
CHAPTER 7

Multi-variable PDEs

43. Basic problems of mathematical physics

As before, Ω denotes a region (an open connected set) in R
N and,

by assumption, the boundary ∂Ω is piecewise smooth. Recall that a
boundary of a region is smooth if it is a level set of a function whose
gradient does not vanish in a neighborhood of the level set. Suppose
that a function u : Ω ⊂ RN → C has continuous partial derivatives,
then the gradient of u at a point x ∈ Ω is the vector

∇u = grad u =
N
∑

j=1

∂u

∂xj
ej

where ej is the standard basis in RN . In what follows a vector between
vertical bars denotes the Euclidean length of the vector

|x| =
√

x2
1 + x2

2 + · · · + x2
N =

√
x · x

Let n be a unit vector in RN . The Euclidean dot product

n · ∇u =
N
∑

j=1

nj
∂u

∂xj
≡ ∂u

∂n

is called the direction derivative of u or the derivative of u along the
vector u. Its value determine the rate of change of u in the direction of
n. It follows from the inequality |a·b| ≤ |a| |b| that the maximal rate of
change of a function occurs in the direction of its gradient and is equal
to the length ‖grad u‖ of the gradient. Among other properties of the
gradient, it is worth noting that the non-zero vector ∇u is normal to
level sets of the function, u(x) = const. This property follows from the
fact the function has no rate of change in any direction tangential to
the surface on which the function has a constant value (a level surface)
and, hence, the directional derivative in any direction tangent to a
level surface vanishes which implies that ∇u 6= 0 is orthogonal to any
tangent vector. If the level set u(x) = k defines the boundary of a
region, then a unit normal vector on the boundary is

n(x) = ± 1

|∇u| ∇u , x : u(x) = k

511
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The sign is chosen in accord with a required orientation of the boundary
(e.g., inward or outward for a closed surface).

The gradient is a particular example of vector fields. A vector-
valued function F : Ω → RN (or CN ) is called a vector field. A vector
field is defined by its components in the standard basis

F(x) = F1(x)e1 + F2(x)e2 + · · · + FN(x)eN .

Suppose that the components of a vector field have continuous partial
derivatives. The divergence of a vector field is a scalar function defined
by the rule

div F =
∂F1

∂x1
+
∂F2

∂x2
+ · · · + ∂FN

∂xN
.

In particular, the differential operator

Lu = div grad u =
∂2u

∂x2
1

+
∂2u

∂x2
+ · · · + ∂2u

∂x2
N

= ∆u

is called the Laplace operator.

43.1. Basic equations of mathematical physics. Let the functions ρ and
p be strictly positive in the closure Ω, that is,

ρ(x) > 0 , p(x) > 0 , x ∈ Ω .

Let the function q be non-negative in Ω:

q(x) ≥ 0 , x ∈ Ω .

Let a real variable 0 < t < T ≤ ∞ denote time. In theoretical physics
it is shown that the second-order partial differential equation

(43.1) ρ
∂2u

∂2t
= div (p grad u) − qu+ f(x, t) ,

describes various vibrational processes and wave propagation. The
equation

(43.2) ρ
∂u

∂t
= div (p grad u) − qu+ f(x, t) ,

describes various diffusion processes and heat conductance. The equa-
tion

(43.3) −div (p grad u) + qu = f(x)

describes the corresponding stationary processes (e.g., standing waves
or a stationary temperature field). Equation (43.3) is defined in Ω and
the region Ω is said to be the domain of Eq. (43.3). Equations (43.1)
and (43.2) are defined in the open cylinder

ΠT = Ω × (0, T ) ⊂ R
N+1 .
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The boundary of the cylinder contains three parts, the side ∂Ω×(0, T ),
the top Ω × {T}, and the bottom Ω × {0}. To make sense from the
mathematical point of view, it is also necessary to assume that

ρ ∈ C 0(Ω) , p ∈ C1(Ω) , q ∈ C 0(Ω) .

Under the above assumptions, the generalized wave equation (43.1)
is said to be of the hyperbolic type, the diffusion equation (43.2) is of the
parabolic type, and the stationary equation (43.3) is the elliptic type.
The classification of PDEs into the hyperbolic, parabolic, and elliptic
types will be discussed in detail later. At this point, it is only noted
that different types of PDEs are related to different types of physical
processes described by the equations. In order to have a unique descrip-
tion of the physical process by a PDE, in addition to the very equation
one has to specify the initial state of that process (initial conditions)
and the state of the process at the boundary of the region in which the
process is considered (boundary conditions). Three following problems
are usually considered:

(i) The Cauchy problem for equations of the hyperbolic and parabolic
types. In this case, Ω = RN and initial conditions, conditions on u(x, t)
at t = 0, are set.
(ii) The boundary value problem for equations of the elliptic type in
which boundary conditions, conditions on u(x) where x ∈ ∂Ω, are im-
posed, while there are no initial conditions.
(iii) The mixed problem for equations of the hyperbolic and parabolic
types in which both initial and boundary conditions are set and Ω ⊂
RN .

43.2. The Cauchy problem.

Wave (hyperbolic) equation. For the wave equation (43.1) the Cauchy
problem is formulated as follows: Find a function

u(x, t) ∈ C2(t > 0) ∩ C1(t ≥ 0)

satisfying (43.1) in the half-space t > 0 and the initial conditions at
t = 0+:

(43.4) u
∣

∣

∣

t=0
= u0(x) ,

∂u

∂t

∣

∣

∣

t=0
= u1(x) ,

where the value at t = 0 is understood in the sense of the limit t → 0+

(the limit from the right) because the equation and its solution are
defined for t > 0. In addition, it is required that

f ∈ C 0(t > 0) , u0 ∈ C1(RN) , u1 ∈ C 0(RN ) ,
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The Cauchy problem for the wave equation also admits the following
generalization. Let Σ be a piecewise smooth surface in RN defined by
the equation t = σ(x). Suppose that the Cauchy data u0 and u1 are
functions on Σ. The Cauchy problem for the wave equation (43.1) is
to find a solution to (43.1) in a part of the region t > σ(x) that is
adjacent to the surface Σ and the solution must also fulfill the initial
conditions:

(43.5) u
∣

∣

∣

Σ
= u0 ,

∂u

∂n

∣

∣

∣

Σ
= u1 ,

where n is the unit normal to Σ direction into the region t > σ(x).

Diffusion (parabolic) equation. For the diffusion equation (43.2) the
Cauchy problem is to find a function

u(x, t) ∈ C2(t > 0) ∩ C 0(t ≥ 0)

satisfying (43.2) in the half-space t > 0 and the initial condition at
t = 0+:

(43.6) u
∣

∣

∣

t=0
= u0(x) .

In addition, it is required that

f ∈ C 0(t > 0) , u0 ∈ C 0(RN) .

43.3. Boundary value problem for elliptic equations. The problem is stated
as: Find a function

u(x) ∈ C2(Ω) ∩ C1(Ω)

satisfying Eq. (43.3) in a region Ω and the boundary condition

(43.7)
(

αu+ β
∂u

∂n

)
∣

∣

∣

∂Ω
= v , α, β, v ∈ C 0(∂Ω) ,

where n is the unit outward normal to the surface ∂Ω, and α, β, and
v are given continuous functions on the boundary ∂Ω such that

α(x) ≥ 0 , β(x) ≥ 0 , α(x) + β(x) > 0 , x ∈ ∂Ω .

If α = 1 and β = 0, the boundary condition has the form

(43.8) u
∣

∣

∣

∂Ω
= u0

and is called the boundary condition of type I. If α = 0 and β = 1, then
the boundary condition

(43.9)
∂u

∂n

∣

∣

∣

∂Ω
= u1
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is called the boundary condition of type II. The boundary condition of
type III is defined by β = 1 and α ≥ 0,

(43.10)
(∂u

∂n
+ αu

)
∣

∣

∣

∂Ω
= u2

For the Laplace (f = 0) and Poisson equation (f 6= 0), the bound-
ary value problem of type I

(43.11) ∆u = −f , u
∣

∣

∣

∂Ω
= u0

is called the Dirichlet problem; the boundary value problem of type II,

(43.12) ∆u = −f , ∂u

∂n

∣

∣

∣

∂Ω
= u1

is called the Neumann problem.
Let Ω be a bounded region. Consider the region Ωc that is the com-

plement of the closure Ω in RN , that is, Ωc = RN \Ω. For the boundary
value problem in Ωc for an elliptic equation, some conditions at spa-
tial infinity are often imposed in addition to boundary conditions at
∂Ωc = ∂Ω. Conditions at infinity can, for example, define the behavior
of a solution at infinity. For instance, for the Helmholtz equation

(43.13) ∆u+ k2u = −f ,
where k is a non-negative constant, in addition to the aforementioned
boundary conditions at ∂Ωc, one can impose the so called scattering or
Sommerfeld radiation conditions at infinity: For large |x| = r → ∞, a
solution should behave as

u(x) = eika·x + v(x) , v(x) = O(r−1) ,
∂v

∂r
− ikv = o(r−1) ,

where r = |x| and a is a unit vector. The symbol O(r−1) means that
v falls to zero inversely proportional to r as r → ∞, while the symbol
o(r−1) means that the corresponding quantity falls to zero faster than
r−1 as r → ∞, that is, ro(r−1) → 0 as r → ∞. With f = 0, such
a solution describe a scattering of a monochromatic plane wave on an
obstacle of the shape ∂Ωc. The function v obeying the Sommerfeld
radiation conditions describes the wave outgoing from the scattering
region, while the part eika·x describe an incident plane wave propagating
in the direction of a. The Sommerfeld radiation conditions can also be
added to the stationary Schrödinger equation

− ~2

2m
∆ψ + V ψ = Eψ

where ~ is the Planck constant, m is the mass of a particle, E =
~2k2/(2m) > 0 is the energy of the particle, and V = V (x) is the
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potential energy such that V (x) → 0 as |x| → ∞. Such a solution
describes a scattering of a quantum particle on a system described by
the potential V . If E < 0, then instead of the Sommerfeld radiation
condition, a solution of the stationary Schrödinger equation is required
to be from L2. The conditions of the form

u(x) = O(1) or u(x) = o(1) , |x| = r → ∞ ,

where O(1) = O(r0) and similarly for o(1), are often used for the
Poisson equation.

43.4. Mixed (initial value) problems.

Wave (hyperbolic) equation. For the wave equation (43.1), the mixed
problem is to find a function

u(x, t) ∈ C2(ΠT ) ∩ C1(ΠT )

that satisfies Eq. (43.1), the initial conditions (43.4), and the boundary
condition (43.7) on the side boundary of the cylinder ΠT (that is, (43.7)
should hold for all 0 < t < T ). In addition, the following smoothness
conditions are required

f ∈ C 0(ΠT ) , u0 ∈ C1(Ω) , u1 ∈ C 0(Ω) , v ∈ C(∂Ω× [0, T ])

and the self-consistency conditions (the consistency between the initial
and boundary data)

(43.14)
(

αu0 + β
∂u0

∂n

)
∣

∣

∣

∂Ω
= v
∣

∣

∣

t=0
.

Diffusion or heat (parabolic) equation. For the diffusion equation (43.2)
the mixed problem is to find a function

u(x, t) ∈ C2(ΠT ) ∩ C 0(ΠT ) , ∇xu(x, t) ∈ C 0(ΠT ) ,

where ∇x denote the gradient with respect to x, that satisfies Eq.
(43.2) in ΠT , the initial condition (43.5), and the boundary condition
(43.7) on the side boundary of the cylinder ΠT (in the same sense as
in the case of the mixed problem for the wave equation).

Remarks of smoothness of the solution. It should be noted that solu-
tions of the stated boundary value problems that are C1 smooth up to
the boundary of the region in which the equation is formulated do not
always exist. The way out is to required mere continuity of solutions
up to the boundary of the region. This formulation of the boundary
value problem is natural if the problem does not involve partial deriva-
tives in the boundary conditions. For example, this is suitable for Eqs.
(43.2) and (43.3) with boundary conditions of type I. If the boundary
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conditions contain partial derivatives, then in each particular case one
should define in what sense these conditions are to be fulfilled. For
example, for the mixed problem for the wave equation (43.1), the sec-
ond initial condition (43.4) can be understood in the sense of L2(Ω)
topology:

∥

∥

∥

∥

∂u

∂t
− u1

∥

∥

∥

∥

→ 0 , t→ 0+ .

In the Neumann problem for the Laplace equation, the boundary con-
dition (43.9) can be required to be satisfied in the following sense. Let
x
′ ∈ Ω be a point on the line through the point x ∈ ∂Ω and parallel to

the normal nx at x. In other words, if nx is the outward normal, then
x
′ = x − snx for some s > 0 and x

′ → x means s → 0+. Then the
condition (43.9) is understood in the sense of uniform convergence or
in the supremum norm:

g(s) ≡ sup
x∈∂Ω

∣

∣

∣

∣

∂u

∂nx
(x′) − u1(x)

∣

∣

∣

∣

→ 0 , s→ 0+ .
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44. General Fourier method

44.1. The eigenvalue problem for elliptic operators. Unless stated oth-
erwise, a region Ω is always assumed to be bounded throughout this
section. Consider a linear differential operator

Lu = −div (p grad u) + qu .

The domain ML of L consists of all functions from C2(Ω)∩C1(Ω) that
satisfy the boundary condition

(44.1)
(

αu+ β
∂u

∂n

)
∣

∣

∣

∂Ω
= 0 .

The parameters of L and those of the boundary conditions are required
to satisfy the conditions:

p ∈ C1(Ω) , q ∈ C 0(Ω) ; p(x) > 0 , q(x) ≥ 0 , x ∈ Ω

(44.2)

α, β ∈ C 0(∂Ω) ; α(x) ≥ 0 , β(x) ≥ 0 , α(x) + β(x) > 0 , x ∈ ∂Ω .

If P is a set of all polynomials (of N variables if Ω ⊂ RN ), then

P ⊂ C2(Ω) ⊂ ML ⊂ C 0(Ω) ⊂ L2(Ω)

Recall the discussion after Theorem ??: The set of continuous func-
tions is dense in the space of square integrable functions, while by the
Weierstrass theorem P is dense in the space of continuous functions.
Therefore P is dense in the space of square integrable functions. Since
ML is larger than P , it must be dense in L2(Ω)

The eigenvalue problem for an elliptic operator L is to find all values
of λ (eigenvalues of L) at which the equation

Lu = λu , u ∈ ML ,

has a non-trivial solution as well as to find all such solutions (eigen-
functions of L).

It should be noted that eigenfunctions of smoothness C1(Ω) may
not always exist and the smoothness conditions on the boundary ∂Ω
need to be relaxed to smoothness C 0(Ω) (for example, it is natural for
boundary value problems of type I when β = 0).

44.2. Green’s formulas.

Theorem 44.1. (Gauss-Ostrogradsky or divergence theorem)
Let Ω be a bounded region in RN with a piecewise smooth boundary
∂Ω oriented outward by the unit normal n. Suppose that components
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of a vector field F have continuous partial derivatives in a region that
contains Ω. Then

∫

Ω

divF dx =

∫

∂Ω

(F,n) dS ,

where dS denotes the Lebesgue measure on ∂Ω (the surface area ele-
ment).

The theorem can also be extended to unbounded regions if F de-
creases fast enough as |x| → ∞ to ensure the existence of the integrals.
The following consequences of the divergence theorem can be proved.

Theorem 44.2. (Green’s formulas)
Let u ∈ C2(Ω) ∩ C1(Ω) and v ∈ C1(Ω). Then
(44.3)
∫

Ω

v Lu dx =

∫

Ω

p (grad v, grad u) dx−
∫

∂Ω

pv
∂u

∂n
dS +

∫

Ω

quv dx .

If, in addition, v ∈ C2(Ω) ∩ C1(Ω), then

(44.4)

∫

Ω

v Lu dx−
∫

Ω

v Lu dx =

∫

∂Ω

p

(

v
∂u

∂n
− u

∂v

∂n

)

dS

The relations (44.3) and (44.4) are known as the first and second
Green’s formulas, respectively. If p = 1 and q = 0, then they become

∫

Ω

v∆ u dx = −
∫

Ω

(grad v, grad u) dx−
∫

∂Ω

v
∂u

∂n
dS ,

∫

Ω

(v∆u− u∆v) dx =

∫

∂Ω

(

v
∂u

∂n
− u

∂v

∂n

)

dS .

A proof of Green’s formulas is based on the divergence theorem and
the absolute continuity of the Lebesgue integral. Let Ω′ be a proper
subregion of Ω. It is easy to verify the identity

v divF = div(vF)− (grad v, F)

by calculating the divergence in the left side explicitly in terms of par-
tial derivatives of v and components of F. By mean of this identity for
F = p grad u, one infers that
∫

Ω′

v Lu dx =

∫

Ω′

v
[

−div (p grad u) + qu
]

dx

= −
∫

Ω′

div(pv grad u)dx+

∫

Ω′

[

p (grad v, gradu) + quv
]

dx
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The first term in the right side of this relation is transformed by means
of the divergence theorem (the hypotheses of the theorem are fulfilled
for Ω′ by its definition as a proper subregion of Ω):

∫

Ω′

div(pv grad u)dx =

∫

∂Ω′

pv
∂u

∂n
dS .

Finally, one can take successively larger subregions of Ω, that is, con-
sider the limit Ω′ → Ω. By the absolute continuity of the Lebesgue
integral, the integrals over Ω \ Ω′ and ∂Ω \ ∂Ω′ can be made arbitrary
small for a large enough proper subregion of Ω. Thus, the above two
relations hold for Ω, too, and the first Green’s formula follows.

If u and v are both from C2(Ω) ∩ C1(Ω), then u and v can be
swapped in Eq. (44.3). The obtained equation is subtracted from
(44.3). The resulting relation is the second Green’s formula (44.4).

44.3. Eigenvalues and eigenfunctions of the operator L.

Theorem 44.3. (Properties of the operator L)
The operator is hermitian and positive semi-definite:

〈Lu, v〉 = 〈u, Lv〉 , u, v ∈ ML ,(44.5)

〈Lu, u〉 ≥ 0 , u ∈ ML .(44.6)

Proof. As noted before ML is dense in L2(Ω). For any u and v
from ML, the images Lv and Lū = Lu under the action of L are from
L2(Ω). Therefore the second Green’s formula (44.4) can be written in
the form

∫

Ω

(

ū Lv − v Lu
)

dx = 〈Lv, u〉 − 〈v, Lu〉

=

∫

∂Ω

p

(

v
∂ū

∂n
− ū

∂v

∂n

)

dS

The function u and v satisfy the boundary conditions
(

αv + β
∂v

∂n

)
∣

∣

∣

∂Ω
= 0 ,

(

αū+ β
∂ū

∂n

)
∣

∣

∣

∂Ω
= 0

By the assumption, α(x)+β(x) > 0 for any x ∈ ∂Ω. This implies that
this homogeneous linear system of equations has a nontrivial solution
(α and β do not vanish simultaneously anywhere in ∂Ω), which, in turn,
is possible if the determinant of the matrix composed of the coefficients
of α and β vanishes:

v
∂ū

∂n
− ū

∂v

∂n
= 0 .
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Thus, the integrand in the integral over ∂Ω is identically zero and,
hence, 〈Lv, u〉 − 〈v, Lu〉 = 0 which, by definition, means that L is
hermitian.

Put v = ū in the first Green’s formula (44.3). Since Lu ∈ L2(Ω),

〈Lu, u〉 =

∫

Ω

p|grad u|2dx−
∫

∂Ω

pu
∂ū

∂n
dS +

∫

Ω

q|u|2 dx

The first and third terms in the right side are non-negative because
p > 0 and q ≥ 0 in Ω. The second term can be transformed by means
of the boundary condition (44.1),

∂u

∂n
= −α

β
u , if β(x) > 0 , x ∈ ∂Ω ,

u = 0 , if β(x) = 0 , x ∈ ∂Ω ,

and, hence,

(44.7) 〈Lu, u〉 =

∫

Ω

(

p|grad u|2 + q|u|2
)

dx+

∫

∂Ω0

α

β
p |u|2 dS ≥ 0 ,

where ∂Ω0 is the part of Ω where α(x) > 0 and β(x) > 0 (both α and
β do not vanish). Thus, the operator L is positive definite. This also
implies that L is hermitian. �

Corollary 44.1. (Eigenvalues and eigenfunctions of the operator L)
Let the operator L be defined as in Section 44.1. Then

(i) All eigenvalues of L are non-negative;
(ii) Eigenfunctions of L corresponding to distinct eigenvalues are

orthogonal;
(iii) Eigenfunctions of L can be chosen to be real.

Proof. Let λ0 be an eigenvalue of L. Then Lu0 = λ0u0 where u0 6= 0.
Since L is hermitian, λ0 is real. By Theorem 44.3 the operator is also
positive definite and, hence,

0 ≤ 〈Lu0, u0〉 = λ0〈u0, u0〉 = λ0‖u0‖2 ⇒ λ0 ≥ 0 .

By Theorem 36.2 eigenfunctions of L corresponding to different eigen-
values are orthogonal (as for any hermitian operator). If u0 is a complex-
valued eigenfunction of L, then put u0 = u1 + iu2 where u1,2 are real-
valued functions. Since the corresponding eigenvalue λ0 is real and
Lu1,2 are real-valued functions,

Lu0 = λ0u0 ⇒ L(u1 + iu2) = λ0(u1 + iu2)

⇒ Luj = λuj , j = 1, 2 .

This shows that the real-valued functions uj are also eigenfunctions of
L corresponding to the eigenvalue λ0. �
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Theorem 44.4. (Zero eigenvalue of the operator L)
Let Ω be a bounded region and L be the operator defined in Section
44.1. In order for λ = 0 to be an eigenvalue of L, it is necessary and
sufficient that q = 0 and α = 0, and in this case λ = 0 is a simple
eigenvalue and the corresponding eigenfunction is a constant function.

Proof. Necessity. Let λ = 0 be an eigenvalue of L and u0 be the
corresponding eigenfunction so that Lu0 = 0, u0 ∈ ML. It follows
from (44.7) that

0 = 〈Lu0, u0〉 =

∫

Ω

(

p|grad u0|2 + q|u0|2
)

dx+

∫

∂Ω0

α

β
p |u0|2 dS

This requires that p|grad u0|2 = 0 and q|u0|2 = 0. Since p(x) > 0 and
q(x) ≥ 0 in Ω, it is concluded that grad u0 = 0 or u0 must be a non-zero
constant function in Ω. The latter implies that q = 0. Furthermore, if
u0 is a constant function, then the boundary condition (44.1) is fulfilled
if αu0 = 0 or α = 0 (since u0 6= 0). The above line of arguments also
shows that u0 = const is the only (linearly independent) eigenfunction
corresponding the zero eigenvalue, that is, if λ = 0 is eigenvalue, then
it is a simple eigenvalue.

Sufficiency. Let q = 0 and α = 0. Then by (44.2) β > 0 and the
eigenvalue problem for λ = 0 reads

Lu = −div (p grad u0) = 0 ,
∂u0

∂n

∣

∣

∣

∂Ω
= 0 .

A constant function u0 = const is a solution to this problem and, hence,
an eigenfunction of L corresponding to the eigenvalue λ = 0. �

In previous sections, it was found that an orthogonal set of eigen-
functions of the Laplace operator (p = 1, q = 0) form a complete
set in the space of square integrable functions over a bounded region.
The eigenvalues form an unbounded sequence without limit points and
each eigenvalue has a finite multiplicity. They have been established by
separating variables and reducing a multidimensional eigenvalue prob-
lem to several one-dimensional (Sturm-Liouville) problems. On other
hand, even for regions of relatively simple shapes, the method of sepa-
rating variables appears to be inapplicable. Do these properties remain
valid for general elliptic operators in arbitrary regions? The following
theorem answers this important question.

Let Ω be a bounded region in RN . For N ≥ 2 it is assumed that
either β = 1 or β = 0 in the boundary condition (44.1). In other words,
the boundary condition can only have one of the following two forms:

either u
∣

∣

∣

∂Ω
= 0 or

(∂u

∂n
+ αu

)
∣

∣

∣

∂Ω
= 0 , α ≥ 0 .
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If in addition the boundary ∂Ω is a smooth enough surface and the
coefficients p > 0, q ≥ 0, and α ≥ 0 are sufficiently smooth functions,
the following theorem holds

Theorem 44.5. (Fourier series over eigenfunctions of the operator L)

(i) The set of all eigenvalues of L does not have limit points and
each eigenvalue has a finite multiplicity;

(ii) For any u ∈ ML, the Fourier series of u over an orthogonal
set of eigenfunctions of L converges uniformly to u;

(iii) The set of eigenfunctions of L is complete in L2(Ω)

The exact smoothness conditions on the parameters of the operator
L under which the theorem holds have been stated for the case N =
1 (the Sturm-Liouville problem). The exact smoothness conditions
on ∂Ω ⊂ RN , N ≥ 2, will be stated later for the Dirichlet problem
(L = −∆). If the boundary ∂Ω is from the class C2 (that is, it is a
level set of a twice-continuously differentiable function whose gradient
vanishes nowhere), then it is typically sufficient for the theorem to
hold. However, specific examples studied by separating variables show
that in many problems this condition of the smoothness of ∂Ω may be
relaxed.

Theorem 44.5 implies that the set of eigenvalues of L is countable.
Indeed, since the set of eigenvalues does not have a limit point in R,
for every eigenvalue λ there is an open interval of a finite length that
contains λ and no other (distinct) eigenvalues. Thus, distinct eigen-
values form a countable set. Furthermore, each eigenvalue has a finite
multiplicity. Therefore all eigenvalues of L can be ordered:

0 ≤ λ1 ≤ λ2 ≤ · · · , λk → ∞ , k → ∞ ,

where each λk is repeated in this sequence as many times as is its
multiplicity. Note that ML is an infinite dimensional linear set. If the
Fourier series of f ∈ ML over eigenfunctions of L converges to f , then
the set of linearly independent eigenfunctions must be countable (not
finite), which means that the sequence {λk} must have infinitely many
distinct elements and, hence, λk → ∞ as k → ∞ (a monotonically
increasing sequence can only be bounded by its limit point which does
not exists for the sequence of the eigenvalues of L). Let φk be an
eigenfunction corresponding to λk:

Lφk = λkφk , k = 1, 2, ..., φk ∈ ML

By Corollaries ?? and 44.1 the eigenfunctions φk can be chosen real
and orthonormal so that

〈Lφk, φj〉 = λk〈φk, φj〉 = λkδjk .
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Theorem 44.5 states that for any f ∈ ML, the Fourier series of f over
the orthonormal set {φk}∞1

f(x) =

∞
∑

k=1

fkφk(x) , fk = 〈f, φk〉

converges uniformly to f in Ω, that is,
∥

∥

∥

∥

∥

f −
n
∑

k=1

fkφk

∥

∥

∥

∥

∥

∞

= sup
Ω

∣

∣

∣

∣

∣

f(x) −
n
∑

k=1

fkφk(x)

∣

∣

∣

∣

∣

→ 0 , n→ ∞ .

Note that the supremum here is equal to the maximal value because
any continuous functions on a bounded closed set in a Euclidean space
attains its extreme values.

Finally, since ML is dense in L2(Ω), the set of eigenfunctions {φk}∞1
is complete in L2(Ω) (Theorem ?? and recall also Theorem ??). Thus,
for any f ∈ L2(Ω) its Fourier series over the set of eigenfunctions of
the operator L converges to f in the mean (almost everywhere):

f(x) =
∞
∑

k=1

〈f, φk〉φk(x) a.e. , f ∈ L2(Ω) .

Suppose f ∈ ML. Can the Fourier series of f over {φk}∞1 be
differentiated term by term? The following theorem holds.

Theorem 44.6. (Differentiation of Fourier series)
Let f ∈ ML. Then its Fourier series converges uniformly

max
Ω

∣

∣

∣

n
∑

k=1

〈f, φk〉φk(x) − f(x)
∣

∣

∣
→ 0 , n→ ∞ ,

and it can be differentiated one time term by term and the obtained
series converges in L2(Ω) to the corresponding derivative of f :

(44.8) grad f(x) =
∞
∑

k=1

〈f, φk〉 grad φk(x) a.e. , f ∈ ML

44.4. Variational principle for eigenvalues. Suppose L is the Sturm-Liouville
operator (or the elliptic operator L defined in Section 7.2). The follow-
ing variational principle holds.

