
Technical Appendix to Accompany

�On the Performance of Linear Contracts�

by

Arup Bose, Debashis Pal, and David E. M. Sappington

This technical appendix to accompany �On the Performance of Linear Contracts� con-

sists of two parts. Appendix A states and proves conclusions that supplement the formal

conclusions reported in the text of the paper. Appendix B provides detailed proofs of the

formal conclusions in the paper.

Appendix A. Additional Conclusions

Lemma A1 provides the equations that characterize the solution to [P]. Finding A1

extends Finding 3 in the text to the case where f(xja) is given by the two-parameter gamma

density:

f(xja) = xp�1 e�x=a

ap �(p)
for x 2 [0;1); where �(p) =

1Z
0

e�u up�1 du. (1)

Proposition A1 extends Proposition 1 in the text to allow for � 2 (1; 2). Propositions A2

and A3 provide the corresponding extension of Proposition 2 in the text.

Lemma A1. The solution to [P] is characterized by the solution to the following equations:

w(x) =

8><>:
0 if x < bxh
2�
�
�+ �

h
fa(xja)
f(xja)

i�i 1
1��

if x � bx ; (2)

Z 1

bx 2[w (x)]� f(xja)dx � a� = 0 ; (3)

Z 1

bx 2[w (x)]� fa(xja)dx � �a��1 = 0 ; and (4)

Z bx
0

x fa(xja)dx +
Z 1

bx [x� w(x)] fa(xja)dx

+ �

�Z 1

bx 2[w (x)]� faa(xja)dx � � [� � 1] a��2
�
= 0 , (5)
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where bx = min

�
x � 0 j �+ �

�
fa(xja)
f(xja)

�
� 0
�
. (6)

Finding A1. Suppose f(xja) is as speci�ed in (1). Then at the solution to [P-L]:

a =

"
p �

�

[g (c�3)]
1
�

g2 (c�3)

# �
���

; �L = a p

�
1� �

�

�
; � =

�
a���

g (c�3)

� 1
�

; and x0 = ac
�
3, (7)

where g(c) =
2�

�

Z 1

c

[y � c]��1y ' (y) dy; g2(c) =

Z 1

c

[y � c]' (y) dy; (8)

' (y) =
e�y yp�1

� (p)
for p > 0 and y > 0; and (9)

c�3 is the point at which �(c3) �
�

� g2(c3)

p � [g(c3)]
1
�

� ��
���

attains its minimum value in the range [0; bc3],
where ĉ3 is the value of c that solves:

[� � �]
Z 1

0

e�t t� [t+ c]p�1 dt = c �

Z 1

0

e�t t��1 [t+ c]p�1 dt: (10)

Proof. It is readily veri�ed that the �rst-order approach to solving [P-L] is valid under the

maintained assumptions. Consequently, [P-L] can be written as:

Maximize
x0; a, �

eL =

Z x0

0

x f (xja) dx+
Z 1

x0

[x� (x� x0)�]f (xja) dx (11)

subject to:
Z 1

x0

2 [w(x)]�f (xja) dx� a� � 0, and (12)

Z 1

x0

2 [w(x)]�fa (xja) dx� � a��1 = 0. (13)

De�ne �(c) =

Z 1

c

[y � c]� ' (y) dy and c3 =
x0
a
. (14)

(8), (9), and (14) imply that when y = x
a
, (12) can be written as:

2 a���
Z 1

c3

[y � c3]�' (y) dy � a� , 2 a��� � (c3) � a� , �� � a�

2 a�� (c3)
. (15)

(1) and (9) imply:
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f(xja) =
�
1

a

�
'
�x
a

�
. (16)

Letting '0 (x) = @'(x)
@x
, (16) implies:

@f(xja)
@a

= fa (xja) = � 1

a2
'
�x
a

�
� x

a3
'0
�x
a

�
. (17)

(17) implies that (13) can be written as:Z 1

x0

2[(x� x0)�]�
�
� 1
a2
'
�x
a

�
�
h x
a3

i
'0
�x
a

��
dx = � a��1. (18)

Since y = x
a
, (18) can be written as:Z 1

x0
a

2[(ay � x0)�]�
�
� 1
a2
' (y)�

hay
a3

i
'0 (y)

�
[a] dy = � a��1

, ��
Z 1

c3

[y � c3]�[�1] [' (y) + y '0 (y)] dy =
� a���

2
. (19)

Integrating by parts and using the fact that ' (y) decays exponentially, (19) can be written

as:

�� �

Z 1

c3

[y�c3]��1y ' (y) dy =
� a���

2
, �� g (c3) = a��� , � =

�
a���

g (c3)

� 1
�

. (20)

Since y = x
a
and c3 = x0

a
from (14), (11) can be written as:

eL = ap�
Z 1

c3

[ay � x0]� ' (y) dy = a[p� � g2 (c3)] = a

"
p�

 
g2(c3)

g(c3)
1
�

!
a
���
�

#
. (21)

(15), (20), and (21) imply that [P-L] can be written as:

Maximize
a; �1; c3

a

"
p�

 
g2(c3)

g(c3)
1
�

!
a
���
�

#
(22)

subject to: 2� (c3) � g(c3) and �� g (c3) = a���. (23)

Letting t = y � c, (8) and (14) imply:

�(c) =

Z 1

c

[y � c]� '(y)dy =
Z 1

0

t� '(t+ c)dt, and (24)

3



g4(c) �
�
�

2�

�
g(c) =

Z 1

c

[y � c]��1 y '(y)dy =
Z 1

0

t��1[c+ t]'(t+ c)dt. (25)

We will now prove: (i) �(0) = g4(0); (ii)
�(c)
g4(c)

is a decreasing function of c for all p > 0;

and (iii) there exists a unique bc3 such that 2� (bc3) = g (bc3).
To begin, de�ne s (t) � e�tt��1 [t+c]p�2

