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25.6 Exercises

25.6.1

Recall that in order to determine if the critical point r0 is a local minimum, local
maximum, or a saddle point we must find the roots λ1, λ2 to the characteristic
polynomial (in this case a quadratic) given by

P2(λ) = det

(
a− λ c
c b− λ

)
= λ2 − (a+ b)λ+ (ab− c2)

where
a = f ′′xx(r0) , b = f ′′yy(r0) , c = f ′′xy(r0)

Determining the roots itself is not necessary. (See Corollary 25.1) Sufficient
information comes from computing D = ab − c2 and the sign of a (positive or
negative).

(i)D = (−3)(−2)−(2)2 = 2, a < 0 =⇒ The point (0, 0) is a local maximum.
(ii) D = (3)(2)− (2)2 = 2, a > 0 =⇒ The point (0, 0) is a local minimum.
(iii) D = (1)(2)− (2)2 = −2 =⇒ The point (0, 0) is a saddle point.
(iv) D = (2)(2) − (2)2 = 0 =⇒ Inconclusive. Investigate higher order

differentials.

25.6.2

From f(x, y) = x2 + (y− 2)2, we get that f ′x(x, y) = 2x and f ′y(x, y) = 2(y− 2).
As a result, to make both f ′x and f ′y equal to 0, x = 0 and y = 2.Therefore,
our only critical point is (0,2). We then find the roots of the characteristic
polynomial to find the behavior of f(x,y) around this point. The characteristic
polynomial is given by:

det

(
f ′′xx − λ f ′′xy
f ′′yx f ′′yy − λ

)
= 0

In this case, this equals: ∣∣∣∣2− λ 0
0 2− λ

∣∣∣∣ = (2− λ)2 = 0

From this it is easy to see that each solution is greater than 0, meaning that
the critical point is a local minimum.
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25.6.3

25.6.4

Because f(x, y) = x4 − 2x2 − y3 + 3y is a polynomial, the gradient

~∇f(x, y) = 〈4x3 − 4x,−3y2 + 3〉

can never be undefined. We solve for points that cause the gradient to be equal
to ~0 by finding (x, y) that solve the following system of equations:

4x3 − 4x = 0

−3y2 + 3 = 0

Evidently any combination of x = 0, 1,−1 and y = 1,−1 form critical points.
So computing a = f ′′xx(x, y) = 12x2−4, b = f ′′yy(x, y) = −6y, and c = f ′′xy(x, y) =
0 we analyze 6 cases by computing D = ab− c2 and noting the sign of a:

(0, 1) : D = (−4)(−6)−(0)2 = 24, a < 0 =⇒ The point is a local maximum.
(0,−1) : D = (−4)(6)− (0)2 = −24 =⇒ The point is a saddle point.
(1, 1) : D = (6)(−6)− (0)2 = −36 =⇒ The point is a saddle point.
(1,−1) : D = (6)(6)− (0)2 = 36, a > 0 =⇒ The point is a local minimum.
(−1, 1) : D = (6)(−6)− (0)2 = −36 =⇒ The point is a saddle point.
(−1,−1) : D = (6)(6)−(0)2 = 36, a > 0 =⇒ The point is a local minimum.

25.6.5

25.6.6

f(x, y) = x2 − xy + y2 − 2x+ y

~∇f(x, y) = 〈∂f
∂x
,
∂f

∂y
〉 = 〈2x− y − 2, 2y − x+ 1〉

A point (x0, y0) is a critical point of f(x, y) if ~∇f(x0, y0) = 0 or is undefined.

There are no points at which ~∇f is undefined. Setting ~∇f(x, y) = 0 gives:

2x− y − 2 = 0

2y − x+ 1 = 0

The only solution to this system of equations is (1, 0). To determine whether
this point is a local minimum, local maximum, or saddle point, let:

a =
∂2f

∂x2
(1, 0) = 2

b =
∂2f

∂y2
(1, 0) = 2

c =
∂2f

∂x∂y
(1, 0) = −1
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The characteristic equation is given by:

P2(λ) =

∣∣∣∣a− λ c
c b− λ

∣∣∣∣
= λ2 − (a+ b)λ+ (ab− c2) = λ2 − 4λ+ 3 = 0

The roots of this equation are λ1 = 1, λ2 = 3. Because λ1, λ2 > 0, the Second
Derivative Test tells us that:

(1, 0) is a local minimum of f(x, y)

25.6.7

Because f(x, y) = 1
3x

3 + y2 − x2 − 3x− y + 1 is a polynomial, the gradient

~∇f(x, y) = 〈x2 − 2x− 3, 2y − 1〉

can never be undefined. We solve for points that cause the gradient to be equal
to ~0 by solving for points (x, y) that satisfy the following system of equations:

x2 − 2x− 3 = 0

2y − 1 = 0

Evidently we have two critical points (3, 12 ) and (−1, 12 ). Proceed for each
case by computing a = f ′′xx(x, y) = 2x−2, b = f ′′yy(x, y) = 2, and c = f ′′xy(x, y) =
0 and then computing D = ab− c2 and noting the sign of a:

(3, 12 ) : D = (4)(2)− (0)2 = 8, a > 0 =⇒ The point is a local minimum.
(−1, 12 ) : D = (−4)(2)− (0)2 = −8 =⇒ The point is a saddle point.

25.6.8

From f(x, y) = x3 + y3 − 3xy we get that

f ′x = 3x2 − 3y f ′y = 3y2 − 3x

To solve for each of the critical points, we set each f ′x and f ′y equal to 0. Rear-
ranging f ′x gives us 3(x2 − y) = 0 and that x2 = y. A similar process allows us
to manipulate f ′y to get y2 = x. Substituting the first equation into the second,
we get that:

(x2)2 = x4 = x

x4 − x = 0

x(x3 − 1) = 0

This leads us to two scenarios for the critical points, one where x=0 and another
where x=1. Since x2 = y, the critical points are (0,0) and (1,1). To find the
behavior of the function of the critical points, you evaluate the roots of:∣∣∣∣6x− λ −3

−3 6y − λ

∣∣∣∣ = 0

Evaluating this at (0,0) yields the equation λ2 − 9 = 0 =⇒ a saddle point. At
(1,1) the characteristic polynomial is (λ− 3)(λ− 9) = 0 =⇒ a local min.
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25.6.9

f(x, y) = xy +
50

x
+

20

y
; x, y > 0

~∇f(x, y) = 〈∂f
∂x
,
∂f

∂y
〉 = 〈y − 50

x2
, x− 20

y2
〉

A point (x0, y0) is a critical point of f(x, y) if ~∇f(x0, y0) = 0 or is undefined.
The gradient of f(x, y) is undefined at (0, 0), but that point is not in the domain.

Setting ~∇f(x, y) = 0 gives:

y =
50

x2

x =
20

y2

The only solution to this system of equations is (5, 2). Therefore, the only
critical point is (5, 2). To determine whether this point is a local minimum,
local maximum, or saddle point, let:

a =
∂2f

∂x2
(5, 2) =

100

x3
=

100

53
=

4

5

b =
∂2f

∂y2
(5, 2) =

40

y3
=

40

23
= 5

c =
∂2f

∂x∂y
(5, 2) = 1

The characteristic equation is given by:

P2(λ) =

∣∣∣∣a− λ c
c b− λ

∣∣∣∣ = λ2 − (a+ b)λ+ (ab− c2) = 0

Rather than plugging in the values of a, b, c and solving, which may be difficult,
examine the equation. By Vieta’s formulas:

λ1λ2 = ab− c2 = 3 (1)

λ1 + λ2 = a+ b =
29

5
(2)

(1) implies that the roots are both positive or both negative. (2) concludes that
both roots are positive. This information is sufficient to conclude that

(5, 2) is a local minimum of f(x, y)
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25.6.10

On all points outside of the origin f(x, y) = x2 + y2 + 1
x2y2 is defined and the

gradient

~∇f(x, y) = 〈2x− 2

x3y2
, 2y − 2

x2y3
〉

is as well. Like usual find critical points for which the gradient is equal to the
zero vector, and those are any combination of x = ±1 and y = ±1 (4 points).

Proceed for each point by computing

a = f ′′xx(x, y) = 2 +
6

y2x4

b = f ′′yy(x, y) = 2 +
6

y4x2

c = f ′′xy(x, y) =
4

x3y3

and then computing D = ab − c2 and noting the sign of a. Note that at all 4
points, a, b = 8 due to the product of only even powers of x, y and x, y = ±1.
Similarly c = 4 because it contains the product of odd powers of x, y which
forces it to be positive, and x, y = ±1 it attains that value. Hence (1, 1),
(1,−1), (−1, 1), (−1,−1) are all local minima (ab− c2 = 48 and a > 0).

25.6.11

f(x,y)=cos(x)cos(y)

∇f(x, y) =< − sinx cos y,− cosx sin y >

Since sin(x) and cos(x) cannot be 0 at the same time, the two conditions for a
critical point are:

sinx = sin y = 0

or

cosx = cos y = 0

As a result, the critical points are (πm, πn) or (π2 (2m + 1), π2 (2n + 1)), where
m,n ∈ Z. The characteristic polynomial is given by∣∣∣∣− cosx cos y − λ sinx sin y

sinx sin y − cosx cos y − λ

∣∣∣∣ = 0

One can see that depending on the critical point being chosen, each of− cosx cos y
and sinx sin y are either equal to 1, -1, or 0. Specifically, we have 3 scenarios
for the critical points.

1. (x,y) = (πm, πn), m+n are odd
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2. (x,y) = (πm, πn), m+n are even

3. (x,y) = (π2 (2m+ 1), π2 (2n+ 1))

For number 3, the characteristic polynomial gives λ2 = sinx sin y which gives a
saddle point due to the roots having mixed signs. Meanwhile, for 1, both λs are
equal to 1, meaning its a local min. For 2, each are -1, giving us a local max.

25.6.12

f(x, y) = cosx+ y2

~∇f(x, y) = 〈∂f
∂x
,
∂f

∂y
〉 = 〈− sinx, 2y〉

A point (x0, y0) is a critical point of f(x, y) if ~∇f(x0, y0) = 0 or is undefined.

There are no points at which ~∇f is undefined. Setting ~∇f(x, y) = 0 gives:

− sinx = 0

2y = 0

The solution to this system of equations is (kπ, 0) for all integers k. To determine
whether each of these points is a local minimum, local maximum, or saddle point,
let:

a =
∂2f

∂x2
(kπ, 0) = − cos (kπ) =

{
1 k odd

−1 k even

b =
∂2f

∂y2
(kπ, 0) = 2

c =
∂2f

∂x∂y
(kπ, 0) = 0

D = ab− c2 =

{
2 k odd

−2 k even

So, our solution splits into two cases, where k is either odd or even. When k
is odd, D > 0 and a > 0, which is sufficient to conclude that these points are
local minima. When k is even, D < 0, which is sufficient to conclude that these
points are saddle points.

Local minima at (kπ, 0) for odd k ; Saddle points at (kπ, 0) for even k
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25.6.13

The function f(x, y) = y3 + 6xy + 8x3 is a polynomial so its gradient

~∇f(x, y) = 〈6y + 24x2, 3y2 + 6x〉

will not be undefined. We find critical points by finding points that satisfy
~∇f(x, y) = ~0, or alternatively, the following system of equations:

6y + 24x2 = 0

3y2 + 6x = 0

From the second equation, deduce that all critical points lie on the line

x = −1

2
y2

and substitute this for x into the first equation to find the equation (either
form):

6y + 6y4 = 0↔ y(y3 + 1) = 0

There are only two real solutions, y = −1 and y = 0. Substituting these
back into 3y2 + 6x = 0 it is apparent that the critical points occur at (0, 0)
and (− 1

2 ,−1). Then compute point the following: a = f ′′xx(x, y) = 48x, b =
f ′′yy(x, y) = 6y, and c = f ′′xy(x, y) = 6 and then computing D = ab − c2 and
noting the sign of a:

(0, 0) : D = (0)(0)− (6)2 = −36 =⇒ The origin is a saddle point.
(− 1

2 ,−1) : D = (−24)(−6) − (6)2 = 108, a < 0 =⇒ This point is a local
maximum.

25.6.14

f(x,y)=x3 − 2xy + y2

f ′x = 3x2 − 2y = 0

f ′y = −2x+ 2y = 0

From f ′y, we get that 2x=2y, or x=y. Using this fact to substitute into f ′x,

3x2 − 2x = 0 or x(3x− 2) = 0 =⇒ x = y = 0 or x = y = 2
3 . The characteristic

polynomial is given by: ∣∣∣∣6x− λ −2
−2 2− λ

∣∣∣∣ = 0

Testing the critical point (0,0) into the characteristic polynomial gives us that

λ2 − 2λ− 4 = 0

Since the constant term is negative, we know that the roots of the polynomial
have mixed signs, meaning (0,0) is a saddle point. Solving the characteristic
polynomial for ( 2

3 ,
2
3 ) gives us λ = 3±

√
5 > 0 =⇒ local min.
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25.6.15

f(x, y) = xy(1− x− y) = xy − x2y − xy2

~∇f(x, y) = 〈∂f
∂x
,
∂f

∂y
〉 = 〈y−y2−2xy, x−x2−2xy〉 = 〈y(1−y−2x), x(1−x−2y)〉

A point (x0, y0) is a critical point of f(x, y) if ~∇f(x0, y0) = 0 or is undefined.

There are no points at which ~∇f is undefined. Setting ~∇f(x, y) = 0 gives:

y(1− y − 2x) = 0

x(1− x− 2y) = 0

This system has many solutions: (0, 0), (1, 0), (0, 1), ( 1
3 ,

1
3 ). To determine

whether this point is a local minimum, local maximum, or saddle point, let:

a =
∂2f

∂x2
= −2y =


0 (0, 0)

0 (1, 0)

−2 (0, 1)

− 2
3 ( 1

3 ,
1
3 )

b =
∂2f

∂y2
= −2x =


0 (0, 0)

−2 (1, 0)

0 (0, 1)

− 2
3 ( 1

3 ,
1
3 )

c =
∂2f

∂x∂y
= 1− 2x− 2y =


1 (0, 0)

−1 (1, 0)

−1 (0, 1)

− 1
3 ( 1

3 ,
1
3 )

D = ab− c2 =


−1 (0, 0)

−1 (1, 0)

−1 (0, 1)
1
3 ( 1

3 ,
1
3 )

At (0, 0), (1, 0), and (0, 1), D < 0, which is sufficient to conclude that these are
saddle points. At ( 1

3 ,
1
3 ),D > 0 and a < 0, which is sufficient to conclude that

this point is a local maximum.

Saddle Points at: (0, 0), (1, 0), (0, 1) ; Local maximum at (
1

3
,

1

3
)
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25.6.16

The function f(x, y) = x cos(y) is a product of a monomial and the cosine,
which is a smooth function whose gradient

~∇f(x, y) = 〈cos(y),−x sin(y)〉

will not be undefined. We can find all points that cause the gradient to vanish
by observation. From the first component it is clear that all y values that would
make the gradient vanish are y = kπ

2 for any integer k. Then notice that those
values of y cause the second component of the gradient to become ±x, which
of course is only equal to 0 when x = 0. So all critical points come in the form
(0, kπ2 ).

Then at all critical points a = f ′′xx(x, y) = 0, b = f ′′yy(x, y) = −x cos(y), and
c = f ′′xy(x, y) = − sin(y) and then computing D = ab − c2 and noting the sign

of a. However, because f ′′xx(x, y) is zero, and c2 = sin2(y), D will always be
negative at all critical points. So all critical points (0, kπ2 ) are saddle points.

25.6.17

25.6.18

25.6.19

The function f(x, y) = (5x + 7y − 25)e−x
2−xy−y2 is a product of a polynomial

and an exponential which is nice and smooth. The gradient

~∇f(x, y) = 〈e−x
2−xy−y2(5 + (−2x− y)(5x+ 7y − 25))

, e−x
2−xy−y2(7 + (−2y − x)(5x+ 7y − 25))〉

will also be nice and smooth and more importantly never undefined. To find
critical points it is sufficient to solve the following system of equations since the
exponential is always nonzero:

(5 + (−2x− y)(5x+ 7y − 25)) = −10x2 − 19xy + 50x− 7y2 + 25y + 5 = 0

(7 + (−2y − x)(5x+ 7y − 25)) = −5x2 − 17xy + 25x− 14y2 + 50y + 7 = 0

INCOMPLETE

25.6.20

25.6.21

25.6.22

The function f(x, y) = 1
3y

3 + xy + 8
3x

3 is a polynomial so the gradient

~∇f(x, y) = 〈8x2 + y, y2 + x〉
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cannot be undefined anywhere. To solve for points where the gradient will vanish
use the fact that since f ′y = y2 +x = 0 then x = −y2 and we can substitute this
back into f ′x = 8x2 + y = 0 to find that we have critical points at y values that
solve:

8y4 + y = 0↔ y((2y)3 + 13) = 0

sum of cubes→ y(2y + 1)(4y2 − 2y + 1) = 0

The real roots are y = 0,− 1
2 . Plug these back into the equation x = −y2 to

find that the critical points are (0, 0) and (−1
4 ,−

1
2 ).

Then for each point compute a = f ′′xx(x, y) = 16x, b = f ′′yy(x, y) = 2y, and
c = f ′′xy(x, y) = 1 and then computing D = ab− c2 and noting the sign of a:

(0, 0) : D = (0)(0)− (1)2 = −1 =⇒ This point is a saddle point.
(− 1

4 ,−
1
2 ) : D = (−4)(−1) − (1)2 = 3, a < 0 =⇒ This point is a local

maximum.

25.6.23

25.6.24

25.6.25

The function f(x, y) = x+ y+ sin(x) sin(y) is a polynomial plus the product of
two sinusoids so it is a smooth function where its gradient

~∇f(x, y) = 〈1 + cos(x) sin(y), 1 + sin(x) cos(y)〉

will not be undefined anywhere. We want to find critical points where:

1 + cos(x) sin(y) = 0

1 + sin(x) cos(y) = 0

We may try with the first equation and find that we would like the cosine
term to be equal to one and likewise the sine term as well, so a natural guess
may be to give critical points as (π + 2πj, −π2 + 2πk) for integers j, k. However
this automatically fails satisfying the second equation, and likewise any points
that satisfy the second equation fail the first one. We may instead directly show
this by adding both equations together to form the following, using the fact that
sin(x+ y) = cos(x) sin(y) + sin(x) cos(y):

2 + cos(x) sin(y) + sin(x) cos(y) = 0↔ 2 + sin(x+ y) = 0

Evidently since the sine function is bounded below by −1 there are no critical
points. Hence there are no local extrema.
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25.6.26

25.6.27

25.6.28

Give F (x, y, z) = x2 + y2 + z2 − 2x + 2y − 4z − 10 = 0 (a spherical level set)
and use the implicit differentiation equations

z′x =
−F ′x
F ′z

, z′y =
−F ′y
F ′z

to find the gradient of such a surface z(x, y), which will be

〈−(2x− 2)

2z − 4
,
−(2y + 2)

2z − 4
〉

and will be valid and not undefined where 2z−4 6= 0 as per the Implicit Function
Theorem. This essentially then boils down to finding points (x, y) that solve
the following system:

2x− 2 = 0

2y + 2 = 0

Since the equations are functions of one variable each, we can simply choose
the critical point to be (1,−1). Then also note that we will need a z value, so
evaluate F (1,−1, z) = 0 and solve for z:

F (1,−1, z) = 1 + 1 + z2 − 2− 2− 4z − 10 = 0

→ z2 − 4z − 12 = 0 =⇒ z = 2± 4

So really we have two critical points, (1,−1, 6) and (1,−1,−2). At each point
we compute a = f ′′xx(x, y) = −2

2z−4 , b = f ′′yy(x, y) = −2
2z−4 , and c = f ′′xy(x, y) = 0

and then compute D = ab− c2 and noting the sign of a:
(1,−1, 6) : D = (− 1

4 )(− 1
4 ) − (0)2 = 1

16 , a < 0 =⇒ The point is a local
maximum.

(1,−1,−2) : D = ( 1
4 )( 1

4 ) − (0)2 = 1
16 , a > 0 =⇒ The point is a local

minimum.
An important observation is the geometrical significance of both critical

points as it relates to the implicitly defined z(z, y). Consider where the implicitly
defined z(x, y) cannot be determined - that is at z = 2, as there is where F ′z
vanishes. Then also consider that since F (x, y, z) = 0 was the level set of a
sphere, we really have two distinct surfaces z(x, y), which are the hemispheres
of the sphere remove the circle that forms at the intersection of z = 2 and the
sphere given by F (x, y, z) = 0.

Geometrically each critical point refers to the peak or the trough of each re-
spective hemisphere, which is a neat observation and makes sense geometrically.
Being spherical also explains why at each critical point a and b have the same
values.
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25.6.29

25.6.30

25.6.31

Rearrange the equation of the plane given into the function z(x, y) = 4− x+ y.
Using this, we can make a function d(x, y) that gives the square of the distance
between generic points on the plane (x, y, 4− x+ y) and (1, 2, 3). Define it like
so:

d(x, y) = (1− x)2 + (2− y)2 + (x− y − 1)2

The reasoning behind using the square of the distance is because it makes
computation of the partial derivatives easier. It is justified because distance is
a non-negative quantity, and so squaring such a function would not change the
location of the local minumum we seek to find.

Continuing, we have the gradient as

〈−2(1− x) + 2(x− y − 1),−2(2− y)− 2(x− y − 1)〉

= 〈4x− 2y − 4,−2x+ 4y − 2〉
which will never be undefined. We seek to solve the following system of equations
to find the critical point:

4x− 2y − 4 = 0

−2x+ 4y − 2 = 0

Using the bottom equation, find that x = 2y − 1, and substitute this into
the top equation to get 6y − 8 = 0. Evidently y = 4

3 , and so x = 5
3 .

Then compute a = f ′′xx(x, y) = 4, b = f ′′yy(x, y) = 4, and c = f ′′xy(x, y) = −2
and then compute D = ab− c2 and noting the sign of a:

( 5
3 ,

4
3 ) : D = (4)(4)− (−2)2 = 12, a > 0 =⇒ This point is a local minimum.

Using the definition of the plane the point that minimizes the distance is
( 5
3 ,

4
3 ,

11
3 ).

An alternative solution requires no minimization at all but to simply find
a real value s such that the vector 〈1, 2, 3〉 + s〈1,−1, 1〉 satisfies the equation
of the plane (s = 2

3 ). This takes advantage of the fact that the line segment
between (1, 2, 3) and the point that minimizes the distance to the plane is at a
right angle to the plane itself, so we can use the normal vector that determines
the plane to find the minimizing point.

25.6.32

26.6 Exercises

26.6.1

The function f(x, y, z) = x2 + y2 + z2 + 2x+ 4y − 8z has the gradient

~∇f(x, y, z) = 〈2x+ 2, 2y + 4, 2z − 8〉
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which implies a critical point are located at (−1,−2, 4). Compute the second
derivatives f ′′xx = 2, f ′′yy = 2, f ′′zz = 2, f ′′xy = 0, f ′′yz = 0, f ′′zx = 0 at the point.
Then use the characteristic polynomial for the second derivative matrix given
by

P3(λ) = det

2− λ 0 0
0 2− λ 0
0 0 2− λ

 = (2− λ)3 = 0

whose roots are obviously λ = 2 with multiplicity 3. All of these roots are posi-
tive so it is apparent that we have a local minimum at (−1,−2, 4). Interestingly,
this point is the center of all of the level sets (spheres) that this function takes
on, so this is intuitively true.

26.6.2

f(x, y) = x2 + y3 + z2 + 12xy − 2z

∇f(x, y) = 〈2x+ 12y, 3y2 + 12x, 2z − 2〉 = ~0

From the f ′z term we get that z=1. From the f ′x term we get that x=-6y.
Substituting that into f ′y yields y2 − 24y = y(y − 24) = 0 =⇒ (0, 0, 1) or
(-144,24,1) are the critical points. The characteristic polynomial is defined by:∣∣∣∣∣∣

2− λ 12 0
12 6y − λ 0
0 0 2− λ

∣∣∣∣∣∣ = 0

To make this easier to compute, one can use the last row of the matrix to take
the determinant from, since it is an alternating row from the top, giving us

(2− λ)

∣∣∣∣2− λ 12
12 6y − λ

∣∣∣∣ = 0

At (0,0), the polynomial becomes (2 − λ)(λ2 − 2λ − 144), which based off the
sign of the constant term of the quadratic is a saddle point. At (-144,24,1), the
polynomial becomes (2−λ)(λ2− 146λ+ 144) and using Descartes’ rule of signs
we can quickly gather that the roots of the polynomial are all greater than 0,
meaning (-144, 24, 1) is a local min.

26.6.3

f(x, y, z) = x2 + y3 − z2 + 12xy + 2z

~∇f(x, y, z) = 〈∂f
∂x
,
∂f

∂y
,
∂f

∂z
〉 = 〈2x+ 12y, 3y2 + 12x,−2z + 2〉

A point (x0, y0) is a critical point of f(x, y) if ~∇f(x0, y0) = 0 or is undefined.

There are no points at which ~∇f(x, y, z) is undefined. Setting ~∇f(x, y) = 0
gives:

2x+ 12y = 0

13



3y2 + 12x = 0

−2z + 2 = 0

The solutions to this system are (0, 0, 1) and (−144, 24, 1). To determine whether
these points are local minima, local maxima, or saddle points, calculate the
second-order partial derivatives.

∂2f

∂x2
= 2

∂2f

∂y2
= 6y =

{
0 (0, 0, 1)

144 (−144, 24, 1)

∂2f

∂z2
= −2

∂2f

∂x∂y
= −2

∂2f

∂y∂z
= 0

∂2f

∂y∂z
= 0

The characteristic equation for (0, 0, 1) is given by:

P3(λ) =

∣∣∣∣∣∣
2− λ 12 0

12 −λ 0
0 0 −2− λ

∣∣∣∣∣∣ = (−2− λ)(λ2 − 2λ− 144) = 0

One of the roots of this equation is −λ2. Rather than factoring the quadratic,
use Vieta’s formulas to show that:

λ2λ3 = −144 (1)

λ2 + λ3 = 2 (2)

(1) implies that two of the roots have opposite signs. This information is suffi-
cient to conclude that (0, 0, 1) is a saddle point.
The characteristic equation for (−144, 24, 1) is given by:

P3(λ) =

∣∣∣∣∣∣
2− λ 12 0

12 144− λ 0
0 0 −2− λ

∣∣∣∣∣∣
= (−2− λ)(λ2 − 146λ+ 144) = 0

Again, λ1 = −2 is one root of the equation. Vieta’s formulas show that:

λ2λ3 = 144 (1)

λ2 + λ3 = 146 (2)

Together, (1) and (2) imply that λ1, λ2 > 0. They do not have the same sign as
−2, which is sufficient to conclude that (−144, 24, 1) is also a saddle point.

Saddle points at (0, 0, 1) and (−144, 24, 1)

14



26.6.4

The function f(x, y, z) = sin(x) + z sin(y) has the gradient

〈cos(x), z cos(y), sin(y)〉

which tells us that critical points are located at (π2 + nπ,mπ, 0) for integers
n,m. Compute the second derivatives f ′′xx = − sin(x), f ′′yy = −z sin(y), f ′′zz = 0,
f ′′xy = 0, f ′′yz = cos(y), f ′′zx = 0 at those points. Then use the characteristic
polynomial for the second derivative matrix given by

P3(λ) = det

− sin
(
π
2 + nπ

)
− λ 0 0

0 −(0) sin(mπ)− λ cos(mπ)
0 cos(mπ) 0− λ


= (∓1− λ)(λ2 − 1) = 0

From the (λ2 − 1) term it is apparent that two roots will not have the same
sign, so automatically all points (π2 + nπ,mπ, 0) are saddle points.

