Technical Appendix to Accompany "On the Performance of Linear Contracts" by

Arup Bose, Debashis Pal, and David E. M. Sappington

This technical appendix to accompany "On the Performance of Linear Contracts" consists of two parts. Appendix A states and proves conclusions that supplement the formal conclusions reported in the text of the paper. Appendix B provides detailed proofs of the formal conclusions in the paper.

Appendix A. Additional Conclusions

Lemma A1 provides the equations that characterize the solution to [P]. Finding A1 extends Finding 3 in the text to the case where f(x|a) is given by the two-parameter gamma density:

$$f(x|a) = \frac{x^{p-1} e^{-x/a}}{a^p \Gamma(p)} \text{ for } x \in [0,\infty), \text{ where } \Gamma(p) = \int_0^\infty e^{-u} u^{p-1} du.$$
 (1)

Proposition A1 extends Proposition 1 in the text to allow for $\delta \in (1, 2)$. Propositions A2 and A3 provide the corresponding extension of Proposition 2 in the text.

Lemma A1. The solution to [P] is characterized by the solution to the following equations:

$$w(x) = \begin{cases} 0 & \text{if } x < \hat{x} \\ \left[2\theta \left(\lambda + \mu \left[\frac{f_a(x|a)}{f(x|a)} \right] \right) \right]^{\frac{1}{1-\theta}} & \text{if } x \ge \hat{x} ; \end{cases}$$
(2)

$$\int_{\widehat{x}}^{\infty} 2[w(x)]^{\theta} f(x|a)dx - a^{\delta} = 0 ; \qquad (3)$$

$$\int_{\widehat{x}}^{\infty} 2[w(x)]^{\theta} f_a(x|a) dx - \delta a^{\delta - 1} = 0 ; \quad \text{and} \quad (4)$$

$$\int_{0}^{\hat{x}} x f_{a}(x|a) dx + \int_{\hat{x}}^{\infty} [x - w(x)] f_{a}(x|a) dx + \mu \left[\int_{\hat{x}}^{\infty} 2[w(x)]^{\theta} f_{aa}(x|a) dx - \delta [\delta - 1] a^{\delta - 2} \right] = 0 , \qquad (5)$$

where
$$\widehat{x} = \min\left\{x \ge 0 \mid \lambda + \mu\left[\frac{f_a(x|a)}{f(x|a)}\right] \ge 0\right\}.$$
 (6)

Finding A1. Suppose f(x|a) is as specified in (1). Then at the solution to [P-L]:

$$a = \left[\frac{p\theta}{\delta} \frac{[g(c_3^*)]^{\frac{1}{\theta}}}{g_2(c_3^*)}\right]^{\frac{\theta}{\delta-\theta}}; \ \pi^L = ap\left[1-\frac{\theta}{\delta}\right]; \ \beta = \left[\frac{a^{\delta-\theta}}{g(c_3^*)}\right]^{\frac{1}{\theta}}; \ \text{and} \ x_0 = ac_3^*, \tag{7}$$

where
$$g(c) = \frac{2\theta}{\delta} \int_c^\infty [y-c]^{\theta-1} y \varphi(y) \, dy; \quad g_2(c) = \int_c^\infty [y-c] \varphi(y) \, dy;$$
 (8)

$$\varphi(y) = \frac{e^{-y} y^{p-1}}{\Gamma(p)} \quad \text{for } p > 0 \text{ and } y > 0; \text{ and}$$

$$(9)$$

 c_3^* is the point at which $\rho(c_3) \equiv \left[\frac{\delta g_2(c_3)}{p \theta [g(c_3)]^{\frac{1}{\theta}}}\right]^{\frac{\delta \theta}{\delta - \theta}}$ attains its minimum value in the range $[0, \hat{c}_3]$, where \hat{c}_3 is the value of c that solves:

$$[\delta - \theta] \int_0^\infty e^{-t} t^\theta [t + c]^{p-1} dt = c \theta \int_0^\infty e^{-t} t^{\theta - 1} [t + c]^{p-1} dt.$$
(10)

Proof. It is readily verified that the first-order approach to solving [P-L] is valid under the maintained assumptions. Consequently, [P-L] can be written as:

$$\underset{x_{0}, a, \beta}{\text{Maximize}} \quad \widetilde{L} = \int_{0}^{x_{0}} x f(x|a) \, dx + \int_{x_{0}}^{\infty} [x - (x - x_{0})\beta] f(x|a) \, dx \tag{11}$$

subject to:
$$\int_{x_0}^{\infty} 2 \left[w(x) \right]^{\theta} f(x|a) \, dx - a^{\delta} \ge 0, \quad \text{and} \tag{12}$$

$$\int_{x_0}^{\infty} 2 \left[w(x) \right]^{\theta} f_a(x|a) \, dx - \delta \, a^{\delta - 1} = 0.$$
(13)

Define
$$\alpha(c) = \int_{c}^{\infty} [y-c]^{\theta} \varphi(y) \, dy$$
 and $c_3 = \frac{x_0}{a}$. (14)

(8), (9), and (14) imply that when $y = \frac{x}{a}$, (12) can be written as:

$$2a^{\theta}\beta^{\theta}\int_{c_{3}}^{\infty}[y-c_{3}]^{\theta}\varphi(y)\,dy \geq a^{\delta} \iff 2a^{\theta}\beta^{\theta}\alpha(c_{3}) \geq a^{\delta} \iff \beta^{\theta} \geq \frac{a^{\delta}}{2a^{\theta}\alpha(c_{3})}.$$
 (15)

(1) and (9) imply:

$$f(x|a) = \left(\frac{1}{a}\right)\varphi\left(\frac{x}{a}\right).$$
(16)

Letting $\varphi'(x) = \frac{\partial \varphi(x)}{\partial x}$, (16) implies:

$$\frac{\partial f(x|a)}{\partial a} = f_a(x|a) = -\frac{1}{a^2}\varphi\left(\frac{x}{a}\right) - \frac{x}{a^3}\varphi'\left(\frac{x}{a}\right).$$
(17)

(17) implies that (13) can be written as:

$$\int_{x_0}^{\infty} 2[(x-x_0)\beta]^{\theta} \left[-\frac{1}{a^2} \varphi\left(\frac{x}{a}\right) - \left[\frac{x}{a^3}\right] \varphi'\left(\frac{x}{a}\right) \right] dx = \delta a^{\delta-1}.$$
 (18)

Since $y = \frac{x}{a}$, (18) can be written as:

$$\int_{\frac{x_0}{a}}^{\infty} 2[(ay - x_0)\beta]^{\theta} \left[-\frac{1}{a^2} \varphi(y) - \left[\frac{ay}{a^3} \right] \varphi'(y) \right] [a] dy = \delta a^{\delta - 1}$$

$$\Leftrightarrow \beta^{\theta} \int_{c_3}^{\infty} [y - c_3]^{\theta} [-1] [\varphi(y) + y \varphi'(y)] dy = \frac{\delta a^{\delta - \theta}}{2}.$$
(19)

Integrating by parts and using the fact that $\varphi(y)$ decays exponentially, (19) can be written as:

$$\beta^{\theta} \theta \int_{c_3}^{\infty} [y - c_3]^{\theta - 1} y \varphi(y) \, dy = \frac{\delta a^{\delta - \theta}}{2} \quad \Leftrightarrow \quad \beta^{\theta} g(c_3) = a^{\delta - \theta} \quad \Leftrightarrow \quad \beta = \left[\frac{a^{\delta - \theta}}{g(c_3)} \right]^{\frac{1}{\theta}}. \tag{20}$$

Since $y = \frac{x}{a}$ and $c_3 = \frac{x_0}{a}$ from (14), (11) can be written as:

$$\widetilde{L} = ap - \int_{c_3}^{\infty} [ay - x_0] \beta \varphi(y) \, dy = a[p - \beta g_2(c_3)] = a \left[p - \left(\frac{g_2(c_3)}{g(c_3)^{\frac{1}{\theta}}} \right) a^{\frac{\delta - \theta}{\theta}} \right].$$
(21)

(15), (20), and (21) imply that [P-L] can be written as:

$$\underset{a, \beta_{1}, c_{3}}{\text{Maximize}} \quad a\left[p - \left(\frac{g_{2}(c_{3})}{g(c_{3})^{\frac{1}{\theta}}}\right)a^{\frac{\delta-\theta}{\theta}}\right]$$
(22)

subject to: $2 \alpha(c_3) \ge g(c_3)$ and $\beta^{\theta} g(c_3) = a^{\delta - \theta}$. (23)

Letting t = y - c, (8) and (14) imply:

$$\alpha(c) = \int_{c}^{\infty} [y-c]^{\theta} \varphi(y) dy = \int_{0}^{\infty} t^{\theta} \varphi(t+c) dt, \text{ and}$$
(24)

$$g_4(c) \equiv \left[\frac{\delta}{2\theta}\right] g(c) = \int_c^\infty [y-c]^{\theta-1} y \varphi(y) dy = \int_0^\infty t^{\theta-1} [c+t] \varphi(t+c) dt.$$
(25)

We will now prove: (i) $\alpha(0) = g_4(0)$; (ii) $\frac{\alpha(c)}{g_4(c)}$ is a decreasing function of c for all p > 0; and (iii) there exists a unique \hat{c}_3 such that $2\alpha(\hat{c}_3) = g(\hat{c}_3)$.

