
55.5.2. Differentiation operator on a half-line

Consider the differentiation operator in L2(0,∞):

A : DA ⊂ L2(0,∞) → L2(0,∞) , Au(x) = u′(x) ,

DA =
{

u ∈ C1([0,∞)) ∩ L2(0,∞)
∣

∣

∣ u(0) = 0 , lim
x→∞

u(x) = 0
}

(i) Show that A is invertible.
(ii) Find the explicit form of A−1f .
(iii) Show that A is not bounded away from zero.
(iv) Show that neither A nor its inverse A−1 is bounded.
(v) Show that the range of A is a proper subset of C0([0,∞)) ∩ L2(0,∞). In particular, solve
the equation Au = f , u ∈ DA, where f(x) = e−x ∈ C0([0,∞)) ∩ L2(0,∞) or show that no
solution exists.

Solution: (i) The inverse A−1 exists if and only if the homogeneous problem Au = 0, u ∈ DA,
has only the trivial solution. A general solution to u′(x) = 0, u ∈ C1, is a constant function,
u(x) = C . The boundary condition u(0) = 0 demands that C = 0. Therefore the said problem
has only the trivial solution and A is invertible.

(iii) One has to find a sequence {un} ⊂ DA such that ‖Aun‖/‖un‖ → 0 as n → ∞. Let
un = xe−anx where an > 0. Note that un(0) = 0. Then

‖un‖
2 =

∫ ∞

0
x2e−2anxdx =

C0

a3
n

, C0 =
∫ ∞

0
y2e−2ydy

‖Aun‖
2 =

∫ ∞

0
|u′

n(x)|2dx =
∫ ∞

0
(1 − anx)2e−2anxdx =

CA

an

, CA =
∫ ∞

0
(1 − y)2e−2ydy

‖Aun‖2

‖un‖2
=

CA

C0
a2

n → 0

as n → ∞ if an → 0+ (e.g. an = 1
n
).

(iv) The operator A is invertible and not bounded away from zero. Therefore by Banach
Theorem its inverse is not bounded, ‖A−1‖ = ∞. To show that ‖A‖ = ∞, one has to find a
sequence {un} ⊂ DA such that ‖Aun‖/‖un‖ → ∞ as n → ∞. Take the same sequence as in
Part (iii) but demand that an → ∞ (e.g., an = n).



59.7.1. Spectrum of a projection operator

Let {vn} be an orthonormal set that is not complete in a Hilbert space H. Define the operator:

P : H → H , Pu =
∑

n

〈u, vn〉vn

(i) Show that
P 2 = P , P ∗ = P

(ii) Show that
σp(P ) = {1, 0}

(iii) Determine the range of P . Show that for any λ /∈ σp(P ), the resolvent is

RP (λ)f = (1 − λ)−1Pf − λ−1(f − Pf)

(iv) Show that the resolvent is bounded and that

σ(P ) = σp(P ) = {1, 0}

Solution: Let us first establish the following properties of P :

(1) ‖P‖ = 1 < ∞

(2) P 2 = P

(3) P ∗ = P

By the Bessel inequality
‖Pu‖2 =

∑

n

|〈u, vn〉|
2 ≤ ‖u‖2

for any u in the Hilbert space because DP = H. It follows from this inequality that P is
bounded and

‖Pu‖

‖u‖
≤ 1 ⇒ ‖P‖ = 1

because the equality can be reached when u = vn. Therefore, by linearity, P is continuous on
H.

Consider the sequence wm =
∑m

n=1〈u, vn〉vn where u ∈ H. Clearly wm → Pu as m → ∞.
By continuity of P , Pwm → P (Pu) = P 2u for any u ∈ H. On the other hand, P is linear and
Pvn = vn so that Pwm = wm and, hence

P 2u = lim
m→∞

Pwm = lim
m→∞

wm = Pu , ∀u ∈ H

which means that P 2 = P .
For any u and v in H, put wm =

∑m
n=1〈u, vn〉vn and w̃m =

∑m
n=1〈v, vn〉vn so that wm → Pu

and w̃m → Pv as m → ∞. By continuity of the inner product

〈Pu, v〉 = lim
m→∞

〈wm, v〉 = lim
m→∞

〈u, w̃m〉 = 〈u, Pv〉

〈wm, v〉 =
m

∑

n=1

〈u, vn〉〈vn, v〉 = 〈u,
m

∑

n=1

〈vn, v〉vn〉 = 〈u,
m

∑

n=1

〈v, vn〉vn〉 = 〈u, w̃m〉 .



So, P = P ∗ (it is symmetric and its domain is the whole Hilbert space).

(i) Since P is self-adjoint, its spectrum is real and the residual spectrum σr(P ) is empty.

(ii) To find the point spectrum σp(P ), let M be the closure of span{vn} which is a Hilbert
space (a subspace of H) (recall the Riesz-Fisher theorem about orthogonal sets). Then by
continuity of P , Pu = u for any u ∈ M and Pv = 0 for any v from the orthogonal complement
of M . Furthermore M is closed and by the orthogonal projection theorem for any w ∈ H, there
exists a unique decomposition w = u + v where u ∈ M and v ∈ M⊥. Therefore the equation

Pw = λw

can have a nontrivial solution only if λ = 0 or λ = 1. This means that the point spectrum of P
is has only two values: σp(P ) = {0, 1}. Note also that the projection theorem could have been
used to prove P 2 = P : P (Pw) = Pu = Pw for any w.