26.6.5

f(x, y) = x2 +
5

3
y3 + z2 − 2xy − 4zy

∇f(x, y) = 〈2x− 2y, 5y2 − 2x− 4z, 2z − 4y〉 = ~0

From f ′x we can get that x=y and from f ′z that z=2y. If one were to make this
substitutions into f ′y, one would see that 5y2−2y−8y = 5y(y−2) = 0, meaning
the critical points occur at y=0 and y=2. The characteristic polynomial is:∣∣∣∣∣∣

2− λ −2 0
−2 10y − λ −4
0 −4 2− λ

∣∣∣∣∣∣ = 0

Simplifying this gives

(2− λ)[λ2 − 2(2 + 10y)λ+ 20(y − 1)] = 0

At y=0, the constant term of the quadratic is negative, meaning the roots are
mixed =⇒ a saddle at (0,0,0). At y=2, the quadratic gives 2 positive solutions
by Descartes’ rule of signs. That along with the factor (2− λ) =⇒ (2,2,4) is a
local min.
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26.6.6

26.6.7

26.6.8

26.6.9

26.6.10

26.6.11

26.6.12

26.6.13

f(x, y) = x2 + xy2 + y4

df(x, y) = (2x+ y2)dx+ (2xy + 4y3)dy

df(x, y) vanishes at (0, 0), so (0, 0) is a critical point of f(x, y).
In this form, the behavior of f(x, y) is unclear because the xy2 term can be
either positive or negative in a neighborhood of (0, 0). Completing the square
gives:

f(x, y) = (x+
1

2
y)2 +

3

4
y2

In all neighborhoods of (0, 0), both terms are positive, so

(0, 0) is a local minimum of f(x, y)

26.6.14

For f(x, y) = ln
(
1 + x2y2

)
it is apparent that df(0, 0) vanishes, so the origin is

a critical point. Put u = x2y2, and then use the known Maclaurin polynomial
for ln(1 + u)

Tn =

n∑
1

(−1)n+1u
n

n
= u+O(u2)

to investigate f(x, y)− f(0, 0):

f(x, y)− f(0, 0) = f(x, y) = u+O(u2)

It is evident that since u = x2y2 is always positive for (x, y) 6= (0, 0), in any
neighborhood around the origin the function is positive and so origin is a local
minimum.
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26.6.15

f(x, y) = x2 ln 1 + x2y2

∇f(x, y) = 〈2x ln 1 + x2y2 +
2x3y2

1 + x2y2
,

2x4y

1 + x2y2
〉

One can verify that ∇f(0, 0) = ~0. Next, to see the behavior of the function near
(0,0), one can replace ln 1 + x2y2 in f(x,y) with its Taylor polynomial with the
substitution that u = x2y2. When we do so, we get that

f(x, y) = x2[u+O(u2)]

Since the sign of the function is determined by x2 and u, and both are strictly
positive around the origin, (0,0) is a local min.

26.6.16

f(x, y) = xy(cos
(
x2y
)
− 1)

df(0, 0) vanishes, so (0, 0) is a critical point of f(x, y).
Let u = x2y:

f(x, y)− f(0, 0) = f(x, y) = xy(cosu− 1)

= xy((1− u2/2 +O(u4))− 1)

= xy(−u2/2 +O(u4))

= −x
5y3

2
+O(x9y5)

The −x5y3/2 term can take on either positive or negative values in all neigh-
borhoods of (0, 0), so (0, 0) must not be an extremum of f(x, y).

(0, 0) is not an extremum of f(x, y)

26.6.17

For f(x, y) = (x2 + 2y2) arctan(x+ y) it is apparent that df(0, 0) vanishes so
the origin is a critical point. Put u = x+ y, and then use the known Maclaurin
polynomial for arctanu

Tn =
n∑
0

(−1)n
u2n+1

2n+ 1
= u+O(u3)

to investigate f(x, y)− f(0, 0):

f(x, y)− f(0, 0) = f(x, y) = (x2 + 2y2)(u+O(u3)) = (x2 + 2y2)(x+ y) +O(u5)

It is evident that since in a neighborhood around (0, 0) the quantity u = x+y
can take on both positive and negative values, the first term will as well, thus
there cannot be a local extremum at the origin.
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26.6.18

f(x, y) = cos(exy − 1)

∇f(x, y) = 〈− sin(exy − 1) · yexy,− sin(exy − 1) · xexy〉
It is evident that the origin is a critical point of the function. To analyze the
behavior of the function near the origin, replace the cosine function with its
Taylor polynomial, using the substitution u = exy − 1 to find f(x,y)-f(0,0).

f(x, y) = cos(exy − 1) = cos(u) = 1− u2

2
+O(u4)

f(x, y)− f(0, 0) = −u
2

2
+O(u4)

The sign of f(x,y)-f(0,0) is dependent on the term −u
2

2 which is negative for all
values close to the origin, yielding a local max.

26.6.19

f(x, y) = ln
(
y2 sin2 x+ 1

)
df(0, 0) vanishes, so (0, 0) is a critical point of f(x, y).
Let u = y2 sin2 x:

f(x, y)− f(0, 0) = f(x, y) = ln(u+ 1)

= u− u2/2 +O(u3)

= u(1− u/2 +O(u2))

u = y2 sin2 x is positive for all (x, y) 6= (0, 0) and 1− u/2 +O(u2) is positive in
sufficiently small neighborhoods of (0, 0). Because f(x, y) − f(0, 0) is positive
at all surrounding points around (0, 0), it can be concluded that

(0, 0) is a local minimum of f(x, y)

26.6.20

For f(x, y) = ex+y
2 − 1 − sin

(
x− y2

)
it is apparent that df(0, 0) vanishes so

the origin is a critical point. Put u = x + y2 and v = x − y2 and use known
Maclaurin polynomials for eu and sin(v)

eu = 1 + u+O(u2)

sin(v) = v +O(v3)

to investigate f(x, y)− f(0, 0):

f(x, y)− f(0, 0) = f(x, y) = u− v +O(u2) +O(v3) (neglect these terms)

≈ x+ y2 − x+ y2 + ε(x, y) ≈ 2y2

Evidently we will always have a positive number, so we have a local minimum
at the origin.
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26.6.21

26.6.22

For f(x, y, z) = 2− 2 cos(x+ y + z)− x2− y2− z2 it is apparent that df(0, 0, 0)
vanishes so the origin is a critical point. Put u = x+ y + z and use the known
Maclaurin series for the cosine

cos(u) = 1− u2 +O(u4)

to investigate f(x, y, z)− f(0, 0, 0):

f(x, y, z)− f(0, 0, 0) = f(x, y) = 2− 2(1− u2 +O(u4))− x2 − y2 − z2

≈ 2− 2 + (x+ y + z)2 − x2 − y2 − z2 = 2xy + 2xz + 2yz

In a small neighborhood around the origin it is apparent that possible to
get negative and positive values depending on the octant the portion of the
neighborhood occupies (consider when x, y, z > 0 versus when y, z > 0 and
x < 0). Therefore the origin cannot be a local extremum.

26.6.23

26.6.24

26.6.25

26.6.26

26.6.27

f(x, y) = 1 + 2x− 3y

Since the function is linear both within D and on the borders of D, the absolute

Figure 1: Domain

extrema must be found on the corners. The absolute minimum occurs at (1,2)
with a value of -3, while the absolute maximum occurs at (2,1) with a value of
2.
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26.6.28

f(x, y) = x2 + y2 + xy2 − 1 ; |x| ≤ 1, |y| ≤ 2

First, find all critical points of f(x, y).

df(x, y) = (2x+ y2)dx+ (2y + 2xy)dy

vanishes at (0, 0) and (−1,±
√

2). These critical points are possible candidates
for the extrema of f(x, y).
Next, find the maximum and minimum values of f(x, y) along its boundary.
The four sides of the rectangular boundary, must be analyzed separately.

f(−1, y) = 1 + y2 − y2 − 1 ≡ 0 ; |y| ≤ 2

So all points (−1, y) along the left side of the boundary are candidates for
extremum.

f(1, y) = 2y2 ; |y| ≤ 2

This one-variable function reaches a minimum at (1, 0) and a maximum at both
(1,−2) and (1, 2), so these are new candidates for extremum.

f(x,−2) = x2 + 4x− 3 ; |x| ≤ 1

This one-variable function reaches has extremum at (1, 0) and (−1, 0), so these
are candidates for extremum of f .

f(x, 2) = x2 + 4x− 3 ; |x| ≤ 1

This one-variable function yields no new extremum.
Finally, calculate the value of f(x, y) at all possible extremum.

f(0, 0) = −1

f(−1,
√

2) = f(−1, y) = 0

f(1, 0) = 0

f(1,±2) = 8

f(0, 1) = 0

The largest values at (1,±2) are the maxima. The smallest value at (0, 0) is the
minimum.

Maxima: f(1,±2) = 8, Minimum: f(0, 0) = −1
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26.6.29

26.6.30

f(x, y) = xy2 + z

D is the cube with |x|, |y|, |z| ≤ 1. The first is to check for critical points within
D; however: f ′z = 1 =⇒ there are no critical points within D. Next is to check
for critical points on the border of D. One can see that the sign of y does not
matter because of there is only a y2 term, leaving the points to check to be

(1,±1, 1), (1,±1,−1), (−1,±1, 1), (−1,±1,−1)

The value of f at those coordinates are, respectively, 2, 0, 0, -2, meaning the
max is f(1,±1, 1) = 2 and min f(−1,±1,−1) = −2.

26.6.31

Give the gradient of f(x, y, z) = xy2 + z as

〈y2, 2xy, 1〉

and set it equal to the zero vector to find that there are no critical points. We
must then investigate the values it attains on the boundary of the set D =
{(x, y, z)| 1 ≤ x2 + y2 ≤ 4,−2 + x ≤ z ≤ 2− x}

The first condition for D is a cylindrical washer with included inner radius 1
and included outer radius 2. The second condition is equivalent to |z| ≤ 2− x,
so the cylindrical washer is bounded above and below by the planes given by
z = ±(2 − x). So there are four surfaces that make up the boundary, and we
can give some equations for x, y, z for each surface:

top skewed washer St = {(x, y, x)| z = 2− x, 1 ≤ x2 + y2 ≤ 4}

bottom skewed washer Sb = {(x, y, x)| z = −2 + x, 1 ≤ x2 + y2 ≤ 4}

outer shell So = {(x, y, x)| x = 2 cos(t), y = 2 sin(t), |z| ≤ 2− 2 cos(t)}

inner shell Si = {(x, y, x)| x = cos(t), y = sin(t), |z| ≤ 2− cos(t)}

For St and Sb the problem becomes a two-variable extrema problem on that
surface, which we know how to do. We find that for St

f(x, y, 2− x) = ft(x, y) = xy2 + 2− x

which has the absolute maximum 4 at (−2, 0) and an absolute minimum 0 at
(2, 0) (use parametric equations for (x, y) on the washer to find them). Using the
definition for z, we may want to rewrite these points as (−2, 0, 4) and (2, 0, 0).
Likewise for Sb we need to find extrema on f(x, y, 2− x) = xy2 − 2 + x, which
will be (there are more maximum points (6 on this surface), come back to this)

INCOMPLETE
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26.6.32

26.6.33

26.6.34

The volume of the first octant that is cut off by the plane is determined by the
intersection of the plane with the three coordinate axes in the first octant and
is given by

V =
xiyizi

2

where (xi, 0, 0), (0, yi, 0), and (0, 0, zi) are where the plane passing through
the point (3, 2, 1) intersect with the coordinate axes (this is clear through con-
struction and symmetry of the division of the rectangular prism whose largest
diagonal is the vector from the origin to (xi, yi, zi))

The values of xi, yi, zi are determined by the choice of the normal vector
~n = 〈n1, n2, n3〉, and the relationship is given by the definition of points that
satisfy the plane:

~n · 〈x− 3, y − 2, z − 1〉 = 0

This means the three points where the plane intersected with the coordinate
axes form the following equalities:

n1(xi − 3) + n2(−2) + n3(−1) = 0→ xi =
n3 + 2n2

n1
+ 3

n1(−3) + n2(yi − 2) + n3(−1) = 0→ yi =
n3 + 3n1

n2
+ 2

n1(−3) + n2(−2) + n3(zi − 1) = 0→ zi =
2n2 + 3n1

n3
+ 1

Using the above equations for xi, yi, zi we can substitute back into the
volume equation to find:

V (n1, n2, n3) =

(
n3+2n2

n1
+ 3
)(

n3+3n1

n2
+ 2
)(

2n2+3n1

n3
+ 1
)

2

=
1

2
()

The goal now is to find n1, n2, n3 that minimize the volume function given
above.

INCOMPLETE
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26.6.35

26.6.36

26.6.37

26.6.38

26.6.39

26.6.40

26.6.41

27.8 Exercises

27.8.1

Find the gradient of f(x, y) = xy and the gradient of g(x, y) = x+ y:

~∇f(x, y) = 〈y, x〉
~∇g(x, y) = 〈1, 1〉

It is known that f(x, y) attains extrema when ~∇f(x, y) = λ~∇g(x, y), that
is at points (x, y) that satisfy the following system using Lagrange multipliers
(recall one of the equations is the constraint itself):

y = λ

x = λ

x+ y = 1

Evidently the only critical point is (1
2 ,

1
2 ) - but because it is the only one

we may choose to use the second derivative test or to use the properties of the
function f under the constraint (for instance, parameterize (x, y) as (t, 1− t) as
given by the constraint to show that we have a downwards opening parabola)
to determine that it is a maximum. Thus f(x, y) constrained to g(x, y) = 1 has
a maximum f( 1

2 ,
1
2 ) = 1

4 at that point.

27.8.3

Find the gradient of f(x, y) = xy2 and the gradient of g(x, y) = 2x2 + y2:

~∇f(x, y) = 〈y2, 2xy〉
~∇g(x, y) = 〈4x, 2y〉

It is known that f(x, y) attains extrema when ~∇f(x, y) = λ~∇g(x, y), that
is at points (x, y) that satisfy the following system using Lagrange multipliers
(recall one of the equations is the constraint itself):
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y2 = 4λx

2xy = 2λy

2x2 + y2 = 6

With some algebra (resolve the middle equation for x, then substitute x for
lambda in the first equation, and then substitute 4x2 for y2 and solve for x),
it is apparent that x = ±1 y = ±2 (both still satisfy the constraint). Thus
we have critical points at (1,±2), where f(1,±2) = 4, and at (−1,±2), where
f(−1,±2) = −4. Hence we have max f = 4 and min f = −4

27.8.4

f(x, y) = y2

g(x, y) = x2 + y2 − 4

The critical points of f(x, y) on g(x, y) must satisfy:{
~∇f(x, y) = λ~∇g(x, y)

g(x, y) = 0

which becomes: 
0 = 2λx

2y = 2λy

x2 + y2 = 4

λ is either 0 or 1. The critical points when λ = 0 are (±2, 0). The critical points
when λ = 1 are (0,±2). Plugging in the critical points:

f(±2, 0) = 0

f(0,±2) = 4

Therefore:
Minimum: (±2, 0, 0), Maximum: (0,±2, 4)

27.8.5

27.8.6

First is to find the gradient of f(x, y) = 2x2 − 2y2 and g(x, y) = x4 + y4 − 16

∇f(x, y) = 〈4x,−4y〉

∇g(x, y) = 〈4x3, 4y3〉

For the Lagrange multipliers, we get this system of equations:

4x = 4λx3
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−4y = 4λy3

x4 + y4 = 16

Rearranging the first two equations yields x(λx2 − 1) = 0 and y(λy2 + 1) = 0.
Then, there are four separate conditions.

1. x=0

2. x2 = 1
λ

3. y=0

4. y2 = 1
λ

From 1 and 3 we get that either x2 = 4 or y2 = 4 respectively, giving us f=8
and -8 respectively. The only thing to try out now is a combination of both 2
and 4, meaning x2 = y2. There is no need to go further than this as making
this substitution into f yields f=0. As a result, the absolute min in the region
is -8 and max 8.

27.8.7

Find the gradient of f(x, y) = Ax2 + 2Bxy+Cy2 and the gradient of g(x, y) =
x2 + y2:

~∇f(x, y) = 〈2Ax+ 2By, 2Bx+ 2Cy〉
~∇g(x, y) = 〈2x, 2y〉

It is known that f(x, y) attains extrema when ~∇f(x, y) = λ~∇g(x, y), that
is at points (x, y) that satisfy the following system using Lagrange multipliers
(recall one of the equations is the constraint itself):

2Ax+ 2By = 2λx

2Bx+ 2Cy = 2λy

x2 + y2 = 1

There is a bit of algebra we have to do to find critical values. First, we can
add the first two equations together and divide through by 2 to find

Ax+By +Bx+ Cy = λx+ λy → (A+B)x+ (B + C)y = λx+ λy

This tells us that A+ B = λ and B + C = λ, furthermore that A = C and
A or C = λ−B. Then substitute that last equality in for A and C in the first
equations like so:

(λ−B)x+By = λx

Bx+ (λ−B)y = λy

Deduce then that x = y. Using the third equation it is apparent that criti-

cal points occur at (±
√
2
2 ,±

√
2
2 ), and what kind of extrema they form entirely

depend on the choice of A, B, C.
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27.8.8

f(x, y, z) = xyz

g(x, y, z) = 3x2 + 2y2 + z2 − 6

The critical points of f(x, y, z) on g(x, y, z) must satisfy:{
~∇f(x, y, z) = λ~∇g(x, y, z)

g(x, y, z) = 0

which becomes: 
yz = 6λx

xz = 4λy

xy = 2λz

3x2 + 2y2 + z2 = 6

Solving the first and second equations for z and setting them equal to each other
gives:

6λx

y
=

4λy

x
→ 6x2 = 4y2 → y = ±x

√
6

2

Solving the first and third equations for y and setting them equal to each other
gives:

6λx

z
=

2λz

x
→ 6x2 = 2z2 → z = ±x

√
3

Now, having solved for y and z in terms of x, examine the fourth equation.

3x2 + 2y2 + z2 = 3x2 + 2(
3

2
x2) + 3x2 = 9x2 = 6

x = ±
√

2

3

Hence,
y = ±1

z = ±
√

2

The eight points to be tested are (±
√

2
3 ,±1,±

√
2). The maxima of f(x, y, z) =

xyz will be the positive product of the magnitudes of (±
√

2
3 ,±1,±

√
2) and the

minima will be the negative product. Therefore,

Maximum:
2√
3

, Minimum: − 2√
3
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27.8.9

27.8.11

The gradients of f,g, and h are:

∇f(x, y, z) = 〈−1, 3,−3〉

∇g(x, y, z) = 〈1, 1,−1〉

∇h(x, y, z) = 〈0, 2y, 4z〉

The system of equations one gets from the Lagrangian multipliers are:

−1 = λ1

3 = λ1 + λ2(2y)

−3 = λ1(−1) + λ2(4z)

x+ y − z = 0

y2 + 2z2 = 1

Which can be simplified from the first equation to:
4 = 2λ2y

−4 = 4λ2z

x+ y − z = 0

y2 + 2z2 = 1

Rearranging the first two equations gives that

1. y = 2
λ2

2. z = −1
λ2

Since both y and z can be represented in terms of λ2, and h(x,y,z) is only in
terms of y and z, we can find the values of λ2 that satisfy our conditions, giving
that ( 2

λ2
)2 + 2(−1λ2

)2 = 4+2
(λ2)2

= 1. As a result, λ2 = ±
√

6, and 2 possible values

for y and z.

1. (y, z) = ( 2√
6
, −1√

6
)

2. (y, z) = (−2√
6
, 1√

6
)

Plugging in these values into the condition associated with g(x,y,z) gives x = −3√
6

for 1 and x = 3√
6

for 2. Plugging in these coordinates into f gives f=2
√

6 for 1

and −2
√

6 for 2, the max and mins respectively.
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27.8.12

f(x, y, z) = xy + yz

g1(x, y, z) = xy − 1

g2(x, y, z) = y2 + 2z2 − 1

The critical points of f(x, y, z) on g1(x, y, z), g2(x, y, z) must satisfy:
~∇f(x, y, z) = λ1~∇g1(x, y, z) + λ2~∇g2(x, y, z)

g1(x, y, z) = 0

g2(x, y, z) = 0

which becomes: 

y = λ1y

x+ z = λ1x+ λ22y

y = λ24z

xy = 1

y2 + 2z2 = 1

The fourth equation indicates that x = 1
y and that x, y are non-zero. Therefore,

it is found that λ1 = 1 from the first equation. The second equation becomes:
x + z = x + λ22y → z = 2λ2y → λ2 = z

2y . Plugging this value of λ2 into the

third equation: y = z
2y4z → 2y2 = 4z2 → z = ± 1√

2
y. Plug this value of z into

the last equation:

y2 + 2(± 1√
2
y)2 → y = ± 1√

2

Therefore, the candidates for extrema are (
√

2, 1√
2
, 12 ), (

√
2, 1√

2
,− 1

2 ), (−
√

2,− 1√
2
, 12 ), (−

√
2,− 1√

2
,− 1

2 ).

Plug each of these values into f(x, y, z):

f(
√

2,
1√
2
,

1

2
) = f(−

√
2,− 1√

2
,−1

2
) = 1 +

1

2
√

2

f(−
√

2,− 1√
2
,

1

2
) = f(

√
2,

1√
2
,−1

2
) = 1− 1

2
√

2

Finally,

Maximum: 1 +
1

2
√

2
, Minimum: 1− 1

2
√

2

27.8.25

27.8.26

Since the problem asks us to minimize the sum of the reciprocals, we will take
that to be our f(~x). Meanwhile, we will take the product of the numbers as the

28



boundary condition. In summary,

f(~x) =
m∑
i=1

1

xi

g(~x) =
m∏
i=1

xi = K

where K is some constant. The Lagrange multiplier for some arbitrary xi is
f ′xi = λg′xi . One can see that f ′xi = −1

(xi)2
since f is a sum of the reciprocals.

Meanwhile, g′xi = K
xi

, which is just the product of every variable except for xi,
taking advantage of the fact that the product of all the variables is just K. As
a result, the Lagrange multiplier condition is:

−1

(xi)2
= λ

K

xi

Rearranging this gives xi = −1
λK . Since xi can be any variable, the product of

everything, x1x2x3....xm is just ( −1λK )m = K. Solving this for λ gives λ = −1
KK1/m

or 1
λ = −KK1/m. Substituting this back into what we solved xi to be gives

that xi = KK1/m

K = K1/m.

27.8.28

V (r, h) =
1

2
πr2h

SA(r, h) = πr2 + πrh = S

The critical points of V given SA must satisfy:{
~∇V (r, h) = λ~∇SA(r, h)

SA(r, h) = S

which becomes: 
πrh = λ1(2πr + πh)
1
2πr

2 = λ1πr

πr2 + πrh = S

Solve the second equation for λ1:

1

2
πr2 = λπr → λ1 =

r

2

Note that the case where r = 1 because it is obviously does not maximize the
volume. Plug this value for λ1 into the first equation:

πrh = (
r

2
)(2πr + πh) = πr2 +

πrh

2
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πrh

2
= πr2

h = 2r

Plug the value of h into the last equation:

πr2 + πr(2r) = S

3πr2 = S

r =

√
S

3π

Backtrack to find that:

h = 2

√
S

3π

The final answer is then:

r =

√
S

3π
, h = 2

√
S

3π

27.8.31

27.8.32

28.6 Exercises

28.6.1

Because the function is constant on D, the lower and upper sums are equal (thus
the double integral converges). The double integral is equal to (by geometrical
means) (b− a)(d− c)k.

28.6.2

Split D into two sections over y = 0 (we will use the additivity of the double
integral) so that we have D1 = [0, 1]× [−1, 0] and D2 = [0, 1]× [0, 1]. In taking
the double integral over both of those regions, we may split the integral like so:∫∫∫

D

f(x, y)dA =

∫∫∫
D1

f(x, y)dA+

∫∫∫
D2

f(x, y)dA

The problem degenerates into the same kind of problem as 1.
Since the value of the function is constant on both of those sets, the lower

and upper Riemann sums on those sets are equal to each other (they converge)
and by geometrical means the first integral over D1 is equal to k2, and the second
integral over D2 is equal to k1. The sum (the value of the original integral) is
k1 + k2.
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28.6.3

Given that f(x, y) = xy2 and D = [0, 1]×[0, 1], xj = j
N1

, yk = k
N2

. Additionally,

mjk = xj−1y
2
k−1 = (j−1)(k−1)2

N1N2
2

and Mjk = xjy
2
k = jk2

N1N2
2

. U is defined by∑N1

j=1

∑N2

k=1Mjk∆A.Substituting what we have for Mjk and factoring out what
we can, we have that:

U =
∆x∆y

N1N2
2

(

N1∑
j=1

j)(

N2∑
k=1

k2)

Using the fact that ∆x = 1
N1

and ∆y = 1
N2

and expanding out the sums for
each summation, we can simplify it out to

1

12
(

1

N2
1N

3
2

)N1N2(N1 + 1)(N2 + 1)(2N2 + 1)

Taking the limit as N1, N2 → ∞ makes every term except those without N1

or N2 in the denominator, giving 1
12 (2) = 1

6 as the limit of U. Similarly, L is
defined as

L =
1

N1N2
2

N1∑
j=1

N2∑
k=1

(j − 1)(k − 1)2∆x∆y

Expanding this out in a similar way for U gives:

1

12

1

N1N2
2

(N1 − 1)(N2 − 1)(2N2 − 1)

and taking the limit of this as N1, N2 →∞ gives 1
6 as well. Since L=U= 1

6 , the
integral of the function over the domain is one sixth.

28.6.4

The set D describes a right triangle whose legs have lengths 1 that lie on the
x and y axes with one vertex at the origin. The hypotenuse is a line segment
from (0, 1) to (1, 0). Since f(x, y) = 1− (x+ y) = z, it is apparent that we can
rearrange it into the standard form for a continuous plane with normal vector
〈1, 1, 1〉 passing through the line y + x = 1 (z = 0 on the plane).

Since the plane is continuous the upper and lower sums converge to the same
value.

So the volume bounded is a triangular pyramid that we can geometrically
find the integral. We just need to find out where the plane intersects with the z-
axis, which is at z = 1. The other three important vertices are (0, 1, 0), (1, 0, 0),
and the origin. The double integral is given by V = 1

2 (1)(1)(1) = 1
2 .

28.6.6

f(x, y) = x2 + y2 ; D = [1, 2]× [1, 3]
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Because x changes by 1 in total, ∆x = 1
N1

for some constant number of x

partitions N1. Meanwhile, y changes by 2 in total, so ∆y = 2
N2

for some
constant number of y partitions N2. Let:

xj = 1 + j∆x = 1 +
j

N1

yk = 1 + k∆x = 1 +
2k

N2

for j = 1, 2, ..., N1 and k = 1, 2, ..., N2. For each partition of the domain,
[xj−1, xj ]×[yk−1.yk], a minimum mjk and a maximum Mjk must be determined.
It is clear that

Mjk = x2j + y2k

mjk = x2j−1 + y2k−1

because x, y are increasing with increasing j, k. These formulas can be further
simplified to:

Mjk = x2j + y2k = (1 +
j

N1
)2 + (1 +

2k

N2
)2

= 2 +
2j

N1
+

j2

N2
1

+
4k

N2
+

4k2

N2
2

and

mjk = x2j + y2k = (1 +
j − 1

N1
)2 + (1 +

2(k − 1)

N2
)2

= 2 +
2(j − 1)

N1
+

(j − 1)2

N2
1

+
4(k − 1)

N2
+

4(k − 1)2

N2
2

Evaluating the upper sum yields:

U(f,N1, N2) =

N2∑
k=1

N1∑
j=1

Mjk∆A

=

N2∑
k=1

N1∑
j=1

(xj + yk)2∆x∆y =

N2∑
k=1

=
2

N1N2

N2∑
k=1

N1∑
j=1

(2 +
2j

N1
+

j2

N2
1

+
4k

N2
+

4k2

N2
2

)

= 4 +
2

N1

N1∑
j=1

(
2j

N1
+

j2

N2
1

) +
2

N2

N2∑
k=1

(
4k

N2
+

4k

N2
2

)

This expression can be simplified using the identities
∑n
j=1 j = n(n+1)

2 and∑n
j=1 j

2 = n(n+1)(2n+1)
6 .

4+
2N1(N1 + 1)

N2
1

+
N1(N1 + 1)(2N1 + 1)

3N3
1

+
4N2(N2 + 1)

N2
2

+
4N2(N2 + 1)(2N2 + 1)

3N3
2
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Taking the limit as N1, N2 →∞ simply gives:

lim
N1,N2→∞

U(f,N1, N2) = 4 + 2 +
2

3
+ 4 +

8

3
=

40

3

Repeating this process for the lower sum gives a similar expression:

L(f,N1, N2) =

4+
2N1(N1 − 1)

N2
1

+
N1(N1 − 1)(2N1 − 1)

3N3
1

+
4N2(N2 − 1)

N2
2

+
4N2(N2 − 1)(2N2 − 1)

3N3
2

Again, taking the limit as N1, N2 →∞ gives:

lim
N1,N2→∞

L(f,N1, N2) = 4 + 2 +
2

3
+ 4 +

8

3
=

40

3

Because the value of the true Riemann sum R(f,N1, N2) is bounded between
L(f,N1, N2) and U(f,N1, N2):

L(f,N1, N2) ≤ R(f,N1, N2) ≤ U(f,N1, N2)

lim
N1,N2→∞

L(f,N1, N2) ≤ lim
N1,N2→∞

R(f,N1, N2) ≤ lim
N1,N2→∞

U(f,N1, N2)

40

3
≤ R(f,N1, N2) ≤ 40

3

The integral converges to
40

3

28.6.7

For the partition, give ∆x = 1 and ∆y = 2. So there are really only a few
points where we need to find the value of the function (since N1 and N2 are
comparable in size with the dimensions of the rectangular domain).