To begin, define $s(t) \equiv \frac{e^{-t}t^{\theta-1}[t+c]^{p-2}}{\Gamma(p)}$ for c > 0 and $t \ge 0$. From (9) and (14):

$$\alpha(c) = \int_{c}^{\infty} [y-c]^{\theta} \frac{e^{-y} y^{p-1}}{\Gamma(p)} dy = \int_{0}^{\infty} e^{-(t+c)} \frac{(t)^{\theta} [t+c]^{p-1}}{\Gamma(p)} dt$$
$$= e^{-c} \int_{0}^{\infty} t [t+c] s(t) dt$$
(26)

$$\Rightarrow \quad \alpha'(c) = -\alpha(c) + [p-1] e^{-c} \int_0^\infty \frac{e^{-t} t^\theta [t+c]^{p-2}}{\Gamma(p)} dt$$
$$= -\alpha(c) + [p-1] e^{-c} \int_0^\infty t s(t) dt. \tag{27}$$

From (9) and (25):

$$g_{4}(c) = \int_{c}^{\infty} \frac{[y-c]^{\theta-1} y^{p} e^{-y}}{\Gamma(p)} dy = \int_{0}^{\infty} \frac{(t)^{\theta-1} [t+c]^{p} e^{-(t+c)}}{\Gamma(p)} dt$$
$$= e^{-c} \int_{0}^{\infty} [t+c]^{2} s(t) dt.$$
(28)

Therefore:

$$g'_4(c) = -g_4(c) + p e^{-c} \int_0^\infty [t+c] s(t) dt.$$
(29)

(26) and (28) imply:

$$\alpha(0) = \int_0^\infty t^2 s(t) dt = g_4(0).$$
(30)

To show that $\frac{\alpha(c)}{g_4(c)}$ is a decreasing function of c, it suffices to show:

$$\alpha'(c) g_4(c) - g'_4(c) \alpha(c) < 0.$$
 (31)

Define:
$$\alpha_0 = \int_0^\infty s(t) dt; \quad \alpha_1 = \int_0^\infty t s(t) dt; \text{ and } \alpha_2 = \int_0^\infty t^2 s(t) dt.$$

(26) - (29) imply:

$$\alpha(c) = e^{-c} [c \alpha_1 + \alpha_2]; \quad \alpha'(c) = -\alpha(c) + [p-1] e^{-c} \alpha_1;$$

$$g_4(c) = e^{-c} [c_0^2 \alpha + 2 c \alpha_1 + \alpha_2]; \text{ and } g'_4(c) = -g_4(c) + p e^{-c} [c \alpha_0 + \alpha_1].$$

Therefore, the inequality in (31) holds if and only if:

$$\left[-\alpha(c) + (p-1) \ e^{-c} \alpha_1 \right] \ g_4(c) < \left[-g_4(c) + p e^{-c} \left(c \ \alpha_0 + \alpha_1 \right) \right] \alpha(c)$$

$$\Leftrightarrow \ \left[p-1 \right] e^{-c} \alpha \ g_4(c)
$$\Leftrightarrow \ \left[p-1 \right] \left[c_0^2 \alpha_0 + 2c \alpha_1 + \alpha_2 \right] \alpha_1
$$\Leftrightarrow \ \left[p-1 \right] \left[c_0^2 \alpha_0 \alpha_1 + 2c \ \alpha_1^2 + \alpha_1 \alpha_2 \right]
$$\Leftrightarrow \ c^2 \alpha_1 \alpha_0 + c \ \alpha_1^2 \left[2 - p \right] + \alpha_1 \alpha_2 + p \ c \ \alpha_0 \ \alpha_2 > 0.$$

$$(32)$$$$$$$$

Since, α_0 , α_1 , and α_2 are strictly positive, (32) holds if $p \leq 2$.

Now suppose p > 2. The Cauchy - Schwartz inequality implies:

$$\alpha_{1} = \int_{0}^{\infty} t \, s(t) \, dt = \int_{0}^{\infty} \left(t \sqrt{s(t)} \right) \left(\sqrt{s(t)} \right) dt
\leq \left[\int_{0}^{\infty} \left(t \sqrt{s(t)} \right)^{2} dt \right]^{\frac{1}{2}} \left[\int_{0}^{\infty} \left(\sqrt{s(t)} \right)^{2} dt \right]^{\frac{1}{2}}
= \left[\int_{0}^{\infty} t^{2} \, s(t) \, dt \right]^{\frac{1}{2}} \left[\int_{0}^{\infty} s(t) \, dt \right]^{\frac{1}{2}} = (\alpha_{0})^{\frac{1}{2}} (\alpha_{2})^{\frac{1}{2}}.$$
(33)

(33) implies:

$$\alpha_1^2 \leq \alpha_0 \alpha_2 \quad \Rightarrow \quad c \, \alpha_1^2 \, [2-p] \geq c \, [2-p] \, \alpha_0 \, \alpha_2. \tag{34}$$

Using (34) in (32) provides:

$$c^{2}\alpha_{1}\alpha_{0} + c \alpha_{1}^{2} [2 - p] + \alpha_{1} \alpha_{2} + p c \alpha_{0} \alpha_{2} \geq c^{2}\alpha_{1} \alpha_{0} + c [2 - p] \alpha_{0} \alpha_{2} + \alpha_{1} \alpha_{2} + p c \alpha_{0} \alpha_{2}$$
$$= c^{2}\alpha_{1} \alpha_{0} + 2 c \alpha_{0} \alpha_{2} + \alpha_{1} \alpha_{2} > 0.$$

Therefore, (32) holds for p > 2 as well.

Finally, note that $\frac{2\alpha(0)}{g(0)} = \frac{\delta}{\theta} > 1$ and that $\frac{2\alpha(c)}{g(c)}$ is a decreasing function of c for all p > 0. Furthermore, from (8), $\frac{2\alpha(c)}{g(c)} \to 0$ as $p \to \infty$. Hence, there exists a unique \hat{c}_3 such that $2\alpha(\hat{c}_3) = g(\hat{c}_3)$.

These conclusions facilitate a restatement of [P-L]. When (23) holds:

$$\frac{a^{\delta}}{2 a^{\theta} \alpha (c_3)} \leq \frac{a^{\delta-\theta}}{g (c_3)} \Rightarrow 2 \alpha (c_3) \geq g (c_3) \Rightarrow c_3 \leq \hat{c}_3.$$
(35)

(22), (23), and (35) imply that [P-L] can be written as:

$$\underset{a, c_3 \leq \widehat{c}_3}{\text{Maximize}} \quad \widehat{L} = a \left[p - \frac{g_2(c_3)}{[g(c_3)]^{\frac{1}{\theta}}} a^{\frac{\delta - \theta}{\theta}} \right].$$
(36)

Because \widehat{L} is concave in a, the unconstrained optimum for a occurs where:

$$\frac{\partial \widehat{L}}{\partial a} = p - \frac{g_2(c_3)}{[g(c_3)]^{\frac{1}{\theta}}} a^{\frac{\delta-\theta}{\theta}} - a \frac{g_2(c_3)}{[g(c_3)]^{\frac{1}{\theta}}} \left[\frac{\delta-\theta}{\theta}\right] a^{\frac{\delta-2\theta}{\theta}} = 0$$

$$\Rightarrow a^{\frac{\delta-\theta}{\theta}} \frac{g_2(c_3)}{[g(c_3)]^{\frac{1}{\theta}}} \left[\frac{\delta}{\theta}\right] = p \Rightarrow a = \left[\frac{p\theta}{\delta} \frac{[g(c_3)]^{\frac{1}{\theta}}}{g_2(c_3)}\right]^{\frac{1}{\theta}}.$$
(37)

(36) and (37) imply that the solution to [P-L] is given by:

$$a = \left[\frac{p\theta}{\delta} \frac{[g(c_3^*)]^{\frac{1}{\theta}}}{g_2(c_3^*)}\right]^{\frac{\theta}{\delta-\theta}} \quad \text{and} \quad \pi^L = a\left[p - \frac{p\theta}{\delta}\right] = ap\left[1 - \frac{\theta}{\delta}\right], \tag{38}$$

where c_3^* is the point at which $\rho(c_3) \equiv \left[\frac{\delta g_2(c_3)}{p \theta [g(c_3)]^{\frac{1}{\theta}}}\right]^{\frac{\delta \theta}{\delta - \theta}}$ attains its minimum value in the range $[0, \hat{c}_3]$.

We next show that \hat{c}_3 is the value of c that solves (10). To demonstrate this conclusion, recall that by definition, $2\alpha(c) = g(c)$ at \hat{c}_3 . Therefore, from (8) and (26):

$$2 e^{-c} \int_0^\infty e^{-t} \frac{(t)^{\theta} [t+c]^{p-1}}{\Gamma(p)} dt = \left[\frac{2\theta}{\delta}\right] e^{-c} \int_0^\infty \frac{(t)^{\theta-1} [t+c]^p e^{-t}}{\Gamma(p)} dt.$$
(39)

Let $l(t) = (t)^{\theta - 1} [t + c]^{p - 1} e^{-t}$. Then (39) implies:

$$\delta \int_0^\infty t \, l(t) dt = \theta \int_0^\infty [t+c] \, l(t) dt \quad \Leftrightarrow \quad [\delta-\theta] \int_0^\infty t \, l(t) dt = c \, \theta \int_0^\infty l(t) dt. \tag{40}$$

Substituting for l(t) in (40) provides (10).

Finally, notice that $\beta = \left[\frac{a^{\delta-\theta}}{g(c_3^*)}\right]^{\frac{1}{\theta}}$ and $x_0 = ac_3^*$, from (14) and (20).

Proposition A1. Suppose p = 1 and $\delta > 1$. Then at the solution to [P-L]:

$$\pi^{L} = a \left[1 - \frac{\theta}{\delta} \right] \quad \text{where} \quad a = \left(\frac{\theta}{\delta} \frac{\left(\left[\frac{2\theta}{\delta} \right] e^{-c_{3}^{*}} \Gamma(\theta) \left[\theta + c_{3}^{*} \right] \right)^{\frac{1}{\theta}}}{e^{-c_{3}^{*}}} \right)^{\frac{1}{\delta}}$$
(41)

θ

and
$$c_3^* = \begin{cases} \frac{1-\theta+\theta^2}{1-\theta} & if \quad \delta \ge \frac{1}{1-\theta} \\ \delta-\theta & if \quad \delta \le \frac{1}{1-\theta}. \end{cases}$$
 (42)

Proof. The proof follows from substituting into (38) the expressions for c_3^* identified in Observation A3 below. The proof of Observation A3 employs the conclusions recorded as Observations A1 and A2.

Observation A1. $\hat{c}_3 = \delta - \theta$ when p = 1.

Proof. When p = 1:

$$[\delta - \theta] \int_0^\infty e^{-t} t^\theta [t + c]^{p-1} dt = [\delta - \theta] \Gamma(\theta + 1)$$

and $c \theta \int_0^\infty e^{-t} t^{\theta - 1} [t + c]^{p-1} dt = c \theta \Gamma(\theta).$ (43)

Since $\theta \Gamma(\theta) = \Gamma(\theta + 1)$, (9) and (43) imply:

$$[\delta - \theta] \Gamma (\theta + 1) = c \Gamma (\theta + 1) \implies \widehat{c}_3 = \delta - \theta. \square$$

Observation A2. Suppose p = 1. Then $\rho(c_3) \equiv \left[\frac{\delta g_2(c_3)}{p \ \theta [g(c_3)]^{\frac{1}{\theta}}}\right]^{\frac{\delta \theta}{\delta - \theta}}$ attains its global minimum at $c_3 = \frac{1 - \theta + \theta^2}{1 - \theta}$.