�(p)
for c > 0 and t � 0. From (9) and (14):

�(c) =

Z 1

c

[y � c]� e
�y yp�1

� (p)
dy =

Z 1

0

e�(t+c)
(t)� [t+ c]p�1

� (p)
dt

= e�c
Z 1

0

t [t+ c] s (t) dt (26)

) �0 (c) = � �(c) + [p� 1] e�c
Z 1

0

e�t t� [t+ c]p�2

�(p)
dt

= � �(c) + [p� 1] e�c
Z 1

0

t s (t) dt. (27)

From (9) and (25):

g4(c) =

Z 1

c

[y � c]��1 yp e�y
� (p)

dy =

Z 1

0

(t)��1 [t+ c]p e�(t+c)

� (p)
dt

= e�c
Z 1

0

[t+ c]2 s (t) dt. (28)

Therefore:
g04(c) = � g4(c) + p e�c

Z 1

0

[t+ c] s (t) dt: (29)

(26) and (28) imply:
�(0) =

Z 1

0

t2 s (t) dt = g4(0). (30)

To show that �(c)
g4(c)

is a decreasing function of c, it su¢ ces to show:

�0 (c) g4(c)� g04(c)� (c) < 0. (31)

De�ne: �0 =

Z 1

0

s (t) dt; �1 =

Z 1

0

t s (t) dt; and �2 =

Z 1

0

t2 s (t) dt.

(26) �(29) imply:

�(c) = e�c [c �1 + �2] ; �0 (c) = � �(c) + [p� 1] e�c �1;

g4(c) = e�c
�
c20�+ 2 c �1 + �2

�
; and g04(c) = � g4(c) + p e�c [c �0 + �1] .
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Therefore, the inequality in (31) holds if and only if:�
��(c) + (p� 1) e�c�1

�
g4(c) <

�
�g4(c) + pe�c (c �0 + �1)

�
� (c)

, [p� 1] e�c� g4(c) < p e�c [c �0 + �1] � (c)

, [p� 1]
�
c20�0 + 2c�1 + �2

�
�1 < p [c �1 + �2] [c �0 + �1]

, [p� 1]
�
c20�0�1 + 2 c �

2
1 + �1�2

�
< p

�
c2�1�0 + c �

2
1 + c �0 �2 + �1 �2

�
, c2�1�0 + c �

2
1 [2� p] + �1�2 + p c �0 �2 > 0. (32)

Since, �0; �1; and �2 are strictly positive; (32) holds if p � 2.

Now suppose p > 2. The Cauchy - Schwartz inequality implies:

�1 =

Z 1

0

t s (t) dt =

Z 1

0

�
t
p
s (t)

��p
s (t)

�
dt

�
�Z 1

0

�
t
p
s (t)

�2
dt

� 1
2
�Z 1

0

�p
s (t)

�2
dt

� 1
2

=

�Z 1

0

t2 s (t) dt

� 1
2
�Z 1

0

s (t) dt

� 1
2

= (�0)
1
2 (�2)

1
2 . (33)

(33) implies:

�21 � �0 �2 ) c �21 [2� p] � c [2� p]�0 �2. (34)

Using (34) in (32) provides:

c2�1 �0+c �
2
1 [2� p]+�1 �2+p c �0�2 � c2�1 �0+c [2� p]�0 �2+�1 �2+p c �0 �2

= c2�1 �0 + 2 c �0 �2 + �1 �2 > 0.

Therefore, (32) holds for p > 2 as well.

Finally, note that 2�(0)
g(0)

= �
�
> 1 and that 2�(c)

g(c)
is a decreasing function of c for all p > 0:

Furthermore, from (8), 2�(c)
g(c)

! 0 as p ! 1: Hence, there exists a unique bc3 such that
2� (bc3) = g (bc3) :
These conclusions facilitate a restatement of [P-L]. When (23) holds:

a�

2 a�� (c3)
� a���

g (c3)
) 2� (c3) � g (c3) ) c3 � bc3: (35)
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(22), (23), and (35) imply that [P-L] can be written as:

Maximize
a; c3�bc3 bL = a

"
p � g2 (c3)

[g (c3)]
1
�

a
���
�

#
. (36)

Because bL is concave in a, the unconstrained optimum for a occurs where:

@bL
@a

= p� g2 (c3)

[g (c3)]
1
�

a
���
� � a

g2 (c3)

[g (c3)]
1
�

�
� � �
�

�
a
��2�
� = 0

) a
���
�
g2 (c3)

[g (c3)]
1
�

�
�

�

�
= p ) a =

"
p �

�

[g (c3)]
1
�

g2 (c3)

# �
���

. (37)

(36) and (37) imply that the solution to [P-L] is given by:

a =

"
p �

�

[g (c�3)]
1
�

g2 (c�3)

# �
���

and �L = a

�
p� p�

�

�
= a p

�
1� �

�

�
, (38)

where c�3 is the point at which �(c3) �
�

� g2(c3)

p � [g(c3)]
1
�

� ��
���

attains its minimum value in the range

[0; bc3].
We next show that bc3 is the value of c that solves (10). To demonstrate this conclusion,

recall that by de�nition, 2� (c) = g (c) at ĉ3. Therefore, from (8) and (26):

2 e�c
Z 1

0

e�t
(t)� [t+ c]p�1

� (p)
dt =

�
2 �

�

�
e�c
Z 1

0

(t)��1 [t+ c]p e�t

� (p)
dt. (39)

Let l(t) = (t)��1 [t+ c]p�1 e�t. Then (39) implies:

�

Z 1

0

t l(t)dt = �

Z 1

0

[t+ c] l(t)dt , [� � �]
Z 1

0

t l(t)dt = c �

Z 1

0

l(t)dt: (40)

Substituting for l(t) in (40) provides (10).