Those coordinates are: (0, 0), (1, 0), (0, 2) and (1, 2). The function values
at those locations are 0, 1, 4, and 5, respectively. We can just sum those up
and multiply by the area of each partition rectangle, which is 2. The estimated
volume is thus 10.

28.6.10

This integral represents the volume of a cylinder with radius 1 and height k.
The double integral is equal to kπ.

28.6.11

To evaluate
∫∫
D

√
1− x2 − y2 over the domain of the unit circle centered at

the origin is the same as calculating the volume of a hemisphere. The func-
tion f(x, y) =

√
1− x2 − y2 maps out the unit hemisphere with a positive z-

coordinate, which intersects perfectly with the domain of the unit sphere. The
volume of this solid is 1

2
4
3πr

3 = 2
3π
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28.6.12

The shape of 1−x−y in D is a right triangular pyramid. Its base is a a triangle
with area B = 1

2 lw = 1
2 and a height of h = 1. The volume of the pyramid is

V = 1
3Bh = 1

6 .

V =
1

6

28.6.13

The integrand represents a plane whose normal vector is given by 〈cb, ca, ab〉.
This plane intersects the z-axis at the point (0, 0, c), and coincides with the line
given by bx+ay = ab (which contains the hypotenuse of the triangular domain’s
boundary triangle, and intersects at the points (0, b) and (a, 0)).

The figure that the double integral finds the volume of is a pyramid whose
base vertices are given in the problem and whose upper vertex is (0, 0, c). By
geometry the volume of such a pyramid is given by V = 1

2 (a)(b)(c) = abc
2 .

28.6.17

The integral of
∫∫
D

√
1− x2 − y2 − (

√
x2 + y2 − 1), where D is the unit circle

centered at the origin in the first quadrant, can be interpreted as 1
4 the volume of

the solid with an upper bound of
√

1− x2 − y2 and lower bound of
√
x2 + y2−1.

The first function maps out the top half of a sphere of radius 1. The second
function can be though of the upper part of the function

z2 = x2 + y2 = 1

which defines the top part of the cone. The solid bounded by these two together
is simply the volume of a cone at height 1 and half the unit sphere, which is:

1

2

4

3
πr3 · πr

2h

3
=

2π2

9

and 1
4 of this volume is π2

18

28.6.18

The first term of the integral in D describes the unit half-sphere above the z-
axis. Its volume is V1 = 1

2 ( 4
3πr

3) = 2π
3 . The negative of the second and third

terms 1 −
√
x2 + y2 in D describes a cone with radius 1 and height 1. The

volume of the cone is V2 = 1
3πr

2h = π
3 . Hence, the total volume is

V = V1 − V2 =
π

3
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29.1 Exercises

29.1.1

We may give D as the set difference of the square [−2, 2] × [−2, 2] and of the
open disk {(x, y)| x2 + y2 < 1}. Then it becomes apparent that due to the
additivity of the double integral we may simply take the double integral of the
function f(x, y) = k over the square and subtract from that value the value of
the double integral of the same function over the open disk. Using geometry it
is apparent that the value of the double integral is 16k − πk.

29.1.4

The linearity of the double integral allows us to take the double integral of
each term in the integrand and add them together. Using this fact, observe
that the term

√
4− x2 − y2 represents the top hemisphere of a sphere of radius

2 centered at the origin, and on D we are taking a quarter of that volume.
Likewise notice that the term given by 2 represents a constant value, so on D
it looks like a slice of a cylinder of radius 2 and height 2.

Hence the double integral is equal to 4
3π − 2π.

29.1.5∫∫
D

(4− x− y)dA =
∫∫
D

3dA+
∫∫
D

(1− x− y)dA by properties of integrals. In
this problem, D is the triangle with vertices at the origin, (1,0) and (0,1). The
first integral is 3 times the area of the triangle, or 3

2 . The second is the volume
of the region bounded by the plane x+y+z=1 and the coordinate planes in the
first octant. The volume of this is 1/3 the volume of the triangular prism of
height 1, giving 1

3 · (
1
2 )(1) = 1

6 . The total value of the integral is then 3
2 + 1

6 = 5
3

29.1.6

Prove that ∫∫
D

sin(xy)

xy
dA ≤ A(D)

for x, y > 0. Recall that sin(u) ≤ u for u ≥ 0. Therefore, by the positivity of
the double integral, it can also be concluded that:∫∫

D

sin(xy)

xy
dA ≤

∫∫
D

xy

xy
dA =

∫∫
D

dA = A(D)

29.1.7

We will first want to partition the disk using polar coordinates. Give

∆r =
1

N
, rk = k∆r
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and

∆θ =
2π

M
, θj = j∆θ

for natural numbers k, j,N,M . Following the method of Example 29.1 we can
give each area element in the partition as rk∆r∆θ where rk = 1

2 (rk + rk+1).
Given that r2 = x2 + y2, |x| ≤ r, and |y| ≤ r, it is apparent that

ax2 + by2 ≤ r2(a+ b)

and so we may proceed by using a midpoint (meaning the sample points occur
at (rk, θj)) Riemann sum to find the double integral:∫∫

D

r2(a+ b)dA = lim
N→∞
M→∞

N∑
k=1

M∑
j=1

(rk)2(a+ b)rk∆r∆θ

We can pull out the quantity (a+ b) from both sums since it is a constant.
Then replace ∆θ with 2π

M (definition we gave above).
Then we can sum with respect to j first and find

(a+ b) lim
N→∞
M→∞

N∑
k=1

(rk)3∆r
2π

M
(M)

which we then sum over k using the definition of the single variable Riemann
sum:

2π(a+ b) lim
N→∞

N∑
k=1

(rk)3∆r = 2π(a+ b)

∫ 1

0

r3dr = (a+ b)
π

2

So it is true that ∫∫
D

(ax2 + by2)dA ≤ (a+ b)
π

2

29.1.8

We know that mA(D) ≤
∫∫
D
fdA ≤ MA(D). In this case, the region D is the

rectangle [1,2] x [1,2], which has an area of 1. The minimum of f in D, m, is
1 at (1,1) while the max, 16, occurs at (2,2). You can quickly figure that the
maxes and mins occur at the extreme values of x and y since x and y are only
multiplied together. Therefore, the double integral

∫∫
D
fdA lies between 1 and

16.

29.1.10

It is known that the sine function takes on a maximal value of 1 when its
argument is π

2 +2πk for integers k and minimal values of −1 when its argument
is −π2 + 2πj for integers j. The sine function also takes on the value of 0 when
its argument is 0 + πk` for integers `.
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Evidently for the integrand the maximum values occur where x+y = π
2 +2πk,

and minimal ones where x+y = −π2 +2πj, and zero values where x+y = 0+πk`.
Since values on D are bounded by the x and y axes and by a line passing through
(0, π) and (π4 , 0), it is apparent that we will never have negative values of x+ y,
and we may omit the auxiliary integer variables and simply find where the sum
of x and y form principal angles where the max/zero values are.

xm + ym =
π

2
, x0 + y0 = 0

The first equation indicates that maximum values are given by the line pass-
ing through (0, π2 ) and (π2 , 0), which partially lies in D, which is sufficient to
say that the maximum value of f on D is 1. Likewise at the origin the second
equation is satisfied which is sufficient to know that the minimum value of f on
D is 0. Thus the integral is bounded above and below by the area of D (which
you can get using elementary geometry) times the min/max values:

0 ≤
∫∫

D

sin(x+ y)dA ≤ π2

8

29.1.12

If the double integral of f over a region D of non-zero area is 0, then there must
be a point on D where f is also 0. This can be proven from the intermediate
value theorem or the mean value theorem for integrals. We know that the
average value of the function is 1

A(D)

∫∫
D
fdA, and that that value is equal

to A(D)f(x0, y0) for some (x0, y0) ∈ D, given that f is continuous within D.
However, since the double integral is 0, so is the average value. That, therefore
makes the equation 0 = A(D)f(x0, y0), and since the area isn’t 0, the value of
the function at that point must be.

29.1.13

We will first want to partition the disk using polar coordinates. Give

∆r =
1

N
, rk = k∆r

and

∆θ =
2π

M
, θj = j∆θ

for natural numbers k, j,N,M . Following the method of Example 29.1 we can
give each area element in the partition as rk∆r∆θ where rk = 1

2 (rk + rk+1).
Given that r2 = x2 + y2, |x| ≤ r, and |y| ≤ r, it is apparent that we may

take the midpoint Riemann sum to find the double integral:∫∫
D

ex
2+y2dA = lim

N→∞
M→∞

N∑
k=1

M∑
j=1

e(rk)
2

rk∆r∆θ
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Using the defintions of ∆r and ∆θ and taking the sum in j first, we obtain
the following sum:

lim
N→∞
M→∞

N∑
k=1

e(rk)
2

rk∆r
2π

M
(M) = lim

N→∞
2π

N∑
k=1

rke
(rk)

2

∆r

The sum on the right is a one dimensional Riemann sum that is by definition
the following integral:

2π

∫ 1

0

rer
2

dr = (e− 1)π

29.1.15∫∫
D
ln(x2 + y2)dA where D is the region |x| + |y| ≤ 1. One can see that the

region D is the rhombus with vertices 1 along each direction of the coordinate
axes. As a result, we know that x2 + y2 ≤ 1. The natural log of any number
x ∈ (0, 1] ≤ 0. Since the function itself is negative for every value in the domain,
the double integral must also be negative.

29.1.16

Notice that the graph of the integrand is unlike any geometrical shape we are
used to dealing with, so an alternative argument is needed to determine the
sign of the double integral. Notice that the integrand takes on both positive
and negative values on D. Particularly for (x, y) beyond the disk x2 + y2 ≤ 1
(that is, (x, y) where 1 < x2 + y2 ≤ 4), the function takes on negative values
while anywhere on that disk the function takes on nonnegative values.

So we will try to compare the signed volumes that each portion of the graph
forms on D. Suppose that the overall sign of the integral is negative. That
means that the signed volume under the surface on the washer 1 < x2 + y2 ≤ 4
is negative and is of greater magnitude than the signed volume of the surface on
the disk x2 + y2 ≤ 1. We do not have the tools currently to find these volumes
directly, but I will pose the following idea.

Suppose we find an underestimate for the volume (V2) under the xy plane
by applying known methods of calculating volumes of solids of revolution, and
then compare that value with an overestimate of the volume (V1) above the xy
plane found using geometry. If |V2| ≥ |V1| then the overall sign of the double
integral is negative. Keep in mind that if we had instead taken an overestimate
for V2 and an underestimate for V1 and compared them that way, then we do
not have a way to determine if the sign of the double integral is negative.

To find V1, it is easy to give it as the cylinder of height 1 with its base as
the disk x2 + y2 ≤ 1. By geometry V1 equals π.

To find V2, we need to investigate a radial cross section of the surface. We
can accomplish this by giving r2 = x2 + y2, which transforms the integrand
(a function of (x, y)) into a function of one variable, r. The function becomes
z(r) = 3

√
1− r2 We may plot this function where r is the horizontal axis and z is
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the vertical axis (form points (r, z)) and find that the curve passes through the

points (1, 0) and (2,− 3
√

3) in this system. Using the linear function r = 1−3−
1
3 z

that passes through those points, we can use it to find V2 by using the washer
method for finding the volume of the solid of revolution that forms by revolving
z(r) through 2π radians.

The integral for the solid of revolution (which is identical to the volume of
the original integrand under the xy plane) is:

π

∫ − 3√3

0

[
(2)2 − (1− 3−

1
3 z)2

]
dz

= π

∫ − 3√3

0

[
3 +

2z

3
1
3

− z2

3
2
3

]
dz = π

[
3z +

z2

3
1
3

− z3

3
5
3

]− 3√3

0

=
(

3−
2
3 − 2

3
√

3
)
π = − 5

3
2
3

π

We can verify however we like that indeed | − 5

3
2
3
π| ≥ |π|, which means that

the sign of the double integral is indeed negative.

30.3 Exercises

30.3.1

We have a continuous function over a rectangular region so we may apply Fu-
bini’s theorem directly. The integral becomes∫ 2

0

∫ 1

0

(x+ y)dxdy

which we can integrate iteratively to find∫ 2

0

∫ 1

0

(x+ y)dxdy →
∫ 2

0

(
x2

2
+ xy

) ∣∣∣∣x=1

x=0

dy →
∫ 2

0

(
1

2
+ y

)
dy

∫ 2

0

(
1

2
+ y

)
dy →

(
y

2
+
y2

2

) ∣∣∣∣2
0

= 3

30.3.2 ∫∫
D

xy2dA , D = [0, 1]× [−1, 1]

=

∫ 1

−1

∫ 1

0

xy2dxdy

= (

∫ 1

−1
y2dy)(

∫ 1

0

xdx)

39



= (
2

3
)(

1

2
)

= 1/3

30.3.3 ∫∫
D

√
x+ 2ydA , D = [1, 2]× [0, 1]∫ 1

0

∫ 2

1

√
x+ 2ydxdy

This integral can be solved using substitution. Let:

u = x+ 2y

du = dx

The integral then becomes: ∫ 1

0

∫ 2+2y

1+2y

√
ududy

=

∫ 1

0

2

3
[u3/2]2+2y

1+2ydy

=
2

3

∫ 1

0

(2 + 2y)3/2 − (1 + 2y)3/2dy

Now use another substitution and let:

v = 2 + 2y, w = 1 + 2y

dv = dw = 2dy

The integral now becomes:

1

3
(

∫ 4

2

v3/2dv −
∫ 3

1

w3/2dw)

=
2

15
([v5/2]42 − [w5/2]31)

=
2

15
(32− 4

√
2− 9

√
3 + 1)

2

15
(33− 4

√
2− 9

√
3)
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30.3.4

We have a continuous function over a rectangular region so we may apply Fu-
bini’s theorem directly. The integral becomes∫ 2

0

∫ 1

0

(1 + 3x2y)dxdy

which we can integrate iteratively to find∫ 2

0

∫ 1

0

(1 + 3x2y)dxdy →
∫ 2

0

(x+ x3y)

∣∣∣∣x=1

x=0

dy →
∫ 2

0

(1 + y)dy = 4

30.3.5

Integrate with respect to y first and then x to make it easier:∫ 1

0

∫ 1

0

xeyxdydx→
∫ 1

0

(ex − 1)dx = e− 2

30.3.6 ∫∫
D

cos(x+ 2y)dA , D = [0, π]× [0, π/4]∫ π/4

0

∫ π

0

cos(x+ 2y)dxdy

Let:
u = x+ 2y

du = dx

The integral becomes: ∫ π/4

0

∫ π+2y

2y

cos(u)dudy

=

∫ π/4

0

[sinu]π+2y
2y dy

=

∫ π/4

0

sin(2y + π)− sin(2y)dy

Using the sine addition formulas, this becomes:

−2

∫ π/4

0

sin(2y)dy

Now let:
v = 2y

dv = 2dy
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The integral finally becomes:

−
∫ π/2

0

sin(v)dv

= [cos v]
π/2
0

= −1

30.3.7

We have a continuous function over a rectangular region so we may apply Fu-
bini’s theorem directly. The integral becomes∫ 1

0

∫ 1

0

1 + 2x

1 + y2
dxdy

which we can integrate iteratively to find∫ 1

0

∫ 1

0

1 + 2x

1 + y2
dydx→

∫ 1

0

(1 + 2x) arctan(y)

∣∣∣∣y=1

y=0

dx→ π

4

∫ 1

0

(1 + 2x)dx

=
π

2

30.3.8 ∫∫
D

y

x2 + y2

D is the rectangle [0,1]x[1,2]. The easiest order of integration would be dx dy.∫ 2

1

∫ 1

0

y

x2 + y2
dxdy

∫ 2

1

y(1/y) tan−1(
x

y
)|10dy =

∫ 2

1

tan−1(1/y)dy

To complete this integral, you should use the substitution 1/y = tan θ, or
y=cot θ =⇒ dy = − csc2 θdθ

−
∫ cot−1(2)

π/4

θ csc2 θdθ

After doing integration by parts, I personally did it via the tabular method, you
get an expression that evaluates to:

2 tan−1(1/2) +
1

2
ln 5/2− π/4
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30.3.9 ∫ 1

0

∫ 1

0

(x− y)ndxdy

Let:
u = x− y
du = dx

The integral becomes: ∫ 1

0

∫ 1−y

−y
undxdy∫ 1

0

[
un+1

n+ 1
]1−y−y dy

1

n+ 1

∫ 1

0

(1− y)n+1 − (−y)n+1dy

By the linearity of double integrals, the above can be split into

1

n+ 1
(

∫ 1

0

(1− y)n+1dy −
∫ 1

0

(−y)n+1)

For the first integral, let:
v = 1− y
dv = −dy

And for the second integral, let:

w = −y

dw = −dy
So the integral becomes:

− 1

n+ 1
(

∫ 0

1

vn+1dv −
∫ −1
0

wn+1dw)

Simply by the power rule:

− 1

(n+ 1)(n+ 2)
([vn+2]01 − [wn+2]−10 )

− 1

(n+ 1)(n+ 2)
((−1)− (−1)n+2)

1 + (−1)(n+1)(n+2)

n+ 2

Because (−1)n+2 = (−1)n for all integers n, the answer can be more simply
written as:

1 + (−1)n

(n+ 1)(n+ 2)
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30.3.10

We have a continuous function over a rectangular region so we may apply Fu-
bini’s theorem directly. The integral becomes∫ 2

0

∫ 1

0

ex
√
y + exdxdy

which we can integrate iteratively to find∫ 2

0

∫ 1

0

ex
√
y + exdxdy →

∫ 2

0

2

3
(y+ ex)

3
2

∣∣∣∣x=1

x=0

dy → 2

3

∫ 2

0

((y+ e)
3
2 − (y+ 1)

3
2 )dy

2

3

∫ 2

0

((y + e)
3
2 − (y + 1)

3
2 )dy =

4

15
(1− 9

√
3− e 5

2 + (2 + e)
5
2 )

30.3.13

We have a continuous function over a rectangular region so we may apply Fu-
bini’s theorem directly. The integral becomes∫ 2

1

∫ 1

0

1

2x+ y
dxdy

which we can integrate iteratively to find∫ 2

1

∫ 1

0

1

2x+ y
dxdy → 1

2

∫ 2

1

ln(2x+ y)

∣∣∣∣x=1

x=0

dy → 1

2

∫ 2

1

(ln(2 + y)− ln(y))dy

(use integration by parts)

1

2

∫ 2

1

(ln(2 + y)− ln(y))dy =

(
−1

2
y ln(y) + ln(2 + y) +

1

2
y ln(2 + y)

) ∣∣∣∣2
1

=
1

2
ln

(
64

27

)
30.3.16

The volume of such a solid is given by the double integral∫ 2

0

∫ 1

−1
(1 + 3x2 + 6y2)dxdy

which taken iteratively we find∫ 2

0

∫ 1

−1
(1 + 3x2 + 6y2)dxdy →

∫ 2

0

(4 + 12y2)dy = 40
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30.3.17

According to the given statements, x can vary between 0 and 3 while y can vary
between 0 and 2 so that z = 4− y2 remains positive. Therefore, the volume of
E is ∫ 2

0

∫ 3

0

(4− y2)dxdy

= 3

∫ 2

0

4− y2dy

= 3[4y − y3

3
]20

= 3(8− 8

3
)

= 16

30.3.19

The surface z = xy is symmetric across the lines y = ±x, but more importantly
the parts of the surface in each quadrant are really just reflected versions of the
surface in other quadrants. For example, the portion of the surface in the first
quadrant is really just a vertically flipped (negated) version of the part of the
surface in the second or fourth quadrant. So the signed volume captured by a
double integral over any square [−a, a]× [−a, a] is going to be by symmetry 0.

We are asked to find the value of the double integral on the part of the
square [−1, 1]× [−1, 1] that is not in the first quadrant, so using what we know
of the symmetry of the integrand, it is sufficient to find the double integral over
the square [−1, 0]× [0, 1] (alternatively choose the similar square in the fourth
quadrant). The value of such an integral is given by the double integral∫ 0

−1

∫ 1

0

(xy)dydx = −1

4

30.3.21

Consider the integral: ∫ b

a

∫ b

a

[f(x)− f(y)]2dydx

We argue that the value of the integral must be strictly non-negative because
the integrand (f(x)− f(y))2 is strictly non-negative.

=

∫ b

a

∫ b

a

[f(x)− f(y)]2dydx ≥ 0
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We can now simplify the integral using some basic algebraic manipulation.

=

∫ b

a

∫ b

a

(f(x)2 + f(y)2 − 2f(x)f(y))dydx ≥ 0

=

∫ b

a

∫ b

a

f(x)2dydx+

∫ b

a

∫ b

a

f(y)2dydx− 2

∫ b

a

f(x)f(y)dydx ≥ 0

= 2

∫ b

a

f(x)f(y)dydx ≤
∫ b

a

∫ b

a

f(x)2dydx+

∫ b

a

∫ b

a

f(y)2dydx

= 2(

∫ b

a

f(x)dx)(

∫ b

a

f(y)dy) ≤ (b− a)(

∫ b

a

f(x)2dx+

∫ b

a

f(y)2dy)

The two definite integrals on the l.h.s and the two integrals on the r.h.s. only
differ in their variables of integration, so their values are the same.

= 2(

∫ b

a

f(x)dx)2 ≤ 2(b− a)

∫ b

a

(f(x))2dx

= (

∫ b

a

f(x)dx)2 ≤ (b− a)

∫ b

a

(f(x))2dx

30.3.22

First we will change coordinates by applying the transformation at every point:
(x, y)→ (x+ a, y + b). Then the problem becomes finding the average squared
distance from the point (a, b) to every point on a disk of radius R centered at the
new origin. We will then change some coordinates into polar coordinates. The
points (x, y) on the disk centered at the origin are represented alternatively as
(r cos(θ), r sin(θ)). It is clear from construction that 0 ≤ r ≤ R and 0 ≤ θ < 2π.

The squared distance between points on the disk and (a, b) is (r cos(θ) −
a)2 + (r sin(θ) − b)2. Taking the sum over all points on the disk by varying r
and θ the total sum of the squared distance (recall dA = rdrdθ) is∫ 2π

0

∫ R

0

(
(r cos(θ)− a)2 + (r sin(θ)− b)2

)
rdrdθ

and the average value is that integral divided by the area of the disk:

1

πR2

∫ 2π

0

∫ R

0

(
(r cos(θ)− a)2 + (r sin(θ)− b)2

)
rdrdθ

=
1

2
(2a2 + 2b2 +R2)
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31.6 Exercises

31.6.1

Integrating over y first and then over x: it is apparent that the bounds in x are
just going to be −2 ≤ x ≤ 2. For the bounds in y we will need to make two, since
the two legs of the triangle that intersect at the origin form line segments of
different slopes. We should find that while x is nonnegative we have 1

2x ≤ y ≤ 1
and while x is negative we have − 1

2x ≤ y ≤ 1. So the double integral becomes∫ 0

−2

∫ 1

− 1
2x

f(x, y)dydx+

∫ 2

0

∫ 1

1
2x

f(x, y)dydx

When integrating with respect to x first and then y it is apparent that the
bounds in y are 0 ≤ y ≤ 1, and that for x we have −2y ≤ x ≤ 2y. The integral
is ∫ 1

0

∫ 2y

−2y
f(x, y)dxdy

31.6.2

If D is the trapezoid with vertices (0,0) (1,0) (1,2) (0,1), then we can say that
x ∈ [0, 1]. For any value of x within its domain, y goes from 0 to the line y=x+1,
so the bounds for y are y ∈ [0, x+ 1], do the double integral would be∫ 1

0

∫ x+1

0

dydx

To switch the bounds, you would first define hard bounds for y being y ∈ [0, 1]
and y ∈ [1, 2], separating the bounds into 2 regions because the x bounds changes
at y=1. In the first region for y, x simply goes from 0 to 1, while past y=1 x
has a lower bound of the line x=y-1. As a result, the double integral is in the
form of: ∫ 1

0

∫ 1

0

dxdy +

∫ 2

1

∫ 1

y−1
dxdy

31.6.3

x can vary between−1 and 1. Given this information, y varies between−
√

1− x2
and
√

1− x2. ∫ 1

−1

∫ √1−x2

−
√
1−x2

f(x, y)dydx

Switching the order, y can vary between −1 and 1. Given this information, x
varies between −

√
1− y2 and

√
1− y2.

∫ 1

−1

∫ √1−y2

−
√

1−y2
f(x, y)dxdy
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31.6.4

The region describes a disk of radius 1
2 centered at (0, 12 ) (note that the left

hand side forces y to be positive so this conclusion is legitimate). Knowing
this the bounds of integration are not too bad to find. Evidently the boundary

x2+(y− 1
2 )2 = 1

4 can be rewritten as x = ±
√

1
4 − (y − 1

2 )2 or y = ±
√

1
4 − x2+ 1

2 .

Since we know that both |x| or |y − 1
2 | may not exceed the value of the radius

of the disk we find that the integral can be represented as∫ 1

0

∫ √ 1
4−(y−

1
2 )

2

−
√

1
4−(y−

1
2 )

2

f(x, y)dxdy

or ∫ 1
2

− 1
2

∫ √ 1
4−x2+ 1

2

−
√

1
4−x2+ 1

2

f(x, y)dydx

31.6.5

The region defined is the circle of radius 2 with the circle of radius 1 taken
out from the middle of it. It is easy to see that the bounds are not simple,
not matter the direction you come from. Additionally, because the region has
complete rotational symmetry, switching the order of the variables will not
change the bounds, meaning the bounds for dydx will be similar to the bounds
for dxdy. If we choose dydx for the order of integration, x has a hard bound of
x ∈ [−2, 2]. However, the y bounds do vary depending on x. When x ∈ [−2,−1],
y is bounded by y ∈ [0,

√
4− x2], x ∈ [−1, 1]y ∈ [

√
1− x2,

√
4− x2, and when

x ∈ [1, 2] y ∈ [0,
√

4− x2]. Additionally, since those bounds only account for the
top half of the region, the area would be 2 times the sum of the double integrals
defined by those bounds, or:∫∫

D

dA = 2(

∫ −1
−2

∫ √4−x2

0

dydx+

∫ 1

−1

∫ √4−x2

√
1−x2

dydx+

∫ 2

1

∫ √4−x2

0

dydx)

To reverse the order of integration, simply switch x and y.

31.6.6

x2 ≤ x for x ∈ [0, 1] ∫ 1

0

∫ x

x2

xydydx

=

∫ 1

0

x[
y2

2
]xx2dx

=
1

2

∫ 1

0

x(x2 − x4)dx
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=
1

2

∫ 1

0

x3 − x5dx

=
1

2
[
x4

4
− x6

6
]10

=
1

2
(
1

4
− 1

6
)

=
1

24

31.6.7

It is sensible to integrate the function with respect to x first and then y. Note
that the intersection of the line x = 3 and the quadratic x = 4 − y2 occur at
y = ±1. The integral becomes∫ 1

−1

∫ 4−y2

3

(2 + y)dxdy →
∫ 1

−1
(2x+ yx)

∣∣∣∣4−y2
3

dy →
∫ 1

−1
(−y3 − 2y2 + y + 2)dy

=
8

3

31.6.8

Evaluate
∫∫
D

(x+y)dA where D is the region bounded by the curves x = y4, x =
y. When sketching out the curves, one can see that the region is bounded in
the y direction by y ∈ [0, 1] and x by x ∈ [y4, y], meaning the iterated integral
is ∫ 1

0

∫ y

y4
(x+ y)dxdy

=

∫ 1

0

(
x2

2
+ yx)|yy4dy

=

∫ 1

0

1

2
(y2 − y8) + y(y − y4)dx =

∫ 1

0

1

2
(y4 − y8) + y2 − y5dx

=
−1

2
(
y9

9
+
y6

3
− y3)|10 =

5

18

31.6.9

The lines y = −x and y = x intersect at (0, 0), then the x values are limited by
x = 3. The integral is: ∫ 3

0

∫ x

−x
(2 + y)dydx

=

∫ 3

0

[2y + y2/2]x−xdx
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=

∫ 3

0

4xdx

= [2x2]30

= 18

31.6.10

It is sensible to integrate the function with respect to y first and then x. Note
that the intersection between the curves given for the bounds in y occur at
x = ±1. The integral becomes∫ 1

−1

∫ 4−x2

2+x2

(x2y)dydx→
∫ 1

−1
(x2

y2

2
)

∣∣∣∣4−x2

2+x2

dx→
∫ 1

−1
(6x2 − 6x4)dx

=
8

5

31.6.11

Evaluate the integral
∫∫
D

√
1− y2dA where D is the triangle with vertices (0,0)

(0,1) and (1,0). First, notice that it would be useful to integrate in the order
of dxdy, as it would make the integral easier to do, as having a y term with√

1− y2 would be easier to integrate with. So, the bounds for integration are
y ∈ [0, 1] as can be seen with the vertices, and x ∈ [0, y], which is best seen
when you graph the bounds yourself. As a result, the integral is:∫ 1

0

∫ y

0

√
1− y2dxdy

=

∫ 1

0

x
√

1− y2|y0dy =

∫ 1

0

y
√

1− y2dy

= −1

2

∫ 0

1

√
udu =

1

2

∫ 1

0

√
udu =

1

3
u3/2|10 = 1/3

31.6.12

The lines x = −3y and x = 2y intersect at (0, 0).∫ 1

0

∫ 2y

−3y
xydxdy

=
1

2

∫ 1

0

y[x2]2y−3ydy

=
1

2

∫ 1

0

y(4y2 − 9y2)dy
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=
1

2

∫ 1

0

−5y3dy

=
−5

8
[y4]10

=
−5

8

31.6.13

The triangle is convenient in the sense that we do not have to split the double
integral up into multiple double integrals. This is because we can give the
hypotenuse as the line segment given by the line y = x for 0 ≤ x ≤ 1. The leg
of the triangle on the x axis can be our lower y bound.

