L] can be written as:

$$
\begin{equation*}
\underset{a, c_{3} \leq \widetilde{c}_{3}}{\operatorname{Maximize}} \hat{L}=a\left[p-\frac{g_{2}\left(c_{3}\right)}{\left[g\left(c_{3}\right)\right]^{\frac{1}{\theta}}} a^{\frac{\delta-\theta}{\theta}}\right] . \tag{36}
\end{equation*}
$$

Because \widehat{L} is concave in a, the unconstrained optimum for a occurs where:

$$
\begin{align*}
& \frac{\partial \widehat{L}}{\partial a}=p-\frac{g_{2}\left(c_{3}\right)}{\left[g\left(c_{3}\right)\right]^{\frac{1}{\theta}}} a^{\frac{\delta-\theta}{\theta}}-a \frac{g_{2}\left(c_{3}\right)}{\left[g\left(c_{3}\right)\right]^{\frac{1}{\theta}}}\left[\frac{\delta-\theta}{\theta}\right] a^{\frac{\delta-2 \theta}{\theta}}=0 \\
\Rightarrow & a^{\frac{\delta-\theta}{\theta}} \frac{g_{2}\left(c_{3}\right)}{\left[g\left(c_{3}\right)\right]^{\frac{1}{\theta}}}\left[\frac{\delta}{\theta}\right]=p \Rightarrow a=\left[\frac{p \theta}{\delta} \frac{\left[g\left(c_{3}\right)\right]^{\frac{1}{\theta}}}{g_{2}\left(c_{3}\right)}\right]^{\frac{\theta}{\delta-\theta}} . \tag{37}
\end{align*}
$$

(36) and (37) imply that the solution to [P-L] is given by:

$$
\begin{equation*}
a=\left[\frac{p \theta}{\delta} \frac{\left[g\left(c_{3}^{*}\right)\right]^{\frac{1}{\theta}}}{g_{2}\left(c_{3}^{*}\right)}\right]^{\frac{\theta}{\delta-\theta}} \quad \text { and } \quad \pi^{L}=a\left[p-\frac{p \theta}{\delta}\right]=a p\left[1-\frac{\theta}{\delta}\right] \tag{38}
\end{equation*}
$$

where c_{3}^{*} is the point at which $\rho\left(c_{3}\right) \equiv\left[\frac{\delta g_{2}\left(c_{3}\right)}{p \theta\left[g\left(c_{3}\right)\right]^{\frac{1}{\theta}}}\right]^{\frac{\delta \theta}{\delta-\theta}}$ attains its minimum value in the range $\left[0, \widehat{c}_{3}\right]$.

We next show that \widehat{c}_{3} is the value of c that solves (10). To demonstrate this conclusion, recall that by definition, $2 \alpha(c)=g(c)$ at \hat{c}_{3}. Therefore, from (8) and (26):

$$
\begin{equation*}
2 e^{-c} \int_{0}^{\infty} e^{-t} \frac{(t)^{\theta}[t+c]^{p-1}}{\Gamma(p)} d t=\left[\frac{2 \theta}{\delta}\right] e^{-c} \int_{0}^{\infty} \frac{(t)^{\theta-1}[t+c]^{p} e^{-t}}{\Gamma(p)} d t \tag{39}
\end{equation*}
$$

Let $l(t)=(t)^{\theta-1}[t+c]^{p-1} e^{-t}$. Then (39) implies:

$$
\begin{equation*}
\delta \int_{0}^{\infty} t l(t) d t=\theta \int_{0}^{\infty}[t+c] l(t) d t \Leftrightarrow[\delta-\theta] \int_{0}^{\infty} t l(t) d t=c \theta \int_{0}^{\infty} l(t) d t \tag{40}
\end{equation*}
$$

Substituting for $l(t)$ in (40) provides (10).
Finally, notice that $\beta=\left[\frac{a^{\delta-\theta}}{g\left(c_{3}^{*}\right)}\right]^{\frac{1}{\theta}}$ and $x_{0}=a c_{3}^{*}$, from (14) and (20).

Proposition A1. Suppose $p=1$ and $\delta>1$. Then at the solution to [P-L]:

$$
\begin{equation*}
\pi^{L}=a\left[1-\frac{\theta}{\delta}\right] \quad \text { where } \quad a=\left(\frac{\theta}{\delta} \frac{\left(\left[\frac{2 \theta}{\delta}\right] e^{-c_{3}^{*}} \Gamma(\theta)\left[\theta+c_{3}^{*}\right]\right)^{\frac{1}{\theta}}}{e^{-c_{3}^{*}}}\right)^{\frac{\theta}{\delta-\theta}} \tag{41}
\end{equation*}
$$

$$
\text { and } \quad c_{3}^{*}=\left\{\begin{array}{cl}
\frac{1-\theta+\theta^{2}}{1-\theta} & \text { if } \quad \delta \geq \frac{1}{1-\theta} \tag{42}\\
\delta-\theta & \text { if } \delta \leq \frac{1}{1-\theta}
\end{array}\right.
$$

Proof. The proof follows from substituting into (38) the expressions for c_{3}^{*} identified in Observation A3 below. The proof of Observation A3 employs the conclusions recorded as Observations A1 and A2.

Observation A1. $\widehat{c}_{3}=\delta-\theta$ when $p=1$.
Proof. When $p=1$:

$$
\begin{align*}
& \quad[\delta-\theta] \int_{0}^{\infty} e^{-t} t^{\theta}[t+c]^{p-1} d t=[\delta-\theta] \Gamma(\theta+1) \\
& \text { and } \quad c \theta \int_{0}^{\infty} e^{-t} t^{\theta-1}[t+c]^{p-1} d t=c \theta \Gamma(\theta) \tag{43}
\end{align*}
$$

Since $\theta \Gamma(\theta)=\Gamma(\theta+1),(9)$ and (43) imply:

$$
[\delta-\theta] \Gamma(\theta+1)=c \Gamma(\theta+1) \quad \Rightarrow \quad \widehat{c}_{3}=\delta-\theta
$$

Observation A2. Suppose $p=1$. Then $\rho\left(c_{3}\right) \equiv\left[\frac{\delta g_{2}\left(c_{3}\right)}{p \theta\left[g\left(c_{3}\right)\right]^{\frac{1}{\theta}}}\right]^{\frac{\delta \theta}{\delta-\theta}}$ attains its global minimum at $c_{3}=\frac{1-\theta+\theta^{2}}{1-\theta}$.

Proof. From (8) and (9):

$$
\begin{equation*}
g_{2}(c)=\int_{c}^{\infty}[y-c] \varphi(y) d y=\int_{c}^{\infty}[y-c] \frac{e^{-y} y^{p-1}}{\Gamma(p)} d y . \tag{44}
\end{equation*}
$$

Substituting $y-c=t$ into (44) provides:

$$
\begin{equation*}
g_{2}(c)=\int_{0}^{\infty} t e^{-(t+c)} \frac{[t+c]^{p-1}}{\Gamma(p)} d t=\frac{e^{-c}}{\Gamma(p)} \int_{0}^{\infty} t e^{-t}[t+c]^{p-1} d t \tag{45}
\end{equation*}
$$

(45) implies that if $p=1$, then $g_{2}(c)=e^{-c}$.

From (25), $g_{4}(c)=\int_{0}^{\infty} t^{\theta-1}[c+t]^{p} \frac{e^{-(t+c)}}{\Gamma(p)} d t$. Hence, if $p=1$, then:

$$
\begin{align*}
g_{4}(c) & =e^{-c} \int_{0}^{\infty} t^{\theta-1}[c+t] e^{-t} d t=e^{-c}\left[c \int_{0}^{\infty} t^{\theta-1} e^{-t} d t+\int_{0}^{\infty} t^{\theta} e^{-t} d t\right] \\
& =e^{-c}[c \Gamma(\theta)+\Gamma(\theta+1)]=e^{-c} \Gamma(\theta)[\theta+c] . \tag{46}
\end{align*}
$$

(25) and (46) imply:

$$
\begin{gathered}
g(c)=\left[\frac{2 \theta}{\delta}\right] g_{4}(c)=\left[\frac{2 \theta}{\delta}\right] e^{-c} \Gamma(\theta)[\theta+c] \\
\Rightarrow \frac{\delta g_{2}\left(c_{3}\right)}{p \theta\left[g\left(c_{3}\right)\right]^{\frac{1}{\theta}}}=\frac{\delta e^{-c}}{\theta\left[\left(\frac{2 \theta}{\delta}\right) e^{-c} \Gamma(\theta)\left(\theta+c_{3}\right)\right]^{\frac{1}{\theta}}}=k_{0}\left[\frac{e^{-c}}{\left[e^{-c}\left(\theta+c_{3}\right)\right]^{\frac{1}{\theta}}}\right] \\
\text { where } k_{0}=\frac{\delta}{\theta\left[\frac{2 \theta}{\delta} \Gamma(\theta)\right]^{\frac{1}{\theta}}} .
\end{gathered}
$$