Theorem 44.7. (Variational principle for eigenvalues)
Let {λk}∞0 be the sequence of the eigenvalues of L ordered in the in-
creasing order (in which each eigenvalue is repeated as many times as
is its multiplicity). Let Mk

L ⊂ ML be the subset of functions from the
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domain ML which are orthogonal to the first k−1 eigenfunctions, that
is, f ∈ Mk

L if 〈f, φj〉 = 0, j = 1, 2, ..., k − 1, where Lφj = λjφj. Then

λk = inf
f∈Mk

L

〈Lf, f〉
‖f‖2

and the infimum is reached on any eigenfunction corresponding to the
eigenvalue λk.

Proof. Let f ∈ Mk
L. Then the first k − 1 its Fourier coefficients over

the set {φj}∞1 vanishes fj = 0, j = 1, 2, ..., k− 1. Using the result (??)

〈Lf, f〉 =
∞
∑

j=k

λj |fj|2 ≥ λk

∞
∑

j=k

|fj|2

because λk ≤ λj if j ≥ k. By the Parseval-Steklov equality (??)

‖f‖2 =

∞
∑

j=k

|fj|2

as the set of eigenfunctions in complete in ML. Therefore

λk ≤
〈Lf, f〉
‖f‖2

, f ∈ Mk
K .

In particular, φk ∈ Mk
K because 〈φk, φj〉 = 0 if j = 1, 2, ..., k − 1, and

Lφk = λkφk. Therefore the equality can actually be reached for f = φk
because

〈Lf, f〉
‖f‖2

= λk
〈φk, φk〉
‖φk‖2

= λk .

The proof is complete. �

Note that the variational principle uses only the completeness of the
set of eigenfunctions and the monotonicity of the sequence of eigenval-
ues. Therefore it is also valid for hermitian operators acting on periodic
functions (for example, the Laplace operator on a torus S1 × · · · × S1).

The lowest eigenvalue of L is

λ1 = inf
f∈ML

〈Lf, f〉
‖f‖2

.

It is zero if the minimum of 〈Lf, f〉 given by (44.7) over normalized
functions from ML, that is, ‖f‖ = 1 is zero. The minimum value
vanishes if and only if q = 0 and α = 0 according to (44.7) and, in this
case, it is achieved for a constant function. By the variational principle,
the minimum is achieved on an eigenfunction and, hence, a non-zero
constant function is an eigenfunction of L. In this regard, recall the
proof of Theorem 44.4.
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44.5. The boundary and initial value problem for a hyperbolic equation.

Let Ω be a bounded region in RN . Consider the boundary and initial
value problem for the hyperbolic equation. For simplicity, let us take
first ρ = 1:

u′′tt(x, t) = −Lxu(x, t) + f(x, t) ,

u(x, t) ∈ ML , t ≥ 0 ,

u(x, 0) = u0(x) , u′t(x, 0) = u1(x) .

Note that the boundary conditions are included into the domain of the
Sturm-Liouville operator Lx. It does not depend on the variable t so
that its action on u(x, t) is calculated for each (fixed) value of t. This
also implies that u(x, t) must be from the domain of Lx at every value
of t ≥ 0.

Let Xk(x) be a real orthonormal basis in L2(Ω)

〈Xk, Xk′ 〉 =

∫

Ω

Xk(x)Xk′(x) dx = δkk′

made of linearly independent eigenfunctions of the Sturm-Liouville op-
erator Lx, where the boldface index k denotes a collection of integers
needed to label the basis functions. For example, spherical harmonics
Y m
l are labeled by two integers l = 0, 1, 2, ... and |m| ≤ l. In this case,

k = (l,m) and δkk′ = δll′δmm′ . Since each eigenvalue of Lx has a finite
multiplicity, one can always make a specific ordering in labels of the ba-
sis functions. For example, one can start with the smallest eigenvalue
and count all basis eigenfunctions corresponding to it, then take the
second smallest eigenvalue and count all basis functions corresponding
to it, etc. The sum

∑

|k|≤n

akXk

denotes a linear combination of the basis functions with n first terms.
Suppose that the parameters of the problem are linear combinations

of the basis functions

f(x, t) =
∑

|k|≤n

Fk(t)Xk(x) ,

u0(x) =
∑

|k|≤n

akXk(x) ,

u1(x) =
∑

|k|≤n

bkXk(x) ,
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In this case, the solution to the problem is a linear combination of all
basis functions which enter into the expansions of the parameters:

u(x, t) =
∑

|k|≤n

Tk(t)Xk(x) ,

Indeed, the substitution of the above expansion in to the equation
yields

∑

|k|≤n

T ′′
k
(t)Xk(x) = −

∑

|k|≤n

λkTk(t)Xk(x) +
∑

|k|≤n

Fk(t)Xk(x)

where the relation LxXk = λkXk was taken into account. Since Xk are
linearly independent, the equation holds if the coefficients at Xk in the
left and right side match. Similarly, the initial conditions require that

∑

|k|≤n

Tk(0)Xk(x) =
∑

|k|≤n

akXk(x) ,

∑

|k|≤n

T ′
k
(0)Xk(x) =

∑

|k|≤n

bkXk(x) .

Thus, the expansion coefficients satisfy the initial value problem:

(44.9) T ′′
k
(t) + λkTk(t) = Fk(t) , Tk(0) = ak , T ′

k
(0) = bk

which is identical to the initial value problem for the expansion coeffi-
cients in a two-dimensional wave equation describing vibrations of an
elastic string. Put ωk =

√
λk. Its solution reads

Tk(t) = ak cos(ωkt) +
bk
ωk

sin(ωkt) +
1

ωk

∫ t

0

sin[ωk(t− τ )]Fk(τ ) dτ .

If the parameters of the problem are not linear combination of the
basis functions, then they can be expanded into Fourier series over the
basis Xk:

f(x, t) =
∑

k

Fk(t)Xk(x) , Fk(t) = 〈f,Xk〉 =

∫

Ω

f(x, t)Xk(x) dx ,

u0(x) =
∑

k

akXk(x) , ak = 〈u0, Xk〉 =

∫

Ω

u0(x)Xk(x) dx ,

u1(x) =
∑

k

bkXk(x) , bk = 〈u1, Xk〉 =

∫

Ω

u1(x)Xk(x) dx ,

The solution can also be sought as a Fourier series

(44.10) u(x, t) =
∑

k

Tk(t)Xk(x) .
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However, the crucial difference with the case when the parameters are
linear combination of the basis functions is that for a Fourier series
converging in the mean the order of summation and differentiation
cannot be rearranged:

∂2

∂t2

∑

k

6=
∑

k

∂2

∂t2
, Lx

∑

k

6=
∑

k

Lx

in contrast to sums with finitely many terms. For this reason is not
generally possible to conclude that the expansion coefficients satisfy
the stated initial value problem. On the other hand, if the Fourier
expansions of the parameters are changed to the corresponding partial
sums, then the solution can always be found. Since the partial sums of
the parameters converge to the actual parameters, one can hope that
the associated sequence of solutions would converge to the actual solu-
tion. So, the series (44.10), where the expansion coefficients satisfy the
initial value problem (44.9), is called a formal solution to the problem.
If the sum of the series is proved to be from the class C2(Ω) ∩ C1(Ω),
then it is the classical solution.

44.6. The boundary and initial value problem for a parabolic equation.

Let Ω be a bounded region in RN . Consider the boundary and initial
value problem for the hyperbolic equation:

u′t(x, t) = −Lxu(x, t) + f(x, t) ,

u(x, t) ∈ ML , t ≥ 0 ,

u(x, 0) = u0(x) .

The boundary conditions are included into the domain of the Sturm-
Liouville operator Lx. It does not depend on the variable t so that
its action on u(x, t) is calculated for each (fixed) value of t. This also
implies that u(x, t) must be from the domain of Lx at every value of
t ≥ 0.

The analysis of the preceding section can be repeated for this prob-
lem. The only difference is that the expansion coefficients Tk(t) in the
formal solution (44.10) must satisfy the first-order initial value prob-
lem:

T ′
k
(t) + λkTk(t) = Fk(t) , Tk(0) = ak ,(44.11)

ak = 〈u0, Xk〉 =

∫

Ω

u0(x)Xk(x) dx .
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The solution to the initial value problem can be found by the method
of variation of parameters:

Tk(t) = ake
−λkt +

∫ t

0

e−λk(t−τ )Fk(τ ) dτ .

If the sum of the series (44.10) with the above coefficients Tk is proved
to be smooth enough, then it is the classical solution to the problem.

44.7. The boundary value problem for an elliptic equation in a cylinder.

Some boundary value problems for elliptic equations can be solved by
separation of variables in combination with the Fourier method. Let
Π be a bounded region in RN+1. Suppose that the Sturm-Liouville
operator has the following form

Lu(x, z) = −∂
2u

∂z2
+ Lxu

where x ∈ RN and Lx is a general Sturm-Liouville operator that
depends and acts only on the variables x. For example, a three-
dimensional Laplace operator can viewed as the sum

−∆u(x, y, z) = −∂
2u

∂z2
+ Lxu , Lxu = −∂

2u

∂x2
− ∂2u

∂y2

Let Ω be a bounded region in RN . Consider the boundary value prob-
lem for the elliptic equation Lu = f in the cylinder Π = (0, l) × Ω
where z ∈ (0, l) and x ∈ Ω:

−u′′zz(x, t) = −Lxu(x, z) + f(x, z) ,

u(x, z) ∈ MLx , 0 ≤ z ≤ l ,

u(x, 0) = u0(x) , u(x, l) = u1(x) .

The boundary conditions of the side surface of the cylinder are included
into the definition of the domain of the operator Lx. For example, if Ω
is a disk, r2 = x2 +y2 < a2, on a plane spanned by (x, y) and Lx = −∆
in the plane, then the boundary condition on the side of the cylinder
x2 + y2 = a2, 0 < z < l is

u(x, y, z) ∈ MLx ⇒
(

αu+ β
∂u

∂r

)
∣

∣

∣

r=a
= 0

where the constants α and β satisfy the usual conditions for a Sturm-
Liouville operator.

This boundary value problem can be solved by separating variables
so in exactly the same way as the initial and boundary value problem
for the hyperbolic equation (here z used in place of t). Let Xk be an
orthonormal basis in L2(Ω) obtained from the eigenfunctions of the
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operator Lx. Then the formal solution is given by the Fourier series
(compare with (44.10))

u(z,x) =
∑

k

Zk(z)Xk(x)

in which the expansion coefficients Zk(z) satisfy the boundary value
problem:

−Z ′′
k
(z) + λkZk(z) = Fk(t) ,(44.12)

Zk(0) = ak , Zk(l) = bk

ak = 〈u0, Xk〉 =

∫

Ω

u0(x)Xk(x) dx ,

bk = 〈u1, Xk〉 =

∫

Ω

u0(x)Xk(x) dx ,

Fk(z) = 〈f,Xk〉 =

∫

Ω

f(x, z)Xk(x) dx ,

It can be solved by the Green’s function method. The needed Green’s
function was found in Section 11:

Zk(z) = ak

sinh[
√
λk(l − z)]

sinh(l
√
λk)

+ bk
sinh(z

√
λk)

sinh(l
√
λk)

+

∫ l

0

Gk(z, z′)Fk(z
′) dz′ ,

Gk(z, z′) =
1√

λk sinh(l
√
λk)







sinh(z
√
λk) sinh

(√
λk(l − z′)

)

, z ≤ z′ ,

sinh
(√

λk(l − z)
)

sinh(z′
√
λk) , z′ ≤ z .

If the sum of the Fourier series is proved to be smooth enough, then it
is the classical solution to the problem.
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45. The Laplace operator in a rectangle

The Laplace operator is the simplest elliptic operator (see Section
43 to review notations). Let Ω be a bounded region in R

N with a
piecewise smooth boundary ∂Ω oriented outward by the unit vector n.
The eigenvalue problems for the Laplace operator read

−∆u = λu , x ∈ Ω ; u|∂Ω = 0 ,(45.1)

−∆u = λu , x ∈ Ω ;
(∂u

∂n
+ αu

)

∣

∣

∣

∣

∂Ω

= 0 , α ≥ 0(45.2)

where α is a continuous function on the boundary ∂Ω. One can view
Problem (45.1) as the (formally) limit case of Problem (45.2) as α→ ∞
everywhere on the boundary ∂Ω (divide the boundary condition by
α > 0 and take the limit).

Let Ω be a rectangle in R2. Suppose that the coordinate system is
chosen so that Ω = (0, a)× (0, b). Let the first and second coordinates
are denoted x and y, respectively. Then the boundary of Ω consists of
four straight line segments parallel to the coordinate axes. If e1 = (1, 0)
and e2 = (0, 1) are the standard basis in R2, then the outward normal
on the boundary lines x = a and y = b are e1 and e2, respectively,
while the outward normal on the boundary lines x = 0 and y = 0 are
the opposite vectors, −e1 and −e2, respectively. Note that the line
x = a is a level set g(x, y) = x − a so that grad g = (1, 0) = e1, and
similarly for y = b.

The analysis is readily extended to rectangular regions in higher
dimensional spaces. For example, if Ω = (0, a) × (0, b) × (0, c) ⊂ R3,
then ∂Ω are faces of the rectangular box that are parts of six planes
parallel to the coordinate planes. The outward normals on the faces
that are in the planes x = a, y = b, and z = c are e1 = (1, 0, 0),
e2 = (0, 1, 0), and e3 = (0, 0, 1), respectively. The outward normals on
the faces that lie in the planes x = 0, y = 0, and z = 0 are the opposite
vectors −e1, −e2, and −e3, respectively.

45.1. Rectangular domains in Problem (45.1). Consider the eigenvalue
problem for the Laplace operator in a rectangle

Ω = (0, a)× (0, b) ⊂ R
2

Let 0 < x < a and 0 < y < b. Solutions to (45.1) are found by
separating variable

u(x, y) = X(x)Y (y) ⇒ ∂2u

∂x2
= X ′′Y ,

∂2u

∂y2
= XY ′′ ,
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By dividing the equation by XY it assumes the form

−X
′′(x)

X(x)
− Y ′′(y)

Y (y)
= λ

from which it follows that

−X ′′(x) = µX(x) , −Y ′′(y) = νY (y) , µ + ν = λ

where µ and ν are constants. The boundary condition requires that

u(0, y) = 0 , u(a, y) = 0 , 0 ≤ y ≤ b

u(x, 0) = 0 , u(x, b) = 0 , 0 ≤ x ≤ a .

Therefore the two-dimensional eigenvalue problem is reduced to two
one-dimensional eigenvalue (Sturm-Liouville) problems

−X ′′(x) = µX(x) , X(0) = X(a) = 0 ;(45.3)

−Y ′′(y) = νY (y) , Y (0) = Y (b) = 0 .(45.4)

The eigenvalues and the corresponding orthonormal eigenfunctions are
found in Section ??:

µ = µn =
π2n2

a2
, Xn(x) =

√

2

a
sin
(πn

a
x
)

, n = 1, 2, ... ;(45.5)

ν = νm =
π2m2

a2
, Ym(y) =

√

2

b
sin
(πm

a
y
)

, m = 1, 2, ... .(45.6)

Therefore the eigenvalues and the corresponding eigenfunctions are

λ = λnm = µn + νm = π2

(

n2

a2
+
m2

b2

)

, n,m = 1, 2, ... ,(45.7)

u = φnm(x, y) = Xn(x)Yn(y) =
2√
ab

sin
(πn

a
x
)

sin
(πm

a
y
)

(45.8)

The eigenfunctions are orthonormal in L2(Ω)
∫

Ω

φnmφn′m′ dxdy =

∫ a

0

Xn(x)Xn′(x) dx

∫ b

0

Ym(y)Ym′(y) dy = δnn′δmm′

where the Fubini theorem was used to calculate the integral.
The region Ω = D1 × D2 is the direct product of two intervals

D1 = (0, a) and D2 = (0, b). The functions Xn(x) form a complete
orthonormal set (basis) in L2(D1), while the functions Ym(y) form a
complete orthonormal set (basis) in L2(D2). By Theorem ??, the eigen-
functions φnm(x, y) = Xn(x)Ym(y) form a complete orthonormal set in
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L2(Ω). Thus, for any function f ∈ L2(Ω), the Fourier series

f(x, y) =
∞
∑

n=1

∞
∑

m=1

〈f, φnm〉φnm(x, y) a.e.

converges in the mean (the sum coincides with f(x, y) almost every-
where).

Evidently, the method can readily be extended to a rectangular
domain in RN . If

Ω = (0, a1) × (0, a2) × · · · × (0, aN ) ⊂ R
N ,

0 < xj < aj , j = 1, 2, ..., N ,

then the eigenvalues and the corresponding orthonormal eigenfunctions
are

λ = λn = π2

(

n2
1

a2
1

+
n2

2

a2
2

+ · · · + n2
N

a2
N

)

, nj = 1, 2, ... ,

u = φn(x) =

(

2N

a1a2 · · · aN

)1/2 N
∏

j=1

sin

(

πnj
aj

xj

)

,

where the vectors n = (n1, n2, ..., nN) with positive integer-valued com-
ponents are used to label the eigenvalues and the corresponding eigen-
functions. The details of derivation of these equations are left to the
reader as an exercise.

45.2. Rectangular domains in Problem (45.2). Let Ω = (0, a) × (0, b) ⊂
R2. The boundary of this rectangle consists of four smooth pieces
(straight line segments):

∂Ω = S1L ∪ S1R ∪ S2L ∪ S2R ,

S1L = {x = 0} × [0, b] , S1R = {x = a} × [0, b] ,

S2L = [0, a] × {y = 0} , S2R = [0, a] × {y = b} .
Here the subscripts 1 and 2 stand for the “first” and “second” vari-
ables in the ordered pair (x, y), while the subscripts L and R stand for
the “left” and “right” endpoints of the interval spanned by the corre-
sponding (first or second) variable. If ∂Ω is oriented outward by the
unit normal vector n, then

n

∣

∣

∣

S1L

= −e1 , n

∣

∣

∣

S1R

= e1 , n

∣

∣

∣

S2L

= −e2 , n

∣

∣

∣

S2R

= e2 ,

where ej, j = 1, 2, is the standard basis in R2. Note that the normal n

is not defined at the four corners of the rectangle because its boundary
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is not smooth at these points. In the above relations, the corner points
are not included. Since

grad u(x, y) = e1u
′
x(x, y) + e2 u

′
y(x, y) ,

the normal derivative is

∂u

∂n

∣

∣

∣

S1L

= −u′x(0, y) ,
∂u

∂n

∣

∣

∣

S1R

= u′x(a, y) , 0 ≤ y ≤ b ;

∂u

∂n

∣

∣

∣

S2L

= −u′y(x, 0) ,
∂u

∂n

∣

∣

∣

S2R

= u′y(x, b) , 0 ≤ x ≤ a ,

where the normal derivative is continuously extended to the endpoints
of the specified (closed) intervals, assuming, of course that u ∈ C1(Ω).

If ∂Ω is piecewise smooth, then the boundary condition (45.2) is un-
derstood as the set of boundary conditions for each smooth piece of ∂Ω
and in each boundary condition the normal derivative is continuously
extended to the boundary of the corresponding smooth piece of ∂Ω. In
the case considered, there are for smooth pieces in ∂Ω. In particular

∂u

∂n

∣

∣

∣

S1L

+ αu
∣

∣

∣

S1L

= −u′x(0, y) + α(0, y)u(0, y) , 0 ≤ y ≤ b

and the other three boundary conditions are obtained similarly. Even
though the variables can be separated in the Laplace operator, the
boundary conditions may not admit the existence of a solution in the
form u(x, y) = X(x)Y (y). This is a limitation of the method. If
u(x, y) = X(x)Y (y), then the condition at S1L yields

∂u

∂n

∣

∣

∣

S1L

+ αu
∣

∣

∣

S1L

= −X ′(0)Y (y) + α(0, y)X(0)Y (y) = 0 , y ∈ [0, b] .

It cannot be reduced is reduced to a boundary condition for X inde-
pendent of y unless α(0, y) = α = const, 0 ≤ y ≤ b, in which case

−X ′(0) + αX(0) = 0 .

A similar analysis shows that α must be a constant function on the
other three smooth pieces of the boundary. If, in addition, the func-
tion α is required to be continuous in ∂Ω, then the problem admits a
separation of variables if the function α is a constant function on the
boundary ∂Ω, that is, α(x, y) = α for all (x, y) ∈ ∂Ω. In the next
section, it is shown that the continuity condition may be relaxed in
some cases.

Thus, if α is a non-negative constant on ∂Ω, then the original two-
dimensional eigenvalue problem is equivalent to two one-dimensional
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(Sturm-Liouville) problems:

−X ′′(x) = µX(x) ,

{

X ′(0) − αX(0) = 0
X ′(a) + αX(a) = 0

(45.9)

−Y ′′(y) = νY (y) ,

{

Y ′(0) − αY (0) = 0
Y ′(b) + αY (b) = 0

(45.10)

where λ = µ+ ν. Each of these problems can be solved by the method
of Section 8.2 (see also Example 8.1). By setting l = a (or l = b),
α0 = αl = α and β0 = βl = 1 in (36.3), the boundary conditions
in (45.9) (or (45.10) are obtained. By Theorem 44.4, µ = 0 is an
eigenvalue if and only if α = 0 and in this case the corresponding
eigenfunction is a constant function. The details of the case α = 0 are
left to the reader as an exercise. In what follows it is assumed that
α > 0. In this case all eigenvalues must be strictly positive, µ > 0.
Equation (36.8) determines the solution of the equation in (45.9) that
satisfies the first boundary condition is

X(x;µ) ≡ Z(x;µ) = cos(
√
µ x) +

α√
µ

sin(
√
µ x)

The second boundary condition yields an equation for the eigenvalues:

−√
µ sin(

√
µ a) + α cos(

√
µa) + α

[

cos(
√
µa) +

α√
µ

sin(
√
µ a)

]

= 0

or

(45.11) cot(aθ) =
1

2α

(

θ − α2

θ

)

, θ =
√
µ .

The function in the right side of this transcendent equation is strictly
monotonic because its derivative is positive

1

2α

(

θ − α2

θ

)′

=
1

2α

(

1 +
α2

θ2

)

> 0 , θ > 0

The graph of this function has a vertical asymptote at θ = 0 and tends
to −∞ as θ → 0+. It also has slant asymptote given by the graph of
the linear function θ/(2α) which is approached from below. Therefore
the graph intersects the graph of cot(aθ) only once in each interval
π(n− 1)/a < θ < πn/a, n = 1, 2, .... Thus, Eq. (45.11) has countably
many simple roots:

θ = θn(a) ,
π(n− 1)

a
< θn(a) <

πn

a
, n = 1, 2, ... .

A similar analysis holds for the problem (45.10). The eigenvalues and
the corresponding eigenfunctions of the problems (45.9) and (45.10)
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are, respectively,

µ = µn = θ2
n(a) , X = Xn(x) = Z(x;µn) , n = 1, 2, ... ,(45.12)

ν = νm = θ2
m(b) , Y = Ym(y) = Z(y; νm) , m = 1, 2, ... .(45.13)

The eigenvalues and the corresponding eigenfunctions for Problem (??)
in a two-dimensional rectangle are

λ = λnm = µn + νm ,(45.14)

u = φnm(x, y) = Xn(x)Ym(y)(45.15)

The functions (45.15) form an orthogonal complete set in L2(Ω). In-
deed, by the general analysis of the Sturm-Liouville problem, the set
{Xn}∞1 is a complete orthogonal set in L2(0, a), while the set {Ym}∞1
is a complete orthogonal set in L2(0, b). Since Ω = (0, a) × (0, b), the
set {φnm} has to be complete and orthogonal in L2(Ω) by Theorem
??. An orthonormal complete set is obtained by normalizing φnm. A
calculation of the normalization constant ‖φnm‖ is left to the reader as
an exercise.

45.3. More general boundary conditions. Let the eigenvalue problem for
the Laplace operator in Ω = (0, a)× (0, b) with the boundary condition

(45.16)

(

β(x)
∂u

∂n
+ α(x)u

)
∣

∣

∣

∣

∂Ω

= 0 .

The boundary ∂Ω consists of four smooth pieces S1L, S1R, S2L and
S2R. The functions α and β restricted to the interior of these pieces are
denoted by αs and βs, s = 1L, 1R, 2L, 2R, respectively. For example,

α
∣

∣

∣

S1L

= α1L(y) = α(0, y) , β
∣

∣

∣

S1L

= β1L(y) = β(0, y) , 0 < y < b ,

α
∣

∣

∣

S2R

= α2R(x) = α(x, b) , β
∣

∣

∣

S2R

= β2R(y) = β(x, b) , 0 < x < a .

Note the open intervals in the domain of these functions; they corre-
spond to the interior of the intervals S1L and S2R.

Then eigenvalue problem for the Laplace operator subject to the
boundary condition (45.16) in a rectangle can be written in the form:

−u′′xx − u′′yy = λu , (x, y) ∈ Ω ,
{

α1Lu(0, y) − β1Lu
′
x(0, y) = 0

α1Ru(a, y) + β1Ru
′
x(a, y) = 0

, 0 ≤ y ≤ b ,(45.17)

{

α2Lu(x, 0) − β2Lu
′
y(x, 0) = 0

α2Ru(x, b) + β2Ru
′
y(x, b) = 0

, 0 ≤ x ≤ a .(45.18)
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In the boundary conditions (45.17), it is assumed that the functions
αs(y) and βs(y), s = 1L, 1R, are continuous in (0, b) and can be con-
tinuously extended to the endpoints of the interval [0, b] (the limits of
these functions as y → 0+ and y → b− exist). Similarly, in (45.18), it
is assumed that the functions αs(x) and βs(x), s = 2L, 2R, are contin-
uous in (0, a) and can be continuously extended to the endpoints x = 0
and x = a. Note that under these assumptions, the functions α and
β in (45.16) may have jump discontinuities at the four corners of the
rectangle, while they are continuous elsewhere.

If a solution is sought in the form u(x, y) = X(x)Y (y), then the
boundary conditions cannot be fulfilled, unless the functions αs and βs
are constant functions. Indeed, take, for instance, the first condition
in (45.17):

α1L(y)X(0)Y (y)− β1L(y)X
′(0)Y (y) = 0 , 0 ≤ y ≤ b .

If α1L and β1L vary in S1L, then the boundary condition is impossible to
fulfill by choosing the constants X(0) and X ′(0). A similar observation
can be made for the other three boundary conditions.

Suppose that αs and βs are constants. This means that the function
α and β in (45.16) are piecewise constant along the boundary and
may have jump discontinuities at the four corners of the rectangle. In
this case, the eigenvalue problem can be solved by separating variables.
Moreover if αs and βs are constants such that

αs ≥ 0 , βs ≥ 0 , αs + βs > 0 , s = 1L, 1R, 2L, 2R ,

then the eigenvalues are non-negative. Indeed, in this case the problem
can be reduced to two Sturm-Liouville problems

−X ′′(x) = µX(x) ,

{

α1LX(0) − β1LX
′(0) = 0

α1RX(a) + β1RX
′(a) = 0

−Y ′′(y) = νY (y) ,

{

α2LY (0) − β2LY
′(0) = 0

α2RY (b) + β2RY
′(b) = 0

λ = µ+ ν .

Let µ = µn and X = Xn(x), n = 1, 2, ..., be the eigenvalues and
the corresponding orthonormal eigenfunctions in the first problem and,
similarly, ν = νm and Y = Ym(y). The sets {Xn}∞1 and {Ym}∞1 are
complete in L2(0, a) and L2(0, b), respectively. Then the eigenvalues of
the Laplace operator and the corresponding eigenfunctions are

λnm = µn + νm , φnm(x, y) = Xn(x)Ym(y) , n,m = 1, 2, ... .

By Theorem ??. the set {φnm} is a complete orthogonal set in L2(Ω).
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Clearly, the above analysis is straightforward to extend to the bound-
ary value problem for the Laplace operator for a rectangular domain
in RN .

