
CHAPTER 3

Classification of second-order PDEs

14. Characteristics of second-order PDEs

A classification of second-order PDEs is essential for questions about
uniqueness of a solution. It is also important for choosing appropriate
methods for solving second-order PDEs. The discussion will be limited
to equations linear in second partial derivatives and begins with the
simplest case of second-oder PDEs in two real variables. In particular,
for two variables (x, y), A second-order PDE is linear relative to the
second-order partial derivatives if it has the form

au′′

xx + 2cu′′

xy + bu′′

yy = F (x, y, u, u′

x, u
′

y) , (x, y) ∈ Ω ⊂ R
2

where the coefficients a, b, and c are functions of x and y.

14.1. Basic idea of the method of characteristics. Recall that first-order
PDEs linear in partial derivatives can be solved the method of charac-
teristics. The characteristics of a differential equation define a change
of variables (x, y) → (τ, p) so that in the new variables the linear com-
bination of partial derivatives is reduced to a singe derivative with
respect to one of the new variables:

a
∂

∂x
+ b

∂

∂y
=

∂

∂τ

and a PDE becomes an ODE the variable τ . In the case of second
order PDEs, it is generally not possible to reduce the problem to an
ODE by a change of variables:

α = α(x, y) , β = β(x, y) .

However, it is possible to transform the linear combination of the second
partial derivatives to one of the standard forms. For example, if a, b,
and c are constant, then there exists a change of variables such that

au′′

xx + 2cu′′

xy + bu′′

yy = 0 ⇒

u′′

αα − u′′

ββ = 0
or
u′′

ββ = 0
or
u′′

αα + u′′

ββ = 0
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126 3. CLASSIFICATION OF SECOND-ORDER PDES

Thus, the problem of solving the above PDE can be reduced to solving
either the wave equation, or ODE, or the Laplace equation. General
solutions for any of these problems have been already found. It is
therefore important to develop a technique for finding such a change
of variables. The method to find such a change of variables is known
as the method of characteristics for second order PDEs.

Recall a classification of quadric curves, the curves defined by a
general quadratic equation in variables x and y. It is possible to find a
suitable rotation and translation of the coordinates (x, y) so that the
equation describes one of the three possible conic sections: a hyperbola,
or a parabola, or an ellipse:

x2

a2
− y2

b2
= 1 , y = ax2 ,

x2

a2
+

y2

b2
= 1

Hyperbolic, parabolic, and elliptic PDEs. By the analogy with conic
cross sections, a PDE in which the linear combination of second partials
is reducible to that in the wave equation by a change of variables (with
the minus sign between the derivatives) is called a hyperbolic equation.
If this combination is reducible to that in the heat equation (where
only one second partial with respect to one variable remains after the
change of variables), then the PDE is called a parabolic equation. A
PDE is called elliptic if the linear combination of second partials in it
is reducible to that in the Laplace equation by a change of variables. It
is clear that a correct classification of second order PDE is important
for its solving.

14.2. Characteristics of PDEs with constant coefficients. Suppose that
the coefficients a, b, and c are constant. Consider a linear transforma-
tion, that is, the functions α(x, y) and β(x, y) are linear so that partial
derivatives α′

x, α′

y, β ′

x and β ′

y are constant. The transformation can be
written in the form

α = α′

xx + β ′

yy , β = β ′

xx + β ′

yy

The transformation is a change of variables if its Jacobian does not
vanish

J = det

(

α′

x α′

y

β ′

x β ′

y

)

= α′

xβ
′

y − α′

yβ
′

x 6= 0

In this case, the linear equations can be solved for x and y to express
the old variables as linear functions of the new ones. A geometrical sig-
nificance of such a general linear transformation is that every rectangle
in the xy plane is mapped onto a parallelogram in the αβ plane.
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Using the chain rules

u′

x = α′

xu
′

α + β ′

xu
′

β ,

u′

y = α′

yu
′

α + β ′

yu
′

β ,

u′′

xx =

(

α′

x

∂

∂α
+ β ′

x

∂

∂β

)

u′

x

= (α′

x)
2u′′

αα + 2α′

xβ
′

xu
′′

αβ + (β ′

x)
2u′′

ββ

u′′

yy =

(

α′

y

∂

∂α
+ β ′

y

∂

∂β

)

u′

y

= (α′

y)
2u′′

αα + 2α′

yβ
′

yu
′′

αβ + (β ′

y)
2u′′

ββ

u′′

xy =

(

α′

x

∂

∂α
+ β ′

x

∂

∂β

)

u′

y

= α′

xα
′

yu
′′

αα + (α′

xβ
′

y + α′

yβ
′

x)u
′′

αβ + β ′

xβ
′

yu
′′

ββ

Therefore the coefficients in the linear combination of the second partial
derivatives in the new variables are

au′′

xx + 2cu′′

xy + bu′′

yy = Au′′

αα + 2Cu′′

αβ + Bu′′

αβ

A = a(α′

x)
2 + 2cα′

xα
′

y + b(α′

y)
2 ,(14.1)

B = a(β ′

x)
2 + 2cβ ′

xβ
′

y + b(β ′

y)
2(14.2)

C = aα′

xβ
′

x + c(α′

xβ
′

y + α′

yβ
′

x) + bα′

yβ
′

y(14.3)

Let us try to simplify this combination as much as possible by
demanding A = B = 0. These equations are equivalent to solving a
first order PDE:

(14.4) a(γ′

x)
2 + 2cγ′

xγ
′

y + b(γ′

y)
2 = 0

If this PDE has two linearly independent solutions γ = α(x, y) and
γ = β(x, y), then these solutions can be used to construct a desired
change of variables. Equation (14.4) is a first-order PDE, but it is
not linear in partial derivatives and, hence, cannot be studied by the
method of characteristics developed in Chapter 2. The method needs
a generalization.

Proposition 14.1. If a non-constant linear function γ(x, y) is a
solution to Eq. (14.4) with constant coefficients a, b, and c, then the
level sets γ(x, y) = γ0 (lines) are solutions to the first-order ordinary
differential equation

(14.5) a(dy)2 − 2cdxdy + b(dx)2 = 0
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Conversely, if level sets of a function γ(x, y) are solutions to (14.5),
then the function γ(x, y) is a solution to (14.4).

Proof. Let a linear function γ(x, y) = γ′

xx + γ′

yy be a solution to
(14.4). Then on any level set γ′

xx + γ′

yy = γ0 (a line)

(14.6) γ′

xdx + γ′

ydy = 0

The substitution of this relation into (14.5) shows that γ′

x and γ′

y must
obey (14.4), which is true. Indeed, γ(x, y) is not a constant function
and, hence, γ′

x and γ′

y do not vanish simultaneously. Suppose γ′

y 6= 0.
Then dy = −(γ′

x/γ
′

y)dx so that (14.5) yields
[

a

(

γ′

x

γ′

y

)2

+ 2c
γ′

x

γ′

y

+ b

]

(dx)2 = 0

which coincides with (14.4) after multiplication by (γ′

y)
2.

Conversely, if level sets γ(x, y) = γ0 define the general solution to
(14.5), then (14.6) holds where γ′

x and γ′

y are such that dy/dx = −γ′

x/γ
′

y

solves (14.5). After the substitution of dy/dx into the left side of (14.5),
it becomes

0 = a
(dy

dx

)2

− 2c
dy

dx
+ b = a

(

γ′

x

γ′

y

)2

+ 2c
γ′

x

γ′

y

+ b

which is equivalent to (14.4) after multiplication by (γ′

y)
2. �

14.3. Classification of second-order PDEs. Proposition 14.1 shows that
the condition A = 0 or B = 0 is equivalent to solving ODE (14.5) which
is called a characteristic equation for the studied second-order PDE and
its solutions are called characteristics. If there are two characteristics
(curves) α(x, y) = α0 and β(x, y) = β0 such that their Jacobian does
not vanish, then they define a coordinate transformation α = α(x, y),
β = β(x, y) after which A = B = 0, and in this case

au′′

xx + 2cu′′

xy + bu′′

yy = 2Cu′′

αβ

Let us find the characteristics.
If a = b = 0, then no coordinate transformation is needed. Suppose

that a 6= 0. The characteristic equation has two (real or complex) roots

(14.7)
dy

dx
=

c ±
√

D

a
, D = c2 − ab 6= 0 ,

The sign of the discriminant D defines the type of a second-order PDE.
If the discriminant vanishes, then the desired change of variables does
not exist (after which A = B = 0). However, it will be shown that
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the only characteristic in the case D = 0 can still be used to simplify
a second-order PDE so that A = C = 0 in the new variables.