Finally, notice that � =
�
a���

g(c�3)

� 1
�

and x0 = ac
�
3, from (14) and (20). �

Proposition A1. Suppose p = 1 and � > 1. Then at the solution to [P-L]:

�L = a

�
1� �

�

�
where a =

0@�
�

��
2�
�

�
e�c

�
3 �(�) [� + c�3]

� 1
�

e�c
�
3

1A
�

���

(41)
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and c�3 =

8><>:
1��+�2
1�� if � � 1

1��

� � � if � � 1
1�� .

(42)

Proof. The proof follows from substituting into (38) the expressions for c�3 identi�ed in

Observation A3 below. The proof of Observation A3 employs the conclusions recorded as

Observations A1 and A2.

Observation A1. bc3 = � � � when p = 1.

Proof. When p = 1:

[� � �]
Z 1

0

e�t t� [t+ c]p�1 dt = [� � �] � (� + 1)

and c �

Z 1

0

e�t t��1 [t+ c]p�1 dt = c � � (�) . (43)

Since � � (�) = � (� + 1), (9) and (43) imply:

[� � �] � (� + 1) = c� (� + 1) ) bc3 = � � �. �

Observation A2. Suppose p = 1. Then �(c3) �
�

� g2(c3)

p � [g(c3)]
1
�

� ��
���

attains its global minimum

at c3 = 1��+�2
1�� :

Proof. From (8) and (9):

g2(c) =

Z 1

c

[y � c]' (y) dy =
Z 1

c

[y � c] e
�y yp�1

� (p)
dy. (44)

Substituting y � c = t into (44) provides:

g2(c) =

Z 1

0

t e�(t+c)
[t+ c]p�1

�(p)
dt =

e�c

�(p)

Z 1

0

t e�t [t+ c]p�1 dt. (45)

(45) implies that if p = 1, then g2(c) = e�c.

From (25), g4(c) =
R1
0
t��1[c+ t]p e

�(t+c)

�(p)
dt. Hence, if p = 1, then:

g4(c) = e�c
Z 1

0

t��1 [c+ t] e�tdt = e�c
�
c

Z 1

0

t��1 e�tdt+

Z 1

0

t� e�tdt

�

= e�c [c�(�) + � (� + 1)] = e�c �(�) [� + c] . (46)

(25) and (46) imply:
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g(c) =

�
2 �

�

�
g4(c) =

�
2 �

�

�
e�c �(�) [� + c]

) � g2 (c3)

p � [g (c3)]
1
�

=
� e�c

�
��
2�
�

�
e�c �(�) (� + c3)

� 1
�

= k0

"
e�c

[e�c (� + c3)]
1
�

#
(47)

where k0 =
�

�
�
2�
�
�(�)

� 1� .
Note that:

ln

 
� g2 (c3)

p �[g (c3)]
1
�

!
= ln k0 � c3 +

c3
�
� ln (c3 + �)

�
.

Let v(c3) = ln
�

� g2(c3)

p �[g(c3)]
1
�

�
. Then:

@v(c3)

@c3
= � 1 + 1

�
� 1

� [c3 + �]
and

@2v(c3)

@ (c3)
2 =

1

� [c3 + �]
2 > 0. (48)

(48) implies that @v(c3)
@c3

���
c3=0

< 0, @v(c3)
@c3

���
c3!1

> 0, and v(c3) is convex. Therefore, v(c3)

reaches its minimum at ec3, where:
�1 + 1

�
� 1

� [ec3 + �] = 0 ) ec3 = 1� � + �2

1� � . �

Observation A3. Suppose p = 1 and � � 1
2
. Then:

(i) c�3 =
1��+�2
1�� when � � 1

1�� , and c
�
3 = bc3 if � = 1

2
and � = 2.

(ii) c�3 = bc3 = � � � when � � 1
1�� .

Proof. From Observations A1 and A2:

c�3 � bc3 , 1� � + �2

1� � � � � � , 1� � + �2 � [1� �] [� � �]

, 1� � + �2 � � � �� � � + �2 , 1 � � [1� �] . (49)

The result follows from (49), since v (c3) is a convex function, from (48). �

Finally, notice that if p = 1, then (47) implies:

p �

�

[g (c�3)]
1
�

g2 (c�3)
=
�

�

��
2�
�

�
e�c

�
3 �(�) (� + c�3)

� 1
�

e�c
�
3
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) a0 =

0@�
�

��
2�
�

�
e�c

�
3 �(�) (� + c�3)

� 1
�

e�c
�
3

1A
�

���

. �

Proposition A2. Suppose p = 1 and � = 1
2
. Then for all � 2 (1; 2):

�L

�
�
 �
�2 + 1

�
�

4
e
�(�� 1

2)
! 1

2��1

. (50)

Proof. Since � = 1
2
and � 2 (1; 2), � < 1

1�� : Hence, from Proposition A1:

a0 =

0@�
�

��
2�
�

�
e�c

�
3�(�) [� + c�3]

� 1
�

e�c
�
3

1A
�

���

and c�3 = � � �. (51)

Substituting for � and c�3 in (51) provides:

a0 =

0B@ 1

2�

�
e�(��

1
2)�(1

2
)
�2

e�(��
1
2)

1CA
1

2��1

=

 
1

2�
e�(��

1
2)
�
�(
1

2
)

�2! 1
2��1

=
� �
2�
e�(��

1
2)
� 1
2��1

.

Therefore from Finding 3:

�L =

�
1� 1

2�

�� �
2�
e�(��

1
2)
� 1
2��1

. (52)

From Finding 2:

� �
�
1� 1

2�

� 
2

�
�
1 + �2

�! 1
2��1

. (53)

(52) and (53) imply that the inequality in (50) holds. �

Proposition A3. �L

�
� 0:9495 for all � > 1 when p = 1 and � = 1

2
.