Note that:

$$
\ln \left(\frac{\delta g_{2}\left(c_{3}\right)}{p \theta\left[g\left(c_{3}\right)\right]^{\frac{1}{\theta}}}\right)=\ln k_{0}-c_{3}+\frac{c_{3}}{\theta}-\frac{\ln \left(c_{3}+\theta\right)}{\theta} .
$$

Let $v\left(c_{3}\right)=\ln \left\{\frac{\delta g_{2}\left(c_{3}\right)}{p \theta\left[g\left(c_{3}\right)\right]^{\frac{1}{\theta}}}\right\}$. Then:

$$
\begin{equation*}
\frac{\partial v\left(c_{3}\right)}{\partial c_{3}}=-1+\frac{1}{\theta}-\frac{1}{\theta\left[c_{3}+\theta\right]} \quad \text { and } \quad \frac{\partial^{2} v\left(c_{3}\right)}{\partial\left(c_{3}\right)^{2}}=\frac{1}{\theta\left[c_{3}+\theta\right]^{2}}>0 \tag{48}
\end{equation*}
$$

(48) implies that $\left.\frac{\partial v\left(c_{3}\right)}{\partial c_{3}}\right|_{c_{3}=0}<0,\left.\frac{\partial v\left(c_{3}\right)}{\partial c_{3}}\right|_{c_{3} \rightarrow \infty}>0$, and $v\left(c_{3}\right)$ is convex. Therefore, $v\left(c_{3}\right)$ reaches its minimum at \widetilde{c}_{3}, where:

$$
-1+\frac{1}{\theta}-\frac{1}{\theta\left[\widetilde{c}_{3}+\theta\right]}=0 \Rightarrow \widetilde{c}_{3}=\frac{1-\theta+\theta^{2}}{1-\theta}
$$

Observation A3. Suppose $p=1$ and $\theta \leq \frac{1}{2}$. Then:
(i) $c_{3}^{*}=\frac{1-\theta+\theta^{2}}{1-\theta}$ when $\delta \geq \frac{1}{1-\theta}$, and $c_{3}^{*}=\widehat{c}_{3}$ if $\theta=\frac{1}{2}$ and $\delta=2$.
(ii) $c_{3}^{*}=\widehat{c}_{3}=\delta-\theta$ when $\delta \leq \frac{1}{1-\theta}$.

Proof. From Observations A1 and A2:

$$
\begin{align*}
c_{3}^{*} \leq \widehat{c}_{3} & \Leftrightarrow \frac{1-\theta+\theta^{2}}{1-\theta} \leq \delta-\theta \Leftrightarrow 1-\theta+\theta^{2} \leq[1-\theta][\delta-\theta] \\
& \Leftrightarrow 1-\theta+\theta^{2} \leq \delta-\theta \delta-\theta+\theta^{2} \Leftrightarrow 1 \leq \delta[1-\theta] \tag{49}
\end{align*}
$$

The result follows from (49), since $v\left(c_{3}\right)$ is a convex function, from (48).
Finally, notice that if $p=1$, then (47) implies:

$$
\frac{p \theta}{\delta} \frac{\left[g\left(c_{3}^{*}\right)\right]^{\frac{1}{\theta}}}{g_{2}\left(c_{3}^{*}\right)}=\frac{\theta}{\delta} \frac{\left[\left(\frac{2 \theta}{\delta}\right) e^{-c_{3}^{*}} \Gamma(\theta)\left(\theta+c_{3}^{*}\right)\right]^{\frac{1}{\theta}}}{e^{-c_{3}^{*}}}
$$

$$
\Rightarrow a_{0}=\left(\frac{\theta}{\delta} \frac{\left[\left(\frac{2 \theta}{\delta}\right) e^{-c_{3}^{*}} \Gamma(\theta)\left(\theta+c_{3}^{*}\right)\right]^{\frac{1}{\theta}}}{e^{-c_{3}^{*}}}\right)^{\frac{\theta}{\delta-\theta}}
$$

Proposition A2. Suppose $p=1$ and $\theta=\frac{1}{2}$. Then for all $\delta \in(1,2)$:

$$
\begin{equation*}
\frac{\pi^{L}}{\pi} \geq\left(\frac{\left[\delta^{2}+1\right] \pi}{4} e^{-\left(\delta-\frac{1}{2}\right)}\right)^{\frac{1}{2 \delta-1}} \tag{50}
\end{equation*}
$$

Proof. Since $\theta=\frac{1}{2}$ and $\delta \in(1,2), \delta<\frac{1}{1-\theta}$. Hence, from Proposition A1:

$$
\begin{equation*}
a_{0}=\left(\frac{\theta}{\delta} \frac{\left(\left[\frac{2 \theta}{\delta}\right] e^{-c_{3}^{*}} \Gamma(\theta)\left[\theta+c_{3}^{*}\right]\right)^{\frac{1}{\theta}}}{e^{-c_{3}^{*}}}\right)^{\frac{\theta}{\delta-\theta}} \quad \text { and } c_{3}^{*}=\delta-\theta \tag{51}
\end{equation*}
$$

Substituting for θ and c_{3}^{*} in (51) provides:

$$
a_{0}=\left(\frac{1}{2 \delta} \frac{\left(e^{-\left(\delta-\frac{1}{2}\right)} \Gamma\left(\frac{1}{2}\right)\right)^{2}}{e^{-\left(\delta-\frac{1}{2}\right)}}\right)^{\frac{1}{2 \delta-1}}=\left(\frac{1}{2 \delta} e^{-\left(\delta-\frac{1}{2}\right)}\left(\Gamma\left(\frac{1}{2}\right)\right)^{2}\right)^{\frac{1}{2 \delta-1}}=\left(\frac{\pi}{2 \delta} e^{-\left(\delta-\frac{1}{2}\right)}\right)^{\frac{1}{2 \delta-1}}
$$

Therefore from Finding 3:

$$
\begin{equation*}
\pi^{L}=\left[1-\frac{1}{2 \delta}\right]\left(\frac{\pi}{2 \delta} e^{-\left(\delta-\frac{1}{2}\right)}\right)^{\frac{1}{2 \delta-1}} \tag{52}
\end{equation*}
$$

From Finding 2:

$$
\begin{equation*}
\pi \leq\left[1-\frac{1}{2 \delta}\right]\left(\frac{2}{\delta\left[1+\delta^{2}\right]}\right)^{\frac{1}{2 \delta-1}} \tag{53}
\end{equation*}
$$

(52) and (53) imply that the inequality in (50) holds.

Proposition A3. $\frac{\pi^{L}}{\pi} \geq 0.9495$ for all $\delta>1$ when $p=1$ and $\theta=\frac{1}{2}$.
Proof. From Proposition 2, $\frac{\pi^{L}}{\pi} \geq 0.9495$ for all $\delta \geq 2$ when $\theta=\frac{1}{2}$. Therefore, from Proposition A2, it will suffice to prove that for all $\delta \in(1,2)$, the minimum value of $\left(\frac{\left[\delta^{2}+1\right] \pi}{4} e^{-\left(\delta-\frac{1}{2}\right)}\right)^{\frac{1}{2 \delta-1}}$ is greater than or equal to 0.9495. Let $B(\delta) \equiv\left(\frac{\left[\delta^{2}+1\right] \pi}{4} e^{-\left(\delta-\frac{1}{2}\right)}\right)^{\frac{1}{2 \delta-1}}$. Then:

$$
\ln (B(\delta))=\frac{1}{2 \delta-1}\left[\ln \left(\delta^{2}+1\right)+\ln (\pi)-\delta+\frac{1}{2}-2 \ln (2)\right]
$$

$$
\begin{align*}
\Rightarrow \quad \frac{\partial \ln (B(\delta))}{\partial \delta}= & \frac{1}{2 \delta-1}\left[\frac{2 \delta}{\delta^{2}+1}-1\right] \\
& -\frac{2}{[2 \delta-1]^{2}}\left[\ln \left(\delta^{2}+1\right)+\ln (\pi)-\delta+\frac{1}{2}-2 \ln (2)\right] \\
\left.\Rightarrow \quad \frac{\partial \ln (B(\delta))}{\partial \delta}\right|_{\delta=1}= & -2\left[-\ln (2)+\ln (\pi)-\frac{1}{2}\right]>0 ; \text { and } \tag{54}\\
\left.\frac{\partial \ln (B(\delta))}{\partial \delta}\right|_{\delta=2}= & \frac{1}{3}\left[\frac{4}{5}-1\right]-\frac{2}{9}\left[\ln (5)+\ln (\pi)-2+\frac{1}{2}-2 \ln (2)\right]<0 \tag{55}
\end{align*}
$$

