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CHAPTER 1

Preliminaries

1. Euclidean spaces

1.1. Euclidean space as a vector space. Any element (or a point) of a
Euclidean space Rn is an ordered n-tuple of real numbers and will be
denoted by x = 〈x1, x2, ..., xn〉 or r = 〈x, y, z, ...〉. Two points x and y

are said to be equal if the corresponding components are equal xj = yj,
j = 1, 2, ..., n.

A Euclidean space is a vector space over real numbers. This means
the following. For any two elements x and y and a real number c,
the addition of two elements and a multiplication of an element by a
number are defined by

x + y = 〈x1 + y1, x2 + y2, ..., xn + yn〉
cx = 〈cx1, cx2, ..., cxn〉

By this definition, any linear combination c1x1 + c2x2 + · · · + ckxk of
elements xα ∈ Rn, α = 1, 2, ..., k, belongs to Rn. In other words, Rn

is closed with respect to the addition and multiplication by a number
defined above. These operations are generalizations of the operations
of vector algebra in plane or space. For this reason, elements of Rn are
also called n-dimensional vectors.

Two vectors x and y are called parallel if they are proportional
x = cy for some c ∈ R. The zero vector 0 = 〈0, 0, ..., 0〉 is parallel to
any vector.

1.2. A distance in Rn. The Euclidean distance between two points x =
〈x1, x2, ..., xn〈 and y = 〈y1, y2, ..., yn〉 is defined by

|x− y| =
√

(x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2

It satisfies the distance axioms:

|x − y| ≥ 0 and |x− y| = 0 ⇔ x = y

|x − y| = |y − x|
|x − y| ≤ |x − z|+ |z − y|

3
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that is, the distance is a non-negative symmetric function of two points
that satisfies the triangle inequality and it vanishes if and only if the
points are equal.

1.3. The inner product in Rn. A number defined by the rule

x · y = x1y1 + x2y2 + · · · + xnyn

for any two elements x and y is called the dot or inner product in Rn.
It follows from the definition that the dot product has the properties

x · y = y · x
x · (y + z) = x · y + x · z

x · (cy) = (cx) · y = c(x · y)

It also follows that

x · x ≥ 0 and x · x = 0 ⇔ x = 0

The number

|x| =
√

x · x
is called the norm or length of x. Evidently, the norm is the distance
between x and the zero vector: |x| = |x− 0|.

Cauchy-Schwartz inequality. For any two vectors the following inequal-
ity holds

|x · y| ≤ |x| |y|
and the equality holds if and only if x and y are parallel.
Proof. If y = 0, then the inequality is true. Suppose y 6= 0 and,
hence, |y| 6= 0. Consider a non-negative function defined by

f(t) = |x + ty|2 ≥ 0 , t ∈ R

Using the relation between the distance and the dot product and the
basic properties of the latter

f(t) = (x + ty) · (x + ty)

= x · x + t2(y · y) + 2t(x · y)

= |x|2 + t2|y|2 + 2t(x · y)

So f(t) is a quadratic polynomial. Since the coefficient at t2 is positive,
the polynomial attains its minimal value when f ′(t) = 0, that is, at

t = t∗ = −x · y
|y|2
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Since f(t) ≥ 0 for any t,

f(t∗) = |x|2 − (x · y)2

|y|2 ≥ 0

⇒ (x · y)2 ≤ |x|2|y|2

⇒ |x · y| ≤ |x| |y|
Note that the smallest possible value of f(t) is zero. The condition
f(t) = 0 holds if and only if x + ty = 0 or x = −ty which means that
the vectors x and y are parallel. Thus, the equality in the Cauchy-
Schwartz inequality is possible only if x and y are parallel.

Angles between vectors. It follows from the Cauchy-Schwartz inequal-
ity that for any two non-zero vectors

−1 ≤ x · y
|x| |y| ≤ 1

The angle θ between two non-zero vectors x and y is defined as a root
to the equation

cos(θ) =
x · y
|x| |y| , θ ∈ [0, π]

Note that the equation has a unique solution in the stated range be-
cause cos(θ) is one-to-one on [0, π]. Since the equality in the Cauchy-
Schwartz inequality is reached only if x and y are parallel or propor-
tional, one infers that

θ = 0 ⇔ x = cy , c > 0

θ = π ⇔ x = cy , c < 0

In the latter case, the vectors are sometimes called anti-parallel. Two
vectors are called orthogonal (or perpendicular) if their dot product
vanishes:

x ⊥ y ⇔ x · y = 0 ⇔ θ =
π

2
Note that the zero vector is parallel and orthogonal to any vector, and
there is only one vector with such properties (there reader is advised
to prove the latter assertion).

1.4. Bases and subspaces in Rn. For any finite collection of vectors xα,
α = 1, 2, ..., k, the collection of all linear combinations is called a span:

c1x1 + c2x2 + · · · + ckxk ∈ Span{x1,x2, ...,xk}
Vectors xα, α = 1, 2, ..., k ≤ n are called linearly independent if

c1x1 + c2x2 + · · · + ckxk = 0 ⇔ c1 = c2 = · · · = ck = 0
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In other words, none of the vectors xα can be expressed as a linear
combination of the others.

Any vector can be expanded into the following linear combination

x = x1e1 + x2e2 + · · · + xnen

where all components of the vector ek are equal to zero except the k-th
components which is set to one:

(ek)j = δkj =

{

1 , k = j
0 , k 6= j

The vectors ek, k = 1, 2, ..., n, are linearly independent. Furthermore
they are mutually orthogonal:

ek · em = δkm

In particular, the components of a vector x are uniquely defined by the
dot product:

xj = x · ej , j = 1, 2, ..., n

so that the identity holds

x = (x · e1)e1 + (x · e2)e2 + · · · + (x · en)en

The collection of vectors ek, k = 1, 2, ..., n, is called the standard basis
in Rn.

A collection of vectors uk, k = 1, 2, ..., n, is called a basis in Rn if

Span{u1,u2, ...,un} = R
n

In other words, any element of Rn is a linear combination of basis
vectors. Clearly, basis vectors are linearly independent. If, in addi-
tion, the basis vectors are mutually orthogonal, then the basis is called
orthogonal. An orthogonal basis is called orthonormal if |uk| = 1,
j = 1, 2, ..., n. The standard basis is orthonormal. Any orthogonal ba-
sis can be converted into an orthonormal basis by the renormalization
procedure

uk → vk = |uk|−1 uk

The Gram-Schmidt process. The vector

Projxy =
y · x
|x|2 x =

|y| cos(θ)
|x| x

is called the vector projection of y onto x 6= 0, where θ is the angle
between y and x. By construction, the vector projection of y is a vector
parallel to x with the length |y|| cos(θ)|. The triangle with adjacent
sides being y and Projxy is a right-angled triangle (y is its hypotenuse).
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Any basis uk in Rn can be converted into an orthogonal basis by
the Gram-Schmidt process:

v1 = u1

v2 = u2 − Projv1
u2

v3 = u3 − Projv1
u3 − Projv2

u3

· · ·
vk = uk − Projv1

uk − Projv2
uk − · · · − Projvk−1

uk

where k = 2, 3, ..., n. The reader is advised to verify that

vj · vk = 0 , j 6= k , j, k = 1, 2, ..., n

The collection {vk} form an orthogonal basis which can be converted
into an orthonormal basis by the renormalization procedure.

Subspaces in Rn. A span of some vectors {xα} is closed with respect
to vector addition of its elements and with respect to multiplication of
its elements by a number because results of these operations are linear
combinations of the vectors xα. Therefore the span is also a linear
space and it is called a subspace of Rn. The greatest number of linearly
independent vectors in a span is called the dimension of the span. In
particular, the dimension of Rn is equal to n

dim R
n = n

because the standard basis has n linearly independent elements. The
dimension of any subspace cannot exceed n and, hence,

dim Span{x1,x2, ...,xk} ≤ min{k, n}
and the equality is reached only if xα are linearly independent. In this
case, the vectors xα form a basis in the span.

Lines and planes. A collection of points

x = y + tv , t ∈ R

is called a line through the point y and parallel to a vector v 6= 0.
Clearly, position vectors of points of the line relative to a particular
point y, that is, x − y, form the span of v which is a one-dimensional
subspace of Rn.

Let xα, α = 1, 2, ..., k < n, be linearly independent. The collection
of points

x = y + t1x1 + t2x2 + · · · + tkxk , tα ∈ R

is called a k-dimensional hyper-plane or simply a a k-dimensional plane
through a point y. Position vectors of all points x of a hyper-plane
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relative to a particular point y, that is, x−y, form the span of linearly
independent vectors xα, α = 1, 2, ..., k < n, which has the dimension k
(this is why it is called a k-th dimensional hyper-plane). The vectors
xα form a basis for all vector in the hyper-plane.

If n = 3 and k = 2, then the above vector equation states that any
vector in a plane is a linear combination of two non-parallel vectors
in the plane. This condition can also be stated via the dot product:
(x−y) ·n = 0 where n = x1×x2 is defined via the cross product in R3

of any two non-parallel vectors in the plane. Recall the cross product
is orthogonal to both vectors in it.
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2. Functions on Rn

2.1. Sets in Rn. A collection of all points whose distance is strictly less
than a > 0 from a given point y,

Ba(y) =
{

x ∈ R
n
∣

∣

∣
|x− y| < a

}

is called an open ball of radius a centered at y or a neighborhood of the
point y. If y = 0, that is, the ball is centered at the origin, then it is
denoted as Ba.

A neighborhood of a set. Let Ω be a set of points in Rn. A neighborhood
of a set Ω is called the union of open balls centered at each point of Ω:

Ωa =
⋃

x∈Ω

Ba(x)

For example, a neighborhood of a ball BR is a ball BR+a.

Open sets. A set Ω is said to be open if for every point x ∈ Ω there
is a neighborhood Ba(x) that is contained in Ω. For example BR(y) is
open.

Limit points of a set. A point y is a limit point of a set Ω if the intersec-
tion Ω∩Ba(y) for any neighborhood Ba(y) contains at least one point
of Ω different from the point y. Note that y does not necessarily belong
to Ω. For example, let Ω = B1 (all x such that |x| < 1). Clearly, every
point of the ball is a limit point because there is a ball of a sufficiently
small radius centered at any point of Ω that is contained in Ω (the set
B1 is open as was noted above). Take any point y such that |y| = 1 (at
a distance 1 from the center of the ball). Clearly, any ball Ba(y) has a
non-empty intersection wit B1. So all points on the sphere |r| = 1 are
limit points of B1 but none of them belong to B1.

Closed sets. The closure of a set Ω is the union of all limit points of Ω
with Ω. It is denoted by Ω̄. A set Ω is called closed if it contains all its
limit points so that Ω̄ = Ω. For example,

Ba(y) =
{

x ∈ R
n
∣

∣

∣
|x − y| ≤ a

}

is a closed ball of radius a centered at y. A point y ∈ Ω is said to
be isolated if there is a neighborhood Ba(y) whose intersection with Ω
contains only the point y. Clearly, a finite collection of isolated points
is a closed set (as it has no limit points). An infinite set of isolated
point points {xk}∞0 (a sequence in Rn) may have a limit point that
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does not belong to the set. For example, if the sequence has the limit
x, that is,

lim
k→∞

|xk − x| = 0

then x is a limit point of the set (any ball Ba(x)) contains xk for all
k > N for some (large enough) N).

The interior of a set. The largest open set Ωo that is contained in Ω is
called the interior of Ω. So, for any Ω

Ωo ⊆ Ω ⊆ Ω̄

One can prove that the closure Ω̄ is the smallest closed set that contains
Ω. Note that the interior Ωo can be empty. For example a set containing
only finitely many points has an empty interior. The interior of an open
set coincides with the set itself.

The boundary of a set. The set

∂Ω = Ω̄ \ Ωo

is called the boundary of Ω. For example, the boundary of a ball (closed
or open)

∂Ba(y) = Ba(y) \ Ba(y) =
{

x ∈ R
n
∣

∣

∣
|x − y| = a

}

is the sphere of radius a centered at y. The whole space has no bound-
ary. Indeed, the whole space Ω = Rn is open and closed (because all
its points are interior points and it contains all its limit points) so that
its interior coincides with its closure and the boundary is empty.

2.2. Functions of several variables. Let u be a function of several vari-
ables, denoted x, y, z, etc. Unless stated otherwise, r = 〈x, y, z, ...〉
or x = 〈x1, x2, ..., xn〉 is a point in a Euclidean space Rn. A function
u is a rule that assigns a unique number, denoted u(r) to every point
r ∈ Ω ⊂ Rn:

u : Ω ⊂ R
n → R

A function

u : Ω ⊂ R
n → C

is called complex-valued. In accord with the definition of complex
numbers, it can always be written as a linear combination of two real-
valued functions

u(r) = v(r) + iw(r) , v(r) = Re u(r) , w(r) = Im u(r)
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Partial derivatives. Let u : Ω → R and Ω be an open set. Suppose
that the function u has partial derivatives up to some order. The first
order partial derivatives are denoted as

∂u

∂x
= u′

x ,
∂u

∂y
= u′

y ,
∂u

∂z
= u′

z , ...

The second order partial derivatives are denoted as

∂2u

∂x2
= u′′

xx ,
∂2u

∂y2
= u′′

yy ,
∂2u

∂z2
= u′′

zz , ...

There are also mixed partial derivatives of the second order:

∂2u

∂x∂y
=

∂

∂x

∂u

∂y
= u′′

xy ,
∂2u

∂y∂x
=

∂

∂y

∂u

∂x
= u′′

yx

and similarly for any other pair of variables, that is, u′′
xz, u′′

zx, etc.
Partial derivatives of the third order and higher are denoted similarly.
For example

u′′′
xyy =

∂

∂x

∂2u

∂y2
=

∂3u

∂x∂y2
, u′′′

xyz =
∂

∂x

∂

∂y

∂u

∂z
=

∂3u

∂x∂y∂z
.

Note that the order of variables in the subscript indicates the order
in which partial derivatives are taken. In general, the value of partial
derivatives of higher order depends on the order of differentiation. If,
however, the partial derivatives are continuous functions, then the order
of differentiation is irrelevant. This statement is known as Clairaut’s
theorem. In what follows, it will always be assumed that partial deriva-
tives are continuous (up to the order of interest) and, hence, u′′

xy = u′′
yx,

or u′′′
xyz = u′′′

xzy, etc.