Proof. From Proposition 2, �L

�
� 0:9495 for all � � 2 when � = 1

2
. Therefore, from

Proposition A2, it will su¢ ce to prove that for all � 2 (1; 2) ; the minimum value of�
[�2+1]�

4
e
�(�� 1

2)
� 1

2��1

is greater than or equal to 0:9495. Let B (�) �
�
[�2+1]�

4
e
�(�� 1

2)
� 1

2��1

.

Then:

ln (B (�)) =
1

2� � 1

�
ln
�
�2 + 1

�
+ ln (�)� � + 1

2
� 2 ln (2)

�
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) @ ln (B (�))

@�
=

1

2� � 1

�
2�

�2 + 1
� 1
�

� 2

[2� � 1]2
�
ln
�
�2 + 1

�
+ ln (�)� � + 1

2
� 2 ln (2)

�

) @ ln (B (�))

@�

����
�=1

= � 2
�
� ln (2) + ln (�)� 1

2

�
> 0; and (54)

@ ln (B (�))

@�

����
�=2

=
1

3

�
4

5
� 1
�
� 2
9

�
ln (5) + ln (�)� 2 + 1

2
� 2 ln (2)

�
< 0. (55)

We will now show that there exists a unique � 2 [1; 2] such that @ ln(B(�))
@�

= 0: This fact,

(54), and (55) imply that B (�) is minimized either at � = 1 or � = 2. To show that there

exists a unique � such that @ ln(B(�))
@�

= 0, note that @ ln(B(�))
@�

= 0 if and only if:�
1

2� � 1

� �
2�

�2 + 1
� 1
�
� 2

[2� � 1]2
�
ln
�
�2 + 1

�
+ ln (�)� � + 1

2
� 2 ln (2)

�
= 0

, M (�) � 2�2 � � �
�
1 + �2

� �
ln
�
�2 + 1

�
+ ln (�)� 2 ln (2)

�
= 0. (56)

(56) implies:

M (� = 1) = 2� 1� 2 [ln (2) + ln (�)� 2 ln (2)] > 0;

M (� = 2) = 8� 2� 5 [ln (5) + ln (�)� 2 ln (2)] < 0; and

M 00 (�) = 1:484� 2 ln
�
1 + �2

�
� 4�2

1 + �2
.

Since 1 + �2 and �2

1+�2
are both increasing functions of �; it follows that M 00 (�) � 1:484 �

2 ln (2)� 2 < 0. Therefore, there exists a unique � such that M (�) = 0.

Hence, when p = 1; � = 1
2
, and 1 < � � 2, the lower bound of �L

�
is minimized either at

� = 2 or as � ! 0. From the proof of Proposition 2, the lower bound of �
L

�
is minimized at

� = 2:55899 when p = 1; � = 1
2
, and � � 2. Therefore, it will su¢ ce to compare the lower

bounds of �
L

�

���
�=2:55899

and �L

�

���
�!1
. The lower bound of �

L

�

���
�!1

= �
2
e
� 1
2 = 0:95225 > 0:94955

= the lower bound of �L

�

���
�=2:55899

. Therefore, �
L

�
� 0:94955 for all � > 1 when p = 1 and

� = 1
2
. �
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Appendix B. Proofs of Conclusions in the Text

This appendix provides detailed proofs of the formal conclusions in the paper. The formal

conclusions are the following:

Finding 1. � � ea �1� �
�

�
, where ea = h� �

�

�
(2)

1
�

i �
���
�
(�( 2��1�� ))

1��

1+�

� 1
���

.

Finding 2. � � ba �1� 1
2�

�
; where ba = � 2

�[1+�2]

� 1
2��1

when � = 1
2
.

Finding 3. At the solution to [P-L]:

� =

�
�

�

�
e
1��+�2
1�� ; x0 =

�
1� � + �2

1� �

�
a; and �L =

�
� � �
�

�
a; (57)

where a =

"�
2 �(�)

1� �

��
�

�

��+1
e�(1��+�

2)

# 1
���

. (58)

Corollary 1. a < 1 at the solution to [P-L].

Corollary 2. d�
d�
< 0 and d�L

d�
> 0 at the solution to [P-L]. Furthermore, da

d�
> 0 and

dx0
d�
> 0 when � � 4e 14 .

Corollary 3. d�
d�
> 0 at the solution to [P-L].

Proposition 1. �L

�
�
��

�
�

� [1+�] e�(1��+�2)�(�)
[1��](�( 2��1�� ))

1��

� 1
���

� :743 for all � 2 (0; 1
2
] and � � 2.

Proposition 2. �L

�
�
�
[�2+1]� e�

3
2

�2

� 1
2��1

� 0:9495 for all � � 2 when � = 1
2
.
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Proof of Finding 1.

The principal�s problem [P ] is:

Maximize
w(x); a

L =

Z 1

0

[x� w (x)] f (xja) dx (59)

subject to:
Z 1

0

2 (w (x))� f (xja) dx� a� � 0, and (60)

Z 1

0

2 (w (x))� fa (xja) dx� �a��1 = 0. (61)

Let X be a random variable denoting output, and let x denote a speci�c value of X.

The density function for X is:

f (xja) =
1

ap � (p)
xp�1 e�

x
a for x � 0:

De�ne the random variable Y = X
a
, and let y denote a speci�c value of Y . It can be

shown that Y � '(y); where:

'(y) =
1

� (p)
yp�1 e�y for y � 0.