We will now show that there exists a unique $\delta \in[1,2]$ such that $\frac{\partial \ln (B(\delta))}{\partial \delta}=0$. This fact, (54), and (55) imply that $B(\delta)$ is minimized either at $\delta=1$ or $\delta=2$. To show that there exists a unique δ such that $\frac{\partial \ln (B(\delta))}{\partial \delta}=0$, note that $\frac{\partial \ln (B(\delta))}{\partial \delta}=0$ if and only if:

$$
\begin{align*}
& {\left[\frac{1}{2 \delta-1}\right]\left[\frac{2 \delta}{\delta^{2}+1}-1\right]-\frac{2}{[2 \delta-1]^{2}}\left[\ln \left(\delta^{2}+1\right)+\ln (\pi)-\delta+\frac{1}{2}-2 \ln (2)\right]=0} \\
& \Leftrightarrow M(\delta) \equiv 2 \delta^{2}-\delta-\left[1+\delta^{2}\right]\left[\ln \left(\delta^{2}+1\right)+\ln (\pi)-2 \ln (2)\right]=0 \tag{56}
\end{align*}
$$

(56) implies:

$$
\begin{aligned}
M(\delta=1) & =2-1-2[\ln (2)+\ln (\pi)-2 \ln (2)]>0 \\
M(\delta=2) & =8-2-5[\ln (5)+\ln (\pi)-2 \ln (2)]<0 ; \text { and } \\
M^{\prime \prime}(\delta) & =1.484-2 \ln \left(1+\delta^{2}\right)-\frac{4 \delta^{2}}{1+\delta^{2}}
\end{aligned}
$$

Since $1+\delta^{2}$ and $\frac{\delta^{2}}{1+\delta^{2}}$ are both increasing functions of δ, it follows that $M^{\prime \prime}(\delta) \leq 1.484-$ $2 \ln (2)-2<0$. Therefore, there exists a unique δ such that $M(\delta)=0$.

Hence, when $p=1, \theta=\frac{1}{2}$, and $1<\delta \leq 2$, the lower bound of $\frac{\pi^{L}}{\pi}$ is minimized either at $\delta=2$ or as $\delta \rightarrow 0$. From the proof of Proposition 2, the lower bound of $\frac{\pi^{L}}{\pi}$ is minimized at $\delta=2.55899$ when $p=1, \theta=\frac{1}{2}$, and $\delta \geq 2$. Therefore, it will suffice to compare the lower bounds of $\left.\frac{\pi^{L}}{\pi}\right|_{\delta=2.55899}$ and $\left.\frac{\pi^{L}}{\pi}\right|_{\delta \rightarrow 1}$. The lower bound of $\left.\frac{\pi^{L}}{\pi}\right|_{\delta \rightarrow 1}=\frac{\pi}{2} e^{-\frac{1}{2}}=0.95225>0.94955$ $=$ the lower bound of $\left.\frac{\pi^{L}}{\pi}\right|_{\delta=2.55899}$. Therefore, $\frac{\pi^{L}}{\pi} \geq 0.94955$ for all $\delta>1$ when $p=1$ and $\theta=\frac{1}{2}$.

Appendix B. Proofs of Conclusions in the Text

This appendix provides detailed proofs of the formal conclusions in the paper. The formal conclusions are the following:

Finding 1. $\pi \leq \widetilde{a}\left[1-\frac{\theta}{\delta}\right]$, where $\widetilde{a}=\left[\left(\frac{\theta}{\delta}\right)(2)^{\frac{1}{\theta}}\right]^{\frac{\theta}{\delta-\theta}}\left[\frac{\left(\Gamma\left(\frac{2-\theta}{1-\theta)}\right)^{1-\theta}\right.}{1+\delta}\right]^{\frac{1}{\delta-\theta}}$.
Finding 2. $\pi \leq \widehat{a}\left[1-\frac{1}{2 \delta}\right]$, where $\widehat{a}=\left(\frac{2}{\delta\left[1+\delta^{2}\right]}\right)^{\frac{1}{2 \delta-1}}$ when $\theta=\frac{1}{2}$.

Finding 3. At the solution to $[P-L]$:

$$
\begin{align*}
& \beta=\left(\frac{\theta}{\delta}\right) e^{\frac{1-\theta+\theta^{2}}{1-\theta}} ; \quad x_{0}=\left[\frac{1-\theta+\theta^{2}}{1-\theta}\right] a ; \quad \text { and } \quad \pi^{L}=\left[\frac{\delta-\theta}{\delta}\right] a \tag{57}\\
& \text { where } \quad a=\left[\left(\frac{2 \Gamma(\theta)}{1-\theta}\right)\left(\frac{\theta}{\delta}\right)^{\theta+1} e^{-\left(1-\theta+\theta^{2}\right)}\right]^{\frac{1}{\delta-\theta}} \tag{58}
\end{align*}
$$

Corollary 1. $a<1$ at the solution to $[P-L]$.

Corollary 2. $\frac{d \beta}{d \delta}<0$ and $\frac{d \pi^{L}}{d \delta}>0$ at the solution to $[P-L]$. Furthermore, $\frac{d a}{d \delta}>0$ and $\frac{d x_{0}}{d \delta}>0$ when $\delta \geq 4 e^{\frac{1}{4}}$.

Corollary 3. $\frac{d \beta}{d \theta}>0$ at the solution to $[P-L]$.

Proposition 1. $\frac{\pi^{L}}{\pi} \geq\left[\left(\frac{\theta}{\delta}\right) \frac{[1+\delta] e^{-\left(1-\theta+\theta^{2}\right)^{\Gamma(\theta)}}}{[1-\theta]\left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}\right]^{\frac{1}{\delta-\theta}} \geq .743$ for all $\theta \in\left(0, \frac{1}{2}\right]$ and $\delta \geq 2$.

Proposition 2. $\frac{\pi^{L}}{\pi} \geq\left(\frac{\left[\delta^{2}+1\right] \pi e^{-\frac{3}{2}}}{\delta^{2}}\right)^{\frac{1}{2 \delta-1}} \geq 0.9495$ for all $\delta \geq 2$ when $\theta=\frac{1}{2}$.

Proof of Finding 1.

The principal's problem $[P]$ is:

$$
\begin{align*}
& \underset{w(x), a}{\operatorname{Maximize}} \quad L=\int_{0}^{\infty}[x-w(x)] f(x \mid a) d x \tag{59}\\
& \text { subject to: } \quad \int_{0}^{\infty} 2(w(x))^{\theta} f(x \mid a) d x-a^{\delta} \geq 0, \text { and } \tag{60}\\
& \tag{61}\\
& \int_{0}^{\infty} 2(w(x))^{\theta} f_{a}(x \mid a) d x-\delta a^{\delta-1}=0
\end{align*}
$$

Let X be a random variable denoting output, and let x denote a specific value of X. The density function for X is:

$$
f(x \mid a)=\frac{1}{a^{p} \Gamma(p)} x^{p-1} e^{-\frac{x}{a}} \quad \text { for } x \geq 0
$$

Define the random variable $Y=\frac{X}{a}$, and let y denote a specific value of Y. It can be shown that $Y \sim \varphi(y)$, where:

$$
\varphi(y)=\frac{1}{\Gamma(p)} y^{p-1} e^{-y} \quad \text { for } y \geq 0
$$

Letting $E(\cdot)$ denote "expectation," (59) can be written as:

$$
\begin{align*}
L=\int_{0}^{\infty} x f(x \mid a) d x & -\int_{0}^{\infty} w(x) f(x \mid a) d x=a p-\int_{0}^{\infty} w(x) f(x \mid a) d x \\
& =a p-\int_{0}^{\infty} w(a y) \varphi(y) d y=a p-E(w(a Y)) \tag{62}
\end{align*}
$$

Similarly, (60) can be rewritten as:

$$
\begin{equation*}
\int_{0}^{\infty} 2(w(a y))^{\theta} \varphi(y) d y-a^{\delta} \geq 0 \quad \Leftrightarrow \quad 2 E\left((w(a Y))^{\theta}\right) \geq a^{\delta} \tag{63}
\end{equation*}
$$

Furthermore, (61) can be rewritten as:

$$
\begin{align*}
& \int_{0}^{\infty} 2(w(a y))^{\theta}\left(\frac{a y-a p}{a^{2}}\right) \varphi(y) d y=\delta a^{\delta-1} \\
\Leftrightarrow & \int_{0}^{\infty} 2(w(a y))^{\theta} y \varphi(y) d y-\int_{0}^{\infty} 2(w(a y))^{\theta} p \varphi(y) d y=\delta a^{\delta} \\
\Leftrightarrow & 2 E\left((w(a Y))^{\theta} Y\right)-2 p E\left((w(a Y))^{\theta}\right)=\delta a^{\delta} . \tag{64}
\end{align*}
$$

Notice that:

$$
\begin{equation*}
2 E\left((w(a Y))^{\theta} Y\right)-p a^{\delta} \geq \delta a^{\delta} \Leftrightarrow E\left((w(a Y))^{\theta} Y\right) \geq \frac{[p+\delta] a^{\delta}}{2} \tag{65}
\end{equation*}
$$

