
37.6.2

Use the Fourier transform method to find a solution to the problem

(∇, A∇)G(x) = δ(x) , G ∈ S ′(IRN)

where A is a strictly positive symmetric N × N matrix.

Solution: Consider a change of variables y = Ux where U is an orthogonal matrix that
diagonalizes the matrix A, that is, A = UΛUT where Λij = λjδij is a diagonal matrix with
λj > 0 being the eigenvalues of A. By the chain rule ∇x = UT∇y and, hence, in the new
variables, the equation reads

N
∑

j=1

λj
∂2

∂y2
j

G = δ(UT y) = δ(y)

because | detU | = 1. Next, let us scale the variables yj =
√

λjzj. Therefore

∆zG = δ(y) =
1√

detA
δ(z)

because λ1λ2 · · ·λN = detA. Thus, G ∈ D′ is proportional to the Green’s function of the
Laplace operator that vanishes at infinity (modulo an additive harmonic function in IRN ) in
the variables z:

G(x) = − 1√
detA

1

(N − 2)σ
N
|z|N−2

, N > 2 ,

where σ
N

is the area of a unit sphere in IRN . For N = 2, G = (2π)−1 ln(|z|). Inverting all the
transformation that have been made,

z = Λ1/2y = Λ−1/2Ux ⇒ |z|2 = (z, z) = (x, UTΛ−1Ux) = (x, A−1x)

The final answer reads

G(x) = − 1

(N − 2)σ
N

1√
det A(x, A−1x)

N−2

2

, N > 2 ,

and for N = 2

G(x) =
1

π
√

detA
ln(x, A−1x) .

Alternative solution: By taking the Fourier transform of the equation, one infers that

−(k, Ak)F [G](k) = 1

Since the matrix A is strictly positive, the equation (k, Ak) = 0 has only one solution k = 0.
Therefore a general solution in S ′ has the form

F [G](k) = −R 1

(k, Ak)
+ g(k)

where g(k) is any temperate distribution with a point support. Any such distribution is a linear
combination of δ(k) and its partial derivatives. Therefore F−1[g](x) is a (harmonic) polynomial.



So, G(x) is sought in S ′ modulo an additive harmonic polynomial. For N > 2, the reciprocal of
(k, Ak) is locally integrable. Therefore no distributional regularization is needed. For N = 2,
some kind of a principal value regularization can be invoked. However, an explicit form of the
regularization is irrelevant for finding G(x).

To calculate G(x), it is convenient to use the property of the Fourier transform of a distribu-
tion under a linear change of variables. The idea is to note that there exists a transformation of
the variable k so that (k, Ak) = (q, q) because A is strictly positive matrix. Indeed, if k = Bq,
then BTAB = I . The latter equation is solved by the symmetric matrix B = UΛ−1/2UT where
U and Λ are defined above: A = UΛUT . Note that B2 = A−1 so B−1 is the square root of
the matrix A. The inverse Fourier transform of −R 1

|q|2
is the Green’s function of the Laplace

operator, E
N
(x) (satisfying suitable boundary conditions at infinity to be a unique fundamental

solution). Then
F [G(x)](k) = F [E

N
(x)](B−1k)

because |B−1k|2 = (k, Ak). It follows from the aforementioned property of the Fourier transform
that

G(x) = | det B|E
N
(Bx) =

1√
detA

E
N
(Bx)

Since |Bx|2 = (x, A−1x), the previous result is recovered from the explicit form of E
N
(x).



37.6.3

Let ρ(x) be a bounded function with bounded support. Use the Fourier transform method to
find an integral representation of the most general distributional solution from to the problem

(∇, A∇)u(x) = ρ(x) , |u(x)| ≤ M , x ∈ IR3

where A is a strictly positive symmetric 3× 3 matrix. Find a direction in which the solution is
decreasing most rapidly with increasing |x| in the asymptotic region |x| → ∞.