Definition 14.1. (Classification of second-order PDEs)
The equation

au′′

xx + 2cu′′

xy + bu′′

yy + F (x, y, u, u′

x, u
′

y) = 0

with constant a, b, and c is called

• hyperbolic if D = c2 − ab > 0
• elliptic if D = c2 − ab < 0
• parabolic if D = c2 − ab = 0

Example 14.1. Determine the type of the equation

u′′

xx + 4u′′

xy + 3u′′

yy − x(u′

x)
2 + yxu = 0

Solution: The discriminant of the characteristic equation with a = 1,
b = 3, and c = 2

D = c2 − ab = 4 − 9 = −5 < 0

is negative. Therefore the equation in question is elliptic. �

14.4. Exercises.

1. Classify each of the following PDEs:

(i) u′′

xx − 6u′′

xy = u′

x + xu ,

(ii) u′′

xx + 2u′′

xy + 3u′′

yy = yx ,

(iii) u′′

xx + 2u′′

xy + 4u′′

yy = yu
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15. Standard form of second-order PDEs

Let us use the characteristics to reduce a second-order PDE to
the standard (most simple) form in each of the three cases, D > 0
(hyperbolic PDE), D = 0 (parabolic PDE), and D < 0 (elliptic PDE).

15.1. Standard form of hyperbolic equations. In the case of hyperbolic
equations, two roots in (14.7) are distinct and real. The characteristic
equation has two solutions:

ady − (c +
√

D)dx = 0 ⇒ γ+(x, y) = ay − (c +
√

D)x = α0

ady − (c −
√

D)dx = 0 ⇒ γ−(x, y) = ay − (c −
√

D)x = β0

for any constants α0 and β0. By Proposition 14.1,

A = B = 0

if the new variables are defined by

α = γ+(x, y) , β = γ−(x, y) .

Therefore

α′

x = −(c +
√

D) , α′

y = a

β ′

x = −(c −
√

D) , β ′

y = a .

and the Jacobian of the transformation is

J = det

(

α′

x α′

y

β ′

x β ′

y

)

= −2a
√

D 6= 0

because a 6= 0 and D 6= 0. In the new variables, the hyperbolic equation
has the form

(15.1) u′′

αβ = G1(α, β, u, u′

α, u
′

β)

after dividing it by the coefficient C , where G1 = −G/C and

C = −2aD 6= 0

because a 6= 0 and D 6= 0.
Equation (15.1) is called the standard form of the hyperbolic equa-

tion in two variables. In the case when in the original equation a = 0,
the characteristics cannot have the form (14.7). However, b 6= 0 and
the characteristics can still be found in a similar fashion so that (15.1)
holds.
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Remark. If a = 0, then the needed change of variables is obtained by
solving (14.5):

−2cdxdy + b(dx)2 = 0 ⇒
{

dx = 0
bdx − 2cdy = 0

⇒
{

x = α
bx− 2cy = β

Example 15.1. Show that the equation

2cu′′

xy + bu′′

yy = F (x, y, u, u′

x, u
′

y)

is hyperbolic if c 6= 0 and parabolic otherwise. Find a coordinate trans-
formation after which the hyperbolic equation would have the standard
form.

Solution: In this case, a = 0. Therefore D = c2 and the equation is
hyperbolic if c 6= 0 otherwise D = 0 and the equation is parabolic (if
b 6= 0). The associated characteristic equation has the form

−2cdydx + b(dx)2 = 0 ⇒ dx = 0 or − 2cdy + bdx = 0

The characteristics γ1,2(x, y) = const are obtained by integrating these
equations:

γ1(x, y) = x , γ2(x, y) = bx− 2cy

The first characteristic x = α0 is a horizontal line, while the second
one, bx− 2cy = β0, is a line that intersects the first one at an angle for
any choice of α0 and β0. The new variables are

α = x , β = bx − 2cy

The transformation has the inverse

x = α , y =
1

2c
(bα − β)

By the chain rule

∂

∂x
=

∂

∂α
+ b

∂

∂β
,

∂

∂y
= −2c

∂

∂β

u′′

xy = −2c
∂

∂β

(

∂

∂α
+ b

∂

∂β

)

u = −2cu′′

αβ − 2cbu′′

ββ

u′′

yy = 4c2

(

∂

∂β

)2

u = 4c2u′′

ββ

2cu′′

xy + bu′′

yy = −4c2u′′αβ − 4c2bu′′

ββ + 4c2bu′′

ββ = −4c2u′′

αβ

Therefore in the new variables the hyperbolic equation has the form

2u′′

xy + u′′

yy = F ⇔ u′′

αβ = − 1

4c2
F

�
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An alternative standard form of a hyperbolic equation. Let us make yet
another change of variables in Eq. (15.1)

α = ξ + η , β = ξ − η

or

ξ =
1

2
(α + β) , η =

1

2
(α − β)

By the chain rule

∂

∂α
=

1

2

∂

∂ξ
+

1

2

∂

∂η
,

∂

∂β
=

1

2

∂

∂ξ
− 1

2

∂

∂η

so that

u′′

αβ =
1

4

(

∂

∂ξ
+

∂

∂η

)(

∂

∂ξ
− ∂

∂η

)

u =
1

4
(u′′

ξξ − u′′

ηη)

Therefore Eq. (15.1) becomes

(15.2) u′′

ξξ − u′′

ηη = 4G1

Equation (15.2) is also called the standard form of a hyperbolic equation
in two variables.

15.2. Standard form of parabolic equations. If D = 0, then one ab =
c2 > 0 and one can always choose a > 0 and b > 0. Two character-
istics (14.7) coincide, that is, there is just one independent solution

to the characteristic equation. If c > 0 so that c =
√

ab, then the
characteristic is

a(dy)2 − 2cdydx + b(dx)2 = (
√

ady −
√

bdx)2 = 0

⇒ γ(x, y) =
√

a y −
√

b x = γ0

In this case, put
{

α = γ(x, y) =
√

a y −
√

b x

β = ϕ(x, y) =
√

a y +
√

b x
, c =

√
ab > 0

If c < 0, that is, c = −
√

ab, then
{

α = γ(x, y) =
√

a y +
√

b x

β = ϕ(x, y) =
√

a y −
√

b x
, c = −

√
ab < 0 .

With this choice of α,

A = 0
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by Proposition 14.1. For c > 0, the other coefficients are

B = a(β ′

x)
2 + 2cβ ′

xβ
′

y + b(β ′

y)
2

= ab + 2c
√

a
√

b + ba

= 4c2

C = aα′

xβ
′

x + c(α′

xβ
′

y + α′

yβ
′

x) + bα′

yβ
′

y

= −a
√

bβ ′

x + c(−
√

bβ ′

y +
√

aβ ′

x) + b
√

aβ ′

y

=
√

a(c −
√

ab)β ′

x +
√

b(c −
√

ab)β ′

y

= 0

The same result holds if c < 0. Note that the latter equality, C = 0,
holds regardless of the choice β = ϕ(x, y). So, in the case when D = 0,
the second variable can be chosen in any convenient way (of course,
the Jacobian of the transformation should not vanish, J 6= 0).

The equation

(15.3) u′′

ββ = − 1

4c2
G(α, β, u, u′

α, u
′

β)

is called the standard form of a second-order parabolic PDE in two
variables. If the right side G is independent of u′

α, then the parabolic
equation is reduced to an ordinary differential equation in which the
variable α is a parameter.

Example 15.2. Show that the equation

u′′

xx − 2u′′

xy + u′′

yy = −2(x + y)2(u′

x − u′

y)

is parabolic and find its general solution by reducing it to the standard
form.