So it is apparent that we should integrate with respect to y first (it is also
easier that way) and then x. The integral becomes∫ 1

0

∫ x

0

y
√
x2 − y2dydx→ −1

3

∫ 1

0

((x2 + y2)
3
2 )

∣∣∣∣x
0

→
∫ 1

0

(
1

3
|x|3
)
dx

=
1

12

31.6.14

Choose the vertically simple region of integration. Then 0 ≤ x ≤ a, and then
0 ≤ y ≤ −

√
2ax− x2 + a. The double integral becomes:∫ a

0

∫ −√2ax−x2+a

0

(2a− x)−
1
2 dydx→

∫ a

0

−
√
x+ a(2a− x)−

1
2 dx

=

[
2
(√

2− 1
)
− 2

3

]
a

3
2

31.6.15

By symmetry, the value of the integral in each of the four quadrants will be the
same as four times the integral in the first quadrant.∫∫

D

|xy|dA = 4

∫ a

0

∫ √a2−x2

0

xydydx

= 2

∫ a

0

x[y2]
√
a2−x2

0 dx

= 2

∫ a

0

x(a2 − x2)dx
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= 2

∫ a

0

xa2 − x3dx

= 2[
a2x2

2
− x4

4
]a0

= 2a4(
1

2
− 1

4
)

=
a4

2

31.6.16

Upon sketching this parallelogram it is apparent that some divisions need to be
made such that we can integrate on this region correctly. The four vertices of
the parallelogram are given by (0, a), (a, a), (2a, 3a), and (3a, 3a). Split up the
parallelogram into two triangles and a middle section.

Give the left triangular section as the triangle bounded by the line segment
(lying in y = a) connecting (0, a) and (a, a), the line given by y = x + a for
0 ≤ x ≤ a, and a line segment starting at (a, a) going in the positive y direction
until it intersects the line given by y = x + a. The double integral over this
region is given by∫ a

0

∫ x+a

a

(x2 + y2)dydx→
∫ a

0

(
a2x+ ax2 +

4x3

3

)
dx =

7a4

6

Then the middle section of the parallelogram is given by a parallelogram
itself, but the sides to the left and right are just straight lines occupying only
the y axis. The bounds in x for this section are a ≤ x ≤ 2a, and the bounds in
y are x ≤ y ≤ x+ a. The double integral here is∫ 2a

a

∫ x+a

x

(x2 + y2)dydx→
∫ 2a

a

(
a3

3
+ a2x+ 2ax2

)
dx =

13a4

2

Finally the right triangle is given using bounds in x as 2a ≤ x ≤ 3a, where
the upper y curve is given by y = 3a and the lower curve is given by the line
y = x. The double integral is given by∫ 3a

2a

∫ 3a

x

(x2 + y2)dydx→
∫ 3a

2a

(
9a3 + 3ax2 − 4x3

3

)
dx =

19a4

3

We must sum up the three results, and find that the double integral is equal
to 14a4.
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31.6.17

Evaluate
∫∫
D
y2dA where D is the cycloid defined by x = a(t − sint), y =

a(1 − cost), t ∈ [0, 2π]. If you were to graph the cycloid, you would see that
x goes from 0 to 2πa, while y goes from 0 to a(1 − cost). Because of x(t)
differentiates, it will be easiest to integrate in the order of dydx. As a result,
the integral is: ∫ 2πa

0

∫ a(1−cost)

0

y2dydx

=

∫ 2πa

0

y3

3
|a(1−cost)0 dx = 1/3

∫ 2πa

0

(a(1− cost))3dx

Even though now we have an integral where the integrand and differential do
not match, we do have a relation between x and t, namely, x(t) = a(t − sint).
As a result, we can differentiate each side to get dx = a(1−cost)dt, now making
the integral

1/3

∫ 2π

0

(a(1− cost))4dt

making sure to change the bounds to be in terms of t, not x (x=0 corresponds
to t=0, and x=2πa corresponds to t=2π). Integrating this is now just a matter
of integrating powers of trigonometric functions; however there are some tricks
that can make this easier. The integral expands out to:

a4

3

∫ 2π

0

cos4 t− 4 cos3 t+ 6 cos2 t− 4 cos t+ 1dt

which can be written as a sum of the integrals of each term. However, because of
symmetry with the cosine function, any odd power of cosine along these bounds
evaluates to 0, reducing the integral to just:

a4

3

∫ 2π

0

(1/2(1− cos 2t))2 + 6 cos2 tdt+
2πa4

3

Continuing the trend of using the power reduction identity and removing any
term that is just an odd power of cos along the bounds will eventually yield

35πa4

12

31.6.21

The integrand is a circular paraboloid (z = x2 + y2). The graph of |x|+ |y| ≤ 1
is a rectangle with vertices (1, 0), (0, 1), (−1, 0), (0,−1).

A circular paraboloid bounded by a rectangle with vertices(1, 0), (0, 1), (−1, 0), (0,−1).
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31.6.22

The integrand represents the top half of an ellipsoid (as in the half occupying
the positive z axis). Such an ellipsoid intersects the z axis at z = 1, the y axis
at y = 3, and the x axis at x = 2. The boundary of the set D is conveniently
also the trace of the integrand where z = 0. It is apparent then that the solid
region is just the positive half of an ellipsoid including the inside of that half.

31.6.24

Evaluate the integral
∫∫
D

3x2 + y2dA where D is the region bounded by the
parabola x = y2 and the line x=1. The bounds for integration are best defined
by y ∈ [−1, 1] and x ∈ [y2, 1].∫ 1

−1

∫ 1

y2
3x2 + y2dxdy

∫ 1

−1
(x3 + y2x)|1y2dy =

∫ 1

−1
(1− y6) + y2(1− y2)dy

∫ 1

−1
−y6 − y4 + y2 + 1dy = 2

∫ 1

0

−y6 − y4 + y2 + 1dy

2(−1

7
− 1

5
+

1

3
+ 1) =

208

105

31.6.25

The integrand is z = y. x varies between 0 and 1 while y varies between 0 and√
1− x2. ∫ 1

0

∫ √1−x2

0

ydydx

1

2

∫ 1

0

[y2]
√
1−x2

0 dx

1

2

∫ 1

0

1− x2dx

1

2
[x− x3/3]10

1

2
(
2

3
)

=
1

3
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31.6.26

Because of symmetry in all 3 directions, we can simplify the integral to:

8

∫∫
D′

√
a2 − y2dA

where D’ is the quarter of the unit circle in the first quadrant. We got 8 from
multiplying 2 three times, one time because of symmetry in the z-direction, as
it has the same volume when z is negative as positive, and from dividing the
original region into fourths. The easiest order of integration is dxdy as it gets
rid of the square root.

8

∫ 1

0

∫ √a2−y2
0

√
a2 − y2dxdy

8

∫ 1

0

a2 − y2dy =
16a3

3

31.6.29 ∫ 1

0

∫ √x
x3

f(x, y)dydx

The region defined by the bounds of integration is just the area between y = x3

and
√
x. The inverse of these functions are x = y2 and x = 3

√
y. The intersection

of these curves occur at y=0 and y=1. The new iterated integral would then
be: ∫ 1

0

∫ 3
√
y

y2
f(x, y)dxdy

31.6.30 ∫ 1

0

∫ y

y2
f(x, y)dxdy

The line x = y and the parabola x = y2 intersect at (0, 0) and (1, 1). Solving
each equation for y, the bounds are found to be y = x and y =

√
x.
√
x > x for

x ∈ (0, 1). Hence, the integral becomes

∫ 1

0

∫ √x
x

f(x, y)dydx

31.6.31

The region is the area between the constant function y = 1 and the curve
y = ex when 0 ≤ x ≤ 1. We may invert the exponential function into x = ln(y)
(omit the absolute value bars since we are in the first quadrant). Knowing the
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bounds from before, it is apparent that the new bounds are ln(y) ≤ x ≤ 1 while
1 ≤ y ≤ e. The double integral becomes∫ e

1

∫ 1

ln(y)

f(x, y)dxdy

31.6.32 ∫ 4

1

∫ 2

√
y

f(x, y)dxdy

The region defined by the bounds is between the curve y = x2 and the lines
y=1 and x=2. Redefining these bounds in terms of dydx gives:∫ 2

1

∫ x2

1

f(x, y)dydx

31.6.33 ∫ 3

0

∫ y

0

f(x, y)dxdy +

∫ 6

3

∫ 6−y

0

f(x, y)dxdy

The region of integration of the first integral is the region bound by the lines
y = x, y = 3, and x = 0. Reversing the order of integration gives:∫ 3

0

∫ 3

x

f(x, y)dydx

The region of integration of the second integral is the region bound by the lines
x+ y = 6, x = 0, y = 3, and y = 6. Reversing the order of integration gives:∫ 3

0

∫ 6−x

3

f(x, y)dydx

The sum of these two integrals is:∫ 3

0

∫ 3

x

f(x, y)dydx+

∫ 3

0

∫ 6−x

3

f(x, y)dydx

=

∫ 3

0

(

∫ 3

x

f(x, y)dydx+

∫ 6−x

3

f(x, y)dydx)

By the additive properties of integrals, this can be simplified to:∫ 3

0

∫ 6−x

x

f(x, y)dydx
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31.6.34

The region of integration is given as the inequalities
√
x ≤ y ≤ 2 while 0 ≤ x ≤ 4.

This is essentially the region above the square root curve under the constant
y = 2 until they intersect, for x and y being positive.

To swap the order of integration we need to notice that the region expressed
differently is the region under the parabola x = y2 so long as y does not exceed
2. Evidently x and y have to be bounded below by zero.

So the integral can be rewritten as∫ 2

0

∫ y2

0

(1 + y3)−1dxdy →
∫ 2

0

y2(1 + y3)−1dy =
2

3
ln(3)

31.6.35 ∫ 2

−6

∫ 2−x

x2

4 −1
fdydx

The bounds of the integral define the region between the curves y=2-x and y =
x2

4 − 1. The inverse of each of these functions are x = 2− y and x = ±
√

4y + 4.
However, the horizontal bounds for the region is defined by multiple functions.
The first is the region in y ∈ [0, 8], where x is bounded by −

√
4y + y to the left

and 2-y to the right, and second is the region bounded by the same function
to the left but

√
4y − 4 to the right, going from y ∈ [0,−1]. As a result the

iterated integrals in the order of dxdy is:∫ 0

−1

∫ √4y−4

−
√
4y−4

fdxdy +

∫ 8

0

∫ 2−y

−
√
4y−4

fdxdy

31.6.37

The curves y =
√

2ax and y =
√

2ax− x2 represent a parabola and a hemisphere
of radius a, respectively. The region itself is just the region between those two
curves while x does not exceed 2a. Both are located in the first quadrant, and

we may rewrite each as x = y2

2a and x = ±
√
a2 − y2 + a.

Evidently in this perspective we do not have an x-simple region, so we must
split the integral in 3 pieces around the point where it ceases to be simple,

at (a, a). So now we may give three sets of bounds: 0 ≤ y ≤ a and y2

2a ≤ x ≤
−
√
a2 − y2+a for the first section, and then 0 ≤ y ≤ a and

√
a2 − y2+a ≤ x ≤

2a for the section adjacent to it. Finally the last section has bounds a ≤ y ≤ 2a

and y2

2a ≤ x ≤ 2a. The double integral is thus equal to∫ a

0

∫ −√a2−y2+a
y2

2a

f(x, y)dxdy +

∫ a

0

∫ 2a

√
a2−y2+a

f(x, y)dxdy

+

∫ 2a

a

∫ 2a

y2

2a

f(x, y)dxdy
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31.6.39

The region of integration is the triangle with vertices (0, 1), (0,−1), and (1, 0).
This region is symmetric with respect to the x-axis. Therefore, for each point
(x, y) in the region that contributes ex

2

sin
(
y3
)
dA, there will be a point (x,−y)

in the region that contributes ex
2

sin
(
(−y)3

)
dA = −ex2

sin
(
y3
)
dA. These con-

tributes cancel out, so we can conclude that the integral will be

= 0

31.6.40

It is not really necessary to consider the shape of the set D itself, rather we
may consider each quadrant individually. It is also important to note that the
integrand is a saddle raised to the 9th power, where the axes of symmetry are
the x and y axes. Since 9 is an odd number, the sign of the values of the
function are retained on the whole domain, so it is only necessary to investigate
the saddle itself and we may omit the exponentiation entirely.

With that in mind, consider how the function changes sign around the lines
given by |x| = |y| - this information is sufficient (due to symmetry in all quad-
rants) to know that the double integral on D is going to vanish, it equals 0.

31.6.41

31.6.42 ∫∫
D

(cos
(
x2
)
− cos

(
y2
)
)dA

The region of integration is symmetric with respect to the line y = x. Therefore,
for each point (x, y) in the region that contributes (cos

(
x2
)
− cos

(
y2
)
)dA to the

integral, there is another point (y, x) that contributes (cos
(
y2
)
− cos

(
x2
)
)dA

to the integral. These contributions cancel out, so we can conclude that the
integral will be

= 0

32.5 Exercises

32.5.1

From the bounds it is apparent that the radius r is bounded above by 2 and
below by 1, while the angle θ is bounded above by π and below by 0. This
means that we have points that lie on the top (positive) half of an annulus (a
ring or a washer) lying in the xy plane.

The area is (by geometry) 3
2π.
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32.5.2 ∫ π/2

−π/2

∫ 2a cos θ

0

rdrdθ

The polar graph r = 2a cos θ is the circle of radius a centered at the point (a,0),
and the range θ ∈ [−π/2, π/2] goes through the entire circle. Therefore, the
area of the region is just the area of the circle, or π(a)2

32.5.3 ∫ π/4

−π/4

∫ 1/ cos θ

0

rdrdtheta

The bounds of the integral describe the region bounded by the lines:

θ = arctan(y/x) = −π/4→ y = −x

θ = arctan(y/x) = π/4→ y = x

r = 1/ cos θ → r cos θ = 1→ x = 1

These lines form a triangle with vertices at (0, 0), (1,−1), and (1, 1). This region
is a right triangle with leg lengths

√
2,
√

2 and hypotenuse 2. The area of this
triangle is

1

2
ab sin θ =

1

2

√
2
√

2 = 1

32.5.4

The bounds indicate that the region is the full cardioid given by r = 1 + cos(θ).
The area of the region is given by evaluating the double integral into the single
integral and continuing the computation:

1

2

∫ π

−π
(1 + cos(θ))

2
dθ → 1

4

∫ π

−π
(3 + 4 cos(θ) + cos(2θ)) dθ =

3

2
π

32.5.9

The shape generated from the inequality a2 ≤ x2 + y2 ≤ b2 is the same as the
interval r ∈ [a, b] for polar coordinates, where r is the radius. The restriction
on the quadrant restricts the range to θ ∈ [0, π/2]. Using the bounds defined
for r and θ along with converting x and y into polar coordinates transforms the
integral into: ∫ π/2

0

∫ b

a

(r cos θ)(r sin θ)(rdrdθ)

=

∫ b

a

r3dr

∫ π/2

0

1

2
sin 2θdθ

1

16
(b4 − a4)(2) =

1

8
(b4 − a4)
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32.5.10

It is apparent from the disk D that the radius is bounded above by a and
bounded below by 0, and that we have the full range in θ, that is 0 to 2π. Using
the known equations for transforming coordinates from the cartesian coordi-
nate system to the polar coordinate system (not forgetting the extra r in the
integrand), the double integral becomes∫ 2π

0

∫ a

0

(
sin
(
r2
))
rdrdθ →

∫ 2π

0

1

2

(
1− cos

(
a2
))
dθ = π(1− cos

(
a2
)
)

32.5.11 ∫∫
D

arctan(y/x)dA

Converting to polar coordinates, the bounds of D become

a2 ≤ r2 ≤ b2 → a ≤ r ≤ b

y = x
√

3→ y/x =
√

3→ arctan(y/x) = θ = π/3

y = x/
√

3→ y/x = 1/
√

3→ arctan(y/x) = θ = π/6

Lastly, the integrand is:
arctan(y/x) = θ

and the Jacobian is J = r. Therefore, the transformed integral is:∫ b

a

∫ π/3

π/6

rθdθdr

= (

∫ b

a

rdr)(

∫ π/3

π/6

θdθ)

=
1

2
(b− a)[θ2/2]

π/3
π/6

=
1

4
(b− a)(π2/9− π2/36)

=
π2

48
(b− a)

32.5.17 ∫ 1

−1

∫ √1−y2

0

ex
2+y2dxdy

Graphing the region defined by the integrals shows that the region is a semicircle
with radius 1 on the right side of the y-axis. This converts into a rectangular
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region in polar coordinates, with r ∈ [0, 1] and θ ∈ [−π/2, π/2]. Additionally,
using the fact that r2 = x2 + y2, the integral becomes:∫ π/2

−π/2

∫ 1

0

er
2

rdrdθ

π/2

∫ 1

0

eudu

π

2
(e− 1)

32.5.18 ∫ 0

−1

∫ √1−x2

−
√
1−x2

(x+ y)dydx

The region of integration is the left half of the unit circle. In polar coordinates,
the integral becomes: ∫ 3π/2

π/2

∫ 1

0

r(r cos θ + r sin θ)drdθ

=

∫ 3π/2

π/2

∫ 1

0

r2(cos θ + sin θ)drdθ

=

∫ 3π/2

π/2

(cos θ + sin θ)[r3/3]10dθ

=
1

3

∫ 3π/2

π/2

(cos θ + sin θ)dθ

=
1

3
[sin θ − cos θ]

3π/2
π/2

= −2

3

32.5.19

From the bounds it is found that 0 ≤ x ≤
√

1− (y − 1)2 while y is in the closed
interval [0, 2]. It is apparent that the shape of the region is the right half of a
disk centered at the point (0, 1) with radius 1.

Converting the integral to polar coordinates, the bounds change such that
0 ≤ r ≤ 2 sin(θ) so long as 0 ≤ θ ≤ π

2 . Knowing that x2 + y2 = r in polar
coordinates, and changing dxdy to rdrdθ, the integral becomes∫ π

2

0

∫ 2 sin(θ)

0

(r) rdrdθ →
∫ π

2

0

8

3
sin3(θ)dθ

→ −8

3

∫ π
2

0

(1− cos2(θ))(− sin(θ))dθ =
16

9
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32.5.20∫ 1

1√
2

∫ x

√
1−x2

xydydx+

∫ √2

1

∫ x

0

xydydx+

∫ 2

√
2

∫ √4−x2

0

xydydx

Looking at the bounds for the first integral, we see that it is bounded at the
bottom for the positive half of the unit circle and at the top by the line y=x
from where the two intersect to x=1. The second integral is just bounded by
the line y=x and the x-axis from x=1 to x =

√
2. The final integral is bounded

by the circle with radius 2 and the x-axis, starting at x =
√

2. Putting all of
these regions together onto one coordinate plane reveals that the integral is:∫∫

D

xydA

where D is the region bounded by the annulus with radii 1 and 2 from the x-axis
to the line y=x. This region corresponds to the polar bounds of r ∈ [1, 2], θ ∈
[0, π/4], making the integral:∫ π/4

0

∫ 2

1

(r cos θ)(r sin θ)rdrdθ

∫ π/4

0

1

2
sin 2θdθ

∫ 2

1

r3dr

−1

4
cos 2θ|π/40 · 1

4
r4|21

15

16

32.5.27

r = 1 + cos θ

While θ varies between 0 and 2π, r varies between 0 and 1. Therefore, the area
enclosed by the cardioid r = 1 + cos θ can be calculated using:∫ 2π

0

∫ 1

0

rdrdθ

=

∫ 2π

0

[r2/2]10dθ

=
1

2

∫ 2π

0

dθ

=
1

2
2π

= π
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32.5.28

From the statement of the problem we find that θ/4 ≤ r ≤ θ/2, which we can use
to express the original region in polar coordinates. Directly transforming, the
region becomes the triangle bounded by the same values given in the problem
(think two linear functions starting from the origin with different slopes meeting
at a vertical line, and the triangle that forms from that relationship). The double
integral that finds the area of the original region is∫ 2π

0

∫ θ
2

θ
4

rdrdθ → 1

2

∫ 2π

0

(
θ

2

)2

−
(
θ

4

)2

dθ =
1

4
π3

32.5.29

To solve for the bounds you are integrating over, it is best to draw out the
circle and cardioid and find the bounds of r in terms of theta. Solving for when
1 + sin θ = 3

2 gives that the angle is bounded by θ ∈ [π/6, 5π/6]. The picture
also shows that r is bounded from the top by the cardioid and at the bottom
by the circle. As a result, the integral for the area becomes:∫ 5π/6

π/6

∫ 1+sin θ

3/2

rdrdθ

1

2

∫ 5π/6

π/6

(1 + sin θ)2 − 9

4
dθ

9
√

3

8
− π

4

32.5.34

Observing the two functions it becomes apparent that a solid forms where the
surface ztop = 4−

√
x2 − y2 is greater than or equal to zbot = 3

√
x2 − y2. The

region of integration in the rectangular plane is given by the closed set whose
boundary is the level set ztop − zbot = 0, which is when x2 + y2 = 1, meaning
the region of integration is the disk given by x2 + y2 ≤ 1. We may convert to
polar coordinates by bounding r from 0 to 1 and by bounding θ from 0 to 2π.
The double integral becomes∫ 2π

0

∫ 1

0

(4− r − 3r) rdrdθ →
∫ 2π

0

2

3
dθ =

4

3
π

32.5.35

The region of integration is the annulus with inner radius 1 and outer radius 2.
The integrand is simply the equation for the cone, since we are captuiring the
signed volume under it.
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Since we have the annulus as defined above, it is evident that 1 ≤ r ≤ 2 and
that θ takes on its natural range.

Replacing the equation for the cone with z = r, the double integral becomes∫ 2π

0

∫ 2

1

r(r)drdθ →
∫ 2π

0

7

3
dθ =

14

3
π

32.5.36

Looking at the graph, the base of the region of integration is the circle of radius
2 centered at the origin. One can derive this from setting z=-3 to the first
equation, getting 4 = x2 + y2. This region corresponds the the rectangular
region r ∈ [0, 2], θ ∈ [0, 2π] in polar coordinates. Additionally, the volume of
the solid is the double integral of upper bound - lower bound dA, or:∫∫

D

(1− x2 − y2)− 3dA

2π

∫ 2

0

(4− r2)rdr

8π

32.5.37

Evidently the solid is formed when values attained by the plane are greater
than or equal to the values attained by the upper sheet of the hyperboloid.
This means that the region of integration happens on the set bounded by the
level set where both surfaces attain the same value. So from x2 + y2 − 4 = −1
we deduce that x2 + y2 ≤ 3 is the region of integration. It will help to rewrite
the upper sheet of the hyperboloid as the surface z =

√
x2 + y2 + 1

Converting to polar coordinates, we find that r is bounded from 0 to
√

3, and
then θ can take on the full range of values from 0 to 2π. The integral becomes∫ 2π

0

∫ √3

0

(
2−

√
r2 + 1

)
rdrdθ →

∫ 2π

0

2

3
dθ =

4

3
π

32.5.38

The volume of such solids is given by the general equation:∫∫
(ztop − zbottom)dA

In polar coordinates, ztop = r2 and zbottom = 0. The bounds become:

z = x2 + y2 → z = r2

x2 + y2 = 2x→ r2 = 2r cos θ → r = 2 cos θ
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Therefore, r varies from 0 to 2 cos θ and θ varies from 0 to π because the cylinder
r = 2 cos θ makes one full revolution between θ = 0 and θ = π. The Jacobian is
J = r. The transformed integral is:∫ π

0

∫ 2 cos θ

0

r3drdθ

=
1

4

∫ π

0

[r4]2 cos θ
0 dθ

= 4

∫ π

0

cos4 θdθ

= 4

∫ π

0

cos2 θ(1− sin2 θ)dθ

= 4

∫ π

0

(cos2 θ − cos2 θ sin2 θ)dθ

Using the sine double angle formula:

= 4

∫ π

0

(cos2 θ − 1

4
sin2(2θ))dθ

Simplifying and using the identities cos2 x = cos(2x)/2 + 1/2 and sin2 x =
− cos(2x)/2 + 1/2:∫ π

0

(4 cos(2x)/2 + 2)dθ −
∫ π

0

(− cos(4θ)/2 + 1/2)dθ

Finally, integrate cos(ax) normally to get:

= 3π/2

32.5.39

lim
x→0

1

πa2

∫∫
D

f(x, y)dA

33.5 Exercises

33.5.7

We are asked to transform from the (u, v) coordinates into the (x, y) coordinates.
Since the region D′ is a square, we may represent the boundary of the square
with four line segments lying on these four lines: u = 0, u = 1, v = 0, and
v = 1.

Using the equations given in the problem we may solve for the boundary of
D in the (x, y) coordinate system. It is immediate that x = 0 and x = 1 are
lines that form part of the new boundary.
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Since y depends on both u and v, we may want to hold one of those variables
constant and observe what happens if we vary the other (while still maintaining
the bounds given by D′). Trying with v = 0, it is apparent that y = 0. That is
fine. Then if we try with v = 1, we can still vary u. According to the definition
of D′, u varies from 0 to 1, exactly as x does (as per x = u). Therefore we may
give y = 1− x2.

Hence D is the area bounded by the line x = 0, y = 0, and y = 1− x2. (the
area under the parabola in the first quadrant)

33.5.8

D’ is the triangle with vertices (0,0) (1,1) and (1,0). This can be interpreted as
the region defined by the bounds u ∈ [0, 1] and v ∈ [0, u]. Applying the fact that
x = v2, y = u transforms those bounds to y ∈ [0, 1] and x ∈ [0, (u)2] = [0, y2].
As a result, the region D is defined by those bounds in the xy-plane.

33.5.9

The region D′ in the uv plane defined by the inequality |u|+|v| ≤ 1 is equivalent
to the region bounded by the points u + v = x = −1, u + v = x = 1 and
u− v = y = −1, u− v = y = 1. Therefore,

The region D in the xy plane is the square with vertices (0,0), (1,0), (1,1), and (0,1).

33.5.11

We first find equations of lines passing through those four coordinate points.
They are given by y = x+ 4, y = x− 4, y = − 1

3x+ 8
3 , and y = − 1

3x. We may
convert each of these lines to their corresponding lines in the (u, v) coordinate
system using the transformation given in the problem. Simply substitute the
given equations for y and x into each of the lines and resolve into coordinate
curves.

We find the following curves: u = ±4, v = 0, and v = 8. This is a rectangular
region so it is convenient in the integral. The Jacobian of transformation for
this change of variables is given by the determinant:∣∣∣∣det

(
− 3

4
1
4

1
4

1
4

) ∣∣∣∣ =
1

4

The integral becomes∫ 8

0

∫ 4

−4

(
8

(
v − 3u

4

)
+ 4

(
u+ v

4

))(
1

4

)
dudv → 6

∫ 8

0

vdv = 192

33.5.12 ∫∫
D

x2 − xy + y2dA
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Using the change of variables defined, the Jacobian is:∣∣∣∣ ∂x∂u ∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =

∣∣∣∣ 1 1
−1√
3

1√
3

∣∣∣∣ =
2√
3

Substituting the redefined variables into the expression x2−xy+ y2 shows that
the equivalent expression is u2 + v2, meaning D’ is the region bounded by the
circle u2 + v2 = 1 and the double integral becomes:

2√
3

∫∫
D′
u2 + v2dA′

It would probably be best to change the variables again into polar, giving the
bounds as r ∈ [0, 1], θ ∈ [0, 2π] and the double integral:

2√
3

∫ 2π

0

∫ 1

0

r2rdrdθ

4π√
3

(
1

4
r4)|10

π√
3

33.5.13 ∫∫
(x2 − y2)−1/2dA

It is important to recall the identity cosh2 θ − sinh2 θ = 1. The original region
is bounded by x2− y2 = u2 = 1 and x2− y2 = u2 = 4, so u is bounded by u = 1
and u = 2. Similarly, the original region is bounded by x = 2y and x = 4y,
which is equivalent to

u cosh v = 2u sinh v → tanh v =
1

2
→ v = tanh−1(1/2)

u cosh v = 4u sinh v → tanh v =
1

4
→ v = tanh−1(1/4)

Now, we must compute the Jacobian J(u, v).