Solution: The solution is given by the convolution of the fundamental solution found in
37.6.2 for N = 3:

u(x) = (G ∗ ρ)(x) = − 1

4π

∫

Ω

ρ(y) d3y

(x − y, A−1(x − y)1/2

Since A is symmetric it has three orthonormal eigenvectors Aêj = λj êj j = 1, 2, 3. Let us
change variables from y to η where y = yj êj and put ξj = (x, êj). So, y and η are related by a
rotation y = Uη where columns of U are êj so that d3y = d3η

u(x) = − 1

4π

∫

ΩU

ρ(Uη) d3η

[
∑

j λ−1
j (ξj − ηj)2]1/2

if |ξ| = |x| → ∞ then

u(x) = − 1

4π

Q

[
∑

j λ−1
j ξ2

j ]
1/2

+ O
( 1

|x|2
)

, Q =
∫

Ω
ρ(y) d3y

because λj > 0. It follows from this representation, the Coulomb (or Newton) part of the
potential falls off most rapidly in the direction of the eigenvector corresponding to the largest
(smallest) eigenvalue of A−1 (of A) because

∑

j λ−1
j ξ2

j = (x, A−1x) is maximal for a given |x|
when x is parallel to such an eigenvector.



38.6.2

(i) Find a distributional solution to the Helmholtz equation for |x| ≥ a > 0 with a “quadrupole”
point-like source:

(∆ + k2)v(x) =
3
∑

i,j=1

pij
∂2

∂xi∂xj
δ(x) = (∇, p∇)δ(x) , x ∈ IR3 ,

that satisfies the Sommerfeld radiation condition.
(ii) Show that the solution found for x 6= 0 is not locally integrable in the whole IR3. So, a
distributional solution in IR3 is an extension of the classical solution to the singular point x = 0.
Find this extension.

Solution: (i) Put

G(x) = − eik|x|

4π|x|
This is the Green’s function of the Helmholtz operator satisfying the Sommerfeld radiation
condition. Then the solution in question is given by the convolution of G with the inhomogene-
ity, provided the convolution exists. The latter is the case as the inhomogeneity has a point
support. Thus

v(x) = G ∗ (∇, p∇)δ(x) = (∇, p∇)(G ∗ δ)(x) = (∇, p∇)G(x)

where the derivatives are understood in the distributional sense.

(ii) The function G(x) is locally integrable and from class C∞ near any point but x = 0.
So, in any open set that does not contain x = 0, the distributional and classical derivatives
match. To find them, put r = |x|. Then G depends only on r and ∇r = x/r = x̂ is the unit
vector |x̂| = 1. Therefore for x 6= 0

p∇G(x) = ∂rG(x)px̂

(∇, p∇)G(x) = ∂2
rG(x)(x̂, px̂) + ∂rG(x)(∇, px̂)

= ∂2
rG(x)(x̂, px̂) + ∂rG(x)

(tr p

r
− (x̂, px̂)

r

)

where tr p =
∑

i pii is the trace of the matrix p. The derivatives of G are

∂rG(x) = ikG(x) − G(x)

r

∂2
r G(x) =

( 2

r2
− 2ik

r
− k2

)

G(x)

Since |G(x)| ∼ 1
r

and |(x̂, px̂)| ≤ ‖p‖, where ‖p‖ is the Frobenius norm of the matrix p, all
terms in v(x) are locally integrable in IR3 except for 2(x̂, px̂)G(x)/r2 because it is proportional
to r−3 which is not an integrable singularity in IR3. So, v(x) 6= {(∇, p∇)G} but rather v(x) is
a distributional extension of the classical derivative {(∇, p∇)G} to the singular point x = 0:

v(x) = R{(∇, p∇)G} ∈ D′



To find it, let us compute v in the distributional sense. Note that ∇G = {∇G} because the
classical gradient {∇G} is locally integrable in IR3. For any test function ϕ, one infers using
continuity of the Lebesgue integral and integration by parts that

(v, ϕ) = −
(

(p∇G,∇ϕ)
)