Functions from the class Cp. A function on an open set Ω whose partial
derivatives up to order p are continuous on Ω is called a function from
the class Cp(Ω). All continuous functions on Ω form the class C0(Ω).
The functions whose partial derivatives of any order are continuous
form the class C∞(Ω). If Ω = Rn, then Cp(Rn) = Cp for simplicity
of notations. Functions from Cp(Ω) form a linear space because the
functions h(r) = u(r)+ v(r) and cu(r) are from Cp(Ω) if v, u ∈ Cp(Ω).

A collection of all partial derivatives of a function u ∈ Cp(Ω) of
order q ≤ p is denoted by Dqu. For example, for a function of two
variables x and y

Du = {u′
x , u′

y} , D2u = {u′′
xx , u′′

xy , u′′
yy}
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Similarly, for functions of n variables

Du =

{

∂u

∂xj

∣

∣

∣
j = 1, 2, ..., n

}

,

D2u =

{

∂2u

∂xj∂xk

∣

∣

∣
j ≤ k = 1, 2, ..., n

}

.

2.3. The gradient. The vector in the domain of a function u whose
components are partial derivatives are called the gradient:

R
2 : ∇u = (u′

x, u
′
y) ,

R
3 : ∇u = (u′

x, u
′
y, u

′
z) ,

R
n : ∇u = (u′

x1
, u′

x2
, ..., u′

xn
) .

For any unit vector n, |n| = 1, in the domain of a C1 function u, the
dot product

n ·∇u(x) =
∂u

∂n

is called the directional derivative of u in the direction of n at a point
x. It defines the rate of change of u in the direction of n at a point x.
If θ is the angle between n and ∇u at a point x, then

∂u

∂n
= |∇u| cos(θ)

This shows that u is increasing most rapidly at a point x in the direction
parallel to the gradient (cos(θ) = 1 or θ = 0) and the maximal rate is
equal to |∇u|, whereas u is decreasing most rapidly at a point x in the
direction anti-parallel to the gradient (cos(θ) = −1 or θ = π) and the
minimal rate is equal to −|∇u|.

Level sets. A collection of points at which a function u has the same
value

u(x) = K

is called a level set of u. For example, a level set of a constant function
is either empty or coincides withRn. Level sets of the function

u(x) = |x|2 = x2
1 + x2

2 + · · · + x2
n

are concentric spheres |x| = R > 0 and the level set u(x) = 0 contains
just one point x = 0.
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Smooth surfaces. Let x ∈ Rn−1. Consider a function g(x). A collec-
tion of points (g(x),x) ∈ Rn is called a graph of g. For example, the
curve y = g(x) in the plane spanned by (x, y) ∈ R2 is a graph of a
single-variable function g. Similarly, a surface z = g(x, y) in the space
(x, y, z) ∈ R3 is a graph of the two-variable function g, and so on.

A surface in Rn is defined as a set of points that looks like a graph
of some function on n − 1 variables in a neighborhood of each point.
A surface in Rn is called smooth if in a neighborhood of each point it
coincides with a graph of a C1 function of n−1 variables. For example,
a sphere |x| = R is a smooth surface because near its every point it is
a graph of a C∞ function. For example, near the point xj = Rδjn it
coincides with the graph

xn =
√

R2 − x2
1 − x2

2 − · · · − x2
n−1

Near the point xj = −Rδjn it coincides with the graph

xn = −
√

R2 − x2
1 − x2

2 − · · · − x2
n−1

and near xj = Rδj1 it coincides with the graph

x1 =
√

R2 − x2
2 − x2

3 − · · · − x2
n

Smooth boundary of an open set. Suppose that u ∈ C1 and ∇u 6= 0,
then a level set u(x) = K is a smooth surface. The assertion can
be proved by means of the implicit function theorem. The equation
u(x) = K can be viewed as a relation that defines one of the variables
as an implicit function of the others. By the implicit function theorem,
under stated conditions, the equation u(x) = K can be solved for one
of the variables near any point in the level set. For example, if u′

xn
6= 0

at that point, then there exists xn = g(x1, x2, ..., xn−1) and g is from
the class C1. Therefore near every point the level set is a graph of a
function with continuous partial derivatives.

Consider a parametric curve in Rn which is a vector function of one
variable x = x(t). The derivative vector x′(t) is tangent to the curve
(it is assumed that the derivative is non-zero and continuous). Suppose
that the curve lies in the level surface u(x) = K. Then the function
F (t) = u(x(t)) = K has a constant value for all t and F ′(t) = 0. On
the other hand using the chain rule

0 = F ′(t) =
∂u

∂x1

dx1

dt
+

∂u

∂x2

dx2

dt
+ · · · + ∂u

∂xn

dxn

dt

= ∇u · x′(t)
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It follows that the gradient at any point of a level set is orthogonal to a
tangent vector to a curve in the level set passing through that point. If
one takes all possible curves through a given point of the level set, then
tangent vectors of the curves at this point would form a tangent plane
to the level set at this point. Thus, a level set of a C1 function with
non-vanishing gradient is a smooth surface and the gradient is normal
to the level surface at any point.

A boundary ∂Ω = Ω̄\Ω of an open set Ω ⊂ Rn is called smooth if it
is a level set of a function g from the class C1(Rn) with non-vanishing
gradient, ∇g 6= 0. The vector

n = |∇g|−1 ∇g

is a unit normal to the boundary ∂Ω. Note that the vector −n is also
a unit normal. For example, a sphere |x| = R is the boundary of an
open ball BR. It is a level set of the C1 function

g(x) = |x|2

The gradient does not vanish

∇g = 2〈x1, x2, ..., xn〉 = 2x 6= 0

on the level set |x|2 = R2 (a sphere on a non-zero radius) so that
|∇g| = 2|x| = 2R on the level set |x|2 = R2. Therefore the unit vector

n =
1

R
x

is a unit normal on the sphere |x| = R.

2.4. An extension of a function. Let Ω be open and u ∈ C0(Ω). Suppose
that for every point y ∈ ∂Ω the limit

lim
x→y

u(x)

exists. Then u is said to be continuously extendable to Ω̄ so that

u(y) = lim
x→y

u(x) , y ∈ Ω̄

The class of all functions continuous functions on Ω that are continu-
ously extendable to Ω̄ is denoted by C0(Ω̄). The class Cp(Ω̄) consists of
all functions from Cp(Ω) whose all partial derivatives have continuous
extensions to Ω̄ so that

Dqu(y) = lim
x→y

Dqu(x) , y ∈ Ω̄ , q = 0, 1, ..., p
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For example, multivariable polynomials on any open set Ω are continu-
ously extendable together with all partial derivatives to the boundary
of Ω. So, polynomials are from the class C∞(Ω̄) for any open Ω.

The function of two variables

g(x, y) =
√

R2 − x2 − y2 , (x, y) ∈ Ω = {(x, y)|x2 + y2 < R2}
is from the class C∞(Ω). It has a continuous extension to the boundary
circle x2 + y2 = R2:

g(x, y) = 0 , x2 + y2 = R2

Therefore g ∈ C0(Ω̄). However, the partial derivatives

g′
x = − x

√

R2 − x2 − y2
, g′

y = − y
√

R2 − x2 − y2

have no extension to the boundary circle and, hence, g /∈ C1(Ω̄).
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3. Partial differential equations (PDEs)

Let u be a function on an open set Ω ⊂ Rn. A partial differential
equation is a relation between the function u, its partial derivatives
Dqu up to some order q ≤ p, and the argument x of u. The highest
order of partial derivatives involved into the relation is called the order
of the partial differential equation:

(3.1) F (x, u, Du, D2u, ..., Dpu) = 0 , x ∈ Ω ⊂ R
n .

It indicates that a function u is not an arbitrary function but such that
it and its partial derivatives satisfy a certain relation F that must hold
for every point x in an open set of interest Ω ⊂ Rn. The integer p is
called the order of the partial differential equation.

3.1. A solution to a PDE. A function u(x) is called a solution to a par-
tial differential equation in an open set Ω if u and its partial derivatives
satisfy the relation (3.1) for all x ∈ Ω.

Example 3.1. Let t > 0 and x ∈ R. Find a constant k such that
the function

u(t, x) = t−1/2e−kx2/t

is a solution of the equation

u′
t = u′′

xx , t > 0 , x ∈ R ,

or show that no such constant exists.

Solution: In this case, Ω = (0,∞) × (−∞,∞) is an open half-plane
in R

2. One has to calculate the partial derivatives u′
t and u′′

xx, substi-
tute them into the equation, and check whether there is a particular
numerical value of k such that the relation between the partial deriva-
tives is fulfilled for all positive t and all real x (the set Ω). The partial
derivatives are

u′
t = −1

2
t−3/2e−kx2/t + kx2t−5/2e−kx2/t

u′
x = −2kxt−3/2e−kx2/t

u′′
xx = −2kt−3/2e−kx2/t + 4k2x2t−5/2e−kx2/t

The substitution of the partial derivatives into the equation yields (after

the cancellation of the positive factor e−kx2/t > 0)

−1

2
t−3/2 + kx2t−5/2 = −2kt−3/2 + 4k2x2t−5/2

The terms t−3/2 and x2t−5/2 are independent and, hence, the equality is
possible for all values of t > 0 and x ∈ R if and only if the coefficients
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at these terms in the left and right side match, which gives a system
of two equations for the unknown k:

{

−1
2

= −2k
k = 4k2 ⇒ k =

1

4

The first equation has the solution k = 1/4, while the second one has
two solutions k = 0 and k = 1/4. The common solution is k = 1/4.
Thus, the indicated function is a solution of the given partial differential
equation only if k = 1/4. �

Example 3.2. If f and g are from the class C2(R), show that

u(t, x) = f(x − ct) + g(x + ct)

is a solution to the wave equation in Ω = R
2:

u′′
tt − c2u′′

xx = 0 .

Solution: By the chain rule

u′
t = −cf ′(x − ct) + cg′(x + ct) ,

u′′
tt = (−c)2f ′′(x − ct) + c2g′′(x + ct)

u′
x = f ′(x− ct) + g′(x + ct) ,

u′′
xx = f ′′(x − ct) + g′′(x + ct) ,

u′′
tt − c2u′′

xx = c2[f ′′(x − ct) + g′′(x + ct)]

−c2[f ′′(x − ct) + g′′(x + ct)]

= 0

for all (t, x) ∈ R2. �

Note that a PDE may have infinitely many solutions. For example,
a solution to the wave equation considered in Example 3.2 contains two
arbitrary functions of a single variables.

3.2. Linear and non-linear PDEs. A partial differential equation is called
linear if the relation F is a linear function in u and its partial deriva-
tives. For example, the equation

u′′
xx + f(x, y)u′

y + g(x, y)u = h(x, y) ,

where f , g, and h are some functions of two variables x and y, is a
linear second order partial differential equation for a function u(x, y)
of two variable. PDEs discussed in Examples 3.1 and 3.2 are linear
equations. The equation

u′′
xx + f(x, y)(u′

y)
2 + g(x, y)u3 = h(x, y)
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is also a second order partial differential equation, but it is not linear
because it contains the square of the partial derivative u′

y and the cube
of the function u.

Non-linear waves. It is not difficult to verify that the first-order equa-
tion

u′
t(t, x) + cu′

x(t, x) = 0

admits solutions that looks like a traveling wave:

u(t, x) = f(x − ct)

where f is a differentiable function of a single variable. Consider the
graph y = f(x − ct) where t has a fixed value. Then with increasing
t the solution u(t, x) can be viewed as the shape y = f(x) traveling
with the rate c to the right (in the direction of increasing x). One can
think of a wave of the shape y = f(x) traveling with the speed c (e.g.
like a wave traveling in a narrow channel; the variable x is the length
counted along the channel from some point).

There are non-linear PDEs that admit solutions as traveling waves.
One of them is the celebrated Korteweg-de Vries equation, or simple
the KdV equation:

u′
t + 6uu′

x + u′′′
xxx = 0

Note the second term is not linear in the function u. It describes waves
in shallow waters (e.g., ocean waves on a shallow shore), and waves is
a shallow channel. The graph of the function u(t, x) defines the shape
of the wave at a time t (x changes along the channel, or along a line
perpendicular to the shore).

The simplest solution can be found in the form of a traveling wave:

u(t, x) = f(s) , s = x− ct

where f should be three times differentiable (f ∈ C3(R)). The KdV
equation can be reduced to the following ordinary differential equation:

f ′′′ − cf ′ + 6ff ′ = 0

and then to the first-order ordinary differential equation for f ,

1

2
(f ′)2 + f3 − c

2
f2 − Af = E

where A and E are some integration constants. Note that the 3rd order
can be reduced to a second order equation by integration. The first-
order equation is obtained by multiplying the second-order equation
by f ′ and integrating it. The technical details are left to the reader as
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an exercise. A particularly simple solution corresponding to a specific
choice of constants A and E in this equation has the form

u(t, x) =
c

2 cosh2[
√

c
2

(x − ct)]

Recall that cosh(s) = 1
2
(es + e−s). It describes a solitary wave propa-

gating with the seed c. The wave maximal height is equal to c
2
. Since c

is a parameter of the solution, it is concluded (by analyzing the graphs
of u(0, x) at different c) that the taller waves move faster and are more
sharply peaked. You might want to check this conclusion on Florida
beaches!

3.3. Superposition principle for linear homogeneous PDEs. Among all
linear equations, consider homogeneous linear PDEs. The function F
in (3.1) is linear in Dqu and, in addition, has the property that the zero
function u(x) = 0 is a solution. For example, the following equation is
linear

u′′
tt(t, x) + c2u′′

xx(t, x) = f(t, x)

but it is not homogeneous because u = 0 is not a solution (f(x, t) 6= 0).
It becomes homogeneous when the inhomogeneity f vanishes. A ho-
mogeneous linear PDE has the form of a vanishing linear combination
of u and its partial derivatives:

p
∑

q=0

aqD
qu = a0u + a1Du + · · · + apD

pu = 0 ,

where aqD
qu denotes a general linear combination of partial derivatives

of order q (with coefficients aq being functions of x). Taking a partial
derivative is a linear operation, meaning that a partial derivative of a
linear combination of functions is a linear combination of the partial
derivatives of the functions. For example,

∂

∂x

(

cau1(x, y) + c2u2(x, y)
)

= c1
∂u1

∂x
+ c2

∂u2

∂x

where c1 and c2 are constants. In general, a partial derivative of any
order is also a linear operation:

Dq(c1u1 + c2u2) = c1D
qu1 + c2D

qu2 ,

For any two solutions, u1 and u2, to a linear homogeneous PDE, their
linear combinations with constant coefficients

u(r) = c1u1(x) + c2u2(x)
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is also a solution. Indeed,

p
∑

q=0

aqD
qu =

p
∑

q=0

aqD
q(c1u1 + c2u2)

=

p
∑

q=0

aq(c1D
qu1 + c2D

qu2)

= c1

p
∑

q=0

aqD
qu1 + c2

p
∑

q=0

aqD
qu2

= 0 + 0 = 0

because u1 and u2 are solutions This is called the superposition principle
for linear PDEs.