J(u, v) = |det

(
x′u x′v
y′u y′v

)
|

= |det

(
cosh v u sinh v
sinh v u cosh v

)
|

= u cosh2 v − u sinh2 v = u
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Therefore, the transformed integral is:∫ tanh−1 1/2

tanh−1 1/4

∫ 2

1

(u)(u2 cosh2 v − u2 sinh2 v)−1/2dudv

=

∫ tanh−1 1/2

tanh−1 1/4

∫ 2

1

dudv

=

∫ tanh−1 1/2

tanh−1 1/4

dv

=

∫ tanh−1 1/2

tanh−1 1/4

dv

= tanh−1(1/2)− tanh−1(1/4)

33.5.14

From the original bounds we can rewrite them as x
y = 1, x

y = 1
2 , x + y = 1,

and x + y = 2. Then knowing that u = x
y and v = x + y, it is apparent that

1
2 ≤ u ≤ 1 and 1 ≤ v ≤ 2. The Jacobian of transformation is found by observing
the following:

dudv = Jdxdy → 1

J
dudv = dxdy

J =

∣∣∣∣det

(
u′x v′x
u′y v′y

) ∣∣∣∣ =

∣∣∣∣det

( 1
y 1
−x
y2 1

) ∣∣∣∣ =
x+ y

y2

Remembering to take the reciprocal of J , the integral becomes∫∫
e
x
y

(x+ y)3

y2

(
y2

x+ y

)
dudv →

∫ 2

1

∫ 1

1
2

euv2dudv →
(
eu|21

)(v3
3

∣∣∣∣2
1

)

=
7

3
(e−

√
e)

33.5.19

The lazy way out is sometimes the easiest way out. Give u = xy and v = xy2.
Then it is evident that 1 ≤ u ≤ 2 and 1 ≤ v ≤ 2 from the definitions of the
bounding curves in the (x, y) coordinate system. Then to compute the Jacobian
we may want to compute it for the reverse transformation, that is to compute
J for

dudv = Jdxdy

So compute partial derivatives of u and v and compute the following deter-
minant:

J =

∣∣∣∣det

(
y 2xy
x x2

) ∣∣∣∣ = yx2
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So dudv = (yx2)dxdy, which is already in the integral. Conveniently the
integral becomes ∫ 2

1

∫ 2

1

dudv = 1

33.5.20 ∫∫
D

ex−ydA

As discussed in several previous problems, the region defined by the inequality
|x|+|y| ≤ 1 is equivalent to the region bounded by the lines x+y = 1, x+y = −1
and x− y = 1, x− y = −1. Therefore, we make the substitution u = x+ y and
v = x− y. The Jacobian of this substitution is given by:

J(u, v) = |det

(
x′u x′v
y′u y′v

)
|

= |det

(
u′x v′x
u′y v′y

)
|−1

= |det

(
1 1
1 −1

)
|−1

= |−2|−1

=
1

2

Therefore, the transformed integral is:

1

2

∫ 1

−1

∫ 1

−1
evdvdu

=
1

2

∫ 1

−1
[ev]1−1du

=
e− 1

e

2

∫ 1

−1
du

= e− 1

e

33.5.21

Give u = x + y and v = y − x3, so that 1 ≤ u ≤ 2 and 0 ≤ v ≤ 1. Computing
the Jacobian J that satisfies 1

J dudv = dydx by taking the partial derivatives of
u and v, we find

J =

∣∣∣∣ det

(
1 −3x2

1 1

) ∣∣∣∣ = 1 + 3x2
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This makes the integral convenient since it makes the new integrand 1. The
double integral becomes (by geometry)∫ 1

0

∫ 2

1

dudv = 1

33.5.22

With some rearranging of the parabola equations it becomes apparent that we
may give u = xy and v = y − x2 to find that −1 ≤ u ≤ 1 and 1 ≤ v ≤ 2. Then
we may compute the Jacobian where

dudv = Jdxdy

This is given by the following determinant:

J =

∣∣∣∣ det

(
u′x v′x
u′y v′y

) ∣∣∣∣ =

∣∣∣∣ det

(
y −2x
x 1

) ∣∣∣∣ = y + 2x2

So dudv = (y+ 2x2)dxdy, which is conveniently already in the integral. The
integral then becomes ∫ 2

1

∫ 1

−1
dudv = 2

33.5.23 ∫∫
D

(x+ y)2/x2dA =

∫∫
D

(1 + y/x)2dA

The bounds of the region of integration are x + y = 1, x + y = 2 and y = x,
y = 2x. Rearranging the latter pair to y/x = 1, y/x = 2 makes it clear that we
should substitute u = x+ y and v = y/x, or equivalently x = u

v+1 and y = uv
v+1 .

The Jacobian of this substitution is:

J(u, v) = |det

(
x′u x′v
y′u y′v

)
|

= |det

(
u′x v′x
u′y v′y

)
|−1

= |
(

1 −y/x2
1 1/x

)
|−1

= | 1
x

+
y

x2
|−1

=
x2

x+ y

=
u2

u(1 + v)2
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=
u

(1 + v)2

Therefore, the transformed integral is:∫ 2

1

∫ 2

1

(
u

(1 + v)2
)(1 + v)2dudv

=

∫ 2

1

∫ 2

1

ududv

=

∫ 2

1

udu

=
1

2
[u2]21

= 3/2

34.6 Exercises

34.6.1

Since the solid region E is given by a rectangular prism, the bounds of the
integral are easy to set up. The integral becomes∫ 2

0

∫ 2

1

∫ 1

0

(xy − 3z2)dxdydz →
∫ 2

0

∫ 2

1

(
1

2
y − 3z2

)
dydz

→
∫ 2

0

(
3

4
− 3z2

)
dz = −13

2

34.6.2 ∫∫∫
E

6xzdV

The inequalities given define the bounds for each of the variables, making them
y ∈ [0, x + z], x ∈ [0, z], z ∈ [0, 1]. The bounds also help us find the best order
to integrate in, dy dx dz, since the bounds on y are dependent on each of the
other variables, and x dependent only on z. The iterated integral is then:∫ 1

0

∫ z

0

∫ x+z

0

6xzdydxdz

∫ 1

0

∫ z

0

6xz(x+ z)dxdz = 6

∫ 1

0

∫ z

0

x2z + xz2dxdz∫ 1

0

3x2z2 + 2x3z|z0dz =

∫ 1

0

3z4 + 2z4∫ 1

0

5z4dz = z5|10 = 1
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34.6.3 ∫∫∫
D

zey
2

dV

=

∫ 1

0

∫ z

0

∫ y

0

zey
2

dxdydz

=

∫ 1

0

∫ z

0

yzey
2

dydz

=
1

2

∫ 1

0

z[ey
2

]z0dz

=
1

2

∫ 1

0

zez
2

− zdz

=
1

4
[ez

2

− z2]10

=
1

4
((e− 1)− (1))

=
1

4
(e− 2)

34.6.4

The region is vertically simple (vertical meaning parallel to the ~e3 basis vector).
We can find the bounds for z in the vertically simple manner quickly from the
problem statement. So the following inequality holds: 0 ≤ z ≤ x+ y + 1.

The planar region in the xy plane that we wish to find bounds for in x and
y is part of the interior side of a parabola. Note that since x = 0 and y = 1 are
part of the bounds, it follows that the parabola given by x =

√
y can only be

traced out so long as 0 ≤ y ≤ 1. It is also known that 0 ≤ x ≤ √y. We may set
up the triple integral as follows:∫ 1

0

∫ √y
0

∫ x+y+1

0

(6xy) dzdxdy →
∫ 1

0

∫ √y
0

(6x2y + 6xy2 + 6xy)dxdy

→
∫ 1

0

(
3y2 + 2y

5
2 + 3y3

)
dy =

65

28

34.6.7

We want to find out what the region of integration is. Imagine the positive
portion of the cylinder z =

√
1− y2 is sliced by the planes x = y and x = 0.

we essentially have just a slice of the cylinder that lies in the first octant, much
like the image in Figure 34.3 Right (for Study Problem 34.1).

So we know that for z we have 0 ≤ z ≤
√

1− y2. Then for the planar region
we need to find bounds. We know that the cylinder intersects the line x = y
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when y = 1. We can also deduce that y may only drop to 0 and nothing less.
So bounds on y are 0 ≤ y ≤ 1. As for x, we have a line x = 0 and another x = y
that give us bounds 0 ≤ x ≤ y.

So the triple integral becomes∫ 1

0

∫ y

0

∫ √1−y2

0

(zx) dzdxdy → 1

2

∫ 1

0

∫ y

0

(
x− xy2

)
dxdy

→ 1

4

∫ 1

0

(
y2 − y4

)
dy =

1

30

34.6.8 ∫∫∫
E

z(x2 + y2)dV

The region is bounded by z = 0 and z = 1−x2−y2. Doing a polar substitution,
this becomes z = 0 and z = 1−r2. Therefore, the transformed integral is (Note:
Remember to include the Jacobian) :∫ 2π

0

∫ 1

0

∫ 1−r2

0

zr3dzdrdθ

= 2π

∫ 1

0

∫ 1−r2

0

zr3dzdr

= π

∫ 1

0

r3[z2]1−r
2

0 dr

= π

∫ 1

0

r3(1− r2)2dr

= π

∫ 1

0

r3(r4 − 2r2 + 1)

= π

∫ 1

0

r7 − 2r5 + r3

= π[r8/8− r6/3 + r4/4]10

= π/24

34.6.12

The plane z = 1 − x intersects with the plane z = 0 when x = 1. This
constitutes an upper bound for x, where y2 is the lower bound. So y2 ≤ x ≤ 1.
Then we wish to find out how much y can vary. Notice that due to x = 1 = y2,
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−1 ≤ y ≤ 1. It is also known from the start that 0 ≤ z ≤ 1− x. So we may set
up the integral and evaluate it as follows:∫ 1

−1

∫ 1

y2

∫ 1−x

0

(1)dzdxdy →
∫ 1

−1

∫ 1

y2
(1− x)dxdy →

∫ 1

−1

(
1

2
− y2 +

y4

2

)
dy

=
8

15

34.6.13

To find the region of integration it is easiest to find it in the vertically simple
way. The bounds in z are straightforward, they are 0 ≤ z ≤ 4 − y2. We may
find the bounds for the x values by rearranging the equations for the lines given
to find out the bounds. So 1

2y ≤ x ≤ y. The parabolic sheet intersects the xy
plane where y = 2 (omitting the negative root since we are in the first octant)
and the lines y = x and y = 2x intersect at the origin so bounds on y are
0 ≤ y ≤ 2.

We have the following triple integral:∫ 2

0

∫ y

1
2y

∫ 4−y2

0

dzdxdy →
∫ 2

0

∫ y

1
2y

(4− y2)dxdy → 1

2

∫ 2

0

4y − y3dy = 2

34.6.18

In the 2-D region bounded by x = 0, y = 0, and x + y = 1: xy ≤ x + y.
Therefore, we can write the integral as:∫ 1

0

∫ 1−x

0

∫ x+y

xy

dzdydx

=

∫ 1

0

∫ 1−x

0

(x+ y − xy)dydx

=

∫ 1

0

[xy + y2/2(1− x)]1−x0 dx

=

∫ 1

0

x(1− x) + (1− x)3/2dx

=

∫ 1

0

(x− x2 − x3/2 + 3x2/2− 3x/2 + 1/2)dx

=

∫ 1

0

(−x3/2 + x2/2− x/2 + 1/2)dx

= −1/8 + 1/6− 1/4 + 1/2

= 7/24
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34.6.21

The surface z = 6− x2 − y2 is a paraboloid and the surface z =
√
x2 + y2 is a

single cone opening upwards. The intersection of these surfaces happens where
z = 2 (you may combine the equations for the surfaces into z = 6 − z2 and
solve for the positive root). At z = 2, the intersection is a circle of radius 2
centered at the origin. So the region of integration is given by x2 +y2 ≤ 4 where√
x2 + y2 ≤ z ≤ 6− (x2 + y2).
We will opt to use polar coordinates to evaluate this integral. Knowing that

x2 + y2 ≤ 4, it is apparent that 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π. The triple integral
becomes∫ 2π

0

∫ 2

0

∫ 6−(x2+y2)

√
x2+y2

(1)dz(r)drdθ →
∫ 2π

0

∫ 2

0

(6r − r3 − r2)drdθ →
∫ 2π

0

16

3
dθ

=
32

3
π

34.6.22

The region E is symmetric axross the planes z = 0 and x = 0, and we may use
this to our advantage. Notice that the integrand contains terms multiplied by
x or z3, which is skew symmetric across those planes. Even when multiplied
together, skew symmetry holds. So automatically the integral over the region
E with the rectangular cavity not made vanishes.

Notice that by construction the integral we wish to find can be represented
like so: ∫∫∫

E

24xy2z3dA

=

∫∫∫
E without cavity

24xy2z3dA−
∫∫∫

[0,1]×[−1,1]×[0,1]
24xy2z3dA

= 0−
∫∫∫

[0,1]×[−1,1]×[0,1]
24xy2z3dA

So really all we are tasked to do is to find out what the integral over the
rectangular cavity (as a solid) would have been.

−
∫ 1

0

∫ 1

−1

∫ 1

0

(24xy2z3)dxdydz → −
∫ 1

0

∫ 1

−1
(12y2z3)dydz → −

∫ 1

0

(8z3)dz

= −2

34.6.23

The region E is the ball centered at the origin with radius 2 less the unit ball
centered at the origin. This region is symmetrical about the plane y = z.
Therefore, for each point (x, y, z) that contributes (sin2(xz) − sin2(xy))dV to
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the integral, there is a point (x, z, y) that contributes (sin2(xy) − sin2(xz))dV .
These contributions cancel out, so the integral is:

= 0

34.6.24

Rewite the integrand as 1 + sin2(xz)− sin2(xy). Apply linearity to find the two
integrals given by ∫∫∫

E

dV +

∫∫∫
E

(sin2(xz)− sin2(xy))dV

Notice that the integrand of the second integral is skew symmetric about the
same plane z = y, because if we apply the transformation (x, y, z) → (x, z, y)
the sign of the integrand is flipped. The region E itself is a region between two
spheres, which is symmetric across the plane z = y, so we can conclude that the
second integral will vanish.

We simply compute the first integral by geometry:∫∫∫
E

dV =
4

3
π(23 − 13) =

28

3
π

34.6.32

Find the region E for which:∫∫∫
E

(1− x2/a2 − y2/b2 − z2/c2)dV

is maximized. Looking at the function you can see that each level set of it is an
ellipsoid. However, the function is positive for only a certain region E. Therefore,
it makes the most sense that the region E is all values where f(x, y, z) = 1 −
x2/a2 − y2/b2 − z2/c2 ≥ 0. Solving this yields the solid ellipsoid:

1 ≥ x2/a2 + y2/b2 + z2/c2

.

35.6 Exercises

35.6.4

We do not need to change anything for the z bounds since they are given directly
save for just applying r = x2 + y2. Then 0 ≤ z ≤ r2. Then since the region
is bounded by a cylinder of unit radius it is apparent that 0 ≤ r ≤ 1 and that
0 ≤ θ ≤ 2π.
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35.6.5

There is no restriction on θ, so we can say that theta goes on its natural range
of θ ∈ [0, 2π]. Additionally, the cylinder x2 + y2 = 1 translates directly to the
bound r ∈ [0, 1]. Finally, the cone (z−1)2 = x2 +y2 becomes z−1 = ±r, giving
us the bound of z to be z ∈ [1− r, 1 + r]. If one were to sketch out each of the
restrictions, the bounds themselves would also make more intuitive sense, so if
possible, try to sketch it out and make sure you can visually see where each of
the bounds come from.

35.6.6

The transformation to cylindrical coordinates results in the following change in
the bounds of E:

z = 0→ z = 0

z = x2 + y2 → z = r2

x2 + y2 = 2x→ r2 = 2r cos θ → r = 2 cos θ

Because a lower bound for r is not specified, there is an implicit lower bound of
r = 0. Additionally r = 2 cos θ traces out one rotation of the unit circle centered
at (x, y) = (1, 0) on the interval θ ∈ (−π/2, π/2], so these are the bounds on θ.
Therefore, E′ is the region with bounds:

0 ≤ z ≤ r2

0 ≤ r ≤ 2 cos θ

−π/2 ≤ θ ≤ π/2

35.6.7

Since E is the sphere of radius a in the first octant, it is easy to see that θ may
only vary from 0 to π

2 . Furthermore since the radius of the sphere is a, the
quantity r may only vary from 0 to a. The surfaces for z that bound the surface
is the plane z = 0 and z =

√
a2 − x2 − y2 =

√
a2 − r2. So 0 ≤ z ≤

√
a2 − r2

35.6.8 ∫∫∫
E

|z|dV

The polar angle is unbounded, making its bound its natural range, θ ∈ [0, 2π].
Additionally, the cylinder x2 + y2 = 1 gives the restriction of r to be r ∈ [0, 1].
Finally, one can manipulate the equation of the sphere to be z2 = 4−r2, making
the bounds for z z ∈ [−

√
4− r2,

√
4− r2]. The iterated integral then becomes:∫ 2π

0

∫ 1

0

∫ √4−r2

−
√
4−r2

|z|rdzdrdθ
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However, the function —z— is even, which simplifies the integral to:

4π

∫ 1

0

∫ √4−r2

0

zrdzdr

2π

∫ 1

0

r(
√

4− r2)2dr = 2π

∫ 1

0

4r − r3dr

2π(2r2 − r4

4
)|10 = 2π(2− 1

4
)

7π

2

35.6.9 ∫∫∫
E

(x2y + y3)dV =

∫∫∫
E

y(x2 + y2)dV

Using the substitution r2 = x2 + y2 and tan θ = y/x, the bound z = 1−x2− y2
becomes z = 1− r2. The constraint that the region is in the first octant implies
0 ≤ θ ≤ π/2 and 0 ≤ r ≤ 1. The Jacobian is, of course, J = r. Therefore, the
transformed integral is:∫ π/2

0

∫ 1

0

∫ 1−r2

0

r(r sin θ)(r2)dzdrdθ

=

∫ π/2

0

∫ 1

0

∫ 1−r2

0

r4 sin θdzdrdθ

= (

∫ π/2

0

sin θdθ)(

∫ 1

0

r4(1− r2)dr)

=

∫ 1

0

(r4 − r6)dr

= [
r5

5
− r7

7
]10

= 1/5− 1/7

= 2/35
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35.6.10

The region of integraion is a cylinder with a cylindrical cut out, where its base
sits on the xy plane and is cut off above by the plane z = x+ y+ 5. This plane
does not cut off the cylinder short on the xy plane, so the base is given by an
annulus of inner radius 1 and outer radius 2. This is enough to deduce that
1 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π.

To find bounds in z apply the transformation (x, y)→ (r cos(θ), r sin(θ)) to
the plane z = x+y+5. The bottom bound is still 0. The upper bound becomes
r cos(θ) + r sin(θ) + 5. Applying the same transformation to the integrand, the
triple integral becomes:∫ 2π

0

∫ 2

1

∫ r cos(θ)+r sin(θ)+5

0

r sin(θ)dz(r)drdθ

→
∫ 2π

0

∫ 2

1

(
r3 sin(θ) cos(θ) + r3 sin2(θ) + 5r2 sin(θ)

)
drdθ

→
∫ 2π

0

∫ 2

1

(
r3

2
+
r3

2
(sin(2θ)− cos(2θ)) + 5r2 sin(θ)

)
drdθ

The last two terms will vanish due to the periodicity of the sine and cosine.
Then the remaining integral is∫ 2π

0

∫ 2

1

r3

2
drdθ → π

r4

4

∣∣∣∣2
1

=
15

4
π

35.6.11

Converting the cylinder x2+y2 = 2x into polar coordinates yields r = 2 cos θ, as
in the xy-plane it is the circle with radius 1 with its center at (1,0). Alternatively,
using the substitutions x2 +y2 = r2 and x = r cos θ also yields the same results.
since there is no other bound on r, r ∈ [0, 2 cos θ]. The plane and cone both
directly give the restriction on z to be z ∈ [0, r]. However, there is a restriction
on the polar angle, as the circle only exists on the right side of the y-axis, making
the bound θ ∈ [−π/2, π/2]. The iterated integral then becomes:∫ π/2

−π/2

∫ 2 cos θ

0

∫ r

0

rdzdrdθ

∫ π/2

−π/2

∫ 2 cos θ

0

r2drdθ

1/3

∫ π/2

−π/2
(2 cos θ)3dθ =

16

3

∫ π/2

0

cos3 θdθ

16

3

∫ π/2

0

(1− sin2 θ) cos θ
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Using u=sin θ, du = cos θdθ:

16

3

∫ 1

0

(1− u2)du =
16

3
(u− u3

3
)|10

32

9

35.6.12 ∫∫∫
E

yzdV

Using the substitution r2 = x2 +y2 and tan θ = y/x, the bound z = a2−x2−y2
becomes z = a2−r2. The constraint that the region is in the first octant implies
0 ≤ θ ≤ π/2 and 0 ≤ r ≤ a. The Jacobian is, of course, J = r. Therefore, the
transformed integral is:∫ π/2

0

∫ a

0

∫ a2−r2

0

r(r sin θ)zdzdrdθ

(

∫ π/2

0

sin θdθ)(
1

2

∫ a

0

r2[z2]a
2−r2

0 dr)

1

2

∫ a

0

r2(a2 − r2)2dr

1

2

∫ a

0

r2(r4 − 2a2r2 + a4)dr

1

2

∫ a

0

(r6 − 2a2r4 + a4r2)dr

1

2
[
1

7
r7 − 2

5
a2r5 +

1

3
a4r3]a0

a7

2
(1/7− 2/5 + 1/3)

a7

2
(8/105)

4a7/105

35.6.13

The region is bounded above by the plane and below by the paraboloid. Rewrite
the paraboloid equation as z = 1

2r
2. The region of integration in the xy plane

is the disk of radius 2 (find the boundary by solving 2 = 1
2r

2). Then it follows
that 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π. The triple integral becomes∫ 2π

0

∫ 2

0

∫ 2

1
2 r

2

(r2)dz(r)drdθ →
∫ 2π

0

∫ 2

0

(
2r3 − 1

2
r5
)
drdθ →

∫ 2π

0

8

3
dθ =

16

3
π
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35.6.18

The spheres restrict ρ to be ρ ∈ [1, 2]. The restriction of the first octant makes
θ ∈ [0, π/2] and φ ∈ [0, π/2].

35.6.19

Make the substitution
x = ρ cos θ sinφ

y = ρ sin θ sinφ

z = ρ cosφ

Therefore, the bounds of the region E′ become:

x2 + y2 + z2 ≤ a2

0 ≤ ρ ≤ a

and
z2 ≤ 3(x2 + y2)

ρ2 cos2 φ ≤ 3ρ2 sin2 φ

tan2 φ ≤ 1/3

−1/
√

3 ≤ tanφ ≤ ±1/
√

3

−π/6 ≤ φ ≤ π/6

There are no bounds on θ, so 0 ≤ θ ≤ 2π. Therefore, E′ is the region such that:

0 ≤ ρ ≤ a

−π/6 ≤ φ ≤ π/6

0 ≤ θ ≤ 2π

35.6.20

The sphere indicates that ρ varies from 0 to a. Then the half planes (since
x ≥ 0) may be rewritten as

1

2
y =

√
3

2
x =⇒ cos(θ) =

1

2
=⇒ θ =

π

3
√

3

2
y =

1

2
x =⇒ sin(θ) =

1

2
=⇒ θ =

π

6

This means that π
6 ≤ θ ≤

π
3 . These half planes make it so that it intersects

a half arc of the greatest circle of the sphere of radius a. This means that φ
varies from 0 to π, since only half of the full circumference is traced out by the
intersection of the half planes and the sphere.
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35.6.21

Completing the square for z for the equation x2+y2+z2 = 4z gives the redefined
equation as x2 +y2 + (z−2)2 = 4, which is the equation for the sphere centered
at (0,0,2) with radius 2. This shape is similar to the shapes of r = a cos θ or
r = a sin θ in polar coordinates, where the sphere is ”sitting” on top of one of
the axes and that the origin lies on the surface. As a result, one can think of
this shape taking a similar form in spherical coordinates:

ρ = a cos θ

especially since z = ρ cos θ. As a result, we get that ρ is bounded by ρ ∈
[0, 4 cos θ]. Since the polar angle goes through the entire surface, it has its
natural range as its bound. However, for the azimuthal angle, φ, the sphere
never goes below the xy-plane, restricting it to φ ∈ [0, π/2].

35.6.22 ∫∫∫
E

(x2 + y2 + z2)3dV

Make the typical spherical coordinate substitution x = ρ cos θ sinφ, y = ρ sin θ sinφ,
z = ρ cosφ. The Jacobian is, as always, J = ρ2 sinφ. If region E is the sphere
with radius a, then the bounds of the integral are 0 ≤ ρ ≤ a, 0 ≤ θ ≤ 2π,
0 ≤ φ ≤ π. Therefore, the transformed integral is:∫ a

0

∫ 2π

0

∫ π

0

(ρ2 sinφ)(ρ6)dφdθdρ

= (

∫ a

0

ρ8dρ)(

∫ 2π

0

dθ)(

∫ π

0

sinφdφ)

= (a9/9)(2π)(2)

=
4

9
πa9

35.6.23

Give x = ρ cos(φ), y = ρ sin(φ) cos(θ), and z = ρ sin(φ) sin(θ), where φ is the
angle from the x axis outwards and θ is the angle swept from the positive y axis
around towards the positive z axis. Also give r =

√
y2 + z2 Then x =

√
1− r2

and x =
√

4− r2 are the hemispheres, of radius 1 and 2 respectively. So 1 ≤
ρ ≤ 2. Then since these are positive hemispheres, they stop forming the rest of
the sphere where x is negative. So φ varies from 0 to π

2 . And conveniently since
the hemispheres are fully formed about the x axis, θ takes on its natural range.

The triple integral becomes∫ 2π

0

∫ π
2

0

∫ 2

1

(ρ sin(φ) cos(θ))
2 (
ρ2 sin(φ)

)
dρdφdθ

82



→
(∫ 2π

0

cos2(θ)dθ

)(∫ π
2

0

sin3(φ)dφ

)(∫ 2

1

ρ4dρ

)

→ (π)

(
2

3

)(
31

5

)
=

62

15
π

35.6.24 ∫∫∫
E

xyzdV

The spheres given restrict ρ so that ρ ∈ [1, 2]. Additionally, since both spheres
and cones are independent of the polar angle, θ takes its natural range of θ ∈
[−π, π]. Finally, for φ, solving the equation for the cone in terms of the angle
it makes with the z-axis gives the angle to be tan− 1( 1√

3
, or π/6, making φ ∈

[0, π/6]. The iterated integral then becomes:∫∫∫
E

xyzρ2 sinφdV ′

∫∫∫
E

ρ5 sin3 φ cosφ sin θ cos θdV ′

Since the region E is a rectangular prism, Fubini’s theorem applies:∫ 2

1

ρ5dρ

∫ π/6

0

sin3 φ cosφdφ

∫ π

−π
cos θ sin θdθ

The last integral is odd over its range, making the entire integral 0.

35.6.25 ∫∫∫
E

zdV

Make the typical spherical coordinate substitution x = ρ cos θ sinφ, y = ρ sin θ sinφ,
z = ρ cosφ. The Jacobian is, as always, J = ρ2 sinφ. The region E is bounded
by x2+y2+z2 = ρ2 ≤ 1 and z ≤

√
3x2 + 3y2 → ρ cosφ ≤

√
3ρ sinφ→ φ ≥ π/6.