Letting E(�) denote �expectation,� (59) can be written as:

L =

Z 1

0

xf (xja) dx�
Z 1

0

w (x) f (xja) dx = ap�
Z 1

0

w (x) f (xja) dx

= ap�
Z 1

0

w (ay)' (y) dy = ap� E (w (aY )) . (62)

Similarly, (60) can be rewritten as:Z 1

0

2 (w (ay))� ' (y) dy � a� � 0 , 2E
�
(w (aY ))�

�
� a�: (63)

Furthermore, (61) can be rewritten as:Z 1

0

2 (w (ay))�
�
ay � ap
a2

�
' (y) dy = �a��1

,
Z 1

0

2 (w (ay))� y' (y) dy �
Z 1

0

2 (w (ay))� p' (y) dy = �a�

, 2E
�
(w (aY ))� Y

�
� 2pE

�
(w (aY ))�

�
= �a�. (64)

12



Notice that:

2E
�
(w (aY ))� Y

�
� pa� � �a� , E

�
(w (aY ))� Y

�
� [p+ �] a�

2
. (65)

From Holder�s inequality, if X and Y are two non-negative functions, then:

E (XY ) � [E (Xp)]
1
p [E (Xq)]

1
q for all p > 1, where

1

p
+
1

q
= 1:

Consequently:

E
�
(w (aY ))� Y

�
�
�
E

��
(w (aY ))�

� 1
�

��� h
E
�
(Y )

1
1��

�i1��
) E

�
(w (aY ))� Y

�
� [E ((w (aY )))]�

h
E
�
(Y )

1
1��

�i1��
. (66)

Notice that:

[E ((w (aY )))]�
h
E
�
(Y )

1
1��

�i1��
� [p+ �] a�

2

, [E ((w (aY )))]� � [p+ �] a�

2
h
E
�
(Y )

1
1��

�i1��

, E ((w (aY ))) �

264 [p+ �] a�

2
h
E
�
(Y )

1
1��

�i1��
375

1
�

=

"
[p+ �] a� (� (p))1��

2
�
�
�
p+ 1

1��
��1��

# 1
�

(67)

, E ((w (aY ))) � ka
�
� ; where k =

"
[p+ �] (� (p))1��

2
�
�
�
p+ 1

1��
��1��

# 1
�

. (68)

The equality in (67) holds because, since Y � � (p):

E
�
(Y )

1
1��

�
=

Z 1

0

(y)
1

1��
1

� (p)
(y)p�1 e�ydy

=
1

� (p)

Z 1

0

(y)
p�1+ 1

1��
e�ydy =

�
�
p+ 1

1��
�

� (p)
. (69)

(67) and (69) imply:

E ((w (aY ))) �
"
(p+ �) a� (� (p))1��

2
�
�
�
p+ 1

1��
��1��

# 1
�

.

(62) and (68) imply:

13



L � ap� ka �� = Lu (a) . (70)

We will now maximize Lu (a) to derive an upper bound, L�, for the maximum value of L.

@Lu (a)

@a
= p� k

�
�

�

�
a
�
�
�1 = 0 ) ea = �

�p

�k

� �
���

. (71)

Using (71) in (70) provides:

L� � ea hp� k ea ���1i = ea �p� p �
�

�
= p

�
1� �

�

� �
�p

�k

� �
���

. (72)

Substituting for k from (68) into (72) provides:

� � L� � p

�
1� �

�

�24p�
�

0@(2) 1� �� �p+ 1
1��
�� 1��

�

[p+ �]
1
� (� (p))

1��
�

1A35 �
���

= p

�
1� �

�

� �
p

�
�

�

�
(2)

1
�

� �
���
"�
�
�
p+ 1

1��
��1��

[p+ �] (� (p))1��

# 1
���

. (73)

From (73), when p = 1:

� �
�
1� �

�

� ��
�

�

�
(2)

1
�

� �
���
"�
�
�
2��
1��
��1��

1 + �

# 1
���

. � (74)

Proof of Finding 2.

Suppose � = 1
2
and f(xja) is as speci�ed in (1). Lemma A1 in Appendix A implies that

if w(x) is not constrained to be non-negative for all realizations of x, then the solution to

the principal�s problem is determined by:

w (x) =

�
�+ �

�
fa (x; a)

f (x; a)

��2
; � =

a�

2
; � =

�a�+1

2p
; (75)

fa (x; a)

f (x; a)
=
x� ap
a2

; and �3 a2��1 + 2 p � � a��1 � 2 p2 = 0. (76)

(75) and (76) imply that an upper bound (�u) for � is:
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�u = E fx� w(x)g = ap�
Z 1

0

�
�+ �

�
x� pa
a2

��2
f (xja) dx

= ap�
Z 1

0

"
�2 + 2��

�
x� pa
a2

�
+ �2

 
(x� pa)2

a4

!#
f (xja) dx

= ap�
�
�2 +

�2p

a2

�
= ap�

"
�2 +

p

a2

�
�a�+1

2p

�2#

= ap�
�
�2 +

p

a2
1

4p2
�2a2�+2

�
= ap�

�
�2a2�

4p
+
a2�

4

�
= ap� 1

4p

�
�2a2� + p a2�

�

= ap� 1

4p

�
a �2 a2��1 + p a2�

�
= ap� 1

4p

"
a

�
2p2 � 2p��a��1

�
�

+ pa2�

#

= ap� 1

4p

�
2ap2

�
� 2p�a� + pa2�

�
= ap� 1

4p

�
2ap2

�
� pa�a� + pa2�

�

= ap� 1

4p

�
2ap2

�

�
= ap� ap

2�
=
ap [2� � 1]

2�
. (77)

(76) and (77) imply that when p = 1:

� � a

�
1� 1

2�

�
; where a =

 
2

�
�
1 + �2

�! 1
2��1

. �

Proof of Finding 3.

The proof follows directly from the proof of Proposition A1 in Appendix A. �

Proof of Corollary 1.