From Holder's inequality, if X and Y are two non-negative functions, then:

$$
E(X Y) \leq\left[E\left(X^{p}\right)\right]^{\frac{1}{p}}\left[E\left(X^{q}\right)\right]^{\frac{1}{q}} \quad \text { for all } p>1, \text { where } \frac{1}{p}+\frac{1}{q}=1
$$

Consequently:

$$
\begin{align*}
& E\left((w(a Y))^{\theta} Y\right) \leq\left[E\left(\left((w(a Y))^{\theta}\right)^{\frac{1}{\theta}}\right)\right]^{\theta}\left[E\left((Y)^{\frac{1}{1-\theta}}\right)\right]^{1-\theta} \\
& \Rightarrow \quad E\left((w(a Y))^{\theta} Y\right) \leq[E((w(a Y)))]^{\theta}\left[E\left((Y)^{\frac{1}{1-\theta}}\right)\right]^{1-\theta} \tag{66}
\end{align*}
$$

Notice that:

$$
\begin{align*}
& {[E((w(a Y)))]^{\theta}\left[E\left((Y)^{\frac{1}{1-\theta}}\right)\right]^{1-\theta} \geq \frac{[p+\delta] a^{\delta}}{2}} \\
& \Leftrightarrow \quad[E((w(a Y)))]^{\theta} \geq \frac{[p+\delta] a^{\delta}}{2\left[E\left((Y)^{\frac{1}{1-\theta}}\right)\right]^{1-\theta}} \\
& \Leftrightarrow \quad E((w(a Y))) \geq\left[\frac{[p+\delta] a^{\delta}}{2\left[E\left((Y)^{\frac{1}{1-\theta}}\right)\right]^{1-\theta}}\right]^{\frac{1}{\theta}}=\left[\frac{[p+\delta] a^{\delta}(\Gamma(p))^{1-\theta}}{2\left(\Gamma\left(p+\frac{1}{1-\theta}\right)\right)^{1-\theta}}\right]^{\frac{1}{\theta}} \tag{67}\\
& \Leftrightarrow \quad E((w(a Y))) \geq k a^{\frac{\delta}{\theta}}, \quad \text { where } k=\left[\frac{[p+\delta](\Gamma(p))^{1-\theta}}{2\left(\Gamma\left(p+\frac{1}{1-\theta}\right)\right)^{1-\theta}}\right]^{\frac{1}{\theta}} \tag{68}
\end{align*}
$$

The equality in (67) holds because, since $Y \sim \Gamma(p)$:

$$
\begin{align*}
E\left((Y)^{\frac{1}{1-\theta}}\right) & =\int_{0}^{\infty}(y)^{\frac{1}{1-\theta}} \frac{1}{\Gamma(p)}(y)^{p-1} e^{-y} d y \\
& =\frac{1}{\Gamma(p)} \int_{0}^{\infty}(y)^{p-1+\frac{1}{1-\theta}} e^{-y} d y=\frac{\Gamma\left(p+\frac{1}{1-\theta}\right)}{\Gamma(p)} . \tag{69}
\end{align*}
$$

(67) and (69) imply:

$$
E((w(a Y))) \geq\left[\frac{(p+\delta) a^{\delta}(\Gamma(p))^{1-\theta}}{2\left(\Gamma\left(p+\frac{1}{1-\theta}\right)\right)^{1-\theta}}\right]^{\frac{1}{\theta}}
$$

(62) and (68) imply:

$$
\begin{equation*}
L \leq a p-k a^{\frac{\delta}{\theta}}=L_{u}(a) \tag{70}
\end{equation*}
$$

We will now maximize $L_{u}(a)$ to derive an upper bound, L^{*}, for the maximum value of L.

$$
\begin{equation*}
\frac{\partial L_{u}(a)}{\partial a}=p-k\left(\frac{\delta}{\theta}\right) a^{\frac{\delta}{\theta}-1}=0 \Rightarrow \widetilde{a}=\left[\frac{\theta p}{\delta k}\right]^{\frac{\theta}{\delta-\theta}} \tag{71}
\end{equation*}
$$

Using (71) in (70) provides:

$$
\begin{equation*}
L^{*} \leq \widetilde{a}\left[p-k \widetilde{a}^{\frac{\delta}{\theta}-1}\right]=\widetilde{a}\left[p-\frac{p \theta}{\delta}\right]=p\left[1-\frac{\theta}{\delta}\right]\left[\frac{\theta p}{\delta k}\right]^{\frac{\theta}{\delta-\theta}} \tag{72}
\end{equation*}
$$

Substituting for k from (68) into (72) provides:

$$
\begin{align*}
\pi \leq L^{*} & \leq p\left[1-\frac{\theta}{\delta}\right]\left[\frac{p \theta}{\delta}\left(\frac{(2)^{\frac{1}{\theta}}\left(\Gamma\left(p+\frac{1}{1-\theta}\right)\right)^{\frac{1-\theta}{\theta}}}{[p+\delta]^{\frac{1}{\theta}}(\Gamma(p))^{\frac{1-\theta}{\theta}}}\right)\right]^{\frac{\theta}{\delta-\theta}} \\
& =p\left[1-\frac{\theta}{\delta}\right]\left[p\left(\frac{\theta}{\delta}\right)(2)^{\frac{1}{\theta}}\right]^{\frac{\theta}{\delta-\theta}}\left[\frac{\left(\Gamma\left(p+\frac{1}{1-\theta}\right)\right)^{1-\theta}}{[p+\delta](\Gamma(p))^{1-\theta}}\right]^{\frac{1}{\delta-\theta}} . \tag{73}
\end{align*}
$$

From (73), when $p=1$:

$$
\begin{equation*}
\pi \leq\left[1-\frac{\theta}{\delta}\right]\left[\left(\frac{\theta}{\delta}\right)(2)^{\frac{1}{\theta}}\right]^{\frac{\theta}{\delta-\theta}}\left[\frac{\left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}{1+\delta}\right]^{\frac{1}{\delta-\theta}} \tag{74}
\end{equation*}
$$

Proof of Finding 2.

Suppose $\theta=\frac{1}{2}$ and $f(x \mid a)$ is as specified in (1). Lemma A1 in Appendix A implies that if $w(x)$ is not constrained to be non-negative for all realizations of x, then the solution to the principal's problem is determined by:

$$
\begin{align*}
& w(x)=\left(\lambda+\mu\left[\frac{f_{a}(x, a)}{f(x, a)}\right]\right)^{2} ; \quad \lambda=\frac{a^{\delta}}{2} ; \quad \mu=\frac{\delta a^{\delta+1}}{2 p} \tag{75}\\
& \frac{f_{a}(x, a)}{f(x, a)}=\frac{x-a p}{a^{2}} ; \quad \text { and } \quad \delta^{3} a^{2 \delta-1}+2 p \lambda \delta a^{\delta-1}-2 p^{2}=0 \tag{76}
\end{align*}
$$

(75) and (76) imply that an upper bound $\left(\pi^{u}\right)$ for π is:

$$
\begin{align*}
\pi^{u} & =E\{x-w(x)\}=a p-\int_{0}^{\infty}\left[\lambda+\mu\left(\frac{x-p a}{a^{2}}\right)\right]^{2} f(x \mid a) d x \\
& =a p-\int_{0}^{\infty}\left[\lambda^{2}+2 \lambda \mu\left(\frac{x-p a}{a^{2}}\right)+\mu^{2}\left(\frac{(x-p a)^{2}}{a^{4}}\right)\right] f(x \mid a) d x \\
& =a p-\left[\lambda^{2}+\frac{\mu^{2} p}{a^{2}}\right]=a p-\left[\lambda^{2}+\frac{p}{a^{2}}\left(\frac{\delta a^{\delta+1}}{2 p}\right)^{2}\right] \\
& =a p-\left[\lambda^{2}+\frac{p}{a^{2}} \frac{1}{4 p^{2}} \delta^{2} a^{2 \delta+2}\right]=a p-\left[\frac{\delta^{2} a^{2 \delta}}{4 p}+\frac{a^{2 \delta}}{4}\right]=a p-\frac{1}{4 p}\left[\delta^{2} a^{2 \delta}+p a^{2 \delta}\right] \\
& =a p-\frac{1}{4 p}\left[a \delta^{2} a^{2 \delta-1}+p a^{2 \delta}\right]=a p-\frac{1}{4 p}\left[a \frac{\left[2 p^{2}-2 p \lambda \delta a^{\delta-1}\right]}{\delta}+p a^{2 \delta}\right] \\
& =a p-\frac{1}{4 p}\left[\frac{2 a p^{2}}{\delta}-2 p \lambda a^{\delta}+p a^{2 \delta}\right]=a p-\frac{1}{4 p}\left[\frac{2 a p^{2}}{\delta}-p a^{\delta} a^{\delta}+p a^{2 \delta}\right] \\
& =a p-\frac{1}{4 p}\left[\frac{2 a p^{2}}{\delta}\right]=a p-\frac{a p}{2 \delta}=\frac{a p[2 \delta-1]}{2 \delta} . \tag{77}
\end{align*}
$$

(76) and (77) imply that when $p=1$:

$$
\pi \leq a\left[1-\frac{1}{2 \delta}\right], \quad \text { where } a=\left(\frac{2}{\delta\left[1+\delta^{2}\right]}\right)^{\frac{1}{2 \delta-1}}
$$

Proof of Finding 3.