= −
∫

(p∇G,∇ϕ) d3x

= − lim
a→0+

∫

|x|>a
(p∇G,∇ϕ) d3x

= − lim
a→0+

(

∫

|x|=a
(n̂, p∇G)ϕdS −

∫

|x|>a
{(∇, p∇)G}ϕd3x

)

= − lim
a→0+

∫

|x|=a
(n̂, p∇G)ϕdS +

(

P {(∇, p∇)G}, ϕ
)

.

where n̂ = −x/a. The volume integral can be viewed as the spherical principal value regular-
ization P of the classical derivative of G that is calculated above for x 6= 0, provided the limit
of the surface integral exists. In fact, the regularization is needed for the term

R2(x̂, px̂)G(x)

|x|2 = P 2(x̂, px̂)G(x)

|x|2

as the other terms are locally integrable. It follows from the estimate on the sphere |x| = a

|(n̂, p∇G)| ≤ ‖p‖|n̂||∇G| ≤ ‖p‖
(

k|G(x)| + |G(x)|
a

)

= ‖p‖
( k

4πa
+

1

4πa2

)

that only the second term in ∇G can contribute to the limit because dS ∼ a2 while the limit
of the term proportional to k vanishes. Therefore

− lim
a→0+

∫

|x|=a
(n̂, p∇G)ϕdS = lim

a→0+

eika

4πa2

∫

|x|=a
(x̂, px̂)ϕ(x) dS

=
1

4π
lim

a→a+

∫

|z|=1
(z, pz)ϕ(az)dSz

=
1

4π

∫

|z|=1
(z, pz)dSz ϕ(0) ≡ Cp(δ, ϕ)

by the Lebesgue dominated convergence theorem. Note that the integrand is bounded on the
sphere |(z, pz)ϕ(az)| ≤ ‖p‖ sup |ϕ| and a constant is integrable on a sphere. Thus

v(x) = Cpδ(x) + P {(∇, p∇)G}
where Cp is the integral mean value of (z, pz) on the unit sphere, |z| = 1. The constant Cp does
not depend on the choice of a basis in IR3 because of the rotation invariance of the integral (the
sphere and the integrand defined by the inner product are invariant under rotations about the
origin).

Let λa be eigenvalues of p. They are real as p is symmetric. Let ea be the corresponding
eigenvectors chosen so that they form an orthonormal basis in IR3. Such a choice of eigenvectors
is always possible by the spectral theorem for symmetric matrices. So, the integral can be
evaluated in the spherical coordinates in which the zenith angle φ is counted from e3 and the
polar angle θ is counted from e1 in the plane spanned by e1 and e2. Then

(z, pz) = λ1 sin2(φ) cos2(θ) + λ2 sin2(φ) sin2(θ) + λ3 cos2(φ)

Cp =
1

4π

∫ 2π

0

∫ π

0
(z, pz) sin(φ) dφ dθ =

1

3
(λ1 + λ2 + λ3) =

tr p

3



41.9.1

Let x ∈ IR3. Suppose that there is no source in the heat equation. Then the solution gives
the temperature distribution u(x, t) for time t > 0 if the initial temperature distribution was
u(x, 0) = u0(x). The energy needed to rise the temperature by ∆T of a substance of mass
m is equal to mC∆T , where C is the so called specific heat capacity of the substance. If the
substance is uniform then m = ρV where ρ is the mass density and V is the volume. Therefore
if one uses the same amount of energy to rise the temperature from 0 to T for a volume V ,
then V T is constant. Let T0 be the temperature of a ball of radius R. Suppose that the
energy needed to rise the temperature of the ball from 0 to T0 is used to heat a spherical layer
R < |x| < R + ∆R. Then its temperature is T1 = T0V0/V1 where V0 is the volume of the ball
and V1 is the volume of the layer. Similarly, if the energy needed to rise the temperature of
the ball from 0 to T0 is used to heat a circular torus of radius R with a circular cross section
of radius ∆R < R, the temperature of the torus is T2 = T0V0/V2 where V2 is the volume of the
torus. Suppose the initial temperature distribution is given by

u0(x) = ua(x, ∆R) = Taχa(x, ∆R)

where a = 1, 2 and χ1 and χ2 are the characteristic functions of the spherical layer and torus,
respectively.