In Example 3.2, put u1(t, x) = f(x − ct) and u2(t, x) = g(x + ct).
They are solutions to the homogeneous wave equation and, by the
superposition principle, their sum is also a solution (their general linear
combinations with constant coefficients would also be a solution). So,
a solution can be interpreted as a superposition of two waves traveling
in the opposite directions with the same speed.

3.4. Exercises.

1. Is the function u(x, y) = ln(ex + ey) a solution to the equation

u′′
xxu

′′
yy − (u′′

xy)
2 = 0

in some open region in a plane?

2. If u = u(x, y, z), find the most general solution to each of the
following equations in R3:

u′′
xx = 0

u′′
xy = 0

u(n)
zz···z = 0

u′′′
xyz = 0

u′
x = yu2

3. Let f be a twice continuously differentiable function of a real
variable. Under what conditions on the n−dimensional vector k =
〈k1, k2, ..., kn〉 is the function

u(t,x) = f(ct + k · x) , x ∈ R
n ,
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where k · x = k1x1 + k2x2 + · · · + knxn (the dot product in Rn), a
solution to the n−dimensional wave equation in Rn:

c−2u′′
tt − u′′

x1x1
− u′′

x2x2
− · · · − u′′

xnxn
= 0?

4. Let x = 〈x1, x2, ..., xn〉 ∈ Rn and a · x = a1x1 + a2x2 + · · · + anxn

(the dot product in R
n). Under what conditions on the vector a is the

function u(x) = exp(a · x) a solution to the equation

u′′
x1x1

+ u′′
x2x2

+ · · · + u′′
xnxn

= u , x ∈ R
n

5. Let r = |r| =
√

x2 + y2 + z2. Find a value of the constant k, if any,
such that the function

u(x, y, z) =
sin(kr)

r

is a solution of the (Helmholtz) equation

u′′
xx + u′′

yy + u′′
zz + a2u = 0 , |r| 6= 0

where a > 0 is a given constant. Can the function u be extended
to the origin |r| = 0 so that it becomes a solution in the whole space
R3? Hint: Consider the power series representation of the sine function.

6. Show that the function u(x, y) = ln(x2 + y2) is a solution to the
two-dimensional Laplace equation

u′′
xx + u′′

yy = 0 , (x, y) 6= (0, 0)

7. Let r = |x| = (x2
1 + x2

2 + · · · + x2
n)

1/2 (the distance from the origin
in Rn). Show that the function u(x) = r2−n, n > 2, is a solution to the
n−dimensional Laplace equation

u′′
x1x1

+ u′′
x2x2

+ · · · + u′′
xnxn

= 0 , |x| 6= 0

8. Find the most general solution to the 2D Laplace equation
u′′

xx + u′′
yy = 0 that has the form

u(x, y) = f(s) , s = x2 + y2

where f is a twice continuously differentiable function. Consider two
cases:
(i) A solution is sought in an open region containing the origin;
(ii) A solution is sought in an open region that does not contain the
origin.
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9. Find the most general homogeneous polynomials in two variables of
degree 2 and 3 that are solutions to the 2D Laplace equation, that is,

u(x, y) = P2(x, y) = Ax2 + By2 + Cxy ,

u(x, y) = P3(x, y) = Ax3 + Bx2y + Cxy2 + Dy3

where A, B, C , and D are constants, and u′′
xx + u′′

yy = 0.

10. (i) Show that, if u(t, x) = f(s), where s = x − ct, then the KdV
equation is reduced to

f ′′(s) + 3f2(s) − cf(s) = A

where A is a constant.
(ii) Multiply the above equation by f ′(s) and show that it can be re-
duced to the first order equation

1

2
(f ′)2 + f3 − c

2
f2 − Af = E

where E is a constant.
(iii) Let c > 0. Show that the equation in Part (ii) can written in the
form

1

2
(f ′)2 = −(f − α)(f − β)2 , α > β

and, if β = 0, then α = c
2
. Solve the equation in this case and find the

solitary wave solution given in the text above.

Answers.

1. Yes.
2. In the order of appearance,
u = a(y, z)x + b(y, z);
u = f(x, z) + g(y, z);
u = a0(x, y) + a1(x, y)z + · · · + an−1(x, y)zn−1;
u = f(x, y) + g(y, z) + h(x, z);
u = (C(y, z)− xy)−1.
3. |k| = 1.
4. |a| = 1.
5. k = a and the extension is u(0) = k, the power series representation

u = k
∞

∑

n=0

(−1)n (kr)2n

(2n − 1)!
= k

∞
∑

n=0

(−1)n k2n(x2 + y2 + z2)n

(2n − 1)!

has infinite radius of convergence and, hence, u ∈ C∞(R3).
8. (i) f(s) = A; (ii) f(s) = B ln(s) + A, where A and B are constants.
9. P2 : B = −A; P3 : C = −3A , B = −3D.
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4. The method of separating variables

In contrast to ordinary differential equations, there are no general
methods for solving PDEs. One can only talk about some particular
methods applicable for solving rather limited classes of PDEs. One of
such methods is known as separation of variables.

Let us illustrate its basic idea using PDEs in two variables x and
y. A solution u(x, y) is sought in a special form

u(x, y) = X(x)Y (y)

After the substitution of such a function into the PDE, one can attempt
to reduce the PDE to a system of ordinary differential equations for
the functions X(x) and Y (y). Of course, there is no guarantee that
a solution of this form even exists. Even if solutions of this form do
exist, they may not be all solutions of the PDE.

A multivariable extension of this idea is straightforward. A solution
is sought as the product of single-variable functions:

u(x1, x2, ..., xn) = X1(x1)X2(x2) · · ·Xn(xn)

The main technical task is to reduce the PDE in question to a system
of n ordinary differential equations for the functions Xj , j = 1, 2, ..., n
and solve the system.

4.1. Separation of variables in a 2D heat equation.

Example 4.1. Find all solutions to the PDE in Example 3.1 by the
method of separation of variables.

Solution: Put
u(t, x) = T (t)X(x)

Therefore

u′
t(t, x) = T ′(t)X(x) , u′′

xx(t, x) = T (t)X ′′(x)

and, hence,

T ′(t)X(x) = T (t)X ′′(x) ⇒ T ′(t)

T (t)
=

X ′′(x)

X(x)

which must hold for all t and x in Ω. This is possible only if the
functions in the left and right sides of this equation are constant:

T ′(t)

T (t)
= k ⇒ T ′(t) = kT (t) ⇒ T (t) = Cekt

X ′′(x)

X(x)
= k ⇒ X(x) =







Ax + B , k = 0
A cos(mx) + B sin(mx) , k = −m2 < 0
Aemx + Be−mx , k = m2 > 0
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where m > 0. Let u(x, t; k) be a solution obtainable by separating
variables for a particular value of the separation constant k. Since A,
B, and C are arbitrary constants, the constant C can be included into
A and B in the product X(x)T (t) so that all solutions of this form
read:

u(x, t; 0) = Ax + B ,

u(x, t; m2) =
(

A cos(mx) + B sin(mx)
)

e−m2t ,

u(x, t;−m2) =
(

Aemx + Be−mx
)

em2t

where A, B, and m > 0 are arbitrary constants. �

This example shows that not all solutions of a PDE can be obtained
by separating variables. In particular, the solution in Example 3.1
cannot be represented at the product of two single-variables functions.

4.2. Separation of variables in a 2D wave equation.

Example 4.2. Find all solutions of the wave equation in Example
3.2 by separating variables.

Solution: Let u(x, t) = X(x)T (t). It follows from the wave equation
that

X(x)T ′′(t) − c2X ′′(x)T (t) = 0 ⇒ T ′′(t)

c2T (t)
=

X ′′(x)

X(x)

The left and right sides of this equation must be constants because the
equation holds for any (x, t). Therefore

X ′′(x) = kX(x) , T ′′(t) = c2kT (t)

where k is a constant of separation of variables.
Let u(x, t; k) denote a solution obtainable by separating variables

for a particular value of the separation constant. Then setting k = 0,
k = −m2 < 0, and k = m2 > 0 as before (with m > 0), the solutions
obtainable by separating variables are found:

u(x, t; 0) = (Ax + B)(Ct + D) ,

u(x, t;−m2) =
(

A cos(mx) + sin(mx)
)(

C cos(cmt) + D sin(cmt)
)

,

u(x, t; m2) =
(

Aemx + Be−mt
)(

Cecmt + De−cmt
)

.

where A, B, C , and D are arbitrary constants. �
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Note that the solutions of the wave equation obtained by separating
variables have the form given in Example 3.2. Indeed, if k = 0, then

u(x, t) = (Ax + B)(Ct + D)

= A′
(

(x + ct)2 − (x − ct)2
)

+ B ′(x + ct) + C ′(x − ct) + D′

where A′, B ′, C ′, and D′ can be expressed in terms of A, B, C , and
D. Similarly, using some basic trigonometric identities for products of
the sine and cosine functions and basic properties of the exponential
function, a solution with k 6= 0 can be written in the form

u(x, t) = A′ cos(x + ct) + B ′ sin(x + ct)

+C ′ cos(x− ct) + D′ sin(x − ct)

u(x, t) = A′ex+ct + B ′e−x−ct + C ′ex−ct + D′e−x+ct

The converse is obviously false. There are solutions to the wave equa-
tion that do not coincide with any of the above as was shown in Exam-
ple 3.2. Thus, the method of separation of variables does not produce
all solutions to the 2D wave equation.

4.3. Limitations of the method. It is also noteworthy that the method
does not generally works for non-homogeneous linear PDEs. For exam-
ple, an attempt to separate variables in a non-homogeneous 2D wave
equation

u′′
tt − c2u′′

xx = f(x, t)

fails for a generic inhomogeneity because

T ′′(t)X(x) − c2T (t)X ′′(x) = f(x, t)

T ′′(t)

T (t)
− c2X ′′(x)

X(x)
=

f(x, t)

T (t)X(x)

The separation of variables requires that the ratio in the right-hand
site must be the sum of two single-variable functions

f(x, t)

T (t)X(x)
= h(x) + g(t)

for some h(x) and g(t). This is possible if f(x, t) is either proportional
to T (t) or X(x), or more generally

f(x, t) = h(x)T (t) + g(t)X(x)

for some functions h(x) and g(t). This is not possible in general.
For example, put

f(x, t) = sin(tx) .
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If the above representation of f exists for all t and x, then for two
particular values of x, e.g., x = 1 and x = 2, the functions T (t) and
g(t) must satisfy the linear system

h1T (t) + X1g(t) = sin(t)
h2T (t) + X2g(t) = sin(2t)

where hn = h(n) and Xn = X(n), n = 1, 2, .... The system has a
unique solution if its determinant h1X2 −h2X1 is not equal to zero. In
this case, the functions T (t) and g(t) are linear combinations of sin(t)
and sin(2t). But for x = 3, their linear combination must be equal to
sin(3t):

h3T (t) + X3g(t) = sin(3t)

for all t, which is not possible because the functions sin(t), sin(2t), and
sin(3t) are linearly independent. Thus, the determinant must be equal
to zero.

The argument can be repeated for any three distinct values of x.
Owing to the linear independence of sin(x1t), sin(x2t), and sin(x3t), it
is concluded that for any two x1 and x2

h(x1)X(x2) − h(x2)X(x1) = 0

Since X is not identically zero, the function h(x) must be proportional
to X(x):

h(x) = AX(x)

for some constant A. Repeating the same argument for three values of
t, it is inferred that the function g(t) must be proportional to T (t):

g(t) = BT (t)

for some constant B. Therefore

sin(xt) = CT (t)X(x)

where C = A + B. The above relation must hold for all x and t. Put
t = 1. Then X(x) is proportional to sin(x). Put x = 1. Then T (t) is
proportional to sin(t). Then

sin(tx) = k sin(t) sin(x)

for some constant k and all x and t. The latter cannot be true because
it would mean that sin(2t) is proportional to sin(t) (if x = 2), which is
false.

It should be emphasized that a solution to the equation do exist
and its explicit form will be found later. The analysis shows that the
solution cannot be obtained by the method of separating variables (it
does not have the form u(x, t) = X(x)T (t)).
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4.4. Separation of variables in higher dimensions. If a PDE has more
than two variables, solutions obtained by separating variables may con-
tain more than one separating constants. For example, let us obtain
all solutions of the 3-dimensional Laplace equation:

∆u(x, y, z) = u′′
xx(x, y, z) + u′′

yy(x, y, z) + u′′
zz(x, y, z) = 0

The differential operator ∆ is called the Laplacian. Put

u(x, y, z) = X(x)Y (y)Z(z)

The substitution of this function into the Laplace equation yields

X ′′(x)

X(x)
+

Y ′′(y)

Y (y)
+

Z ′′(z)

Z(z)
= 0

Since each term is a function of an independent variable, their sum can
be equal to zero for all (x, y, z) if and only if each term is constant,
that is,

X ′′(x)

X(x)
= a ,

Y ′′(y)

Y (y)
= b ,

Z ′′(z)

Z(z)
= c , a + b + c = 0

Solutions of these ordinary differential equations are readily obtained
(see Example 4.2). Note that only of the three separation constants are
independent. One can take a and b to be arbitrary, whereas c = −a−b.
The separation constants a, b, and c cannot have the same sign. So,
the analysis can be carried out for the four possible cases of signs of
the independent parameters a and b. For example, if a = −α2 < 0 and
b = −β2 < 0, then c = α2 + β2 = γ2 > 0 and, in this case,

X(x) = A cos(αx) + B sin(αx)

X(x) = C cos(βy) + D sin(βy)

Z(z) = Feγz + He−γz , γ =
√

α2 + β2

The reader is advised to find an explicit form of all such solutions as
an exercise.

4.5. The superposition principle and separation of variables. Suppose a
homogeneous linear PDE admits separation of variables. Then a linear
combination of such solutions with different separation constants is also
a solution to the PDE. This principle allows us to obtain new solutions
by means of separating variables.