The proof follows directly from the proof of Proposition A1 in Appendix A.

Proof of Corollary 1.

From Finding 3, $a<1$ at the solution to [P-L] if:

$$
\begin{equation*}
\left[\frac{2 \Gamma(\theta)}{1-\theta}\right]\left(\frac{\theta}{\delta}\right)^{\theta+1} e^{-\left(1-\theta+\theta^{2}\right)}<1 \tag{78}
\end{equation*}
$$

Since $\delta \geq 2$:

$$
\left[\frac{2 \Gamma(\theta)}{1-\theta}\right]\left(\frac{\theta}{\delta}\right)^{\theta+1} e^{-\left(1-\theta+\theta^{2}\right)} \leq\left[\frac{2 \Gamma(\theta)}{1-\theta}\right]\left(\frac{\theta}{2}\right)^{\theta+1} e^{-\left(1-\theta+\theta^{2}\right)}
$$

$$
\begin{equation*}
=\left[\frac{\theta \Gamma(\theta)}{1-\theta}\right]\left(\frac{\theta}{2}\right)^{\theta} e^{-\left(1-\theta+\theta^{2}\right)}=\left[\frac{\Gamma(\theta+1)}{1-\theta}\right]\left(\frac{\theta}{2}\right)^{\theta} e^{-\left(1-\theta+\theta^{2}\right)} . \tag{79}
\end{equation*}
$$

Notice that:

$$
\begin{equation*}
\Gamma(\theta+1)=\int_{0}^{\infty} e^{-t}(t)^{\theta+1-1} d t=\int_{0}^{\infty} e^{-t} t^{\theta} d t=E\left\{T^{\theta}\right\} \tag{80}
\end{equation*}
$$

where the density function for the random variable T is exponential with mean 1. (80) and Holder's inequality imply:

$$
\begin{gather*}
\Gamma(\theta+1)=E\left\{T^{\theta}\right\} \leq E\left\{\left(T^{\theta}\right)^{\frac{1}{\theta}}\right\}^{\theta}=E\{T\}=1 \tag{81}\\
\Rightarrow \quad\left[\frac{\Gamma(\theta+1)}{1-\theta}\right]\left(\frac{\theta}{2}\right)^{\theta} e^{-\left(1-\theta+\theta^{2}\right)} \leq\left[\frac{1}{1-\theta}\right]\left(\frac{\theta}{2}\right)^{\theta} e^{-\left(1-\theta+\theta^{2}\right)} \tag{82}
\end{gather*}
$$

(79) and (82) imply:

$$
\begin{align*}
& {\left[\frac{2 \Gamma(\theta)}{1-\theta}\right]\left(\frac{\theta}{\delta}\right)^{\theta+1} e^{-\left(1-\theta+\theta^{2}\right)} \leq\left[\frac{1}{1-\theta}\right]\left(\frac{\theta}{2}\right)^{\theta} e^{-\left(1-\theta+\theta^{2}\right)} } \tag{83}\\
& \text { Let } z(\theta)= \ln \left(\left[\frac{1}{1-\theta}\right]\left(\frac{\theta}{2}\right)^{\theta} e^{-\left(1-\theta+\theta^{2}\right)}\right) \\
&=-\ln (1-\theta)+\theta \ln (\theta)-\theta \ln (2)-\left(1-\theta+\theta^{2}\right) \tag{84}\\
& \Rightarrow \quad z^{\prime}(\theta)= \frac{1}{1-\theta}+1+\ln (\theta)-\ln (2)+1-2 \theta=\frac{1}{1-\theta}+2[1-\theta]+\ln (\theta)-\ln (2) \tag{85}\\
& \Rightarrow \quad z^{\prime \prime}(\theta)=\frac{1}{[1-\theta]^{2}}-2+\frac{1}{\theta} \geq \frac{1}{[1-\theta]^{2}} . \tag{86}
\end{align*}
$$

The inequality in (86) holds because $\frac{1}{\theta} \geq 2$, since $\theta \leq \frac{1}{2}$. (86) implies that $z(\theta)$ is convex in θ for all $\theta \in\left[0, \frac{1}{2}\right]$. Furthermore, from (84) and (85):

$$
\begin{align*}
& z(\theta=0)=-1<0 ; \quad z^{\prime}(\theta=0)=-\infty ; \quad z\left(\theta=\frac{1}{2}\right)=-\frac{3}{4}<0 ; \quad \text { and } \tag{87}\\
& z^{\prime}\left(\theta=\frac{1}{2}\right)=2+1+\ln \left(\frac{1}{2}\right)-\ln (2)=3+\ln \left(\frac{1}{4}\right)>0 \tag{88}
\end{align*}
$$

(87) and (88) imply that $z(\theta)<0$ for all $\theta \in\left[0, \frac{1}{2}\right]$. Therefore, from (84):

$$
\ln \left(\left[\frac{1}{1-\theta}\right]\left(\frac{\theta}{2}\right)^{\theta} e^{-\left(1-\theta+\theta^{2}\right)}\right)<0 \text { for all } \theta \in\left[0, \frac{1}{2}\right]
$$

$$
\begin{equation*}
\Rightarrow\left[\frac{1}{1-\theta}\right]\left(\frac{\theta}{2}\right)^{\theta} e^{-\left(1-\theta+\theta^{2}\right)}<1 \text { for all } \theta \in\left[0, \frac{1}{2}\right] . \tag{89}
\end{equation*}
$$

(83) and (89) imply that the inequality in (78) holds, so $a<1$ for all $\theta \in\left[0, \frac{1}{2}\right]$.

Proof of Corollary 2.

Recall from Finding 3 that at the solution to [P-L]:

$$
\begin{equation*}
\beta=\left[\frac{\theta}{\delta}\right] e^{\frac{1-\theta+\theta^{2}}{1-\theta}} \text { and } \pi^{L}=a\left[\frac{\delta-\theta}{\delta}\right], \text { where } a=\left[\left(\frac{2 \Gamma(\theta)}{1-\theta}\right)\left(\frac{\theta}{\delta}\right)^{\theta+1} e^{-\left(1-\theta+\theta^{2}\right)}\right]^{\frac{1}{\delta-\theta}} \tag{90}
\end{equation*}
$$

It is apparent from (90) that $\frac{d \beta}{d \delta}<0$.
To show $\frac{d \pi^{L}}{d \delta}>0$, let:

$$
\begin{equation*}
t_{0}=\left[\frac{2 \Gamma(\theta)}{1-\theta}\right]\left(\frac{\theta}{\delta}\right)^{\theta+1} e^{-\left(1-\theta+\theta^{2}\right)} \tag{91}
\end{equation*}
$$

(90) and (91) imply:

$$
\begin{align*}
& \ln \left(\pi^{L}\right)=\ln (\delta-\theta)-\ln (\delta)+\left[\frac{1}{\delta-\theta}\right] \ln \left(t_{0}\right) \\
& \Rightarrow \frac{\partial \ln \left(\pi^{L}\right)}{\partial \delta}=\frac{1}{\delta-\theta}-\frac{1}{\delta}-\frac{\ln \left(t_{0}\right)}{[\delta-\theta]^{2}}-\left[\frac{1}{\delta-\theta}\right]\left[\frac{1+\theta}{\delta}\right] \\
& \Rightarrow \quad\left[\delta(\delta-\theta)^{2}\right] \frac{\partial \ln \left(\pi^{L}\right)}{\partial \delta}=\delta[\delta-\theta]-(\delta-\theta)^{2}-\delta \ln \left(t_{0}\right)-[\delta-\theta][1+\theta] \\
&=[\delta-\theta][\delta-(\delta-\theta)-(1+\theta)]-\delta \ln \left(t_{0}\right)=-[\delta-\theta]-\delta \ln \left(t_{0}\right) . \tag{92}
\end{align*}
$$

(92) implies:

$$
\begin{equation*}
\frac{\partial \ln \left(\pi^{L}\right)}{\partial \delta} \geq 0 \Leftrightarrow \delta-\theta+\delta \ln \left(t_{0}\right) \leq 0 \tag{93}
\end{equation*}
$$

(81) and (91) imply:

$$
\begin{gather*}
t_{0}=\left[\frac{2 \Gamma(\theta+1)}{1-\theta}\right] \frac{(\theta)^{\theta}}{(\delta)^{\theta+1}} e^{-\left(1-\theta+\theta^{2}\right)} \leq\left[\frac{2}{1-\theta}\right] \frac{(\theta)^{\theta}}{(\delta)^{\theta+1}} e^{-\left(1-\theta+\theta^{2}\right)} \tag{94}\\
\Rightarrow \ln \left(t_{0}\right) \leq \ln (2)-\ln (1-\theta)+\theta \ln (\theta)-[\theta+1] \ln (\delta)-\left(1-\theta+\theta^{2}\right) . \tag{95}
\end{gather*}
$$

(93) and (95) imply:

$$
\begin{equation*}
\frac{\partial \ln \left(\pi^{L}\right)}{\partial \delta} \geq 0 \quad \text { if } \quad b(\theta) \leq 0 \tag{96}
\end{equation*}
$$

where $b(\theta)=\delta-\theta+\delta\left[\ln (2)-\ln (1-\theta)+\theta \ln (\theta)-[\theta+1] \ln (\delta)-\left(1-\theta+\theta^{2}\right)\right]$.