Proof. From (8) and (9):

$$g_2(c) = \int_c^{\infty} [y-c] \varphi(y) \, dy = \int_c^{\infty} [y-c] \frac{e^{-y} y^{p-1}}{\Gamma(p)} dy.$$
(44)

Substituting y - c = t into (44) provides:

$$g_2(c) = \int_0^\infty t \, e^{-(t+c)} \frac{[t+c]^{p-1}}{\Gamma(p)} dt = \frac{e^{-c}}{\Gamma(p)} \int_0^\infty t \, e^{-t} \, [t+c]^{p-1} \, dt.$$
(45)

(45) implies that if p = 1, then $g_2(c) = e^{-c}$.

From (25), $g_4(c) = \int_0^\infty t^{\theta-1} [c+t]^p \frac{e^{-(t+c)}}{\Gamma(p)} dt$. Hence, if p = 1, then: $g_4(c) = e^{-c} \int_0^\infty t^{\theta-1} [c+t] e^{-t} dt = e^{-c} \left[c \int_0^\infty t^{\theta-1} e^{-t} dt + \int_0^\infty t^{\theta} e^{-t} dt \right]$ $= e^{-c} \left[c \Gamma(\theta) + \Gamma(\theta+1) \right] = e^{-c} \Gamma(\theta) \left[\theta + c \right].$ (46)

(25) and (46) imply:

$$g(c) = \left[\frac{2\theta}{\delta}\right]g_4(c) = \left[\frac{2\theta}{\delta}\right]e^{-c}\Gamma(\theta) \left[\theta + c\right]$$

$$\Rightarrow \frac{\delta g_2(c_3)}{p\theta \left[g\left(c_3\right)\right]^{\frac{1}{\theta}}} = \frac{\delta e^{-c}}{\theta \left[\left(\frac{2\theta}{\delta}\right)e^{-c}\Gamma(\theta)\left(\theta + c_3\right)\right]^{\frac{1}{\theta}}} = k_0 \left[\frac{e^{-c}}{\left[e^{-c}\left(\theta + c_3\right)\right]^{\frac{1}{\theta}}}\right]$$
(47)
where $k_0 = \frac{\delta}{\theta \left[\frac{2\theta}{\delta}\Gamma(\theta)\right]^{\frac{1}{\theta}}}.$

Note that:

$$\ln\left(\frac{\delta g_2(c_3)}{p \theta[g(c_3)]^{\frac{1}{\theta}}}\right) = \ln k_0 - c_3 + \frac{c_3}{\theta} - \frac{\ln (c_3 + \theta)}{\theta}$$

Let $v(c_3) = \ln\left\{\frac{\delta g_2(c_3)}{p \theta[g(c_3)]^{\frac{1}{\theta}}}\right\}$. Then: $\frac{\partial v(c_3)}{\partial c_3} = -1 + \frac{1}{\theta} - \frac{1}{\theta[c_3 + \theta]} \quad \text{and} \quad \frac{\partial^2 v(c_3)}{\partial (c_3)^2} = \frac{1}{\theta[c_3 + \theta]^2} > 0.$ (48)

(48) implies that $\frac{\partial v(c_3)}{\partial c_3}\Big|_{c_3=0} < 0$, $\frac{\partial v(c_3)}{\partial c_3}\Big|_{c_3\to\infty} > 0$, and $v(c_3)$ is convex. Therefore, $v(c_3)$ reaches its minimum at \tilde{c}_3 , where:

$$-1 + \frac{1}{\theta} - \frac{1}{\theta \left[\tilde{c}_3 + \theta\right]} = 0 \quad \Rightarrow \quad \tilde{c}_3 = \frac{1 - \theta + \theta^2}{1 - \theta}. \quad \Box$$

Observation A3. Suppose p = 1 and $\theta \leq \frac{1}{2}$. Then:

(i) $c_3^* = \frac{1-\theta+\theta^2}{1-\theta}$ when $\delta \ge \frac{1}{1-\theta}$, and $c_3^* = \hat{c}_3$ if $\theta = \frac{1}{2}$ and $\delta = 2$. (ii) $c_3^* = \hat{c}_3 = \delta - \theta$ when $\delta \le \frac{1}{1-\theta}$.

Proof. From Observations A1 and A2:

$$c_{3}^{*} \leq \hat{c}_{3} \Leftrightarrow \frac{1-\theta+\theta^{2}}{1-\theta} \leq \delta-\theta \Leftrightarrow 1-\theta+\theta^{2} \leq [1-\theta][\delta-\theta]$$
$$\Leftrightarrow 1-\theta+\theta^{2} \leq \delta-\theta\delta-\theta+\theta^{2} \Leftrightarrow 1 \leq \delta [1-\theta].$$
(49)

The result follows from (49), since $v(c_3)$ is a convex function, from (48).

Finally, notice that if p = 1, then (47) implies:

$$\frac{p\,\theta}{\delta} \frac{\left[g\left(c_{3}^{*}\right)\right]^{\frac{1}{\theta}}}{g_{2}\left(c_{3}^{*}\right)} = \frac{\theta}{\delta} \frac{\left[\left(\frac{2\theta}{\delta}\right)e^{-c_{3}^{*}}\Gamma\left(\theta\right)\left(\theta+c_{3}^{*}\right)\right]^{\frac{1}{\theta}}}{e^{-c_{3}^{*}}}$$

$$\Rightarrow a_0 = \left(\frac{\theta}{\delta} \frac{\left[\left(\frac{2\theta}{\delta}\right) e^{-c_3^*} \Gamma(\theta) \left(\theta + c_3^*\right)\right]^{\frac{1}{\theta}}}{e^{-c_3^*}}\right)^{\frac{\theta}{\delta - \theta}}.$$

Proposition A2. Suppose p = 1 and $\theta = \frac{1}{2}$. Then for all $\delta \in (1, 2)$:

$$\frac{\pi^{L}}{\pi} \geq \left(\frac{\left[\delta^{2}+1\right]\pi}{4}e^{-\left(\delta-\frac{1}{2}\right)}\right)^{\frac{2\delta-1}{2\delta-1}}.$$
(50)

Proof. Since $\theta = \frac{1}{2}$ and $\delta \in (1, 2)$, $\delta < \frac{1}{1-\theta}$. Hence, from Proposition A1:

$$a_0 = \left(\frac{\theta}{\delta} \frac{\left(\left[\frac{2\theta}{\delta}\right] e^{-c_3^*} \Gamma(\theta) \left[\theta + c_3^*\right]\right)^{\frac{1}{\theta}}}{e^{-c_3^*}}\right)^{\frac{\theta}{\delta - \theta}} \quad \text{and} \quad c_3^* = \delta - \theta.$$
(51)

Substituting for θ and c_3^* in (51) provides:

$$a_{0} = \left(\frac{1}{2\delta} \frac{\left(e^{-\left(\delta - \frac{1}{2}\right)} \Gamma\left(\frac{1}{2}\right)\right)^{2}}{e^{-\left(\delta - \frac{1}{2}\right)}}\right)^{\frac{1}{2\delta - 1}} = \left(\frac{1}{2\delta} e^{-\left(\delta - \frac{1}{2}\right)} \left(\Gamma\left(\frac{1}{2}\right)\right)^{2}\right)^{\frac{1}{2\delta - 1}} = \left(\frac{\pi}{2\delta} e^{-\left(\delta - \frac{1}{2}\right)}\right)^{\frac{1}{2\delta - 1}}.$$

Therefore from Finding 3:

$$\pi^{L} = \left[1 - \frac{1}{2\delta}\right] \left(\frac{\pi}{2\delta} e^{-\left(\delta - \frac{1}{2}\right)}\right)^{\frac{1}{2\delta - 1}}.$$
(52)

From Finding 2:

$$\pi \leq \left[1 - \frac{1}{2\delta}\right] \left(\frac{2}{\delta \left[1 + \delta^2\right]}\right)^{\frac{1}{2\delta - 1}}.$$
(53)

(52) and (53) imply that the inequality in (50) holds.

Proposition A3. $\frac{\pi^L}{\pi} \ge 0.9495$ for all $\delta > 1$ when p = 1 and $\theta = \frac{1}{2}$.

Proof. From Proposition 2, $\frac{\pi^L}{\pi} \ge 0.9495$ for all $\delta \ge 2$ when $\theta = \frac{1}{2}$. Therefore, from Proposition A2, it will suffice to prove that for all $\delta \in (1,2)$, the minimum value of $\left(\frac{[\delta^2+1]\pi}{4}e^{-(\delta-\frac{1}{2})}\right)^{\frac{1}{2\delta-1}}$ is greater than or equal to 0.9495. Let $B(\delta) \equiv \left(\frac{[\delta^2+1]\pi}{4}e^{-(\delta-\frac{1}{2})}\right)^{\frac{1}{2\delta-1}}$. Then:

$$\ln(B(\delta)) = \frac{1}{2\delta - 1} \left[\ln(\delta^2 + 1) + \ln(\pi) - \delta + \frac{1}{2} - 2\ln(2) \right]$$

$$\Rightarrow \frac{\partial \ln (B(\delta))}{\partial \delta} = \frac{1}{2\delta - 1} \left[\frac{2\delta}{\delta^2 + 1} - 1 \right]$$
$$- \frac{2}{[2\delta - 1]^2} \left[\ln (\delta^2 + 1) + \ln (\pi) - \delta + \frac{1}{2} - 2\ln (2) \right]$$
$$\Rightarrow \frac{\partial \ln (B(\delta))}{\partial (\delta)} = -2 \left[-\ln (2) + \ln (\pi) - \frac{1}{2} \right] > 0; \text{ and}$$
(54)

$$\Rightarrow \left. \frac{\partial \ln \left(B\left(\delta \right) \right)}{\partial \delta} \right|_{\delta=1} = -2 \left[-\ln \left(2 \right) + \ln \left(\pi \right) - \frac{1}{2} \right] > 0; \text{ and}$$

$$\left. \partial \ln \left(B\left(\delta \right) \right) \right|_{\delta=1} = 1 \left[4 - 1 - 2 \right] = 2 \left[1 - 1 - 1 \right]$$
(54)

$$\frac{\partial \ln (B(\delta))}{\partial \delta}\Big|_{\delta=2} = \frac{1}{3} \left[\frac{4}{5} - 1\right] - \frac{2}{9} \left[\ln (5) + \ln (\pi) - 2 + \frac{1}{2} - 2\ln (2)\right] < 0.$$
(55)