Solution: In this equation a = b = 1 and c = −1. Therefore D =
c2 − ab = 0 and, hence, the equation is parabolic. The characteristic
equation

a(dy)2 − 2cdydx + b(dx)2 = 0 ⇒ (dy + dx)2 = 0

has only one solution

γ(x, y) = y + x = γ0

To bring the PDE to a standard form, put

α = γ(x, y) = y + x , β = y − x



134 3. CLASSIFICATION OF SECOND-ORDER PDES

The Jacobian of this transformation does not vanish (J = 2 6= 0). So,
the choice of β defines a change of variables. By the chain rule

∂

∂x
=

∂

∂α
− ∂

∂β
,

∂

∂y
=

∂

∂α
+

∂

∂β

u′

x − u′

y =

(

∂

∂x
− ∂

∂y

)

u = −2
∂u

∂β

u′′

xx − 2u′′

xy + u′′

yy =

(

∂

∂x
− ∂

∂y

)2

u = 4
∂2u

∂β2

Thus, in the new variables the equation assumes the standard form

u′′

ββ = −α2 u′

β

The equation is an ordinary differential equation because it does not
contain u′

α. Let v = u′

β. Then for every α,

dv

dβ
= −α2v ,

⇒ v = C1e
−α2β

⇒ u =

∫

v dβ = −C1

α2
e−α2β + C2

where the integration constants C1 and C2 are arbitrary functions of
α. So without loss of generality

u(x, y) = f(α)e−α2β + g(α) , α = y + x , β = y − x

for some twice continuously differentiable functions f and g. �

15.3. Standard form of elliptic equations. Note that D < 0 implies that
c2 < ab and, hence, a 6= 0. So, for elliptic equations, the characteristics
(14.7) are complex

γ(x, y) = ay −
(

c + i
√
−D

)

x = γ0 ,

γ̄(x, y) = ay −
(

c − i
√
−D

)

x = γ̄0

where γ̄ denotes the complex conjugated function γ. The proof of
Proposition 14.1 does not require that γ is real. Therefore in the new
complex variables

α = γ(x, y) = ay −
(

c + i
√
−D

)

x ,

β = γ̄(x, y) = ay −
(

c − i
√
−D

)

x
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the coefficients A and B vanish by Lemma 14.1

A = B = 0

as in the case of hyperbolic equations so that the equation assumes the
form (15.1) where α and β = ᾱ are complex variables. To avoid the
use of complex variables, let us introduce two real variables

α = ξ + iη , β = ξ − iη

They are related to the original variables as

ξ =
1

2
(α + β) = ay − cx , η =

1

2i
(α − β) = −

√
−Dx

By the chain rule

∂

∂α
=

1

2

∂

∂ξ
+

1

2i

∂

∂η
,

∂

∂β
=

1

2

∂

∂ξ
− 1

2i

∂

∂η
,

u′′

αβ =
1

4

(

∂

∂ξ
+

1

i

∂

∂η

)(

∂

∂ξ
− 1

i

∂

∂η

)

u =
1

4

(

u′′

ξξ + u′′

ηη

)

The substitution of the latter relation to (15.1) shows that an elliptic
equation can always be transformed to the standard form

(15.4) u′′

ξξ + u′′

ηη = 4G1

which is to be compared to the second standard form of a hyperbolic
equation (15.2).

Example 15.3. Show that the equation

u′′

xx − 2u′′

xy + 5u′′

yy = xu′

yu

is an elliptic equation and find the standard form of the equation by
making a suitable change of variables.

Solution: In this equation a = 1, b = 5, and c = −1. Therefore
D = c2 − ab = −4 < 0 and, hence, the equation is elliptic. It has two
complex characteristics

γ(x, y) = y + (1 − 2i)x = γ0 , γ̄(x, y) = y + (1 + 2i)x = γ0

The real and imaginary parts of the characteristic function γ define
new variables in which the equation should have the standard form

ξ = y + x , η = −2x
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Using the chain rules

∂

∂x
= ξ′x

∂

∂ξ
+ η′

x

∂

∂η
=

∂

∂ξ
− 2

∂

∂η
,

∂

∂y
= ξ′y

∂

∂ξ
+ η′

y

∂

∂η
=

∂

∂ξ
,

u′′

xx =

(

∂

∂ξ
− 2

∂

∂η

)2

u = u′′

ξξ − 4u′′

ξη + 4u′′

ηη ,

u′′

xy =
∂

∂ξ

(

∂

∂ξ
− 2

∂

∂η

)

= u′′

ξξ − 2u′′

ξη ,

u′′

yy =

(

∂

∂ξ

)2

u = u′′

ξξ

The substitution of the above relations into the equation in question
yields

4u′′

ξξ + 4u′′

ηη = −1

2
ηu′

ξu ⇒ u′′

ξξ + u′′

ηη = −1

8
ηu′

ξu

�

15.4. Exercises.

1. For each of the following PDEs, find the characteristics and reduce
the equation to the standard form:

(i) u′′

xx − 6u′′

xy = u′

x + xu ,

(ii) u′′

xx + 2u′′

xy + 3u′′

yy = yx ,

(iii) u′′

xx + 2u′′

xy + 4u′′

yy = yu

2. Find a general solution by reducing it the following equation to a
standard form

u′′

yy − 6u′′

xy = 0

3. Find all polynomial solutions to the following equation by reducing
it to the standard form

u′′

xx + 2u′′

xy + 5u′′

yy = 0

Hint: Recall harmonic polynomials

4. Find a general solution to the following equation by reducing it
to the standard form

u′′

xx + 4u′′

xy + 4u′′

yy = −4u
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Selected answers.

2. u(x, y) = f(x) + g(x + 6y), f and g are any functions from C2

3.

u(x, y) = A0 +
N
∑

n=1

(

An Re zn + Bn Im zn
)

, z = y − x + 2ix

where An and Bn are constants.

4.

u(x, y) = f(y − 2x) cos
(

x +
1

2
y
)

+ g(y − 2x) sin
(

x +
1

2
y
)

where f and g are any functions from C2
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16. Linear PDE with constant coefficients

16.1. Standard form of linear PDEs with constant coefficients. Consider
the most general linear equation of second order with constant coeffi-
cients

au′′

xx + bu′′

yy + 2cu′′

xy + pu′

x + qu′

y + mu = f(x, y)

Here a, b, c, p, q, and m are constants. Using a change of variables
associated with the characteristics of this equation, the latter can be
reduced to one of the following forms

elliptic : u′′

αα + u′′

ββ + Pu′

α + Qu′

β + mu = f ,
hyperbolic : u′′

αα − u′′

ββ + Pu′

α + Qu′

β + mu = f ,
parabolic : u′′

ββ + Pu′

α + Qu′

β + mu = f .

For a further simplification, let us make a substitution

u = ekα+nβv

where v is a new function and k and n are constants. It follows that

u′

α = ekα+nβ(v′

α + kv) ,

u′

β = ekα+nβ(v′

β + nv) ,

u′′

αα = ekα+nβ(v′′

αα + 2kv′

α + k2v) ,

u′′

ββ = ekα+nβ(v′′

ββ + 2nv′

β + n2v) .

By a suitable choice of parameters k and n, one can always reduce the
elliptic, hyperbolic, and parabolic equations with constant coefficients to
the following standard forms:

(16.1)
elliptic : v′′

αα + v′′

ββ + µv = g ,
hyperbolic : v′′

αα − v′′

ββ + µv = g ,
parabolic : v′′

ββ + µv′

α = g .

For example, in the case of the elliptic equation, the aforementioned
substitution yields (after multiplying each side of the equation by e−kα−nβ)

v′′

αα + v′′

ββ + (P + 2k)v′

α + (Q + 2n)v′

β

+(k2 + n2 + Pk + Qn + m)v = fe−kα−nβ

Set

k = −P

2
, n = −Q

2
to make the coefficients at the first partial derivatives vanish. Thus, in
the case of the elliptic equation

µ =
1

2
(P 2 + Q2) + m , g = fe−kα−nβ
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Example 16.1. Determine the type of the equation and reduce it
to one of the standard form:

u′′

xx + 2u′′

xy + u′′

yy + 4u′

x − 2u′

y + 1
4
u = 0

Solution: In this equation a = b = c = 1. Therefore D = c2 − ab = 0
and, hence, this is a parabolic equation. The characteristic equation
has the form

(dy)2 − 2dxdy + (dx)2 = 0 ⇒ (dy − dx)2 = 0

It has one solution

γ(x, y) = y − x = γ0

The change of variables needed to reduce the equation to the standard
form can be taken as

α = γ(x, y) = y − x , β = y + x

The choice of the second variable β is arbitrary in the parabolic case,
safe for one condition that the Jacobian of the transformation is not
zero, which is the case with the above choice of β. By the chain rule

∂

∂x
= − ∂

∂α
+

∂

∂β
,

∂

∂y
=

∂

∂α
+

∂

∂β
,

u′′

xx =

(

− ∂

∂α
+

∂

∂β

)2

u = u′′

αα − 2u′′

αβ + u′′

ββ ,

u′′

yy =

(

∂

∂α
+

∂

∂β

)2

u = u′′

αα + 2u′′

αβ + u′′

ββ ,

u′′

xy =

(

∂

∂α
+

∂

∂β

)(

− ∂

∂α
+

∂

∂β

)

u = −u′′

αα + u′′

ββ .