From Finding 3, a < 1 at the solution to [P-L] if:�
2 �(�)

1� �

��
�

�

��+1
e�(1��+�

2) < 1. (78)

Since � � 2:�
2 �(�)

1� �

��
�

�

��+1
e�(1��+�

2) �
�
2 �(�)

1� �

��
�

2

��+1
e�(1��+�

2)

15



=

�
��(�)

1� �

��
�

2

��
e�(1��+�

2) =

�
�(� + 1)

1� �

��
�

2

��
e�(1��+�

2). (79)

Notice that:

�(� + 1) =

Z 1

0

e�t (t)�+1�1 dt =

Z 1

0

e�tt�dt = E
�
T �
	
, (80)

where the density function for the random variable T is exponential with mean 1. (80) and

Holder�s inequality imply:

�(� + 1) = E
�
T �
	
� E

n�
T �
� 1
�

o�
= E fTg = 1 (81)

)
�
�(� + 1)

1� �

��
�

2

��
e�(1��+�

2) �
�
1

1� �

��
�

2

��
e�(1��+�

2). (82)

(79) and (82) imply:�
2 �(�)

1� �

��
�

�

��+1
e�(1��+�

2) �
�
1

1� �

��
�

2

��
e�(1��+�

2). (83)

Let z (�) = ln

 �
1

1� �

��
�

2

��
e�(1��+�

2)

!

= � ln(1� �) + � ln (�)� � ln(2)�
�
1� � + �2

�
(84)

) z0 (�) =
1

1� � + 1+ ln (�)� ln(2) + 1� 2� =
1

1� � + 2 [1� �] + ln (�)� ln(2) (85)

) z00 (�) =
1

[1� �]2
� 2 + 1

�
� 1

[1� �]2
. (86)

The inequality in (86) holds because 1
�
� 2, since � � 1

2
. (86) implies that z (�) is convex in

� for all � 2
�
0; 1

2

�
. Furthermore, from (84) and (85):

z (� = 0) = �1 < 0; z0 (� = 0) = �1; z

�
� =

1

2

�
= �3

4
< 0; and (87)

z0
�
� =

1

2

�
= 2 + 1 + ln

�
1

2

�
� ln(2) = 3 + ln

�
1

4

�
> 0. (88)

(87) and (88) imply that z (�) < 0 for all � 2
�
0; 1

2

�
: Therefore, from (84):

ln

 �
1

1� �

��
�

2

��
e�(1��+�

2)

!
< 0 for all � 2

�
0;
1

2

�
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)
�
1

1� �

��
�

2

��
e�(1��+�

2) < 1 for all � 2
�
0;
1

2

�
. (89)

(83) and (89) imply that the inequality in (78) holds, so a < 1 for all � 2
�
0; 1

2

�
: �

Proof of Corollary 2.

Recall from Finding 3 that at the solution to [P-L]:

� =

�
�

�

�
e
1��+�2
1�� and �L = a

�
� � �
�

�
, where a =

"�
2 �(�)

1� �

��
�

�

��+1
e�(1��+�

2)

# 1
���

. (90)

It is apparent from (90) that d�
d�
< 0.

To show d�L

d�
> 0, let:

t0 =

�
2 �(�)

1� �

��
�

�

��+1
e�(1��+�

2). (91)

(90) and (91) imply:

ln
�
�L
�
= ln (� � �)� ln (�) +

�
1

� � �

�
ln (t0)

)
@ ln

�
�L
�

@�
=

1

� � � �
1

�
� ln (t0)

[� � �]2
�
�
1

� � �

� �
1 + �

�

�

)
�
� (� � �)2

� @ ln ��L�
@�

= � [� � �]� (� � �)2 � � ln (t0)� [� � �] [1 + �]

= [� � �] [� � (� � �)� (1 + �)]� � ln (t0) = � [� � �]� � ln (t0) . (92)

(92) implies:
@ ln

�
�L
�

@�
� 0 , � � � + � ln (t0) � 0. (93)

(81) and (91) imply:

t0 =

�
2 �(� + 1)

1� �

�
(�)�

(�)�+1
e�(1��+�

2) �
�
2

1� �

�
(�)�

(�)�+1
e�(1��+�

2) (94)

) ln (t0) � ln(2)� ln(1� �) + � ln (�)� [� + 1] ln (�)�
�
1� � + �2

�
. (95)

(93) and (95) imply:
@ ln

�
�L
�

@�
� 0 if b(�) � 0, (96)

where b (�) = � � � + �
�
ln(2)� ln(1� �) + � ln (�)� [� + 1] ln (�)�

�
1� � + �2

��
. (97)
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From (97):
b (0) = � + � [ln(2)� ln(1)� ln (�)� 1] = � [ln(2)� ln (�)] . (98)

Since � � 2; (98) implies:
b (0) � 0 for all � � 2. (99)

From (97):

b

�
1

2

�
= � � 1

2
+ �

�
ln(2)� ln

�
1

2

�
+
1

2
ln

�
1

2

�
� 3
2
ln (�)� 3

4

�
� h(�). (100)

(100) implies:

h(2) = 2� 1
2
+ 2

�
0:28972�

�
3

2

�
ln (2)

�
= 0. (101)

Di¤erentiating (100) provides:

h0 (�) = 0:28972�
�
3

2

�
ln (�)� 3

2
< 0 for all � � 1. (102)

(100) �(102) imply:
b

�
1

2

�
� 0 for all � � 2. (103)

Also, di¤erentiating (97) provides:

b0 (�) = � 1 + �
�
1

1� � + ln (�) + 1� ln (�) + 1� 2�
�

) b00 (�) = �

�
1

(1� �)2
+
1

�
� 2
�
� 0, since � 2

�
0;
1

2

�
. (104)

(99), (103), and (104) imply:

b (�) � 0 for all � 2
�
0;
1

2

�
and � � 2: (105)

(96) and (105) imply:

@ ln
�
�L
�

@�
� 0 for all � 2

�
0;
1

2

�
and � � 2.