(iii) By construction, the range of P is M . Consider the equation

Pw − λw = f

where λ /∈ σp(P ). By the orthogonal projection theorem, for any w ∈ H there is a unique
decomposition w = u + v where u ∈ M and v ∈ M⊥ where u = Pw and v = u−w = (I −P )w.
Since P (Pw) = Pw and P (I − P )w = Pw − Pw = 0, the equation reads

(I − λ)Pw − λ(I − P )w = f = Pf + (I − P )f

Owing to the orthogonality of terms, the equation is equivalent to two equations (in M and in
M⊥, respectively):

(I − λ)Pw = Pf ⇒ Pw = (I − λ)−1Pf

−λ(I − P )w = (I − P )f ⇒ (I − P )w = −λ−1(I − P )f

RP (λ)f = Pw + (I − P )w = (1 − λ)−1Pf − λ−1(f − Pf)

for any λ /∈ σp(P ).

(iv) Next, it follows from the triangle inequality that

‖RP (λ)f‖ ≤
‖Pf‖

|λ − 1|
+

‖f − Pf‖

|λ|

≤
‖f‖

|λ − 1|
+

‖f‖

|λ|

Note that I − P is a projection operator onto M⊥ and, hence, ‖I − P‖ ≤ 1 just like for the
projection operator P . Since the above inequality hold for any f ∈ H,

‖RP (λ)‖ ≤
1

|λ − 1|
+

1

|λ|

which shows that the resolvent exists and is bounded for any complex λ that is not equal to
1 or 0. Therefore all such λ form the resolvent set, or the continuum spectrum of P is empty.
Thus, the spectrum consists only of the point spectrum, σ(P ) = {0, 1}.



59.7.2. The derivative operator on a circle

Define the operator

A : DA = {u ∈ C1([0, 1]) |u(0) = u(1) } , Au(x) = −iu′(x)

(i) Show that
σp(A) = {2πn}∞−∞

(ii) Construct the adjoint A∗. Show that A has a self-adjoint extension and

σr(A) = ∅

(iii) Show that the resolvent is

RAf(x) = Cfe
iλx + i

∫ x

0
eiλ(x−y)f(y) dy

Cf =
ieiλ

1 − eiλ

∫ 1

0
e−iλyf(y) dy

for any complex λ /∈ σp(A).
(iv) Prove that ‖RA‖ < ∞ and find the spectrum of the operator.

Solution: (i) The operator is symmetric. Its domain is dense in the Hilbert space and

〈Au, v〉 = −i
∫ 1

0
u′v̄ dx = −iuv̄

∣

∣

∣

1

0
+ i

∫ 1

0
uv̄′dx = 〈u, Av〉

because the boundary term vanishes for any u and v from DA. Therefore its approximate
spectrum is real. The point spectrum is given by all real λ for which the following boundary
value problem has a non-trivial solution:

{

−iu′(x) = u(x)
u(0) = u(1)

⇒

{

u(x) = Ceiλx

u(0) = u(1)
⇒ eiλ = 1 ⇒ σp(A) = {2πn}∞−∞

(ii) If v ∈ DA∗ , then there exists g ∈ L2(0, 1) such that 〈Au, v〉 = 〈u, g〉 for any u ∈ DA. Recall
that for any g ∈ L2(0, 1) there exists an absolutely continuous v such that v′ ∼ g. Therefore
the domain DA∗ ⊂ AC0[0, 1]. Let v be absolutely continuous. Then by integration by parts

〈Au, v〉 = −iu(x)v(x)
∣

∣

∣

1

0
+ i〈u, v′〉 = −iu(1)[v(1)− v(1)] + 〈u, g〉

This shows that such g exists if the boundary term vanish and, in this case, g(x) = −iv′(x) ∈
L2(0, 1).

Since u(1) is arbitrary for u ∈ DA, one has to demand that v(0) = v(1). Thus,

A∗v(x) = g = −iv′(x) , DA ⊂ DA∗ = {AC0[0, 1]|v(0) = v(1)}

Let us calculate the double adjoint, A∗∗. If u ∈ DA∗∗ , then there exists g ∈ L2(0, 1) such that
〈A∗v, u〉 = 〈v, g〉 for all v ∈ DA∗ . Since DA∗∗ ⊂ AC0[0, 1], let u be absolutely continuous. Then
by integration by parts

〈A∗v, u〉 = −iv(x)u(x)
∣

∣

∣

1

0
+ i〈v, u′〉 = −iv(1)[u(1)− u(1)] + 〈v, g〉



This shows that u(1) = u(0) and A∗∗u(x) = −u′(x). Hence A∗∗ = A∗ and A∗ is the self-adjoint
extension of A (the operator A is essentially self-adjoint, which could also be established by
showing that A∗v = ±iv, v ∈ DA∗ , has only the trivial solution). Thus, its residual spectrum
is empty σr(A) = ∅.