45.4. Periodic boundary conditions. Consider a straight line segment.
The endpoints of the segment are glued so that the segment becomes
a circle. A circle is denoted S1. A function on S1 is a periodic function
on R. Consider a rectangle (0, a) × (0, b) in R2. Let us glue together
two opposite sides of the rectangle The result is a cylindrical shell, e.g.,
Ω = (0, a) × S1. Functions on a cylindrical shell are functions of two
real variables that are periodic in one of the variables. If two edges of
a cylindrical shell are glued together, a two-dimensional torus, S1 ×S1,
is obtained. Function on a torus are periodic functions of two real
variables. Similarly, functions on an N−dimensional torus are periodic
functions of n real variables.

Two-dimensional cylindrical shell. One can pose the eigenvalue problem
for the Laplace operator on a cylindrical shell:

−u′′xx − u′′yy = λu , (x, y) ∈ (0, a) × S
1 ,

{

α0u(0, y) − β0u
′
x(0, y) = 0

αau(a, y) + βau
′
x(a, y) = 0

, y ∈ R ,

u(x, y + b) = u(x, y) , x ∈ [0, a] , y ∈ R .

Here the variable y spans a circle S1 and b is the circumference so
that the cylindrical shell has radius b/(2π). If the parameters in the
boundary conditions are constants (independent of the variable y), the
problem can be solved by separating variables

u(x, y) = X(x)Y (y) , λ = µ+ ν ,

−Y ′′(y) = νY (y) , Y (y + b) = Y (y) , y ∈ R

−X ′′(x) = µX(x) ,

{

α0X(0) − β0X
′(0) = 0

αaX(a) + βaX
′(a) = 0

Using the results of Section ??,

u(x, y) = φkm(x, y) = Xk(x)Ym(y) , λ = λkm = µk + νm ,

Ym(y) = e2iπmy/b , ν = νm =
(2πm

b

)2

, m = 0,±1,±2, ...,

and µ = µk and X(x) = Xk(x), k = 1, 2, ..., are the eigenvalues and
the corresponding eigenfunctions of the Sturm-Liouville operator L =
−d2/dx2. The functions Xk form a complete orthogonal set in L2(0, a),
while the functions Ym(y) form a complete orthogonal set in L2(0, b).
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By Theorem ??, the functions φkm(x, y) form a complete orthogonal
set in L2(Ω) where Ω = (0, a) × S1. Note also that eigenfunctions of
the operator L = −d2/dy2 on S1 can be chosen real

Y (y) = Yn(y) =
{

1 , cos
(2πn

b
y
)

, sin
(2πn

b
y
)}

, n = 1, 2, ...

Each eigenvalue, except ν = 0, has multiplicity two.

Two-dimensional torus. The following example illustrates the method
of solving the eigenvalue problem on a two-dimensional torus. The
method is readily extended to a higher-dimensional torus.

Example 45.1. (Eigenvalue problem on a torus)
Find the eigenvalues and eigenfunctions of the Laplace operator on a
two-dimensional torus S1 × S1:

−∆u = λu , u ∈ C2(S1 × S
1) .

Show that eigenfunctions form a complete orthogonal set in L2(S
1×S1).

Solution: Let a and b be the dimensions of the torus. Solutions
satisfy the periodicity conditions:

u(x+ a, y) = u(x, y) , u(x, y + b) = u(x, y) .

Let u(x, y) = X(x)Y (y). Then the problem is reduced to two one-
dimensional problems

−X ′′(x) = µX(x) , X(x+ a) = X(x) ;

−Y ′′(y) = νY (y) , Y (y + b) = Y (y) ,

where λ = µ+ ν. Therefore using the results of Section ??

µ = k2
n, kn =

2πn

a
, X = Xn(x) = eiknx , n = 0,±1,±2, ..., ;

ν = p2
m, pm =

2πm

b
, Y = Ym(y) = eipmy , m = 0,±1,±2, ... .

Note that X−n and Xn, n 6= 0 correspond to the same eigenvalue k2
n

(which has multiplicity 2). Any linear combination of them is also
an eigenfunction corresponding to k2

n. The functions X−n and Xn are
orthogonal. The eigenvalues and eigenfunctions the Laplace operator
are

λnm = k2
n + p2

m , φnm(x, y) = Xn(x)Ym(y) , n,m = 0,±1,±2, ....

Each set of functions Xn, n = 0,±1, ..., and Ym, m = 0,±1, ..., is a
complete orthogonal set in L2(S

1). By Theorem ??, the functions φnm
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form a complete orthogonal set in L2(S
1 × S1):

〈φnm, φn′m′〉 =

∫ a

0

∫ b

0

φnm(x, y)φn′m′(x, y)dxdy = ab δnn′δmm′

Fourier series over φnm are two-dimensional trigonometric Fourier se-
ries. �

45.5. Physical interpretation. Consider a wave equation in a Euclidean
space R

N

1

c2
∂2u

∂t2
(x, t) = ∆u(x, t) , x = (x1, x2, ..., xN) ∈ R

N .

Let k = (k1, k2, ..., kN) ∈ R
N be a (fixed) vector and

(k, x) = k1x1 + k2x2 + · · · + kNxN

denote the dot product in RN so that the length of a vector is

|k| =
√

k2
1 + k2

2 + · · · + k2
N =

√

(k, k) .

The function

(45.19) u(x, t; k) = Ae−iωt+i(k,x) ,

where A is a constant, is a solution to the wave equation if the param-
eters ω and k satisfy the relation

(45.20) ω2 = c2|k|2 .
Indeed,

∂2u

∂x2
j

= (ikj)
2u ⇒ ∆u = −(k2

1 + k2
2 + · · · + k2

N )u = −|k|2u

1

c2
∂2u

∂t2
=

(−iω)2

c2
u = −ω

2

c2
u

so that the wave equation is satisfied, provided (45.20) holds. Note
also that the real and imaginary parts of (45.19) also satisfy the wave
equation

u(x, t) = B cos(ωt− (k, x)) or u(x, t) = C sin(ωt− (k, x)) .

If u(x, t) denotes a “deviation” of some quantity from its equilibrium
value (e.g., air density for sound waves, or a component of the electric
(or magnetic) field for electromagnetic waves (radio waves, light)), then
the deviation has a constant value A in space on the set

(k, x) = ωt = c|k|t ⇒ (k̂, x) = ct
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where k̂ = k/|k| is the unit vector in the direction of the vector k. For
every t, the above equation describes a plane in space perpendicular
to the vector k̂. The plane moves parallel in the direction of k̂ at a
constant rate (speed) c with increasing t.

Thus, the amplitude of the solution remains constant on a plane
in space that moves in the direction of the vector k at a constant
rate c. At any fixed point x, the amplitude of the solution oscillates
with frequency ω. If x is moved along the vector k by the distance
λ = 2π/|k|, then the dot product (k, x) is changed by 2π so that u(x, t)
does not change. In other words, at a fixed t, u(x, t) is a periodic
function along the line parallel to the vector k with period λ. For this
reason the solution (45.19) (or its real or imaginary parts) is called a
plane wave propagating in the direction k, the vector k is called the
wave vector of a plane wave, ω is the frequency, λ = 2π/|k| is the wave
length, the relation (45.20) is called the dispersion relation of the wave,
and a constant A is an amplitude of the wave.

Visible light is a superposition of electromagnetic waves (c is the
speed of light in a medium through which the light is propagating).
The color of light is determined by wavelength (or frequency) of the
wave. For example, variations of red, green, and blue colors correspond
to electromagnetic waves of wavelength ranges: 620÷750 nm (dark red
to light red), 495÷ 570 nm , and 450÷ 495 nm, respectively. So, every
color can be precisely defined by the corresponding numerical value of
the wavelength or frequency of light. This is why solutions of the wave
equation with a fixed frequency are also called monochromatic.

The most general form of a monochromatic solution is

(45.21) u(x, t) = uω(x)e
±iωt ,

where uω(x) is the oscillation amplitude at a point x in space. For
example, there can be several plane waves passing through the point x
in different directions or with different wave vectors kn, n = 1, 2, ..., m.
In this case,

uω(x) =

m
∑

n=1

Ane
i(kn,x) , |kn| =

ω

c
.

Note that all wave vectors should have the same length by the disper-
sion relation (45.20). The substitution of (45.21) into the wave equation
yields an equation for the amplitude of the monochromatic wave:

−∆uω = λ2uω , λ =
ω

c
.
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This equation looks like the eigenvalue problem for the Laplace opera-
tor where the wavelength of the monochromatic wave (or its frequency)
plays the role of the spectral parameter (the eigenvalue). If the wave
equation is considered in the entire space, then the corresponding equa-
tion is known as the Helmholtz equation which has solutions for any λ
or any wavelength. An example is provided by a superposition of plane
waves of the same frequency.

The situation changes if the wave equation is considered in a bounded
spatial region Ω. If the wave cannot propagate beyond the boundary
∂Ω, then any (physical) solution is required to satisfy some bound-
ary conditions. The boundary conditions depend on the interaction
of waves with the boundary. For example, if the boundary acts like a
mirror, a perfect reflector, then the amplitude of the wave must vanish
on the boundary (recall the reflection principle for the wave equation).
In this case, a bounded region Ω is called a wave resonator. A res-
onator supports only waves of certain wavelengths (frequencies). An
amplitude of a monochromatic wave in a resonator is a solution to the
eigenvalue problem of the Laplace operator is a bounded region:

−∆uω = λ2uω , λ =
ω

c
, uω

∣

∣

∣

∂Ω
= 0 ,

In particular, in a rectangular resonator (domain)

Ω = (0, a1) × (0, a2) × · · · × (0, aN)

the solution exists only for discrete values of the frequency ω or wave-
length λ:

ω = ωn =
c

π

(

n2
1

a2
1

+
n2

2

a2
2

+ · · · + n2
N

a2
N

)1/2

, nj = 1, 2, ... ,

uω(x) = φn(x) = sin

(

πn1

a1
x1

)

sin

(

πn2

a2
x2

)

· · · sin
(

πnN
aN

xN

)

.

The functions φn form a complete orthogonal set in L2(Ω) by Theorem
??:

〈φn, φn′〉 =

∫ a1

0

∫ a2

0

· · ·
∫ aN

0

φn(x)φn′(x) dx1dx2 · · · dxN

= 2−Na1a2 · · · aN δnn′

where the Kronecker symbol δnn′ = 1 if n = n
′ (or nj = n′

j for all
j = 1, 2, ..., N) and it vanishes otherwise.
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A solution to the wave equation in a resonator is a superposition of
standing waves:

(45.22) u(x, t) =
∑

n

(

An cos(ωnt) +
Bn

ωn

sin(ωnt)
)

φn(x) ,

where the summation is carried out over all possible distinct sets of
positive integers n = (n1, n2, ..., nN). For physical solutions the coeffi-
cients An and Bn should decay fast enough with increasing the length
|n| of the vector n in order for the Fourier to converge to a sufficiently
smooth function. The solution satisfies the initial conditions:

u(x, 0) = u0(x) =
∑

n

Anφn(x) ⇒ An =
〈u0, φn〉
〈φn, φn〉

u′t(x, 0) = u1(x) =
∑

n

Bnφn(x) ⇒ Bn =
〈u1, φn〉
〈φn, φn〉

Other boundary conditions. In a similar fashion, the superposition prin-
ciple can be used to obtain a formal solution to the wave equation
with periodic boundary condition for some of the variables and general
Sturm-Liouville boundary conditions for the other variables.

Example 45.2. Find the formal solution to the wave equation in a
three-dimensional space spanned by real variables (x, y, z)

u′′tt = c2(u′′xx + u′′yy + u′′zz) , (x, y, z) ∈ (0, a) × (0, b) × S
1 , t > 0 ,

that satisfies the initial conditions

u(x, y, z, 0) = 0 , u′t(x, y, z) = Bx(a− x) sin2(z)

for all (x, y, z) ∈ [0, a] × [0, b] × R and the boundary conditions

u(0, y, z, t) = u(a, y, z, t) = 0 , (y, z) ∈ [0, b] × R ,

u′y(x, 0, z, t) = u′y(x, b, z, t) = 0 , (x, z) ∈ [0, a] × R ,

u(x, y, z + 2π, t) = u(x, y, z, t) , (x, y, z) ∈ [0, a] × [0, b] × R ,

for all t ≥ 0. Determine whether the formal solution is also a classical
solution to the problem.

Solution: The fist step is to find the eigenfunctions of the Laplace
operator on Ω = (0, a) × (0, b) × S1. The eigenfunctions are sought in
the form

uω(x, y, z) = X(x)Y (y)Z(z)
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The equation

−∂
2uω
∂x2

− ∂2uω
∂y2

− ∂2uω
∂z2

= λ2uω

is reduced to three one-dimensional eigenvalue problems:
{

−X ′′(x) = µ2X(x)
X(0) = X(a) = 0

⇒
{

µ = µn = πn/a , n = 1, 2, ...
X(x) = Xk(x) = sin(µnx)

{

−Y ′′(y) = ν2Y (y)
Y ′(0) = Y ′(b) = 0

⇒
{

ν = νm = πm/b , m = 0, 1, ...
Y (y) = Ym(y) = cos(νmx)

{

−Z ′′(z) = β2Z(z)
Z(z + 2π) = Z(z)

⇒
{

β = βk = k , k = 0,±1,±2...
Z(z) = Zk(z) = eikz

where the eigenfrequencies of the standing waves are

ωn =
λ

c
=

1

c

√

µ2
n + ν2

m + β2
k , n = (n,m, k)

and the corresponding eigenmodes are

φn(x, y, z) = Xn(x)Ym(y)Zk(z) = sin(µn) cos(νmy)e
ikz

The modes are orthogonal and form a complete set in L2(Ω), where
Ω = (0, a)× (0, b) × S

1. They have the norm:

〈φn, φn〉 =

∫ a

0

∫ b

0

∫ 2π

0

φn(x, y, z)φn(x, y, z)dxdydz

=

∫ a

0

Xn(x)Xn(x)dx

∫ b

0

Ym(y)Ym(y) dy

∫ 2π

0

Zk(z)Zk(z) dz

=

∫ a

0

sin2(µnx) dx

∫ b

0

cos2(νmy) dy

∫ 2π

0

dz

=
a

2
· b
2
· 2π =

πab

2
,

if νm 6= 0 or m 6= 0. For all n = (n, 0, k) (in this case Y0(y) = 1) the
integral over [0, b] contributes the factor b so that

〈φn, φn〉 =

{

πab , m = 0
1
2
πab , m > 0

Next, the Fourier coefficients of the initial data have to be calculated.
Note that An = 0 in the series (45.22) because u0(x) = 0 in this
example. The other initial data has the form of the product:

u1(x) = f(x)g(y)h(z) ,

f(x) = x(a− x) , g(y) = B , h(z) = sin2(z)
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Therefore the triple integral for the Fourier coefficients becomes the
product of three ordinary integrals:

〈u1, φn〉 =

∫ a

0

∫ b

0

∫ 2π

0

u1(x, y, z)φn(x, y, z)dxdydz

=

∫ a

0

f(x)Xn(x) dx

∫ b

0

g(y)Ym(y) dy

∫ 2π

0

h(z)Zk(z) dz

The integrals are easy to calculate (see Section 37.5 for the first inte-
gral):

∫ a

0

f(x)Xn(x) dx =

∫ a

0

x(a− x) sin(µnx) dx =
2(1 − (−1)n)

µ3
n

∫ b

0

g(y)Ym(y) dy = B

∫ 1

0

Y0(y)Ym(y) dy = Bbδ0m

∫ 2π

0

sin2(z)Zk(z) dz = πδ0k −
π

2
δ2k −

π

2
δ−2k

where the identity

sin2(z) =
1

2
− 1

2
cos(2z) =

1

2
− 1

4

(

e2ix + e−2iz
)

=
1

2
Z0(z) −

1

4

(

Z2(z) + Z−2(z)
)

and the orthogonality of Zk(z) were used to compute the last integral.
The Fourier coefficients vanish for all m > 0, k 6= 0,±2, and even
n = 2p, p = 1, 2, ..., so that

Bn =
〈u1, φn〉
〈φn, φn〉

=
4B

aµ3
2p−1

, n = (2p− 1, 0, 0)

Bn = − 2B

aµ3
2p−1

, n = (2p− 1, 0,±2) .

The triple Fourier sum in (45.22) is reduced to three single sums over
p = 1, 2, ... for pairs (k,m) = (0, 0), (0,±2). The corresponding eigen-
frequencies of the contributing modes are

ω0p =
µ2p−1

c
, ω2p =

1

c

√

µ2
2p−1 + 4 .
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The formal solution to the stated problem reads:

u(x, y, z, t) =

∞
∑

p=1

4B sin(ω0pt)

aω0pµ3
2p−1

X2p−1(x)Y0(y)Z0(z)

−
∞
∑

p=1

2B sin(ω2pt)

aω0pµ3
2p−1

X2p−1(x)Y0(y)
(

Z2(z) + Z−2(z)
)

=
4B

a

∞
∑

p=1

sin(µ2p−1x)

µ3
2p−1

(

sin(ω0pt)

ω0p
− sin(ω2pt)

ω2p
cos(2z)

)

.

To analyze the convergence of the series, let us estimate the growth
of µ2p−1, ω0p, and ω2p as p → ∞. Since |sin(θ)| ≤ 1 and | cos(θ)| ≤ 1
for all θ, the series is majorated by the series

∞
∑

p=1

1

µ3
2p−1

(

1

ω0p
+

1

ω2p

)

=

∞
∑

p=1

c

µ4
2p−1

(

1 +
ω0p

ω2p

)

=

for all t and all (x, y, z). Furthermore by the inequality

ω0p

ω2p
=

µ2p−1
√

µ2
2p−1 + 4

< 1

the above series is majorated by the convergent series

∞
∑

p=1

2c

µ4
2p−1

=
2ca4

π4

∞
∑

p=1

1

(2p− 1)4
.

Thus, the series converges uniformly for all (x, y, z, t) and therefore the
sum is a continuous function. Furthermore, each differentiation with
respect to t gives factors ω0p ∼ 2p − 1 and ω2p < ω0p. Therefore the
series obtained by the double term-by-term differentiation with respect
to t is also majorated by the convergent series

∞
∑

p=1

(2p− 1)2

(2p− 1)4
=

∞
∑

p=1

1

(2p− 1)2
<∞

and, hence, converges uniformly for all (x, y, z, t). The double differen-
tiation with respect to x gives the factor µ2

2p−1 ∼ (2p−1)2 in each term
of the series. Therefore, the obtained series also converges uniformly
for all (x, y, z, t). Finally, the differentiation with respect y and z does
not produce any growing factors in the Fourier series. Thus, the sum of
the Fourier series is has continuous partial derivatives up to the second
order and, therefore, is a classical solution of the problem. �
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The wave equation in two spatial dimensions one of which is wrapped
into a circle S1 describes vibrations of a thin cylindrical shell embed-
ded into three dimensional Euclidean space. The function u(t, x, y) is
a deviation of the shell from its equilibrium cylindrical shape S1×(0, b)
at a position (x, y) ∈ S1× (0, b) in the normal direction. If the shell has
the (circular) boundaries fixed, then u(t, x, 0) = u(t, x, b) = 0. Simi-
larly, the two spatial dimensions can be wrapped into torus. In this
case, the wave equation describes vibrations of a thin toroidal shell. A
solution of the wave equation describing free vibrations of such shells is
a linear combinations of standing waves (defined by the corresponding
eigenvalue problem for the Laplace operator).

45.6. Superposition principle in quantum mechanics. Quantum mechan-
ics postulates that a particle moving in a conservative force field with
a potential V (x) (recall that a conservative force field is a force field of
the form F = −gradV) is described by the Schrödinger equation

i~
∂ψ

∂t
= Hψ , ψ(0, x) = ψ0(x) ,

Hψ = − ~2

2m
∆ψ + V (x)ψ ,

where ~ is the Planck constant, m is the mass of particle, and ψ(t, x) is
the wave function or probability amplitude whose physical significance
is that the integral

PΩ(t) =

∫

Ω

|ψ(t, x)|2dx

is the probability to find the particle in a spatial region Ω at time t in
any experiment. If the particle is allowed to be anywhere in space, then
PΩ(t) = 1 if Ω = RN . This condition is the normalization condition
for the wave function. Therefore quantum theory, by its very phys-
ical interpretation, requires the use of the space of square integrable
functions and linear (differential) operators in it. In fact, the linear
operator H mapping its domain MH ⊂ L2 to L2 is called the energy
operator or the Hamiltonian of the physical system and the number

Eψ = 〈Hψ,ψ〉 =

∫

ψHψ dx ,

∫

|ψ|2dx = 1 ,

is called the expectation value of the energy of the system in a state ψ.
Since the energy of a physical system cannot be negative, the Hamil-
tonian is necessarily hermitian

〈Hψ,ψ〉 ≥ 0 , ψ ∈ ML ⊂ L2
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Similarly to the wave equation, one can try to use the superposition
principle to find a solution to the Schrödinger equation as a linear
combination of eigenfunctions of H:

ψ(t, x) =
∑

E

AEe
−iEt/~ψE(x) , HψE(x) = EψE(x) ,

where constants AE are chosen so that the initial condition is satisfied.
An apparent problem with the superposition principle is the “sum”
does not make any sense if the eigenvalues do not form a countable set.
In fact, eigenvalues of physical Hamiltonian are quite often form non-
countable subsets or real numbers when the problem is formulated in
RN . If, however, a physical system (a particle) is confined in a bounded
region Ω, then the superposition principle is easy to use to obtain the
solution. First, note that if a particle cannot be found in any region
Ω′ that does not overlap with Ω, the probability to find the particle in
Ω′ should be zero. The latter implies that the wave function must be
zero almost everywhere outside Ω:

∫

Ω′

|ψ(x)|2dx = 0 , ∀Ω′ ∩ Ω = ∅ ⇒ ψ(x) = 0 a.e. , x /∈ Ω .

In this case, the eigenvalue problem can be formulated in L2(Ω):

Hψ = − ~2

2m
∆ψ + V ψ = Eψ , ψ

∣

∣

∣

∂Ω
= 0 .

One can prove that, if V (x) ≥ 0, the eigenvalues are positive (E > 0)
and form a countable set without any limit point, E = En, n = 1, 2, ...,
and each eigenvalue has a finite multiplicity (see the last section in this
chapter). The corresponding eigenfunctions form an orthonormal set
in L2(Ω). If the initial wave function is a linear combination of the
eigenfunctions ψEn(x)

ψ0(x) =
M
∑

n=1

AnψEn(x)

for some integer M , then the solution of the Schrödinger equation is

ψ(t, x) =
M
∑

n=1

Ane
−itEn/~ψEn(x) .

The initial data ψ0 can be any square integrable function. In this case,
the finite sum becomes the Fourier series, M → ∞, and

An =
〈ψ0, ψEn〉
〈ψEn, ψEn〉
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are the Fourier coefficients of the initial probability amplitude. By the
very interpretation of quantum mechanics, the convergence in the mean
is sufficient as only integrals of |ψ(x, t)|2 over subregions of Ω have a
physical significance (they define the probability to find the particle in
portions of Ω). Suppose that the eigenfunction are normalized so that
they form a complete orthonormal set. Let ψM(x, t) be the sequence
of partial sums of the Fourier series, M = 1, 2, .... Then for any t

‖ψM‖2 =

∫

Ω

|ψM(x, t)|2dx =
M
∑

n=1

∣

∣

∣
Ane

−itEn/~
∣

∣

∣

2

=
M
∑

n=1

|An|2 .

Therefore by the Parseval-Steklov equality

‖ψ‖2 = lim
M→∞

‖ψM‖2 =

∞
∑

n=1

|An|2 = ‖ψ0‖2 = 1 .

This shows that the Fourier series always converges in the mean and the
L2 norm of the solution does not change in due course of time evolution.
The physical interpretation of this conclusion is straightforward. The
particle cannot leave the region Ω and, therefore, the probability to
find it in the whole Ω must remain 1 for all t > 0 if it were 1 at t = 0.
Of course, the integral of |ψ(x, t)|2 over subregions of Ω will generally
depend on time t as a particle can travel from one part of Ω to another.

45.7. Exercises.

1. Solve the eigenvalue problem by separating variables

−u′′xx − u′′yy = λu , (x, y) ∈ Ω = (0, a) × S
1

u(0, y) = u(a, y) = 0 , y ∈ R

u(x, y + b) = u(x, y) , 0 ≤ x ≤ a , y ∈ R .

Verify hypotheses of relevant theorems to prove that eigenfunctions
form an orthonormal complete set in L2(Ω).

2. Solve the eigenvalue problem by separating variables

−u′′xx − u′′yy − u′′zz = λu , (x, y, z) ∈ Ω = (0, a) × (0, b) × S
1

u′x(0, y, z) = u′x(a, y, z) = 0 , (y, z) ∈ [0, b] × R

u(x, 0, z) = u′y(x, b, z) = 0 , (x, z) ∈ [0, a] × R ,

u(x, y, z + l) = u(x, y, z) , (x, y, z) ∈ [0, a] × [0, b] × R .

Verify hypotheses of relevant theorems to prove that eigenfunctions
form an orthonormal complete set in L2(Ω).
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3. Solve the eigenvalue problem by separating variables for the Laplace
operator in an N dimensional torus:

−∆u(x) = λu(x) , x ∈ Ω = S
1 × · · · × S

1 .

Verify hypotheses of relevant theorems to prove that eigenfunctions
form an orthonormal complete set in L2(Ω).

4. Use the superposition principle to solve the initial value (mixed)
problem for a vibrating elastic rectangular membrane

c−2u′′tt = ∆u , (t, x) ∈ (0,∞) × Ω , Ω = (0, a1) × (0, a2)

u(0, x) = u0(x) = 2 sin(πx1/a1) sin(2πx2/a2) ,

u′t(0, x) = u1(x) = −3 sin(2πx1/a1) sin(πx2/a2)

u(t, x)
∣

∣

∣

∂Ω
= 0 ,

where x = (x1, x2) ∈ R2.

5. Use the superposition principle to solve the mixed problem for the
wave equation describing vibrations of a thin cylindrical shell of radius
a and of length l with fixed boundaries:

c−2u′′tt = u′′xx + u′′yy ,

u(t, x+ 2πa, y) = u(t, x, y) , u(t, x, 0) = u(t, x, l) = 0 ,

u(0, x, y) = u0 cos(x/a) sin(πy/l) , u′t(0, x, y) = u1 sin(2πy/l) ,

where u0 and u1 are constants.

6. Find the formal solution to the wave equation in a two-dimensional
space (plane) spanned by real variables (x, y) that satisfies the given
boundary and initial conditions:

u′′tt = u′′xx + u′′yy , (x, y) ∈ (0, 1) × S
1 ,

u′x(0, y, t) = u(1, y, t) , y ∈ R , t ≥ 0 ,

u(x, y + 2π, t) = u(x, y, t) , (x, y) ∈ [0, 1] × R , t ≥ 0 ,

u(x, y, 0) = 0 , u′t(x, y, 0) = Bx2(1 − x) cos2(y) .

Investigate whether the formal solution is also a classical solution to
the problem.

7. Find eigenvalues of the Hamiltonian for a free particle (V = 0)
is a rectangular box Ω = (−a1, a1)× (−a2, a2) × (−a3, a3) ⊂ R3. Solve
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the mixed (inital value) problem for the Schrödinger equation for a free
particle in the box Ω if the initial wave function of the particle is

ψ(0, x) = ψ0(x) = c0 cos
(πx1

2a1

)

sin
(πx2

a2

)

sin
(3πx3

a3

)

,

where c0 is the normalization constant (such that ‖ψ0‖ = 1). Find the
normalization constant.