We will now show that there exists a unique $\delta \in [1, 2]$ such that $\frac{\partial \ln(B(\delta))}{\partial \delta} = 0$. This fact, (54), and (55) imply that $B(\delta)$ is minimized either at $\delta = 1$ or $\delta = 2$. To show that there exists a unique δ such that $\frac{\partial \ln(B(\delta))}{\partial \delta} = 0$, note that $\frac{\partial \ln(B(\delta))}{\partial \delta} = 0$ if and only if:

$$\left[\frac{1}{2\delta-1}\right] \left[\frac{2\delta}{\delta^2+1} - 1\right] - \frac{2}{[2\delta-1]^2} \left[\ln\left(\delta^2+1\right) + \ln\left(\pi\right) - \delta + \frac{1}{2} - 2\ln\left(2\right)\right] = 0$$

$$\Leftrightarrow \quad M\left(\delta\right) \equiv 2\delta^2 - \delta - \left[1 + \delta^2\right] \left[\ln\left(\delta^2+1\right) + \ln\left(\pi\right) - 2\ln\left(2\right)\right] = 0.$$
(56)

(56) implies:

$$M(\delta = 1) = 2 - 1 - 2 \left[\ln(2) + \ln(\pi) - 2 \ln(2) \right] > 0;$$

$$M(\delta = 2) = 8 - 2 - 5 \left[\ln(5) + \ln(\pi) - 2 \ln(2) \right] < 0; \text{ and}$$

$$M''(\delta) = 1.484 - 2 \ln(1 + \delta^2) - \frac{4\delta^2}{1 + \delta^2}.$$

Since $1 + \delta^2$ and $\frac{\delta^2}{1+\delta^2}$ are both increasing functions of δ , it follows that $M''(\delta) \leq 1.484 - 2\ln(2) - 2 < 0$. Therefore, there exists a unique δ such that $M(\delta) = 0$.

Hence, when p = 1, $\theta = \frac{1}{2}$, and $1 < \delta \leq 2$, the lower bound of $\frac{\pi^L}{\pi}$ is minimized either at $\delta = 2$ or as $\delta \to 0$. From the proof of Proposition 2, the lower bound of $\frac{\pi^L}{\pi}$ is minimized at $\delta = 2.55899$ when p = 1, $\theta = \frac{1}{2}$, and $\delta \geq 2$. Therefore, it will suffice to compare the lower bounds of $\frac{\pi^L}{\pi}\Big|_{\delta=2.55899}$ and $\frac{\pi^L}{\pi}\Big|_{\delta\to 1}$. The lower bound of $\frac{\pi^L}{\pi}\Big|_{\delta\to 1} = \frac{\pi}{2}e^{-\frac{1}{2}} = 0.95225 > 0.94955$ = the lower bound of $\frac{\pi^L}{\pi}\Big|_{\delta=2.55899}$. Therefore, $\frac{\pi^L}{\pi} \geq 0.94955$ for all $\delta > 1$ when p = 1 and $\theta = \frac{1}{2}$.

Appendix B. Proofs of Conclusions in the Text

This appendix provides detailed proofs of the formal conclusions in the paper. The formal conclusions are the following:

Finding 1.
$$\pi \leq \widetilde{a} \left[1 - \frac{\theta}{\delta} \right]$$
, where $\widetilde{a} = \left[\left(\frac{\theta}{\delta} \right) (2)^{\frac{1}{\theta}} \right]^{\frac{\theta}{\delta - \theta}} \left[\frac{\left(\Gamma \left(\frac{2-\theta}{1-\theta} \right) \right)^{1-\theta}}{1+\delta} \right]^{\frac{1}{\delta - \theta}}$

Finding 2. $\pi \leq \widehat{a} \left[1 - \frac{1}{2\delta} \right]$, where $\widehat{a} = \left(\frac{2}{\delta \left[1 + \delta^2 \right]} \right)^{\frac{1}{2\delta - 1}}$ when $\theta = \frac{1}{2}$.

Finding 3. At the solution to [P-L]:

$$\beta = \left(\frac{\theta}{\delta}\right) e^{\frac{1-\theta+\theta^2}{1-\theta}}; \quad x_0 = \left[\frac{1-\theta+\theta^2}{1-\theta}\right]a; \quad and \quad \pi^L = \left[\frac{\delta-\theta}{\delta}\right]a; \quad (57)$$

where
$$a = \left[\left(\frac{2\Gamma(\theta)}{1-\theta} \right) \left(\frac{\theta}{\delta} \right)^{\theta+1} e^{-\left(1-\theta+\theta^2\right)} \right]^{\frac{1}{\delta-\theta}}.$$
 (58)

Corollary 1. a < 1 at the solution to [P-L].

Corollary 2. $\frac{d\beta}{d\delta} < 0$ and $\frac{d\pi^L}{d\delta} > 0$ at the solution to [P-L]. Furthermore, $\frac{da}{d\delta} > 0$ and $\frac{dx_0}{d\delta} > 0$ when $\delta \ge 4e^{\frac{1}{4}}$.

Corollary 3. $\frac{d\beta}{d\theta} > 0$ at the solution to [P-L].

Proposition 1. $\frac{\pi^L}{\pi} \ge \left[\left(\frac{\theta}{\delta} \right) \frac{\left[1+\delta \right] e^{-\left(1-\theta+\theta^2 \right)} \Gamma(\theta)}{\left[1-\theta \right] \left(\Gamma\left(\frac{2-\theta}{1-\theta} \right) \right)^{1-\theta}} \right]^{\frac{1}{\delta-\theta}} \ge .743 \text{ for all } \theta \in (0, \frac{1}{2}] \text{ and } \delta \ge 2.$

Proposition 2.
$$\frac{\pi^L}{\pi} \ge \left(\frac{\left[\delta^2+1\right]\pi e^{-\frac{3}{2}}}{\delta^2}\right)^{\frac{1}{2\delta-1}} \ge 0.9495 \text{ for all } \delta \ge 2 \text{ when } \theta = \frac{1}{2}.$$

Proof of Finding 1.

The principal's problem [P] is:

$$\underset{w(x), a}{Maximize} \quad L = \int_{0}^{\infty} \left[x - w(x) \right] f(x|a) \, dx \tag{59}$$

subject to:
$$\int_{0}^{\infty} 2(w(x))^{\theta} f(x|a) dx - a^{\delta} \ge 0, \text{ and}$$
(60)

$$\int_{0}^{\infty} 2(w(x))^{\theta} f_{a}(x|a) dx - \delta a^{\delta-1} = 0.$$
 (61)

Let X be a random variable denoting output, and let x denote a specific value of X. The density function for X is:

$$f(x|a) = \frac{1}{a^p \Gamma(p)} x^{p-1} e^{-\frac{x}{a}} \quad \text{for } x \ge 0.$$

Define the random variable $Y = \frac{X}{a}$, and let y denote a specific value of Y. It can be shown that $Y \sim \varphi(y)$, where:

$$\varphi(y) = \frac{1}{\Gamma(p)} y^{p-1} e^{-y} \quad \text{for } y \ge 0.$$

Letting $E(\cdot)$ denote "expectation," (59) can be written as:

$$L = \int_{0}^{\infty} xf(x|a) dx - \int_{0}^{\infty} w(x) f(x|a) dx = ap - \int_{0}^{\infty} w(x) f(x|a) dx$$
$$= ap - \int_{0}^{\infty} w(ay) \varphi(y) dy = ap - E(w(aY)).$$
(62)

Similarly, (60) can be rewritten as:

$$\int_{0}^{\infty} 2\left(w\left(ay\right)\right)^{\theta} \varphi\left(y\right) dy - a^{\delta} \ge 0 \quad \Leftrightarrow \quad 2E\left(\left(w\left(aY\right)\right)^{\theta}\right) \ge a^{\delta}.$$
 (63)

Furthermore, (61) can be rewritten as:

$$\int_{0}^{\infty} 2(w(ay))^{\theta} \left(\frac{ay-ap}{a^{2}}\right) \varphi(y) dy = \delta a^{\delta-1}$$

$$\Leftrightarrow \quad \int_{0}^{\infty} 2(w(ay))^{\theta} y\varphi(y) dy - \int_{0}^{\infty} 2(w(ay))^{\theta} p\varphi(y) dy = \delta a^{\delta}$$

$$\Leftrightarrow \quad 2E\left((w(aY))^{\theta} Y\right) - 2pE\left((w(aY))^{\theta}\right) = \delta a^{\delta}.$$
(64)

Notice that:

$$2E\left(\left(w\left(aY\right)\right)^{\theta}Y\right) - pa^{\delta} \geq \delta a^{\delta} \iff E\left(\left(w\left(aY\right)\right)^{\theta}Y\right) \geq \frac{\left[p+\delta\right]a^{\delta}}{2}.$$
(65)

From Holder's inequality, if X and Y are two non-negative functions, then:

$$E(XY) \leq [E(X^p)]^{\frac{1}{p}} [E(X^q)]^{\frac{1}{q}}$$
 for all $p > 1$, where $\frac{1}{p} + \frac{1}{q} = 1$.