(iii) For any complex λ that is not in the point spectrum σp(A), consider the problem

{

Au = f
u ∈ DA

⇒

{

−iu′(x) = f(x)
u(0) = u(1)

⇒

{

u(x) = Cfe
iλx + i

∫ x
0 eiλ(x−y)f(y) dy ≡ RA(λ)f(x)

u(0) = u(1)

where the constant Cf is obtained from the boundary condition

Cf = Cfe
iλ + ieiλ

∫ 1

0
e−iλyf(y) dy ⇒ Cf =

ieiλ

1 − eiλ

∫ 1

0
e−iλyf(y) dy

as required. Note that if A is extended to A∗ (a self-adjoint extension), then the resolvent is
defined on the whole L2(0, 1) if λ /∈ σp(A). Without the extension, its domain is C0([0, 1])
which is dense in L2(0, 1).

(iv). Since the residual spectrum is empty, any non-real λ lies in the resolvent set and hence
‖RA(λ)‖ < ∞ in this case. Let λ be real but not an integer multiple of 2π. Then

|Cf | ≤
1

2 sin(λ/2)

∫ 1

0
|f(y)| dy ≤

‖f‖

2 sin(λ/2)

Therefore

|RA(λ)f(x)| ≤ |Cf | +
∫ 1

0
|f(x)| dx ≤

‖f‖

2 sin(λ/2)
+ ‖f‖ ≡ M(λ)‖f‖

‖RA(λ)f‖ =
(

∫ 1

0
|RA(λ)f(x)|2dx

)1/2
≤ M(λ)‖f‖

Since M(λ) < ∞ for any λ /∈ σp(A), the continuum spectrum is empty, σc(A) = ∅. Thus,
σ(A) = σp(A) = {2πn}∞−∞.



59.7.4.

Repeat the analysis of Problem 59.7.2 for the operator

A : DA = {u ∈ C1([0, 1]) |u(0) = zu(1) } , Au(x) = −iu′(x)

where z is a complex number. Find the spectrum σ(A). Note that the operator is not longer
symmetric if |z| 6= 1.

Solution: Following the procedure for finding the spectrum of an operator (densely defined),
let us first find the point spectrum:

−iu′ = λu , u(0) = zu(1) ⇒ 1 = zeiλ

If z = 0, then the point spectrum is empty. Let z 6= 0. Put z = |z|eiθ, 0 ≤ θ < 2π. Then the
point spectrum is

σp(A) = {−θ + 2πn + i ln(|z|)}∞−∞ .

Next, let us construct the adjoint. If v ∈ DA∗ , then there exists g ∈ L2(0, 1) such that
〈Au, v〉 = 〈u, g〉 for all u ∈ DA. Since DA∗ ⊂ AC0[0, 1], let v be absolutely continuous. By
integration by parts

〈Au, v〉 = −iu(1)[zv(0)− v(1)] + i〈u, v′〉 = 〈u, g〉

Thus A∗v = g = −iv′ and
DA∗ = {AC0[0, 1]|z̄v(0) = v(1)}

in order for the boundary term to vanish because u(1) is arbitrary.
The next step is to find the compression spectrum of A. To accomplish this task, one has

to find the point spectrum of A∗ and take its complex conjugation: σcom(A) = σp(A∗). If µ is
an eigenvalue of A∗, then

µ = µn = −θ + 2πn − i ln(|z|)

because the corresponding boundary value problem is identical to that for A with the only
difference that z → (z̄)−1 or |z| → 1/|z|. Therefore

σcom(A) = {µ̄n}
∞
−∞ = {−θ + 2πn + i ln(|z|)}∞−∞ = σp(A)

Hence, the residual spectrum is empty σr(A) = ∅ if z 6= 0. If z = 0, then z̄ = 0 in DA∗ , and
the point spectrum of A∗ is empty. So, σr(A) = ∅ in this case, as well.

The resolvent is obtained in the same way as in Problem 59.7.2 with only difference that
the constant Cf should be fixed by u(0) = zu(1). Thus, for any λ /∈ σp(A)

RA(λ)f(x) = Cf(z)eiλx + i
∫ x

0
eiλ(x−y)f(y) dy , f ∈ L2(0, 1)

Cf(z) =
izeiλ

1 − zeiλ

∫ 1

0
e−iλyf(y) dy

Using the estimates |e±ixλ| ≤ e|Imλ| for all x ∈ [0, 1] and that |1 − zeiλ| ≥ δ > 0 for any
λ /∈ σp(A), it is straightforward to see that

|Cf(z)| ≤
|z|e|Imλ|

δ
‖f‖ ⇒ ‖RA(λ)‖ ≤

|z|e2|Imλ|

δ
‖f‖ + e|Imλ|‖f‖ ≡ M‖f‖

Thus, the continuum spectrum is empty, σc(A) = ∅.
Remark: If |z| = 1, the operator is essentially self-adjoint because A∗∗ = A∗ (A∗ is a

self-adjoint extension of A by the same argument as in Problem 59.7.2).