8. Consider a quantum particle of mass m in a square Ω = (0, l)×(0, l).
Assume that the particle cannot penetrate the boundary of the square.
Suppose that the particle is initially localized in a smaller square Ω0 =
(0, l/2)× (0, l/2) with a uniform probability density so that the initial
wave function has a constant value in Ω0

ψ(x, y, 0) = ψ0(x, y) = C , (x, y) ∈ Ω0

and vanishes otherwise, ψ0 = 0 if (x, y) /∈ Ω0. Find the probability
amplitude ψ(x, y, t) for t > 0
Hint: Find the value of C from the condition ‖ψ0‖2 = 1 in L2(Ω).
Impose the zero boundary condition ψ(x, y, t) = 0 if (x, y) ∈ ∂Ω and
use the Fourier method to find the formal solution of the initial value
problem for the Schrödinger equation.
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46. Eigenvalue problem for the Bessel operator

46.1. Bessel equation. The equation

x2u′′ + xu′ + (x2 − ν2)u = 0

is called the Bessel equation. Consider its solutions for real ν. The
coefficient at the second derivative vanishes at x = 0. According to
the theory of linear homogeneous equations, the Bessel equation has
two linearly independent solutions on a single interval of continuity of
the coefficient where the coefficient at the second derivative does not
vanish. The standard form of the equation reads

u′′ + p(x)u′ + q(x)u = 0 , p(x) =
1

x
, q(x) =

x2 − ν2

x2
, x > 0

Note that x = 0 is the so called regular singular point of the equation
because xp(x) = 1 and x2q(x) = x2 − ν2 are functions analytic every-
where (in particular, at x = 0). So two linearly independent solutions
for x > 0 can be found by the method of Frobenius:

u(x) = xr
∞
∑

k=0

a0x
k

where r and the coefficients an are to be found by the substitution of
the power series into the Bessel equation. Collecting the coefficients at
x0 = 1, the indicial equation is obtained

r(r−1)+p0r+q0 = 0 , p0 = lim
x→0+

xp(x) = 1 , q0 = lim
x→0+

x2q(x) = −ν2

from which it follows that

r = ±ν .
It is not then difficult to find a recurrence relation for the coefficients in
the power series for each root r = ±ν, solve it, and obtain two linearly
independent solutions

u1(x) = a0

∑

k=0

(−1)n

4kk!(1 + ν)k
x2k+ν ,

u2(x) = b0
∑

k=0

(−1)n

4kk!(1 − ν)k
x2k−ν ,

(t)k = t(t+ 1)(t+ 2) · · · (t+ k − 1) .

The constants a0 and b0 are arbitrary (the sum u1 + u2 is a general
solution of the Bessel equation).
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Definition 46.1. (Gamma function)
For x > 0, the function defined by the improper integral

Γ(x) =

∫ ∞

0

tx−1e−t dt

is called the Gamma function.

Note that the convergence of the integral on the upper limit is
guaranteed for all x > 0 by the exponential decay of the integrand as
t → ∞. For 0 < x < 1, the convergence of the integral on the lower
limit is guaranteed by integrability of the power function tn on (0, 1)
for n > −1.

Theorem 46.1. (Properties of the Gamma function)
The gamma function has the following properties:

Γ(x + 1) = xΓ(x) , x > 0 ,

Γ(n + 1) = n! , n = 1, 2, 3, ... ,

Γ(1/2) =
√
π ,

The first property is proved by integration by parts. Since Γ(1) = 1,
the second property follows from the first one. The last property is
obtained by means of the substitution s =

√
t in the integral repre-

sentation of Γ(1/2) that converts the integral into a Gaussian integral.
Note that the stated properties allow one to compute the values of
Γ at a half-integer argument. For example Γ(5/2) = (3/2)Γ(3/2) =
(3/2)(1/2)Γ(1/2) = 3

√
π/4 or, in general,

Γ(k + 1
2
) = (k − 1

2
)Γ(k − 1 + 1

2
)

= (k − 1
2
)(k − 1 − 1

2
)Γ(k − 2 + 1

2
)

= (k − 1
2
)(k − 1 − 1

2
) · · · (1

2
)Γ(1

2
)

=
(2k − 1)(2k − 3) · · · 1

2k
√
π

=
(2k − 1)!!

2k
√
π

It follows from the properties of the Gamma function that

(t)k =
Γ(t+ k)

Γ(t)

It is then convenient to choose the coefficient a0 = 1/(2νΓ(1 + ν)) so
that the first linearly independent solution u1 assumes the form

(46.1) Jν(x) =
∞
∑

k=0

(−1)k

k!Γ(1 + ν + k)

(x

2

)2k+ν

.
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This function is called the Bessel function of order ν. If ν ≥ 0, it is a
regular solution of the Bessel equation. If x is replaced by a complex
variable z, then the series (46.1) defines an analytic extension of the
Bessel function to the complex plane. Using the ratio test, it is not
difficult to show that the series converges absolutely for all complex z.
In other words, the series has infinite radius of convergence. The Bessel
functions are analytic in the entire complex plane and their derivatives
and integrals can be obtained by term-by-term differentiation and in-
tegration of the series (46.1).

In particular, it follows from the relation

k!Γ(1 + 1
2

+ k) =
k!(2k + 1)!!

2k+1

√
π =

(2k + 1)!

22k+1

that the Bessel functions of a half-integer order are expressed in ele-
mentary functions:

J1/2(x) =

√

2

πx

∑

k=0

(−1)k

(2k + 1)!
x2n+1 =

√

2

πx
sin(x)(46.2)

J−1/2(x) =

√

2

πx

∑

k=0

(−1)k

(2k)!
x2n =

√

2

πx
cos(x)(46.3)

Furthermore, if ν > 0 and ν is not an integer, then Jν and J−ν are
linearly independent solutions of the Bessel equation. The linear com-
bination

(46.4) Nν(x) =
cos(νπ)Jν(x) − J−ν

sin(νπ)

is also a solution of the Bessel equation, known as the Neumann (or
Weber) function of order ν. If ν is not an integer, then a general
solution of the Bessel equation is a linear combination of the Bessel
and Neumann functions of order ν.

If ν = n ≥ 0 (an integer), then by using the property of the gamma
function Γ(−k) = ∞, k = 0, 1, 2, ..., it follows that

J−n(x) =
∞
∑

k=n

(−1)k

Γ(k − n+ 1)Γ(k + 1)

(x

2

)2k−n

= (−1)nJn(x)

where the last equality is obtained by changing the summation index
k = m+ n, m = 0, 1, 2, ..., if k = n, n+ 1, ... and by using the property
Γ(m + 1) = m!. Therefore J−n is not linearly independent of Jn. If
ν is a non-negative integer, then the indicial equation has two roots
r = ±n 6= 0 or one root r = 0 of multiplicity two and, by the method
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of Frobenius, a second linearly independent solution can be found in
the form

u2(x) = CnJn(x) ln(x) +
∞
∑

k=0

bkx
k−n

where Cn and bk are to be determined from the Bessel equation. In
particular one show that the following limit exists

Nn(x) = lim
ν→n

Nν(x) = lim
ν→n

cos(νπ)Jν(x) − J−ν(x)

sin(νπ)

=
1

π

[

∂Jν(x)

∂ν
− (−1)n

∂J−ν(x)

∂ν

]

ν=n

(46.5)

and defines a second linearly independent solution of the Bessel equa-
tion, which is called the Neumann function of order n.

Another choice of two linearly independent solutions of the Bessel
equation is known as the Hankel functions of the first kind of order ν:

H(1)
ν =

i

sin(νπ)

[

Jν(x)e
−iπν − J−ν(x)

]

, ν 6= n ,

H(1)
n = Jn(x) +

i

π

[

∂Jν(x)

∂ν
− (−1)n

∂J−ν(x)

∂ν

]

ν=n

and the Hankel functions of the second kind of order ν:

H(1)
ν =

1

i sin(νπ)

[

Jν(x)e
iπν − J−ν(x)

]

, ν 6= n ,

H(2)
n = Jn(x) −

i

π

[

∂Jν(x)

∂ν
− (−1)n

∂J−ν(x)

∂ν

]

ν=n

Evidently, H
(2)
ν is the complex conjugation of H

(1)
ν . A general solution

of the Bessel equation can also be written as a linear combination of
the Hankel functions of the first and second kind. All solutions of the
Bessel equation are also called cylindrical functions.

46.2. Generalized eigenvalue problem. Let L be a differential operator
in an open bounded connected region Ω in RN . Consider the generalized
eigenvalue problem

Lu(x) = λσ(x)u(x) , x ∈ Ω ⊂ R
N ,

where σ ∈ C 0(Ω) and σ(x) > 0 in Ω. The objective is to find all
(complex) values of λ ∈ C (eigenvalues of L) at which the equation has
a non-trivial solution and all such solutions as well (eigenfunctions of
L). The difference with the standard eigenvalue problem is a particular
case when σ(x) = 1.
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Suppose that L is hermitian in L2(Ω), that is,

〈Lu, v〉 = 〈u, Lv〉 .
Then eigenvalues λ are real. Indeed, let u be an eigenfunction for some
λ, Lu = λσu. Then using the inner product in the space L2(Ω; σ):

〈Lu, u〉 = λ

∫

Ω

|u(x)|2σ(x) dx

〈u, Lu〉 =

∫

Ω

u(x)Lu(x)dx = λ

∫

Ω

|u(x)|2σ(x) dx

Since the left sides of these relation are equal by hermiticity of L, it
follows that λ = λ.

Eigenfunctions corresponding to distinct eigenvalues are orthogonal
in the space L2(Ω, σ). Let Luj = λjσuj, j = 1, 2, and λ1 6= λ2. Then

λ1〈u1, u2〉σ =

∫

Ω

λu1u2σdx =

∫

Ω

(Lu1)u2dx = 〈Lu1, u2〉

= 〈u1, Lu2〉 = 〈u1, λ2u2〉σ = λ2〈u1, u2〉σ
⇒ (λ1 − λ2)〈u1, u2〉σ = 0

⇒ 〈u1, u2〉σ = 0

because λ1 6= λ2.
If σ(x) > 0 in the closure Ω, then the problem is equivalent to a

regular eigenvalue problem

Lσu ≡ 1

σ
Lu = λu .

If L is hermitian in L2(Ω), then the operator Lσ = (1/σ)L is hermitian
in L2(Ω; σ) because

〈Lσu, v〉σ = 〈Lu, v〉 .
So, all the results established for a hermitian operator L in L2(Ω) are
valid for the operator Lσ in L2(Ω; σ). In particular, one can consider
the Sturm-Liouville problem in L2((a, b); σ), which is to find solutions

u(x) ∈ C2(a, b)× C1([a, b]) , u′′ ∈ L2(a, b) ,

to the generalized Sturm-Liouville equation

Lu ≡ −(pu′)′ + qu = λσu , a < x < b ,

that satisfy the boundary conditions

αau(a)− βau
′(a) = 0 , αbu(b) + βbu

′(b) = 0 ,

where all the parameters are non-negative and αa+βa > 0, αb+βb > 0.
The functions p and q are from the same class as the corresponding
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functions in the Sturm-Liouville problem. The weight σ(x) is required
to be continuous and positive:

σ ∈ C 0[a, b] , σ(x) > 0 , x ∈ [a, b] .

In this case, the problem is called a regular Sturm-Liouville problem.
Theorem 36.4 also hold for the regular Sturm-Liouville problem. In
particular, the eigenvalues λ are non-negative and simple; they form a
countable set with no limit points. The corresponding eigenfunctions
form a complete orthogonal set in L2((a, b); σ).

If the positivity condition for p(x) and σ(x) in the closed interval
[a, b] is relaxed to the positivity in the open interval (a, b), then the
corresponding problem is called singular Sturm-Liouville problem. The
following eigenvalue problem gives an example of a singular Sturm-
Liouville problem. The eigenvalue problem for the Bessel operator is
an example of a singular Sturm-Liouville problem.

46.3. Eigenvalue problem for the Bessel operator. Let ν ≥ 0. Consider
the following (generalized) eigenvalue problem

Lνu ≡ −(xu′)′ +
ν2

x
u = λxu , 0 < x < 1 ,(46.6)

u(x) = O(xγ) as x→ 0+ ; αu(1) + βu′(1) = 0 ,(46.7)

γ = min(ν, 1) , α ≥ 0 , β ≥ 0 , α+ β > 0 .

The condition (46.7) means that the function u(x) ≈ cxγ for some
constant c as x → 0+ (it vanishes as a power function). The domain
of the operator Lν consists of functions from C2((0, 1]) that satisfy
the boundary conditions (46.7) and the condition that the function
x−1/2Lνu is square integrable:

u ∈ MLν if u ∈ C2((0, 1]) , x−1/2Lνu ∈ L2(0, 1) , u satisfies (46.7) .

The set of p times continuously differentiable functions on [0, 1], p > 2,
that vanish at the endpoints of the interval is contained in ML and
also dense in L2(0, 1). Therefore ML is dense in L2(0, 1). The operator
Lν defined by the rule (46.6) on the domain MLν is called the Bessel
operator.

Theorem 46.2. (Hermiticity of the Bessel operator)
The Bessel operator is positive semidefinite and, hence, hermitian:

〈Lνu, u〉 ≥ 0 , u ∈ MLν .
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Proof. Using the integration by parts in the improper integral

〈Lνu, u〉 = − lim
a→0+

∫ 1

a

(xu′)′ū dx+ ν2 lim
a→0+

∫ 1

a

|u|2
x

dx

= lim
a→0+

∫ 1

a

x|u′|2dx− lim
a→0+

xu′ū
∣

∣

∣

1

a
+ν2 lim

a→0+

∫ 1

a

|u|2
x

dx

If ν = 0, then the last term vanishes. If ν > 0, then u(x) = O(xγ)
where 0 < γ ≤ 1 and, hence, u′(x) = O(xγ−1) as x → 0+. Therefore
x|u′(x)|2 = O(x2γ−1) where −1 < 2γ − 1 and therefore the limit in
the first term exists. Similarly, xu′ū = O(x2γ) → 0 as x → 0+ in
the boundary term. The value of the boundary term at x = 1 is
transformed by means of the boundary condition (46.7):

−xu′ū
∣

∣

∣

1

0
= −u′(1)u(1) =

{

(α/β)|u′(1)|2 , β 6= 0
0 , β = 0

The last term |u|2/x = O(x2γ−1) and, hence, it is integrable. Thus,

〈Lνu, u〉 =

∫ 1

0

x|u′|2 dx+ ν2

∫ 1

0

|u|2
x

dx+
α

β
|u′(1)|2 ≥ 0 .

Thus, the operator Lν is positive and therefore hermitian because its
domain is dense in L2(0, 1). �

Theorem 46.3. (Eigenvalues of the Bessel operator)
Let Lν be the Bessel operator. Let λ0 be an eigenvalue of Lν , Lνu0(x) =
λ0xu0(x), u0 ∈ ML. Then

(i) λ0 is simple and non-negative;
(ii) In order for λ0 = 0, it is necessary and sufficient that ν = 0

and α = 0, and in this case the corresponding eigenfunction is
a constant function, u0(x) = const.

A proof of this theorem is analogous to the proof of Parts (i) and
(iii) of Theorem 36.4. Part (ii) is proved in the same way as Theorem
36.3. The details are left to the reader as an exercise.

46.4. Eigenfunctions of the Bessel operator. Theorem 46.3 states that
if λ = 0 is an eigenvalue than the corresponding eigenfunction is a
constant function. So without loss of generality suppose that λ > 0.
By multiplying Eq. (46.6) by x, it can be rewritten

x2u′′ + xu′ + (λx2 − ν2)u = 0

By changing the variable x to z =
√
λx the above equation becomes

the Bessel equation whose general solution is a linear combination of



46. EIGENVALUE PROBLEM FOR THE BESSEL OPERATOR 559

Jν(z) and Nν(z) and therefore any eigenfunction must have the forms

u(x;λ) = C1Jν(
√
λ x) + C2Nν(

√
λ x)

where the constants C1,2 and λ are chosen so that u(x;λ) ∈ MLν . The
first boundary condition in (46.7) (the regularity condition at x = 0)
requires that C2 = 0. The second condition yields that λ = µ2 where
µ is a positive root of the equation

(46.8) αJν(µ) + βµJ ′
ν(µ) = 0 , α, β ≥ 0 , α + β > 0 .

Theorem 46.4. (Roots of Eq. (46.8))
Let ν > −1. Then the roots of Eq. (46.8) are real and simple except
possibly the zero root. The set of roots is countable and symmetric
about zero and has no limit points

A proof is omitted. That the roots are real and simple can be also
understood from the fact that Lν is a positive operator. The fact that
there are countably many roots may be anticipated from the graph of
Jν(x); it has an oscillatory behavior like trigonometric functions with
the amplitude of oscillations decreasing with increasing x (see, e.g.,
J1/2(x)). A more accurate consideration is based on the theorem from
the theory of functions of complex variable: The set of zeros of an
entire function does not have limit points.

It follows from this theorem that the roots of Eq. (46.8) can be
enumerated and arranged in the increasing order

µ = µ(ν)
n (α, β) , n = 1, 2, ... , µ

(ν)
1 (α, β) < µ

(ν)
2 (α, β) < · · ·

The Bessel function has an asymptotic behavior

Jν(x) =

√

2

πx
cos
(

x− π

4
ν − π

2

)

+O(x−3/2) , x → ∞ ,

from which an approximate expression for the roots of Jν(µ) can be
deduced

µ = µ(ν)
n (1, 0) ≈ 3π

4
+
π

2
ν + πn .

Theorem 46.5. (Orthogonality of Bessel functions)
Let µ1 and µ2 be two roots of Eq. (46.8) and ν > −1. Then

∫ 1

0

xJν(µ1x)Jν(µ2x)dx = 0 , µ1 6= µ2

∫ 1

0

xJ2
ν (µ1x)dx =

1

2

[

J ′
ν(µ1)

]2

+
1

2

(

1 − ν2

µ2
1

)

J2
ν (µ1)(46.9)
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Proof. The orthogonality of eigenfunctions follows from hermiticity
of the Bessel operator as this is a particular case of the generalized
eigenvalue problem discussed in Section 9.2. The normalization relation
is established as follows. Let µ1 and µ2 be real numbers. The functions
Jν(µ1x) and Jν(µ2x) satisfy the Bessel equation:

d

dx

[

x
dJν(µ1x)

dx

]

+

(

µ2
1x−

ν2

x

)

Jν(µ1x) = 0

d

dx

[

x
dJν(µ2x)

dx

]

+

(

µ2
2x−

ν2

x

)

Jν(µ2x) = 0

Let us multiply the second equation by Jν(µ1x) and subtract the result
from the first equation multiplied by Jν(µ2x). The resulting relation is
then integrated over the interval (0, 1) to obtain

∫ 1

0

d

dx

[

x

(

Jν(µ1x)
dJν(µ2x)

dx
− Jν(µ2x)

dJν(µ1x)

dx

)]

dx

= (µ2
2 − µ2

1)

∫ 1

0

xJν(µ1x)Jν(µ2x) dx

The integral of the derivative in the right side has a contribution only
from the upper limit. Indeed, it follows from (46.1) that

Jν(µx) =
1

Γ(ν + 1)

(µx

2

)ν

+O(xν+2)

xµJ ′
ν(µx) =

ν

Γ(ν + 1)

(µx

2

)ν

+O(xν+2)

Therefore

µ1xJν(µ2x)J
′
ν(µ1x) − µ2xJν(µ1x)J

′
ν(µ2x) = O(x2ν+2) → 0 , x → 0+

that is, the contribution of the lower limit in the integral of the deriv-
ative vanishes. Thus, if µ1 6= µ2, then
∫ 1

0

xJν(µ1x)Jν(µ2x)dx =
1

µ2
2 − µ2

1

[

µ1Jν(µ2)J
′
ν(µ1) − µ2Jν(µ1)J

′
ν(µ2)

]

Suppose that µ1,2 are roots of Eq. (46.8) (they are eigenvalues of the
Bessel operator). Then the numbers α and β satisfy the linear homo-
geneous system

αJν(µ1) + βµ1J
′
ν(µ1) = 0

αJν(µ2) + βµ2J
′
ν(µ2) = 0
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But α + β > 0 and therefore they cannot vanish simultaneously. This
is only possible if the determinant of the linear system vanishes:

det

(

Jν(µ1) µ1J
′
ν(µ1)

Jν(µ2) µ2J
′
ν(µ2)

)

= µ2Jν(µ1)J
′
ν(µ2) − µ1Jν(µ2)J

′
ν(µ1) = 0 .

Note that gives an alternative proof of the orthogonality of the eigen-
functions of the Bessel operator. Suppose µ1 is an eigenvalue (it satisfies
Eq. (46.8)), while µ2 is not (it is a real variable). The right side of
(46.9) is given by the following limit which is calculated by by means
of l’Hospital’s rule

lim
µ2→µ1

µ1Jν(µ2)J
′
ν(µ1) − µ2Jν(µ1)J

′
ν(µ2)

µ2
2 − µ2

1

=
1

2

[

J ′
ν(µ1)

]2

− 1

2µ1

[

J ′
ν(µ1) + µ1J

′′
ν (µ1)

]

=
1

2

[

J ′
ν(µ1)

]2

+
1

2

(

1 − ν2

µ2
1

)

J2
ν (µ1) ,

where the second derivative J ′′
ν (µ) has been expressed in terms of the

Bessel function and its derivative using the Bessel equation. The proof
is complete. �

Theorems 46.4 and 46.5 allow us to conclude that the Bessel oper-
ator (46.5) has:

(i) simple eigenvalues λn = (µ
(ν)
n )2, n = 1, 2, ..., such that λ1 <

λ2 < · · · where µ
(ν)
n are positive roots of Eq.(46.8);

(ii) eigenfunctions u(x;λn) = Jν(µ
(ν)
n x) corresponding to λn form

an orthogonal set in the space L2(Ω, σ) with Ω = (0, 1) and
weight σ(x) = x.

Let u ∈ ML. Then one can define a Fourier series

u(x) ∼
∞
∑

n=1

a(ν)
n Jν(µ

(ν)
n x) , a(ν)

n =
1

cn

∫ 1

0

xu(x)Jν(µ
(ν)
n x)dx ,

where cn is given by the integral (46.9). This series is called the Fourier-
Bessel series of a function u. The following theorem addresses the
question about convergence of Fourier-Bessel series.

Theorem 46.6. (Convergence of Fourier-Bessel series)
Let u ∈ ML. Then the Fourier series of the function

√
xu(x) over the

set
√
x Jν(µ

(ν)
n x), n = 1, 2, ...,

√
xu(x) =

∞
∑

n=1

a(ν)
n

√
x Jν(µ

(ν)
n x) , a(ν)

n =
〈u, Jν(µ(ν)

n x)〉σ
‖Jν(µ(ν)

n x)‖σ
, σ(x) = x
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converges uniformly.

The set of functions
√
xu(x), u ∈ MLν , is dense in L2(0, 1). By

the above theorem each such function can be approximated in L2(0, 1)

by linear combinations of
√
x Jν(µ

(ν)
n (x). Therefore the set of functions

{√x Jν(µ(ν)
n (x)}∞1 is complete in L2(0, 1) and the following assertion is

true

Corollary 46.1. (Completeness of Bessel functions)

The set Jν(µ
(ν)
n x), n = 1, 2, ..., is complete in L2(Ω; σ) with Ω = (0, 1)

and weight σ(x) = x.

46.5. Further properties of the Bessel functions. Recall that a convergent
power series can be differentiated and integrated term-by-term and the
obtained series have the same radius of convergence. In particular,
let us multiply the series (46.1) by x±ν and then differentiate it. The
obtained series can be expressed via the series for the Bessel function
of the orders ν ± 1,

d

dx

[

xνJν(x)
]

= xνJν−1(x) ,

d

dx

[Jν(x)

xν

]

= −Jν+1(x)

xν
,

using the property Γ(a + 1) = aΓ(a). It follows from the first relation
that

∫

xνJν−1(x) dx = xνJν(x) + C

This indefinite integral is useful for calculation of the Fourier-Bessel
coefficients of a power function (see Example below). By taking the
derivatives in the first two relations in this section, they can be restated
in an alternative form:

J ′
ν(x) = Jν−1(x) −

ν

x
Jν(x) ,

J ′
ν(x) = −Jν+1(x) +

ν

x
Jν(x) .

Taking the difference of these relations, one infers that

Jν+1(x) −
2ν

x
Jν(x) + Jν−1(x) = 0 .

Suppose that µ
(ν)
k are positive zeros of Jν(x). Then

Jν
(

µ
(ν)
k

)

= 0 ⇒ J ′
ν

(

µ
(ν)
k

)

= Jν−1

(

µ
(ν)
k

)

= −Jν+1

(

µ
(ν)
k

)
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Example 46.1. Let f(x) = xν , ν ≥ 0, and φk(x) = Jν(µ
(ν)
k x),

k = 1, 2, ..., be a complete orthonormal Bessel set on L2((0, 1); σ),
where σ(x) = x. Find the Fourier-Bessel coefficients of f . In particu-
lar, consider the case when the boundary conditions in the eigenvalue

problem for the Bessel operator are chosen so that µ
(ν)
k are roots of

Jν(x), that is, Jν(µ
(ν)
k ) = 0.

Solution: Then

〈f, φk〉σ =

∫ 1

0

xν+1Jν
(

µ
(ν)
k x
)

dx =
1

[µ
(ν)
k ]ν+2

∫ µ
(ν)
k

0

zν+1Jν(z) dz

=
1

[µ
(ν)
k ]ν+2

zν+1Jν+1 (z)
∣

∣

∣

µ
(ν)
k

0
=
Jν+1(µ

(ν)
k )

µ
(ν)
k

= −J
′
ν(µ

(ν)
k )

µ
(ν)
k

The squared norm of the eigenfunctions is given by (46.9). In particular

if µ
(ν)
k are roots of Jν , then the second term in the right side of (46.9)

vanishes so that the Fourier-Bessel coefficients are given by

ck =
〈f, φk〉σ
〈φk, φk〉σ

=
2Jν+1(µ

(ν)
k )

µ
(ν)
k [J ′

ν(µ
(ν)
k )]2

=
2

µ
(ν)
k Jν+1(µ

(ν)
k )

�

46.6. Exercises.

1. Prove Theorem 9.2 following the guidelines given after it in the text.

2. Consider the (singular) eigenvalue problem

Lu(x) ≡ −
(

(1 − x2)u′(x)
)′

= λu(x) , −1 < x < 1 .

Note that L resembles the Sturm-Liouville operator with one impor-
tant difference that p(x) = 1 − x2 is not strictly positive in the clo-
sure Ω = [−1, 1] because p(±1) = 0. Formulate regularity condi-
tions at x = ±1 to obtain a domain ML ⊂ L2(−1, 1) of L that is
dense in L2(−1, 1) and such that L is positive in it. Show that if
λ = λn = n(n+1), n = 0, 1, 2, ..., the corresponding eigenfunctions are
given by the Legendre polynomials.
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3. Use the power series of the exponential to prove that

exp

(

x

2

(

t− 1

t

)

)

=
∞
∑

n=−∞

Jn(x)t
n

Hint: Recall the binomial expansion:

(a+ b)n =

n
∑

k=0

n!

(n− k)!k!
an−kbk

Let a = t and b = −1/t. Regroup the terms in the power series repre-
sentation of eu where u = (x/2)(t − 1/t) to convert it to a series over
powers tk, k = 0,±1,±2, ... and use (46.1).

4. Use the result of Problem 3 to prove that

Jn(x) =
1

2π

∫ π

−π

ei(nθ−x sin θ)dθ , n = 0, 1, 2, ....

Hint: Put t = einθ and use the orthogonality of einθ, n = 0,±1,±2, ...

5. Show that the power series (46.1) has infinite radius of conver-
gence.

6. Find the Fourier-Bessel coefficients of the function f(x) = x over the
basis φk(x) = J1(µkx), k = 1, 2, ..., where µk are roots of the equation
J1(µ) + µJ1(µ) = 0. Explain why do these function form a complete
orthogonal set in L2((0, 1); σ), σ(x) = x.
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47. The Laplace operator in axially symmetric regions

47.1. The eigenvalue problem for the Laplace operator in a disk. Consider
the eigenvalue problem for the Laplace operator

−∆u = λu , (x, y) ∈ Ω = {(x, y) |x2 + y2 < a2} , u
∣

∣

∣

∂Ω
= 0 .

Note that the transformation that defines polar coordinates maps the
rectangle Ω′ = (0, a) × (0, 2π) onto Ω with the interval y = 0, 0 ≤
x < a, removed. So the idea is to reformulate the problem in the
polar coordinates in the rectangle Ω′ by imposing appropriate boundary
conditions at ∂Ω′.

Let u(x, y) be a solution. Then in the polar coordinates it is a
function of two variables

U(r, ϕ) = u(r cos θ, r sin θ)

It follows from this representation that the solution is 2π periodic for
every 0 < r < a so that the interval (0, 2π) can be wrapped into a
circle S1. Thus,

T : (0, a) × S
1 → Ω \ {(0, 0)}

So, the function U must be periodic in ϕ

U(r, ϕ+ 2π) = U(r, ϕ) , 0 < r ≤ a .