Therefore, the transformed integral is:∫ 1

0

∫ 2π

0

∫ π

π/6

(ρ2 sinφ)(ρ cosφ)dφdθdρ

= (

∫ 1

0

ρ3dρ)(

∫ 2π

0

dθ)(

∫ π

π/6

cosφ sinφdφ)

= (
1

4
)(2π)(

1

2
[sin2 φ]ππ/6)

−π/16
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35.6.30

Form these three inequalities directly from the bounds of integration:

0 ≤ ρ ≤ 2

cos(φ)
→ 0 ≤ z ≤ 2

0 ≤ φ ≤ π

4
→ z = r is a conical boundary

0 ≤ θ ≤ π

2

From these we can deduce that the solid region is the part of the cone
in the first octant that is bounded below by z = r and above by z = 2 for
r =

√
x2 + y2. The region of integration in the xy plane is quickly found to

be the disk of radius 2 (since z=r=2). The triple integral for the volume in
cylindrical coordinates is given below:∫ π

2

0

∫ 2

0

∫ 2

r

dz(r)drdθ →
∫ π

2

0

∫ 2

0

(2r − r2)drdθ →
∫ π

2

0

4

3
dθ =

2

3
π

35.6.32

Cylindrical solution:
The equations z=0 and z = x2+y2 easily translate into cylindrical bounds for z,
being z ∈ [0, r2], using the fact that x2 +y2 = r2 in polar. The line y=x bounds
the polar angle to θ ∈ [0, π/4], as tan− 1(1) = π/4. That leaves the restriction
on the radius. There is no lower bound for the radius defined in the equations,
so its lower bound is its natural lower bound, 0. Its upper bound is defined by
the line x=1. Solving this equation for r in polar form gives the equation:

r cos θ = 1 =⇒ r = sec θ

. Therefore, the iterated integral becomes:∫ π/4

0

∫ sec θ

0

∫ r2

0

f(r2 + z2)rdzdrdθ

36.6 Exercises

36.6.1

This is fairly direct.

J =

∣∣∣∣det

x′u x′v x′w
y′u y′v y′w
z′u z′v z′w

∣∣∣∣ =

∣∣∣∣ det


1
v − u

v2 0

0 1
w − v

w2

− w
u2 0 1

u


∣∣∣∣ = 0
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36.6.2

The Jacobian is defined as:∣∣∣∣∣∣
x′u x′v x′w
y′u y′v y′w
z′u z′v z′w

∣∣∣∣∣∣ =

∣∣∣∣∣∣
0 1 2w

2u 0 1
1 2v 0

∣∣∣∣∣∣
0− (−1) + 2w(4uv)

8uvw + 1

36.6.3

The Jacobian J(u, v, w) is generally given by:

J(u, v, w) = |det

x′u x′v x′w
y′u y′v y′w
z′u z′v z′w

|
For the substitution x = uv cosw, y = uv sinw, z = (u2 − v2)/2:

J(u, v, w) = |det

v cosw u cosw −uv sinw
v sinw u sinw uv cosw
u −v 0

 |
By row operations:

= |det

 0 −v u
uv cosw u sinw v sinw
−uv sinw u cosw v cosw

 |
= v(uv2 cos2 w + uv2 sin2 w) + u(u2v cos2 w + u2v sin2 w)

= v(uv2) + u(u2v)

= uv3 + u3v

36.6.6

First change the variables to find that u+v+w ≤ a, which is the region under a
plane that intersects the u, v, and w axes at a (meaning the points are (0, 0, a),
(0, a, 0), (a, 0, 0)). It is easiest to give the bounds in a vertically simple manner,
meaning to start with 0 ≤ w ≤ a − u − v. Then to find the bounds in v we
may give the line where the plane intersects with the uv plane as v = 5− u, so
evidently 0 ≤ v ≤ a− u. And u will then vary from 0 to a.

Then we compute the Jacobian as follows for dxdy = Jdudv. We must
rewrite the equations given into x = u2, y = v2, and z = w2. Then:

J =

∣∣∣∣ det

2u 0 0
0 2v 0
0 0 2w

∣∣∣∣ = 8uvw
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Then the triple integral becomes∫ a

0

∫ a−u

0

∫ a−u−v

0

(8uvw)dwdvdu

→
∫ a

0

4u

∫ a−u

0

(a2v − 2auv + u2v − 2av2 + 2uv2 + v3)dvdu

1

3

∫ a

0

u(a− u)4du =
1

90
a6

It may be helpful to use auxiliary substitutions for the later integrals.

36.6.7

We want to integrate
∫∫∫

E
dV where E is the surface generated by (x/a)2/3 +

(y/b)2/3 + (z/c)2/3. The most apparent change of variables to simplify this is:

u = (x/a)1/3 v = (y/b)1/3 w = (z/c)1/3

The Jacobian of this is easier to calculate after solving for the inverse of each
equation, giving: ∣∣∣∣∣∣

3au2 0 0
0 3bv2 0
0 0 3cw2

∣∣∣∣∣∣ = 9abcu2v2w2

. The resulting integral then becomes:∫∫∫
E′

9abcu2v2w2dV ′

The region that is being integrated over also now becomes the unit sphere
u2 + v2 + w2 = 1. As a result, it is easier, though maybe a little more work, to
convert again into polar coordinates, making the integral:

9abc

∫ 2π

0

∫ π

0

∫ 1

0

(ρ cosφ)2(ρ sinφ cos θ)2(ρ sinφ sin θ)2ρ2 sinφdρdφdθ

9abc

∫ 2π

0

sin2 θ cos2 θdθ

∫ π

0

sin3 φ cos4 φdφ

∫ 1

0

ρ8dρ

The integral with respect to ρ becomes 1/9. For the integral with respect to φ,
let u1 = cosφ =⇒ du1 = − sinφdφ. This makes the integral:

−
∫ −1
1

(1− u21)(u41)du1 = 2

∫ 1

0

u41 − u61

4

35
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For the integral w.r.t θ, we can use the double-angle and power reduction trig
identities to make the integral easier to compute:∫ 2π

0

(
1

2
sin 2θ)2dθ =

1

4

∫ 2π

0

sin2 θdθ =
1

8

∫ 2π

0

1− cos 4θdθ

π

4

Put all together, the integral evaluates to:

π

32
abc

36.6.8

(x/a)1/3 + (y/b)1/3 + (z/c)1/3 = 1

Consider the substitution u = (x/a)1/3, v = (y/b)1/3, w = (z/c)1/3 or equiva-
lently x = au3, y = bv3, z = cw3. This gives a Jacobian of:

J(u, v, w) = |det

x′u x′v x′w
y′u y′v y′w
z′u z′v z′w

|
= |det

3au2 0 0
0 3bv2 0
0 0 3cw2

|
= 27abcu2v2w2

The volume of the solid is therefore:∫∫∫
E

dV = 27abc

∫ 1

0

∫ 1−u

0

∫ 1−u−v

0

u2v2w2dwdvdu

= 9abc

∫ 1

0

∫ 1−u

0

∫ 1−u−v

0

u2v2(1− u− v)3dvdu

= 9abc

∫ 1

0

u2
∫ 1−u

0

v2(1− u− v)3dvdu

Make the substitution t = 1 − u − v, dt = −dv or equivalently v = 1 − u − t,
dv = −dt

= 9abc

∫ 1

0

u2
∫ 1−u

0

t3(1− u− t)2dtdu

= 9abc

∫ 1

0

u2
∫ 1−u

0

t3(1 + u2 + t2 − 2u− 2t+ 2ut)dtdu

= 9abc

∫ 1

0

u2
∫ 1−u

0

((1− 2u+ u2)t3 + (2u− 2)t4 + t5)dtdu
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= 9abc

∫ 1

0

u2(
1

4
(1− u)6 − 2

5
(1− u)6 +

1

6
(1− u)6)du

=
3

20
abc

∫ 1

0

u2(1− u)6du

Make the substitution s = 1−u, ds = −du or equivalently u = 1−s, du = −ds:

=
3

20
abc

∫ 1

0

s6(1− s)2ds

=
3

20
abc

∫ 1

0

(s8 − 2s7 + s6)ds

=
3

20
abc(1/9− 1/4 + 1/7)

=
3

20
abc(1/252)

=
1

(20)(84)
abc

= abc/1680

36.6.13

From the bounds give u = x
3 , v = y

2 , and w = z. The Jacobian is given by 1
J

where J is given by

J =

∣∣∣∣det


1
3 0 0

0 1
2 0

0 0 1


∣∣∣∣ =

1

6

The bound given by the paraboloid remains a paraboloid, but it becomes a
circular paraboloid w = u2 +v2 that intersects with the same plane z = w = 10.
Call this region E′.

The triple integral after substitution becomes

216

∫∫∫
E′

(u2 − v2)dA′

However, notice that there is symmetry of both the integrand (skew symme-
try) and the region of integration (geometric symmetry) across the line u = v,
so we may apply the transformation (u, v, w) → (v, u, w) to find that the sign
of the integral will flip and so the integral vanishes.
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36.6.14

For this problem, it is helpful to note that the triple product ~a·(~b×~c) is the same

as

∣∣∣∣∣∣
~a
~b
~c

∣∣∣∣∣∣ where a, b, c are all horizontal vectors. If we were to take the derivative

w.r.t x, you would see that it would simply be the vector a, and likewise for
b and c. As a result, the Jacobian of the transformation would simply be the
triple product, which was defined as 1.

36.6.15

Let ~a = 〈a1, a2, a3〉, ~b = 〈b1, b2, b3〉, ~c = 〈c1, c2, c3〉. Substitute:

u = ~a · ~r = a1x+ a2y + a3z

v = ~b · ~r = b1x+ b2y + b3z

w = ~c · ~r = c1x+ c2y + c3z

The resulting Jacobian is:

J(u, v, w) = |det

u′x u′y u′z
v′x v′y v′z
w′x w′y w′z

|−1

= |det

a1 a2 a3
b1 b2 b3
c1 c2 c3

|−1
There is no need to calculate this Jacobian by hand because we recognize the
determinant as the scalar triple product ~a · (~b× ~c).

J(u, v, w) =
1

|~a · (~b× ~c)|

The transformed integral is:∫∫∫
E

(~a · ~r)(~b · ~r)(~c · ~r)dV

=
1

|~a · (~b× ~c)|

∫ α

0

∫ β

0

∫ γ

0

(uvw)dwdvdu

=
1

|~a · (~b× ~c)|

∫ α

0

udu

∫ β

0

vdv

∫ γ

0

wdw

=
1

|~a · (~b× ~c)|
(α2/2)(β2/2)(γ2/2)

=
1

8|~a · (~b× ~c)|
α2β2γ2
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38.3 Exercises

38.3.1

First we need to find out the parameterization for C. So give x = 2 cos(t) and
y = 2 sin(t), but in order to ensure that x remains nonnegative and we only
trace out a half circle, we give the parameter the range t ∈ [−π2 ,

π
2 ].

The arclength element ds for this problem is
√

(−2 sin(t))2 + (2 cos(t))2dt =
2dt (this parameterization is a natural one). So then we may substitute in the
line integral like so:

16

∫ π
2

−π2
sin2(t) cos(t)dt =

32

3

38.3.2

Recall that a line segment with initial point ~r0 and terminal point ~r1 are most
easily parameterized as ~r(t) = (1−t)~r0+t~r1, for 0 ≤ t ≤ 1. Apply this definition
to the line segment given in the problem to find that ~r(t) = 〈bt, (1− t)a〉, for t
in that same interval as before. Then find ds:

ds =
√

(−a)2 + (b)2 =
√
a2 + b2

Then the integral becomes∫
C

x sin(y)ds→
√
a2 + b2

∫ 1

0

bt sin((1− t)a)dt

Give u = 1− t so that t = 1− u and du = −dt. Change the bounds as well
(they actually remain unchanged):√

a2 + b2
∫ 1

0

(1− u)b sin(au)du→
√
a2 + b2

∫ 1

0

(b sin(au)− bu sin(au)) du

=
b

a

√
a2 + b2

[
1− sin(a)

a

]
38.3.3 ∫

C

xyzds

given that C is parameterized by ~r(t) = 〈2 cos t, t,−2 sin t〉 on t ∈ [0, π].

Recall that ds/dt = |~r′(t)| → ds = |~r′(t)|dt. We can calculate:

|~r′(t)| = |〈2 cos t, t,−2 sin t〉′| = |〈−2 sin t, 1,−2 cos t〉| =
√

5

Using this information, we can transform the integral to:∫ π

0

(2 cos t)(t)(−2 sin t)(
√

5)dt
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= −2
√

5

∫ π

0

t sin(2t)dt

Integrate by parts.

= −2
√

5[−t cos(2t)/2 + sin(2t)/4]π0

= −2
√

5(−π/2)

= π
√

5

38.3.4

We are given the parameterization for the curve C from the get go, and it is
easy to deduce that the range of t is from 0 to 1. Then the arclength element
ds is given by

√
(1)2 + (2t)2 + (3t2)2dt =

√
9t4 + 4t2 + 1dt.

Substitute into the line integral and resolve:∫ 1

0

(2t+ 9t3)(
√

9t4 + 4t2 + 1)dt→ 1

4

∫ 14

1

√
udu =

1

6

(
14

3
2 − 1

)
38.3.5 ∫

C

zds

c is the intersection between z = x2+y2 and z=4. Combining these bounds gives
us that c is the circle defined by 4 = x2 + y2, which can then be paramaterized
to x = 2 cos t, y = 2 sin t. The integral then becomes:∫ 2π

0

4
√

4 cos2 +4 sin2dt =

∫ 2π

0

8dt

16π

38.3.9 ∫
C

xyds

given that C is parameterized by ~r(t) = 〈a sinh t, a cosh t, 〉 on t ∈ [0, T ].

Recall that ds/dt = |~r′(t)| → ds = |~r′(t)|dt. We can calculate:

|~r′(t)| = |〈a sinh t, a cosh t〉′| = |〈a cosh t, a sinh t〉| = a
√

cosh2 t+ sinh2 t = a
√

cosh(2t)

Using this information, we can transform the integral to:∫ T

0

(a sinh t)(a cosh t)(a
√

cosh(2t))dt
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=
1

2
a3
∫ T

0

sinh(2t)
√

cosh(2t)dt

Make the substitution u = cosh(2t)→ du = 2 sinh(2t)dt.

=
1

4
a3
∫ cosh(2T )

1

√
udu

=
1

6
a3[u3/2]

cosh(2T )
1

=
1

6
a3(cosh(2T )

3/2 − 1)

38.3.18

We seek to take a line integral over the path given by an arc of the parabola in
the problem where the integrand is the linear mass density.

Give t = y and x = t2

2a . Since 0 ≤ t2

2a ≤
a
2 (from substitution) it is ap-

parent that −a ≤ t ≤ a. Find the arclength element ds as

√
(1)2 +

(
t
a

)2
dt =

1
a

√
a2 + t2. Then we may substitute to find the following:

1

a

∫ a

−a
|t|
√
a2 + t2dt→ 1

a

∫ 2a2

a2
u

1
2 du =

2

3
a2(2
√

2− 1)

The evaluation of the integral may be done in the piecewise manner or by
symmetry (and substitution) as above.

38.3.19

The mass of the string can be evaluated as:∫ 1

0

σ(~r(t))||~r′(t)||dt

given ~r(t) = 〈at, at
2

2 ,
at3

3 〉. Substituting this in gives the integral as∫ 1

0

t
√
a2 + a2t2 + a2t4dt

Using the substitution of t2 = u, this becomes:

a/2

∫ 1

0

√
1 + u+ u2du

a/2

∫ 1

0

√
(u+ 1/2)2 + 3/4du
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After the transformations v=u+1/2 and z= 2√
3
v, which are done to simplify the

u+1/2 term and make the constant 1 respectively, becomes:

a/2

∫ √3

1/
√
3

√
z2 + 1dz

One can then do a trig substitution, where
√
z2 + 1 is the hypotenuse, z is the

length of the far side, and 1 is the length of the near side. The substitution is
then tan θ = z =⇒ sec2 θdθ = dz. The integral then becomes:

a/2

∫ π/3

π/6

sec3 θdθ

a/4(sec θ tan θ + ln(sec θ + tan θ))|π/3π/6

a/4(2
√

3 + ln
(

2 +
√

3
)
− 2

3
− ln
√

3)

39.5 Exercises

39.5.1

Give the equation of this plane as abz + acy + bcx = abc, or otherwise z =
c− c

by −
c
ax. Then find the surface area element dS by finding

dS =

√
1 +

(
− c
a

)2
+
(
−c
b

)2
dA =

√
1 +

c2

a2
+
c2

b2
dA

where dA is the rectangular area element within the triangle whose vertices are
(0, 0), (0, b), and (a, 0). We can give the integration region here by bounding
x from 0 to a and giving the curves in y to be from 0 to b − b

ax. The double
integral becomes∫ a

0

∫ b− bax

0

√
1 +

c2

a2
+
c2

b2
dydx→

∫ a

0

(b− b

a
x)

√
1 +

c2

a2
+
c2

b2
dx

=
1

2

√
a2b2 + b2c2 + a2c2

39.5.2 ∫∫
D

dS

where S is the surface given by the equations x2 + y2 = 4 and z + 3x+ 2y = 1.
We can then set the region D to be the circle and the surface to be defined as
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z = 1− 3x− 2y. The integral becomes, after converting to polar because of the
circle: ∫ 2π

0

∫ 2

0

√
1 + 9 + 4rdrdθ

2π
√

14r2/2|20
4π
√

14

39.5.3

Recall the general formula for the surface area:∫∫
D

√
1 + (g′x)2 + (g′y)2dA

Here, g(x, y) = y2 − x2, g′x = −2x, and g′y = 2y.

=

∫∫
D

√
1 + 4x2 + 4y2dA

Given the bounds x2 + y2 = 1 and x2 + y2 = 4, it is easiest to convert the
integral to polar coordinates.∫ 2π

0

∫ 2

1

r
√

1 + 4r2drdθ

= 2π

∫ 2

1

r
√

1 + 4r2dr

Make the substitution u = 1 + 4r2, du = 8rdr.

π

4

∫ 17

5

√
udu

π

6
[u3/2]175

π

6
(173/2 − 53/2)

39.5.4

We are already given the equation for the surface. To find the area of integra-
tion it is sufficient to equate the two values of z given for the planes with the
paraboloid expression and find that the region is an annulus of inner radius 1
and outer radius 3, where θ takes on the natural range (we will be using polar
coordinates).

To find the surface area elements dS find

dS =
√

1 + (−2x)2 + (2y)2dA =
√

1 + 4r2dA

Then the double integral is given in the polar form:∫ 2π

0

∫ 3

1

√
1− 4r2rdrdθ → π

4

∫ 37

5

√
udu =

π

6

(
37

3
2 − 5

3
2

)
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39.5.5

Since the surface given by y = 4x+z2 is already defined in terms of y, we can just
leave it at that and set the region D to be in terms of x and z. The triangular
region, when integrating in the order of dx dz, is given by x ∈ [0, z], z ∈ [0, 1].
The integral then becomes:∫ 1

0

∫ z

0

√
1 + 16 + 4z2dxdz

∫ 1

0

z
√

17 + 4z2

1/8

∫ 21

17

√
udu

1

8

2

3
(213/2 − 173/2)

1

12
(213/2 − 173/2)

39.5.6

Recall the general formula for the surface integral:∫∫
S

f(x, y, z)dS =

∫∫
D

f(x, y, g(x, y))
√

1 + (g′x)2 + (g′y)2dA

We can rearrange the equation x + y + z = 1 to z = g(x, y) = 1 − x − y. The
partial derivatives:

g′x = −1

g′y = −1

Therefore, the Jacobian is:

J =
√

1 + (−1)2 + (−1)2

=
√

3

Finally, the bounds of the integral are x ∈ [0, 1] and y ∈ [0, 1− x] because this
will make x,y non-negative and z = g(x, y) = 1 − x − y non-negative. The
transformed integral is: ∫ 1

0

∫ 1−x

0

y(1− x− y)
√

3dydx

=
√

3

∫ 1

0

∫ 1−x

0

y − xy − y2dydx
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=
√

3

∫ 1

0

[y2/2− xy2/2− y3/3]1−x0 dx

=
√

3

∫ 1

0

((1− x)2/2− x(1− x)2/2− (1− x)3/3)dx

Expand and integrate to yield:

=
√

3(1/24)

=
√

3/12

39.5.7

Like before to find the region of integration simply equate the given values of z
for the planes to the cone expression to find that the region of integration is the
annulus of inner radius 1 and outer radius 2. It is also seen that θ ranges from
0 to 2π. We will be using polar coordinates to evaluate this surface integral.

Then the surface area element dS is found as:

dS =

√√√√1 +

(
x√

x2 + y2

)2

+

(
y√

x2 + y2

)2

dA

=

√
1 +

(
r cos(θ)

r

)2

+

(
r sin(θ)

r

)2

dA =
√

2dA

After writing everything in polar coordinates, noting that z = r due to S
being a part of a cone, the double integral becomes:

√
2

∫ 2π

0

∫ 2

1

(r)r4 cos2(θ)drdθ → 2√
2

(∫ 2π

0

cos2(θ)dθ

)(∫ 2

1

r5dr

)

=
21π√

2

39.5.8 ∫∫
S

xydS

Where S is the surface defined by the cylinder y2+z2 = 1 bounded by the planes
x=0 and x+y=3. Notice that for this entire surface, it is symmetrical over the
transformation (x, y, z) =⇒ (x, y,−z), while the integrand is skew symmetric
over this transformation. As a result, this integral evaluates to 0.
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39.5.9

Recall the general formula for the surface integral:∫∫
S

f(x, y, z)dS =

∫∫
D

f(x, y, g(x, y))
√

1 + (g′x)2 + (g′y)2dA

We can rearrange the equation the equation x2 + y2 + z2 = 2 to z = g(x, y) =√
2− x2 − y2. The partial derivatives are:

g′x =
−x√

2− x2 − y2

g′y =
−y√

2− x2 − y2

Therefore, the Jacobian is:

J =
√

1 + (g′x)2 + (g′y)2 =
√

2/(2− x2 − y2)

Using this information, we find the transformed integral is:∫∫
D

√
2− x2 − y2(

√
2/
√

2− x2 − y2)dA

=

∫∫
D

√
2dA

Given the bound z =
√

2− x2 − y2 = 1, it is easiest to convert to polar coordi-

nates. z =
√

2− x2 − y2 = 1 when r = 1 and z > 1 when 0 ≤ r < 1. Therefore,
the integral becomes: ∫ 2π

0

∫ 1

0

r
√

2drdθ

2π
√

2

∫ 1

0

rdr

= π
√

2

39.5.10

Find the surface area element dS as:

dS =
√

1 + 4(x2 + y2)dA

where dA is an area element over the portion of the unit disk in the first octant
(since the paraboloid forms the unit circle as the boundary of the disk at z = 0).
Then rewrite the double integral as∫∫

S

(1− x2 − y2)(sin
(
x2
)
− sin

(
y2
)
)
√

1− 4(x2 + y2)dA
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Notice that the integral exhibits skew symmetry as the integrand switches
sign completely (due to the trigonometric terms) if we apply the transformation
(x, y) → (y, x), otherwise a reflection over x = y. Note that the region of
integration is symmetric across this line as well and hence the integral vanishes.

41.6 Exercises

41.6.1

Evidently it seems like the vector field involves motion that diverges from the
origin. After drawing the vector field it is possible to draw flow lines by just
tracing out the direction but it may be more enlightening to find an equation
that models a flow line.

Since the vectors in the vector field are always going to be tangent to these
flow line curves, we can find the following system of differential equations:

x′t = ax, y′t = by

We can avoid having to find the actual trajectory of any particles put in the
vector field by combining the system into one single differential equation like so:

dy

dx
=
by

ax
→ y = C(±x)

b
a

The explicit form here does not give us direction, but we already know the
direction given by the vector field itself (outwards from the origin).

The exercise does not ask us to do this (since this process involves some un-
motivated elementary differential equations theory) but it is helpful to compare
with a given solution.

41.6.2

To create this vector field, simply graph the given vector centered at the point
given. Evidently, the vector field tends to go towards the line y=x, where the
first quadrant goes towards (x, y) → (∞,∞) and the third quadrant (x, y) →
(−∞,−∞). An image of the vector field where a and b are 1 is shown below.
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41.6.3

The flow lines appear to be parabolas (or degenerate lines through the origin)
through the origin. This can be found by sketching a graph of the vector field
F or by solving the differential equation dy

dx = bx
ay . The lines flow in the +x

direction if y is positive and vice versa. The lines flow in the −y direction if x
is positive and vice versa.

41.6.10

F = ∇‖r‖ = 〈 x√
x2 + y2 + z2

,
y√

x2 + y2 + z2
,

z√
x2 + y2 + z2

〉

= 〈 x
‖r‖

,
y

‖r‖
,
z

‖r‖
〉

By sketching the vector field, we find the flow lines are straight lines through
the origin. Because each component of the vector field is positive, the flow lines
point away from the origin.

41.6.4

The gradient is 〈
−y
r2
,
x

r2

〉
Notice that this gradient is like one we have seen before in that the motion

is circular in the counterclockwise direction, except here the magnitudes of the
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tangent vectors to these circles shrinks with respect to squared distance from
the origin.

It is also enlightening to interpret this gradient as the direction of greatest
ascent of the function u at points on the domain (x, y). The function u in this
problem represents the polar angle from transformations from the rectangular
coordinate system to the polar coordinate system. Using this knowledge and a
visual of the vector (or gradient) field, it is apparent that flow lines are circles
oriented counterclockwise (as that is how the polar angle itself increases the
most, assuming we take the appropriate branches of arctangent throughout
motion in the path).

41.6.9

It may be helpful to think about that if one were to take planar slices of the
vector field parallel to the xy-plane, that each would be identical. Additionally,
the trajectory ¡y, -x¿ in the xy-plane is always going to be normal to the line
y=x. As a result, the vector field will create circular flowing regions. An image
of it can be seen below.
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41.6.11

The gradient is 〈
− x

||~r||3
,− y

||~r||3
,− z

||~r||3

〉
It may be useful to consider that level sets of the function we took the

gradient of are spheres, and the gradient is always going to be perpendicular to
these spheres. Evidently paths are given by straight lines towards the origin.

41.6.16

Each point on the ball has the same angular speed, that is, they all go through
the same number of radians per second. As a result, the linear speed for any
point on the circle is simply the radius of its rotation multiplied by ω, since
the arc-length of a sector of a circle is θ · radius. Additionally, the radius of
rotation is the length of the vector between the point defined by r and the axis
of rotation. The direction of motion is normal to the vector between r(t) and
the axis of rotation and normal to ~n. We can then take this information and
create a velocity function, ~v(r). The vector between r and the axis of rotation
can be defined as the perpendicular component of r onto ~n.
Projection of r onto ~n:

~n(~n · r)

Perpendicular component:
r− ~n(~n · r)

The linear speed is then |~r−~n(~n ·r)|. The direction of motion is normal to both
the radius vector and axis of rotation, which is parallel to:

~n× (r− ~n(~n · r))

~n× r− (~n · r)~n× ~n

~n× r

As a result, the function ~v(r) is then:

ω
||r− ~n(~n · r)||
||~n× r||

~n× r

41.6.17

F = 〈y, xy, 0〉

and C is parameterized by:

r(t) = 〈t2, t3, 0〉
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for 0 ≤ t ≤ 1.
The line integral of F over the curve C is given by:∫

C

F(r) · dr =

∫ t1

t0

F(r(t)) · r′(t)dt

Particularly for this problem:∫ 1

0

〈t3, t5, 0〉 · 〈2t, 3t2, 0〉dt

=

∫ 1

0

(2t4 + 3t7)dt

=
2

5
+

3

8

31/40

41.6.18

Give the path as ~r(t) = 〈a cos(t), b sin(t), 0〉 for 0 ≤ t < 2π. This path is oriented
counterclockwise, so in order to do the integral just throw an extra negative sign
in front. Then:

−
∮
C

~F · d~r → −
∫ 2π

0

~F (~r(t)) · ~r ′(t)dt→

−
∫ 2π

0

〈0, ab cos(t) sin(t), 0〉 · 〈−a sin(t), b cos(t), 0〉dt

→ −ab2
∫ 2π

0

cos2(t) sin(t)dt = 0

41.6.19 ∫
C

~F · d~r

Given that ~F = 〈z, yx, zy〉 and ~r(t) = 〈2t, t+ t2, 1 + t3〉, and the integral ranges
from (-2,0,0) to (2,2,2), the integral becomes:∫ 1

−1
〈1 + t3, 2t2 + 2t3, t+ t2 + t4 + t5〉 · 〈2, 1 + 2t, 3t3〉dt

∫ 1

−1
2 + 2t3 + 2t2 + 2t3 + 4t3 + 4t4 + 3t3 + 3t4 + 3t6 + 3t7dt

Because of symmetry, the integral becomes:

2

∫ 1

0

2 + 2t2 + 7t4 + 3t6dt

2(2 + 2/3 + 7/5 + 3/7) =
944
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41.6.20

F = 〈−y, x, z〉

and C is the boundary of the part of the paraboloid z = a2−x2−y2 in the first
octant.
The boundary of the paraboloid C consists of three separate curves C1, C2, C3,
where one of x, y, z is uniformly zero. Plugging in zero and finding simple
parameterizations of these curves yields:

C1: r1(t) = 〈t, 0, a2 − t2〉, 0→ t→ t

C3: r2(t) = 〈a cos t, a sin t, 0〉, 0→ t→ π/2

C3: r3(t) = 〈0, t, a2 − t2〉, a→ t→ 0

Note the a→ t→ 0 in C3 is opposite that of C1 to maintain the counterclockwise
direction of C. The integral of F over C is given by:∫

C

F(r) · dr =

∫
C1

F(r) · dr +

∫
C2

F(r) · dr +

∫
C3

F(r) · dr

=

∫ a

0

〈0, t, a2 − t2〉 · 〈1, 0,−2t〉dt

+

∫ π/2

0

〈−a sin t, a cos t, 0〉 · 〈−a sin t, a cos t, 0〉dt

+

∫ 0

a

〈−t, 0, a2 − t2〉 · 〈0, 1,−2t〉dt

=

∫ a

0

2t(t2 − a2)dt+ a2
∫ π/2

0

dt+

∫ 0

a

2t(t2 − a2)dt

By basic integral properties, the first and third integrals cancel out. This leaves:

a2
∫ π/2

0

dt

= πa2/2

41.6.21

Parameterize the boundary as three curves (the boundary is piecewise contin-
uous); give C1 = 〈a cos(t), a sin(t), 0〉, C2 = 〈0, a cos(t), a sin(t)〉, and C3 =
〈a sin(t), 0, a cos(t)〉. These curves are in the positive (counterclockwise) sense,
so we must negate the integrals that are taken on these curves. For each curve
0 ≤ t < π

2 . Then the line integral (by the additivity of Riemann integration)
becomes:∮

C

~F · d~r =

(
−
∫
C1

~F · d~r
)

+

(
−
∫
C2

~F · d~r
)

+

(
−
∫
C3

~F · d~r
)
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Consider each integral:

−
∫
C1

~F · d~r = −
∫ π

2

0

〈0, 0, a cos(t)〉 · 〈−a sin(t), a cos(t), 0〉dt = 0

−
∫
C2

~F · d~r = −
∫ π

2

0

〈−a sin(t), 0, 0〉 · 〈0,−a sin(t), a cos(t)〉dt = 0

−
∫
C3

~F · d~r = −
∫ π

2

0

〈−a cos(t), 0, a sin(t)〉 · 〈a cos(t), 0,−a sin(t)〉dt = . . .