Substituting the partial derivatives in the new variables into the given
equation, the latter is reduced to the following form

4u′′

ββ − 6u′

α + 2u′

β + 1
4
u = 0

Next, let us make a substitution

u = eaα+bβv

where v is a new function, and the constants a and b are chosen to
simplify the linear combination of the unknown function and its first
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partial derivatives as much as possible

4(v′′

ββ + 2bv′

β + b2v)− 6(v′

α + av) + 2(v′

β + bv) + 1
4
v = 0 ,

4v′′

ββ + (8b + 2)v′

β − 6v′

α + (4b2 − 6a + 2b + 1
4
)v = 0

By choosing

b = −1

4
the coefficient at v′

β can be reduced to zero. The coefficient at v′

α

cannot be modified, while the coefficient at v can be reduced to zero
by choosing

a =
1

6
(4b2 + 2b + 1

4
) =

1

6
Thus, the standard form of the equation reads

v′′

ββ − 3
2
v′

α = 0 ,

where
α = y − x , β = y + x , u = e

1

6
α− 1

4
βv .

�

16.2. Exercises.

1-3. Reduce each of the following equations to the standard form
(16.1) by means of the substitution u = ekx+myv with a suitable choice
of constants k and m:
1.

u′′

xx + u′′

yy = au′

x + bu′

y + cu

2.
u′′

xx − u′′

yy = au′

x + bu′

y + cu

3.
u′′

xx = au′

x + bu′

y + cu

4-7. Determine the type of each of the following equations with con-
stant coefficients and use a suitable change of variables and, if neces-
sary, a substitution to reduce the equations to the standard form (16.1):

4.
u′′

xx − 2u′′

xy + u′′

yy + au′

x + bu′

y + cu = 0

5.
u′′

xx − 2u′′

xy − 3u′′

yy + au′

x + bu′

y + cu = 0

6.
u′′

xx − 2u′′

xy + 5u′′

yy + au′

x + bu′

y + cu = 0
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7.
u′′

xy = au′

x + bu′

y + cu

Selected answers.

1. v′′

xx + v′′

yy = Cv, C = c + 1
4
a2 + 1

4
b2

2. v′′

xx − v′′

yy = Cv, C = c + 1
4
a2 − 1

4
b2

3. v′′

xx = bv′

y if b 6= 0, and v′′

xx = Cv if b = 0 where C = c + 1
4
a2

4. v′′

ββ + Av′

α = 0 if a 6= −b where A = 1
4
(a + b), and v′′

ββ + Cv = 0 if

a = −b where C = 1
4
(c − 1

4
a2); α = x + y, β = x − y.

5. v′′

αβ −Cv = 0, C = 1
16

[ 1
16

(3a + b)(b− a) + c], α = y − x, β = y + 3x.

6. v′′

αα +v′′

ββ +Cv = 0, C = 1
4
c− 1

64
(a+ b)2− 1

16
a2, α = x+y, β = ±2x.

7. v′′

xy = (c + ab)v.
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17. Non-constants coefficients

It turns out that the analysis of the case with constant coefficients
at the second partial derivatives is easily extended to a general case
when the coefficients are general C1 functions:

a = a(x, y) , b = b(x, y) , c = c(x, y)

First, note that under a general change of variables

α = α(x, y) , β = β(x, y)

where α(x, y) and β(x, y) are from the class C2, the equation

au′′

xx + 2cu′′

xy + bu′′

yy = F (x, y, u, u′

x, u
′

y)

becomes

(17.1) Au′′

α + 2Cu′′

αβ + Bu′′

ββ = G(α, β, u, u′

α, u
′

β)

where the coefficients A, B, and C are given by Eqs. (14.1)–(14.3). The
terms containing second partial derivatives of α and β depend only on
u′

α and u′

β and, hence, are included into G. Indeed, if α′

x, α′

y, β ′

x, and β ′

y

are not constants, then the chain rules for u′

x and u′

y remains the same,
while the chain rule for the second partials yields additional terms. For
example,

u′′

xx =
∂

∂x
u′

x =
∂

∂x
(α′

xu
′

α + β ′

xu
′

β)

= α′

x

∂

∂x
u′

α + β ′

x

∂

∂x
u′

β + α′′

xxu
′

α + β ′′

xxu
′

β

= α′

x

(

α′

x

∂

∂α
+ β ′

x

∂

∂β

)

u′

α + β ′

x

(

α′

x

∂

∂α
+ β ′

x

∂

∂β

)

u′

β

+α′′

xxu
′

α + β ′′

xxu
′

β

= (α′

x)
2u′′

αα + 2α′

xβ
′

xu
′′

αβ + (β ′

x)
2u′′

ββ + α′′

xxu
′

α + β ′′

xxu
′

β

Note that the coefficients at the second partials with respect to the
new variables have the same form as in the case of a linear change
of variables. The difference is that there are additional linear combi-
nations of u′

α and u′

β in the second partials u′′

xx, u′′

xy, and u′′

yy. These
additional linear combinations are included into a general function G,
while the expressions (14.1), (14.2), and (14.3) for the coefficients A,
B, and C , respectively, remains true for a general change of variables.
This implies that in order to reduce A or B or both to zero, one has
to solve the first order PDE (14.4).
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17.1. The method of characteristics. The first order PDE (14.4) can be
solved by the method of characteristics that has a natural extension to
the case of non-constant coefficients a, b, and c. First, Proposition 14.1
can be extended to the case of a general change of variables.

Theorem 17.1. Let a, b, and c be functions from the class C1 such
that a and b do not vanish simultaneously anywhere. If a function
γ(x, y) ∈ C1 is a solution to

(17.2) a(x, y)(γ′

x)
2 + 2c(x, y)γ′

xγ
′

y + b(x, y)(γ′

y)
2 = 0

such that γ′

x and γ′

y do not vanish simultaneously anywhere, then level
curves γ(x, y) = γ0 are solutions to the ordinary differential equation

(17.3) a(x, y)(dy)2 − 2c(x, y)dxdy + b(x, y)(dx)2 = 0 .

Conversely, if level curves of a function γ(x, y) ∈ C1 are solutions to
(17.3), then the function γ(x, y) is a solution to (17.2).

Proof. Let γ(x, y) be a solution to (17.2). Let (x0, y0) be a point
in a level set of the function γ, that is, γ(x0, y0) = γ0. Suppose that
γ′

y(x0, y0) 6= 0. By the implicit function theorem (Theorem 8.2), the
equation γ(x, y) = γ0 has a unique solution y = y(x) in a neighbor-
hood of a point (x0, y0) such that y0 = y(x0) and the function y(x) is
differentiable and

dy

dx
= −γ′

x

γ′

y

(17.4)

⇒ γ′

x(x, y)dx + γ′

y(x, y)dy = 0(17.5)

If γ′

y(x0, y0) = 0, then γ′

x(x0, y0) 6= 0 and, by the implicit function
theorem, the equation γ(x, y) = γ0 can be solved for x so that the
solution x = x(y) is a differentiable function of y and dx/dy = −γ′

y/γ
′

x.
The latter leads to (17.5) again.

Next, it is shown that any curve satisfying (17.5) also satisfies ODE
(17.3). Without loss of generality it is assumed that γ′

y(x0, y0) 6= 0,
then near (x0, y0) the slope of the level curve is given by (17.4). The
substitution of (17.4) into (17.3) yields

a
(dy

dx

)2

− 2c
dy

dx
+ b = a

(

−γ′

x

γ′

y

)2

− 2c
(

−γ′

x

γ′

y

)

+ b

=
1

(γ′

y)
2

(

a (γ′

x)
2 + 2c γ′

xγ
′

y + b (γ′

y)
2
)

= 0
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because γ is a solution to (17.2). So, the level curve of γ passing
through (x0, y0) is a solution to ODE (17.3). Since the choice of (x0, y0)
is arbitrary, the conclusion holds everywhere.