The boundary condition requires that

u
∣

∣

∣

∂Ω
= U(a, ϕ) = 0 , 0 ≤ θ < 2π .

The Jacobian J = r of the transformation vanishes at the origin
(x, y) = (0, 0) and therefore differential operators are generally not
defined at the origin. Indeed, the equation becomes

(47.1) −1

r

∂

∂r

(

r
∂U

∂r

)

− 1

r2

∂2U

∂θ2
= λU ,

which makes no sense for r = 0. Since any solution u is from C2(Ω)
and the origin is an interior point of Ω, second partial derivatives of u
exist and are continuous at the origin. This implies that U(r, ϕ) must
at least be regular at r = 0. In other words, U(0, ϕ) is defined by the
limit of U(r, ϕ) as r → 0+ so that

|U(0, ϕ)| <∞ .

A solution U(r, ϕ) that satisfy the regularity condition can be extended
to the origin by transforming it back to the rectangular coordinates
which is then used to verify the equation in rectangular coordinates
at the origin.
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Since the domain Ω′ of Eq. (47.1) is the direct product (0, a)× S1,
one can try to find a solution by separating variables:

U(r, ϕ) = R(r)Φ(ϕ) .

The substitution of this relation into (47.1) and the subsequent division
of the result by U yields

− 1

rR
(rR′)′ − 1

r2

Φ′′

Φ
= λ

The equation is satisfied if and only if Φ′′/Φ = ν is a constant. As
a result, the original two-dimensional problem is reduced to two one-
dimensional problems in S

1 and in (0, a):

−Φ′′ = νΦ , Φ(ϕ+ 2θ) = Φ(ϕ) ;(47.2)

r(rR′)′ + (λr2 − ν)R = 0 , |R(0)| <∞ , R(a) = 0 .(47.3)

The eigenvalue problem for the second derivative operator with periodic
boundary conditions (47.2) was already solved. The eigenvalues and
the corresponding eigenfunctions orthonormal in L2(S

1) are

ν = νm = m2 , Φ±m(ϕ) =
1√
2π

e±imθ , m = 0, 1, 2, ... .

Equation (47.3) is the Bessel equation whose general solution for ν =
m2 is

R(r) = c1Jm(
√
λr) + c2Nm(

√
λr) , m = 0, 1, 2, ... .

Note that eigenvalues are positive λ > 0 by Theorem 46.3. The regu-
larity condition demands that c2 = 0 and the boundary condition gives
an equation for λ:

Jm(
√
λ a) = 0 ⇒ λ = λmj =

(µ
(m)
j )2

a2
, j = 1, 2, ... ,

where µ = µ
(m)
j are positive roots of the Bessel function Jm(µ) = 0. The

corresponding orthonormal functions are obtained by the orthogonality
of Bessel functions stated in Theorem 46.5

Rmj(r) = cmjJm
(

µ
(m)
j

r

a

)

,

1

cmj
=

(
∫ a

0

J2
m

(

µ
(m)
j

r

a

)

r dr

)1/2

=
a√
2
|J ′
m(µ

(m)
j )| .

Since the Bessel functions form a complete set in L2((0, a); σ), where
σ(r) = r, and the functions Φn form a complete in L2(S

1), by Theorem
?? the eigenfunctions functions

(47.4) U±
mj(r, ϕ) = Rmj(r)Φ±m(ϕ) , m = 0, 1, ... , j = 1, 2, ... ,
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form a complete orthonormal set in L2(Ω
′; J), where J = r is the Jaco-

bian and Ω′ = (0, a)×(0, 2π). When going over back to the rectangular
coordinates, Ω′ is mapped onto Ω safe for a set of zero measure and,
hence, the set (47.4) is complete and orthonormal in L2(Ω) by Theorem
??. Note that the eigenfunction can be chosen real in accord with the
general theory:

Rmj(r) cos(mθ) , Rmj(r) sin(mθ) .

For m = 0, the second eigenfunction vanishes. So the eigenvalues λmj
are simple for m = 0 and have multiplicity 2 for m = 1, 2, ....

It is still left to verify that the regular solutions (47.4) obtained for
λ = λmj satisfy the original equation in rectangular coordinates at the
origin. By the Euler formula

x± iy = r(cos θ ± i sin θ) = re±iθ ⇒ (x± iy)m = rme±imθ .

Using the power series representation of the Bessel function (46.1),
where Γ(k + m + 1) = (k + m)!, and that (x ± iy)m = rme±imθ and
r2 = x2 + y2, it is easy to see that for any µ > 0 the product

Jm(µr)e±imθ = µm
(

x± iy

2

)m ∞
∑

k=0

(−1)kµ2k(x2 + y2)k

4kk!(k +m)!

is a power series in the original rectangular coordinates x and y. Hence,
all eigenfunctions Umj(r, ϕ) = umj(x, y) are from C∞(Ω) for all m =
0, 1, ... and j = 1, 2, ... (as any function represented by a power series).
Therefore the obtained solutions also fulfill the equation at the origin.

47.2. Eigenvalue problem for the Laplace operator in an annulus. Con-
sider the eigenvalue problem

−∆u(x, y) = λu(x, y) , (x, y) ∈ Ω ,

u(x, y)
∣

∣

∣

∂Ω
= 0 ,

Ω = {(x, y) | 0 < a2 < x2 + y2 < b2}
The annulus Ω is the image of the rectangle Ω′ = (a, b) × [0, 2π) in
the plane spanned by the polar coordinates (r, ϕ). Since the solution
has to satisfy zero boundary conditions, the problem can be solved by
separating variables in polar coordinates

u(x, y) = u(r cos θ, r sin θ) = U(r, ϕ) = R(r)Φ(ϕ)

The technicalities of separating variables in the equation are essentially
the same as in the example in the previous section (see the derivation
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of (47.2) and (47.3)). The original eigenvalue problem is reduced to
two one-dimensional eigenvalue problems

−Φ′′ = νΦ , Φ(ϕ+ 2θ) = Φ(ϕ) ;

−(rR′)′ +
ν

r
R = λrR , R(a) = R(b) = 0 .

Note that the origin where the Jacobian J = r vanishes in not in Ω.
In contrast to (47.3), the last eigenvalue problem is a regular Sturm-
Liouville problem in an interval (a, b) with weight σ(r) = r. By the
general theory for regular Sturm-Liouville problems presented in Sec-
tion 46.2, the eigenvalues are positive (because of the zero boundary
conditions), simple and they form a countable set with no limit point.
The corresponding eigenfunctions form a complete orthonormal set in
L2((a, b); σ) where σ = r. Since

ν = νm = m2 , Φ(ϕ) = Φ±m(ϕ) = e±imθ , m = 0, 1, 2, ...,

The general solution of the equation for R(r) is given by

R(r;µ) = c1Jm(µr) + c2Nm(µr) , µ =
√
λ > 0 .

The boundary conditions require
{

c1Jm(µa) + c2Nm(µa) = 0
c1Jm(µb) + c2Nm(µb) = 0

The system must have a non-zero solution for the pair (c1, c2), otherwise
R(r) = 0. A homogeneous system of linear equations has a non-zero
solution if and only if the determinant of the matrix of coefficients in
the system vanishes. This yields a desired equation for the eigenvalues:

det

(

Jm(µa) Nm(µa)
Jm(µb) Nm(µb)

)

= Jm(µa)Nm(µb) − Jm(µb)Nm(µa) = 0 .

Although one cannot solve this equation explicitly, but a general theory
of Section 46.2 guarantees that this equation has countably many simple
positive roots that have have no limit point, µ = µjm, j = 1, 2, ...,
and µjm → ∞ as j → ∞ for every non-negative integer m. When the
determinant vanishes, the equations are no longer independent and one
of them may be used to find a relation between c1 and c2. It follows
from the first equation that

c1Jm(µjma) + c2Nm(µjma) = 0

⇒ c1 = cNm(µjmb) , c2 = −cJm(µjmb)

for any c 6= 0. Note that the substitution of c1 and c2 into the equation
turns it into the determinant of the system. The latter vanishes as µjm
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is its root. The corresponding eigenfunctions are

Rjm(r) = Nm(µjmb)Jm(µjmr) − Jm(µjmb)Nm(µjmr) .

By the general theory these functions are orthogonal in L2((a, b); σ):

〈Rjm, Rj′m〉σ =

∫ b

a

Rjm(r)Rj′m(r)rdr = 0 , j 6= j′

and form a complete (orthogonal) set in L2((a, b); σ), σ = r, for every
m = 0, 1, 2, .... Every f that is square integrable with weight σ on (a, b)
can be expanded into the Fourier series

f(r) =
∞
∑

j=1

fjmRjm(r) , fjm =
〈f, Rjm〉σ

〈Rjm, Rjm〉σ

that converges in the mean. Furthermore, let MLm be the set of func-
tions from C2(a, b)∩C0([a, b]) that vanish at a and b (the domain of the
Sturm-Liouville operator in the equation for R(r)). Then if f ∈ MLm ,
then the Fourier series converges uniformly (according to the general
analysis of the Sturm-Liouville problem).

Thus, the eigenvalues and the corresponding eigenfunctions in the
Laplace operator in an annulus are

λ = λjm = µ2
jm , j = 1, 2, ..., m = 0, 1, ...,

U(r, ϕ) = U±
jm(r, ϕ) = Rjm(r)Φ±m(ϕ) .

By theorem ??, they form a complete orthogonal set in the space
L2(Ω

′; σ) where Ω′ = (a, b)×S1 and σ = r. If so desired, the eigenfunc-
tions can be expressed in the original rectangular coordinates (x, y) by
means of the power series representation of Bessel and Neumann func-
tions and by the Euler formula rme±imθ = (x ± iy)m just like in the
previous section. By the change of variable theorem, the functions

u±jm(x, y) = u±jm(r cos θ, r sin θ) = U±
jm(r, ϕ)

form a complete orthonormal set in L2(Ω). Every function g(x, y) that
is square integrable on the annulus Ω can be expanded into the Fourier
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series

g(x, y) =
∞
∑

j=1

gj0uj0(x, y) +
∞
∑

m=1

∞
∑

j=1

[

g+
jmu

+
jm(x, y) + g−jmu

−
jm(x, y)

]

,

g±jm =
〈g, u±jm〉

〈u±jm, u±jm〉
, 〈u±jm, u±jm〉 = 2π〈Rjm, Rjm〉σ ,

〈g, u±jm〉 =

∫

Ω

g(x, y)u±jm(x, y)dxdy

=

∫ 2π

0

∫ b

a

g(r cos θ, r sin θ)U±
jm(r, ϕ) rdrdθ

The Fourier series converges in the mean.

47.3. Eigenvalue problem for the Laplace operator in a cylinder. Let us
begin with the eigenvalue problem for the Laplace operator on a three-
dimensional cylinder with the zero boundary conditions. The cylinder
has radius a and height l.

Example 47.1. Solve the eigenvalue problem

−∆u(x, y, z) = λu(x, y, z) , (x, y, z) ∈ Ω ,

u
∣

∣

∣

∂Ω
= 0 ,

Ω = {(x, y, z) |x2 + y2 < a2 , 0 < z < h} ,
by separating variables in cylindrical coordinates

Solution: Under the transformation defined by cylindrical coordi-
nates Ω is the image of a rectangular box Ω′ = [0, a) × [0, 2π) × (0, l)
where 0 ≤ r < a, 0 ≤ θ < 2π, and 0 < z < l. So, one can try to find
solutions in the form

u(x, y, z) = u(r cos θ, r sin θ, z) = U(r, ϕ, z) = R(r)Φ(ϕ)Z(z)

As in polar coordinates, U must be periodic in ϕ:

U(r, ϕ+ 2π, z) = U(r, ϕ, z) ⇒ Φ(ϕ+ 2π) = Φ(ϕ)

for all (r, h) and, as before, the periodicity in ϕ will be indicated as
ϕ ∈ S1 (the variable ϕ spans a circle). The Jacobian of the cylindrical
coordinates J = r vanishes on the z axis. The z axis is intersecting Ω
and its boundary. Therefore the regularity conditions must be imposed:

|U(0, ϕ, z)| <∞ , θ ∈ S
1 , z ∈ [0, l] ⇒ |R(0)| <∞ .
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The boundary ∂Ω consists of three surfaces, a cylindrical shell S1 and
two disks, S2 and S3:

S1 = {(x, y, z) |x2 + y2 = a2 , 0 ≤ z ≤ l} ,
S2 = {(x, y, z) |x2 + y2 ≤ a2 , z = 0} ,
S3 = {(x, y, z) |x2 + y2 ≤ a2 , z = l} .

In cylindrical coordinates, the zero boundary on ∂Ω reads

u
∣

∣

∣

S1

= U(a, ϕ, z) = 0 , θ ∈ S
1 , z ∈ [0, l] ⇒ R(a) = 0 ,

u
∣

∣

∣

S2

= U(r, ϕ, 0) = 0 , θ ∈ S
1 , r ∈ [0, a] ⇒ Z(0) = 0 ,

u
∣

∣

∣

S3

= U(r, ϕ, l) = 0 , θ ∈ S
1 , r ∈ [0, a] ⇒ Z(l) = 0 .

The equation to solve is written in cylindrical coordinates:

−1

r

∂

∂r

(

r
∂U

∂r

)

− 1

r2

∂2U

∂θ2
− ∂2U

∂z2
= λU ,

−ΦZ

r

(

rR′
)′

− RZ

r2
Φ′′ −RΦZ ′′ = λRΦZ ,

−(rR′)′

rR
− 1

r2

Φ′′

Φ
− Z ′′

Z
= λ

The only way to fulfill this equation for all (admissible) values of inde-
pendent variables r, ϕ, and z is to require that the fractions Φ′′/Φ and
Z ′′/Z are constants. This case the eigenvalue problem for the three-
dimensional Laplace operator is equivalent to three one-dimensional
boundary value problems:

−Φ′′(ϕ) = νΦ(ϕ) , Φ(ϕ + 2π) = Φ(ϕ) ,

−Z ′′(z) = ηZ(z) , Z(0) = Z(l) = 0 ,

−
(

rR′(r)
)′

− ν

r
R(r) = γrR(r) , |R(0)| <∞ , R(a) = 0 ,

γ = λ− η .

The first two problems have been solved before. So the solutions are

ν = m2 , Φ(ϕ) = Φ±m(ϕ) = e±imθ , m = 0,±1,±2, ...

η =
(πn

l

)2

, Z(z) = Zn(z) = sin
(πn

l
z
)

, n = 1, 2, ....

The third problem is the eigenvalue problem for the Bessel operator

−
(

rR′(r)
)′

− m2

r
R(r) = γrR(r) , |R(0)| <∞ , R(a) = 0
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Its solution is found in the previous section:

γ = γjm =
(µ

(m)
j )2

a2
, R(r) = Rjm(r) = Jm

(

µ
(m)
j

r

a

)

, j = 1, 2, ...

where µ
(m)
j are roots of the Bessel function Jm. Thus, the eigenvalues

and the corresponding eigenfunctions are

λ = λjmn = γjm + νn =
(µ

(m)
j

a

)2

+
(πn

l

)2

,

U(r, ϕ, z) = U±
jmn(r, ϕ, z) = Rjm(r)Φ±m(ϕ)Zn(z) ,

where j, n = 1, 2, ... and m = 0, 1, 2, .... Using the power series rep-
resentation for the Bessel function, it is not difficult to see that these
functions are regular at on the z axis (when (x, y) = (0, 0)) in the
original rectangular variables. The analysis is identical to that carried
out in the case of the eigenvalue problem for the Laplace operator in a
disk. By Theorem ?? these functions are orthogonal in L2(Ω

′; σ) where
σ = r for distinct triples of integers (j,m, n) and different indices ±.
The norm of the eigenfunctions is computed by Fubini’s theorem for a
triple integral over rectangular box Ω′:

‖U±
jmn‖2 =

∫

Ω′

|Ujmn(r, ϕ, z)|2rdrdθdz

=

∫ a

0

|Rjm(r)|2rdr
∫ 2π

0

|Φ±m(ϕ)|2dθ
∫ l

0

|Zn(z)|2dz

=
a2

2

(

J ′
m(µ

(m)
j )

)2

·2π · l
2

=
πa2l

2

(

J ′
m(µ

(m)
j )

)2

.

Changing the variables back to the original coordinates, it is concluded
that the obtained eigenfunctions form an orthogonal complete set in
L2(Ω). �

General boundary conditions on a cylinder. Let Ω be a cylinder in R3:

Ω = {(x, y, z) |x2 + y2 < a2 , 0 < z < l} = (0, l) ×D

where D is a disk of radius a. Consider the eigenvalue problem for
the Laplace operator with general boundary conditions for an elliptic
operator:

(47.5) −∆u = λu , (x, y, z) ∈ Ω ,

(

αu+ β
∂u

∂n

)
∣

∣

∣

∣

∂Ω

= 0 ,

where α ≥ 0, β ≥ 0, and α + β > 0 on the boundary ∂Ω. Let us
analyze under what conditions on the functions α and β the problem
can be solved by separating variables in cylindrical coordinates.
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Since the region of the eigenvalue problem is the direct product of
two regions, one can try to solve the problem by separating the variable
z first. Put

u(x, y, z) = V (x, y)Z(z) , (x, y) ∈ D , z ∈ (0, l) ,

and

Lu = Lxyu+ Lzu , Lxyu = −u′′xx − u′′yy , Lzu = −u′′zz .
The boundary ∂Ω consists of three pieces: the disks S0 = {z = 0} × D̄
and Sl = {z = l} × D̄ and the cylinder S = [0, l] × ∂D, where ∂D is
the boundary of D (the circle of radius a). The outward unit normal
on the boundary ∂Ω is

n(x, y, z)
∣

∣

∣

S0

= n(x, y, 0) = −ez , x2 + y2 ≤ a ,

n(x, y, z)
∣

∣

∣

Sl

= n(x, y, l) = ez , x2 + y2 ≤ a ,

n(x, y, z)
∣

∣

∣

S
= n(x, y, z) = er , x2 + y2 = a , 0 ≤ z ≤ l ,

where ez = e3 = (0, 0, 1) is the unit vector in the direction of the z axis
and er = (cos θ, sin θ, 0) is the unit vector normal to a circle centered
at the origin in the xy plane (ϕ is the polar angle). The boundary
condition for each smooth piece of ∂Ω reads
(

αu+ β
∂u

∂n

)
∣

∣

∣

∣

S0

=

(

αu− β
∂u

∂z

)
∣

∣

∣

∣

z=0

= 0 , (x, y) ∈ D ,

(

αu + β
∂u

∂n

)
∣

∣

∣

∣

Sl

=

(

αu+ β
∂u

∂z

)
∣

∣

∣

∣

z=l

= 0 , (x, y) ∈ D ,

(

αu+ β
∂u

∂n

)
∣

∣

∣

∣

S

=

(

αu+ β
∂u

∂r

)
∣

∣

∣

∣

r=a

= 0 , 0 ≤ z ≤ l , (x, y) ∈ ∂D .

where r = (x2 + y2)1/2 (the radial variable of polar coordinates). The
normal is not defined on two circles along which the cylinder S is
attached to the disks S0 and Sl. The first and second equations above
are defined at the circle x2 + y2 = a2 in the sense of the limit r → a−

(they are continuously extended to the boundary ∂D). Similarly, the
third equation is continuously extended to the boundary circles of S
by the limits z → 0+ and z → l−.

Let α0 and β0 be the functions α and β restricted to the open disk
S0 continuously extended to its boundary circle. Similarly, αl and βl be
the functions α and β restricted to the open disk Sl and continuously
extended to its boundary circle, and αa and βa are α and β restricted
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to the open cylindrical shell x2 + y2 = a2, 0 < z < l, and continuously
extended to its boundary circles in the planes z = 0 and z = l. Then
separating the variables in the original equation

−∆(V Z) = −Z(V ′′
xx + V ′′

yy) − V Z ′′ = λV Z

− 1

V
(V ′′

xx + V ′′
yy) −

Z ′′

Z
= λ

the original problem is reduced to two eigenvalue problems:

−Z ′′ = µZ ,

{

α0Z(0) − β0Z
′(0) = 0

αlZ(l) + βlZ
′(l) = 0

,(47.6)

−V ′′
xx − V ′′

yy = ηV , αaV
∣

∣

∣

r=a
+βa

∂V

∂r

∣

∣

∣

r=a
= 0 ,(47.7)

where µ and η are separation constants, λ = µ+ η. Thus, the variable
can indeed be separated, provided

• the functions α0, αl, β0, and βl are independent of (x, y) and
are constants;

• the functions αa and βa are independent of the variable z.

The problem (47.6) is the eigenvalue problem for the Sturm-Liouville
operator. The eigenvalues form an infinite countable set µ = µn,
n = 1, 2, ..., and the corresponding (normalized) eigenfunctions Z(z) =
Zn(z) form a complete orthonormal set in L2(0, l).

If, in addition,

• the functions αa and βa are constant on Sa

then the problem (47.7) can be solved by separating variables in polar
coordinates. Put

V = R(r)Φ(ϕ) .

Then the problem (47.7) is equivalent to two eigenvalue problems

−Φ′′ = ξΦ , Φ(ϕ+ 2π) = Φ(ϕ) ,(47.8)

r(rR′)′ + (ηr2 − ξ)R = 0 ,

{

|R(0)| <∞
αaR(a) + βaR

′(a) = 0
,(47.9)

where ξ is a separation constant. The eigenvalues and eigenfunctions
for the problem (47.8) are

ξ = ξm = m2 , Φ±m(ϕ) =
1√
2π
e±imθ , m = 0, 1, 2, ... .

The coefficient in Φ±m is chosen to make them orthonormal in L2(S
1).

The problem (47.9) is the eigenvalue problem for the Bessel operator
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where ν2 = ξ2 = m2. The eigenvalues and the corresponding eigen-
functions are

η = ηjm =
[µ

(m)
j (αa, βa)]

2

a2
, Rjm = cjmJm

(

µ
(m)
j

r

a

)

, j = 1, 2, ... ,

where µ
(m)
j = µ

(m)
j (αa, βa) are roots of Eq. (46.8) with α = αa and

β = βa. The normalization constants cjm are chosen to make Rjm

orthonormal in accord with Theorem 46.5.
As shown above, the functions Rjm(r)Φ±m(ϕ) = Vjm(x, y) are from

C∞ in the disk x2 + y2 < a2 and, hence, the functions Vjm(x, y)Zn(z)
satisfy the original equation at all points (0, 0, z) in Ω where the Jaco-
bian of cylindrical coordinates vanishes. Thus, the eigenvalues and the
corresponding eigenfunctions of the original problem

λ = λjmn = µn +
[µ

(n)
j (αa, βa)]

2

a2
,

u = Umnj(x, y, z) = Zm(z)Rjn(r)Φn(ϕ) .

The functions Umnj form a complete orthonormal set in L2(Ω).

47.4. More complex planar regions. The image Ω of the rectangle

Ω′ = (r1, r2) × (ϕ1, ϕ2) ⊂ (0,∞) × (0, 2π) ,

under the transformation that defines polar coordinates is the part
of the ring 0 < r2

1 < x2 + y2 < r2
2 between two rays ϕ = ϕ1 > 0

and ϕ = ϕ2 < 2π. Consider the eigenvalue problem for the Laplace
operator in Ω:

−∆u = λu , (x, y) ∈ Ω ,
(

αu+ β
∂u

∂n

)
∣

∣

∣

∂Ω
= 0 ,

where α ≥ 0, β ≥ 0, and α+ β > 0. Let er and eθ be the orthonormal
basis of polar coordinates in the xy plane. The boundary ∂Ω is the
union of four smooth pieces: Sr1 and Sr2 are, respectively, the parts
(arcs) of the circles x2 + y2 = r2

1 and x2 + y2 = r2
2 that lie in the sector

ϕ1 ≤ θ ≤ ϕ2, and Sϕ1 and Sϕ2 are, respectively, the parts (straight line
segments) of the rays ϕ = ϕ1 and ϕ = ϕ2 that lie between the circles
(r1 ≤ r ≤ r2). The outward unit normal on ∂Ω is then

n

∣

∣

∣

Sr1

= −er , n

∣

∣

∣

Sr2

= er , ϕ1 ≤ θ ≤ ϕ2

n

∣

∣

∣

Sϕ1

= −eθ

∣

∣

∣

ϕ=ϕ1

, n

∣

∣

∣

Sϕ2

= eθ

∣

∣

∣

ϕ=ϕ1

, r1 ≤ r ≤ r2 .
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Therefore by (??)

∂U

∂n

∣

∣

∣

Sϕ1

= −1

r

∂U

∂θ

∣

∣

∣

ϕ=ϕ1

,
∂U

∂n

∣

∣

∣

Sϕ2

=
1

r

∂U

∂θ

∣

∣

∣

ϕ=ϕ2

.

In the polar coordinates the problem becomes the eigenvalue problem
in the rectangle Ω′. If u(x, y) = U(r, ϕ), then

−1

r

∂

∂r

(

r
∂U

∂r

)

− 1

r2

∂2U

∂θ2
= −λU ,

{

αϕ1U(r, ϕ1) − (βϕ1/r)U
′
θ(r, ϕ1) = 0

αϕ2U(r, ϕ2) + (βϕ2/r)U
′
θ(r, ϕ2) = 0

,

{

αr1U(r1, ϕ)− βr1U
′
r(r1, ϕ) = 0

αr2U(r2, ϕ) + βr2U
′
r(r2, ϕ) = 0

,

where αp and βp, p = r1, r2, ϕ1, ϕ2 are the reductions of α and β
to Sp (with a continuous extension to the end points of each smooth
piece Sp). Note that Ω does not contain the origin (r1 > 0) where the
change of variables is singular and, hence, no regularity condition is
required. Furthermore, solutions are no longer 2π periodic as ϕ does
not sweep its full range in Ω. Even if αp and βp are constants, the
boundary conditions for ϕ do not admit a separation of variables by
the substitution

U(r, ϕ) = R(r)Φ(ϕ) ,

because of the factor 1/r. If the functions βϕ1 and βϕ2 are proportional
to r, then the method works. Another case that can easily be solved by
separation of variables is when either αϕ1 = αϕ2 = 0 or βϕ1 = βϕ2 = 0.
The further discussion is limited to this latter case. The problem is
equivalent to two one-dimensional eigenvalue problems

−Φ′′ = ξΦ , Φ(ϕ1) = Φ(ϕ2) = 0 ,(47.10)

−(rR′)′ +
ξ

r
R = λrR ,

{

αr1R(r1) − βr1R
′(r1) = 0

αr2R(r2) + βr2R
′(r2) = 0

,(47.11)

where the functions α and β are assumed to have constant values on
the circles |x| = r1 and |x| = r2. The problem (47.10) is the Sturm-
Liouville problem discussed in Section 8. Its solution reads

ξ = ν2
n , νn =

πn

∆θ
, Φn(ϕ) = sin

(

νn(ϕ− ϕ1)
)

, n = 1, 2, ... ,

where ∆θ = ϕ2 − ϕ1. The details are left to the reader as an exercise.
With ξ = νn ≥ 0, the problem (47.11) is a regular Sturm-Liouville

problem in L2((a, b); σ) with p(r) = σ(r) > 0 in [a, b] (if a > 0) and
q(r) = ν2

n/r ≥ 0 (see Section 9.2). The corresponding operator is the
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Bessel operator. A general solution of the Bessel equation in (47.11)
for ξ = ν2

n reads

R(r) = C1Jνn(
√
λ r) + C2Nνn(

√
λ r) .

By a basic theory of ordinary differential equations, there is a unique
choice of the constants C1 and C2 with which

R(r) = R1(r;λ) , R1(r1;λ) = 1 , R′
1(r1;λ) = 0 ,

and there is another (unique) choice of C1 and C2 at which the solution
satisfies the following conditions:

R(r) = R2(r;λ) , R2(r2;λ) = 0 , R′
2(r2;λ) = 1 .