Let k stand for a separation constant (or a collection of all sepa-
ration constants) and u(x; k) is a solution to a linear PDE obtained
by separating variables corresponding to a particular value of k. Then
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the most general solution obtainable by separating variables is a linear
combination of such solutions with distinct values of k:

u(x) = c1u(x; k1) + c2u(x; k2) + · · · + cnu(x; kn)

=
n

∑

j=1

cju(x; kj)

where cj, j = 1, 2, ..., n, are arbitrary constants.
For example, the function

u(x, t) = A cos(mx)e−m2t + Ce−pxep2t

is a solution to the heat equation in Example 3.1. As shown in Example
4.1, two terms in this solution are solutions obtained by separating of
variables. The first term corresponds to the case of a negative separa-
tion constant k = −m2 < 0 and the second one to a positive separation
constant k = p2 > 0. Similarly,

u(x, t) =
L

∑

l=1

(

Al cos(mlx) + Bl sin(mlx)
)

e−m2
l
t

is also a solution to the heat equation as a linear combination of so-
lutions corresponding to different negative separation constants k =
−m2

l , l = 1, 2, ..., L.
Similarly, applying the superposition principle to the 2D wave equa-

tion, one infers, for example, that a linear combination

u(x, t) =
L

∑

l=1

clu(x, t;−m2
l )

=

L
∑

l=1

cos(mlct)
(

Al cos(mlx) + Bl sin(mlx)
)

+
L

∑

l=1

sin(mlct)
(

Cl cos(mlx) + Dl sin(mlx)
)

is a solution to the equation, where Al, Bl, Cl, Dl, and ml > 0 are
parameters of this solution.

4.6. Exercises.

1. Find all solutions to the 2D Laplace equation

u′′
xx(x, y) + u′′

yy(x, y) = 0 , u ∈ C2(R2)
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obtainable by separating variables.

2. Find all solutions to the 3D Laplace equation

u′′
xx(x, y, z) + u′′

yy(x, y, z) + u′′
zz(x, y, z) = 0 , u ∈ C2(R3)

obtainable by separating variables.

3. Find all solutions to the 2D Helmholtz equation

u′′
xx(x, y) + u′′

yy(x, y) + a2u(x, y) = 0 , u ∈ C2(R2)

obtainable by separating variables.

4. Find all solutions to the wave equation

u′′
tt − c2(u′′

xx(t, x, y) + u′′
yy(t, x, y)) = 0 , u ∈ C2(R3)

obtainable by separating variables that cannot grow unboundedly with
increasing or decreasing time t, that is, if u(t, x, y) = T (t)v(x, y), then

|T (t)| ≤ M , t ∈ R

5. Find all solutions to the first-order PDE

u′
x − cu′

y + xu = 0

obtainable by separating variables.

6. Find all solutions to the telegraph equation

u′′
tt + 2γu′

t − c2u′′
xx = 0 , t > 0 , x ∈ R

where γ > 0 that are bounded in time t > 0, that is, u(t, x) = T (t)X(x)
and |T (t)| ≤ M for all t > 0. The telegraph equation describes prop-
agation of electrical signals in a power line, where the parameter γ
models Ohmic losses.

Selected answers.

1. u(x, y) = (Ax + B)(Cy + D);
u(x, y) = (A cos(mx) + B sin(mx))(Cemy + De−my);
u(x, y) = (A cos(my) + B sin(my))(Cemx + De−mx)
and any linear combinations of the above solutions with different values
of the parameters.
3. If u(x, y) = X(x)Y (y), then the following cases are possible
X(x) = Ax + B, Y (y) = C cos(ay) + D sin(ay);
X(x) = Aemx + Be−mx, Y (y) = C cos(γy) + D sin(γy), γ =

√
m2 + a2;

X(x) = A cos(mx) + B sin(mx), Y (y) = Ceγy + De−γy ,
γ =

√
m2 − a2, m > a;



30 1. PRELIMINARIES

X(x) = A cos(mx) + B sin(mx), Y (y) = C cos(γy) + D sin(γy),
γ =

√
a2 − m2, a > m > 0;

u(x, y) = X(y)Y (x) for any of the above pairs of functions X and Y ;
any linear combinations of the above solutions with different values of
the parameters.
4. (A cos(act) + B sin(act))v(x, y) where v(x, y) is any solution from
Problem 3.
5. u(x, y) = Ae−x2/2ek(y+cx)
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5. The method of changing variables

5.1. Curvilinear coordinates. Consider a transformation of a region Ω ⊂
R

2 to a new region Ω′ ⊂ R
2

T : Ω → Ω′

defined by equations

ξ = ξ(x, y) , η = η(x, y) , (x, y) ∈ Ω

where the functions ξ(x, y) and η(x, y) are from the class C1(Ω). If the
Jacobian of this transformation

J(x, y) =
∂ξ

∂x

∂η

∂y
− ∂ξ

∂y

∂η

∂x
6= 0 , (x, y) ∈ Ω

does not vanish in an open region Ω, then the transformation is called
a change of variables and (ξ, η) are called new coordinates in Ω. One
can show that the transformation that defines a change of variables is
one-to-one. In other words, one can find the inverse transformation,
x = x(ξ, η), y = y(ξ, η). The latter functions of ξ and η are such that

x
(

ξ(x, y), η(x, y)
)

= x , y
(

ξ(x, y), η(x, y)
)

= y

for all (x, y) ∈ Ω. If the transformations is not linear, the the new
coordinates are also called curvilinear.

Coordinate grid. Point sets in Ω on which the new coordinates take a
constant value are smooth curves:

ξ(x, y) = ξ0 , η(x, y) = η0

Indeed, they are level sets of functions that have continuous partial
derivatives and whose gradient does not vanish in Ω because J 6= 0.
By the properties of the gradient (recall Multivariable Calculus), the
level sets of such functions are smooth curves and the gradients ∇ξ
and ∇η are perpendicular to the corresponding level curves. They
are called coordinate curves. At any point in Ω, the gradients are not
parallel because the Jacobian is not zero (note that J = 0 implies that
the vectors ∇ξ and ∇η are proportional and, hence, parallel). Thus,
each point of Ω is a point of intersection of two coordinate curves. The
coordinate curves form a coordinate grid in Ω, just like vertical and
horizontal lines form the coordinate grid of rectangular coordinates in
a plane.
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Any PDE can be restated in the new variables using the chain rule
for partial derivatives:

∂

∂x
=

∂ξ

∂x

∂

∂ξ
+

∂η

∂x

∂

∂η
,

∂

∂y
=

∂ξ

∂y

∂

∂ξ
+

∂η

∂y

∂

∂η

Higher order derivatives are obtained by repetitive application of these
rules. It can happen that with a suitable choice of new (curvilinear)
coordinates, a PDE in question is reduced to a simpler equation that
can be solved. The idea is illustrated below with the example of a 2D
wave equation from Example 3.2. It is also possible to seek a solution
of a PDE by separating variables in the new curvilinear coordinates:

u(x, y) = Φ(ξ)Θ(η)

This concept is illustrated below by separating variables in the 2D
Laplace equation in polar coordinates.

It is also worth noting that the concept of solving a PDE in new
curvilinear coordinates can be extended to any number of variables.
For example, spherical or cylindrical coordinates can be used to solve
PDEs in R3 (e.g., by separating variables in these coordinates). This
will be studied later.

5.2. General solution to the 2D wave equation. Let us define new vari-
ables via a linear transformation:

x+ = x + ct , x− = x − ct

so that by the chain rule

∂

∂x
=

∂x+

∂x

∂

∂x+
+

∂x−

∂x

∂

∂x−
=

∂

∂x+
+

∂

∂x−

∂

∂t
=

∂x+

∂t

∂

∂x+
+

∂x−

∂t

∂

∂x−
= c

∂

∂x+
− c

∂

∂x−

Hence, the second partial derivatives have the form

∂2

∂x2
=

(

∂

∂x+
+

∂

∂x−

)2

=
∂2

∂x2
+

+ 2
∂2

∂x+∂x−
+

∂2

∂x2
−

∂2

∂t2
=

(

c
∂

∂x+
− c

∂

∂x−

)2

= c2 ∂2

∂x2
+

− 2c2 ∂2

∂x+∂x−
+ c2 ∂2

∂x2
−

Therefore the wave equation in the new variables assumes the form

∂2u

∂t2
− c2∂2u

∂x2
= −4c2 ∂2u

∂x+∂x−
= 0
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The latter equation is not difficult to solve. Indeed,

∂2u

∂x+∂x−
=

∂

∂x+

(

∂u

∂x−

)

= 0 ⇒ ∂u

∂x−
= h(x−)

for some single-variable function h. Therefore

u(x, t) =

∫

h(x−)dx− + f(x+) = g(x−) + f(x+)

= g(x − ct) + f(x + ct)(5.1)

where g is an antiderivative of h.
It is noteworthy that this method allows us to find the general

solution to a 2D homogeneous wave equation. In other words, it was
proved that any solution to a 2D homogeneous wave equation can be
written in the form (5.1) with a suitable choice of f and g. Of course,
the functions f and g must be twice differentiable in order for the
equation to make sense for any pair (x, t).

Remark. One might wonder how to come up with new variables that
would allow one to integrate a PDE? The studied 2D wave equation
is a particular case of the so-called hyperbolic equations. A suitable
change of variables to integrate a 2D hyperbolic equation can be found
by the method of characteristics. This method and a classification of
PDEs will be discussed below in detail.

5.3. Separating variables in polar coordinates. Polar coordinates in a
plane are defined by the transformation:

x = r cos(ϕ) , y = r sin(ϕ)

Any function u(x, y) becomes periodic in the polar angle ϕ:

u(x, y) = u(r cos(ϕ), r sin(ϕ)) = U(r, ϕ) = U(r, ϕ + 2π) .

A solution to a PDE in an open set of a plane can be sought in the
form

u(x, y) = R(r)Φ(ϕ) , Φ(ϕ + 2π) = Φ(ϕ)

The procedure is called a separation of variables in polar coordinates.
The idea can obviously be extended to other coordinates in a plane or
in any Euclidean space.
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All partial derivatives in a PDE should be expressed in the new
variables by means of the chain rule. For example, in polar coordinates

∂

∂x
=

∂r

∂x

∂

∂r
+

∂ϕ

∂x

∂

∂ϕ
= cos(ϕ)

∂

∂r
− sin(ϕ)

r

∂

∂ϕ

∂

∂y
=

∂r

∂y

∂

∂r
+

∂ϕ

∂y

∂

∂ϕ
= sin(ϕ)

∂

∂r
+

cos(ϕ)

r

∂

∂ϕ

where

r =
√

x2 + y2 ⇒ ∂r

∂x
=

x
√

x2 + y2
= cos(ϕ)

⇒ ∂r

∂y
=

y
√

x2 + y2
= sin(ϕ)

ϕ = arctan
(y

x

)

⇒ ∂ϕ

∂x
= − y

x2 + y2
= −sin(ϕ)

r

⇒ ∂ϕ

∂y
=

x

x2 + y2
=

cos(ϕ)

r

In particular, the Laplace equation in two variables assumes the fol-
lowing form in polar coordinates

∂2u

∂2x
+

∂2u

∂2y
=

1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2

∂2u

∂2ϕ
= 0 , r > 0 .

Note that the equation does not make sense for r = 0. The point
with r = 0 is the origin (x, y) = (0, 0). Recall that the Jacobian of
polar coordinates is equal to r. So, the singular point r = 0 in the
Laplace operator is associated with the zero of the Jacobian. So, the
transformation makes sense in any open region of the plane that does
not include the origin.

This is not a coincidence, but rather a common feature for any
curvilinear coordinates whose Jacobian vanishes at some points. In
other words, partial derivatives are generally singular at the points
where the Jacobian vanishes and a PDE has no meaning at these points.
Solutions can be found only in regions that do not contain the singular
points. Then one should investigate if the obtained solution can be
extended to singular points by taking the limits of the solution at the
singular points. If the latter is true, then the obtained solution can be
expressed in the original (rectangular) variables and it would be from
the required smoothness class.

If the 2D Laplace equation is to be solved in any open set Ω that
contains the origin, then in polar coordinates, a solution is sought first
in an open set Ω′ = Ω \ {(0, 0)} where the origin is excluded, meaning
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that r > 0. After solving the equation, one has to investigate which of
the found solutions have suitable extensions to the origin. For example,
if one seeks solutions to the Laplace equation, then any such solution
must be from the class C2(Ω). Clearly, not every function from the
class C2(Ω′) would have a continuous extension to the origin together
with its partial derivatives up to order 2. The procedure is illustrated
by the following example.

Example 5.1. Find all solutions to the Laplace equation in an open
set Ω of a plane by separating variables in polar coordinates. Discuss
the cases when Ω includes the origin and when Ω does not contain the
origin.

Solution: A solution is sought in the form u(x, y) = R(r)Φ(ϕ):

1

r

(

rR′(r)
)′

Φ(ϕ) +
1

r2
R(r)Φ′′(ϕ) = 0 , r > 0

Multiplying this equation by r2 and dividing by Φ, one infers that

r(rR′(r))′

R(r)
+

Φ′′(ϕ)

Φ(ϕ)
= 0

The two terms in the left side of this equation must be constant because
they are function of different variables:

r(rR′(r))′

R(r)
= k ,

Φ′′(ϕ)

Φ(ϕ)
= −k

where k is the separation constant. The general form of Φ is easy to
find:

Φ(ϕ) =







A cos(mϕ) + B sin(mϕ) , k = m2 , m > 0 ,
Aemϕ + Be−mϕ , k = −m2 , m > 0
A + Bϕ , k = 0

Not all solutions are periodic, Φ(ϕ + 2π) = Φ(ϕ). If k = m2 > 0, then
m must be an integer. In this case, it is sufficient to take only positive
integers, m = 1, 2, ..., because A and B are arbitrary constants and no
new (linearly independent) solutions correspond to negative integers,
m = −1,−2, .... If k = −m2 < 0, then the periodicity condition cannot
be satisfied for any real m. If k = 0, then one has to set B = 0 to
obtain a periodic solution (any constant function is periodic).