From (97):

$$
\begin{equation*}
b(0)=\delta+\delta[\ln (2)-\ln (1)-\ln (\delta)-1]=\delta[\ln (2)-\ln (\delta)] . \tag{98}
\end{equation*}
$$

Since $\delta \geq 2$, (98) implies:

$$
\begin{equation*}
b(0) \leq 0 \text { for all } \delta \geq 2 \tag{99}
\end{equation*}
$$

From (97):

$$
\begin{equation*}
b\left(\frac{1}{2}\right)=\delta-\frac{1}{2}+\delta\left[\ln (2)-\ln \left(\frac{1}{2}\right)+\frac{1}{2} \ln \left(\frac{1}{2}\right)-\frac{3}{2} \ln (\delta)-\frac{3}{4}\right] \equiv h(\delta) . \tag{100}
\end{equation*}
$$

(100) implies:

$$
\begin{equation*}
h(2)=2-\frac{1}{2}+2\left[0.28972-\left(\frac{3}{2}\right) \ln (2)\right]=0 . \tag{101}
\end{equation*}
$$

Differentiating (100) provides:

$$
\begin{equation*}
h^{\prime}(\delta)=0.28972-\left(\frac{3}{2}\right) \ln (\delta)-\frac{3}{2}<0 \text { for all } \delta \geq 1 \tag{102}
\end{equation*}
$$

(100) - (102) imply:

$$
\begin{equation*}
b\left(\frac{1}{2}\right) \leq 0 \text { for all } \delta \geq 2 \tag{103}
\end{equation*}
$$

Also, differentiating (97) provides:

$$
\begin{align*}
b^{\prime}(\theta) & =-1+\delta\left[\frac{1}{1-\theta}+\ln (\theta)+1-\ln (\delta)+1-2 \theta\right] \\
\Rightarrow \quad b^{\prime \prime}(\theta) & =\delta\left[\frac{1}{(1-\theta)^{2}}+\frac{1}{\theta}-2\right] \geq 0, \text { since } \theta \in\left[0, \frac{1}{2}\right] . \tag{104}
\end{align*}
$$

(99), (103), and (104) imply:

$$
\begin{equation*}
b(\theta) \leq 0 \text { for all } \theta \in\left[0, \frac{1}{2}\right] \text { and } \delta \geq 2 \tag{105}
\end{equation*}
$$

(96) and (105) imply:

$$
\frac{\partial \ln \left(\pi^{L}\right)}{\partial \delta} \geq 0 \text { for all } \theta \in\left[0, \frac{1}{2}\right] \text { and } \delta \geq 2
$$

It remains to prove that $\frac{d a}{d \delta}>0$ and $\frac{d x_{0}}{d \delta}>0$ when $\delta \geq 4 e^{\frac{1}{4}}$. We will first show that if there exists a $\widetilde{\delta}$ such that $\left.\frac{\partial a}{\partial \delta}\right|_{\delta=\tilde{\delta}}>0$, then $\frac{\partial a}{\partial \delta}>0$ for all $\delta>\widetilde{\delta}$. From (90):

$$
\ln (a)=\left[\frac{1}{\delta-\theta}\right]\left[\ln (2 \Gamma(\theta))-\ln (1-\theta)+[\theta+1] \ln (\theta)-[\theta+1] \ln (\delta)-\left(1-\theta+\theta^{2}\right)\right]
$$

$$
\begin{equation*}
=\left[\frac{1}{\delta-\theta}\right][k(\theta)-(\theta+1) \ln (\delta)], \tag{106}
\end{equation*}
$$

$$
\begin{equation*}
\text { where } k(\theta)=\ln (2 \Gamma(\theta))-\ln (1-\theta)+[\theta+1] \ln (\theta)-\left(1-\theta+\theta^{2}\right) \tag{107}
\end{equation*}
$$

Differentiating (106) provides:

$$
\begin{align*}
& \frac{1}{a}\left[\frac{\partial a}{\partial \delta}\right]=-\left(\frac{1}{[\delta-\theta]^{2}}\right)[k(\theta)-[\theta+1] \ln (\delta)]-\left[\frac{1}{\delta-\theta}\right]\left[\frac{\theta+1}{\delta}\right] \\
& \Rightarrow\left[\frac{\delta-\theta}{a}\right]\left[\frac{\partial a}{\partial \delta}\right]=-\frac{k(\theta)-(\theta+1) \ln (\delta)}{\delta-\theta}-\frac{\theta+1}{\delta} . \tag{108}
\end{align*}
$$

(108) implies that if $\left.\frac{\partial a}{\partial \delta}\right|_{\delta=\tilde{\delta}}>0$, then:

$$
\begin{align*}
& -\frac{k(\theta)-[\theta+1] \ln (\widetilde{\delta})}{\widetilde{\delta}-\theta}-\frac{\theta+1}{\widetilde{\delta}}>0 \\
& \Leftrightarrow \quad-\widetilde{\delta}[k(\theta)-(\theta+1) \ln (\widetilde{\delta})]-[\widetilde{\delta}-\theta][\theta+1]>0 \\
& \Leftrightarrow \quad-\widetilde{\delta}\left[\frac{k(\theta)}{\theta+1}-\ln (\widetilde{\delta})\right]-(\widetilde{\delta}-\theta)>0 \\
& \Leftrightarrow \quad-\left[\frac{k(\theta)}{\theta+1}-\ln (\widetilde{\delta})\right]-\left(1-\frac{\theta}{\widetilde{\delta}}\right)>0 \Rightarrow \ln (\widetilde{\delta})+\frac{\theta}{\widetilde{\delta}}>\frac{k(\theta)}{\theta+1}+1 . \tag{109}
\end{align*}
$$

Notice that:

$$
\frac{\partial}{\partial \delta}\left(\ln (\delta)+\frac{\theta}{\delta}\right)=\frac{1}{\delta}-\frac{\theta}{\delta^{2}}=\frac{1}{\delta}\left[1-\frac{\theta}{\delta}\right]>0
$$

Since $\ln (\widetilde{\delta})+\frac{\theta}{\tilde{\delta}}$ is increasing in δ while $\frac{k(\theta)}{\theta+1}+1$ is independent of δ, it follows from (109) that $\frac{\partial a}{\partial \delta}>0$ for all $\delta>\widetilde{\delta}$. Therefore, to show that $\frac{\partial a}{\partial \delta}>0$ for all $\delta>4 e^{\frac{1}{4}}$ for all $\theta \in\left(0, \frac{1}{2}\right]$, it suffices to show that $\left.\frac{\partial a}{\partial \delta}\right|_{\delta=4 e^{\frac{1}{4}}}>0$ for all $\theta \in\left(0, \frac{1}{2}\right]$.

From (107):

$$
\begin{align*}
k(\theta) & =\ln \left(2 \frac{\theta \Gamma(\theta)}{\theta}\right)-\ln (1-\theta)+[\theta+1] \ln (\theta)-\left(1-\theta+\theta^{2}\right) \\
& =\ln \left(2 \frac{\Gamma(\theta+1)}{\theta}\right)-\ln (1-\theta)+[\theta+1] \ln (\theta)-\left(1-\theta+\theta^{2}\right) \\
& =\ln (2)+\ln (\Gamma(\theta+1))-\ln (1-\theta)+\theta \ln (\theta)-\left(1-\theta+\theta^{2}\right) \tag{110}
\end{align*}
$$

Since $\Gamma(\theta+1) \leq 1$ and $\ln (\theta)<0, \quad(110)$ implies:

$$
\begin{align*}
k(\theta) & \leq \ln (2)-\ln (1-\theta)-\left(1-\theta+\theta^{2}\right) \leq \ln (2)-\ln \left(\frac{1}{2}\right)-\left(1-\theta+\theta^{2}\right) \\
& =2 \ln (2)-\left(1-\theta+\theta^{2}\right) \leq 2 \ln (2)-\frac{3}{4} \Rightarrow-k(\theta) \geq-2 \ln (2)+\frac{3}{4} \tag{111}
\end{align*}
$$