An explicit form of C1 and C2 is obtained by the substitution of the
general solution into the initial conditions at r = r1 and r = r2 and
solving for C1 and C2. The uniqueness of the solution follows from the
linear independence of the Bessel and Neumann functions (their Wron-
skian does not vanish). Note that a linear combination of R1(r;λ) and
R2(r;λ) is a general solution to the Bessel equation (a general solu-
tion is a linear combination of any two linearly independent solutions).
Then the boundary condition at r = r1 is satisfied if the coefficients in
a linear combination of R1 and R2 are chosen so that it is proportional
to

R(r;λ) = βr1R1(r;λ) + αr1R2(r;λ)

The proportionality coefficient drops out from the second boundary
condition and the latter becomes an equation for the eigenvalues

αr2R(r2;λ) + βr2R
′(r2;λ) = 0 .

Roots of this equation is generally difficult to analyze, not to mention
finding its values. In practice, it is solved numerically. But from the
general theory of Section 46.2 it follows that there are countably many
positive simple roots and their set has no limit points. If λ = λnj , j =
1, 2, ..., are roots for a given n, then the corresponding eigenfunctions
are Rnj(r) = R(r;λnj ). If Φn(ϕ) are eigenfunctions in the problem
(47.10), then orthogonal eigenfunctions of the original problem are

U(r, ϕ) = Unj(r, ϕ) = Φn(ϕ)R(r;λnj) .

By Theorem ??, they form a complete orthogonal set in L2(Ω).

Example 47.2. Solve the eigenvalue problem by separating vari-
ables in polar coordinates

−∆u = λu , (x, y) ∈ Ω , u
∣

∣

∣

∂Ω
= 0 ,
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where Ω is the part of the ring in the first quadrant

Ω = {(x, y) | 0 < a2 < x2 + y2 < b2 , x > 0 , y > 0} .
Solution: Here α = 1 and β = 0 on ∂Ω. The region Ω is the image
of the rectangle (r, ϕ) ∈ (a, b)× (0, π/2). The problem (47.10) is

−Φ′′ = ξΦ , Φ(0) = Φ(π/2) = 0 .

The eigenvalues and the corresponding orthonormal eigenfunctions are

ξ = ξn = 4n2 , Φn(ϕ) =
2√
π

sin(2nθ) , n = 1, 2, ... .

Here the coefficient 2/
√
π is the normalization constant such that ‖Φn‖ =

1 in L2(0, π/2). A general solution of the Bessel equation in the prob-
lem (47.11) (here νn = 2n) is

R(r) = C1J2n(
√
λ r) + C2N2n(

√
λ r)

Although the procedure outlined above can be used, the simplicity of
the boundary conditions allows for a simpler (equivalent) procedure to
find an equation for eigenvalues. The substitution of the solution into
the boundary condition yields a homogeneous linear system

C1J2n(
√
λ a) + C2N2n(

√
λ a) = 0

C1J2n(
√
λ b) + C2N2n(

√
λ b) = 0

The constants C1 and C2 cannot vanish simultaneously (the system
must have non-trivial solutions). This can happen if and only if the
determinant of the system vanishes:

J2n(
√
λ a)N2n(

√
λ b) −N2n(

√
λ a)J2n(

√
λa) = 0 .

It follows from the general theory of the eigenvalue problem for the
Sturm-Liouville operator that this equation has simple roots and the
set of roots is countable and has no limit point. Let λ = λnj = µ2

nj , j =
1, 2, ..., be the roots of this equation. Then for λ = λnj , the equations
in the linear system for C1 and C2 are not independent, and only one of
the equations has to be solved to find the corresponding eigenfunction.
Either of the equations implies that C1 is proportional to C2 with the
proportionality coefficient determined from the equation. For example,
using the first equation to determine the proportionality coefficient, the
normalized eigenfunction corresponding to the eigenvalue λ = λnj can
be taken in the form

Rnj(r) = cnj
(

N2n(µnja)J2n(µnjr) − J2n(µnja)N2n(µnjr)
)
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where cnj is the normalization constant fixed by the condition

‖Rnj‖σ =

(
∫ b

a

|Rnj(r)|2rdr
)1/2

= 1 ,

in L2((a, b); σ), where σ(r) = r. Note that Rnj(a) = 0 identically, while
Rnj(b) = 0 by the equation for the eigenvalues. The orthogonality
of Rnj corresponding to different pairs of indices nj is guaranteed by
hermiticity of the Sturm-Liouville operator. The set of eigenfunctions

Unj(r, ϕ) = Φn(ϕ)Rnj(r)

form a complete orthonormal set in L2(Ω
′; σ) by Theorem ?? and the

functions obtained from Unj by transformation to the original rectan-
gular coordinates (x, y) form a complete orthonormal set in L2(Ω). �

47.5. General scheme for separation of variables. Suppose that rectangu-
lar coordinates in RN+M are divided into two sets so that x ∈ Ω ⊂ RN

and y ∈ D ⊂ RM , where Ω and D are regions. The boundary of the
region Ω ×D is the union

∂(Ω ×D) = (∂Ω ×D) ∪ (Ω × ∂D)

For example, let Ω = (0, a) and D = (0, b). Then ∂Ω = {x = 0}∪{x =
a} and Ω = [0, a]. Similarly, ∂D = {y = 0} ∪ {y = b} and D = [0, b].
Then

∂Ω×D =
(

{x = 0} ∪ {x = a}
)

∪ [0, b] = S1L ∪ S1R

Ω × ∂D = [0, a] ∪
(

{y = 0} ∪ {y = b}
)

= S2L ∪ S2R ,

where S1L, S1R, S2L, and S2R are four straight line segments whose
union is the boundary of the rectangle (0, a)× (0, b) (see Section 10.2).

Let Ω ⊂ R2 be a disk of radius a and centered at the origin, x2+y2 <
a2, and let D = (0, b). Then Ω×D ⊂ R3 is the solid cylinder or radius
a and height b. It is obtained by attaching a straight line segment of
length b to each point of the disk so that the segment is perpendicular
to the disk. If z spans D, then ∂Ω ×D is the cylindrical shell

∂Ω×D = {(x, y, z) | x2 + y2 = a2, 0 ≤ z ≤ b}
which is the side boundary of the solid cylinder. Similarly, Ω × ∂D is
the union of two disks x2 + y2 ≤ a2, one is in the xy plane (z = 0) and
the other is in the parallel plane z = b; they are the top and bottom
boundaries of the solid cylinder:

∂Ω ×D = {(x, y, z) | x2 + y2 ≤ a2, z = 0, b}
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The union of the cylindrical shell and the two disks is the boundary of
the solid cylinder Ω × (0, b).

In the region Ω×D, consider the eigenvalue problem for an elliptic
operator

Lxu+ Lyu = λu , (x, y) ∈ Ω ×D ,(47.12)
(

α1u+ β1
∂u

∂n

)
∣

∣

∣

∣

∂Ω×D

= 0 ,

(

α2u+ β2
∂u

∂n

)
∣

∣

∣

∣

Ω×∂D

= 0 ,(47.13)

where Lx and Ly are elliptic operators independent of y and x, respec-
tively, and the functions α1 and β1 are independent of y, while α2 and
β2 are independent of x.

Eigenfunctions are sought in the form u(x, y) = X(x)Y (y). The
substitution into Eq. (47.12) yields

Y (y)LxX(x) +X(x)LyY (y) = λX(x)Y (y)

from which it follows that

LxX(x)

X(x)
= λ− LyY (y)

Y (y)
.

The left side of this relation depends on x only, whereas the right side
depends on y. The equality is possible if there exist two constants µ
and ν such that µ+ ν = λ and

LxX(x) = µX(x) , x ∈ Ω ,(47.14)

LyY (y) = νY (y) , y ∈ D .(47.15)

The boundary conditions on X and Y are deduced from (47.13) by
substituting u = XY into it:

(

α1X + β1
∂X

∂n

)
∣

∣

∣

∣

∂Ω

= 0 ,(47.16)

(

α2Y + β2
∂Y

∂n

)
∣

∣

∣

∣

∂D

= 0 .(47.17)

This, the original eigenvalue problem is reduced to two eigenvalue prob-
lems with a lesser number of variables. If the µ = µn and X = Xn(x),
n = 1, 2, ..., are the eigenvalues and the corresponding eigenfunctions of
the problem (47.14), (47.16), and ν = νm and Y = Ym(y), m = 1, 2, ...,
are the eigenvalues and the corresponding eigenfunctions of the problem
(47.15), (47.17), then the eigenvalues and the corresponding eigenfunc-
tions of the original problem (47.12), (47.13) are

λ = λnm = µn + νm , u = φnm(x, y) = Xn(x)Ym(y) .
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If in addition the sets {Xn}∞1 and {Ym}∞1 are orthogonal and complete
in in L2(Ω) and L2(D), respectively, then the functions φnm form an
orthogonal complete set in L2(Ω ×D) by Theorem ??.

If Ω and D are rectangles or tori, then, a multivariable eigenvalue
problem (with appropriate boundary conditions) can be reduced to sev-
eral Sturm-Liouville problems and/or eigenvalue problems on a circle
by separating variables. Can the method be extended to more generals
domains like a ball or cylinder? The idea is to use transformations
(or curvilinear coordinates) that change a given region to a rectangular
region and then to try to separate variables.

47.6. Exercises.

1. Solve the eigenvalue problem for the Laplace operator

−∆u = λu , (x, y) ∈ Ω = {(x, y) |x2 + y2 < a2} ⊂ R
2 ,

(

αu + β
∂u

∂n

)
∣

∣

∣

∂Ω
= 0 , α ≥ 0 , β ≥ 0 , α + β > 0 ,

where α and β are constants.

2. Solve the eigenvalue problem by separating variables in polar coor-
dinates

−∆u = λu , (x, y) ∈ Ω ,
∂u

∂n

∣

∣

∣

∂Ω
= 0 ,

where Ω is the part of the ring in the first quadrant

Ω = {(x, y) | 0 < a2 < x2 + y2 < b2 , x > 0 , y > 0} .

3. Solve the eigenvalue problem by separating variables in cylindrical
coordinates

−∆u = λu , (x, y, z) ∈ Ω , u
∣

∣

∣

∂Ω
= 0 ,

where Ω is the part of the solid cylinder in the first octant

Ω = {(x, y, z) |x2 + y2 < a2 , x > 0 , y > 0 , 0 < z < l} .

4. Solve the eigenvalue problem by separating variables in cylindrical
coordinates

−∆u = λu , (x, y, z) ∈ Ω ,
∂u

∂n

∣

∣

∣

∂Ω
= 0 ,

where Ω is the part of the solid cylinder

Ω = {(x, y, z) |x2 + y2 < a2 , x > 0 , −h < z < h} .
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5. Solve the eigenvalue problem by separating variables in cylindrical
coordinates

−∆u = λu , (x, y, z) ∈ Ω , u
∣

∣

∣

∂Ω
= 0 ,

where Ω is the cylindrical shell

Ω = {(x, y, z) | 0 < a2 < x2 + y2 < b2 , −h < z < h} .

6. Solve the eigenvalue problem by separating variables in cylindrical
coordinates

−∆u = λu , (x, y, z) ∈ Ω ,
∂u

∂n

∣

∣

∣

∂Ω
= 0 ,

where Ω is the wedge in the solid cylinder

Ω = {(x, y, z) |x2 + y2 < a2 , 0 < y < x , −h < z < h} .

Answers.

1. Eigenvalues and corresponding eigenfunctions are

λ = λnj =
(µnj
a

)2

, j = 1, 2, ... , n = 0, 1, ... ,

u(r cos θ, r sin θ) = U±
nj(r, ϕ) = cnjJn

(µnj
a
r
)

e±inθ ,

where cnj are normalization constants and for every n = 0, 1, ... the
numbers µnj , j = 1, 2, ..., are roots of the equation

αJn(µ) + βµJ ′
n(µ) = 0

2. There is zero eigenvalue λ = 0 and the corresponding normalized
eigenfunction is a constant function u0 = 2[π(b2 − a2)]−1/2. Positive
eigenvalues and corresponding eigenfunctions are

λ = λnj =
(µnj
a

)2

, j = 1, 2, ... , n = 0, 1, ... ,

u(r cos θ, r sin θ) = Unj(r, ϕ)

= cnj
[

N ′
2n(µnjb)J2n(µnjr) − J ′

2n(µnjb)N2n(µnjr)
]

cos(2nθ) ,

where cnj are normalization constants and for every n = 0, 1, ... the
numbers µnj , j = 1, 2, ..., are positive roots of the equation

J ′
2n(µa)N

′
2n(µb) − J ′

2n(µb)N
′
2n(µa) = 0 .
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3. Eigenvalues and corresponding eigenfunctions are

λ = λnj =
(µnj
a

)2

+

(

πk

l

)2

, j = 1, 2, ... , n = 0, 1, ... , k = 1, 2, ...

u(r cos θ, r sin θ, z) = Unj(r, ϕ, z)

= cnjkJ2n

(µnj
a
r
)

sin(2nθ) sin
(πk

l
z
)

,

where cnjk are normalization constants and for every n = 0, 1, ... the
numbers µnj , j = 1, 2, ..., are roots of the equation

J2n(µ) = 0 .

4. There is the zero eigenvalue λ = 0 and the corresponding normal-
ized eigenfunction is a constant function u0 = (πa2h)−1/2. Positive
eigenvalues and the corresponding eigenfunctions are

λ = λnj =
(µnj
a

)2

+

(

πk

2h

)2

, j = 1, 2, ... , n = 0, 1, ... , k = 1, 2, ...

u(r cos θ, r sin θ, z) = Unj(r, ϕ, z)

= cnjkJn
(µnj
a
r
)

cos(nθ) cos
(πk

2h
(z + h)

)

,

where cnjk are normalization constants and for every n = 0, 1, ... the
numbers µnj , j = 1, 2, ..., are positive roots of the equation

J ′
n(µ) = 0 .

5. Positive eigenvalues and the corresponding eigenfunctions are

λ = λnj =
(µnj
a

)2

+

(

πk

2h

)2

, j = 1, 2, ... , n = 0, 1, ... , k = 1, 2, ...

u(r cos θ, r sin θ, z) = U±
nj(r, ϕ, z)

= cnjk

[

Nn(µnjb)Jn(µnjr) − Jn(µnjb)Nn(µnjr)
]

e±inθ sin

(

πk

2h
(z + h)

)

,

where cnjk are normalization constants and for every n = 0, 1, ... the
numbers µ = µnj , j = 1, 2, ..., are positive roots of the equation

Jn(µa)Nn(µb) − Jn(µb)Nn(µa) = 0 .

6. There is the zero eigenvalue λ = 0 and the corresponding normal-
ized eigenfunction is a constant function u0 = 2/(πa2h)1/2. Positive
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eigenvalues and the corresponding eigenfunctions are

λ = λnj =
(µnj
a

)2

+

(

πk

2h

)2

, j = 1, 2, ... , n = 0, 1, ... , k = 1, 2, ...

u(r cos θ, r sin θ, z) = Unj(r, ϕ, z)

= cnjkJ4n

(µnj
a
r
)

cos(4nθ) cos
(πk

2h
(z + h)

)

,

where cnjk are normalization constants and for every n = 0, 1, ... the
numbers µnj , j = 1, 2, ..., are positive roots of the equation

J ′
4n(µ) = 0 .
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48. Spherical harmonics

Definition 48.1. (Harmonic polynomials)
A polynomial Q(x), x ∈ R

N , is called a harmonic polynomial if it is
annihilated by the Laplace operator, ∆Q(x) = 0.

For example, the polynomials of two real variables x and y

Q1(x, y) = x2 − y2 + 3xy − 5x , Q2(x, y) = x3 − 3xy2

are harmonic polynomials in R2. The polynomials

Q1(x, y, z) = x2 + y2 − 2z2 + x+ 1 , Q2(x, y, z) = x3 + 2xy2 − 5xz2

are harmonic polynomials in R3. A polynomial Ql(x) is said to be
homogeneous of degree l if for any real s

Ql(sx) = slQl(x) .

For example, the polynomials Q1(x, y) and Q1(x, y, z) are not homoge-
neous, while the polynomials Q2(x, y) and Q1(x, y, z) are homogeneous
of degree l = 3:

Q2(sx, sy) = (sx)3 + 3sx(sy)2 = s3(x3 + 3xy2) = s3Q1(x, y)

and similarly for Q3(x, y, z).
A sphere in RN is described by the equation

N
∑

j=1

x2
j = a2 ⇔ |x| = a

where the origin of the coordinate system is set at the center of the
sphere, and the vertical bars are used denote the Euclidean length of
a vector. If the length scale on coordinate axes is chosen in units of
radius a, then the equation becomes |x| = 1; the sphere is called a unit
sphere and denoted SN−1. Unless the radius a is specified, SN−1 means
a unit sphere.

Definition 48.2. (Spherical harmonics)
A spherical harmonic Yl of degree l is a harmonic homogeneous poly-
nomial Ql of degree l reduced to the unit sphere:

Yl(n) = Ql

(

x

r

)

=
Ql(x)

rl
, n =

x

r
, |n| = 1 , r = |x|

A complex (or real) valued function f on SN−1 is called square in-
tegrable if |f |2 is integrable on SN−1; and the space of all such functions
is denoted L2(S

N−1):

f : S
N−1 → C , f ∈ L2(S

N−1) ⇔
∫

SN−1

|f(n)|2dS <∞ ,
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where dS denote an infinitesimal surface area element of SN−1. For
example, dS for S1 is the arclength on the unit circle. If x = cos θ,
y = sin θ are parametric equations of the circle, then dS = dθ and

∫

S1

|f(n)|2dS =

∫ 2π

0

|f(n)|2dθ , n = (cos θ, sin θ) .

Using the spherical coordinates

x = r sin θ cosϕ , y = r sin θ sinϕ , z = r cos θ ,

to parameterize the unit sphere S2,

n = (sin θ cosϕ, sin θ sinϕ, cos θ)

one has
∫

S2

|f(n)|2dS =

∫ 2π

0

∫ π

0

|f(n)|2 sin θ dθ dϕ .

There is a generalization of spherical coordinates to RN , N > 3, which
can be used to obtain dS for SN−1.

Theorem 48.1. (Orthogonality of spherical harmonics)
Spherical harmonics Yl and Yl′ are orthogonal in L2(S

N−1) if l 6= l′,
∫

SN−1

Yl(n)Yl′(n) dS = 0 , l 6= l′ .

Proof. In the second Green’s formula
∫

Ω

(v∆u− u∆v) dx =

∫

∂Ω

(

v
∂u

∂n
− u

∂v

∂n

)

dS

take Ω to be the unit ball r = |x| < 1 so that ∂Ω = SN−1 and let
u = rlYl and v = rl

′

Yl′ be harmonic polynomials so that ∆u = ∆v = 0
and the right side vanishes. The outward unit normal on the sphere
is x/r or x = rn, and the normal derivative coincides with the partial
derivative with respect to r, ∂u/∂n = ∂u/∂r. Since Yl and Yl′ are
independent of the radial variable,

0 =

∫

SN−1

(

rl
′ ∂(rlYl)

∂r
− rlYl

∂(rl
′

Yl′)

∂r

)
∣

∣

∣

∣

r=1

dS

= (l− l′)

∫

SN−1

Yl(n)Yl′(n) dS .

as required. �
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48.1. Spherical harmonics on a circle S1. All spherical harmonics on a
circle S1 are easy to find by separating variables in the Laplace equation
in polar coordinates. Let Ql be a harmonic homogeneous polynomial.
Then in polar coordinates

Ql(x, y) = rlYl(ϕ) .

Since Ql is annihilated by the Laplace operator, in polar coordinates
one infers

0 = ∆Ql =
1

r

∂

∂r

(

r
∂Ql

∂r

)

+
1

r2

∂2Ql

∂ϕ2
= rl−2

(

l2Y + Y ′′
)

from which it follows that

Y ′′
l + l2Yl = 0 ⇒ Yl(ϕ) = Al cos(lϕ) +Bl sin(lϕ) , l = 0, 1, ...

where Al and Bl are real constants. Put z = x+ iy so that r = |z| and

zl = (x+ iy)l = rleilϕ = rl
(

cos(lϕ) + i sin(lϕ)
)

Then any homogeneous harmonic polynomial can be written in a simple
form

Ql(x, y) = rlYl(ϕ) = AlRe zl +BlIm zl .

48.2. Spherical harmonics on a sphere S2. It is convenient to use spher-
ical coordinates to find spherical harmonics on S2. Any homogeneous
harmonic polynomial has the following form in spherical coordinates

Ql(x, y, z) = rlYl(θ, ϕ)

Writing the Laplace operator in spherical coordinates

∆u =
1

r2

∂

∂r

(

1

r2

∂u

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂u

∂θ

)

+
1

r2 sin2 θ

∂2u

∂ϕ2

and calculating the action of its radial part on u = Ql

1

r2

∂

∂r

(

r2∂Ql

∂r

)

=
1

r2

∂

∂r

(

r2∂r
l

∂r

)

Yl = l(l + 1)rlYl

in the Laplace equation ∆Ql = 0, the following equation for spherical
harmonics is obtained

(48.1)
1

sin θ

∂

∂θ

(

sin θ
∂Yl
∂θ

)

+
1

sin2 θ

∂2Yl
∂ϕ2

+ l(l + 1)Yl = 0

So every spherical harmonics satisfies Eq. (48.1). It turns out that the
converse is also true.
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Theorem 48.2. (Spherical harmonics on S2)
In order for a function Yl to be a spherical harmonic of degree l on S2,
it is necessary and sufficient that Yl is a solution of Eq. (48.1) of the
class C∞(S2).

Equation (48.1) can be solved by separation of variables. Put

Yl(θ, ϕ) = P (cos θ)Φ(ϕ)

Let us multiply (48.1) by sin2 θ and then divide it by Yl. Then the
first and third terms in the right side of (48.1) depend only on θ, while
the second term equal to Φ′′/Φ is a function of ϕ and, hence, must
be a constant, denoted −ν. Then the functions P and Φ satisfy the
equations

Φ′′ + νΦ = 0 ,(48.2)

1

sin θ

d

dθ

(

sin θ
dP (cos θ)

dθ

)

+
(

l(l + 1) − ν

sin2 θ

)

P (cos θ) = 0 .(48.3)

In order for Yl to be uniquely defined on S2, it has to satisfy the peri-
odicity condition

Yl(θ, ϕ+ 2π) = Yl(θ, ϕ) .

Periodic solutions of (48.2) exist only if ν = m2,

Φ(ϕ) = am cos(mϕ) + bm sin(mϕ) , m = 0, 1, 2, ... ,

where am and bm are real constants. Thus, the problem is reduced to
solving (48.3) with ν = m2, m = 0, 1, .... Put µ = cos θ (a new variable)
so that

1

sin θ

d

dθ
= − d

dµ
⇒ sin θ

d

dθ
= − sin2 θ

d

dµ
= −(1 − µ2)

d

dµ
.

Then the function P (µ) satisfies the equation

(48.4) −
(

(1 − µ2)P ′
)′

+
m2

1 − µ2
P = l(l + 1)P .

A solution to this equation must regular at µ = ±1, that is,

|P (±1)| <∞ .

Note that by Theorem 48.2, spherical harmonics are from C∞(S2).
Equation (48.4) is known as Legendre’s equation and its regular solu-
tions are associated Legendre functions.
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48.3. Associated Legendre functions. Consider first the case m = 0.
Equation (48.4) has the form

(48.5)
(

(1 − µ2)P ′
)′

+ l(l + 1)P = 0 , |P (±1)| <∞ .

Theorem 48.3. (Legendre polynomials)
The Legendre polynomial

(48.6) Pl(µ) =
1

2ll!

dl

dµl

(

µ2 − 1
)l

, l = 0, 1, ... ,

is the only linearly independent solution of (48.5) in C2([−1, 1]).

Proof. Put Ql = (µ2 − 1)l. It satisfy the identity

(µ2 − 1)Q′
l − 2lµQl = 0 .

Differentiating it l + 1 times, one infers that

(µ2 − 1)Q
(l+2)
l + 2µQ

(l+1)
l − l(l + 1)Q

(l)
l = 0 .

This relation shows that Q
(l)
l satisfies (48.5) and so does Pl because Pl

is proportional to Q
(l)
l .

Suppose that P (µ) is another solution from C2([−1, 1]). Then by
the Ostrogradsky-Liouville theorem for p(µ) = 1 − µ2 (see (36.6)), the
following relation holds

P ′
l (µ)P (µ) − Pl(µ)P ′(µ) =

c

1 − µ2
, |µ| < 1 ,

for some constant c. The left side of this relation has the limit as
µ → 1− or µ → −1+ because, by assumption, both the solutions have
two continuous derivatives in the closed interval [−1, 1]. Therefore the
corresponding limits of the right side must exist, too, which is only
possible if the constant c is zero, c = 0. Therefore the Wronskian of
Pl and P vanishes, meaning that the solutions are linearly dependent.
So, Pl is the only linearly independent solution regular at µ = ±1. �

Let us compute a few first Legendre polynomials

P0 = 1 ,

P1 = µ ,

P2 =
3

2
µ2 − 1

2
,

P3 =
5

2
µ3 − 3

2
µ .

Corollary 48.1. (Orthogonality of Legendre polynomials)
Legendre polynomials form an orthogonal set in L2(−1, 1).
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Proof. Legendre polynomials satisfy (48.4) for m = 0. Therefore
Pl(cos θ) is a C∞(S2) solution of Eq. (13.3) that is independent of the
polar angle ϕ. By Theorem 48.2, Pl(cos θ) is a spherical function of
degree l. But spherical functions of different degrees are orthogonal in
L2(S

2) by Theorem 48.1, and for l 6= l′, one has

0 =

∫ 2π

0

∫ π

0

Pl(cos θ)Pl′(cos θ) sin θ dθ dϕ = 2π

∫ 1

−1

Pl(µ)Pl′(µ) dµ ,

which completes the proof. �

Equation (48.6) is called the Rodrigues’ formula or Ivory-Jacobi
formula. As noted in Section 4.2, the Legendre polynomials can also be
obtained by the Schmidt process applied to the set of monomials µl, l =
0, 1, ..., in L2(−1, 1). As the set of polynomials is dense in C 0([−1, 1]),
it is also dense in L2(−1, 1). Hence, the Legendre polynomials form a
complete orthogonal set in L2(−1, 1). The Fourier series for any square
integrable function f in (−1, 1) converges to f almost everywhere (or
in the mean):

f(µ) =

∞
∑

l=0

2l + 1

2
〈f, Pl〉Pl(µ) a.e., f ∈ L2(−1, 1) .

Recall from Section 4.2 that ‖Pl‖2 = 2/(2l + 1).

Definition 48.3. (Associated Legendre functions)
The functions

(48.7) Pm
l (µ) =

(

1 − µ2
)

m
2 dmPl(µ)

dµm
, l = 0, 1, ..., m = 0, 1, ..., l ,

are called associate Legendre functions.

In other words, with every Legendre polynomial Pl, one can as-
sociate l + 1 functions defined by the rule (48.7). For even m, Pm

l

are polynomials, while for odd m, Pm
l is a polynomial multiplied by

√

1 − µ2. Since Pl are polynomials of degree l, their derivatives of or-
ders higher than l vanish and Pm

l (µ) = 0 if l < m. For example for
m = 0, 1, 2, one has

P 0
l (µ) = Pl(µ) , l ≥ 0 ,

P 1
l (µ) =

√

1 − µ2 P ′
l (µ) , l ≥ 1

P 2
l (µ) = (1 − µ2)P ′′

l (µ) , l ≥ 2 ,

P 3
l (µ) = (1 − µ2)3/2P ′′′

l (µ) , l ≥ 3 ,
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Let us compute a few first associate Legendre functions with m ≤ l.
They will later be used to obtain a few first spherical harmonics.

l = 0 : P 0
0 = 1

l = 1 : P 0
1 = µ , P 1

1 =
√

1 − µ2

l = 2 :
P 0

2 = 3
2
µ2 − 1

2
, P 1

2 = 3µ
√

1 − µ2 ,

P 2
2 = 3(1 − µ2)

l = 3 :
P 0

3 = 5
2
µ3 − 3

2
µ , P 1

3 =
√

1 − µ2
(

15
2
µ2 − 3

2

)

,

P 2
3 = 15µ(1 − µ2) , P 3

3 = 15(1 − µ2)3/2 .

Theorem 48.4. (Properties of associated Legendre functions)

(i) Associate Legendre functions Pm
l are regular solutions of Le-

gendre’s equation (48.4);
(ii) For each m ≥ 0 the set {Pm

l }, l = m, m+1, ..., is orthonormal
in L2(−1, 1), and

(48.8) 〈Pm
l , P

m
l′ 〉 =

(l +m)!