Conversely, suppose a(x0, y0) 6= 0 so that a(x, y) 6= 0 near (x0, y0)
by continuity of a. Then near (x0, y0) Eq. (17.3) has two solutions

dy

dx
=

c(x, y)±
√

D(x, y)

a(x, y)
,

where D(x, y) = c2(x, y) − a(x, y)b(x, y). By Theorem 10.1, the initial
value problem y(x0) = y0 for any of these equations has a unique
solution because a, b, and c are from the class C1. The solution is a
smooth curve through (x0, y0) which can be represented as a level curve
of a function γ(x, y) ∈ C1 so that

dy

dx
=

c(x, y)±
√

D(x, y)

a(x, y)
= −γ′

x(x, y)

γ′

y(x, y)

by the implicit function theorem. The latter relation shows that −γ′

x/γ
′

y

is a root of the quadratic equation for the slope of the characteristic
and, hence, γ satisfies (17.2):

a
(γ′

x

γ′

y

)2

+ 2c
γ′

x

γ′

y

+ b = a

(

c ±
√

D

a

)2

− 2c
c ±

√
D

a
+ b

= 0

If a(x0, y0) = 0, then b(x0, y0) 6= 0. Equation (17.3) can be solved
for the slope dx/dy near such point. The obtained ODE has a unique
solution that defines a smooth curve passing through the point (x0, y0).
This curve can always be viewed as a level curve of some function
γ(x, y) such that γ′

x(x0, y0) 6= 0. By the implicit function theorem, the
slope of this curve is dx/dy = −γ′

y/γ
′

x and, hence, is also a root of the
quadratic equation (17.3). The latter implies that γ must be a solution
to (17.2). Since the choice of (x0, y0) is arbitrary, the conclusion holds
everywhere. �

17.2. Classification of second order PDEs. The discriminant D = D(x, y)
is a function of x and y. Therefore its sign depends on (x, y) and so
does the type of PDE.

Definition 17.1. (Classification of second-order PDEs)
The equation

a(x, y)u′′

xx + 2c(x, y)u′′

xy + b(x, y)u′′

yy = F (x, y, u, u′

x, u
′

y)

is called
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• hyperbolic in Ω if D(x, y > 0 , (x, y) ∈ Ω
• elliptic in Ω if D(x, y) < 0 , (x, y) ∈ Ω
• parabolic in Ω if D(x, y) = 0 , (x, y) ∈ Ω

where Ω is an open region and

D(x, y) = c2(x, y) − a(x, y)b(x, y)

Recall that a PDE is defined in an open set Ω. The type of PDE
determines a change of variables in Ω that is needed to reduce the PDE
to one of the standard forms. For example, the equation

u′′

xx + xu′′

yy = 0 is

{

elliptic in Ω+ = {(x, y)|x > 0}
hyperbolic in Ω− = {(x, y)|x < 0}

The set where D = 0 is the line x = 0. It has no interior points at all
as a set in R

2 and, hence, it has no open subset in which the equation
may be viewed as a parabolic equation.

Remark. In general case, integration of the characteristic equation
(17.3) is a difficult task. If, however, if two independent integrals (char-
acteristics) are known, a PDE can be reduced to the corresponding
standard form in the same way as in the case with constant coefficients
a, b, and c.

17.3. Hyperbolic equations. If there is an open set Ω in which D(x, y) >
0, then the characteristic equation has two real independent integrals
(curves) satisfying two ordinary differential equations

dy

dx
=

c(x, y) +
√

D(x, y)

a(x, y)
⇒ α(x, y) = α0

dy

dx
=

c(x, y)−
√

D(x, y)

a(x, y)
⇒ β(x, y) = β0

where α0 and β0 are constants. Let us show that the transformation

α = α(x, y) , β = β(x, y)

defines a change of variables in Ω. Since a and b do not vanish si-
multaneously, let a 6= 0 in a neighborhood of some point. Then in
this neighborhood, α′

y 6= 0 and β ′

y 6= 0 because α(x, y) and β(x, y) are
solutions to are solutions to the first-order PDE (17.2) (see (17.4)).
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Then

α′

x

α′

y

= −c(x, y) +
√

D(x, y)

a(x, y)
,

β ′

x

β ′

y

= −c(x, y)−
√

D(x, y)

a(x, y)

Therefore the Jacobian of the transformation is

J = α′

xβ
′

y − α′

yβ
′

x == α′

yβ
′

y

(

α′

x

α′

y

− β ′

x

β ′

y

)

=
2α′

yβ
′

y

a

√
D 6= 0

because D > 0. If a(x, y) = 0, then one of the characteristics is an in-
tegral of the equation dx = 0 so that β(x, y) = x, whereas the function
α(x, y) solves (17.2)

α′

x

α′

y

= −2c(x, y)

b(x, y)
, α′

y(x, y) 6= 0 .

Therefore J = −α′

y 6= 0. The points where the gradients of α or β
vanish are singular points of the change of variables. Just like in the
case of first order PDE, if such a point happens to be in Ω, then any
solution found near this point has to have a smooth extension to this
point otherwise it is not a solution to the original PDE.

In the new variables associated with the two independent charac-
teristics, A = B = 0 in (17.1) and a hyperbolic PDE is reduced to
(15.1) or to (15.2) if, in addition,

ξ =
1

2
(α + β) , η =

1

2
(α − β) .

17.4. An operator method to transform partial derivatives. Although the
coefficients A and B are proved to vanish in the new variables, all
second partial derivatives also contains terms linear in the first-order
partial derivatives that have to be calculated in order to reduce the
equation to its standard form. It is convenient to use the following
technical trick. Let ∂x denotes an operator of taking a partial derivative
with respect to x, that is, the operator acts on a function u producing
u′

x, which is written as

∂xu = u′

x

The second partial derivative u′′

xx is the result of a repeated action of
∂x on u. For example,

∂2
xu = ∂x(∂xu) = ∂xu

′

x = u′′

xx , ∂x∂yu = u′′

xy , ∂2
yu = u′′

yy
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One can consider operators obtained by multiplication of a function
and a differentiation operators. For example,

Dx = u∂x , Dxv = u∂xv = uv′

x ,

for any function v. The operators of differentiation satisfy the product
rule. For example,

∂x(uv) = (∂xu)v + u(∂xv) , ∂xDy = ∂x(u∂y) = u′

x∂y + u∂x∂y .

There is a relation between the operators of differentiation in the old
and new variables:

∂x = α′

x∂α + β ′

x∂β , ∂y = α′

y∂α + β ′

y∂β .

established by the chain rules. Then

∂2
x = ∂x(α

′

x∂α + β ′

x∂β) = (∂xα
′

x)∂α + (∂xβ
′

x)∂β + α′

x∂x∂α + β ′

x∂x∂β

= α′′

xx∂α + β ′′

xx∂β + α′

x(α
′

x∂α + β ′

x∂β)∂α + β ′

x(α
′

y∂α + β ′

y∂β)∂β

= α′′

xx∂α + β ′′

xx∂β + (α′

x)
2∂2

α + 2α′

xβ
′

x∂α∂β + (β ′

x)
2∂2

β

u′′

xx = α′′

xxu
′

α + β ′′

xxu
′

β + (α′

x)
2u′′

αα + 2α′

xβ
′

xu
′′

αβ + (β ′

x)
2u′′

ββ

Other second partial derivatives can be computed similarly.

Example 17.1. Reduce the equation

u′′

xx − xyu′′

yy = 0 , (x, y) ∈ Ω = {(x, y)|x > 0 , y > 0}
to the standard form.