(i) Show that

u1(x, ∆R) → T0R

3
δSR

(x) , u2(x, ∆R) → 2T0R
2

3
δCR

(x)

in D′ as ∆R → 0+, where δSR
and δCR

are spherical and circular delta-functions supported,
respectively, on the sphere |x| = R and on a circle of of radius R. Find an integral repre-
sentation for the solution of the heat equation when the initial data are given by the above
limit distributions. Justify your answer by an appropriate analysis based on the distribution
theory. The solutions describe temperature distributions when the same amount of heat energy
was initially distributed in a thin spherical layer of radius R and in thin torus of the same radius.

(ii) Calculate the temperature at the origin, u(0, t), as a function of time t for the both initial
distributions. Sketch their graphs. Compare them with the case when u0(x) = T0V0δ(x − x0)
where |x0| = R. What is the physical significance of the latter case? For the case of the torus,
calculate u(x, t) where the point x is on the line through the center of the circle CR that is
perpendicular to the plane containing CR, and |x| = z.

Solution: For any test function ϕ

(u1, ϕ) = T1

∫

R<|x|R+∆R
ϕ(x) d3x =

T0R
3

(R + ∆R)3 − R3

∫ R+∆R

R
φ(r) r2dr ,

φ(r) =
∫

|y|=1
ϕ(ry) dSy

The function φ(r) is continuous because ϕ(ry) is continuous in the parameter r, has a bound
|ϕ(x)| ≤ M independent of r that is integrable on a unit sphere. By the integral mean value
theorem, there exists R ≤ r∗ ≤ R + ∆R such that

(u1, ϕ) =
T0R

3∆R

(R + ∆R)3 − R3
φ(r∗)r

2
∗



In the limit ∆R → 0, r∗ → R and, hence,

lim
∆R→0

(u1, ϕ) =
T0R

3

3
φ(R) =

T0R

3

∫

|x|=R
ϕ(x) dS =

T0R

3
(δSR

, ϕ)

To carry out a similar analysis for u2, let us make the following representation for an integral
over the torus. Put x = Rê(s)+ y where 0 ≤ s ≤ 2πR is the arclength over the central circle of
the torus, ê(s) is the unit vector such that Rê(s) is the position vector of a point on the central
circle for a given s, and y is orthogonal to ê(s) and spans the disk |y − Rê(s)| < ∆R which is
denoted by Ds. The volume of the torus is 2πR∆A where ∆A is the area of the disk Ds. In
this representation

(u2, ϕ) = T2

∫ 2πR

0

∫

Ds

ϕ(Rê(s) + y)d2yds =
2T0R

2

3∆A

∫ 2πR

0
φ(s, ∆R) ds

φ(s, ∆R) =
∫

Ds

ϕ(Rê(s) + y)d2y = ∆Aϕ(Rê(s) + ys)

for some |ys| ≤ ∆R in Ds by the integral mean value theorem. In the limit ∆R → 0, ys → 0-
the center of the disk Ds. The limit of φ(s, ∆R) is calculated by interchanging the order
with integration. This is legitimate because ϕ(Rê(s) + ys) is continuous in ys and its bound
|ϕ(x)| ≤ M is independent of ys and integrable over [0, 2πR]. Therefore

lim
∆R→0

(u2, ϕ) =
2T0R

2

3

∫ 2πR

0

∫

Ds

ϕ(Rê(s)) ds =
2T0R

2

3
(δCR

, ϕ)

(ii) If G(x, t) is the causal Green’s function for the heat operator, then the solution for any initial
compactly supported temperature distribution u0(x) is given by the convolution G(x, t)∗u0(x).
Let u0 be a surface delta function ∆S supported on a smooth M-surface S (here M = 1 (curve
in space) or M = 2 (surface in space)). If x = x(ξ) is a parameterization of S so that