(108) and (111) imply:

$$
\begin{align*}
& {\left[\frac{\delta(\delta-\theta)^{2}}{a}\right]\left[\frac{\partial a}{\partial \delta}\right]=\delta[-k(\theta)+(\theta+1) \ln (\delta)-\theta-1]+\theta[\theta+1]} \\
& \quad \geq \delta\left[-2 \ln (2)+\frac{3}{4}+(\theta+1) \ln (\delta)-\theta-1\right]+\theta[\theta+1] \\
& \quad=\delta\left[-2 \ln (2)+\frac{3}{4}\right]+[\theta+1][\delta(\ln (\delta)-1)+\theta] \tag{112}
\end{align*}
$$

The expression in (112) is an increasing function of θ. Therefore, it will suffice to find $\widetilde{\delta}$ such that:

$$
\begin{equation*}
\left.\left[\frac{\delta(\delta-\theta)^{2}}{a}\right] \frac{\partial a}{\partial \delta}\right|_{\delta=\tilde{\delta}} \geq \delta\left[-2 \ln (2)-\frac{1}{4}+\ln (\delta)\right] \geq 0 \tag{113}
\end{equation*}
$$

$\delta\left[-2 \ln (2)-\frac{1}{4}+\ln (\delta)\right]$ is an increasing function of δ. Also $-2 \ln (2)-\frac{1}{4}+\ln (\delta) \geq 0 \Leftrightarrow$ $\delta \geq 4 e^{\frac{1}{4}}$. Therefore, (113) implies that $\left.\left[\frac{\delta(\delta-\theta)^{2}}{a}\right] \frac{\partial a}{\partial \delta}\right|_{\delta=4 e^{\frac{1}{4}}} \geq 0$, and so $\left.\frac{\partial a}{\partial \delta}\right|_{\delta=4 e^{\frac{1}{4}}}>0$ for all $\theta \in\left(0, \frac{1}{2}\right]$.

Finally, recall from Finding 3 that $x_{0}=\left[\frac{1-\theta+\theta^{2}}{1-\theta}\right] a$ at the solution to [P-L]. Therefore, $\frac{\partial x_{0}}{\partial \delta}>0$ for all $\delta \geq 4 e^{\frac{1}{4}}$ and $\theta \in\left(0, \frac{1}{2}\right]$ since $\frac{\partial a}{\partial \delta}>0$ for all $\delta \geq 4 e^{\frac{1}{4}}$ and $\theta \in\left(0, \frac{1}{2}\right]$.

Proof of Corollary 3.

From (90):

$$
\begin{aligned}
\ln (\beta) & =\ln (\theta)-\ln (\delta)+\frac{1-\theta+\theta^{2}}{1-\theta} \\
\Rightarrow \quad \frac{\partial \ln (\beta)}{\partial \theta} & =\frac{1}{\theta}+\frac{[1-\theta][-1+2 \theta]+1-\theta+\theta^{2}}{[1-\theta]^{2}}=\frac{1}{\theta}+\frac{\theta[2-\theta]}{[1-\theta]^{2}}>0
\end{aligned}
$$

Proof of Proposition 1.

(73) implies that when $p=1$:

$$
\begin{equation*}
\pi \leq\left[1-\frac{\theta}{\delta}\right]\left[\left(\frac{\theta}{\delta}\right)(2)^{\frac{1}{\theta}}\right]^{\frac{\theta}{\delta-\theta}}\left[\frac{\left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}{1+\delta}\right]^{\frac{1}{\delta-\theta}} \tag{114}
\end{equation*}
$$

Finding 3 implies that when $p=1$:

$$
\begin{gather*}
\pi^{L}=\left[1-\frac{\theta}{\delta}\right]\left(\left(\frac{\theta}{\delta}\right) \frac{\left(\left[\frac{2 \theta}{\delta}\right] e^{-c_{3}^{*}} \Gamma(\theta)\left[\theta+c_{3}^{*}\right]\right)^{\frac{1}{\theta}}}{e^{-c_{3}^{*}}}\right)^{\frac{\theta}{\delta-\theta}}, \text { where } c_{3}^{*}=\frac{1-\theta+\theta^{2}}{1-\theta} . \\
\Rightarrow \pi^{L}=\left[1-\frac{\theta}{\delta}\right]\left[\left(\frac{\theta}{\delta}\right)(2)^{\frac{1}{\theta}}\right]^{\frac{\theta}{\delta-\theta}}\left[\frac{\left(\left(\frac{\theta}{\delta}\right) e^{-c_{3}^{*}} \Gamma(\theta)\left[\theta+c_{3}^{*}\right]\right)^{\frac{1}{\theta}}}{e^{-c_{3}^{*}}}\right]^{\frac{\theta}{\delta-\theta}} \\
=\left[1-\frac{\theta}{\delta}\right]\left[\left(\frac{\theta}{\delta}\right)(2)^{\frac{1}{\theta}}\right]^{\frac{\theta}{\delta-\theta}}\left[\left(\frac{\theta}{\delta}\right) e^{-(1-\theta) c_{3}^{*}} \Gamma(\theta)\left[\theta+c_{3}^{*}\right]\right]^{\frac{1}{\delta-\theta}} \\
=\left[1-\frac{\theta}{\delta}\right]\left[\left(\frac{\theta}{\delta}\right)(2)^{\frac{1}{\theta}}\right]^{\frac{\theta}{\delta-\theta}}\left[\left(\frac{\theta}{\delta}\right) e^{-\left(1-\theta+\theta^{2}\right)} \Gamma(\theta)\left(\frac{1}{1-\theta}\right)\right]^{\frac{1}{\delta-\theta}} . \tag{115}
\end{gather*}
$$

(114) and (115) imply that when $p=1$:

$$
\begin{equation*}
\frac{\pi^{L}}{\pi} \geq\left[\frac{\left(\frac{\theta}{\delta}\right) e^{-\left(1-\theta+\theta^{2}\right)} \Gamma(\theta)\left(\frac{1}{1-\theta}\right)}{\frac{\left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}{1+\delta}}\right]^{\frac{1}{\delta-\theta}}=\left[\left(\frac{\theta}{\delta}\right) \frac{[1+\delta] e^{-\left(1-\theta+\theta^{2}\right)} \Gamma(\theta)}{[1-\theta]\left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}\right]^{\frac{1}{\delta-\theta}} . \tag{116}
\end{equation*}
$$

Define $\quad d(\delta) \equiv\left(\frac{\theta}{\delta}\right) \frac{[1+\delta] e^{-\left(1-\theta+\theta^{2}\right)} \Gamma(\theta)}{[1-\theta]\left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}$, and note that:

$$
\begin{aligned}
& d(\delta)=\left[\frac{1+\delta}{\delta}\right]\left[\frac{\theta e^{-\left(1-\theta+\theta^{2}\right)} \Gamma(\theta)}{(1-\theta)\left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}\right]=\left[1+\frac{1}{\delta}\right] r(\theta), \\
& \text { where } \quad r(\theta) \equiv \frac{\theta e^{-\left(1-\theta+\theta^{2}\right)} \Gamma(\theta)}{[1-\theta]\left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}
\end{aligned}
$$

Notice from (116) that $[d(\delta)]^{\frac{1}{\delta-\theta}} \leq 1$ since $\frac{\pi^{L}}{\pi} \leq 1$. Therefore, $d(\delta) \leq 1$. Consequently, since $1+\frac{1}{\delta}>1,(118)$ implies that $r(\theta)<1$.

$$
\begin{align*}
\text { Let } G(\delta) & \equiv \ln [d(\delta)]^{\frac{1}{\delta-\theta}} \Rightarrow G(\delta)=\left[\frac{1}{\delta-\theta}\right] \ln [d(\delta)] \tag{119}\\
\Rightarrow G^{\prime}(\delta) & =-\frac{1}{[\delta-\theta]^{2}} \ln [d(\delta)]+\left[\frac{1}{\delta-\theta}\right]\left[\frac{d^{\prime}(\delta)}{d(\delta)}\right]
\end{align*}
$$

$$
\begin{equation*}
\Rightarrow \quad[\delta-\theta]^{2} G^{\prime}(\delta)=-\ln [d(\delta)]+[\delta-\theta]\left[\frac{d^{\prime}(\delta)}{d(\delta)}\right] \tag{120}
\end{equation*}
$$

From (118):

$$
\begin{equation*}
d^{\prime}(\delta)=-\left[\frac{1}{\delta^{2}}\right] r(\theta) \Rightarrow \frac{d^{\prime}(\delta)}{d(\delta)}=\frac{-1 / \delta^{2}}{[1+\delta] / \delta}=-\frac{1}{\delta[1+\delta]} \tag{121}
\end{equation*}
$$

Substituting from (121) into (120) and using (117) provides:

$$
\begin{align*}
{[\delta-\theta]^{2} G^{\prime}(\delta) } & =-\ln [d(\delta)]+[\delta-\theta]\left[-\frac{1}{\delta(1+\delta)}\right] \\
& =-[\ln (1+\delta)-\ln (\delta)+\ln r(\theta)]-\frac{\delta-\theta}{\delta[1+\delta]} \\
& =-\ln (1+\delta)+\ln (\delta)-\frac{\delta-\theta}{\delta[1+\delta]}-\ln r(\theta) \tag{122}
\end{align*}
$$