Thus, it follows from the periodicity Φ(ϕ + 2π) = Φ(ϕ) that

Φ(ϕ) = A cos(mϕ) + B sin(mϕ) , k = m2 , m = 0, 1, 2, ... ,
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The equation for the function R(r) reads

r(rR′)′

R
= m2 ⇒ r2R′′ + rR′ − m2R = 0 , r > 0

This is an equidimensional equation. Its solutions are sought is the form
R = rα. Taking the derivatives of the power function, the characteristic
equation for α is found:

α(α − 1) + α − m2 = 0 ⇒ α2 − m2 = 0

It has two distinct real roots α = ±m if m 6= 0 and the real root α = 0
of multiplicity 2 if m = 0. According to the theory of equidimensional
equations, this means that a general solution has the form

R(r) =

{

Crm + Dr−m , m = 1, 2, ...
C + D ln(r) , m = 0

where C and D are arbitrary constants. Since the Laplace equation
is linear, its most general solution that is obtainable by separating
variables in polar coordinates is a linear combination of solutions

um(x, y) =
(

A cos(mϕ) + B sin(mϕ)
)(

Crm + Dr−m
)

u0(x, y) = A
(

C + D ln(r)
)

,

where A, B, C , and D are arbitrary constants.
The Laplace equation is linear and homogeneous. Therefore by

the superposition principle, a general solution obtainable by separat-
ing variables in polar coordinates is a linear combination of the above
solutions:

u(x, y) = A0 +
M

∑

m=1

(

Am cos(mϕ) + Bm sin(mϕ)
)

rm

+C0 ln(r) +
M

∑

m=1

(

Cm cos(mϕ) + Dm sin(mϕ)
)

r−m ,

where Am, Bm, Cm, and Dm are arbitrary constants.

The origin excluded. It is important to observe that the limit of u as
r → 0+ does not exist if the coefficients Cm and Dm are not equal to
zero because ln(r) and r−m become infinite in this limit. Therefore
the solution has no continuous extension to the origin r = 0, unless
Cm = Dm = 0 for all m, and can only be used in any open set Ω which
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does not contain the origin (x, y) = (0, 0). In this case, the function
u(x, y) has continuous partial derivatives of any order in Ω:

(0, 0) /∈ Ω ⇒ u ∈ C∞(Ω) ⊂ C2(Ω)

The origin included. If the origin belongs to Ω, then in order for u(x, y)
to have a continuous extension to the origin and, hence, to be continu-
ous on Ω, it is necessary and sufficient that Cm = Dm = 0 for all m. In
this case, the function u(x, y) also have continuous partial derivatives
of any order in Ω:

u(x, y) = A0 +
M

∑

m=1

(

Am cos(mϕ) + Bm sin(mϕ)
)

rm , (0, 0) ∈ Ω .

�

It is worth noting that the solution found in the above example for
an open set that includes the origin are polynomials in x and y. They
are known as harmonic polynomials in two variables. This can be seen
by means of trigonometric identities. For example,

sin(2ϕ)r2 = 2 sin(ϕ) cos(ϕ)r2 = 2xy

cos(3ϕ)r3 =
(

cos3(ϕ) − 3 sin2(ϕ) cos(ϕ)
)

r3 = x3 − 3xy2

and similarly for any terms cos(mϕ)rm and sin(mϕ)rm. The corre-
sponding trigonometric identities can be deduced by means of the Euler
formula

eiϕ = cos(ϕ) + i sin(ϕ)

and binomial expansion:

cos(mϕ) = Re eimϕ = Re
(

cos(ϕ) + i sin(ϕ)
)m

,

sin(mϕ) = Im eimϕ = Im
(

cos(ϕ) + i sin(ϕ)
)m

,

Harmonic functions. Any function that satisfies the Laplace equation
in a region Ω is also called a harmonic function in Ω. In particular, the
found polynomials are harmonic functions in the whole plane R2. If Cm

and Dm are not equal to zero, then the found solution is a harmonic
function in any open region that does not contain the origin. Harmonic
functions will be studied later in detail.

5.4. Exercises.

1. (i) Use a linear change of variables to solve the equation

au′
x(x, y) + bu′

y(x, y) = 0
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(ii) Separate variables in the equation and find the most general solution
obtainable by this method. Compare the solution with the solution
from Part (i). Are they the same?
Hint: find a suitable linear transformation

ξ = α1x + α2y , η = β1x + β2y

where α1,2 and β1,2 are parameters, such that the equation is reduced
to u′

ξ = 0. Recall that a linear transformation is change of variables if
its Jacobian does not vanish.

2. Use the method of changing variables to find the general solution
to the equation

u′
x(x, y) + 3u′

y(x, y) = (x + y)p−1 , p > 1 , Ω : x + y > 0

Can this equation be solved by separating variables x and y? Support
your answer by reasonings.
Hint: Use the hint for the previous problem.

3. Find the general solution to the 2D Laplace equation in the comple-
ment Ω of the disk of radius a centered at the origin, Ω : x2 + y2 > a2,
that is obtainable by separating variables in polar coordinates and
(i) that is bounded in Ω, that is, |u(x, y)| ≤ M for some constant M
and all (x, y) ∈ Ω;
(ii) that vanishes at infinity, that is u → 0 as (x, y) → ∞.

4. Find the general solution to the 2D Laplace equation in the comple-
ment Ω of the disk of radius a centered at the origin, Ω : x2 + y2 > a2,
that is obtainable by separating variables in polar coordinates and
(i) whose gradient is bounded in Ω, that is, |∇u(x, y)| ≤ M for some
constant M and all (x, y) ∈ Ω.
(ii) whose gradient vanishes at infinity, that is |∇u| → 0 as (x, y) → ∞.
Hint: Use the relation between partial derivatives to show that the
squared length of the gradient vector has the following form in polar
coordinates:

|∇u|2 = (u′
x)

2 + (u′
y)

2 = (u′
r)

2 +
(u′

ϕ)2

r2

Conclude that the gradient is bounded if and only if u′
r and u′

ϕ/r are
bounded in Ω. Use the explicit form of the general solution to calculate
the derivatives and analyze conditions under which they are bounded.

5. Use the change of variables η = x + y, γ = x − y, to find a general
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solution to the following first-order PDE:

∂u

∂x
+

∂u

∂y
= (x − y)u2

Answers.

1. u(x, y) = f(s), where s = bx− ay and f is a differentiable function.
2. u(x, y) = (x + y)p/(4p) + f(s), where s = 3x − y and f is a
differentiable function. If p is not an integer, then the solution cannot
be written in the form X(x)Y (y) or as a linear combinations of such
products.
3. (i)

u(x, y) = A0 +

M
∑

m=1

(

Cm cos(mϕ) + Dm sin(mϕ)
)

r−m ,

where A0, Cm, and Dm are arbitrary constants.
(ii) A0 = 0 in the above solution.
4. (i)

u(x, y) = A0 + r
(

A1 cos(ϕ) + B1 sin(ϕ)
)

+ C0 ln(r)

+
M

∑

m=1

(

Cm cos(mϕ) + Dm sin(mϕ)
)

r−m ,

where A0,1, B1, Cm, and Dm are arbitrary constants.
(ii) A1 = B1 = 0 in the above solution.
5. u(x, y) = f(x − y) + 1

2
(y2 − x2) where f is any continuously differ-

entiable function of one real variable.
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6. Complex-valued solutions to linear PDEs

6.1. Functions of complex variables. Any point of a plane can be views
as an ordered pair of real numbers (x, y) ∈ R

2. The elements of R
2

can be added and multiplied by a real number. Note that elements
of a Euclidean space cannot be multiplied so that the product of two
elements is an element of the Euclidean space and the multiplication
is associative and commutative just as for real numbers. It turns out,
an associative and commutative multiplication exists only in R2 and
does not exist in higher dimensional Euclidean spaces. If in addition to
addition of elements of R2, a (commutative and associative) multipli-
cation is defined, then the space is called a complex plane. With every
(x, y) ∈ R2, one can associated a complex number z = x + iy where the
symbol i is postulated to have the following algebraic property i2 = −1
relative to multiplication. The numbers x = Re z and y = Im z are
called the real and imaginary parts of the complex number z = x + iy.
Two complex numbers are added according to the usual vector rule

z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)

that is, by adding the corresponding components or real and imaginary
parts. Two complex numbers are said to be equal z1 = z2 if x1 = x2

and y1 = y2 (the corresponding components of two vectors are equal),
that is, their real and imaginary parts are equal. The product of two
complex numbers is defined by the rule

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1)

One can check that it is commutative, z1z2 = z2z1 and associative
(z1z2)z3 = z1(z2z3). If uses the ordinary rules of algebra for real num-
bers with an additional agreement that i2 = −1, then the right side of
the above equation follows from its left side. If Im z1 = y1 = 0, or z1 is
real, then the above rule coincides with the rule of multiplication of a
2D vector (x2, y2) by a real number x1.

The complex number z̄ = x − iy is called the complex conjugate of
z. The magnitude of z is

|z| = |z̄| =
√

x2 + y2 =
√

zz̄ ≥ 0

and |z| = 0 if and only if z = 0. A complex number z−1 or 1
z

is called
a reciprocal of z if z−1z = 1. It is not difficult to verify that

z−1 =
z̄

|z|2 =
x

x2 + y2
− i

y

x2 + y2
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Division of a complex number by a non-zero complex number is defined
by

z1

z2
= z−1

2 z1 =
z̄1z2

|z1|2
A complex plane is denoted by C. Since there is a one-to-one corre-

spondence between points of R2 and complex numbers, one says that a
plane is spanned by a complex variable z (this is indicated as R2 ∼ C).
Note that the magnitude |z| is nothing by the distance of the point
(x, y) ∈ R2 from the origin, and |z1 − z2| is the distance between two
points (x1, y1) and (x2, y2) in R2. A complex variable z is said to ap-
proach z0, or z → z0, if the distance |z − z0| → 0. The condition
|z − z0| < δ defines an open disk or radius δ centered at z0. So, open
and closed sets in a complex plane are defined in the same way as in R2.
Any collection of complex numbers Ω ⊂ C can always be interpreted
as a collection of two dimensional vectors in R

2. In what follows no
difference between sets of C and R2 will be made. One any set Ω ⊂ C

one can defined a function:

f : Ω ⊂ C → C

which is a rule that assigns a unique number f(z) to every complex
number z ∈ Ω. For example, the rule f(z) = zn, where n is an integer,
defines a power function on the whole C if n ≥ 0, while for n < 0, the
power function is not defined at z = 0 (the origin). One can define a
function of two or more complex variables, e.g., f(z, ξ) as a rule that
assign a unique complex number to any pair of complex numbers z and
ξ.

Let z = x + iy. Then the complex number f(z) also has real and
imaginary parts that depend on two real variables (x, y):

f(z) = u(x, y) + iv(x, y)

The function f(z) has a limit at z = z0 = a + ib if the functions u and
v have the limits as (x, y) → (a, b). The function f(z) is continuous at
z0 if

lim
z→z0

f(z) = f(z0) .

One says that f ∈ C0(Ω), Ω ⊂ C, if f is continuous at every point of
Ω. The derivative at a point z0 ∈ C is defined in the same way as for
functions of real variable:

f ′(z0) = lim
z→z0

f(z) − f(z0)

z − z0
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provided the limit exists. In particular, the derivative of a power func-
tion reads

(zn)′ = nzn−1

for any z in its domain.

Functions defined by power series. A sequence of complex numbers zn,
n = 1, 2, ..., is said to converge to a complex number z if

lim
n→∞

|zn − z| = 0

and in this case one write limn→∞ zn = z or zn → z as n → ∞.
A sequence of functions fn(z), n = 1, 2, ...., is said to converge to a
function f(z) pointwise on Ω ⊂ C if

lim
n→∞

fn(z) = f(z)

for every z ∈ Ω. In particular, one can prove that the power series

f(z) =
∞

∑

k=0

ckz
k = lim

n→∞

n
∑

k=0

ckz
k

where ck are complex numbers, converges for every point in the disk

|z| < R , R =
1

α
, α = lim

n→∞

n
√

|cn|

provided the limit exists. The number R is called the radius of con-
vergence of the power series. If α = 0, then R = ∞, which means that
the power series converges for all complex z. If α = ∞, then R = 0,
which means that the power series converges only for z = 0.

A function f is called analytic in an open region Ω ⊂ C if f(z) near
any point z0 ∈ Ω its values are given by a power series with a non-zero
convergence radius:

f(z) =
∞

∑

k=0

ck(z − z0)
k , |z − z0| < δ

for some δ > 0. Let f(x) be represented by a power series in real
variable x:

f(x) =
∞

∑

k=0

ckx
k
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which converges in an interval −R < x < R (R can also be infinite).
For example,

ex =
∞

∑

k=0

xk

k!
, −∞ < x < ∞

sin(x) =
∞

∑

k=1

(−1)k+1x2k−1

(2k − 1)!
, −∞ < x < ∞

cos(x) =
∞

∑

k=0

(−1)kx2k

(2k)!
, −∞ < x < ∞

1

1 − x
=

∞
∑

k=0

xk , −1 < x < 1

It turns out that any such function can be extended to a complex plane
by the same power series:

f(z) =

∞
∑

k=0

ckz
k , |z| < R

In other words, the series is proved to converge for any z in the disk of
radius R in the complex plane. Recall that any function of a real vari-
able represented by a power series is from the class C∞ in the interval
(−R, R) and its derivatives also have power series representations that
are obtained term-by-term differentiation of the power series:

f ′(x) =

∞
∑

k=1

kckx
k−1 , −R < x < R

and these power series have the same radius of convergence. The Taylor
theorem asserts that

ck =
f (k)(0)

k!
This relation can readily be established by setting x = 0 in power
series representations for the derivatives f (k)(x). For example f(0) =
c0, f ′(0) = c1, f ′′(0) = 2c2, etc. It follows from the power series
representation of the derivatives of f that a complex continuation of f
to the disk |z| < R is a differentiable function in the disk and

f ′(z) =
∞

∑

k=1

kckz
k−1 , |z| < R

In fact, f ∈ C∞.
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Holomorphic functions. In complex analysis, a function of a complex
variable that is differentiable at every point of its domain is called holo-
morphic. In particular, any analytic function is holomorphic because a
function represented by a power series is differentiable. In the theory
of functions of complex variables, the converse is proved: holomorphic
functions are analytic. So, a differentiable function of a complex vari-
able is differentiable infinitely many times.

The exponential and trigonometric functions can be extended to
the whole complex plane using their power series. The extensions are
differentiable and

(

ez
)′

= ez ,
(

cos(z)
)′

= − sin(z) ,
(

sin(z)
)′

= cos(z) .

that is, they are holomorphic in the whole complex plane C. The
extensions have the same algebraic properties. For example,

ez1ez2 = ez1+z2 , sin(2z) = 2 sin(z) cos(z) , etc.