(δS, ϕ) =
∫

S
ϕ(x(ξ)) dµ(ξ) , ϕ ∈ D ,

where dµ(ξ) is the Lebesgue measure on S, and the total Lebesgue measure of S is demanded to
be finite,

∫

S dµ(ξ) < ∞. Let us calculate the convolution G(x, t) ∗ δS(x). For any test function,

(G ∗ δS, ϕ) =
(

G(y, t),
(

δS(x), ϕ(x + y)
))

=
∫

G(y, t)
∫

S
ϕ(y + x(ξ)) dµ(ξ) d3y

Recall that G(x, t) is from class C∞(t > 0). By Fubini’s theorem the order of integration can
be changed because |G(y, t)ϕ(y + x(ξ))| ≤ MG(y, t) ∈ L(IR3 × S) for t > 0. Therefore by
changing integration variables z = y + x(ξ), dz = d3y, one has

(G ∗ δS, ϕ) =
∫

ϕ(z)
∫

S
G(z − x(ξ), t) dµ(ξ) d3z

Thus,

u(z, t) = G(z, t) ∗ δS(z) =
∫

S
G(z − x(ξ), t) dµ(ξ) ⇒ u(0, t) =

∫

S
G(x(ξ), t) dµ(ξ)

If S is the sphere |z| = R, then
u(0, t) = 4πR2G(R, t)

because G(x, t) depends only on |x| = R. Similarly, if S is a circle of radius R centered at the
origin, then

u(0, t) = 2πRG(R, t)

The answer is obtained by scaling the above expressions with appropriate factors in the limit
distributions u1,2.



43.7.4. Implosion waves

Consider the regular distribution in IR3

v(x, ∆R) =
P0

∆R
χ(x, ∆R)

where χ is the characteristic function of a spherical layer, R < |x| < R + ∆R. As ∆R → 0+,
it converges to P0δSR

(x) in the distributional sense, where δSR
is the spherical delta-function

supported on the sphere |x| = R.

(i) Consider the surface wave potentials for u0 = v and u1 = v. Sketch the supports of
the surface wave potentials in the limit ∆R → 0+ for two moments of time R/c > t2 > t1 > 0,
indicate the wave fronts of propagating (sound) waves described by these potentials. If the wave
equation is used to model sound waves, then the surface wave potentials can be interpreted as
propagating perturbations of the air pressure relative to the atmospheric pressure. The initial
pressure perturbation is created in a thin spherical layer (e.g., by an explosion). Owing to the
spherical symmetry, there will be waves collapsing or focusing to a point (so called imploding
waves).

(ii) Calculate the wave potentials from Part (i) at x = 0 as functions of time t > 0. Sketch
their graphs indicating how the shape is changing as ∆R → 0+. Can the wave potentials at
x = 0 be considered as distributions of time t? If so, find the distributional limit in D′

+ of the
wave potentials at x = 0 when ∆R → 0+.

Solution: (i) The wave fronts are obtained by the Huygens’ principle. Draw spheres of
radius ct centered at every point of the sphere |x| = R. The intersection of these spheres is the

support of the surface wave potentials V
(0,1)

3 (x, t) if initially they are supported on the sphere
|x| = R (in the limit ∆R → 0). The support is a spherical layer R− ct ≤ |x| ≤ R+ ct, t < R/c.