Consequently:

$$E\left((w(aY))^{\theta}Y\right) \leq \left[E\left(\left((w(aY))^{\theta}\right)^{\frac{1}{\theta}}\right)\right]^{\theta}\left[E\left((Y)^{\frac{1}{1-\theta}}\right)\right]^{1-\theta}$$

$$\Rightarrow E\left((w(aY))^{\theta}Y\right) \leq \left[E\left((w(aY))\right)\right]^{\theta}\left[E\left((Y)^{\frac{1}{1-\theta}}\right)\right]^{1-\theta}.$$
 (66)

Notice that:

$$\begin{bmatrix} E\left((w\left(aY\right))\right) \end{bmatrix}^{\theta} \left[E\left((Y)^{\frac{1}{1-\theta}}\right) \right]^{1-\theta} \geq \frac{\left[p+\delta\right]a^{\delta}}{2}$$

$$\Leftrightarrow \quad \left[E\left((w\left(aY\right))\right) \right]^{\theta} \geq \frac{\left[p+\delta\right]a^{\delta}}{2\left[E\left((Y)^{\frac{1}{1-\theta}}\right) \right]^{1-\theta}}$$

$$\Leftrightarrow \quad E\left((w\left(aY\right))\right) \geq \left[\frac{\left[p+\delta\right]a^{\delta}}{2\left[E\left((Y)^{\frac{1}{1-\theta}}\right) \right]^{1-\theta}} \right]^{\frac{1}{\theta}} = \left[\frac{\left[p+\delta\right]a^{\delta}\left(\Gamma\left(p\right)\right)^{1-\theta}}{2\left(\Gamma\left(p+\frac{1}{1-\theta}\right)\right)^{1-\theta}} \right]^{\frac{1}{\theta}}$$
(67)

$$\Leftrightarrow \quad E\left(\left(w\left(aY\right)\right)\right) \geq ka^{\frac{\delta}{\theta}}, \quad \text{where } k = \left[\frac{\left[p+\delta\right]\left(\Gamma\left(p\right)\right)^{1-\theta}}{2\left(\Gamma\left(p+\frac{1}{1-\theta}\right)\right)^{1-\theta}}\right]^{\frac{1}{\theta}}.$$
(68)

The equality in (67) holds because, since $Y \sim \Gamma(p)$:

$$E\left((Y)^{\frac{1}{1-\theta}}\right) = \int_0^\infty (y)^{\frac{1}{1-\theta}} \frac{1}{\Gamma(p)} (y)^{p-1} e^{-y} dy$$
$$= \frac{1}{\Gamma(p)} \int_0^\infty (y)^{p-1+\frac{1}{1-\theta}} e^{-y} dy = \frac{\Gamma\left(p+\frac{1}{1-\theta}\right)}{\Gamma(p)}.$$
(69)

(67) and (69) imply:

$$E\left(\left(w\left(aY\right)\right)\right) \geq \left[\frac{\left(p+\delta\right)a^{\delta}\left(\Gamma\left(p\right)\right)^{1-\theta}}{2\left(\Gamma\left(p+\frac{1}{1-\theta}\right)\right)^{1-\theta}}\right]^{\frac{1}{\theta}}.$$

(62) and (68) imply:

$$L \leq ap - ka^{\frac{\delta}{\theta}} = L_u(a).$$
⁽⁷⁰⁾

We will now maximize $L_u(a)$ to derive an upper bound, L^* , for the maximum value of L.

$$\frac{\partial L_u(a)}{\partial a} = p - k\left(\frac{\delta}{\theta}\right) a^{\frac{\delta}{\theta} - 1} = 0 \quad \Rightarrow \quad \tilde{a} = \left[\frac{\theta p}{\delta k}\right]^{\frac{\theta}{\delta - \theta}}.$$
(71)

Using (71) in (70) provides:

$$L^* \leq \widetilde{a} \left[p - k \,\widetilde{a}^{\frac{\delta}{\theta} - 1} \right] = \widetilde{a} \left[p - \frac{p \,\theta}{\delta} \right] = p \left[1 - \frac{\theta}{\delta} \right] \left[\frac{\theta p}{\delta k} \right]^{\frac{\theta}{\delta - \theta}}.$$
 (72)

Substituting for k from (68) into (72) provides:

$$\pi \leq L^* \leq p \left[1 - \frac{\theta}{\delta} \right] \left[\frac{p\theta}{\delta} \left(\frac{(2)^{\frac{1}{\theta}} \left(\Gamma \left(p + \frac{1}{1-\theta} \right) \right)^{\frac{1-\theta}{\theta}}}{[p+\delta]^{\frac{1}{\theta}} (\Gamma \left(p \right))^{\frac{1-\theta}{\theta}}} \right) \right]^{\frac{\theta}{\delta-\theta}} \\ = p \left[1 - \frac{\theta}{\delta} \right] \left[p \left(\frac{\theta}{\delta} \right) (2)^{\frac{1}{\theta}} \right]^{\frac{\theta}{\delta-\theta}} \left[\frac{\left(\Gamma \left(p + \frac{1}{1-\theta} \right) \right)^{1-\theta}}{[p+\delta] (\Gamma \left(p \right))^{1-\theta}} \right]^{\frac{1}{\delta-\theta}}.$$
(73)

From (73), when p = 1:

$$\pi \leq \left[1 - \frac{\theta}{\delta}\right] \left[\left(\frac{\theta}{\delta}\right) (2)^{\frac{1}{\theta}}\right]^{\frac{\theta}{\delta - \theta}} \left[\frac{\left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}{1+\delta}\right]^{\frac{1}{\delta - \theta}}.$$
 (74)

Proof of Finding 2.

Suppose $\theta = \frac{1}{2}$ and f(x|a) is as specified in (1). Lemma A1 in Appendix A implies that if w(x) is not constrained to be non-negative for all realizations of x, then the solution to the principal's problem is determined by:

$$w(x) = \left(\lambda + \mu \left[\frac{f_a(x,a)}{f(x,a)}\right]\right)^2; \quad \lambda = \frac{a^{\delta}}{2}; \quad \mu = \frac{\delta a^{\delta+1}}{2p}; \tag{75}$$

$$\frac{f_a(x,a)}{f(x,a)} = \frac{x-ap}{a^2}; \text{ and } \delta^3 a^{2\delta-1} + 2p\,\lambda\,\delta\,a^{\delta-1} - 2p^2 = 0.$$
(76)

(75) and (76) imply that an upper bound (π^u) for π is:

$$\pi^{u} = E\left\{x - w(x)\right\} = ap - \int_{0}^{\infty} \left[\lambda + \mu\left(\frac{x - pa}{a^{2}}\right)\right]^{2} f(x|a) dx$$

$$= ap - \int_{0}^{\infty} \left[\lambda^{2} + 2\lambda\mu\left(\frac{x - pa}{a^{2}}\right) + \mu^{2}\left(\frac{(x - pa)^{2}}{a^{4}}\right)\right] f(x|a) dx$$

$$= ap - \left[\lambda^{2} + \frac{\mu^{2}p}{a^{2}}\right] = ap - \left[\lambda^{2} + \frac{p}{a^{2}}\left(\frac{\delta a^{\delta+1}}{2p}\right)^{2}\right]$$

$$= ap - \left[\lambda^{2} + \frac{p}{a^{2}}\frac{1}{4p^{2}}\delta^{2}a^{2\delta+2}\right] = ap - \left[\frac{\delta^{2}a^{2\delta}}{4p} + \frac{a^{2\delta}}{4}\right] = ap - \frac{1}{4p}\left[\delta^{2}a^{2\delta} + p a^{2\delta}\right]$$

$$= ap - \frac{1}{4p}\left[a\delta^{2}a^{2\delta-1} + p a^{2\delta}\right] = ap - \frac{1}{4p}\left[a\frac{\left[2p^{2} - 2p\lambda\delta a^{\delta-1}\right]}{\delta} + pa^{2\delta}\right]$$

$$= ap - \frac{1}{4p}\left[\frac{2ap^{2}}{\delta} - 2p\lambda a^{\delta} + pa^{2\delta}\right] = ap - \frac{1}{4p}\left[\frac{2ap^{2}}{\delta} - pa^{\delta}a^{\delta} + pa^{2\delta}\right]$$

$$= ap - \frac{1}{4p}\left[\frac{2ap^{2}}{\delta}\right] = ap - \frac{ap}{2\delta} = \frac{ap\left[2\delta - 1\right]}{2\delta}.$$
(77)

(76) and (77) imply that when p = 1:

$$\pi \leq a \left[1 - \frac{1}{2\delta} \right], \text{ where } a = \left(\frac{2}{\delta \left[1 + \delta^2 \right]} \right)^{\frac{1}{2\delta - 1}}.$$

Proof of Finding 3.

The proof follows directly from the proof of Proposition A1 in Appendix A. $\hfill\blacksquare$

Proof of Corollary 1.

From Finding 3, a < 1 at the solution to [P-L] if:

$$\left[\frac{2\Gamma(\theta)}{1-\theta}\right] \left(\frac{\theta}{\delta}\right)^{\theta+1} e^{-\left(1-\theta+\theta^2\right)} < 1.$$
(78)

Since $\delta \geq 2$:

$$\left[\frac{2\Gamma(\theta)}{1-\theta}\right] \left(\frac{\theta}{\delta}\right)^{\theta+1} e^{-\left(1-\theta+\theta^2\right)} \leq \left[\frac{2\Gamma(\theta)}{1-\theta}\right] \left(\frac{\theta}{2}\right)^{\theta+1} e^{-\left(1-\theta+\theta^2\right)}$$

$$= \left[\frac{\theta\Gamma(\theta)}{1-\theta}\right] \left(\frac{\theta}{2}\right)^{\theta} e^{-\left(1-\theta+\theta^2\right)} = \left[\frac{\Gamma(\theta+1)}{1-\theta}\right] \left(\frac{\theta}{2}\right)^{\theta} e^{-\left(1-\theta+\theta^2\right)}.$$
 (79)

Notice that:

$$\Gamma(\theta+1) = \int_0^\infty e^{-t} (t)^{\theta+1-1} dt = \int_0^\infty e^{-t} t^{\theta} dt = E\{T^{\theta}\},$$
(80)

where the density function for the random variable T is exponential with mean 1. (80) and Holder's inequality imply:

$$\Gamma(\theta+1) = E\left\{T^{\theta}\right\} \leq E\left\{\left(T^{\theta}\right)^{\frac{1}{\theta}}\right\}^{\theta} = E\left\{T\right\} = 1$$
(81)

$$\Rightarrow \left[\frac{\Gamma(\theta+1)}{1-\theta}\right] \left(\frac{\theta}{2}\right)^{\theta} e^{-\left(1-\theta+\theta^2\right)} \leq \left[\frac{1}{1-\theta}\right] \left(\frac{\theta}{2}\right)^{\theta} e^{-\left(1-\theta+\theta^2\right)}.$$
(82)