In particular, it follows from i2k = (−1)k and i2k+1 = (−1)ki and
the power series representation of the exponential and trigonometric
functions that

eiϕ = cos(ϕ) + i sin(ϕ) , ϕ ∈ R

This relation is known as the Euler formula. By taking the complex
conjugation of the Euler equation one infers that

e−iϕ = cos(ϕ) − i sin(ϕ)

and hence

cos(ϕ) =
eiϕ + e−iϕ

2
, sin(ϕ) =

eiϕ − e−iϕ

2i
,

Using the power series representations for the exponential and trigono-
metric functions the latter relations can be extended to any complex
number z:

cos(z) =
eiz + e−iz

2
, sin(z) =

eiz − e−iz

2i
, z ∈ C

If x = r cos(ϕ) and y = r sin(ϕ), the polar coordinates in a plane, then

z = x + iy = r
(

cos(ϕ) + i sin(ϕ)
)

= reiϕ , r = |z|

The angle ϕ is called a phase of a complex number z. This represen-
tation of complex numbers is used to define any power of a complex
number z:

zp =
(

reiϕ
)p

= rpeipϕ .
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In particular, the real or imaginary part of any polynomial in a complex
variable z = x + iy = riϕ has a general form in polar coordinates

Pn(x, y) = A0 +
n

∑

m=1

rm
(

Am cos(mϕ) + Bm sin(mϕ)
)

Indeed, for any monomial Czm = Crmeimϕ and, hence, if C = A− iB,

ReCzm = Re (A − iB)rm
(

cos(mϕ) + i sin(mϕ)
)

= rm
(

A cos(mϕ) + B sin(mϕ)
)

and similarly for the imaginary part. On the other hand,

Re C(x + iy)m

is a polynomial in two real variables, x and y. For example

Re (A − iB)(x + iy)2 = Re (A − iB)(x2 − y2 + 2ixy)

= A(x2 − y2) + 2Bxy

These polynomials satisfy the Laplace equation. It was shown that
such solutions to the Laplace equation can be obtained by separating
variables in polar coordinates. Therefore the real or imaginary parts
of any polynomial in a complex variable is a harmonic polynomial in a
plane. Their properties are discussed in detail below.

6.2. Complex-valued functions on Rn. A rule that assigns a unique com-
plex number to any point of a Euclidean space is called a complex-valued
function of several variables. If x ∈ Rn, then f(x) ∈ C is the value of
the function f at x. For example, let k = (a, b, c) ∈ R3 be a constant
vector in space, then put x = (x, y, z) ∈ R3 and

u(x, y, z) = ei(k·x) = ei(ax+by+cz)

The above rule assigns a unique complex number to each ordered triple
of real numbers (x, y, z) and, hence, u is a complex-valued function of
three real variables. Any complex-valued functions is uniquely defined
by two real-valued functions that are its real and imaginary parts:

f(x) = v(x) + iw(x) , v(x) = Re f(x) , w(x) = Im f(x)

For example, by the Euler formula

ei(ax+by+cz) = cos(ax + by + cz) + i sin(ax + by + cz)

Partial derivatives of complex-valued functions are defined by the rule

Df(x) = Dv(x) + iDw(x)
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For example,

∂

∂x
ei(ax+by+cz) = −a sin(ax + by + cz) + ia cos(ax + by + cz)

= iaei(ax+by+cz)

6.3. Complex-valued solutions to PDEs. A complex-valued function u
on an open Ω ⊂ Rn is called a solution to a PDE

F (x, u, Du, D2u, ..., Dpu) = 0 , x ∈ Ω

if the above relation holds for any x. Note that in order for the equation
to make sense, the function F must be defined as a function of several
complex variables Dqu, q = 0, 1, ..., p. The latter is always true for
linear PDEs:

Lu = Dpu + ap−1D
p−1u + · · · + a1Du + a0u = f

where the coefficients aq and f can be real- or complex-valued functions
of x. The linear equation is called homogeneous if f = 0 and non-
homogeneous otherwise.

Suppose that the coefficients aq, q = 0, 1, ..., p − 1, are real and
f = 0. Then the real and imaginary parts of any complex-valued
solution u(x) are also real-valued solutions of this PDE. This follows
from the rule of differentiation of a complex-valued functions

Dqu = Dq(v + iw) = Dqv + iDqw

Since the coefficients in the differential operator L are real,

Lu = 0 ⇔ Lv + iLw = 0 ⇔
{

Lv = 0
Lw = 0

because a complex number is zero if and only if its real and imaginary
parts vanish. For example, the real and imaginary parts of the mono-
mial zm = (x + iy)m = v(x, y) + iw(x, y) are solutions to the Laplace
equation: ∆v(x, y) = 0 and ∆w(x, y) = 0, where L = ∆ is the Laplace
operator.

Example 6.1. (Plane waves)
Find a condition on a vector k = (kx, ky, kz) ∈ R3 and a constant ω
under which the function

u(t, x, y, z) = ei(ωt−k·x) ,

where x = (x, y, z) is a solution to the wave equation in four-dimensional
spacetime

u′′
tt − c2(u′′

xx + u′′
yy + u′′

zz) = 0 ,

where c is a real constant. Find the corresponding real-valued solutions.
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Solution: By taking the partial derivatives

u′′
tt = (iω)2ei(ωt−k·x) = −ω2u

u′′
xx = (−ikx)

2ei(ωt−k·x) = −k2
xu

u′′
yy = (−iky)

2ei(ωt−k·x) = −k2
yu

u′′
zz = (−ikz)

2ei(ωt−k·x) = −k2
zu

Therefore

u′′
tt − c2(u′′

xx + u′′
yy + u′′

zz) =
(

− ω2 + c2(k2
x + k2

y + k2
z)

)

u = 0

The latter must hold for any (t, x, y, z). Since u(t, x, y, z) 6= 0, this
implies that u is a solution if

ω2 = c2(k2
x + k2

y + k2
z) or ω = ±c|k|

The corresponding real valued solutions are

Re u = cos(ωt− k · x)

Imu = sin(ωt − k · x)

as one infers from the Euler equation. Since the wave equation is linear,
a linear combination of these solution is also a real solution

v = A cos(ωt − k · x) + B sin(ωt − k · x)

by the superposition principle. Put A = C cos(ϕ) and B = C sin(ϕ),
where C = (A2 + B2)1/2. Then the solution can also be written in the
form

v(t,x) = C cos(ωt − k · x − ϕ)

where C and ϕ are arbitrary constants. �

Plane waves. The above solution to the 4D wave equation is called
a plane wave. Note that the amplitude of the wave has a constant
value v = C cos(ϕ) in a plane k · x = ωt for each given moment of
time t. The plane is perpendicular to the vector k. With increasing
time t, the plane moves in the direction of k if ω = c|k| or in the
direction opposite to k if ω = −c|k| with the rate ω/|k| = c. Recall
that the distance between two parallel planes k · x = d1 and k · x = d2

is |d1 − d2|/|k| = c|t1 − t2| because d1,2 = ωt1,2. For this reason, the
constant c is called the wave speed (it can be a speed of sound or speed of
light, depending on the physical nature of the function u). The vector
k is called the wave vector. It determines the direction in which the
plane wave propagates. Its magnitude determines the wave frequency
ω = c|k|. A relation between the wave vector and frequency is called
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the wave dispersion relation. The constant ϕ in the plane wave solution
is often called a phase of the wave.

If v(t,x) describes a plane sound wave, then it gives a deviation
of the pressure from the background (atmospheric) pressure. Suppose
one measures the pressure at a particular point x in space. Then the
observed signal v = C cos(ωt +ϕ′), where the phase ϕ′ depends on the
point of observation, is periodic in time with the period

T =
2π

ω
=

2π

c|k|
This is why the constant ω is called the frequency. For each partic-
ular moment of time t, the spatial variations of the pressure are also
periodic. Indeed, consider any line parallel to the wave vector. If s
is the distance along the line counted from a particular point, then
the position vector of any point of the line relative to the particu-
lar point is x = sk̂ where k̂ is the unit vector parallel to k so that
k · x = |k||x| = sk| Then the pressure along the line at a give moment
of time is v = C cos(s|k + ϕ′′) where the phase ϕ′′ depends on time.
So, the observed spatial distribution of the signal is periodic with the
period

λ =
2π

|k|
The parameter λ is called the wave length. Thus, the frequency deter-
mines periodicity in time, whereas the wave length determines period-
icity in space. The frequency and wave length are not independent and
related by the wave dispersion relation:

λ = cT =
2πc

ω

that is, the wave length is the distance a plane wave travels in one
period of its temporal oscillations.

6.4. Harmonic functions in a plane. It turns out that the relation be-
tween polynomials of a complex variable and harmonic polynomials is a
consequence of a more general relation between holomorphic functions
and harmonic functions of two variables.

Consider the Laplace equation in a plane spanned by two real vari-
ables (x, y):

(6.1) ∆u(x, y) = u′′
xx(x, y) + u′′

yy(x, y) = 0 , (x, y) ∈ R
2

A solution u(x, y) to (6.1) is a harmonic function in a plane. If

u(x, y) = v(x, y) + iw(x, y)
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is a complex-valued harmonic function, then its real and imaginary
parts, Re u(x, y) = v(x, y) and Imu(x, y) = w(x, y), are also harmonic
functions because of the linearity of the Laplace equation:

∆(v + iw) = 0 ⇔
{

∆v = 0
∆w = 0

Let z = x + iy be the complex variable associated with the pair
(x, y) of rectangular coordinates. The the complex conjugated number
reads and z̄ = x − iy. One can find the inverse transformation from
the pair (z, z̄) to (x, y):

z = x + iy , z̄ = x − iy ; x =
1

2
(z + z̄) , y =

1

2i
(z − z̄)

A function u(x, y) in a plane can be viewed as a function of new vari-
ables z and z̄:

u(x, y) = u
(

1
2
(z + z̄), 1

2
(z + z̄)

)

= U(z, z̄)

Similarly, the Laplace operator can written in terms of the new vari-
ables z and z̄. Using the chain rule for differentiation with respect to
a complex variable

df

dz
=

df

dw

dw

dz
, w = w(z) ,

the Laplace operator ∆ can be written in terms of partial derivatives
with respect to z and z̄:

∂u

∂x
=

∂u

∂z

∂z

∂x
+

∂u

∂z̄

∂z̄

∂x
=

∂u

∂z
+

∂u

∂z̄
∂2u

∂x2
=

∂

∂x

(

∂u

∂z
+

∂u

∂z̄

)

=
∂2u

∂z2
+ 2

∂2u

∂z∂z̄
+

∂2u

∂z̄2

∂u

∂y
=

∂u

∂z

∂z

∂y
+

∂u

∂z̄

∂z̄

∂y
= i

∂u

∂z
− i

∂u

∂z̄

∂2u

∂x2
=

∂

∂y

(

i
∂u

∂z
− i

∂u

∂z̄

)

= i2
∂2u

∂z2
+ 2i(−i)

∂2u

∂z∂z̄
+ (−i)2 ∂2u

∂z̄2

= −∂2u

∂z2
+ 2

∂2u

∂z∂z̄
− ∂2u

∂z̄2
.

Therefore a harmonic function is a solution to the equation

(6.2) ∆u = 4
∂2u

∂z∂z̄
= 0

Equation (6.2) is easy to solve. Since u has continuous second
partial derivatives, the order of partial differentiation does not matter



50 1. PRELIMINARIES

(Clairaut’s theorem) and, hence,

either
∂u

∂z
= F (z) or

∂u

∂z̄
= G(z̄)

for some functions F and G of a single complex variable. Since the
equation is linear, the general solution is given by

u(x, y) = f(z) + g(z̄) , z = x + iy ,

where f and g are differentiable functions of a single complex variable
(f ′(z) = F (z) and g′(z̄) = G(z̄). In other words, any solution to the
2D Laplace equation can be obtained from a holomorphic function by
taking its real or imaginary part.

Theorem 6.1. (Harmonic functions on a plane)
A general (complex valued) solution to the Laplace equation on a plane

∆u(x, y) = 0 , (x, y) ∈ R
2

is given by the sum

u(x, y) = f(z) + g(z̄) , z = x + iy

where f and g are holomorphic functions on the complex plane.

The Laplace equation is linear. Therefore the real and imaginary
parts of a complex valued solution are also solutions (real valued har-
monic functions).

Corollary 6.1. The real and imaginary parts of a holomorphic
function f(z), z = x+ iy, in the complex plane are harmonic functions
in the plane:

v(x, y) = Re f(z) , w(x, y) = Im f(z)
∆v(x, y) = 0 , ∆w(x, y) = 0

For example, the functions ez, sin(z), and cos(z) are analytic func-
tions in the complex plane because they are defined by power series
with infinite radius of convergence. As a consequence, the real and
imaginary parts of these functions are real harmonic functions:

ez = ex+iy = exeiy = ex(cos(y) + i sin(y))

⇒
{

v(x, y) = Re ez = ex cos(y) , ∆v = 0
w(x, y) = Im ez = ex sin(y) , ∆w = 0

Similarly,

v(x, y) = Re cos(z) =
1

2
Re

(

eiz + e−iz
)

= cosh(y) cos(x)

w(x, y) = Im cos(z) =
1

2
Im

(

eiz + e−iz
)

= − sinh(y) sin(x)
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It is worth noting that these solutions to the 2D Laplace equation can
also be obtained by separating variables in the rectangular coordinates,
u(x, y) = X(x)Y (y).

Example 6.2. Show that the functions

ex2−y2

cos(2xy) , ex2−y2

sin(2xy) ,

e−2xy cos(x2 − y2) , e−2xy sin(x2 − y2)

are harmonic.

Solution: Consider the function f(z) = ez2

. It is analytic every-
where in the complex plane because it is represented by a power series
with infinite radius of convergence (the power series for es with s = z2).
Therefore it is holomorphic in the complex plane and its real and imag-
inary parts are solutions to the Laplace equation:

ez2

= ex2−y2+2ixy = ex2−y2
(

cos(2xy) + i sin(2xy)
)

so that the real and imaginary parts coincide with the first pair of
functions in question. The second pair is obtained from the first one
by swapping x2 − y2 and 2xy which are real and imaginary parts of
z2. The real and imaginary parts of a complex number are “swapped”
(modulo a sign change of the real part) after multiplication by i. The

function f(z) = eiz2

is also analytic (by the same argument as before).
Therefore its real and imaginary parts solve the Laplace equation:

iz2 = i(x2 − y2 + 2ixy) = −2xy + i(x2 − y2)

eiz2

= ei(x2−y2)−2xy = e−2xy
(

cos(x2 − y2) + i sin(x2 − y2)
)

Of course, the problem can also be solved by taking partial derivatives
of the given functions to show that they are indeed solutions to the
Laplace equation. �

Remark. It is interesting to note that if in the Laplace equation a
formal change of variables is made

y = −it ,

then the Laplace equation turns into the wave equation

∂2u

∂x2
+

∂2u

∂y2
=

∂2u

∂x2
− ∂2u

∂t2
= 0

Their general solutions are related by the same transformation

u = f(z) + g(z̄) = f(x + iy) + g(x − iy) = f(x − t) + g(x + t)
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as long as the transformation makes sense. For example, the functions
f and g in the solution to the wave equation are from C2(R). If they
happen to have an analytic extension to a complex plane, then the
stated transformation does make sense. For example, if f(x) is given
by a power series in x with infinite radius of convergence, by replacing
real x by complex z in the power series an analytic extension of f is
obtained. The series for f(z) converges in the whole complex plane.