(ii) From the Notes

V
(0)
3 (0, t) =

t

4π

∫

|z|=1
v(ctz, ∆R) dSz

where v(ctz, ∆R) = P0/∆R if R/c < t < (R + ∆R)/c and v = 0 otherwise. So, V
(0)
3 (0, t) = 0

for t < R/c and for t > (R + ∆R)/c and

V
(0)
3 (0, t) =

P0t

∆R
, R/c < t < (R + ∆R)/c

For any test function ϕ(t),

(

V
(0)
3 (0, t), ϕ(t)

)

=
P0

∆R

∫ (R+∆R)/c

R/c
tϕ(t) dt = P0 t∗ϕ(t∗) , R/c ≤ t∗ ≤ (R + ∆R)/c

by the integral mean value theorem for some t∗. In the limit, ∆R → 0, T ∗ → R/c so that

lim
∆R→0

(

V
(0)
3 (0, t), ϕ(t)

)

=
P0R

c
ϕ(R/c)



This shows that V
(0)
3 (0, t) → P0R

c
δ(t− R

c
). So, the pressure at the center of the exploding sphere

becomes a delta function in time. It ”blows up” at t = R/c. Similarly,

V
(1)
3 (x, t) =

d

dt

t

4π

∫

|z|=1
v(ctz, ∆R) dSz =

d

dt
V

(0)
3 (t) → P0R

c
δ′
(

t − R

c

)

as ∆R → 0 by continuity of differentiation on D′.



44.9.3. Radiation of a magnetic dipole

(i) Formulate the generalized Cauchy problem for a point-like magnetic dipole.

(ii) Solve the Cauchy problem and calculate the explicit form of electromagnetic fields as vector-
valued distributions in the same fashion as for an electric dipole in the Notes.

(iii) Find the far fields, calculate their Poynting vector, and find its outward flux across a
sphere of an arbitrary large radius. Put µ(t) = θ(t)µ0 cos(ωt) (a monochromatic magnetic
dipole) and caculate the average rate per one cycle T = 2π/ω at which the dipole emits elec-
tromagnetic energy.

Solution: (i) The electric current density is given by J = µ(t) × ∇δ(x), where µ(t) is a
sufficiently smooth vector function of time t (from class C2 by analogy with the case of an
electric dipole), and the electric charge density vanishes. The electric charge conservation law
holds because

(∇,J) = −(µ, ∇× ∇δ) = (µ, 0) = 0

Therefore the electric and magnetic fields are distributional solutions to Maxwell’s equations
that vanish in the half-space t < 0:

∂E

∂t
− c∇ × B = −4πJ ,

∂B

∂t
+ c∇ × E = 0 ,

(∇,E) = (∇,B) = 0 ,

E(x, t) = B(x, t) = 0 , t < 0 .

if, in addition, the electric and magnetic fields are assumed to be zero at t = 0+.

(ii) By (??) and (??), the solution is given by

E = −1

c

∂A

∂t
, B = ∇× A ,

where the vector valued distribution A is given by the convolution

A(x, t) = 4πc(G3 ∗ J)(x, t) = −4πc∇×
(

G3(x, t) ∗ µ(t) · δ(x)
)

= −∇ × µ(tr)

|x| , tr = t − |x|
c

The last equality is analogous to the scalar potential Φ for an electric dipole (the divergence
becomes the curl in the present case). For x 6= 0, the vector potential is from class C∞.
Therefore the distributional and classical derivative match:

A(x, t) =
x̂ × µ̇(tr)

c|x| +
x̂ × µ(tr)

|x|2 , x 6= 0

where ∇|x| = x/|x| = x̂ and the over-dot denote the time derivative as in the case of an electric
dipole. The singularity at x = 0 is locally integrable in IR3. Therefore, the above equation
holds in D′.



For x 6= 0 the distributional and classical derivatives match and, hence,

E(x, t) = − x̂× µ̈(tr)

c2|x| − x̂× µ̇(tr)

c|x|2

B(x, t) = {∇ ×A} =
µ̈(tr) − x̂(x̂, µ̈(tr))

c2|x| +
µ̇(tr) − 3x̂(x̂, µ̇(tr))

c|x|2

+
4µ(tr) − 3x̂(x̂, µ(tr))

|x|3 , x 6= 0

The electric field is locally integrable and, hence, the above expression defines the electric field
as a regular distribution. The last term in the expression for the magnetic field is not locally
integrable in IR3 because its magnitude is proportional to |x|−3. So, the distributional curl of
A is not equal to the classical one. Since A is locally integrable, for any test function