(l −m)!

2

2l + 1
δll′ ;

(ii) For each m ≥ 0 the set {Pm
l }, l = m, m + 1, ..., is complete

in L2(−1, 1).

Proof. Here a proof is outlined. Some minor technical details are left
to the reader as an exercise.

(i). In Legendre’s equation (48.4) put

P (µ) =
(

1 − µ2
)

m
2
Q(µ) .

so that the function Q(µ) satisfies the equation

(1 − µ2)Q′′ − 2µ(m+ 1)Q′ + (l2 + l −m2 −m)Q = 0 .

This equation can also be obtained by differentiating Eq. (48.5) m
times, which shows that Q = dmPl/dµ

m. Thus, Pm
l are solutions of

Legendre’s equation.

(ii). For brevity the mth derivative of Pl is denoted as Q = P
(m)
l .

By multiplying the equation for Q by (1 − µ2)m, it can written in the
form

[

(1 − µ2)m+1P
(m+1)
l

]′

= −(l−m)(l +m+ 1)(1 − µ2)mP
(m)
l .
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This identity is then used to establish the following recurrence relation
by integration by parts

〈Pm
l , P

m
l′ 〉 =

∫ 1

−1

Pm
l P

m
l′ dµ =

∫ 1

−1

(1 − µ2)mP
(m)
l P

(m)
l′ dµ

= −
∫ l

−1

P
(m−1)
l′

[

(1 − µ2)mP
(m)
l

]′

dµ

= (l−m− 1)(l +m)

∫ 1

−1

(1 − µ2)m−1P
(m−1)
l P

(m−1)
l′ dµ

= (l−m− 1)(l +m)〈Pm−1
l , Pm−1

l′ 〉
Here the first equality is obtained by the definition of Pm

l , the second
follows from integration by parts and that the boundary term vanishes
owing to the factor (1 − µ2)m, the third holds by the identity for the

derivatives P
(m)
l . By using the established relation recursively m times

one infers that

〈Pm
l , P

m
l′ 〉 =

(l +m)!

(l −m)!
〈Pl, Pl′〉 =

(l +m)!

(l−m)!

2

2l − 1
δll′

by the orthogonality property of Legendre polynomials.
(iii). Let f ∈ D(−1, 1) be a test function (a C∞ function on R

that vanishes outside [−1, 1]). The space of test functions D(−1, 1) is
proved to be dense in L2(−1, 1). Then for any m ≥ 0, the function

g(µ) = f(µ)
(

1 − µ2
)−m

2 ∈ D(−1, 1)

is also a test function because f and all its derivatives have support in
(−1, 1) and so do g and all its derivatives. The set polynomials is dense
in C 0([−1, 1]) and hence g can be approximated by a polynomial with
any desired accuracy. Since the derivatives of the Legendre polynomials

P
(m)
l are polynomials, g can be approximated by a linear combination of

P
(m)
l . The latter means, by definition of associated Legendre functions,

that f can be approximated by a linear combination of Pm
l . Therefore

the set {Pm
l }, l ≥ m, is dense in D(−1, 1) and, hence, in L2(−1, 1)

because D(−1, 1) is dense in L2(−1, 1). �

48.4. Spherical harmonics as eigenfunctions. The analysis of Legendre
polynomials and associated Legendre functions shows that all linearly
independent spherical harmonics on S2 are given in spherical coordi-
nates by

(48.9) Y m
l (θ, ϕ) =

{

Pm
l (cos θ) cos(mϕ) , m = 0, 1, ..., l ;

P
|m|
l (cos θ) sin(|m|ϕ) , m = −1,−2, ...,−l
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where l = 0, 1, ..., or in the complex form

(48.10) Ỹ m
l (θ, ϕ) = P

|m|
l (cos θ)eimϕ , l = 0, 1, ..., |m| ≤ l .

As a consequence of the orthogonality property of associated Legendre
functions, the spherical harmonics Y m

l are orthogonal in L2(S
2).

Corollary 48.2. (Orthogonality of spherical harmonics)
The spherical harmonics Y m

l , l = 0, 1, ..., |m| ≤ l, form an orthogonal
set in L2(S

2) and

〈Y l
m, Y

m′

l′ 〉 =

∫ 2π

0

∫ π

0

Y l
m(θ, ϕ)Y m′

l′ (θ, ϕ) sin θ dθ dϕ

= 2π
1 + δ0m
2l + 1

(l + |m|)!
(l − |m|)! δll′ δmm′ = ‖Y m

l ‖2δll′ δmm′ .(48.11)

Indeed, the integral in (48.11) is the product of two integrals. The
integrals over the polar angle are

∫ 2π

0

sin(mϕ) cos(m′ϕ) dϕ = 0 ,

∫ 2π

0

sin(mϕ) sin(m′ϕ) dϕ =

∫ 2π

0

cos(mϕ) cos(m′ϕ) dϕ

= π(1 + δm0)δmm′

Therefore the integral over the zenith angle θ has to be calculated at
m = m′,

∫ π

0

P
|m|
l (cos θ)P

|m|
l′ (cos θ) sin θ dθ =

∫ 1

−1

P
|m|
l (µ)P

|m|
l′ (µ) dµ ,

and, hence, it is given by (48.8).

Theorem 48.5. (Fourier series over spherical harmonics) The spher-
ical harmonics Y m

l , l = 0, 1, ..., |m| ≤ l, form a complete orthogonal
set in L2(S

2). The Fourier series of f ∈ L2(S
2) over the spherical

harmonics converges to f in the mean:

f(n) =
∞
∑

l=0

l
∑

m=−l

flmY
m
l (n) a.e. , n ∈ S

2 ,

flm =
〈f, Y m

l 〉
‖Y m

l ‖2
=

1

‖Y m
l ‖2

∫ 2π

0

∫ π

0

f(θ, ϕ)Y m
l (θ, ϕ) sin θ dθ dϕ

‖Y m
l ‖2 =

2l + 1

2π(1 + δ0m)
2l + 1

(l− |m|)!
(l + |m|)!(l − |m|)!
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Let Ql be a spherical harmonics of degree l. Then it can be ex-
panded into the Fourier series. Spherical harmonics of different de-
grees are orthogonal (Theorem 48.1) and therefore 〈Ql, Y

m
l 〉 = 0 if

l′ 6= l. This implies that linear combinations

Yl(n) =
l
∑

m=−l

almY
m
l (n) ,

define all spherical harmonics of degree l.
Consider the eigenvalue problem

−∆S2Y ≡ − 1

sin θ

∂

∂θ

(

sin θ
∂Y

∂θ

)

− 1

sin2 θ

∂2Y

∂ϕ2
= λY ,(48.12)

Y ∈ ML = C∞(S2) .

The operator ∆S2 is called the Laplace-Beltrami operator on a sphere
S2. It is positive semi-definite in L2(S

2) (a proof is left to the reader
as an exercise) and hence it is hermitian (because its domain is dense
in L2(S

2)). Its eigenvalues are real non-negative. The analysis given
in this section shows that the spherical functions Y m

l , |m| ≤ l, are
eigenfunctions of the Laplace-Beltrami operator on S2 that correspond
to the eigenvalue λ = l(l+1) which has multiplicity 2l+1 (the number
of linearly independent eigenfunctions for each l). In fact, it is possible
to prove the converse that the regularity condition Y ∈ C∞(S2) requires
that the equation (48.12) has non-trivial solutions only if λ = l(l + 1),
l = 0, 1, .... Note that by separating variables the problem is reduced
to two Sturm-Liouville problems (48.2) and (48.2) where l(l + 1) is
replaced by λ. Consequently, the eigenvalues λ are eigenvalues of the
(singular) Sturm-Liouville operator (the Legendre operator) in (48.4)
where again l(l+1) is replaced by λ. It can be proved that this Sturm-
Liouville problem has regular solutions if λ = l(l + 1) and |m| ≤ l.
Thus, all linearly independent eigenfunctions of the Laplace-Beltrami
operator are the spherical harmonics Y m

l .

48.5. Exercises.

1. Show that the Laplace-Beltrami operator on a sphere S2 is positive
semi-definite in L2(S

2)

〈LY, Y 〉 =

∫

S2

Y (n)LY (n) dS ≥ 0 , Y ∈ C∞(S2) .
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2. Find the explicit form of the following spherical harmonics

m = 0 : Y m
0 (θ, ϕ) , Y m

1 (θ, ϕ) , Y m
2 (θ, ϕ) ;

|m| = 1 : Y m
1 (θ, ϕ) , Y m

2 (θ, ϕ) ;
|m| = 2 : Y m

2 (θ, ϕ) , Y m
3 (θ, ϕ) .

Use spherical angles to indicate the parts on the unit sphere in which
the spherical harmonic are positive and the parts in which they are
negative.

3. Let n = (sin θ cosϕ, sin θ sinϕ, cos θ) be a unit vector that spans
S2 and a be a constant non-zero vector. Find the Fourier series over
the spherical harmonics for the following functions

f(n) = 1 ,

f(n) = sin2 θ cos2 ϕ

f(n) = a · n ,
f(n) = |a× n|2 ,

f(n) =

{

1 , n3 > 0
0 , n3 ≤ 0

,

where the cross × denotes the vector product in R3.

4. Prove the identity

Pl(µ) =
1

π

∫ π

0

(

µ+ i
√

1 − µ2 cosϕ
)l

dϕ

by verifying that the integral satisfies Legendre’s equation for m = 0.

Answers.

2. Using Pm
l (µ) = (1−µ2)m/2P

(m)
l (µ) for m = 0, 1, ..., l, and µ = cos θ,

one has

Y 0
0 (θ, ϕ) = 1 , Y 0

1 (θ, ϕ) = cos θ ,
Y 0

2 (θ, ϕ) = 3
2
cos2 θ − 1

2
,

Y 1
1 (θ, ϕ) = sin θ cosϕ , Y −1

1 (θ, ϕ) = sin θ sinϕ ,
Y 1

2 (θ, ϕ) = 3
2
sin(2θ) cos ϕ , Y −1

2 (θ, ϕ) = 3
2
sin(2θ) sinϕ ,

Y 2
2 (θ, ϕ) = 3 sin2 θ cos(2ϕ) , Y −2

2 (θ, ϕ) = 3 sin2 θ sin(2ϕ) ,
Y 2

3 (θ, ϕ) = 15 sin2 θ cos θ cos(2ϕ) , Y −2
2 (θ, ϕ) = 15 sin2 θ cos θ sin(2ϕ) ,
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3. Using basic trigonometric identities and the results of Problem 2,

f(n) = 1 = Y 0
0 ,

f(n) = sin2 θ cos2 ϕ =
1

6
Y 2

2 − 1

3
Y 0

2 +
1

3
Y 0

0

f(n) = (a,n) = a1Y
1

1 + a2Y
−1
1 + a3Y

0
1 ,

f(n) = |a× n|2 =
2

3
|a|2Y 0

0 +
1

3
(a2

1 + a2
2 − a2

3)Y
0
2 +

1

6
(a2

2 − a2
1)Y

2
2

−1

3
a1a2Y

−2
2 − 2

3
a1a3Y

1
2 − 2

3
a2a3Y

−1
2 ,

f(n) =

{

1 , n3 > 0
0 , n3 ≤ 0

=
∞
∑

l=0

flY
0
l (θ, ϕ)

fl =
2l + 1

2

∫ 1

0

Pl(µ) dµ =
2l + 1

2l(l + 1)
P ′
l (0)

Alternatively, the last integral can be found by expanding the integral
of the generating function into the Taylor series:

1
√

1 − 2µt+ t2
=

∞
∑

l=0

tlPl(µ) ⇒ 1 +

√
1 + t2 − 1

t
=

∞
∑

l=0

tl
∫ 1

0

Pl(µ) dµ
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49. Poisson equation in spherical coordinates

Here the Laplace and Poisson equation are solved in three dimen-
sional regions that are either balls or spherical layers. For brevity of
notation, a position vector in a three-dimensional space is denoted by
boldface letter r and its components are (x, y, z) so that

r = (x, y, z)

A function on a spatial region Ω is denoted as

f(x, y, z) = f(r) , r ∈ Ω

The length of position vector is denoted as

|r| = r .

A boundary of a spatial region is smooth if it is a level set of a C1

function g(r) whose gradient does not vanish:

∂Ω is smooth ⇔
{

g(r) = 0 , for all r ∈ ∂Ω
∇g(r) 6= 0 , for all r ∈ ∂Ω

A unit normal vector on ∂Ω is

n = ± 1

|∇g(r)| ∇g(r)

The sign is chosen to make n either inward or outward. For example,
a sphere is smooth because it is a lever set of a polynomial function:

g(r) = |r|2 − a2 = x2 + y2 + z2 − a2 = 0 .

Its gradient does not vanish on the sphere r = a > 0:

∇g = (2x, 2y, 2z) = 2r ⇒ |∇g| = 2r

If Ω is a ball r < a, then the outward normal reads

n =
1

|∇g(r)| ∇g(r) =
r

a

The inward normal has the opposite direction. Note that the normal
is continuous on the sphere n (the sphere is smooth).

49.1. Formulation of the problem. Consider the Poisson equation in a
three-dimensional bounded open region Ω with a smooth boundary ∂Ω
that is oriented outward by the unit vector n.

−∆u(r) = f(r) , r ∈ Ω ,
(

αu+ β
∂u

∂n

)
∣

∣

∣

∂Ω
= v(r) , r ∈ ∂Ω
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If β = 0, then the problem is called the Dirichlet problem, if α = 0,
it is called the Neumann problem. If Ω is a ball or a spherical layer
and the functions α and β are constant on each connected piece of the
boundary, then the problem can be solved by separating variables in
spherical coordinates.

49.2. Formulation of the problem in a ball. Let Ω be a ball |r| < a. The
boundary data v and the inhomogeneity f are expressed in spherical
coordinates

f = f(rn) , v = v(an) , n = (sin θ cosϕ, sin θ, sinϕ, cos θ)

and then expanded over the spherical harmonics

f(rn) =

n
∑

l=0

m=l
∑

m=−l

Flm(r)Y m
l (θ, ϕ) ,

Flm(r) =
〈f, Y m

l 〉
‖Y m

l ‖2
=

1

‖Y m
l ‖2

∫ 2π

0

∫ π

0

f(rn)Y m
l (θ, ϕ) sin θ dθ dϕ ,

v(an) =

n
∑

l=0

m=l
∑

m=−l

AlmY
m
l (θ, ϕ) ,

Alm =
〈f, Y m

l 〉
‖Y m

l ‖2
=

1

‖Y m
l ‖2

∫ 2π

0

∫ π

0

v(an)Y m
l (θ, ϕ) sin θ dθ dϕ .

If necessary, the limit n→ ∞ can be taken. The solution to the prob-
lem is sought in the form of the Fourier expansion over the spherical
harmonics

u(r) = u(rn) =
n
∑

l=0

m=l
∑

m=−l

Rlm(r)Y m
l (θ, ϕ)

The boundary conditions are

αu(an) + β
∂u

∂r

∣

∣

∣

r=a
= v(an)

The substitution of the expansions of u and v into this equation gives
the boundary condition for the expansion coefficients Rlm(r):

∑

l,m

(

αRlm(a) + βR′
lm(a)

)

Y m
l (θ, ϕ) =

∑

l,m

AlmY
m
l (θ, ϕ)

and owing to the linear independence of the spherical harmonics, this
equality is possible if and only if

αRlm(a) + βR′
lm(a) = Alm
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The action of the Laplace operator in spherical coordinates on a func-
tion Rlm(r)Y m

l (θ, ϕ) is

1

r2

(

∂

∂r
r2 ∂

∂r
+ ∆S2

)

RlmY
m
l = Y m

l

(

1

r2

(

r2R′
lm(r)

)′

+
l(l + 1)

r2
Rlm

)

because the spherical harmonics are eigenfunctions of the Laplace-
Beltrami operators on a unit sphere: −∆S2Y m

l = l(l+1)Y m
l . Therefore

the substitution of the expansions of u and f into the Poisson equation
yields the boundary value problem for the expansion coefficients:

− 1

r2

(

r2R′
lm(r)

)′

+
l(l + 1)

r2
Rlm = Flm(r) , 0 < r < a ,(49.1)

|Rlm(0)| <∞ , αRlm(a) + βR′
lm(a) = Alm

If Ω is a spherical layer, a2 < r2 < b2, a similar analysis leads to
the following boundary value problem for the expansion coefficients

− 1

r2

(

r2R′
lm(r)

)′

+
l(l + 1)

r2
Rlm = Flm(r) , 0 < r < a ,(49.2)

αaRlm(a)− βaR
′
lm(a) = Alm ,

αbRlm(b) + βbR
′
lm(b) = Blm ,

where αa and βa are the values of α and β on the inner boundary sphere
r = a (note the negative sign at βa which stems from that the outward
normal is directed toward the origin), while αa and βa are the values
of α and β on the outer boundary sphere r = b, and Alm and Blm are
the Fourier coefficients of the boundary data on the spheres:

v(an) =
∞
∑

l=0

l
∑

m=−l

AlmY
m
l (n) ,

v(bn) =
∞
∑

l=0

l
∑

m=−l

BlmY
m
l (n) .

49.3. Solvability condition for the Neumann problem. If α = 0 in the
boundary conditions, the (Neumann) problem does not have a solution
for any choice of the inhomogeneity f and the boundary data v. They
must satisfy the solvability condition

∫

Ω

f(r)dr +

∫

∂Ω

v(r) dS = 0

The first integral is a triple integral over the spatial region Ω, while
the second integral is the surface integral over the boundary of Ω. The
derivation is identical to the two-dimensional case discussed earlier (the
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solvability condition follows from the divergence theorem). In the case
of Ω being a ball r < a, the solvability condition can be written in the
spherical coordinates:

0 = cf + ca ,

cf =

∫ 2π

0

∫ π

0

∫ a

0

f(rn)r2 sin θ drdθdϕ ,

ca = a2

∫ 2π

0

∫ π

0

v(an) sin θ drdθdϕ ,

n = (sin θ cosϕ, sin θ sinϕ, cos θ) .

The integrals are nothing by the Fourier coefficients for the first spheri-
cal harmonic Y 0

0 = 1. Therefore the solvability condition only restricts
parameters in the boundary value problem (49.1) for l = 0 or R00:

∫ a

0

F00(r) r
2dr + a2A00 = 0 .

If Ω is a spherical layer 0 < a < r < b, then

0 = cf + ca + cb ,

cb = b2
∫ 2π

0

∫ π

0

v(bn) sin θ drdθdϕ

where cf and ca have the same form as in the case of a ball, but the
integration in cf with respect to the radial variable r is curried out
over the interval [a, b]. If it exists, a solution to the Neumann problem
is unique ap to an additive constant. The solvability condition impose
a restriction on parameters of the boundary value problem (49.2) only
for l = 0:

∫ b

a

F00(r) r
2dr + a2A00 + b2B00 = 0 .

49.4. Boundary value problem for the radial part. Let us find the general
solution to the equation

− 1

r2

(

r2R′
l(r)
)′

+
l(l + 1)

r2
Rl = Fl(r)

The index m is omitted as the differential operator in the radial part
does not depend on it so that the analysis is identical for any |m| ≤ l.
The associated homogeneous equation is equidimensional. It is solved
by the substitution R = rs so that

s(s+ 1)rs−2 − l(l + 1)rs−2 = 0 ⇒ s = l , s = −l− 1
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The general solution is therefore

Rl(r) = C1r
l +

C2

r1+l
+Rp(r)

where Rp(r) is a particular solution. A particular solution can be found
by the method of variation of parameters using rl and r1−l as two
linearly independent solutions. The boundary conditions (either (49.1)
or (49.2)) are then fulfilled by appropriate choice of the constants C1

and C2. For the Neumann problem, C1 and C2 exist for l = 0 only
if the solvability condition is fulfilled, and, in this case, C1 remains
arbitrary.

The method of undetermined coefficients. . If Fl(r) happens to be poly-
nomial, then a particular solution is easy to find by the method of
undetermined coefficients for equidimensional equations. By multiply-
ing the radial equation by r2, it is reduced to the standard form of an
equidimensional equation

−
(

r2R′
l(r)
)′

+ l(l + 1)Rl = r2Fl(r)

Let Fl(r) = f0r
k. A particular solution is sought in the form

Rp(r) = Crs , s = k + 2

The substitution into the equation yields

C [−s(s+ 1) + l(l + 1)]rs = f0r
s ⇒ C =

f0

l(l + 1) − s(s+ 1)

This is only possible if s 6= l or s 6= −l − 1. In the latter case, the
solution should be sought in the form

Rp(r) = Crs ln(r) , s(s+ 1) = l(l + 1)

The substitution into the equation yields

−(2s+ 1)Crs = f0r
s ⇒ C = − f0

2s+ 1
, s(s+ 1) = l(l + 1) .

The method of the radial Green’s functions. Alternatively or when Fl is
not a polynomial, one can use the formalism of the Green’s functions.
Let us illustrate it by the Dirichlet problem in a ball (49.1):

−
(

r2R′(r)
)′

+ l(l + 1)R = r2F (r) ,

|Rl(0)| <∞ , Rl(a) = Al
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The particular solution that defines the Green’s function is required to
satisfy the trivial boundary conditions:

|Rp(0)| <∞ , Rp(a) = 0 .

Following the general strategy given in Section 41, to find such par-
ticular solution by the method of variation of parameters, two linearly
independent solutions to the associated homogeneous equation have
to be constructed one of which satisfies the left boundary condition,
while the other satisfies the right one, where in both the conditions
any parameters are set to zero (Al = 0 in this case) They are:

Z1l(r) = (r/a)l , Z1l(0) = 1 <∞ ,

Z2l(r) = (r/a)l − (a/r)l+1 , Z2l(a) = 0 .

The radial equation contains the Sturm-Liouville operator with p(r) =
r2. According the Liouville-Ostrodgradsy theorem (see (36.6)), the
Wronskian of any two linearly independent solutions satisfies the equa-
tion

W ′(r) = −p
′(r)

p(r)
W (r) ⇒ W ′(r)

W (r)
= −2

r

Integrating this equation with the initial condition W (a) (the point
r = 0 is singular), one infers

∫ r

a

W ′(ρ)

W (ρ)
dρ = −

∫ a

r

2

ρ
dρ ⇒ r2W (r) = a2W (a)

With the above choice of the linearly independent solutions

a2Wl(a) = a2 det

(

Z1l(a) Z2l(a)
Z ′

1l(a) Z
′
2l(a)

)

= a2Z ′
2l(a) = (2l + 1)a

The remaining technicalities are identical used to derive the radial
Green’s function in the case of the Dirichlet problem in a disk (??).
The results reads

Rp(r) =

∫ a

0

Gl(r, ρ)Fl(ρ) ρ
2 dρ ,(49.3)

Rp(r) = − Z1l(r)

a2Wl(a)

∫ a

r

Fl(ρ)Z2l(ρ)ρ
2 dρ

− Z2l(r)

a2Wl(a)

∫ r

0

Fl(ρ)Z1l(ρ)ρ
2 dρ ,

Gl(r, ρ) = − 1

a2Wl(a)

{

Z1l(r)Z2l(ρ) , r < ρ
Z2l(r)Z1l(ρ) , ρ < r
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where a2Wl(a) = (2l+1)a. Note the integration weight ρ2 in contrast to
the two-dimensional case. It is related to the Jacobian in the spherical
coordinates J = r2 sin θ.

A particular solution satisfying the Dirichlet boundary conditions
in a spherical layer

Rp(a) = Rp(b) = 0 ,

is given by the corresponding radial Green’s function obtained analo-
gously to the case of an annulus has the form:

Rp(r) =

∫ b

a

Gl(r, ρ)Fl(ρ)ρ
2 dρ(49.4)

= − Zl(r; a)

a2Wl(a)

∫ b

r

Fl(ρ)Zl(ρ; b) ρ
2 dρ

− Zl(r; b)

a2Wl(a)

∫ r

a

Fl(ρ)Zl(ρ; a) ρ
2 dρ .

where

Zl(r; c) = (r/c)l − (c/r)l+1 , Zl(c; c) = 0 , c = a, b ,

a2Wl(a) = −(2l + 1)aZl(a; b)

The Green’s functions of other problems can be derived in a similar
way.

The Dirichlet problem. Using the Green’s function (49.3), the solution
to the Dirichlet problem in a ball is given by the expansion over the
spherical harmonics

u(rn) =
∞
∑

l=0

m=l
∑

m=−l

Rlm(r)Y m
l (n) ,

Rlm(r) = Alm

(r

a

)l

+

∫ a

0

Gl(r, ρ)Flm(ρ) ρ2 dρ .

The solution to the Dirichlet problem in a layer 0 < a < r < b has the
following expansion coefficients:

Rlm(r) = Alm
Zl(r; b

Zl(a; b)
+Blm

Zl(r; a)

Zl(b; a)
+

∫ a

0

Gl(r, ρ)Flm(ρ) ρ2 dρ ,

where the radial Green’s function is given in (49.4).
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49.5. Some examples. When the inhomogeneity and boundary data are
polynomials of some small order, their expansions over spherical har-
monics can be obtained without integration, just by using their form
in spherical coordinates and comparing the latter with explicit form
of the spherical harmonics. Here is a list of spherical harmonics for
l = 0, 1, 2, 3, which is sufficient to expand any polynomial of degree at
most 3:

l = 0 : Y 0
0 = 1 ,

l = 1 :
Y 0

1 = cos θ ,
Y 1

1 = sin θ cosϕ ,
Y −1

1 = sin θ sinϕ ,

l = 2 :

Y 0
2 = 3

2
cos2 θ − 1

2
,

Y 1
2 = 3 sin θ cos θ cosϕ ,
Y −1

2 = 3 sin θ cos θ sinϕ ,
Y 2

2 = 3 sin2 θ cos(2ϕ) ,
Y −2

2 = 3 sin2 θ sin(2ϕ) ,

l = 3 :

Y 0
3 = 5

2
cos3 θ − 3

2
cos θ ,

Y 1
3 =

(

15
2

cos2 θ − 3
2

)

sin θ cos(ϕ) ,
Y −1

3 =
(

15
2

cos2 θ − 3
2

)

sin θ sin(ϕ) ,
Y 2

3 = 15 cos θ sin2 θ cos(2ϕ) ,
Y −2

3 = 15 sin3 θ cos(2ϕ) ,
Y 3

3 = 15 sin3 θ cos(3ϕ) ,
Y −3

3 = 15 sin3 θ sin(3ϕ) .

Example 49.1. Solve the boundary value problem in the ball Ω :
x2 + y2 + z2 < 1:

−∆u(x, y, z) = 21xz , u
∣

∣

∣

∂Ω
= z
∣

∣

∣

∂Ω

Solution: Let us obtain first the expansion of the inhomogeneity and
the boundary data over the spherical harmonics. Writing the inho-
mogeneity and the boundary data in spherical coordinates, one infers
that

z
∣

∣

∣

r=1
= cos θ = Y 0

1 ,

xz = 15r2 sin θ cos θ cosϕ = 7r2Y 1
2

The solution is a linear combination of the spherical harmonics in the
inhomogeneity and the boundary data:

u(rn) = R1(r)Y
0
1 (n) +R2(r)Y

1
2 (n)
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The boundary value problem for R1 is (l = 1):

− 1

r2

(

r2R′
1(r)

)′

+
2

r2
R1(r) = 0 , |R1(0)| <∞ , R1(1) = 1

The general solution to this equidimensional equation is

R1(r) = C1r +
C2

r2

The regularity condition requires that C2 = 0. The second boundary
condition requires that C1 = 1:

R1(r) = r

The boundary value problem for R2 is (l = 2):

− 1

r2

(

r2R′
2(r)

)′

+
6

r2
R2(r) = 7r2 , |R1(0)| <∞ , R1(1) = 0

If the equation is multiplied by r2, it becomes an equidimensional equa-
tion with the inhomogeneity being a polynomial 7r4. So, the method of
undetermined coefficients applies. Since 4 6= l = 2 or 4 6= −3 = −l− 1,
a particular solution should have the form

Rp(r) = Cr4

The substitution of this function into the equation yields

−20Cr2 + 6Cr2 = 7r2 ⇒ C = −1

2

The general solution reads

R2(r) = C1r
2 +

C2

r3
− 1

2
r4

The regularity condition requires that C2 = 0, while the second bound-
ary condition is fulfilled if C1 = 1

2
:

R2(r) =
1

2
r2(1 − r2)

The solution to the problem is

u(x, y, z) = rY 0
1 (n) +

1

2
r2(1 − r2)Y 1

2 (n)

= r cos θ +
3

2
r2(1 − r2) sin θ cos θ cosϕ

= z +
3

2
xz
(

1 − x2 − y2 − z2
)

.