6.5. Parabolic coordinates. It is clear that the solutions to the 2D Laplace
equation in Example 6.2 cannot be obtained by separating variables ei-
ther in rectangular or polar coordinates. However, they can be obtained
by separating variables in parabolic coordinates:

x = ξη , y =
1

2
(ξ2 − η2)

The curves of constant ξ form confocal parabolas concave downward:

2y = −x2

ξ2
+ ξ2

whereas the curves of constant η form confocal parabolas concave up-
ward:

2y =
x2

η2
− η2

The parabolas are conic sections with foci being at the origin.
It is left to the reader as an exercise to show that the Jacobian of

the parabolic coordinates is

J = ξ2 + η2

and the Laplace equation has the form

∆u =
1

J

(

u′′
ξξ + u′′

ηη

)

= 0 , (ξ, η) 6= (0, 0).

It is now straightforward to see that this equation admits solutions
of the form u(x, y) = Φ(ξ)Θ(η). Any such solution that admits a
continuous extension to the singular point (ξ, η) = (0, 0) is a harmonic
function in a plane.

6.6. Harmonic polynomials. Consider the monomials of one complex
variables

fl(z) = zl , l = 0, 1, 2, ...

They are analytic functions on the complex plane. Then the real and
imaginary parts of fl

vl(x, y) = Re (x + iy)l , wl(x, y) = Im (x + iy)l
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are polynomial solutions to the Laplace equation on a plane. For ev-
ery given l, these solutions are homogeneous polynomials of degree l,
meaning that

vl(sx, sy) = slvl(x, y) , wl(sx, sy) = slwl(x, y)

for any real s. Polynomial solutions of the Laplace equation on a plane
are called harmonic polynomials. Any harmonic polynomial is a linear
combination of vl(x, y) and wl(x, y) which form a linearly independent
set in the space of harmonic polynomials. Note that taking the real and
imaginary parts of z̄l does not produce any new linearly independent
homogeneous polynomials because

Re z̄l = vl(x,−y) = vl(x, y) , Im z̄l = wl(x,−y) = −wl(x, y) .

The latter is easy to see by noting that (iy)n is real if n is even and
imaginary if n is odd. So, it follows from the binomial expansion that
vl must be even function of y, while wl must be odd.

Let us obtain linearly independent harmonic polynomials for a few
l using the binomial expansion:

l = 0 : v0(x, y) = 1 ,
l = 1 : v1(x, y) = x , w1(x, y) = y ,
l = 2 : v2(x, y) = x2 − y2 , w2(x, y) = 2xy ,
l = 3 : v3(x, y) = x3 − 3xy2 , w3(x, y) = 3yx2 − y3 ,
l = 4 : v4(x, y) = x4 − 6x2y2 + y4 , w4(x, y) = 4x3y − 4xy3

For example, a general harmonic polynomial of degree 2 reads:

P2(x, y) = a0 + a1x + b1y + a2(x
2 − y2) + b2xy ,

where a0, a1, a2, b1, and b2 are arbitrary real constants. The harmonic
polynomials satisfy the recurrence relation:

Pl+1(x, y) = Pl(x, y) + al+1vl+1(x, y) + bl+1wl+1(x, y) .

Harmonic polynomials in polar coordinates. Consider a homogeneous
harmonic polynomial of degree l:

pl(x, y) = AlRe zl + BlIm zl , l ≥ 1 ,

where Al and Bl are some constants. In polar coordinates

x = r cos(θ) , y = r sin(θ) , z = x + iy = reiθ ,

the polynomial has the form

pl = rl
(

Al cos(lθ) + Bl sin(lθ)
)

A harmonic polynomial is a solution to the Laplace equation obtainable
by separating variables in polar coordinates as a linear combination of
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pl. On any circle r = a, a harmonic polynomial is a linear combination
of the trigonometric functions cos(lϕ) and sin(lϕ). They are called
trigonometric polynomials, owing to that cos(lϕ) and sin(lϕ) can ex-
pressed as polynomials of cos(ϕ) and sin(ϕ) for any integer l.

6.7. Exercises.

1. Calculate the Jacobian and Laplace operator in the parabolic coor-
dinates.

2. Find all solutions to the 2D Laplace equation obtainable by sep-
arating variables in the parabolic coordinates.

3. Put f(z) = ezp

where p is a positive integer. Find an explicit
form of real and imaginary parts of f . They are solutions to the 2D
Laplace equation. Can these solutions be obtained by separating vari-
ables in either rectangular, or polar, or parabolic coordinates?

4. Find the most general harmonic polynomial that has a constant
value on a circle of radius a centered at the origin.
Hint: Recall that the functions 1, cos(mϕ), and sin(mϕ), m = 1, 2, ...,
are linearly independent.

5. Find all non-zero complex-valued solutions to the 2D Helmholtz
equation

u′′
xx + u′′

yy + a2u = 0

that have the form u(x, y) = F (z)G(z̄), where z = x + iy, and F and
G are holomorphic in the complex plane. Do real and imaginary parts
of the solution satisfy the equation?

6. Let u(x, y) and v(x, y) be real-valued functions from the class C2

on the whole plane and satisfy the conditions:

u′
x = v′

y , u′
y = −v′

x

Show that:
(i) u and v are harmonic functions.
(ii) there exists a holomorphic function f such that f(x+iy) = u(x, y)+
iv(x, y). Hint: Note that ∂f(z)/∂z̄ = 0. State the latter relation in
terms of (x, y).
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7. Find all polynomial solutions to the 2D equation

1

a2

∂2u

∂x2
+

1

b2

∂2u

∂y2
= 0

Selected answers.

2. u(x, y) = (Aξ + B)(Cη + D);
u(x, y) = (A cos(mξ) + B sin(mξ))(Cemη + De−mη);
u(x, y) = (A cos(mη) + B sin(mη))(Cemξ + De−mξ)
and any linear combinations of the above solutions with different values
of the parameters A, B, C , D, and m.
3. f = evp(cos(wp) + i sin(wp)), where vp and wp are linearly indepen-
dent homogeneous harmonic polynomials of degree p that are defined
in Section 6.5. The harmonic functions Re f and Im f cannot be ob-
tained by any of the said separations of variables if p ≥ 3.
4. A constant polynomial, p0(x, y) = C .

5. u(x, y) = A exp
(

kz̄ − a2

4k
z
)

where k and A are non-zero com-

plex numbers. Its real and imaginary parts are also solutions to the
Helmholtz equation.
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7. Boundary conditions

A partial differential equation may have infinitely many solutions.
In order for a partial differential equation to have a unique solution,
some additional conditions must be imposed on the solutions. Suppose
a family of solutions is found for a PDE in an open region Ω. Among all
solutions, one seeks a particular one that has some specific properties
on the boundary ∂Ω. For example, a solution that has a specified form
on ∂Ω or specified values of partial derivatives on ∂Ω. These additional
conditions are called boundary conditions. One of the main questions
in an analysis of a PDE is:

• Under what boundary conditions a PDE has a unique solution?

7.1. An extension of a solution to the boundary. In order to formulate
boundary conditions, one has to extend a solution and its partial deriva-
tives given in an open set Ω to the boundary ∂Ω of Ω. Suppose u(x) is
a solution to a PDE (3.1) in an open set Ω. If the solution is required
to have a specified value u0(y) at each point on the boundary ∂Ω, then
the function u(x) must have the limit at each y ∈ ∂Ω, and this limit
must have a specified value:

lim
x→y

u(x) = u0(y)

For brevity in what follows, the stated boundary condition will be
written in the form

u
∣

∣

∣

∂Ω
= u0

Note that the boundary of Ω does not belong to Ω because Ω is open.
Therefore it is not clear if the limit actually exists. If a solution to
a PDE of order p has the limit at each point of the boundary, then
the solution is said to have a continuous extension to the boundary (as
defined Sec.2.4), and in this case, it is said to be from the class

u ∈ Cp(Ω) ∩ C0(Ω̄)

where Ω̄ is the union of Ω and its boundary. This class consists of all
functions that have continuous partial derivatives up to order p in an
open Ω, and every function has a continuous extension to the boundary
of Ω. The boundary condition makes sense only for solutions from this
class. Not every function from the class Cp(Ω) can be continuously
extended to the boundary of Ω. Consequently, not every solution to
a PDE can have a continuous extension to the boundary of an open
region in which the solution is found.
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For example, the function

u(x, t) = t−1/2e−x2/(4t) , t > 0 , x ∈ R

is from the class C∞(t > 0) (it has continuous partial derivatives of
any order in the (open) half plane t > 0). It is also a solution to the
heat equation discussed in Example 3.1. The boundary of the half-
plane t > 0 is the x−axis whose equation is t = 0. The solution does
not have a continuous extension to the boundary. Indeed, using the
substitution z = 1/t:

lim
t→0+

u(x, t) = lim
z→∞

√
ze−zx2/4 =

{

0 , x 6= 0
∞ , x = 0

So, the limit has no numerical value at one point of the boundary
and, hence, u cannot be continuously extended to the boundary of the
half-plane.

If boundary condition involve partial derivatives of the solution,
then one should demand that these partial derivatives have continuous
extensions to the boundary. If all partial derivatives of a solution up
order q < p can be extended to the boundary, then one writes

u ∈ Cp(Ω) ∩ Cq(Ω̄)

Any function from this class has continuous partial derivatives up order
p in an open Ω, and the limit of all partial derivatives If continuous
extension of u and its partial derivatives Dqu, q = 0, 1, ..., are required
to have specified values on the boundary, then corresponding boundary
conditions mean that

lim
x→y

Dqu(x) = vq(y)

for any point on the boundary y ∈ ∂Ω, where vq are given functions on
the boundary. For brevity, this boundary condition will also be written
as

Dqu
∣

∣

∣

∂Ω
= vq

7.2. The 2D wave equation in an interval. Consider the 2D wave equa-
tion where the position variable x is restricted to an interval

u′′
tt − c2u′′

xx = 0 , Ω : 0 < x < L , −∞ < t < ∞
Let us find all solutions to the equation that are obtainable by separating
variables and satisfy the zero boundary conditions

u
∣

∣

∣

x=0
= u

∣

∣

∣

x=L
= 0 , −∞ < t < ∞
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A physical significance of this problem can be understood if one recalls
that one of the interpretations of the 2D wave equation is that its
solutions describe evolution of the shape of an elastic string. The zero
boundary conditions mean that the string has a finite length L and its
endpoints are fixed and cannot move, like a guitar string.

If u(t, x) = T (t)X(x), then the functions T (t) and X(x) satisfy the
second-order differential equations whose solutions are continuous in
the entire real line. Therefore

u
∣

∣

∣

x=0
= lim

x→0+
u(t, x) = T (t)X(0) ,

u
∣

∣

∣

x=L
= lim

x→L−

u(t, x) = T (t)X(L)

by continuity of X(x). Therefore the boundary conditions imply that

X(0) = X(L) = 0

where the function X(x) is a solution to the equation

X ′′(x) + kX(x) = 0

with k being a separation constant. There are 3 types of solutions.

Case k = 0. If k = 0, then X = A + Bx. The linear function can
satisfy the boundary conditions only if A = B = 0:

{

X(0) = A = 0
X(L) = A + BL = 0

⇒ A = B = 0

So, no non-trivial solution exists in this case.

Case k < 0. If k = −m2 < 0, then X(x) = Aemx + Be−mx and the
boundary conditions are satisfied only if A = B = 0:

{

X(0) = A + B = 0
X(L) = AemL + Be−mL = 0

⇒
{

B = −A
2A sinh(mL) = 0

⇒ A = B = 0

because sinh(mL) 6= 0 if m > 0. No non-trivial solution exists in this
case, either.

Case k > 0. Finally, if k = m2 > 0, then X(x) = A cos(mx) +
B sin(mx) and the boundary conditions are reduced to

{

X(0) = A = 0
X(L) = A cos(mL) + B sin(mL) = 0

⇒
{

A = 0
B sin(mL) = 0

⇒
{

A = 0
m = πn

L
, n = 1, 2, ...
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because one has to have B 6= 0 in order to get a non-trivial solution.
Thus,

u(x, t) = un(x, t) = Xn(x)Tn(t)

= sin
(πnx

L

)

[

An cos
(πcnt

L

)

+ Bn sin
(πcnt

L

)

]

where n = 1, 2, ..., and An and Bn are arbitrary constants. Since the
wave equation is linear and homogeneous, one can use the superposition
principle to get the most general solution obtainable by separating
variables:

u(x, t) =
N

∑

n=1

sin
(πnx

L

)

[

An cos
(πcnt

L

)

+ Bn sin
(πcnt

L

)

]

The solution is not unique. From the physical point of view this con-
clusion should be anticipated because the evolution of the shape of a
guitar string depends on its initial shape. It is not difficult to see that

u
∣

∣

∣

t=0
=

N
∑

n=1

An sin
(πnx

L

)

,

u′
t

∣

∣

∣

t=0
=

N
∑

n=1

πcnBn

L
sin

(πnx

L

)

If one demands that initially, that is, at t = 0 the string shape is defined
by a given function u0(x) and the distribution of initial velocities is
given by a function u1(x), then the initial conditions

u
∣

∣

∣

t=0
= u0(x) , u′

t

∣

∣

∣

t=0
= u1(x)

can be used to determine the remaining parameters An and Bn in
the solution. Since the functions sin(πnx/L) are linearly independent,
there is a unique choice of An and Bn to satisfy the initial condi-
tions, provided the initial data are given by linear combinations of
sin(πnx/L):

u0(x) =
N

∑

n=1

αn sin
(πnx

L

)

, u1(x) =
M

∑

n=1

βn sin
(πnx

L

)

Indeed, the initial conditions are satisfied if

An = αn , Bn =
Lβn

πcn
A natural question arises: Can one use arbitrary functions u0 and u1

as initial data, not just linear combinations of sin(πnx/L), to obtain



60 1. PRELIMINARIES

a unique solution to the wave equation? The answer is affirmative. It
will be discussed in detail later.