It remains to prove that da
d�
> 0 and dx0

d�
> 0 when � � 4e 14 . We will �rst show that if

there exists a e� such that @a
@�

��
� = e� > 0, then @a

@�
> 0 for all � > e�. From (90):

ln (a) =

�
1

� � �

� �
ln (2 �(�))� ln (1� �) + [� + 1] ln (�)� [� + 1] ln (�)�

�
1� � + �2

��
18



=

�
1

� � �

�
[k (�)� (� + 1) ln (�)] , (106)

where k (�) = ln (2 �(�))� ln (1� �) + [� + 1] ln (�)�
�
1� � + �2

�
. (107)

Di¤erentiating (106) provides:

1

a

�
@a

@�

�
= �

�
1

[� � �]2
�
[k (�)� [� + 1] ln (�)]�

�
1

� � �

� �
� + 1

�

�

)
�
� � �
a

� �
@a

@�

�
= � k (�)� (� + 1) ln (�)

� � � � � + 1
�
. (108)

(108) implies that if @a
@�

��
� = e� > 0, then:

�
k (�)� [� + 1] ln

�e��e� � � � � + 1e� > 0

, � e� hk (�)� (� + 1) ln�e��i� he� � �i [� + 1] > 0

, � e� � k (�)
� + 1

� ln
�e���� �e� � �� > 0

, �
�
k (�)

� + 1
� ln

�e���� �1� �e�
�

> 0 ) ln
�e��+ �e� >

k (�)

� + 1
+ 1. (109)

Notice that:
@

@�

�
ln (�) +

�

�

�
=
1

�
� �

�2
=
1

�

�
1� �

�

�
> 0.

Since ln
�e�� + �e� is increasing in � while k(�)

�+1
+ 1 is independent of �, it follows from (109)

that @a
@�
> 0 for all � > e�. Therefore, to show that @a

@�
> 0 for all � > 4e

1
4 for all � 2 (0; 1

2
], it

su¢ ces to show that @a
@�

��
� = 4e

1
4
> 0 for all � 2 (0; 1

2
]:

From (107):

k (�) = ln

�
2
��(�)

�

�
� ln (1� �) + [� + 1] ln (�)�

�
1� � + �2

�
= ln

�
2
�(� + 1)

�

�
� ln (1� �) + [� + 1] ln (�)�

�
1� � + �2

�
= ln (2) + ln (�(� + 1))� ln (1� �) + � ln (�)�

�
1� � + �2

�
. (110)
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Since �(� + 1) � 1 and ln (�) < 0, (110) implies:

k (�) � ln (2)� ln (1� �)�
�
1� � + �2

�
� ln (2)� ln

�
1

2

�
�
�
1� � + �2

�
= 2 ln (2)�

�
1� � + �2

�
� 2 ln (2)� 3

4
) � k (�) � � 2 ln (2) + 3

4
. (111)

(108) and (111) imply:"
� (� � �)2

a

# �
@a

@�

�
= � [�k (�) + (� + 1) ln (�)� � � 1] + � [� + 1]

� �

�
�2 ln (2) + 3

4
+ (� + 1) ln (�)� � � 1

�
+ � [� + 1]

= �

�
�2 ln (2) + 3

4

�
+ [� + 1] [� (ln (�)� 1) + �] . (112)

The expression in (112) is an increasing function of �. Therefore, it will su¢ ce to �nd e� such
that: "

� (� � �)2

a

#
@a

@�

����
� = e� � �

�
�2 ln (2)� 1

4
+ ln (�)

�
� 0. (113)

�[�2 ln (2) � 1
4
+ ln (�)] is an increasing function of �. Also �2 ln (2) � 1

4
+ ln (�) � 0 ,

� � 4e 14 . Therefore, (113) implies that
h
�(���)2

a

i
@a
@�

��
� = 4e

1
4
� 0, and so @a

@�

��
� = 4e

1
4
> 0 for all

� 2 (0; 1
2
].

Finally, recall from Finding 3 that x0 =
h
1��+�2
1��

i
a at the solution to [P-L]. Therefore,

@x0
@�
> 0 for all � � 4e 14 and � 2 (0; 1

2
] since @a

@�
> 0 for all � � 4e 14 and � 2 (0; 1

2
]. �

Proof of Corollary 3.

From (90):

ln (�) = ln (�)� ln (�) + 1� � + �
2

1� �

) @ ln (�)

@�
=
1

�
+
[1� �] [�1 + 2�] + 1� � + �2

[1� �]2
=
1

�
+
� [2� �]
[1� �]2

> 0. �

Proof of Proposition 1.

(73) implies that when p = 1:
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� �
�
1� �

�

� ��
�

�

�
(2)

1
�

� �
���
"�
�
�
2��
1��
��1��

1 + �

# 1
���

. (114)

Finding 3 implies that when p = 1:

�L =

�
1� �

�

�0@��
�

� ��2�
�

�
e�c

�
3�(�) [� + c�3]

� 1
�

e�c
�
3

1A
�

���

; where c�3 =
1� � + �2

1� � .

) �L =

�
1� �

�

� ��
�

�

�
(2)

1
�

� �
���

24�� ��� e�c�3�(�) [� + c�3]� 1�
e�c

�
3

35 �
���

=

�
1� �

�

� ��
�

�

�
(2)

1
�

� �
���
��
�

�

�
e�(1��)c

�
3 �(�) [� + c�3]

� 1
���

=

�
1� �

�

� ��
�

�

�
(2)

1
�

� �
���
��
�

�

�
e�(1��+�

2) �(�)

�
1

1� �

�� 1
���

. (115)

(114) and (115) imply that when p = 1:

�L

�
�

264� ��� e�(1��+�2)�(�) � 1
1��
�

(�( 2��1�� ))
1��

1+�

375
1

���

=

"�
�

�

�
[1 + �] e�(1��+�

2)�(�)

[1� �]
�
�
�
2��
1��
��1��

# 1
���

. (116)

De�ne d (�) �
�
�

�

�
[1 + �] e�(1��+�

2)�(�)

[1� �]
�
�
�
2��
1��
��1�� , and note that: (117)

d (�) =

�
1 + �

�

�"
� e�(1��+�

2)�(�)

(1� �)
�
�
�
2��
1��
��1��

#
=

�
1 +

1

�

�
r (�) , (118)

where r (�) � � e�(1��+�
2)�(�)

[1� �]
�
�
�
2��
1��
��1�� .