(B, ϕ) =
(

∇ × A, ϕ
)

=
(

A,×∇ϕ
)

=
∫ ∫

IR3
A ×∇ϕd3xdt

=
∫

lim
a→0+

∫

|x|>a
A × ∇ϕd3xdt

=
∫

lim
a→0+

(

∫

|x|=a
A × n̂ϕdS +

∫

|x|>a
{∇ × A}ϕd3x

)

dt

by continuity of the Lebesgue integral. The second term is the spherical principal value regu-
larization of the classical curl of A (in fact, only the term proportional to |x|−3 requires this
regularization). The limit of the surface integral is a contribution of a distribution supported
at x = 0.

Since the normal n̂ = −x/a, one has the following estimate of the integrand on the sphere
|x| = a

|A × n̂| ≤ |µ̇(t − a
c
)|

ca
+

|µ(t − a
c
)|

a2

This shows that the term containing µ̇ in A does not contribute to the limit because dS ∼ a2.
Therefore putting x = az, one infers that

lim
a→0+

∫

|x|=a
A × n̂ϕdS = lim

a→0+

∫

|z|=1
z×

(

z × µ(t − a
c
)
)

ϕ(az, t) dS

=
∫

|z|=1
z ×

(

z × µ(t)
)

dS ϕ(0, t)

by the Lebesgue dominated convergence theorem. Note that the magnitude of the integrand is
bounded for all a by |µ(t)| sup |ϕ|. So, by continuity of µ and the test function the limit can
be moved into the integral. Put

C(t) =
∫

|z|=1
z ×

(

z ×µ(t)
)

dS =
∫

|z|=1

[

z
(

z, µ(t)
)

− µ(t)
]

dS

The latter integral is convenient to calculate in spherical coordinates in which the zenith angle
φ is counted from the vector µ so that (z, µ) = |µ| cos(φ). If e1,2 are orthonormal vectors in
the plane perpendicular to µ, then

z = z1e1 + z2e2 + cos(φ)µ̂(t)



where z1 = sin(φ) cos(θ), z2 = sin(φ) sin(θ), and µ̂ = µ/|µ| is the unit vector parallel to µ.
Since dS = sin(φ) dφ dθ and the integration over θ is taken over the interval [0, 2π], the integral
of z1,2 vanishes. Therefore

C(t) = 2πµ(t)
∫ π

0

(

cos2(φ) − 1
)

sin(φ) dφ = −8π

3
µ(t)

and

(B, ϕ) = −8π

3

∫

µ(t)ϕ(0, t) dt +
(

P{∇× A}, ϕ
)

,

B(x, t) = −8π

3
µ(t) · δ(x) + P{∇ × A(x, t)}

(iii) The flux of the electromagnetic energy in the asymptotic region |x| → ∞ is determined by
fields falling off as |x|−1 so that the Poynting vector reads

E = − x̂× µ̈(tr)

c2|x| + O(|x|−2) ,

B =
µ̈(tr) − x̂(x̂, µ̈(tr))

c2|x| + +O(|x|−2) ,

S =
c

4π
E× B =

|µ̈(tr)|2 − (x̂, µ̈(tr))
2

4πc3|x|2 + +O(|x|−3)

The latter expression is identical to that of the asymptotic Poynting vector for a radiating
electric dipole. Using the results from the Notes, where the electric dipole vector p(t) is to be
replaced by the magnetic dipole vector µ(t), one infers that

∫

|x|=R
(S, dΣ) =

2|µ̈(t − R
c
)|2

3c3

〈

∫

|x|=R
(S, dΣ)

〉

T
= =

1

T

∫ T

0

∫

|x|=R
(S, dΣ) dt =

ω2

3c3
|µ0|2

if µ(t) = µ0 cos(ωt) where T = 2π/ω is the period of oscillations of the magnetic moment.