Solution: Here a = 1, c = 0, and b = xy. Therefore D(x, y) = xy > 0
in Ω. The characteristic equation reads

(dy)2 − xy(dx)2 = 0 ⇒ dy = ±√
xy dx

which are easily integrated by separating variables

dy =
√

xy dx ⇒
∫

dy√
y

=

∫ √
xdx ⇒ 2y1/2 − 2

3
x3/2 = α0

dy = −√
xy dx ⇒

∫

dy√
y

= −
∫ √

xdx ⇒ 2y1/2 +
2

3
x3/2 = β0

Put

α = 2y1/2 − 2

3
x3/2 , β = 2y1/2 +

2

3
x3/2

and

ξ =
1

2
(α + β) = 2y1/2 , η =

1

2
(β − α) =

2

3
x3/2
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Using the chain rules

∂

∂x
= x1/2 ∂

∂η
,

∂

∂y
= y−1/2 ∂

∂ξ
,

u′′

xx =
∂

∂x

(

x1/2u′

η

)

= x1/2 ∂

∂x
u′

η +
1

2
x−1/2u′

η = xu′′

ηη +
1

2
x−1/2u′

η

u′′

yy =
∂

∂y

(

y−1/2u′

ξ

)

= y−1/2 ∂

∂y
u′

ξ −
1

2
y−3/2u′

ξ = y−1u′′

ξξ −
1

2
y−3/2u′

ξ

The substitution of the second partials into the original equation with
a subsequent replacement of x and y by the corresponding functions of
ξ and η yield:

u′′

xx − xyu′′

yy = xu′′

ηη +
1

2
x−1/2u′

η − xu′′

ξξ +
1

2
xy−1/2u′

ξ

= x(u′′

ηη − u′′

ξξ) +
x

2

(

x−3/2u′

η + y−1/2u′

ξ

)

= 0

u′′

ηη − u′′

ξξ = − 1

3η
u′

η −
1

4ξ
u′

ξ

�

17.5. Parabolic equations. In the case of parabolic equations D(x, y) =
0 in an open region Ω and two characteristics coincide. A change
of variables that reduces the equation to the standard form (15.3) is
obtained in the same way as in the case with constant coefficients,
namely, one of the new variables is determined by the characteristic (a
solution to (17.2) or (17.3)), while the other is arbitrary subject to the
only condition that the Jacobian of the transformation does not vanish
in Ω:

dy

dx
=

c(x, y)

a(x, y)
⇒ γ(x, y) = α0 ,

α = γ(x, y) , β = ϕ(x, y)

where ϕ is a C2 function such that

J = γ′

xϕ
′

y − γ′

yϕ
′

x 6= 0 , (x, y) ∈ Ω .

If the right side of Eq. (15.3) is independent of u′

α, then the equation
becomes an ordinary differential equation in which the coordinate α
plays the role of a parameter.

Example 17.2. Determine the type of the equation and use a suit-
able change of variable to reduce the equation to the standard form:

xu′′

xx + 2
√

xyu′′

xy + yu′′

yy + 1
2
u′

y = 0 , x > 0 , y > 0
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Specify the new region in which the standard equation is to be solved.

Solution: In this equation a = x, b = y, and c =
√

xy. Therefore

D(x, y) = c2 − ab = xy − xy = 0 , x > 0 , y > 0

and the equation is parabolic in the first quadrant. The characteristic
equation (17.3) is easily integrated by separating variables

dy

dx
=

c

a
=

√
y√
x

⇒
∫

dy√
y

=

∫

dx√
x

⇒ √
y −

√
x = C

Therefore the new variables can be taken in the form

α =
√

y −
√

x , β = y

because the Jacobian of the transformation does not vanish in the first
quadrant:

J = α′

xβ
′

y − α′

yβ
′

x = − 1

2
√

x
6= 0 , x > 0 , y > 0 .

Using the chain rules

∂

∂x
= − 1

2
√

x

∂

∂α
,

∂

∂y
=

1

2
√

y

∂

∂α
+

∂

∂β
,

u′′

xx =
∂

∂x

∂u

∂x
=

∂

∂x

(

− 1

2
√

x
u′

α

)

= − 1

2
√

x

∂

∂x
u′

α +
1

4
x−3/2u′

α

=
1

4x
u′′

αα +
1

4
x−3/2 u′

α

u′′

yy =
∂

∂y

∂u

∂y
=

∂

∂y

(

1

2
√

y
u′

α + u′

β

)

=
1

2
√

y

∂

∂y
u′

α +
∂

∂y
u′

β − 1

4
y−3/2 u′

α

=
1

4y
u′′

αα +
1√
y

u′′

αβ + u′′

ββ − 1

4
y−3/2 u′

α

u′′

xy =
∂

∂x

∂u

∂y
=

∂

∂x

(

1

2
√

y
u′

α + u′

β

)

=
1

2
√

y

∂

∂x
u′

α +
∂

∂x
u′

β

= −1

4
(xy)−1/2u′′

αα − 1

2
x−1/2u′′

αβ
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The substitution of the second partials into the equation yields

xu′′

xx + 2
√

xyu′′

xy + yu′′

yy = x
(

1
4
x−1 u′′

αα + 1
4
x−3/2 u′

α

)

+ 2(xy)1/2
(

−1
4
(xy)−1/2u′′

αα − 1
2
x−1/2u′′

αβ

)

+ y
(

1
4
y−1 u′′

αα + y−1/2 u′′

αβ + u′′

ββ − 1
4
y−3/2 u′

α

)

= yu′′

ββ − 1
4
(y−1/2 − x−1/2)u′

α

A subsequent substitution of the latter relation and y = β and
√

x =√
β − α reduces the equation to the standard form:

yu′′

ββ − 1
4
(y−1/2 − x−1/2)u′

α + 1
2

(

1
2
y−1/2u′

α + u′

β

)

= 0

u′′

ββ = − 1

4β(
√

β − α)
u′

α − 1

2β
u′

β , (α, β) ∈ Ω′

To find Ω′ in the αβ plane, note that the boundary ∂Ω of Ω should
be mapped onto the boundary of Ω′ by the transformation considered.
The region Ω is bounded by the coordinate axes so that the line y = 0
(the x axis) is mapped to β = 0 (the α axis) and the line x = 0 (the y
axis) is mapped to the parabola α =

√
β. Therefore the equation is to

be solved in the open region

Ω′ =
{

(α, β) |α <
√

β , β > 0
}

�

Peculiarities of parabolic equations. There are a few features in the stan-
dard form of a parabolic PDE that are independent of the choice of the
second variable β. For example, in Example 17.2 one can generally set

α =
√

y −
√

x , β = β(x, y)

where β(x, y) is a C2 function such that the Jacobian does not vanish
in Ω (the first quadrant):

J = −
β ′

y

2
√

x
− β ′

x

2
√

y
= − 1

2
√

xy

(√
xβ ′

x +
√

y β ′

y

)

6= 0 , x > 0 , y > 0
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By the chain rules similar to those obtained in Example 17.2:

∂

∂x
= − 1

2
√

x

∂

∂α
+ β ′

x

∂

∂β
,

∂

∂y
=

1

2
√

y

∂

∂α
+ β ′

y

∂

∂β
,

u′′

xx =
1

4x
u′′

αα − β ′

x√
x

u′′

αβ + (β ′

x)
2u′′

ββ +
1

4x
√

x
u′

α + β ′′

xx u′

β ,

u′′

yy =
1

4y
u′′

αα +
β ′

y√
y

u′′

αβ + (β ′

y)
2 u′′

ββ − 1

4y
√

y
u′

α + β ′′

yy u′

β ,

u′′

xy = − 1

4
√

xy
u′′

αα +

(

β ′

x

2
√

y
−

β ′

y

2
√

x

)

u′′

αβ + β ′

xβ
′

yu
′′

ββ + β ′′

xy u′

β

Therefore the equation is reduced to the standard form

0 = xu′′

xx + y u′′

yy + 2
√

xy u′′

xy + 1
2
u′

y

= u′′

αα

(

1
4

+ 1
4
− 1

2

)

+ u′′

αβ

(

−
√

xβ ′

x +
√

yβ ′

y +
√

xβ ′

x −
√

yβ ′

y

)

+u′′

ββ

(

x(β ′

x)
2 + y(β ′

y)
2 + 2

√
xyβ ′

xβ
′

y

)

+u′

α

(

1

4
√

x
− 1

4
√

y
+

1

4
√

y

)

+u′

β

(

xβ ′′

xx + yβ ′′

yy + 2
√

xyβ ′′

xy +
β ′

y

2

)

= 4xyJ2u′′

ββ +
1

4
√

x
u′

α + u′

β

(

xβ ′′

xx + yβ ′′

yy + 2
√

xyβ ′′

xy +
β ′

y

2

)

The equation can be divided by 4xyJ2 because J(x, y) 6= 0 in Ω so that
it assumes the desired form (15.3).