�
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Example 49.2. Solve the boundary value problem in a spherical
layer Ω : 1 < r < 2, where r is the distance from the origin:

−∆u(x, y, z) = 30z2 ,
∂u

∂n

∣

∣

∣

r=1
= 3(x2 + y2)

∣

∣

∣

r=1
,

∂u

∂n

∣

∣

∣

r=2
= −16

Solution: This is the Neumann problem. Therefore the solvability
condition must be checked. Since it involves only the Y 0

0 coefficient
in the expansions of the inhomogeneity and the boundary data, let us
find first these expansions:

z2 = 30r2 cos2 θ = 30r2 · 2

3
· 3

2
cos2 θ

= 20r2

(

3

2
cos2 θ − 1

2
+

1

2

)

= 20r2Y 0
2 + 10r2Y 0

0

3(x2 + y2)
∣

∣

∣

r=1
= 3 sin2 θ = 3 − 3 cos2 θ = 2Y 0

0 − 2Y 0
2

−16 = −16Y 0
0

The solvability condition is fulfilled.

10

∫ 2

1

r4dr − 22 · 16 + 12 · 2 = 62 − 64 + 2 = 0

A solution exists and is a linear combination of two spherical harmonics
Y 0

0 and Y 0
2 :

u(rn) = R0(r)Y
0
0 (n) +R2(r)Y

0
2 (n) .

The boundary value problem for R0(r) is (l = 0):

− 1

r2

(

r2R′
0(r)

)′

= 10r2 , −R′
0(1) = 2 , R′

0(1) = −16

Note the negative sing at the derivative at r = 1. The normal derivative
on the inner boundary is −∂u/∂r. The inhomogeneity is a monomial.
The solution can be found by the method of undetermined coefficients.
A particular solution should have the form

Rp(r) = Cr4

The substitution into the equation yields:

−20Cr2 = 10r2 ⇒ C = −1

2
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The general solution and its derivative are

R0(r) = C1 +
C2

r
− 1

2
r4 ,

R′
0(r) = −C2

r2
− 2r3

The Neumann boundary conditions require that

R′
0(1) = −2 ⇒ −C2 − 2 = −2 ⇒ C2 = 0 ,

R′
0(2) = −16 ⇒ −C2

4
− 16 = −16 ⇒ C2 = 0

That the both conditions are fulfilled by choosing a single constant is
the direct consequence of the solvability condition. If one proceeded
without checking the solvability condition and the latter were not ful-
filled, one would have found that the boundary value problem for R0(r)
has no solution. Thus,

R0(r) = C1 −
1

2
r4

where C1 remains arbitrary (if the Neumann problem has a solution,
it is unique up an additive constant). The second boundary value
problem is (l = 2)

− 1

r2

(

r2R′
2(r)

)′

+
6

r2
R2(r) = 20r2 , −R′

2(1) = −2 , R′
2(2) = −16

Using the method of undetermined coefficients, a particular solution is
found:

Rp(r) = −10

7
r4

The general solution and its derivative are

R2(r) = C1r
2 +

C2

r3
− 10

7
r4 ,

R′
2(r) = 2C1r −

3C2

r4
− 40

7
r3

The boundary conditions require that
{

14C1 − 21C2 = 54
7 · 64C1 − 21C2 = 162 · 13 ⇒ C1 =

1637

217
, C2 =

1600

651
.

�

Example 49.3. Solve the boundary value problem in the ball r < 1,
where r is the distance from the origin:

−∆u(x, y, z) = 30xyz ,
(

u+
∂u

∂n

)
∣

∣

∣

r=1
= 0
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Solution: The inhomogeneity has the following decomposition over
the spherical harmonics

30xyz = 30r3 cos θ sin2 θ cosϕ sinϕ = r3Y 2
3

The solution has the form

u(rn) = R3(r)Y
2
3 (n)

where R3 is the solution to the boundary value problem (l = 3):

− 1

r2

(

r2R′
3(r)

)′

+
12

r2
R3(r) = r3 ,

|R3(0)| <∞ , R3(1) +R′
3(1) = 0 .

Using the method of undetermined coefficients, a particular solution is
found:

Rp(r) = − 1

18
r5

The general solution that is regular at the origin and its derivative are

R3(r) = C2r
3 − 1

18
r5 , R′

3(r) = 3C2r
2 − 5

18
r4

The boundary condition requires that

C2 −
1

18
+ 3C2 −

5

18
= 0 ⇒ C2 =

1

12
The solution is

u(x, y, z) =
1

12
r3
(

1 − 2

3
r2
)

Y 2
3

=
15

6
xyz

(

1 − 2

3
(x2 + y2 + z2)

)

�
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49.6. Exercises.

In what follows r denotes the distance from the origin.

1. Solve the boundary value problem in the ball r < 2

−∆u(x, y, z) = 0 , u
∣

∣

∣

r=2
= (30xyz − 6z2)

∣

∣

∣

r=2

2. Solve the boundary value problem in the spherical layer 1 < r < 2

−∆u(x, y, z) = 6z2 , u
∣

∣

∣

r=1
= 3(x2 + y2)

∣

∣

∣

r=1
, u

∣

∣

∣

r=2
= 1

3. Solve the boundary value problem in the spherical layer 1 < r < 2
or show that no solution exists:

−∆u(x, y, z) = 0 ,
∂u

∂n

∣

∣

∣

r=1
= 8z2

∣

∣

∣

r=1
,

∂u

∂n

∣

∣

∣

r=2
= −3(x2 + y2)

∣

∣

∣

r=2

4. Solve the boundary value problem in the ball r < 1 or show that no
solution exists:

−∆u(x, y, z) = 5(x2 + y2 + z2) − x ,
∂u

∂n

∣

∣

∣

r=1
= −3z2

∣

∣

∣

r=1

5. Solve the boundary value problem in the spherical layer 1 < r < 2:

−∆u(x, y, z) = x− 3z2 , u
∣

∣

∣

r=1
= 1 ,

∂u

∂n

∣

∣

∣

r=2
= xy

∣

∣

∣

r=2

6. Solve the boundary value problem in the spherical layer 1 < r < 2:

−∆u(x, y, z) = 30x3 ,
(

2u+
∂u

∂n

)
∣

∣

∣

r=1
= 0 u

∣

∣

∣

r=2
= y
∣

∣

∣

r=2
,
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50. The Laplace operator in spherically symmetric regions

50.1. Eigenvalue problem for the Laplace operator in a ball. Let Ω be a
three-dimensional ball. Consider the following eigenvalue problem in
Ω:

(50.1) −∆u = λu , |x| < a , u
∣

∣

∣

|x|=a
= 0 .

In spherical coordinates the equation becomes

− 1

r2

∂

∂r

(

r2∂U

∂r

)

− 1

r2 sin θ

∂

∂θ

(

sin θ
∂U

∂θ

)

−
(

1

r2 sin2 θ

∂2U

∂θ2

)

= λU ,

or

− 1

r2

∂

∂r

(

r2∂U

∂r

)

− 1

r2
∆S2U = λU ,

where ∆S2 is the Laplace-Beltrami operator on a unit sphere S2 and

U(r, θ, ϕ) = u(r sin θ cosϕ, r sin θ cosϕ, r cos θ) .

The ball (with its center removed) is the image of

Ω′ = (0, a) × S
2

under the transformation defined by spherical coordinates,

x = rn , r ≥ 0 , |n| = 1, n ∈ S
2 ,

where the unit vector n = (sin θ cosϕ, sin θ cosϕ, cos θ) spans the sphere
S2. A solution U(r, θ, ϕ) = u(rn) defines a function on S2 for every
(fixed) r, meaning that U must be a regular function of θ and ϕ for
every 0 < r < a (in particular, U has to be 2π periodic in ϕ). The
Jacobian J = r2 sin θ vanishes at r = 0. Therefore it is necessary to
impose a regularity condition at r = 0 so that the boundary conditions
are

|U(0, θ, ϕ)| <∞ , U(a, θ, ϕ) = 0 .

where the value of a solution U at r = 0 is defined as the limit r → 0+.
The regularity condition does not yet guarantee that a function ob-
tained from a regular solution in spherical coordinates by transforming
it back to the rectangular coordinates satisfies the original equation
(50.1) at x = 0. A solution of (50.1) is from C2(Ω) and, hence, has to
have continuous second partial derivatives at x = 0, which is not guar-
anteed by the regularity condition. The fact that a regular solution in
spherical coordinates U(r, θ, ϕ) = u(x) extended to x = 0 by continuity
satisfies (50.1) at x = 0 must be verified in addition.
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In accord with the the general method of separating variables, a
solution is sought in the form

U(r, θ, ϕ) = R(r)Y (θ, ϕ) .

Then the original problem is equivalent to two problems

−∆S2Y = µY , Y ∈ C∞(S2) ,(50.2)
(

r2R′
)′

+ (λr2 − µ)R = 0 , |R(0)| <∞ , R(a) = 0 .(50.3)

The problem (50.2) is the eigenvalue problem for the Laplace-Beltrami
operator on a sphere S2:

µ = l(l + 1) , Y (θ, ϕ) = Y m
l (θ, ϕ) , l = 0, 1, ..., |m| ≤ l .

where Y m
l are spherical harmonics. By making the substitution

R(r) =
R1(r)√

r
,

the problem (50.3) becomes the eigenvalue problem for the Bessel op-
erator with ν = l + 1

2
> 0:

r2R′′
1 + rR′

1 +

[

λr2 −
(

l +
1

2

)2
]

R1 = 0 .

By a general analysis of the eigenvalue problem for an elliptic operator,
the eigenvalues in (50.1) are strictly positive λ > 0. Therefore solutions
regular at r = 0 are given by the Bessel functions

R(r;λ) =
1√
r
Jl+ 1

2
(
√
λ r) .

To find the eigenvalues λ, the second boundary condition R(a) = 0 has

to be used. To simplify notations introduced earlier for the roots µ
(ν)
j

of the Bessel function Jν, put

Jν(µ) = 0 ⇒ µ = µ
(ν)
j ≡ µlj , ν = l +

1

2
, j = 1, 2, ... .

Then the second boundary condition requires that for every l
√
λa = µjl , j = 1, 2, ... .

The eigenvalues and the corresponding eigenfunction of the Laplace
operator in a ball are

(50.4) λ = λlj =
µ2
lj

a2
, Uljm(r, θ, ϕ) =

Cljm√
r
Jl+ 1

2

(

µlj
r

a

)

Y m
l (θ, ϕ) ,

where l = 0, 1, ..., j = 0, 1, ..., m = 0,±1, ...,±l, and Cljm are normal-
ization constants.
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Since r = 0 is a singular point (where the Jacobian vanishes) one
has to verify that the functions Uljm also satisfy the original equation
in the rectangular coordinates at |x| = 0. The Bessel function Jl+ 1

2
(r)

is

Jl+ 1
2
(r) =

(r

2

)l+ 1
2
(

1 + g(r2))
)

,

where g is an analytic function of r2 = |x|2, that is, g is defined by
a power series in r2 and, hence, is also a power series in the original
rectangular coordinates. The latter means that g is from the C∞ class
in the original rectangular coordinates. Therefore

Uljm(r, θ, ϕ) = rlY m
l (θ, ϕ)hlj(r

2)

where hlj is an analytic function of r2 = |x|2 defined by a power series
in r2. However the combination rlY m

l is a harmonic polynomial (see
Section 48.2) in the original rectangular coordinates. Therefore Uljm is
from the C∞(Ω) class in the original variables and, hence, satisfies the
equation at x = 0.

The eigenfunctions are orthogonal in L2(Ω). The latter follows from
the orthogonality property of the Bessel functions (Theorem 46.5) and
the orthogonality of spherical harmonics (48.11). Omitting normal-
ization constants for the sake brevity, Uljm = R(r;λlj)Y

m
l (θ, ϕ), one

has

〈Uljm, Ul′j′m′〉 =

∫

Ω

Uljm, Ul′j′m′dx

=

∫ a

0

∫ π

0

∫ 2π

0

Uljm(r, θ, ϕ)Ul′j′m′(r, θ, ϕ) r2 sin θ dr dθ dϕ

=

∫ a

0

R(r;λlj )R(r;λl′j′) r
2 dr

∫

S2

Y m
l (n)Y m′

l′ (n)dS

= ‖Y m
l ‖2δll′δmm′

∫ a

0

Jl+ 1
2

(

µjl
r

a

)

Jl+ 1
2

(

µj′l
r

a

)

r dr

= a2‖Y m
l ‖2δll′δmm′

∫ 1

0

Jl+ 1
2

(

µjlz
)

Jl+ 1
2

(

µj′lz
)

z dz

=
a2

2

(

J ′
l+ 1

2
(µlj)

)2

‖Y m
l ‖2δll′δmm′δjj′ .

By setting

Cljm =

√
2

a|J ′
l+ 1

2

(µlj)| ‖Y m
l ‖
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in (50.4), the eigenfunctions become orthonormal. By completeness
of the Bessel functions in L2((0, a); σ) where σ(r) = r, and by com-
pleteness of spherical harmonics in L2(S

2), the function (50.4) form a
complete orthonormal set in L2(Ω) (according to Theorem ??), and

f(x) =
∞
∑

j=1

∞
∑

l=0

l
∑

m=−l

〈f, Uljm〉Uljm(x) a.e. , f ∈ L2(Ω) .

Remark. When solving the problem (50.2), one can formally take
µ = l(l+ 1) and disregard the question whether or not there are other
possible values of µ. The fact that the eigenfunctions (50.4) are proved
to be a complete set in L2(Ω) implies that there are no eigenvalues
other than found with µ = l(l + 1). An eigenfunction U corresponding
to λ 6= λlj must be orthogonal to the functions Uljm because the oper-
ator in (50.1) is hermitian. Therefore Fourier coefficients of U vanish.
〈U,Uljm〉=0. Since the functions (50.4) form a complete set, any such
U ∈ L2(Ω) must be zero almost everywhere and, hence, cannot be a
nontrivial solution to the problem (50.1).

50.2. Bessel functions of half-integer order. Bessel functions of half-inte-
ger order can be expressed via elementary functions. For example,
J1/2(z) and J−1/2(z) are given in (46.2) and (46.3). There are recurrence
relations to obtains an explicit form of Jn+1/2(z) for any integer n.
Recall the recurrence relations to change the order of a Bessel function:

1

z

d

dz

[

zνJν(z)
]

= zν−1Jν−1(z) ,

1

z

d

dz

[Jν(z)

zν

]

= −Jν+1(z)

zν+1
.

Applying them l times, one infers that

(

1

z

d

dz

)l
[

zνJν(z)
]

= zν−lJν−l(z) ,

(

1

z

d

dz

)l
[Jν(z)

zν

]

= (−1)l
Jν+l(z)

zν+l
.

By setting ν = 1/2 and ν = −1/2 in the first and second relations,
respectively, an explicit form of Bessel functions of half-integer order
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is obtained from J±1/2:

Jl+ 1
2
(z) = (−1)l

√

2

π
zl+

1
2

(

1

z

d

dz

)l
sin z

z
,(50.5)

J−l− 1
2
(z) =

√

2

π
zl+

1
2

(

1

z

d

dz

)l
cos z

z
,(50.6)

where l = 0, 1, ....

50.3. Eigenvalue problem for the Laplace operator in a spherical layer.

Consider the eigenvalue problem for the Laplace operator in a three-
dimensional spherical layer:

−∆u = λu , x ∈ Ω ,
(

αu+ β
∂u

∂n

)
∣

∣

∣

∂Ω
= 0 ,

Ω = {x ∈ R
3 | 0 < a < |x| < b} ,

where α and β are subject to the usual conditions to ensure hermiticity
of the operator. The boundary ∂Ω is oriented outward:

n

∣

∣

∣

|x|=a
= −er , n

∣

∣

∣

|x|=b
= er ,

where er = x/|x| in the unit vector corresponding to the radial variable
of the spherical coordinate system (it is normal to any sphere |x| =
const). Therefore

∂u

∂n

∣

∣

∣

|x|=a
= −∂u

∂r

∣

∣

∣

r=a
,

∂u

∂n

∣

∣

∣

|x|=b
=
∂u

∂r

∣

∣

∣

r=b
.

If α and β have constant values on ∂Ω, then the problem can be solved
by separation of variables in spherical coordinates.

Let α = αa, β = βa be the values of α and β on the sphere |x| = a,
and, constants αb and βb are their values on the sphere |x| = b. Put

u(r sin θ cosϕ, r sin θ cosϕ, r cos θ) = U(r, θ, ϕ) = R(r)Y (θ, ϕ) .

Writing the Laplace operator in spherical coordinates and separating
the variables, the original problem leads to two eigenvalue problems,
one of which is the problem (50.2) and the other is

(50.7)
(

r2R′
)′

+ (λr2 − µ)R = 0 ,

{

αaR(a) − βaR
′(a) = 0

αbR(b) + βbR
′(b) = 0

.

If α 6= 0 on ∂Ω, then all eigenvalues are positive, λ > 0 (the case when
λ = 0 is an eigenvalue is left to the reader to analyze as an exercise).
The separation constant µ = l(l + 1), l = 0, 1, ..., as shown in Section
50.1. Just as in Section 50.1, the problem (50.7) can be transformed
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to the eigenvalue problem for the Bessel operator with ν2 = (l+ 1
2
)2by

the substitution

R(r) =
R1(r)√

r
, R′(r) =

R1(r)√
r

− R1(r)

2r
√
r
.

The boundary conditions for the functions R1(r) are deduced from the
boundary conditions in (50.7):

(

αa + βa

2a

)

R1(a)− βaR
′
1(a) = 0

(

αb − βb

2b

)

R1(b) + βbR
′
1(b) = 0

.(50.8)

This is the eigenvalue problem for the Bessel equation in an interval
0 < a < r < b, which is a particular case of a regular Sturm-Liouville
problem discussed in Section 47.2 (no regularity condition at r = 0 as
the origin is not in Ω); it is similar to the problem (47.11) and can be
studied along the same lines. A general solution of the Bessel equation
reads

R1(r;λ) = C1Jl+ 1
2
(
√
λ r) + C2J−l− 1

2
(
√
λr) .

The solution is substituted into (50.8) to obtain a linear homogeneous
system of equations for the constants C1 and C2. The should have
a non-trivial solution which is possible if and only if its determinant
vanishes. For every l = 0, 1, ..., the roots of the determinant are the
eigenvalues λ = λlj, where the index j = 1, 2, ... enumerates the roots.
Recall that eigenvalues of the Sturm-Liouville operator are simple and
form a countable set with no limit points (Section 8). For λ = λlj the
equations in (50.8) are linearly dependent and any of them can be used
to determine the proportionality coefficient in C1 = γljC2 so that the
corresponding eigenfunction are

Uljm(r, θ, ϕ) =
Cljm√
r

(

γljJl+ 1
2
(
√

λlj r) + J−l− 1
2
(
√

λlj r)
)

Y m
l (θ, ϕ) ,

where l = 0, 1, ..., j = 1, 2, ..., m = 0,±1, ..., ∂l, and Cljm are normal-
ization constants defined by the condition

‖Uljm‖2 =

∫ b

a

∫ π

0

∫ 2π

0

U2
ljm(r, θ, ϕ) r2 sin θ dr dθ dϕ = 1

The orthogonality of the eigenfunctions

〈Uljm, Ul′j′m′〉 = δjj′δll′δmm′

follows from the orthogonality of the spherical harmonics (the fac-
tor δll′δmm′) and from the orthogonality of eigenfunctions in a regu-
lar Sturm-Liouville problem (the factor δjj′) corresponding to different
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eigenvalues λlj and λlj′ (Section 47.2). The eigenfunction form a com-
plete orthonormal set in L2(Ω) which follows from Theorem ??, the
completeness of the spherical harmonics Y m

l in L(S2), and the com-
pleteness of eigenfunctions of the regular Sturm-Liouville operator in
L2((a, b); σ) where p(r) = σ(r) = r > 0 and q(r) = (l + 1/2)2/r > 0 in
[a, b] if a > 0.

50.4. More complex regions. If the region Ω is the image of a rectangle

(r, θ, ϕ) ∈ (r1, r2) × (θ1, θ2) × (ϕ1, ϕ2) ,

then the eigenvalue problem for the Laplace operator can be solved by
separation of variables in spherical coordinates, provided the functions
α and β have constant values on each smooth piece of the boundary ∂Ω
which are coordinate surfaces of the spherical coordinates: two spheres
r = r1 and r = r2, two cones θ = θ1 and θ = θ2, and two half-planes
ϕ = ϕ1 and ϕ = ϕ2. A solution is sought in the form R(r)Y (θ, ϕ).
The function R(r) satisfies the eigenvalue problem (50.7) that can be
reduced to the eigenvalue problem for the Bessel operator by the substi-
tution R(r) = R1(r)/

√
r. The difference is that the separation constant

µ in (50.7) is no longer given by µ = l(l + 1), l = 0, 1, ..., because the
function Y (θ, ϕ) is not an eigenfunction of the Laplace-Beltrami oper-
ator on a sphere S2 (see (50.2) but in the part of the sphere cut out
by the two cones and two half-planes (the part that corresponds to the
rectangle (θ1, θ2) × (ϕ1 × ϕ2)).

Separating the variables in (50.2) by the substitution Y (θ, ϕ) =
P (cos θ)Φ(ϕ) into Eq. (50.2), the problem can be reduced to two prob-
lems (48.2) and (48.3), but in the latter equation l(l + 1) has to be
replaced by the separation constant µ (which is still to be determined),
provided the variables can also be separated in the boundary conditions.
The vectors eθ and eϕ are unit normals to the coordinate surfaces of θ
and ϕ, that is, to cones and half-planes, respectively. Then by (??) for
a cone θ = θ0 and a half-plane ϕ = ϕ0, the normal derivatives are

∂U

∂n

∣

∣

∣

θ=θ0
= ±(eθ, gradU)

∣

∣

∣

θ=θ0
= ±R(r)

r
Y ′
θ(θ0, ϕ) ,

∂U

∂n

∣

∣

∣

ϕ=ϕ0

= ±(eθ, gradU)
∣

∣

∣

ϕ=ϕ0

= ± R(r)

r sin θ
Y ′
ϕ(θ, ϕ0) ,

where the two signs correspond to two possible orientations of the sur-
faces. Note the factors containing the Lamé coefficients of the spherical
coordinates. The separation of variables does not work when these fac-
tors occur in a general boundary condition. In some particular cases
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when either Y or its normal derivative vanishes on the boundary of the
rectangle (θ1, θ2) × (ϕ1 × ϕ2)), then the variables are easily separated.

For example, if Y is required to vanish on the boundary, then the
problem (50.2) turns into the Sturm-Liouville problem (47.10). The
eigenvalues are ν = ν2

m ≥ 0, νm = (πm)/(ϕ2 − ϕ2), m = 1, 2, .... The
function P (cos θ) = P (z) is a solution of the Sturm-Liouville problem
for the operator,

LmP ≡
(

(1 − z2)P ′
)′

+
ν2
m

1 − z2
P = µP .

in an interval −1 < z1 < z < z2 < 1 where z1 = cos θ2 and z2 = cos θ1.
This is a regular Sturm-Liouville problem for every νm. All the results
of its general analysis apply. Just like the Bessel equation, the Le-
gendre equation has two linearly independent solutions. This equation
is a particular case of the so called Papperitz equation whose solutions
can be obtained in terms of the hypergeometric function. If νm is a
squared integer (e.g., ϕ2 − ϕ2 = π/k where k is a positive integer),
then solutions are Legendre functions of the first and second kinds. If,
in addition, θ spans its full range (∂Ω does not contains cones), then
solutions regular at z = ±1 are given by associated Legendre functions
corresponding to the squared integer ν2

m. Given two linearly indepen-
dent solutions, an equation for the eigenvalues µ is obtained by the
general method developed for the Sturm-Liouville problem and illus-
trated with an example of the similar problem for the Bessel operator
(47.11).

50.5. Exercises.

1. Let Ω be a ball |x| < a in R
3. Solve the eigenvalue problem

−∆u = λu , x ∈ Ω ,
∂u

∂n

∣

∣

∣

∂Ω
= 0 .

Find normalized eigenfunctions.

2. Let Ω be a spherical layer 0 < a < |x| < b in R3. Solve the
eigenvalue problem

−∆u = λu , x ∈ Ω ,
∂u

∂n

∣

∣

∣

|x|=a
= 0 , u

∣

∣

∣

|x|=b
= 0 .

3. Let Ω be a wedge of a ball

Ω = {(x, y, z) ∈ R
3 |x2 + y2 + z2 < a2 , x > 0 , y > 0} .
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Solve the eigenvalue problem

−∆u = λu , u
∣

∣

∣

∂Ω
= 0 .

Find normalized eigenfunctions.

4. Let Ω be a half-ball

Ω = {(x, y, z) ∈ R
3 |x2 + y2 + z2 < a2 , x > 0} .

Solve the eigenvalue problem

−∆u = λu ,
∂u

∂n

∣

∣

∣

∂Ω
= 0 .

Answers.

1. Zero is a simple eigenvalue and the corresponding normalized eigen-

function is a constant function U0 = V
−1/2

Ω , where VΩ = 4πa3/3 is the
volume of Ω. The other eigenvalues are positive

λ = λlj =
µ2
lj

a2
, l = 0, 1, ... , j = 1, 2, ... ,

where for every l, µlj , j = 1, 2, ..., are positive roots of the equation

µJ ′
l+ 1

2
(µ) =

1

2
Jl+ 1

2
(µ) .

The corresponding eigenfunctions are

Uljm(x) = Cljmr
−1/2Jl+ 1

2

(

µlj
r

a

)

Y m
l (n) , x = rn ,

where n spans a unit sphere S2 and the normalization constants are
defined by

|Cljm|−2 =
a2

2
‖Y m

l ‖2J2
l+ 1

2
(µlj)

(

1 − l(l + 1)

µ2
lj

)

.

2. All eigenvalues are positive λ = λlj = µ2
lj , l = 0, 1, 2, ..., and for

every l, µ = µlj, j = 1, 2, ..., are positive (simple) roots of the equation

Jl+ 1
2
(µb)H−l− 1

2
(µa) = J−l− 1

2
(µb)Hl+ 1

2
(µa)

Hν(z) ≡ zJ ′
ν(z) −

1

2
Jν(z)

The corresponding eigenfunctions are

Uljm(x) =
Cljm√
r
Rlj(r)Y

m
l (n) , x = rn ,

Rlj(r) = H−l− 1
2
(µlja)Jl+ 1

2
(µljr) −Hl+ 1

2
(µlja)J−l− 1

2
(µljr) ,
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where Cljm are normalization constants.

3. All eigenvalues are positive, λ = λlj = µ2
lj, l = 0, 1, ..., and for

every l, µ = µlj, j = 1, 2, ..., are positive (simple) roots of the equation
Jl+ 1

2
(µ) = 0. The corresponding eigenfunctions are

Uljm(x) =
Cljm√
r
Jl+ 1

2

(

µlj
r

a

)

P 2m
l (cos θ) sin(2mϕ) .

where m = 1, 2, ...,M ≤ l/2 and the normalization constants are de-
fined by

|Cljm|−2 =
πa2

4(2l + 1)
|J ′
l+ 1

2
(µlj)|2

(l + 2m)!

(l − 2m)!
.

4. The same eigenvalues as in in Problem 1 but the eigenfunctions
corresponding to positive eigenvalues are

Uljm(x) = Cljmr
−1/2Jl+ 1

2

(

µlj
r

a

)

Pm
l (cos θ) cos

(

m(ϕ+ π/2)
)

,

where j = 1, 2, ..., l = 0, 1, ..., and m = 0, 1, ..., l; the normalization
constants are defined by

|Cljm|−2 =
a2π

4l + 2

(l +m)!

(l −m)!
J2
l+ 1

2
(µlj)

(

1 − l(l + 1)

µ2
lj

)

.