The last integral is all we have to evaluate. Find that it is

a2
∫ π

2

0

1dt =
π

2
a2

41.6.22

We can define the curve as ~r(t) = r1 + (r2 − r1)t. This makes the integral:∫ 1

0

(a× (r1 + (r2 − r1)t) · (r2 − r1)dt

Using the distributive properties of the cross product this becomes:∫ 1

0

((1− t)a× r1 + ta× r2) · (r2 − r1)dt

Then distributing the dot product and cancelling anything that is multiplied by
itself makes the integral:∫ 1

0

(1− t)r2 · a× r1 − (t)r1 · a× r2dt

Since all of r1, a, r2 are constants, we can integrate like normal and get

(t− t2/2)|10r2 · a× r1 − (t2/2)|10r1 · a× r2

(1/2)r2 · a× r1 − (1/2)r1 · a× r2
r2 · a× r1

41.6.23

F = 〈y sin z, z sinx, x sin y〉

and C is parameterized by:

r(t) = 〈cos t, sin t, sin(5t)〉
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for 0 ≤ t ≤ 2π.
The line integral of F over the curve C is given by:∫

C

F(r) · dr =

∫ t1

t0

F(r(t)) · r′(t)dt

Particularly for this problem:∫ 2π

0

〈sin(t) sin(sin(5t)), sin(5t) sin(cos(t)), cos(t) sin(sin(t))〉·〈− sin t, cos t, 5 cos(5t)〉dt

= −
∫ 2π

0

sin2(t) sin(sin(5t))dt

+

∫ 2π

0

sin(5t) cos(t) sin(cos(t))dt

+

∫ 2π

0

5 cos(5t) cos(t) sin(sin(t))dt

Consider the substitution t = u+ π, dt = du:

=

∫ π

−π
sin2(u+ π) sin(sin(5(u+ π)))du

+

∫ π

−π
sin(5(u+ π)) cos(u+ π) sin(cos(u+ π))du

+

∫ π

−π
5 cos(5(u+ π)) cos(u+ π) sin(sin(u+ π))du

All three integrals now have odd interands with symmetric bounds, so each of
them cancels to 0.

= 0

41.6.24

From the surfaces given we can parameterize the curve in steps. First give
x = cos(t) and z = sin(t). Give the bounds in t as 0 ≤ t ≤ 2π (full period
since the plane does not cut the path short). Then using the equation for the
plane find that y = 1− cos(t)− sin(t). The integral (which is rather long in this
presentation) becomes: ∫

C

~F · d~r

=

∫ π

−π

〈
1− sin(t)− cos(t),− cos(t) sin(t), (1− sin(t)− cos(t))(cos2(t)+sin2(t))

〉
·〈− sin(t), sin(t)− cos(t), cos(t)〉dt
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After taking the dot product and simplifying, the integral becomes a linear
combination of sines and cosines of varying frequency, which when integrated
over any number of periods will return 0.

=

∫ 2π

0

(cos(t)− sin(t)− cos(2t) + cos2(t) sin(t)− sin2(t) cos(t))dt = 0

41.6.25

The intersection of the cone and sphere is a circle. With the restrictions z =√
x2 + y2 and x2 +y2 +z2 = 2, we get that z2 = x2 +y2 =⇒ 2z2 = 2 =⇒ z =

1. As a result, we get ~r(t) = 〈cos t, sin t, 1〉 in the counterclockwise direction.
~F (~r(t)) = 〈− sin t sinπ, cos t cosπ, esin t cos t〉. This makes the integral:∫ 2π

0

〈0,− cos t, esin t cos t〉 · 〈− sin t, cos t, 0〉dt

∫ 2π

0

0− cos2 t+ 0dt

−1/2

∫ 2π

0

(1 + cos 2t)dt

−π

42.6 Exercises

42.6.1

? The curl of a vector field ~F = 〈F1, F2, F3〉 is given by the following formal
determinant:

∇× ~F = det

 ê1 ê2 ê3
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3


Using this definition we may compute the curl of the vector field ~F =

〈xyz,−y2x, 0〉:

∇× ~F = det


ê1 ê2 ê3

∂
∂x

∂
∂y

∂
∂z

xyz −y2x 0

 = 〈0, xy,−y2 − xz〉
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42.6.2

Curl of the vector field 〈cos(xz), sin(yz), 2〉 is∣∣∣∣∣∣∣∣∣∣
ê1 ê2 ê3

∂
∂x

∂
∂y

∂
∂z

cos(xz) sin(yz) 2

∣∣∣∣∣∣∣∣∣∣
〈0− y cos(yz),−(0 + x sin(xz)), 0− 0〉 = 〈−y cos(yz),−x sin(xz), 0〉

42.6.3

∇× F =

∣∣∣∣∣∣
ê1 ê1 ê1
∂
∂x

∂
∂y

∂
∂z

h(x) g(y) f(z)

∣∣∣∣∣∣
= 0

42.6.4

The curl of a vector field ~F = 〈F1, F2, F3〉 is given by the following formal
determinant:

∇× ~F = det

 ê1 ê2 ê3
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3


Using this definition we may compute the curl of the vector field ~F =

〈ln(xyz), ln(yz), ln(z)〉:

∇× ~F = det


ê1 ê2 ê3

∂
∂x

∂
∂y

∂
∂z

ln(xyz) ln(yz) ln(z)

 =

〈
− 1

z
,

1

z
,−1

y

〉

42.6.5

The cross product between a and r can be represented as:

~F = 〈a2z − a3y, a3x− a1z, a1y − a2x〉

The curl of a vector field F can be represented by 〈∂F3

∂y −
∂F2

∂z ,
∂F1

∂z −
∂F3

∂x ,
∂F2

∂x −
∂F1

∂y 〉. Applying this to ~F makes it:

∇× ~F = 〈a1 + a1, a2 + a2, a3 + a3〉

2a
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42.6.9

F = 〈2xy, x2 + 2yz3, 3z2y2 + 1〉
Let f be the potential of F . That is, ∇f = F. f can be found by ”anti-partial
differentiation” of each of the components of F.

∂f

∂x
= 2xy → f = x2y + c1(y, z)

∂f

∂y
= x2y + y2z3 + c2(x, z)

∂f

∂z
= 2xy → f = y2z3 + z + c3(x, y)

for some functions c1(y, z), c2(x, z), c3(x, y). These equations can be made to
agree when

f = x2y + y2z3 + z + c

for some constant c.

42.6.10

This vector field does not have any domain restriction. The curl of the vector
field must be identically zero in order for the field to be conservative.

∇× ~F = det


ê1 ê2 ê3

∂
∂x

∂
∂y

∂
∂z

yz xz + 2y cos(z) xy − y2 sin(z)


= 〈x− 2y sin(z)− (x− 2y sin(z)), y − y, z − z〉 = ~0

Evidently the vector field is conservative. Then to construct the potential
function the following process involving taking integrals and partial derivatives
and comparing with the given components of the vector field take place.

Take the integral with respect to x of the first component to find one repre-
sentation of f :

∂f

∂x
= yz =⇒ f = xyz + a(y, z)

Take the partial derivative of f given above with respect to y and compare
with the second component of the vector field similar to find a(y, z). Then
integrate this known partial derivative with respect to y:

xz + 2y cos(z) = xz + a′y

=⇒ f ′y = xz + 2y cos(z) =⇒ f = xyz + y2 cos(z) + b(x, z)

Repeat like above with the last component:

xy − y2 sin(z) = xy − y2 sin(z) + b′z =⇒ f ′z = xy − y2 sin(z)

=⇒ f = xyz + y2 cos(z) + c
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42.6.11

A requirement for a vector field to be conservative is that its curl is ~0. Checking
this shows this is the case.

∂F1

∂y
=
∂F2

∂x
= ey

∂F1

∂z
=
∂F3

∂x
= 0

∂F2

∂z
=
∂F3

∂y
= −2z

We can now integrate F1 with respect to x to obtain part of the potential
function.

f(x, y, z) =

∫
eydx = xey + h(y, z)

Taking the partial of f with respect to y should be the same as F2, and setting
this equal yields:

xey + h′y(y, z) = xey − z2 =⇒ h′y(y, z) = −z2

h(y, z) = −z2y + k(z) =⇒ f(x, y, z) = xey − z2y + k(z)

Repeat for F3 and z:

−2zy + k′(z) = −2zy =⇒ k′(z) = 0

f(x, y, z) = xey − z2y + c

42.6.17

To determine if the vector field is conservative we can check to see if on its
domain the curl of the vector field is identically the zero vector, which it is:

∇× ~F = det

 ê1 ê2 ê3
∂
∂x

∂
∂y

∂
∂z

y2z2 + 2x+ 2y 2xyz2 + 2x 2xy2z + 1


= 〈4xyz − 4xyz, 2y2z − 2y2z, (2yz2 + 2)− (2yz2 + 2)〉 = ~0

Then reconstruct the potential function (which is in a sense like an an-
tiderivative) f(x, y, z) like so:

∂f

∂x
= y2z2 + 2x+ 2y → f(x, y, z) = xy2z2 + x2 + 2xy + a(y, z)

∂f

∂y
= 2xyz2 + 2x = 2xyz2 + 2x+ a′y(y, z)→ a′y(y, z) = 0
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The last result means that a(y, z) is constant with respect to y so we may
write a(y, z) instead as a(z). Then:

∂f

∂z
= 2xy2z + 1 = 2xy2z + a′z(z)→ a′z(z) = 1→ a(z) = z + C

→ f(x, y, z) = xy2z2 + x2 + 2xy + z + C

Using the fundamental theorem of line integrals we can use this potential
function and evaluate it at the endpoints of the curve C. The initial point of C
is (1, 1, 1), and the terminal point is (1, 2, 3). Find that:∫

C

~F · d~r = f(1, 2, 3)− f(1, 1, 1)

=
(
(1)(2)2(3)2 + (1)2 + 2(1)(2) + (3) + C

)
−
(
(1)(1)2(1)2 + (1)2 + 2(1)(1) + (1) + C

)
= 44− 5 = 39

42.6.18

All components of the vector field are polynomials, so the domain is all real
numbers for all variables. Knowing this it is sufficient to show that the curl of
the vector field is identically zero to determine if the field is conservative.

∇× ~F = det

 ê1 ê2 ê3
∂
∂x

∂
∂y

∂
∂z

zx yz z2

 = 〈−y, x, 0〉 6= ~0

Evidently the field is not conservative so the path given in the problem is
the one we must use in the line integral.

The path given is part of the helix that lies in the ellipsoid, but no bounds
on t were given. To find them substitute the parameterization into the ellipsoid
(make it an inequality because the path should be within the ellipsoid) to find
bounds of t:

(2 sin(t))2 + (−2 cos(t))2 + 2(t)2 ≤ 6→ −1 ≤ t ≤ 1

The integral becomes∫
C

~F · d~r →
∫ 1

−1
〈2t sin(t),−2t cos(t), t2〉 · 〈2 cos(t), 2 sin(t), 1〉dt

→
∫ 1

−1
t2dt =

2

3
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42.6.19

One can verify that the vector field ~F is conservative by checking that∇× ~F = ~0.

∂F1

∂y
=
∂F2

∂x
= 1

∂F1

∂z
=
∂F3

∂x
= −2z

∂F2

∂z
=
∂F3

∂y
= cos z

As a result, the integral
∫
C
~Fd~r is path independent, so we can take the path

to be ~r(t) = 〈a, 0, bt〉 instead of the helix 〈a cos t, a sin t, b
2π t〉. The integral then

becomes: ∫ 1

0

〈−b2t2, a+ sin(bt),−2ab2t〉 · 〈0, 0, b〉dt∫ 1

0

−2ab2tdt = −ab2|10

−ab2

43.5 Exercises

43.5.3

The region is a multiply connected region, so we could take the line integral in
the positive sense around the circle of radius 2 and add to it the line integral
taken in the negative sense around the circle of radius 1. But we want to use
Green’s theorem, so it is not necessary to do that.

Our region is an annulus (call itD), which we can easily use polar coordinates
to give a rectangular region of integration: (r, θ) ∈ [1, 2]× [0, 2π]

The integral is rewritten in this manner:∫
C

x sin
(
x2
)
dx+ (xy2 − x8)dy →

∫∫
D

∂

∂x

(
xy2 − x8

)
− ∂

∂y

(
x sin

(
x2
))
dA

→
∫∫

D

y2 − 8x7dA→
∫ 2π

0

∫ 2

1

(
r3 sin2(θ)− 8r8 cos7(θ)

)
drdθ

→
∫ 2π

0

(
15

4
sin2(θ)

)
dθ −

∫ 2π

0

(
8(29 − 1)

9
cos7(θ)

)
dθ

=
15

4
π

It is useful to use trigonometric identities and substitutions to help make
part of (or all of) some of the integrals vanish.
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43.5.4 ∮
C

y3dx− x3dy

Since the line C bounds the circle of radius a, by Green’s theorem the integral
can transform to: ∫∫

D

−3x2 − 3y2dA

Transforming the integral into polar coordinates yields:

−3

∫ 2π

0

∫ a

0

r2rdrdθ

−6π

∫ a

0

r3dr =
−3π

2
r4|a0

−3π

2
a4

43.5.5

By Green’s Theorem: ∮
C

(
√
x+ y3)dx+ (x2 +

√
y)dy

=

∫∫
D

∂(x2 +
√
y)

∂x
− ∂(

√
x+ y3)

∂y
dA

=

∫ π/2

−π/2

∫ cos x

0

(2x− 3y2)dydx

=

∫ π/2

−π/2
(2x cosx− cos3 x)dx

The first component of the integral cancels by symmetry, leaving:

−
∫ π/2

−π/2
cos3 xdx

−
∫ π/2

−π/2
cosx(1− sin2 x)dx

−[sinx− sin3 x/3]
π/2
−π/2

= −4/3

112



43.5.6

Call the region within the circle D. Then apply Green’s theorem directly to the
line integral to find that the integral becomes:∫

C

(y4 − ln
(
x2 + y2

)
)dx+ 2 arctan

(y
x

)
dy

=

∫∫
D

∂

∂x

(
2 arctan

(y
x

))
− ∂

∂y

(
y4 − ln

(
x2 + y2

))
dA

=

∫∫
D

(
− 2y

x2 + y2

)
−
(

4y3 − 2y

x2 + y2

)
dA

= −4

∫∫
D

y3dA

From here it may be useful to apply the transformation (x, y)→ (x−x0, y−
y0) in order to shift the disk D (so D → D′ and dA→ dA′) so that it is centered
at the origin. Then we have:

−4

∫∫
D′

(y − y0)3dA′ → −4

∫∫
D′

(y3 − 3y0y
2 + 3y20y − y30)dA′

Notice that the odd terms in y vanish due to skew symmetry over the new
disk centered at the origin. Then the integral becomes

−4

∫∫
D′

(−3y0y
2 − y30)dA′ → 4y30πa

2 + 12y0

∫∫
D′
y2dA′

which for the remaining integral we will convert to polar coordinates, knowing
that by construction of the disk 0 ≤ r ≤ a and 0 ≤ θ ≤ 2π:

12y0

∫ 2π

0

∫ a

0

r
(
r2 sin2(θ)

)
drdθ → 3y0a

4

∫ 2π

0

(
1− cos(2θ)

2

)
dθ = 3y0πa

4

Adding the result from before the final answer is 4y30πa
2 + 3y0πa

4.

43.5.9 ∮
C

(x+ y)dx+ (y − x)dy

By Green’s theorem, this becomes:∫∫
D

(−1)− 1dA = −2

∫∫
D

dA

D is the region bounded by the ellipse (x/a)2 + (y/b)2 = 1. The integral is
simply -2 times the area of the ellipse, or

−2πab
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To verify this, one can first change the coordinates to x/a = u, y/b = v, which
has a Jacobian of ab, to make the integral:

−2ab

∫∫
D′
dA

where D′ is the new region in the coordinate system, which is just the unit
circle, which has an area of π.

43.5.11

Let D be the disk whose boundary is C. Then apply Green’s theorem directly
and change the integral as follows:∫

C

e−x
2+y2 [cos(2xy)dx− sin(2xy)dy]

=

∫∫
D

∂

∂x

(
−e−x

2+y2 sin(2xy)
)
− ∂

∂y

(
e−x

2+y2 cos(2xy)
)
dA

=

∫∫
D

(
−4e−x

2+y2y cos(2xy) + 4e−x
2+y2x sin(2xy)

)
dA

The region of integration is a disk that is symmetric across the coordinate
axes. We will consider quarters of the disk lying in each of the quadrants of the
coordinate plane, because this integral is not easy to do without a symmetry
argument.

Consider evaluating the integrand over the parts of the disk that lie on
quadrants 1 and 3. The signs of the integrand evaluated on these regions are
opposite, so they nullify each other (represents the transformation (x, y) →
(−x,−y)). Similarl y the integrand evaluated on the part of the disk lying on
quadrants 2 and 4 are opposite in sign, so the integrals over those two regions
nullify each other. Thus the integral vanishes.

43.5.12

F = 〈(x+ y)2,−(x− y)2〉

y = 5x − 4 is the line passing through (1, 1) and (2, 6). y = 2x2 − x is the
parabola passing through (1, 1) and (2, 6) and the origin (this can be found by
setting up a system of equations using y = ax2 + bx + c and plugging in the
three points). By Green’s Theorem:∮

C

〈(x+ y)2,−(x− y)2〉 · dr =

∫∫
D

(x+ y)2dx+ (−(x− y)2)dy

∫∫
D

∂(−(x− y)2)

∂x
− ∂(x+ y)2

∂y
dA
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−
∫ 2

1

∫ 5x−4

2x2−x
(2(x− y) + 2(x+ y))dydx

−4

∫ 2

1

∫ 5x−4

2x2−x
xdydx

−4

∫ 2

1

(−4x+ 6x2 − 2x3)dx

−4[−2x2 + 2x3 − x4/2]21

−4((−8 + 16− 8)− (−2 + 2− 1/2))

= −2

43.5.13 ∫
C

〈ex sin y − qx, ex cos y − q〉

C is the positively oriented boundary of the region of the top half of the circle
of radius a/2 and centered at (a,0). If we suppose C2 is the x-axis from x=0 to
x=a, the union of C and C2 can create a closed loop ∂D. With Green’s theorem,
we can relate the initial integral to:∫

C

F · d~r +

∫
C2

F · d~r =

∫∫
D

∂F2

∂x
− ∂F1

∂y
dA

However, since ∂F2

∂x = ∂F1

∂y , we can equate the first integral to:∫
C

F · d~r = −
∫
C2

F · d~r

We can write the line C2 as ~r(t) = 〈t, 0〉, making the initial integral equivalent
to:

−
∫ a

0

〈0− qt, et − q〉 · 〈1, 0〉dt∫ a

0

qtdt

1/2qa2

43.5.16

One way to solve this is by simply taking this line integral:∮
∂D

xdy

The problem gives us the parametric equations for the path, which we can
use to find x and dy. Those quantities are x = a cos(t) and dy = b cos(t)dt, for
0 ≤ t ≤ 2π. Then the integral becomes

ab

∫ 2π

0

cos2(t)dt = πab
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43.5.17

One corollary of Green’s Theorem is:

A(D) =

∮
∂D

ydx

For the cycloid, we know:

x = a(t− sin t) , dx = a(1− cos t)dt

y = a(1− cos t) , dy = a sin tdt

Plug in x and dy to the integral. Note that the bound on t is 0 ≤ t ≤ 2π because
it is one arc of the cycloid.

A(D) = a2
∫ 2π

0

(1− cos t)2dt

= a2
∫ 2π

0

(cos2 t− 2 cos t+ 1)dt

Use the identity cos2 x = (1 + cos(2x))/2 and basic integration techniques to
find the anti-derivative.

= a2[
3

2
t− 2 sin t+ sin(2x)/4]2π0

= 3πa2

43.5.18

The area of the region can be represented by the closed line integral
∮
∂D

xdy by
Green’s theorem. Substituting in what we have for x and dy gives us:∫ 2π

0

a cos3(t)(3a sin2(t) cos(t)dt)

with the bounds 0 to 2π as that is the period of the curve. This becomes:

3a2
∫ 2π

0

cos2(t)(sin2(t) cos2(t))dt

3a2
∫ 2π

0

1

2
(1 + cos(2t))

1

4
sin2(2t)dt

1

8
3a2

∫ 2π

0

(1 + cos(2t)
1

2
(1− cos(2t))dt

And since any cosine function integrated over a multiple of its period goes to 0,
the integral simplifies to:

1

16
3a2

∫ 2π

0

1dt =
3πa2

8
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43.5.21

Using the hint, put y = tx. Then find that the equation becomes

x3 + t3x3 = 3ax2t

which implies that

x =
3at

1 + t3
, y =

3at2

1 + t3

and so bounds in t are found by finding two values of t that produce the same
coordinates (x, y), and taking all values of t between (possibly even including
these endpoints).

Notice that when t = 0 the curve starts at the origin. then as t tends to ∞,
it is also found that both x and y tend to 0. Thus 0 ≤ t∞.

The form of the line integral we want to use is

−
∮
∂D

ydx

since:

y =
3at2

1 + t3
, dx = −3a(−1 + 2t3)

(1 + t3)2

Then the integral becomes:

(3a)2
∫ ∞
0

t2(2t3 − 1)

(1 + t3)3
dt

Using the substitution u = t3 + 1, the integral changes into:

(3a)2

3

∫ ∞
1

2(u− 1)− 1

u3
du→ (3a)2

3

∫ ∞
1

(
2u−2 − 3u−3

)
du =

3a2

2

43.5.24 ∫
C

g(x, y)(ydx+ xdy)

This line integral is independent of path iff
∮
K
g(x, y)(ydx + xdy) = 0 for a

simple closed curve K. ∮
K

g(x, y)(ydx+ xdy) = 0

By Green’s Theorem, this is equivalent to:∫∫
D

(
∂(xg(x, y))

∂x
− ∂(yg(x, y))

∂y
)dA = 0

∫∫
D

(g(x, y) + x
∂g

∂x
)− (g(x, y) + y

∂g

∂y
))dA = 0
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∫∫
D

(x
∂g

∂x
− y ∂g

∂y
)dA = 0

The double integral will be zero if the integrand is uniformly zero.

x
∂g

∂x
= y

∂g

∂y

44.5 Exercises

44.5.1

There are three cases to consider, depending on which coordinate plane the
rectangle lies in. Suppose we take the case where the rectangle lies on the xy
plane. Then by the geometric interpretation of the flux, only the component of
the constant vector field ~F normal to the xy plane contributes to the flux. The
component of the vector field that is normal is indeed the component parallel
to ê3, which is c. Since the rectangle maps onto itself (this is a technicality that
means nothing but that the rectangle is just a rectangle), the flux can be found
by taking the product of the area A and c, so the flux is cA.

Similarly we find the flux for the other two cases. When the rectangle lies
in the xz plane, then the component normal to the rectangle is b, so we have
bA. Then for the case when the rectangle lies in the yz plane, the flux is aA.

44.5.2

Please refer to the temporary section for this for now. Sorry for low quality.

44.5.3

We are given that F = 〈a, b, c〉 and S is the boundary of the pyramid with base
[−q, q]×[−q, q] in the xy plane and vertex (0, 0, h). Recall that Φ =

∫∫
S

(F·n̂)dS.
For this problem, the integral can be split up into five separate integrals, one for
each face of the pyramid. The jth face of the pyramid Sj with unit normal vector
to the face n̂j , the dot product F · n̂j will be a constant function. Therefore,
the integral becomes:

Φ =
5∑
j=1

(F · n̂j)

∫∫
Sj

dSj = F · (
5∑
j=1

Ajn̂j)

where Aj is the area of the jth face of the pyramid.
Take S5 to be the bottom face of the pyramid with unit normal vector 〈0, 0,−1〉.
It has area A5 = (2q)(2q) = 4q2. Therefore, its contribution to the sum in the
above formula is 〈0, 0,−4q2〉.
The remaining faces have the same area, which is A1 = A2 = A3 = A4 =
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q
√
q2 + h2 by geometry. Therefore, we can simplify the flux formula to:

Φ = F · (A5n̂5 +A1

4∑
j=1

n̂j)

We can find n̂1 the ”front face” of the pyramid, the triangular face with vertices
(−q, q, 0), (q, q, 0), and (0, 0, h), using the vector geometry. Taking the cross
product of any two vectors between the vertices gives n1 = 〈0, 2qh, 2q2〉.
(Note: There are two vectors perpendicular to the vectors defined by the vertices
of the triangular face. We use 〈0, 2qh, 2q2〉 instead of 〈0,−2qh,−2q2 because we
are given that the normal vectors are oriented outward).
It is now easy to calculate n̂1 from n1: we simply multiply n1 by the reciprocal
of its magnitude.

n̂1 =
1√

q2 + h2
〈0, h, q〉

It follows by similar methods that:

n̂2 =
1√

q2 + h2
〈0,−h, q〉

n̂3 =
1√

q2 + h2
〈h, 0, q〉

n̂4 =
1√

q2 + h2
〈−h, 0, q〉

Plugging the derived values into our simplified equation for the flux of the
pyramid yields:

Φ = F · (〈0, 0,−4q2〉+ (q
√
q2 + h2)

1√
h2 + q2

〈0, 0, 4q〉)

= F · 0

= 0

44.5.4

Consider the symmetry of the cylinder. To start we may consider taking a
vertical strip of the cylinder and computing the flux there, and then comparing
it with the flux computed on the opposite end (opposite meaning that the x and
y coordinates of the strip were both negated). The flux computed over the first
strip comes out to be some value, but whatever it is, it is immediately nullified
by the flux found on the opposite strip since the normal vector is flipped around
while locally the geometry is the same. Thus if we took a sum of the flux on all
opposite strips in this manner they would all nullify each other and so the flux
is 0.
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44.5.5

Please refer to the temporary section for this for now. Sorry for low quality.

44.5.8

We are given z = g(x, y) = 1 − x2 − y2 and F = 〈xy, zx, xy〉 = 〈xy, x(1 −
x2 − y2), xy〉. The normal vector (oriented upward) can be calculating n =
〈−g′x,−g′y, 1〉 = 〈2x, 2y, 1〉. Recall the formula:

Φ =

∫∫
D

(F · n)dA

Plug in the particular F,n.