(79) and (82) imply:

$$\left[\frac{2\Gamma(\theta)}{1-\theta}\right] \left(\frac{\theta}{\delta}\right)^{\theta+1} e^{-\left(1-\theta+\theta^2\right)} \leq \left[\frac{1}{1-\theta}\right] \left(\frac{\theta}{2}\right)^{\theta} e^{-\left(1-\theta+\theta^2\right)}.$$
(83)

Let
$$z(\theta) = \ln\left(\left[\frac{1}{1-\theta}\right]\left(\frac{\theta}{2}\right)^{\theta}e^{-(1-\theta+\theta^2)}\right)$$

= $-\ln(1-\theta) + \theta\ln(\theta) - \theta\ln(2) - (1-\theta+\theta^2)$ (84)

$$\Rightarrow z'(\theta) = \frac{1}{1-\theta} + 1 + \ln(\theta) - \ln(2) + 1 - 2\theta = \frac{1}{1-\theta} + 2[1-\theta] + \ln(\theta) - \ln(2)$$
(85)

$$\Rightarrow z''(\theta) = \frac{1}{[1-\theta]^2} - 2 + \frac{1}{\theta} \ge \frac{1}{[1-\theta]^2}.$$
(86)

The inequality in (86) holds because $\frac{1}{\theta} \ge 2$, since $\theta \le \frac{1}{2}$. (86) implies that $z(\theta)$ is convex in θ for all $\theta \in [0, \frac{1}{2}]$. Furthermore, from (84) and (85):

$$z(\theta = 0) = -1 < 0; \quad z'(\theta = 0) = -\infty; \quad z\left(\theta = \frac{1}{2}\right) = -\frac{3}{4} < 0; \text{ and}$$
 (87)

$$z'\left(\theta = \frac{1}{2}\right) = 2 + 1 + \ln\left(\frac{1}{2}\right) - \ln(2) = 3 + \ln\left(\frac{1}{4}\right) > 0.$$
(88)

(87) and (88) imply that $z(\theta) < 0$ for all $\theta \in \left[0, \frac{1}{2}\right]$. Therefore, from (84):

$$\ln\left(\left[\frac{1}{1-\theta}\right]\left(\frac{\theta}{2}\right)^{\theta}e^{-\left(1-\theta+\theta^{2}\right)}\right) < 0 \text{ for all } \theta \in \left[0,\frac{1}{2}\right]$$

$$\Rightarrow \left[\frac{1}{1-\theta}\right] \left(\frac{\theta}{2}\right)^{\theta} e^{-\left(1-\theta+\theta^2\right)} < 1 \text{ for all } \theta \in \left[0,\frac{1}{2}\right].$$
(89)

(83) and (89) imply that the inequality in (78) holds, so a < 1 for all $\theta \in \left[0, \frac{1}{2}\right]$.

Proof of Corollary 2.

Recall from Finding 3 that at the solution to [P-L]:

$$\beta = \left[\frac{\theta}{\delta}\right] e^{\frac{1-\theta+\theta^2}{1-\theta}} \text{ and } \pi^L = a \left[\frac{\delta-\theta}{\delta}\right], \text{ where } a = \left[\left(\frac{2\Gamma(\theta)}{1-\theta}\right)\left(\frac{\theta}{\delta}\right)^{\theta+1} e^{-\left(1-\theta+\theta^2\right)}\right]^{\frac{1}{\delta-\theta}}.$$
(90)

It is apparent from (90) that $\frac{d\beta}{d\delta} < 0$.

To show
$$\frac{d\pi^L}{d\delta} > 0$$
, let:

$$t_0 = \left[\frac{2\Gamma(\theta)}{1-\theta}\right] \left(\frac{\theta}{\delta}\right)^{\theta+1} e^{-(1-\theta+\theta^2)}.$$
(91)

(90) and (91) imply:

$$\ln \left(\pi^{L}\right) = \ln \left(\delta - \theta\right) - \ln \left(\delta\right) + \left[\frac{1}{\delta - \theta}\right] \ln \left(t_{0}\right)$$

$$\Rightarrow \frac{\partial \ln \left(\pi^{L}\right)}{\partial \delta} = \frac{1}{\delta - \theta} - \frac{1}{\delta} - \frac{\ln \left(t_{0}\right)}{\left[\delta - \theta\right]^{2}} - \left[\frac{1}{\delta - \theta}\right] \left[\frac{1 + \theta}{\delta}\right]$$

$$\Rightarrow \left[\delta \left(\delta - \theta\right)^{2}\right] \frac{\partial \ln \left(\pi^{L}\right)}{\partial \delta} = \delta \left[\delta - \theta\right] - \left(\delta - \theta\right)^{2} - \delta \ln \left(t_{0}\right) - \left[\delta - \theta\right] \left[1 + \theta\right]$$

$$= \left[\delta - \theta\right] \left[\delta - \left(\delta - \theta\right) - \left(1 + \theta\right)\right] - \delta \ln \left(t_{0}\right) = -\left[\delta - \theta\right] - \delta \ln \left(t_{0}\right). \tag{92}$$

(92) implies:

$$\frac{\partial \ln \left(\pi^{L}\right)}{\partial \delta} \geq 0 \quad \Leftrightarrow \quad \delta - \theta + \delta \ln \left(t_{0}\right) \leq 0.$$
(93)

(81) and (91) imply:

$$t_0 = \left[\frac{2\Gamma(\theta+1)}{1-\theta}\right] \frac{(\theta)^{\theta}}{(\delta)^{\theta+1}} e^{-(1-\theta+\theta^2)} \leq \left[\frac{2}{1-\theta}\right] \frac{(\theta)^{\theta}}{(\delta)^{\theta+1}} e^{-(1-\theta+\theta^2)}$$
(94)

$$\Rightarrow \ln(t_0) \leq \ln(2) - \ln(1-\theta) + \theta \ln(\theta) - [\theta+1] \ln(\delta) - (1-\theta+\theta^2).$$
(95)

(93) and (95) imply:

$$\frac{\partial \ln \left(\pi^{L}\right)}{\partial \delta} \geq 0 \quad \text{if} \quad b(\theta) \leq 0, \tag{96}$$

where
$$b(\theta) = \delta - \theta + \delta \left[\ln(2) - \ln(1-\theta) + \theta \ln(\theta) - [\theta+1] \ln(\delta) - (1-\theta+\theta^2) \right]$$
. (97)
17

From (97):

$$b(0) = \delta + \delta \left[\ln(2) - \ln(1) - \ln(\delta) - 1 \right] = \delta \left[\ln(2) - \ln(\delta) \right].$$
(98)

Since $\delta \ge 2$, (98) implies:

$$b(0) \leq 0 \text{ for all } \delta \geq 2.$$
(99)

From (97):

$$b\left(\frac{1}{2}\right) = \delta - \frac{1}{2} + \delta\left[\ln(2) - \ln\left(\frac{1}{2}\right) + \frac{1}{2}\ln\left(\frac{1}{2}\right) - \frac{3}{2}\ln\left(\delta\right) - \frac{3}{4}\right] \equiv h(\delta).$$
(100)

(100) implies:

$$h(2) = 2 - \frac{1}{2} + 2\left[0.28972 - \left(\frac{3}{2}\right)\ln(2)\right] = 0.$$
 (101)

Differentiating (100) provides:

$$h'(\delta) = 0.28972 - \left(\frac{3}{2}\right) \ln(\delta) - \frac{3}{2} < 0 \text{ for all } \delta \ge 1.$$
 (102)

(100) - (102) imply:

$$b\left(\frac{1}{2}\right) \leq 0 \text{ for all } \delta \geq 2.$$
 (103)

Also, differentiating (97) provides:

$$b'(\theta) = -1 + \delta \left[\frac{1}{1-\theta} + \ln(\theta) + 1 - \ln(\delta) + 1 - 2\theta \right]$$

$$\Rightarrow b''(\theta) = \delta \left[\frac{1}{(1-\theta)^2} + \frac{1}{\theta} - 2 \right] \ge 0, \text{ since } \theta \in \left[0, \frac{1}{2} \right].$$
(104)

(99), (103), and (104) imply:

$$b(\theta) \leq 0 \text{ for all } \theta \in \left[0, \frac{1}{2}\right] \text{ and } \delta \geq 2.$$
 (105)

(96) and (105) imply:

$$\frac{\partial \ln \left(\pi^{L}\right)}{\partial \delta} \geq 0 \text{ for all } \theta \in \left[0, \frac{1}{2}\right] \text{ and } \delta \geq 2.$$

It remains to prove that $\frac{da}{d\delta} > 0$ and $\frac{dx_0}{d\delta} > 0$ when $\delta \ge 4e^{\frac{1}{4}}$. We will first show that if there exists a $\tilde{\delta}$ such that $\frac{\partial a}{\partial \delta}\Big|_{\delta = \tilde{\delta}} > 0$, then $\frac{\partial a}{\partial \delta} > 0$ for all $\delta > \tilde{\delta}$. From (90):

$$\ln(a) = \left[\frac{1}{\delta - \theta}\right] \left[\ln\left(2\Gamma(\theta)\right) - \ln\left(1 - \theta\right) + \left[\theta + 1\right]\ln\left(\theta\right) - \left[\theta + 1\right]\ln\left(\delta\right) - \left(1 - \theta + \theta^{2}\right)\right]$$

$$= \left[\frac{1}{\delta - \theta}\right] \left[k\left(\theta\right) - \left(\theta + 1\right)\ln\left(\delta\right)\right],\tag{106}$$

where $k(\theta) = \ln (2\Gamma(\theta)) - \ln (1-\theta) + [\theta+1]\ln(\theta) - (1-\theta+\theta^2).$ (107)

Differentiating (106) provides:

$$\frac{1}{a} \left[\frac{\partial a}{\partial \delta} \right] = -\left(\frac{1}{\left[\delta - \theta \right]^2} \right) \left[k\left(\theta \right) - \left[\theta + 1 \right] \ln\left(\delta \right) \right] - \left[\frac{1}{\delta - \theta} \right] \left[\frac{\theta + 1}{\delta} \right]$$
$$\Rightarrow \left[\frac{\delta - \theta}{a} \right] \left[\frac{\partial a}{\partial \delta} \right] = -\frac{k\left(\theta \right) - \left(\theta + 1 \right) \ln\left(\delta \right)}{\delta - \theta} - \frac{\theta + 1}{\delta}.$$
(108)