(122) implies:

$$
\begin{gather*}
G^{\prime}(\delta) \gtrless 0 \quad \Leftrightarrow \quad-\ln (1+\delta)+\ln (\delta)-\frac{\delta-\theta}{\delta[1+\delta]}-\ln r(\theta) \gtrless 0 \\
\Leftrightarrow \quad \ln (1+\delta)-\ln (\delta)+\frac{\delta-\theta}{\delta[1+\delta]} \lessgtr-\ln r(\theta) \\
\Leftrightarrow \quad R(\delta) \lessgtr-\ln r(\theta) \tag{123}\\
\text { where } \quad R(\delta) \equiv \ln (1+\delta)-\ln (\delta)+\frac{\delta-\theta}{\delta[1+\delta]} \tag{124}
\end{gather*}
$$

From (124):

$$
\begin{equation*}
R(\delta) \rightarrow 0 \quad \text { as } \quad \delta \rightarrow \infty \tag{125}
\end{equation*}
$$

Differentiating (124) provides:

$$
\begin{equation*}
R^{\prime}(\delta)=\frac{1}{1+\delta}-\frac{1}{\delta}+\frac{\delta[1+\delta]-[\delta-\theta][1+2 \delta]}{\delta^{2}[1+\delta]^{2}}=-\frac{[\delta-\theta][1+2 \delta]}{\delta^{2}[1+\delta]^{2}}<0 \tag{126}
\end{equation*}
$$

Furthermore, $-\ln r(\theta)>0$ since $r(\theta)<1$. Therefore, (123)-(126) imply that for a given θ, there exists a $\delta_{0}(\theta)$ such that $G(\delta)$ is decreasing for all $\delta<\delta_{0}(\theta)$ and $G(\delta)$ is increasing for all $\delta>\delta_{0}(\theta)$. If $\delta_{0}(\theta) \leq 2$ for a given θ, then the lower bound of $\frac{\pi^{L}}{\pi}$ is reached at $\delta=2$ since $\delta \geq 2$ by assumption. Alternatively, if $\delta_{0}(\theta)>2$ for a given θ, then the lower bound of $\frac{\pi^{L}}{\pi}$ is reached at $\delta=\delta_{0}(\theta)$, where $\delta_{0}(\theta)$ is found by solving $s(\delta)=-\ln r(\theta)$.

To determine a lower bound for $\frac{\pi^{L}}{\pi}$ for all $\theta \in\left(0, \frac{1}{2}\right]$ and $\delta \geq 2$, define:

$$
\begin{equation*}
H(\theta) \equiv\left[\left(\frac{\theta}{\delta}\right) \frac{[1+\delta] e^{-\left(1-\theta+\theta^{2}\right)} \Gamma(\theta)}{[1-\theta]\left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}\right]^{\frac{1}{\delta-\theta}}=\left[\frac{[1+\delta] e^{-\left(1-\theta+\theta^{2}\right)} \Gamma(\theta+1)}{\delta[1-\theta]\left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}\right]^{\frac{1}{\delta-\theta}} . \tag{127}
\end{equation*}
$$

It can be shown that $H^{\prime}(\theta)>0$ and so the minimum value of $H(\theta)$ is reached as $\theta \rightarrow 0$ for any fixed $\delta \in[2, \infty)$. To determine the limiting value of $H(\theta)$ as $\theta \rightarrow 0$, note that:

$$
\begin{equation*}
H(\theta) \rightarrow\left[\left(\frac{1+\delta}{\delta}\right)\left(\frac{1}{e}\right)\right]^{\frac{1}{\delta}} \quad \text { as } \theta \rightarrow 0 \tag{128}
\end{equation*}
$$

Since $\left[\left(\frac{1+\delta}{\delta}\right)\left(\frac{1}{e}\right)\right]^{\frac{1}{\delta}}$ is an increasing function of $\delta,\left[\left(\frac{1+\delta}{\delta}\right)\left(\frac{1}{e}\right)\right]^{\frac{1}{\delta}}$ attains its minimum value when $\delta=2$. From (128), $H(\theta) \rightarrow\left(\frac{3}{2}\left(\frac{1}{e}\right)\right)^{\frac{1}{2}}=0.74285$ as $\theta \rightarrow 0$ when $\delta=2$. Consequently, from (116), $\frac{\pi^{L}}{\pi} \geq .743$ for all $\theta \in\left(0, \frac{1}{2}\right]$ and $\delta \geq 2$.

Proof of Proposition 2.

Finding 2 and Proposition 1 imply that when $\theta=\frac{1}{2}$:

$$
\begin{equation*}
\frac{\pi^{L}}{\pi} \geq \frac{\left[1-\frac{1}{2 \delta}\right]\left(\frac{2}{\delta^{3}}\left[\frac{22}{7}\right] e^{-\frac{3}{2}}\right)^{\frac{1}{2 \delta-1}}}{\left[1-\frac{1}{2 \delta}\right]\left(\frac{2}{\delta\left[\delta^{2}+1\right]}\right)^{\frac{1}{2 \delta-1}}}=\left(\frac{\left[\delta^{2}+1\right] 22 e^{-\frac{3}{2}}}{7 \delta^{2}}\right)^{\frac{1}{2 \delta-1}} \tag{129}
\end{equation*}
$$

Let $\widetilde{B}(\delta) \equiv\left(\frac{\left[\delta^{2}+1\right] 22 e^{-\frac{3}{2}}}{7 \delta^{2}}\right)^{\frac{1}{2 \delta-1}}$. Then:

$$
\begin{gather*}
\ln (\widetilde{B}(\delta))=\left[\frac{1}{2 \delta-1}\right] \ln \left(\left[1+\frac{1}{\delta^{2}}\right] \frac{22}{7} e^{-\frac{3}{2}}\right)=\left[\frac{1}{2 \delta-1}\right]\left[\ln \left(1+\frac{1}{\delta^{2}}\right)+\ln \left(\frac{22}{7} e^{-\frac{3}{2}}\right)\right] \\
\Rightarrow \quad \frac{\partial}{\partial \delta} \ln (\widetilde{B}(\delta))= \\
=\left[\frac{1}{2 \delta-1}\right] \frac{\left(-2 \delta^{-3}\right)}{\left[1+\frac{1}{\delta^{2}}\right]}-2\left[\ln \left(1+\frac{1}{\delta^{2}}\right)+\ln \left(\frac{22}{7} e^{-\frac{3}{2}}\right)\right] \frac{1}{[2 \delta-1]^{2}} \tag{130}\\
=-\frac{2}{[2 \delta-1]^{2}}\left[\frac{2 \delta-1}{\delta^{3}+\delta}+\ln \left(1+\frac{1}{\delta^{2}}\right)+\ln \left(\frac{22}{7} e^{-\frac{3}{2}}\right)\right]
\end{gather*}
$$

(130) implies:

$$
\begin{equation*}
\frac{\partial}{\partial \delta} \ln (\widetilde{B}(\delta))=0 \text { when } \widetilde{M}(\delta) \equiv \frac{2 \delta-1}{\delta^{3}+\delta}+\ln \left(1+\frac{1}{\delta^{2}}\right)+\ln \left(\frac{22}{7} e^{-\frac{3}{2}}\right)=0 \tag{131}
\end{equation*}
$$

Note that:

$$
\frac{\partial}{\partial \delta}\left(\frac{2 \delta-1}{\delta^{3}+\delta}\right) \stackrel{s}{=} 2\left[\delta^{3}+\delta\right]-[2 \delta-1]\left[3 \delta^{2}+1\right]=2 \delta^{3}+2 \delta-6 \delta^{3}-2 \delta+3 \delta^{2}+1
$$

$$
\begin{equation*}
=-4 \delta^{3}+3 \delta^{2}+1<-\delta^{3}+1<0 \tag{132}
\end{equation*}
$$

(131) and (132) imply that $\widetilde{M^{\prime}}(\delta)<0$ for all $\delta \geq 2$. It can be verified that $\widetilde{M}(2.55899)=0$. Hence, $\widetilde{M}(\delta)>0$ if $\delta<2.55899$, and $\widetilde{M}(\delta)<0$ if $\delta>2.55899$. Therefore, $\widetilde{B}^{\prime}(\delta)<0$ if $\delta<2.55899, \widetilde{B}^{\prime}(\delta)<0$ if $\delta>2.55899$, and $\widetilde{B}^{\prime}(\delta)=0$ if $\delta=2.55899$. Hence, (130) and (131) imply that for all $\delta \geq 2$:

$$
\widetilde{B}(\delta) \geq \widetilde{B}(2.55899) \approx\left(\frac{[7.5485][3.14159]}{[6.5485][4.4817]}\right)^{\frac{1}{4.118}} \approx(.808026)^{.24284} \approx .94955
$$