=

∫∫
D

(〈xy, x(1− x2 − y2), xy〉 · 〈2x, 2y, 1〉)dA

The region D is given to be [0, 1]× [0, 1].

=

∫ 1

0

∫ 1

0

(2x2y + 2xy(1− x2 − y2) + xy)dxdy

Evaluating the integral gives:

7/12

44.5.9

We first need to find the unit normal vector n̂ by taking some partial deriva-
tives and noting the given orientation of the surface. Because the paraboloid is
oriented downward, we need the third (vertical) component of the unit normal
to be negative. Then n̂ = ~n

||~n|| where ~n = 〈z′x, z′y,−1〉.
We also know that ||~n|| = J where J is the Jacobian of transformation

satisfying dS = JdA. So it is sufficient to compute ~n:

~n = 〈−2x,−2y,−1〉

In trying to go from a surface integral to a double integral we also want to
find a region of integration. Here the region of integration will be a unit disk
D centered at the origin since the boundary is where the paraboloid intersects
the xy plane. Making sure to substitute the equation of the paraboloid in for
z, the integral becomes:∫∫

S

~F · n̂dS →
∫∫

D

~F · ~ndA→
∫∫

D

〈y,−x, (1− x2 − y2)2〉 · 〈−2x,−2y,−1〉dA

→ −
∫∫

D

(x2 + y2 − 1)2dA→ −
∫ 2π

0

∫ 1

0

r(r2 − 1)2drdθ = −π
3
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44.5.10

Please refer to the temporary section for this for now. Sorry for low quality.

44.5.11

We are given that S is the part of the sphere in the first octant with radius R
centered at the origin and F = 〈x,−z, y〉. We seek to evaluate the integral:∫∫

D

(F · n)dA

where n is the normal vector to the sphere pointed in towards the origin. A
spherical integral transforms F = 〈R cos θ sinφ,−R cosφ,R sin θ sinφ〉. The in-
ward normal vector in spherical coordinates is n = −R2 sinφ〈cos θ sinφ, sin θ sinφ, cosφ〉
(this is derived in Example 39.7 in the textbook).

−R3

∫ π/2

0

∫ π/2

0

(cos2 θ sin3 φ− sin θ sin2 φ cosφ+ sin θ sin2 φ cosφ)dφdθ

= −R3(

∫ π/2

0

cos2 θdθ)(

∫ π/2

0

sin3 φdφ)

The first integral can be calculated using the identity cos2 u = (1 + cos(2u))/2.
The second integral can be solved by rearranging the integral to sinφ(1−cos2 φ)
and solving using standard methods.

= −R3(π/2)(2/3)

= −πR3/6

44.5.12

This integral may be computed without actually taking an integral. In trying
to find a unit normal vector it becomes apparent that the unit normal vector n̂
is in fact parallel to ~r.

To illustrate the significance of this, give n̂ = k~r for some real k. Then the
integral becomes ∫∫

S

(~a× ~r) · k~rdS = 0

which vanishes due to the properties of the triple product (use a cyclic trans-
formation of the triple product in the integrand or just know that because two
of the vectors are coplanar the triple product vanishes).

Alternatively to see how this integral vanishes, notice that the cross product
~a × ~r produces a vector that is perpendicular to ~r itself and similarly n̂. Thus
any dot product (like the one in the integrand) will be zero and the integral is
zero.
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44.5.13

Please refer to the temporary section for this for now. Sorry for low quality.

44.5.15

F = 〈2y, x,−z〉

We are given that S is the surface in the positive octant such that y = g(x, z) =
1 − x2 − y2. The flux is given by Φ =

∫∫
D

(F · n)dA. The normal vector
(such that the y-component is always positive) can be calculated using n =
〈− ∂g

∂x , 1,−
∂g
∂z 〉 = 〈2x, 1, 2z〉. Plug F (setting y = g(x, z)) and n into the flux

equation.

Φ =

∫∫
D

〈2(1− x2 − z2), x,−z〉 · 〈2x, 1, 2z〉dA

=

∫∫
D

(5x− 2z2 − 4x3 − 4xz2)dA

If the bound on x in the first octant is 0 ≤ x ≤ 1, the z is bounded by 0 ≤ z ≤√
1− x2 to ensure that x, y, z ≥ 0.∫ 1

0

∫ √1−x2

0

(5x− 2z2 − 4x3 − 4xz2)dA

Calculation of this integral can be simplified using the polar substitution x =
r cos θ, z = r sin θ, J(r, θ) = r. The integral becomes:∫ 1

0

∫ π/2

0

(5r2 cos θ − 2r3 sin2 θ − 4r4 cos3 θ − 4r4 sin θ cos2 θ)dθdr

We can integrate first w.r.t. θ using basic methods and making use of the
identity cos2 u = (1− cos(2u))/2.∫ 1

0

(5r2 − π

2
r3 − 4r4)dr

=
13

15
− π

8

44.5.18

The surface seems to be only the outer sphere and the inner sphere. We will
take each of these surfaces individually (due to the additivity of the integral) to
simplify computation.

The surface of the outer sphere is the surface of a sphere of radius R. To
construct the unit normal vector the easiest way, simply take the position vector
~r = 〈x, y, z〉 and divide through by the radius of the sphere itself (this is due to
the geometry of the sphere). Thus n̂ = R−1~r.

122



We may opt to use a symmetry argument to simplify the integral, because
the surface is oriented outward. Notice that we may give the sphere as z =
±
√
R2 − x2 − y2, and so for the hemisphere that contains negative z values,

an extra negative sign must be introduced into the unit normal vector in order
to retain the outward orientation. Thus the surface integral over the positive
hemisphere is equivalent to the bottom hemisphere. We can double the flux
integral for the positive hemisphere and obtain the same result, which is how
we will proceed.

To actually go about taking the integral convert the surface integral into a
generic double integral. So first find dS in terms of dA:

dS = JdA, J =

√
1 + (z′x)

2
+
(
z′y
)2

=

√
1 +

(
−x
z

)2
+
(
−y
z

)2
J = z−1

√
z2 + x2 + y2 = Rz−1

Now piece together the integral:

2

∫∫
S

~F · n̂dS = 2

∫∫
D

〈x, y, z〉 ·R−1〈x, y, z〉(z−1R)dA

→
∫∫

D

1

z
(x2 + y2 + y2)dA→ 2R2

∫∫
D

1√
R2 − x2 − y2

dA

2R2

∫ 2π

0

∫ R

0

r√
R2 − r2

drdθ = 4πR3

To compute the flux over the inner sphere oriented in the opposite way, the
steps are identical to the above except that we replace R with a, and due to
the normal vector being oriented in the opposite direction, the quantity found
is negated. Find that the flux over the inner sphere is:

2

∫∫
S

~F · n̂dS = 2

∫∫
D

〈x, y, z〉 · −a−1〈x, y, z〉(z−1a)dA

→ −
∫∫

D

1

z
(x2 + y2 + y2)dA→ −2a2

∫∫
D

1√
a2 − x2 − y2

dA

−2a2
∫ 2π

0

∫ a

0

r√
a2 − r2

drdθ = −4πa3

Add the two results together to find that the flux is 4π(R3 − a3).
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45.7 Exercises

45.7.1

To compute the circulation of ~F along ∂S, we must choose an orientation for the
boundary curve that is given by our own choice for the orientation of S. For this
problem it seems natural to take the outward orientation, so we take the curve
given by the intersection of the plane z = 1 and the sphere x2 + y2 + z2 = 2.
The curve itself is the unit circle suspended above where z = 1, so the path may
be given as ~r(t) = 〈cos(t), sin(t), 1〉 for 0 ≤ t ≤ 2π (counterclockwise since the
surface is oriented outwards).
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The line integral is then∮
∂S

~F · d~r →
∫ 2π

0

〈sin(t),− cos(t), 1〉 · 〈− sin(t), cos(t), 0〉dt

→
∫ 2π

0

(−1)dt = −2π

Then to compute the equivalent flux integral the surface S given by the
graph z =

√
1− x2 − y2 is again oriented outward. Thus the normal vector ~n

(not the unit normal, because computing the norm of ~n is unnecessary) is given
by:

~n = 〈−z′x,−z′y, 1〉 =

〈
x√

1− x2 − y2
,

y√
1− x2 − y2

, 1

〉
Then to compute the curl of ~F :

∇× ~F = det

 ê1 ê1 ê1
∂
∂x

∂
∂y

∂
∂z

y −x z

 = 〈0, 0,−2〉

In computing the flux integral we will be making a transformation to inte-
grate over a planar region. The region of integration will be the disk of unit
radius D, since that is the projection of the surface itself onto the xy plane.
The integral becomes:∫∫

S

(
∇× ~F

)
· n̂dS →

∫∫
D

(
∇× ~F

)
· ~ndA

→
∫∫

D

〈0, 0,−2〉 ·
〈

x√
1− x2 − y2

,
y√

1− x2 − y2
, 1

〉
dA

→ −2

∫∫
D

dA = −2π

The last integral is just the surface area of the disk, which was then scaled
by −2 (geometry). Both methods result with the same value, so we seem to be
correct.

45.7.4

Please refer to the temporary section for this for now. Sorry for low quality.

45.7.5

F = 〈yz, 2xz, exy〉
The closed curve C is the intersection of the cylinder x2 + y2 = 1 and z = 3.
The curve is oriented clockwise, so the line integral is:∮

−C
F · dr = −

∮
C

F · dr
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Let S be the surface such that ∂S = C. That is, S is the part of the plane z = 3
bound by x2 + y2. Let D be the region on the xy plane that lies beneath S. By
Stokes’ Theorem:

−
∮
C

F · dr = −
∫∫

D

((∇× F) · n)dA

The the curl of F is given by:

∇× F =

∣∣∣∣∣∣
ê1 ê2 ê3
∂
∂x

∂
∂y

∂
∂z

yz 2xz exy

∣∣∣∣∣∣ = 〈xexy − 2x,−yexy + y, z〉

The normal vector to the plane z = 3 (oriented upward) is:

n̂ = 〈0, 0, 1〉

Thus, the integral is:

−
∫∫

D

(〈xexy − 2x,−yexy + y, z〉 · 〈0, 0, 1〉)dA

= −
∫∫

D

zdA

It is already known that z ≡ 3.

= −3

∫∫
D

dA

= −3A(D)

D is a circle with radius 1, so its area is A(D) = πr2 = π.

= −3π

45.7.6

Graphically it may be helpful to imagine that the x axis is the vertically aligned
one, since the cylinder is oriented in this manner. As for the line integral, we
wish to use Stokes’ theorem to evaluate it. So we need to have a surface that the
curve C is the boundary of. We shall choose the simplest one, that is, the plane
x + y = 1 (or x = 1 − y) that is bounded by the curve C. Call this surface S,
and because the curve C is oriented counterclockwise when viewed from above,
the orientation of S is upward.

Since the vertical axis is the x axis, give the unit normal vector n̂ as

n̂ =
~n

||~n||
=

1

||〈1, x′y, x′z〉||
〈1, x′y, x′z〉 =

1√
2
〈1,−1, 0〉

127



The curl of the vector field ~F can be computed like so:

∇× ~F = det

 ê1 ê1 ê1
∂
∂x

∂
∂y

∂
∂z

xy 3z 3y

 = 〈0, 0,−x〉

Then the integral so far is given as follows:∮
C

~F · d~r =

∫∫
S

(
∇× ~F

)
· n̂dS →

∫∫
S

〈0, 0,−x〉 · 1√
2
〈1,−1, 0〉dS

→
∫∫

S

(0)dS = 0

The integral vanishes.

45.7.7

Please refer to the temporary section for this for now. Sorry for low quality.

45.7.9

We are given:
F = 〈z2y/2,−z2x/2, 0〉

and C is the boundary of z = 1−
√
x2 + y2 in the first quadrant. The integral

is then: ∮
C

F · dr

Let S be the surface such that ∂S = C and D be the region on the xy plane
that lies beneath S. By Stokes’ Theorem:∮

C

F · dr =

∫∫
D

((∇× F) · n)dA

The the curl of F is given by:

∇× F =

∣∣∣∣∣∣
ê1 ê2 ê3
∂
∂x

∂
∂y

∂
∂z

z2y/2 −z2x/2 0

∣∣∣∣∣∣ = 〈xz, yz,−z2〉

We are given that z = g(x, y) = 1 −
√
x2 + y2. The normal vector (oriented

upward) to S is:

n = 〈−g′x,−g′y, 1〉 = 〈 x√
x2 + y2

,
y√

x2 + y2
, 1〉

The integral can thus be simplified to:∫∫
D

((1−
√
x2 + y2)

√
x2 + y2 − (1−

√
x2 + y2)2)dA
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It is easiest to evaluate this integral using a polar substitution:∫ π/2

0

∫ 1

0

r((1− r)r − (1− r)2)drdθ

=
1

2

∫ 1

0

(−2r3 + 3r2 − r)dr

=
1

2
(−1

2
+ 1− 1

2
)

= 0

45.7.10

The surface S given by the graph z = x2 + (y− 1)2 is oriented upwards because
its boundary curve is oriented counterclockwise when viewed from above. We
would also like to take note of the region that it maps to when we take a
vertical projection of this surface onto the xy plane since we will be making a
transformation to change the surface integral to a normal double integral. Such
a region is the unit disk D, because the cylinder bounds both the surface and
the disk in that manner.

We would like to find the normal vector (not the unit normal vector since
the normalization factor will be canceled out by the Jacobian of transformation
from the disk D to the surface S). The normal vector ~n is given by:

~n = 〈−z′x,−z′y, 1〉 = 〈−2x,−2(y − 1), 1〉

The curl of the vector field is computed as follows:

∇× ~F = det

 ê1 ê1 ê1
∂
∂x

∂
∂y

∂
∂z

y − z −x x

 = 〈0,−2,−2〉

Then the integral is computed:∮
C

~F · d~r =

∫∫
S

(
∇× ~F

)
· n̂dS →

∫∫
D

(
∇× ~F

)
· ~ndA

→
∫∫

D

〈0,−2,−2〉 · 〈−2x,−2(y − 1), 1〉dA→ −2

∫∫
D

(−2y + 3)dA

→ −2

∫ 2π

0

∫ 1

0

r(−2r sin(θ) + 3)drdθ = −6π

45.7.14

Please refer to the temporary section for this for now. Sorry for low quality.
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45.7.17

We are given:
F = 〈−yz, xz, z2〉

and C is the boundary of z = 1− x2 − y2 in the first octant traversed counter-
clockwise. The work done by the force is given by:∮

−C
F · dr = −

∮
C

F · dr

Let the surface S be defined by z = 1 − x2 − y2. That is, ∂S = C. Let D be
the region of the xy plane that lies beneath S. By Stokes’ Theorem:

−
∮

F · dr = −
∫∫

D

((∇× F) · n̂)dA

The curl of F is:

∇× F =

∣∣∣∣∣∣
ê1 ê2 ê3
∂
∂x

∂
∂y

∂
∂z

−yz xz z2

∣∣∣∣∣∣ = 〈−x,−y, 2z〉

We are given that z = g(x, y) = 1 − x2 − y2. The normal vector (oriented
upward) to S is:

n = 〈−g′x,−g′y, 1〉 = 〈2x, 2y, 1〉
The integral can thus be simplified to:

−
∫∫

D

(2(1− x2 − y2)− 2x2 − 2y2)dA

−
∫∫

D

(2− 4x2 − 4y2)dA

It is easiest to evaluate this integral using a polar substitution:

= −
∫ π/2

0

∫ 1

0

r(2− 4r2)drdθ

= 0

45.7.19

From the vector field it seems pretty unreasonable to take the line integral
normally. So we will use Stokes’ theorem to help.

Notice that the field is conservative, which is shown by taking the curl of
the vector field like so:

∇× ~F = det

 ê1 ê1 ê1
∂
∂x

∂
∂y

∂
∂z

ex
2 − yz ey

2 − xz z2 − xy

 = 〈−x+ x,−y + y,−z + z〉 = ~0
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We can use this to our advantage by making the contour C closed by taking
the union of C with a straight line segment BA from (a, 0, h) to (a, 0, 0). From
the fundamental theorem of line integrals or Stokes’ theorem it follows that this
line integral over the closed contour is zero. But what we add to the contour
we must also remove. It follows from the additivity of the line integral that:∫

C

~F · d~r =

∮
C∪BA

~F · d~r −
∫
BA

~F · d~r = 0−
∫
BA

~F · d~r

So all we need to compute is the last integral over the line segment. Because
the parameterization does not matter we may choose the easiest one, namely
~r(t) = (1− t)〈a, 0, h〉+ t〈a, 0, 0〉 = 〈a, 0, h− th〉 where 0 ≤ t ≤ 1. Then it follows
that the line integral is computed as follows:

−
∫
BA

~F · d~r → −
∫ 1

0

〈ea
2

, 1− a(h− th), (h− th)2〉 · 〈0, 0,−h〉dt

→ h3
∫ 1

0

(1− t)2dt = h3
∫ 1

0

u2du =
1

3
h3
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46.6 Exercises

46.6.2

The divergence of a vector field can be found by taking the formal dot product

∇ · ~F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· ~F

Perform this computation for the vector field ~F . Rewrite the vector field as
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~F = 1
||~r||~r = 1√

x2+y2+z2
〈x, y, z〉:

∇ · ~F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
·

〈
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

〉

→ y2 + z2

(x2 + y2 + z2)
3
2

+
x2 + z2

(x2 + y2 + z2)
3
2

+
x2 + y2

(x2 + y2 + z2)
3
2

→ 2√
x2 + y2 + z2

=
2

r

46.6.6

Please refer to the temporary section for this for now. Sorry for low quality.

46.6.7

F = a×∇g
Let a = 〈a1, a2, a3〉. The cross product can now be evaluated algebraically.

F = 〈a1, a2, a3〉 × 〈g′x, g′y, g′z〉 = 〈a2g′z − a3g′y, a3g′x − a1g′z, a1g′y, a2g′x〉

Now evaluate the divergence of F :

∇ · F = (a2g
′′
zx − a3g′yx) + (a3g

′
xy − g1g′zy) + (a1g

′
yz − a2g′xz)

If g is a ”nice enough” function such that it satisfies Clairaut’s Theorem, then
the curl of F vanishes.

= 0

46.6.13

Apply the other form of Green’s theorem:∮
∂D

~F · n̂ds =

∫∫
D

∇ · ~FdA

We should find that (give D as the planar region bounded by C):∮
C

~a · n̂ds =

∫∫
D

∇ · ~adA = 0

Note that the vector ~a is a constant vector. The divergence of the vector
field given by ~F = ~a is zero, since derivatives of constants vanish. Thus the
double integral vanishes as shown above.

46.6.14

Please refer to the temporary section for this for now. Sorry for low quality.
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46.6.18

For this it may be easier to compute the flux using the divergence theorem,
instead of taking the surface integral. Give D as the rectangular region bounded
by S. Then compute the divergence of the vector field ~F = 〈x2, y2, z2〉:

∇ · ~F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· 〈x2, y2, z2〉 = 2x+ 2y + 2z

From the divergence theorem we know that:∫∫
S

~F · n̂dS =

∫∫∫
D

(2x+ 2y + 2z)dV

Because the region D is a rectangular prism, apply Fubini’s theorem directly
to find the flux:∫∫∫

D

(2x+ 2y+ 2z)dV =

∫ c

0

∫ b

0

∫ a

0

(2x+ 2y+ 2z)dxdydz = a2bc+ ab2c+ abc2

Because the flux is positive, we have a faucet within the region.

46.6.19

We are given:
F = 〈x3, y3, z3〉

and S is the sphere x2 + y2 + z2 = R2 oriented inward. We are asked to find
the flux: ∫∫

−S
((∇× F) · n̂)dS = −

∫∫
S

((∇× F) · n̂)dS

Let E be the ball such that ∂E = S. By Divergence Theorem, the flux is also
given by:

−
∫∫∫

E

(∇ · F)dV

The flux of F is:
∇ · F = 〈3x2 + 3y2 + 3z2〉

So the integral becomes:

3

∫∫∫
E

(x2 + y2 + z2)dV

Make a spherical substitution.

3

∫ R

0

∫ π

0

∫ 2π

0

ρ4 sinφdθdφdρ

6πR5

5

∫ π

0

sinφdφ

= −12πR5

5

The orientation is inward but the flux is negative, implying that this is a faucet.
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46.6.20

Please refer to the temporary section for this for now. Sorry for low quality.

46.6.21

Give D as the unit ball bounded by the S, and apply the divergence theorem.
We seek to find the divergence of the vector field first:

∇ · ~F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· 〈−xy2,−yz2, zx2〉 = −y2 − z2 + x2

The statement of the divergence theorem uses an outwardly oriented surface.
In this problem the surface S is oriented inwards, so we must adjust our use of
the divergence theorem to reflect this. Notice that we may form the outward
orientation of S by simply negating the unit normal n̂, and so turn the surface
integral into one that we can apply the divergence theorem on. The integral
becomes: ∫∫

S

~F · (−1)n̂dS =

∫∫∫
D

(−y2 − z2 + x2)dV

→
∫∫

S

~F · n̂dS = −
∫∫∫

D

(−y2 − z2 + x2)dV

Make a change of variables into spherical coordinates where the x axis is
the vertical axis. This means that x = ρ cos(φ), and y2 + z2 = r2 = ρ2 sin2(φ).
Since the whole ball is the region of integration, all parameters take on their
natural ranges (and ρ ranges from 0 to 1).

−
∫∫∫

D

(−y2 − z2 + x2)dV

→ −
∫ 2π

0

∫ π

0

∫ 1

0

(−ρ2 sin2(φ) + ρ2 cos2(φ))(ρ2 sin(φ))dρdφdθ

→ −2π

∫ π

0

∫ 1

0

(ρ4(2 cos2(φ)− 1)) sin(φ))dρdφ

→ −2π

5

∫ π

0

(2 cos2(φ)− 1)) sin(φ)dφ =
4π

15

Because the surface S was oriented inwards and we found a positive flux, the
interpretation is that the vector field seems to be converging somewhere within
the sphere. Thus we have a sink.
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46.6.22

Give D as the cylindrical region within the cylindrical surface S. It is quickly
apparent that we can use the divergence theorem directly. First compute the
divergence of the vector field ~F = 〈xy, z2y, zx〉:

∇ · ~F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· 〈xy, z2y, zx〉 = y + z2 + x

Then the integral becomes:∫∫
S

~F · n̂dS =

∫∫∫
D

∇ · ~FdV →
∫∫∫

D

(y + z2 + x)dV

Use cylindrical coordinates where −2 ≤ z ≤ 2, 0 ≤ r ≤ 2, and θ takes on its
natural range:∫∫∫

D

(y + z2 + x)dV →
∫ 2π

0

∫ 2

0

∫ 2

−2
(r sin(θ) + z2 + r cos(θ))dz(r)drdθ

→
∫ 2π

0

∫ 2

0

(
4r2 sin(θ) + 4r2 cos(θ) +

16

3
r

)
drdθ

→
∫ 2π

0

32

3
(sin(θ) + cos(θ) + 1) =

64

3
π

Since we have a positive flux on the outwardly oriented surface S, we have
a faucet.

46.6.23

Give D as the solid region bounded by S. Then compute the divergence of the

vector field ~F = 〈xz2, y
3

3 , zy
2 + xy〉:

∇ · ~F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· 〈xz2, y

3

3
, zy2 + xy〉 = z2 + y2 + x2

Remembering that the orientation of S was inwards, we know that due to
the divergence theorem the integral becomes:∫∫

S

~F · (−1)n̂dS = −
∫∫∫

D

∇ · ~FdV → −
∫∫∫

D

(z2 + y2 + x2)dV

This is easier to do in spherical coordinates where ρ varies from 0 to 1, and
φ and θ both vary from 0 to π

2 . Continuing the computation:

−
∫∫∫

D

(z2 + y2 + x2)dV → −
∫ π

2

0

∫ π
2

0

∫ 1

0

(ρ2)ρ2 sin(φ)dρdφdθ = − π

10
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46.6.24

We will use the divergence theorem. Give D as the solid region bounded by S.
First we must find the divergence of the vector field:

∇ · ~F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· 〈yz, z2x+ y, z − xy〉 = 2

Then we can apply the divergence theorem to find the flux:∫∫
S

~F · n̂dS =

∫∫∫
D

(2)dV

The integral is fairly simple to compute, especially using spherical coordi-
nates. Since we have a unit sphere and the coefficient of

√
x2 + y2 is 1, the

bounds are nice. The parameter ρ varies from 0 to 1, θ takes on its natural
range, and φ ranges from 0 to π

4 . Then the integral becomes:

2

∫∫∫
D

dV → 2

∫ 2π

0

∫ π
4

0

∫ 1

0

ρ2 sin(φ)dρdφdθ =
4π

3

(
1− 1√

2

)
46.6.25

We are given:
F = 〈x+ tan(yz), cos(xz)− y, sin(xy) + z〉

and S is the solid region between the sphere x2 + y2 + z2 = 2z and the cone
z =

√
x2 + y2 oriented outward. We are asked to find the flux:∫∫

S

((∇× F) · n̂)

Let E be the region such that ∂E = S. By Divergence Theorem, the flux is also
given by: ∫∫∫

E

(∇ · F)dV

The flux of F is:
∇ · F = 1

So the integral becomes: ∫∫∫
E

dV

which is just the volume of the solid E. This integral will be easier to eval-
uate if we make a spherical substitution. The boundary surfaces becomes
z =

√
x2 + y2 → φ = π/4 and x2 + y2 + z2 = 2z → ρ = 2 cosφ. Thus,

the integral becomes: ∫ 2π

0

∫ π/4

0

∫ 2 cosφ

0

ρ2 sinφdρdφdθ
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=
2π

3

∫ π/4

0

[ρ3 sinφ]2 cosφ
0 dφ

=
16π

3

∫ π/4

0

cos3 φ sinφdφ

= −4π

3
[cos4 φ]

π/4
0

= −4π

3
(1/4− 1)

= π

The orientation is outward and the flux is positive, implying that this is a faucet.

46.6.26

Please refer to the temporary section for this for now. Sorry for low quality.

46.6.32

We would like to use the divergence theorem, which means we want to form a
closed surface somehow. Notice that if we take the union of S with a disk of
radius 2 centered at the origin (call this disk Sd, and orient it upwards to mimic
the inward orientation of S), we have a surface that is closed. In particular this
surface would be the boundary of the upper hemisphere of a ball of radius 2.

Keep in mind that if we want to use the divergence theorem, we must intro-
duce negative signs into the surface integral since the statement involves surfaces
that are oriented outward, unlike our surface S ∪ Sd. Give the region bounded
by this surface as D.

This deformation by introducing the disk Sd means that the following equal-
ity (by additivity) is true:∫∫

S

~F · (−1)n̂dS +

∫∫
Sd

~F · (−1)n̂dS =

∫∫∫
D

(
∇ · ~F

)
dV

→
∫∫

S

~F · n̂dS = −
∫∫∫

D

(
∇ · ~F

)
dV −

∫∫
Sd

~F · n̂dS

Compute the divergence of the vector field ~F :

∇ · ~F =

〈
∂

∂x
,
∂

∂y
,
∂

∂z

〉
· 〈xy2, yz2, zx2 + x2〉 = y2 + z2 + x2

We shall first compute the triple integral using the divergence we just com-
puted. It will be useful to use spherical coordinates once more. Keep in mind
that ρ ranges from 0 to 2 and φ ranges from 0 to π

2 , where θ takes on its natural
range.

−
∫∫∫

D

(
∇ · ~F

)
dV → −

∫∫∫
(y2 + z2 + x2)dV
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→ −
∫ 2π

0

∫ π
2

0

∫ 2

0

(ρ2)(ρ2 sin(φ))dρdφdθ = −64π

5

Then we must compute the surface integral over the disk Sd. To aid in
computation, note that it is easiest to give the unit normal vector as ê3, so that
the integrand reduces to a simpler form:

−
∫∫

Sd

~F · ê3dS → −
∫∫

Sd

〈xy2, yz2, zx2 + x2〉 · 〈0, 0, 1〉dS

→ −
∫∫

Sd

x2(z + 1)dS

On all points on the disk Sd, the value of z is 0. The integral becomes much
simpler and it is useful to use polar coordinates (remember the radius of the
boundary of the disk is 2) to compute the integral:

−
∫∫

Sd

x2dS → −
∫ 2π

0

∫ 2

0

(r2 cos2 θ)(r)drdθ = −4π

Add the two results we found from both of the integrals to find the desired
flux over the original surface S, which is −4π − 64π

5 = − 84
5 π.
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46.6.TEMP
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