(108) implies that if $\frac{\partial a}{\partial \delta}\Big|_{\delta} = \tilde{\delta} > 0$, then:

$$-\frac{k(\theta) - [\theta + 1] \ln\left(\widetilde{\delta}\right)}{\widetilde{\delta} - \theta} - \frac{\theta + 1}{\widetilde{\delta}} > 0$$

$$\Leftrightarrow -\widetilde{\delta} \left[k(\theta) - (\theta + 1) \ln\left(\widetilde{\delta}\right) \right] - \left[\widetilde{\delta} - \theta\right] [\theta + 1] > 0$$

$$\Leftrightarrow -\widetilde{\delta} \left[\frac{k(\theta)}{\theta + 1} - \ln\left(\widetilde{\delta}\right) \right] - \left(\widetilde{\delta} - \theta\right) > 0$$

$$\Leftrightarrow - \left[\frac{k(\theta)}{\theta + 1} - \ln\left(\widetilde{\delta}\right) \right] - \left(1 - \frac{\theta}{\widetilde{\delta}}\right) > 0 \Rightarrow \ln\left(\widetilde{\delta}\right) + \frac{\theta}{\widetilde{\delta}} > \frac{k(\theta)}{\theta + 1} + 1.$$
(109)

Notice that:

$$\frac{\partial}{\partial \delta} \left(\ln\left(\delta\right) + \frac{\theta}{\delta} \right) = \frac{1}{\delta} - \frac{\theta}{\delta^2} = \frac{1}{\delta} \left[1 - \frac{\theta}{\delta} \right] > 0$$

Since $\ln\left(\widetilde{\delta}\right) + \frac{\theta}{\widetilde{\delta}}$ is increasing in δ while $\frac{k(\theta)}{\theta+1} + 1$ is independent of δ , it follows from (109) that $\frac{\partial a}{\partial \delta} > 0$ for all $\delta > \widetilde{\delta}$. Therefore, to show that $\frac{\partial a}{\partial \delta} > 0$ for all $\delta > 4e^{\frac{1}{4}}$ for all $\theta \in (0, \frac{1}{2}]$, it suffices to show that $\frac{\partial a}{\partial \delta}|_{\delta = 4e^{\frac{1}{4}}} > 0$ for all $\theta \in (0, \frac{1}{2}]$.

From (107):

$$k(\theta) = \ln\left(2\frac{\theta\Gamma(\theta)}{\theta}\right) - \ln\left(1-\theta\right) + [\theta+1]\ln\left(\theta\right) - (1-\theta+\theta^{2})$$
$$= \ln\left(2\frac{\Gamma(\theta+1)}{\theta}\right) - \ln\left(1-\theta\right) + [\theta+1]\ln\left(\theta\right) - (1-\theta+\theta^{2})$$
$$= \ln\left(2\right) + \ln\left(\Gamma(\theta+1)\right) - \ln\left(1-\theta\right) + \theta\ln\left(\theta\right) - (1-\theta+\theta^{2}).$$
(110)

Since $\Gamma(\theta + 1) \leq 1$ and $\ln(\theta) < 0$, (110) implies:

$$k(\theta) \leq \ln(2) - \ln(1-\theta) - (1-\theta+\theta^2) \leq \ln(2) - \ln\left(\frac{1}{2}\right) - (1-\theta+\theta^2) \\ = 2\ln(2) - (1-\theta+\theta^2) \leq 2\ln(2) - \frac{3}{4} \Rightarrow -k(\theta) \geq -2\ln(2) + \frac{3}{4}.$$
(111)

(108) and (111) imply:

$$\left[\frac{\delta (\delta - \theta)^2}{a}\right] \left[\frac{\partial a}{\partial \delta}\right] = \delta \left[-k \left(\theta\right) + \left(\theta + 1\right) \ln \left(\delta\right) - \theta - 1\right] + \theta \left[\theta + 1\right]$$

$$\geq \delta \left[-2 \ln \left(2\right) + \frac{3}{4} + \left(\theta + 1\right) \ln \left(\delta\right) - \theta - 1\right] + \theta \left[\theta + 1\right]$$

$$= \delta \left[-2 \ln \left(2\right) + \frac{3}{4}\right] + \left[\theta + 1\right] \left[\delta \left(\ln \left(\delta\right) - 1\right) + \theta\right].$$
(112)

The expression in (112) is an increasing function of θ . Therefore, it will suffice to find $\tilde{\delta}$ such that:

$$\left[\frac{\delta \left(\delta-\theta\right)^{2}}{a}\right] \left.\frac{\partial a}{\partial \delta}\right|_{\delta=\widetilde{\delta}} \geq \delta \left[-2\ln\left(2\right)-\frac{1}{4}+\ln\left(\delta\right)\right] \geq 0.$$
(113)

$$\begin{split} &\delta[-2\ln\left(2\right)-\frac{1}{4}+\ln\left(\delta\right)] \text{ is an increasing function of } \delta. \text{ Also } -2\ln\left(2\right)-\frac{1}{4}+\ln\left(\delta\right) \geq 0 \quad \Leftrightarrow \\ &\delta \geq 4e^{\frac{1}{4}}. \text{ Therefore, (113) implies that } \left[\frac{\delta(\delta-\theta)^2}{a}\right] \frac{\partial a}{\partial \delta}\Big|_{\delta \,=\, 4e^{\frac{1}{4}}} \geq 0, \text{ and so } \left.\frac{\partial a}{\partial \delta}\right|_{\delta \,=\, 4e^{\frac{1}{4}}} > 0 \text{ for all } \\ &\theta \in (0, \frac{1}{2}]. \end{split}$$

Finally, recall from Finding 3 that $x_0 = \left[\frac{1-\theta+\theta^2}{1-\theta}\right]a$ at the solution to [P-L]. Therefore, $\frac{\partial x_0}{\partial \delta} > 0$ for all $\delta \ge 4e^{\frac{1}{4}}$ and $\theta \in (0, \frac{1}{2}]$ since $\frac{\partial a}{\partial \delta} > 0$ for all $\delta \ge 4e^{\frac{1}{4}}$ and $\theta \in (0, \frac{1}{2}]$.

Proof of Corollary 3.

From (90):

$$\ln(\beta) = \ln(\theta) - \ln(\delta) + \frac{1 - \theta + \theta^2}{1 - \theta}$$

$$\Rightarrow \frac{\partial \ln(\beta)}{\partial \theta} = \frac{1}{\theta} + \frac{[1 - \theta] [-1 + 2\theta] + 1 - \theta + \theta^2}{[1 - \theta]^2} = \frac{1}{\theta} + \frac{\theta [2 - \theta]}{[1 - \theta]^2} > 0. \quad \blacksquare$$

Proof of Proposition 1.

(73) implies that when p = 1:

$$\pi \leq \left[1 - \frac{\theta}{\delta}\right] \left[\left(\frac{\theta}{\delta}\right) (2)^{\frac{1}{\theta}}\right]^{\frac{\theta}{\delta - \theta}} \left[\frac{\left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}{1+\delta}\right]^{\frac{1}{\delta - \theta}}.$$
(114)

Finding 3 implies that when p = 1:

$$\pi^{L} = \left[1 - \frac{\theta}{\delta}\right] \left(\left(\frac{\theta}{\delta}\right) \frac{\left(\left[\frac{2\theta}{\delta}\right] e^{-c_{3}^{*}} \Gamma(\theta) \left[\theta + c_{3}^{*}\right]\right)^{\frac{1}{\theta}}}{e^{-c_{3}^{*}}} \right)^{\frac{\theta}{\delta - \theta}}, \text{ where } c_{3}^{*} = \frac{1 - \theta + \theta^{2}}{1 - \theta}.$$

$$\Rightarrow \pi^{L} = \left[1 - \frac{\theta}{\delta}\right] \left[\left(\frac{\theta}{\delta}\right) (2)^{\frac{1}{\theta}} \right]^{\frac{\theta}{\delta - \theta}} \left[\frac{\left(\left(\frac{\theta}{\delta}\right) e^{-c_{3}^{*}} \Gamma(\theta) \left[\theta + c_{3}^{*}\right]\right)^{\frac{1}{\theta}}}{e^{-c_{3}^{*}}} \right]^{\frac{\theta}{\delta - \theta}}$$

$$= \left[1 - \frac{\theta}{\delta}\right] \left[\left(\frac{\theta}{\delta}\right) (2)^{\frac{1}{\theta}} \right]^{\frac{\theta}{\delta - \theta}} \left[\left(\frac{\theta}{\delta}\right) e^{-(1 - \theta)c_{3}^{*}} \Gamma(\theta) \left[\theta + c_{3}^{*}\right] \right]^{\frac{1}{\delta - \theta}}$$

$$= \left[1 - \frac{\theta}{\delta}\right] \left[\left(\frac{\theta}{\delta}\right) (2)^{\frac{1}{\theta}} \right]^{\frac{\theta}{\delta - \theta}} \left[\left(\frac{\theta}{\delta}\right) e^{-(1 - \theta + \theta^{2})} \Gamma(\theta) \left(\frac{1}{1 - \theta}\right) \right]^{\frac{1}{\delta - \theta}}. \tag{115}$$

(114) and (115) imply that when p = 1:

$$\frac{\pi^{L}}{\pi} \geq \left[\frac{\left(\frac{\theta}{\delta}\right) e^{-\left(1-\theta+\theta^{2}\right)} \Gamma(\theta) \left(\frac{1}{1-\theta}\right)}{\frac{\left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}{1+\delta}} \right]^{\frac{1}{\delta-\theta}} = \left[\left(\frac{\theta}{\delta}\right) \frac{\left[1+\delta\right] e^{-\left(1-\theta+\theta^{2}\right)} \Gamma(\theta)}{\left[1-\theta\right] \left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}} \right]^{\frac{1}{\delta-\theta}}.$$
 (116)

Define
$$d(\delta) \equiv \left(\frac{\theta}{\delta}\right) \frac{\left[1+\delta\right] e^{-\left(1-\theta+\theta^2\right)} \Gamma(\theta)}{\left[1-\theta\right] \left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}$$
, and note that: (117)

$$d(\delta) = \left[\frac{1+\delta}{\delta}\right] \left[\frac{\theta e^{-(1-\theta+\theta^2)}\Gamma(\theta)}{(1-\theta)\left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}\right] = \left[1+\frac{1}{\delta}\right]r(\theta), \qquad (118)$$

where
$$r(\theta) \equiv \frac{\theta e^{-(1-\theta+\theta^2)}\Gamma(\theta)}{[1-\theta] \left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}}.$$

Notice from (116) that $[d(\delta)]^{\frac{1}{\delta-\theta}} \leq 1$ since $\frac{\pi^L}{\pi} \leq 1$. Therefore, $d(\delta) \leq 1$. Consequently, since $1 + \frac{1}{\delta} > 1$, (118) implies that $r(\theta) < 1$.