Can the freedom in choosing β(x, y) be used to further simplify the
parabolic equation? First, the choice of β(x, y) cannot be used to make
the coefficient at u′

α to be zero and thereby to reduce the equation to an
ordinary differential equation in which the variable α is a parameter.
This is a general feature, not specific to the example considered. That
this coefficient vanishes or does not vanish is determined only by the
characteristic α(x, y) of a parabolic PDE and, of course, by coefficients
a, b, and c.

Second, the choice of β(x, y) may only be used to simplify the de-
pendence of the equation on u′

β. For instance, if

β(x, y) =
√

y +
√

x ⇒ J = − 1

2
√

xy
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then the standard form of the parabolic equation in Example 17.2 reads

u′′

ββ =
1

2(β − α)

(

u′

β − u′

α

)

, β > |α| > 0

With the choice β = x +
√

y, the coefficient at u′

β vanishes in the stan-
dard form, but the coefficient at u′

α has a more complicated dependence
on α and β. Yet, the new region in which the equation is to be solved
has a more complicated boundary: β > α > 0 and β2 > −α > 0.
Technical details are left to the reader as an exercise.

17.6. Elliptic equations. For an elliptic PDE, D(x, y) < 0 in an open
region Ω. In this case, the characteristic equation has two complex
independent integrals

dy

dx
=

c(x, y) − i
√

−D(x, y)

a(x, y)
⇒ γ(x, y) = C

dy

dx
=

c(x, y) + i
√

−D(x, y)

a(x, y)
⇒ γ̄(x, y) = C̄

where γ̄ is the complex conjugation of γ. The equation can be reduced
to the standard form (15.4) by means of the change of variables

ξ = Re γ(x, y) =
1

2

(

γ(x, y) + γ̄(x, y)
)

,

η = Im γ(x, y) =
1

2i

(

γ(x, y)− γ̄(x, y)
)

.

One can show that the Jacobian of this transformation is not equal
to zero. A proof of this assertion is similar to the case of hyperbolic
equations, and technicalities are left to the reader as an exercise.

Example 17.3. Reduce the equation to the standard form by a suit-
able change of variables

y2u′′

xx + e2xu′′

yy +
1

2
y u′

y = 0 , y > 0 , x ∈ R

Find the new region in which the standard equation is to be solved.

Solution: In the PDE in question a = y2, c = 0, and b = e2x. There-
fore D = c2 − ab = −y2e2x < 0 in the upper half of the xy plane and,
hence, this an elliptic PDE The complex characteristic is determined
by a general integral of the equation that is solved by separation of
variables

dy

dx
= − iex

y
⇒

∫

ydy = i

∫

exdx ⇒ γ(x, y) =
1

2
y2 + iex = C
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Therefore the sought-after change of variables reads

ξ = Re γ(x, y) =
1

2
y2 , η = Im γ(x, y) = ex

The Jacobian reads

J = ξ′xη
′

y − ξ′yη
′

x = yex 6= 0 , y > 0 , x ∈ R .

By the chain rules

∂

∂x
= ex ∂

∂η
,

∂

∂y
= y

∂

∂ξ
,

u′′

xx =
∂

∂x

(

exu′

η

)

= ex ∂

∂x
u′

η + exu′

η = e2xu′′

ηη + exu′

η ,

u′′

yy =
∂

∂y

(

yu′

ξ

)

= y
∂

∂y
u′

ξ + u′

ξ = y2u′′

ξξ + u′

ξ

The substitution of the partials in the new variables into the equation
yields

y2
(

e2xu′′

ηη + exu′

η

)

+ e2x
(

y2u′′

ξξ + u′

ξ

)

+
y2

2
u′

ξ = 0 ,

u′′

ηη + u′′

ξξ +
e2x + 1

2
y2

y2e2x
u′

ξ + e−x u′

η = 0 ,

u′′

ηη + u′′

ξξ +
η2 + ξ

2ξη2
u′

ξ +
1

η
u′

η = 0

The latter equation is to be solved in the open region that is the image
of the upper half-plane under the transformation (x, y) → (ξ, η):

(ξ, η) ∈ Ω′ =
{

(ξ, η) | ξ > 0 , η > 0
}

.

�

17.7. Exercises.

1-5. Reduce each of the following equations to the standard form
in the specified open region by means of a suitable change of variables
and determine the region spanned by the new variables in which the
reduced equation is to be solved:
1.

u′′

xx + xyu′′

yy = 0 , x > 0 , y > 0

2.
e2xu′′

xx + 2ex+yu′′

xy + e2yu′′

yy = 0 , (x, y) ∈ R
2

3.
u′′

xx − 2xyu′′

xy − 3(xy)2u′′

yy = 0 , x > 0 , y > 0
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4. Here b(y) > 1, b(y) → 1 as |y| → ∞, and b ∈ C1

u′′

xx − b2(y)u′′

yy = 0 , (x, y) ∈ R
2 .

5. Here b(y) > 1, b(y) → 1 as |y| → ∞, and b ∈ C1

u′′

xx + b2(y)u′′

yy = 0 , (x, y) ∈ R
2 .

6. Is there any choice of functions f(x, y) and g(x, y) for which the
following equation can be reduced to an ordinary differential equation?

e2xu′′

xx + 2ex+yu′′

xy + e2yu′′

yy = fu′

x + gu′

y , (x, y) ∈ R
2

Selected answers.

1. u′′

αα + u′′

ββ = 1
β

u′

β − 1
3α

u′

α, α = 2
3
x3/2, β = 2y1/2.

2. u′′

ββ + β
β2−α2 u′

α − α
β2−α2 u′

β = 0, α = e−y − e−x, β = e−y + e−x.

3. u′′

αβ = 3
16

2+β−α
β−α

u′

β + 1
16

3β−3α−2
β−α

u′

α, α = ln(y)− 1
2
x2, β = ln(y) + 3

2
x2.

4. u′′

αβ = 1
4
b′(y)(u′

α + u′

β) where y is the root of the equation F (y) =
1
2
(α + β) and F (y) =

∫ y

0
dz

b(z)
(there exists only one root. Prove it!)

5. u′′

αα + u′′

ββ = b′(y)u′

β where y is the root of the equation F (y) = β

and F (y) =
∫ y

0
dz

b(z)
(there exists only one root. Prove it!)

6. Yes. e−xf + e−x = e−yg + ey.
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18. Multivariable second-order PDEs

Let x = (x1, x2, ..., xn) ∈ R
n. A general second-order PDE in n

variables has the form

(18.1)

n
∑

j=1

n
∑

k=1

ajk(x)
∂2u

∂xj∂xk
= F (x, u,∇u) , x ∈ Ω

where F is a function of x, u, and its gradient ∇u, and Ω is an open
region in R

n. Consider a change of variables in Ω

αj = αj(x) , j = 1, 2, ..., n

This implies that the Jacobian of this transformation does not vanish
in Ω:

Jjk =
∂αk

∂xj
, J(x) = det(Jjk) 6= 0 , x ∈ Ω

By the chain rule

∂

∂xj
=

n
∑

m=1

∂αm

∂xj

∂

∂αm
=

n
∑

m=1

Jjm
∂

∂αm
,

∂2u

∂xj∂xk
=

∂

∂xk

(

n
∑

m=1

Jjm
∂u

∂αm

)

=
n
∑

m=1

Jjm
∂

∂xk

∂u

∂αm
+

n
∑

m=1

∂Jjm

∂xk

∂u

∂αm

=

n
∑

m=1

n
∑

l=1

JjmJkl
∂2u

∂αl∂αm
+

n
∑

m=1

∂Jjm

∂xk

∂u

∂αm

Therefore in the new variables the equation assumes the form
n
∑

m=1

n
∑

l=1

Aml
∂2u

∂αl∂αm
= G,(18.2)

G = F −
n
∑

m=1

∂Jjm

∂xk

∂u

∂αm
,

Aml =

n
∑

j=1

n
∑

k=1

JjmJklajk

The relation between coefficients Aml and ajk can be cast in the matrix
form

A = JTaJ

where A and a are n × n symmetric matrices with elements Aml and
ajk, respectively, and J is the Jacobian matrix with elements Jjk and
JT is the transposition of J .
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Suppose that the coefficients ajk are constant. Consider a quadratic
form associated with a symmetric matrix a = aT :

yTay =
n
∑

j=1

n
∑

k=1

ajkyjyk , y ∈ R
n

Take a linear change of variables

yk =
n
∑

j=1

Jkj βj or y = Jβ

Then the quadratic form in the new variables reads

yTay = (Jβ)T aJβ = βT JT aJβ = βTAβ

The new matrix in the quadratic form is also symmetric

AT = (JTaJ)T = JTaT (J)TT = JTaJ = A

It is known from the linear algebra that for every symmetric matrix
a = aT there exists a linear transformation defined by a non-singular
matrix J (that is, detJ 6= 0) such the transformed matrix A is diagonal
and its diagonal elements are either ±1 or 0:

Aml = 0 , m 6= l , All ∈ {1,−1, 0}
Furthermore, Sylvester’s law of inertia for quadratic forms asserts that
the number of diagonal elements of each kind is an invariant of a, that
is, it does not depend on the matrix J used to reduce the quadratic
form to its standard (diagonal) form.