Example 7.1. Find all solutions to the 2D wave equation

u′′
tt − u′′

xx = 0 , t > 0 , 0 < x < 1

by separating variables that satisfies the zero boundary conditions

u
∣

∣

∣

x=0
= u

∣

∣

∣

x=1

and the following initial conditions

u
∣

∣

∣

t=0
= sin(πx) − 3 sin(2πx) , u′

t

∣

∣

∣

t=0
= 2 sin(3πx)

Solution: Setting c = 1 and L = 1 in the general solution obtained
above, it is concluded that any solution obtainable by separating vari-
ables that satisfies the boundary conditions reads

u(x, t) =

N
∑

n=1

sin(πnx)
(

An cos(πnt) + Bn sin(πnt)
)

for some N . It follows from the initial conditions that

u
∣

∣

∣

t=0
=

N
∑

n=1

An sin(πnx) = sin(πx)− 3 sin(2πx)

⇒ A1 = 1 , A2 = −3 , An = 0 , n > 2

u′
t

∣

∣

∣

t=0
=

N
∑

n=1

πnBn sin(πnx) = 2 sin(3πx)

⇒ B3 =
2

3π
, Bn = 0 , n 6= 3

so that the solution reads

u(x, t) = sin(πx) cos(πt) − 3 sin(2πx) cos(2πt) +
2

3π
sin(3πx) sin(3πt)

�

7.3. The 2D heat equation in an interval. The above analysis can be
repeated for the 2D heat equation in an interval with zero boundary
conditions

u′
t = a2u′′

xx , 0 < x < L , −∞ < t < ∞
u
∣

∣

∣

x=0
= u

∣

∣

∣

x=L
= 0 , −∞ < t < ∞

The physical significance of this problem is easy to understand if one
recalls that the heat equation describes the temperature distribution
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in a heat conducting rod, u(x, t) is the temperature at point x of the
rod and at a time t. The boundary conditions describe the situation
in which the temperature of the end points is kept fixed. Indeed, let
T (x, t) be the physical temperature that satisfies the heat equation. If
one demands that

T (0, t) = T0 , T (L, t) = TL

for any time t, then

T (x, t) = T0 +
TL − T0

L
x + u(x, t)

where u(x, t) satisfies the heat equation with zero boundary conditions
at the endpoints because T ′

t = u′
t and T ′′

xx = u′′
xx.

The most general solution obtainable by separating variables reads

u(x, t) =

N
∑

n=1

An sin
(πnx

L

)

e−(aπn/L)2t

where An are arbitrary constants. The technicalities are left for the
reader as an exercise. The non-uniqueness of the solution may be
anticipated from an intuitive idea that the evolution of the temperature
distribution depends on its initial distribution (assuming, of course,
that the heat equation offer a correct mathematical model of the heat
energy transfer). Indeed, let us supplement the problem by an initial
condition

u|t=0 = u0(x)

where u0(x) is a given function. Since the solution at t = 0 is a linear
combinations of linearly independent functions sin(πnx/L), the param-
eters An are uniquely determined, provided the initial data is a linear
combination of sin(πnx). If

u0(x) =
N

∑

n=1

αn sin(πnx) ,

then the initial condition yields

An = αn .

It is interesting to note that any initial temperature distribution
eventually becomes a linear (equilibrium) distribution:

lim
t→∞

T (x, t) = T0 +
TL − T0

L
x
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Example 7.2. Solve the initial and boundary value problem for the
heat equation by separating variables:

∂u

∂t
=

∂2u

∂x2
, t > 0 , 0 < x < 2 ,

u
∣

∣

∣

x=0
= u

∣

∣

∣

x=2
= 0 , t ≥ 0 ,

u
∣

∣

∣

t=0
= 4 sin(πx/2) cos(πx/2) − 3 sin(2πx) , 0 ≤ x ≤ 2 .

or show that no solution can be obtained by this method.

Solution: Let u(x, t) = X(x)T (t). Then by separating variables in
the heat equation

T ′(t)

T (t)
=

X ′′(x)

X(x)
= λ

Since the variables t and x are independent, the left and right sides of
this equation must be equal to a constant λ. So, the function X is a
solution to the boundary value problem

X ′′(x) − λX(x) = 0 , X(0) = X(2) = 0 .

It was shown that a solution exists only if

λ = λn = −
(πn

2

)2

, X(x) = Xn(x) = sin
(πnx

2

)

, n = 1, 2, ...

The associated function T (t) = Tn(t) solves the equation

T ′
n(t) = λnTn(t) ⇒ Tn(t) = Ane

λnt

where An is an integration constant. So, the most general solution
that vanishes at x = 0 and x = 2 (and can be obtained by separating
variables) reads

u(x, t) =

N
∑

n=1

An sin
(πnx

2

)

e−
π2n2t

4

for some integer N ≥ 1. Therefore, the initial condition at t = 0 is
fulfilled only if

N
∑

n=1

An sin
(πnx

2

)

= 4 sin(πx/2) cos(πx/2) − 3 sin(2πx)

= 2 sin(πx)− 3 sin(2πx)

where the double angle trigonometric identity was used. The functions
Xn(x) are linearly independent. Therefore the above equality can hold
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for all x in the said interval only is the coefficients in the linear combi-
nations of Xn match:

A2 = 2 , A4 = −3 , A1 = A3 = 0 , An = 0 , n > 4 .

Thus, the solution reads

u(x, t) = 2 sin(πx)e−π2t − 3 sin(2πx)e−4π2n2t .

�

7.4. Asymptotic boundary conditions. If the region in which a PDE is
solved is not bounded, then asymptotic conditions can be imposed on a
solution that prescribe how the solution should behave as one or more
variables tends to infinity. For example, consider the 2D heat equation
in the positive quadrant

u′
t = a2u′′

xx , x > 0 , t > 0 .

Let us attempt to find all solutions that are bounded

|u(x, t)| ≤ M < ∞ , x ≥ 0 , t ≥ 0 ,

and can be obtained by separating variables: u(x, t) = T (t)X(x). Even
if a solution can be continuously extended to the boundary of the posi-
tive quadrant, it can still grow arbitrary large as x or t or both become
arbitrary large. The condition requires that no unbounded growth of
the solution is permitted.

If λ is a separation constant, then

T ′(t) = a2λT (t) , X ′′(x) − λX(x) = 0 .

The first equation has bounded solutions only if λ ≤ 0. If λ = 0, then
only a constant solution is bounded (X(x) = A + Bx is bounded only
if B = 0). Put λ = −ω2 < 0, so that

u(x, t) = e−ω2a2t
(

Aω cos(ωx) + Bω sin(ωx)
)

.

where Aω and Bω are arbitrary constants. This solution also contains
a constant solution if ω = 0. So, there is a family of bounded solutions
labeled by a non-negative parameter ω ≥ 0. Since the heat equation
is linear, the sum of any number of such solutions (corresponding to
distinct values of ω) is also a bounded solution.
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7.5. The 2D Laplace equation in an interval. Similarly, the following
boundary value problem for the 2D Laplace equation

u′′
xx + u′′

yy = 0 , 0 < x < L , −∞ < y < ∞

u
∣

∣

∣

x=0
= u

∣

∣

∣

x=L
= 0 , −∞ < y < ∞

has the following most general solution

u(x, y) =

N
∑

n=1

sin
(πnx

L

)

[

Ane
(πn/L)y + Bne

−(πn/L)y
]

that can be obtained by separating variables. The technicalities are
left again to the reader as an exercise.

Asymptotic conditions. The region is not bounded and, hence, one can
impose asymptotic conditions on the solution when |y| → ∞. For
example, if one demands that

lim
y→+∞

u(x, y) = 0

then An = 0 in the found solution. If one demands that the solution
must be bounded

|u(x, y)| ≤ M < ∞ , 0 ≤ x ≤ L , −∞ < y < ∞ .

then An = Bn = 0 and only the trivial solution, u(x, y) = 0, is permit-
ted.

Of course, asymptotic and boundary conditions are determined by
a physical process or phenomenon modeled by a PDE. For instance, in
electrostatics, the electric field is conservative, that is, it is the gradient
of a function called an electric potential, and the potential is shown to
satisfy the Laplace equation in any region where no electric charges
are present. The zero boundary condition physically correspond to a
metal (conducting) surface that is grounded. So, the gradient ∇u of
the above solution can be interpreted as an electric field between two
infinite parallel conducting planes that are grounded. However, such
an interpretation is not sound from the physical point of view because
the potential u(x, y) becomes infinite as y → ±∞ so that the electric
field becomes infinite too. So, solutions with unbounded electric field
at spatial infinite are not physically acceptable. If one imposes the
boundedness condition

|∇u| ≤ M or |u′
x| ≤ M1 , |u′

y| ≤ M2

Then only the trivial solution u(x, y) = 0 would satisfy the zero bound-
ary condition at x = 0 and x = L and the boundedness condition. This
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agrees with the physical picture. There exists no electrical field in the
described system.

7.6. Laplace equation in a disk. Let us investigate solutions of the Laplace
equation in a disk that has a prescribed values on the boundary of the
disk:

∆u = 0 , x2 + y2 < R2 , u
∣

∣

∣

x2+y2=R2
= v

The boundary condition is convenient to formulate in polar coordinates
because any function on a circle is a 2π−periodic function of the polar
angle

v(θ + 2π) = v(θ)

Let us attempt to solve the problem by separating variables in polar co-
ordinates. Since the origin is included into the disk in which a solution
is sought,

u(x, y) = A0 +
M

∑

m=1

rm
(

Am cos(mθ) + Bm sin(mθ)
)

Therefore the initial condition yields conditions on the parameters Am

and Bm

u
∣

∣

∣

r=R
= A0 +

M
∑

m=1

Rm
(

Am cos(mθ) + Bm sin(mθ)
)

= ϕ(θ)

Since the trigonometric harmonics, sin(mθ) and cos(mθ), are linearly
independent, the coefficients Am and Bm are uniquely determined by
the boundary conditions, provided the boundary data v is a linear com-
bination of the trigonometric harmonics:

v(θ) = a0 +

M
∑

m=1

(

am cos(mx) + bm sin(mx)
)

and in this case

A0 = a0 , An =
an

Rn
, Bn =

bn

Rn

by comparing the coefficients at the same harmonics so that

u(x, y) = a0 +
M

∑

m=1

( r

R

)m(

am cos(mx) + bm sin(mx)
)
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Example 7.3. Solve the boundary value problem for the Laplace
equation in a disk by separating variables in polar coordinates:

∆u = 0 , x2 + y2 < 1 , u
∣

∣

∣

x2+y2=1
= 4y3

∣

∣

∣

x2+y2=1

Express the solution in rectangular coordinates.

Solution: Let us first check if the boundary data is a linear combi-
nation of trigonometric harmonics:

v(θ) = 4 sin3(θ) = − 1

2i
(eiθ − e−iθ)3

= − 1

2i
(e3iθ − e−3iθ − 3eiθ + 3e−iθ)

= 3 sin(θ) − sin(3θ)

The boundary condition yields

u
∣

∣

∣

r=1
= A0 +

M
∑

m=1

(

Am cos(mθ) + Bm sin(mθ)
)

= 3 sin(θ) − sin(3θ)

⇒ An = 0 , B1 = 3 , B3 = −1 , B2 = Bn = 0 , n > 3 ,

u(x, y) = 3r sin(θ) − r3 sin(3θ)

= 3y − r3(3 sin(θ) − 4 sin3(θ))

= 3y − 3y(x2 + y2) + 4y3 = 3y + y3 − 3yx2

�

7.7. Exercises.

1. Derive the most general solution to the 2D heat equations on an
interval with the zero boundary conditions as stated in Section 7.3 by
separating variables.

2. Derive the most general solution to the 2D Laplace equation on
a strip with the zero boundary conditions as stated in Section 7.4 by
separating variables.

3. Find the most general solution to the 2D wave equation satisfy-
ing the following boundary conditions

u′′
tt − u′′

xx = 0 , −1 < x < 1 , t ∈ R

u
∣

∣

∣

x=−1
= u

∣

∣

∣

x=1
= 0 , t ∈ R
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by separating variables t and x.

4. Find the most general solution to the 2D heat equation satisfy-
ing periodic boundary conditions:

u′
t = u′′

xx , 0 < x < L , t ∈ R

u(x + L, t) = u(x, t) , u′
x(x + L, t) = u′

x(x, t) ,

by separating variables t and x.

5. Find the most general solution to the 2D Laplace equation that
is periodic in both variables x and y:

u(x + a, y) = u(x, y) = u(x, y + b)

by separating variables x and y.

6. Let Ω be a planar region bounded by two parabolas 2y = x2 − 1
and 2y = 1

4
x2 − 4. Use separation of variables in parabolic coordinates

(see Section 6.4) to solve the following boundary value problem:

u′′
xx + u′′

yy = 0 , (x, y) ∈ Ω , u
∣

∣

∣

∂Ω
= 0

7. Find all solutions to the boundary value problem by separating
variables in polar coordinates

∆u = 0 , x2 + y2 < 4 , u
∣

∣

∣

x2+y2=4
= xy3

∣

∣

∣

x2+y2=4

Express the solution in rectangular coordinates.

8. Solve the boundary value problem by separating variables in po-
lar coordinates with a suitable center

∆u = 0 , x2 + y2 < 4y , u
∣

∣

∣

x2+y2=4y
= y3

∣

∣

∣

x2+y2=4y

9. Find all bounded solutions to the 3D Laplace equation

u′′
xx + u′′

yy + u′′
zz = 0

by separating variables u(x, y, z) = X(x)Y (y)Z(z).

Selected answers.

3.

u(x, t) =

N
∑

n=1

sin
(πn

2
(x + 1)

) [

An cos
(πn

2
t
)

+ Bn sin
(πn

2
t
)]



68 1. PRELIMINARIES

4.

u(x, t) = A0 +

N
∑

n=1

e−(2πn/L)2t

[

An cos

(

2πn

L
x

)

+ Bn sin

(

2πn

L
x

)]

5. u(x, y) = A

6. Put x = ξη and y = 1
2
(ξ2 − η2). Then

u(x, y) =

N
∑

n=1

sin(πnη)
[

Ane
πnξ + Bne

−πnξ
]

7. u(x, y) = 2xy − 1
2
(yx3 − xy3).