Let
$$G(\delta) \equiv \ln [d(\delta)]^{\frac{1}{\delta-\theta}} \Rightarrow G(\delta) = \left[\frac{1}{\delta-\theta}\right] \ln [d(\delta)]$$
 (119)

$$\Rightarrow G'(\delta) = -\frac{1}{\left[\delta - \theta\right]^2} \ln\left[d(\delta)\right] + \left\lfloor\frac{1}{\delta - \theta}\right\rfloor \left\lfloor\frac{d'(\delta)}{d(\delta)}\right\rfloor$$
21

$$\Rightarrow \quad [\delta - \theta]^2 G'(\delta) = -\ln [d(\delta)] + [\delta - \theta] \left[\frac{d'(\delta)}{d(\delta)} \right].$$
(120)

From (118):

$$d'(\delta) = -\left[\frac{1}{\delta^2}\right] r(\theta) \implies \frac{d'(\delta)}{d(\delta)} = \frac{-1/\delta^2}{[1+\delta]/\delta} = -\frac{1}{\delta[1+\delta]}.$$
 (121)

Substituting from (121) into (120) and using (117) provides:

$$\left[\delta - \theta\right]^{2} G'(\delta) = -\ln\left[d\left(\delta\right)\right] + \left[\delta - \theta\right] \left[-\frac{1}{\delta\left(1+\delta\right)}\right]$$
$$= -\left[\ln\left(1+\delta\right) - \ln\left(\delta\right) + \ln r\left(\theta\right)\right] - \frac{\delta - \theta}{\delta\left[1+\delta\right]}$$
$$= -\ln\left(1+\delta\right) + \ln(\delta) - \frac{\delta - \theta}{\delta\left[1+\delta\right]} - \ln r\left(\theta\right).$$
(122)

(122) implies:

(

$$G'(\delta) \ge 0 \quad \Leftrightarrow \quad -\ln(1+\delta) + \ln(\delta) - \frac{\delta - \theta}{\delta [1+\delta]} - \ln r(\theta) \ge 0$$

$$\Leftrightarrow \quad \ln(1+\delta) - \ln(\delta) + \frac{\delta - \theta}{\delta [1+\delta]} \le -\ln r(\theta)$$

$$\Leftrightarrow \quad R(\delta) \le -\ln r(\theta), \qquad (123)$$

where
$$R(\delta) \equiv \ln(1+\delta) - \ln(\delta) + \frac{\delta - \theta}{\delta [1+\delta]}$$
. (124)

From (124):

$$R(\delta) \to 0 \quad \text{as} \quad \delta \to \infty.$$
 (125)

Differentiating (124) provides:

$$R'(\delta) = \frac{1}{1+\delta} - \frac{1}{\delta} + \frac{\delta [1+\delta] - [\delta-\theta] [1+2\delta]}{\delta^2 [1+\delta]^2} = -\frac{[\delta-\theta] [1+2\delta]}{\delta^2 [1+\delta]^2} < 0.$$
(126)

Furthermore, $-\ln r(\theta) > 0$ since $r(\theta) < 1$. Therefore, (123) - (126) imply that for a given θ , there exists a $\delta_0(\theta)$ such that $G(\delta)$ is decreasing for all $\delta < \delta_0(\theta)$ and $G(\delta)$ is increasing for all $\delta > \delta_0(\theta)$. If $\delta_0(\theta) \le 2$ for a given θ , then the lower bound of $\frac{\pi^L}{\pi}$ is reached at $\delta = 2$ since $\delta \ge 2$ by assumption. Alternatively, if $\delta_0(\theta) > 2$ for a given θ , then the lower bound of $\frac{\pi^L}{\pi}$ is reached at $\delta = \delta_0(\theta)$, where $\delta_0(\theta)$ is found by solving $s(\delta) = -\ln r(\theta)$.

To determine a lower bound for $\frac{\pi^L}{\pi}$ for all $\theta \in (0, \frac{1}{2}]$ and $\delta \ge 2$, define:

$$H(\theta) \equiv \left[\left(\frac{\theta}{\delta}\right) \frac{\left[1+\delta\right] e^{-\left(1-\theta+\theta^2\right)} \Gamma(\theta)}{\left[1-\theta\right] \left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}} \right]^{\frac{1}{\delta-\theta}} = \left[\frac{\left[1+\delta\right] e^{-\left(1-\theta+\theta^2\right)} \Gamma(\theta+1)}{\delta\left[1-\theta\right] \left(\Gamma\left(\frac{2-\theta}{1-\theta}\right)\right)^{1-\theta}} \right]^{\frac{1}{\delta-\theta}}.$$
 (127)

It can be shown that $H'(\theta) > 0$ and so the minimum value of $H(\theta)$ is reached as $\theta \to 0$ for any fixed $\delta \in [2, \infty)$. To determine the limiting value of $H(\theta)$ as $\theta \to 0$, note that:

$$H(\theta) \rightarrow \left[\left(\frac{1+\delta}{\delta} \right) \left(\frac{1}{e} \right) \right]^{\frac{1}{\delta}} \text{ as } \theta \rightarrow 0.$$
 (128)

Since $\left[\left(\frac{1+\delta}{\delta}\right)\left(\frac{1}{e}\right)\right]^{\frac{1}{\delta}}$ is an increasing function of δ , $\left[\left(\frac{1+\delta}{\delta}\right)\left(\frac{1}{e}\right)\right]^{\frac{1}{\delta}}$ attains its minimum value when $\delta = 2$. From (128), $H(\theta) \rightarrow \left(\frac{3}{2}\left(\frac{1}{e}\right)\right)^{\frac{1}{2}} = 0.74285$ as $\theta \rightarrow 0$ when $\delta = 2$. Consequently, from (116), $\frac{\pi^L}{\pi} \geq .743$ for all $\theta \in (0, \frac{1}{2}]$ and $\delta \geq 2$.

Proof of Proposition 2.

Finding 2 and Proposition 1 imply that when $\theta = \frac{1}{2}$:

$$\frac{\pi^{L}}{\pi} \geq \frac{\left[1 - \frac{1}{2\delta}\right] \left(\frac{2}{\delta^{3}} \left[\frac{22}{7}\right] e^{-\frac{3}{2}}\right)^{\frac{1}{2\delta - 1}}}{\left[1 - \frac{1}{2\delta}\right] \left(\frac{2}{\delta^{2} + 1}\right)^{\frac{1}{2\delta - 1}}} = \left(\frac{\left[\delta^{2} + 1\right] 22 e^{-\frac{3}{2}}}{7 \delta^{2}}\right)^{\frac{1}{2\delta - 1}}.$$
(129)

Let
$$\widetilde{B}(\delta) \equiv \left(\frac{[\delta^2+1]22e^{-\frac{3}{2}}}{7\delta^2}\right)^{2\delta-1}$$
. Then:

$$\ln(\widetilde{B}(\delta)) = \left[\frac{1}{2\delta - 1}\right] \ln\left(\left[1 + \frac{1}{\delta^2}\right] \frac{22}{7} e^{-\frac{3}{2}}\right) = \left[\frac{1}{2\delta - 1}\right] \left[\ln\left(1 + \frac{1}{\delta^2}\right) + \ln\left(\frac{22}{7} e^{-\frac{3}{2}}\right)\right]$$

$$\Rightarrow \quad \frac{\partial}{\partial\delta}\ln(\widetilde{B}(\delta)) = \left[\frac{1}{2\delta-1}\right]\frac{(-2\,\delta^{-3})}{\left[1+\frac{1}{\delta^2}\right]} - 2\left[\ln\left(1+\frac{1}{\delta^2}\right) + \ln\left(\frac{22}{7}\,e^{-\frac{3}{2}}\right)\right]\frac{1}{\left[2\delta-1\right]^2}$$
$$= -\frac{2}{\left[2\delta-1\right]^2}\left[\frac{2\delta-1}{\delta^3+\delta} + \ln\left(1+\frac{1}{\delta^2}\right) + \ln\left(\frac{22}{7}\,e^{-\frac{3}{2}}\right)\right]. \tag{130}$$

(130) implies:

$$\frac{\partial}{\partial\delta}\ln(\widetilde{B}(\delta)) = 0 \text{ when } \widetilde{M}(\delta) \equiv \frac{2\delta - 1}{\delta^3 + \delta} + \ln\left(1 + \frac{1}{\delta^2}\right) + \ln\left(\frac{22}{7}e^{-\frac{3}{2}}\right) = 0.$$
(131)

Note that:

$$\frac{\partial}{\partial \delta} \left(\frac{2\delta - 1}{\delta^3 + \delta} \right) \stackrel{s}{=} 2 \left[\delta^3 + \delta \right] - \left[2\delta - 1 \right] \left[3\delta^2 + 1 \right] = 2\delta^3 + 2\delta - 6\delta^3 - 2\delta + 3\delta^2 + 1$$

$$= -4\delta^{3} + 3\delta^{2} + 1 < -\delta^{3} + 1 < 0.$$
(132)

(131) and (132) imply that $\widetilde{M}'(\delta) < 0$ for all $\delta \ge 2$. It can be verified that $\widetilde{M}(2.55899) = 0$. Hence, $\widetilde{M}(\delta) > 0$ if $\delta < 2.55899$, and $\widetilde{M}(\delta) < 0$ if $\delta > 2.55899$. Therefore, $\widetilde{B}'(\delta) < 0$ if $\delta < 2.55899$, $\widetilde{B}'(\delta) < 0$ if $\delta > 2.55899$, and $\widetilde{B}'(\delta) = 0$ if $\delta = 2.55899$. Hence, (130) and (131) imply that for all $\delta \ge 2$:

$$\widetilde{B}(\delta) \geq \widetilde{B}(2.55899) \approx \left(\frac{[7.5485][3.14159]}{[6.5485][4.4817]}\right)^{\frac{1}{4.118}} \approx (.808026)^{.24284} \approx .94955. \blacksquare$$