Returning to Eq. (18.1), suppose that ajk are continuous functions
on an open set Ω. For every point x0 ∈ Ω, there is a linear non-singular
transformation (a change of variables) such that

Aml(x0) = 0 , m 6= l ; All(x0) ∈ {1,−1, 0}
Note that the transformation depends on x0. Owing to Sylvester’s law
of inertia, the following classification of second-order higher dimen-
sional PDEs is adopted.

Definition 18.1. Equation (18.1) at a point x0 is called

• an elliptic equation if all n coefficients All(x0) have the same
sign;

• a normal hyperbolic equation if n − 1 coefficients All(x0) have
the same sign, while one coefficient has an opposite sign;

• a hyperbolic equation if n > m > 1 coefficients All(x0) have the
same sign, while the other n−m coefficients have the opposite
sign;
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• a parabolic equation if at least one of the coefficients All(x0) is
equal to zero.

18.1. The case of constant coefficients. Suppose that ajk are constants.
Then the change of variables needed to reduce a second order PDE to
a standard form is linear:

αk =
n
∑

j=1

Jjkxj or α = JT x .

The matrix J can be found as follows. The matrix a is symmetric,
aT = a. It is known from the linear algebra that its eigenvalues are
real, they are roots of the characteristic polynomial of degree n:

Pn(λ) = det(a− λI) = 0

where I is the identity matrix, Ijk = δjk, and there exists an orthogonal
transformation O, OT = O−1 such that the matrix

OT aO = λ , λ = diag (λ1, λ2, ...., λn)

is diagonal with diagonal elements being the eigenvalues of a (if an
eigenvalue has a multiplicity m, then it is appears m times in the
diagonal of λ). Define a diagonal matrix Λ with matrix elements

Λjk = Λjδjk , Λj =

{

|λj|−1/2 , λj 6= 0
1 , λj = 0

and put
J = OΛ

Then it follows from

sign(λj) =
λj

|λj |
that

JT aJ = ΛT OTaOΛ = ΛTλΛ = A

Alm = Alδlm , Al =

{

sign(λl) , λl 6= 0
0 , λl = 0

Thus, A is a diagonal matrix with diagonal elements being ±1 and 0
as is required for the classification of second order PDEs.

The constructed linear transformation is a change of variables be-
cause its Jacobian

det(J) = det(O) det(Λ) = det(Λ) 6= 0

because Λ is a diagonal matrix with non-zero diagonal elements. The
Sylvester’s law of inertia implies that the only freedom left in con-
struction of J is permutations of eigenvalues λj. The corresponding



158 3. CLASSIFICATION OF SECOND-ORDER PDES

coordinate transformations are swapping coordinates. For example, a
permutation of λ1 and λ2 corresponds to a coordinate transformation
(α1, α2, α3, ..., αn) → (α2, α1, α3, ..., αn).

It also follows from the above analysis that the eigenvalues of the
matrix a can be used to classify a second order PDE

• If all eigenvalues of a do not vanish and have the same sign,
Eq. (18.1) is elliptic;

• If all eigenvalues of a do not vanish and have different signs,
Eq. (18.1) is hyperbolic;

• If all eigenvalues of a do not vanish and only one of them has
a different sign, Eq. (18.1) is normal hyperbolic;

• If at least one of the eigenvalues of a vanishes, Eq. (18.1) is
parabolic.

By the constructed linear change of variables Eq. (18.1) can be
reduced to one the following standard forms

elliptic :
∂2u

∂α2
1

+
∂2u

∂α2
2

+ · · · + ∂2u

∂α2
n

= G,

normal hyperbolic :
∂2u

∂α2
1

=
∂2u

∂α2
2

+
∂2u

∂α2
3

+ · · · + ∂2u

∂α2
n

+ G,

hyperbolic :
∂2u

∂α2
1

+
∂2u

∂α2
2

+ · · · + ∂2u

∂α2
m

=
∂2u

∂α2
m+1

+
∂2u

∂α2
m+2

+ · · · + ∂2u

∂α2
n

+ G,

parabolic : s1
∂2u

∂α2
1

+ s2
∂2u

∂α2
2

+ · · · + sm
∂2u

∂α2
m

= G,

sj = ±1 , j = 1, 2, ..., m < n

18.2. The existence of the standard form in a general case. A non-constant
matrix a(x) can be reduced to a diagonal matrix by an orthogonal
transformation at any particular point x0. So, just like in the previous
case, the eigenvalues of a at any particular point allows us to classify
a second order PDE at that point. So, it is always possible to find
a change of variables such that the coefficients Alm take the standard
values at a particular point x0:

(18.3) Alm(x0) = slm =

{

0 , l 6= m
±1, 0 , l = m
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where the number of ±1 and 0 in values of sll is determined by the
numbers of positive, negative, and vanishing eigenvalues of the matrix
a at a point x0.

The next question: Is it possible to find a change variables such
that Alm(x) has the standard form in a neighborhood of x0 (or in an
open set containing x0)? Since Eq. (18.2) can always be divided by a
non-vanishing function, it is sufficient that

Alm(x) = B(x)slm

for some B 6= 0 in order for (18.1) to have the standard form in a
neighborhood of x0. As in the two-variable case, this question amounts
to solving a system of the first-order PDEs:

n
∑

k=1

n
∑

j=1

ajk(x)
∂αm

∂xj

∂αl

∂xk
= B(x)slm

for all pairs (l, m), l ≥ m (because slm = slm) where B 6= 0 The system
has n unknown functions αj.

Let us count the number of conditions on αj. For l 6= m, the system
contains n(n−1)/2 equations, and for l = m there is n−1 independent
condition (because B is an arbitrary parameter). If n = 2, there are two
independent equations for two unknowns. In this case, the reduction
to the standard form is possible in an open set (as was shown above).

If n = 3, one can always choose three functions αj to reduce the
three non-diagonal elements Alm, l > m, to zero. So, it is possible to
achieve Alm = 0, l 6= m, in a open set, but there is no freedom left to
reduce the diagonal elements All to the standard form. The absolute
values of the three functions All must be equal in order for Eq. (18.1)
to be in the standard form, which comprises two more conditions on
αj.

For n > 3, it is not even possible to eliminate all mixed derivatives
(corresponding to the off-diagonal elements of A) by a change of vari-
ables because the number of equations is greater than the number of
unknowns. Note that 1

2
n(n − 1) > n implies n > 3 and vice versa.

Therefore, if n > 3, there is no change of variables under which Eq.
(18.1) can be reduced to one of the standard forms for a general choice
of ajk(x).

It is then concluded that for n ≥ 3, it is not generally possible
to reduce a second order PDE to a standard form in an open set by
a change of variables. Only in the case n = 2, there always exists a
change of variables under which (18.1) is reduced to one of the standard
forms as was shown above.
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18.3. Exercises.

1. Find conditions on the constants a, b, and c under which the equa-
tion

u′′

tt + au′′

xx + 2cu′′

xy + bu′′

yy = F (t, x, y, u, u′

t, u
′

x, u
′

y)

is either elliptic, or hyperbolic, or parabolic.

Selected answers.

1. Let D = c2 − ab. The equation is: elliptic if D > 0 and a > 0 (or
b > 0); hyperbolic if D < 0 or D > 0 and a < 0 (or b < 0); parabolic
if D = 0.