Notice from (116) that [d (�)]
1

��� � 1 since �L

�
� 1. Therefore, d (�) � 1. Consequently,

since 1 + 1
�
> 1, (118) implies that r (�) < 1.

Let G (�) � ln [d (�)]
1

��� ) G (�) =

�
1

� � �

�
ln [d (�)] (119)

) G0 (�) = � 1

[� � �]2
ln [d (�)] +

�
1

� � �

� �
d0 (�)

d (�)

�
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) [� � �]2G0 (�) = � ln [d (�)] + [� � �]
�
d0 (�)

d (�)

�
. (120)

From (118):

d0 (�) = �
�
1

�2

�
r (�) ) d0 (�)

d (�)
=

�1=�2

[1 + �]=�
= � 1

� [1 + �]
. (121)

Substituting from (121) into (120) and using (117) provides:

[� � �]2G0 (�) = � ln [d (�)] + [� � �]
�
� 1

� (1 + �)

�

= � [ln (1 + �)� ln (�) + ln r (�)]� � � �
� [1 + �]

= � ln (1 + �) + ln(�)� � � �
� [1 + �]

� ln r (�) . (122)

(122) implies:

G0 (�) ? 0 , � ln (1 + �) + ln(�)� � � �
� [1 + �]

� ln r (�) ? 0

, ln (1 + �)� ln(�) + � � �
� [1 + �]

7 � ln r (�)

, R (�) 7 � ln r (�) , (123)

where R (�) � ln (1 + �)� ln(�) + � � �
� [1 + �]

. (124)

From (124):
R (�)! 0 as � !1. (125)

Di¤erentiating (124) provides:

R0 (�) =
1

1 + �
� 1
�
+
� [1 + �]� [� � �] [1 + 2�]

�2 [1 + �]2
= � [� � �] [1 + 2�]

�2 [1 + �]2
< 0: (126)

Furthermore, � ln r (�) > 0 since r (�) < 1. Therefore, (123) �(126) imply that for a given

�, there exists a �0 (�) such that G (�) is decreasing for all � < �0 (�) and G (�) is increasing

for all � > �0 (�). If �0 (�) � 2 for a given �, then the lower bound of �L

�
is reached at � = 2

since � � 2 by assumption. Alternatively, if �0 (�) > 2 for a given �, then the lower bound

of �L

�
is reached at � = �0 (�), where �0 (�) is found by solving s (�) = � ln r (�).

To determine a lower bound for �
L

�
for all � 2 (0; 1

2
] and � � 2, de�ne:
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H (�) �
"�
�

�

�
[1 + �] e�(1��+�

2)�(�)

[1� �]
�
�
�
2��
1��
��1��

# 1
���

=

"
[1 + �] e�(1��+�

2)�(� + 1)

� [1� �]
�
�
�
2��
1��
��1��

# 1
���

. (127)

It can be shown that H 0 (�) > 0 and so the minimum value of H (�) is reached as � ! 0

for any �xed � 2 [2;1). To determine the limiting value of H (�) as � ! 0, note that:

H (�) !
��
1 + �

�

��
1

e

�� 1
�

as � ! 0. (128)

Since
��
1+�
�

� �
1
e

�� 1
� is an increasing function of �,

��
1+�
�

� �
1
e

�� 1
� attains its minimum value

when � = 2. From (128), H (�) !
�
3
2

�
1
e

�� 1
2 = 0:74285 as � ! 0 when � = 2. Consequently,

from (116), �L

�
� :743 for all � 2 (0; 1

2
] and � � 2. �

Proof of Proposition 2.

Finding 2 and Proposition 1 imply that when � = 1
2
:

�L
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�
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1� 1
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� �
2
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�
22
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7 �2
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. (129)

Let eB(�) � � [�2+1]22 e� 3
2

7 �2

� 1
2��1

. Then:

ln( eB(�)) = �
1

2� � 1

�
ln

��
1 +

1

�2

�
22

7
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3
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�
=
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1

2� � 1

� �
ln
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1 +

1

�2

�
+ ln

�
22

7
e�
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��

) @

@�
ln( eB(�)) = �

1

2� � 1

�
(�2 ��3)�
1 + 1

�2

� � 2 �ln�1 + 1

�2

�
+ ln

�
22

7
e�

3
2

��
1

[2� � 1]2

= � 2

[2� � 1]2
�
2� � 1
�3 + �

+ ln

�
1 +

1

�2

�
+ ln

�
22

7
e�

3
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��
. (130)

(130) implies:

@

@�
ln( eB(�)) = 0 when fM(�) � 2� � 1

�3 + �
+ ln

�
1 +

1

�2

�
+ ln

�
22

7
e�

3
2

�
= 0. (131)

Note that:

@

@�

�
2� � 1
�3 + �

�
s
= 2

�
�3 + �

�
� [2� � 1]

�
3�2 + 1

�
= 2�3 + 2� � 6�3 � 2� + 3�2 + 1
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= � 4�3 + 3�2 + 1 < � �3 + 1 < 0. (132)

(131) and (132) imply that fM 0(�) < 0 for all � � 2. It can be veri�ed that fM(2:55899) = 0.
Hence, fM(�) > 0 if � < 2:55899, and fM(�) < 0 if � > 2:55899: Therefore, eB0(�) < 0 if

� < 2:55899; eB0(�) < 0 if � > 2:55899, and eB0(�) = 0 if � = 2:55899. Hence, (130) and (131)
imply that for all � � 2:

eB(�) � eB(2:55899) t �
[7:5485] [3:14159]

[6:5485][4:4817]

� 1
4:118

t (:808026):24284 t :94955. �
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