Assignment 1 with solutions, MAP 6505, Fall 2023

3.3 (1 pt). Which of the following functions are Lebesgue integrable on \mathbb{R} :

$$
\frac{\sin (x)}{x}, \quad \frac{e^{i k x}}{x}, \quad \frac{\cos (x)}{\sqrt{|x|}}, \quad e^{-x}, \quad x^{100} e^{-x^{2}}
$$

Solution: All of these functions are continuous almost everywhere. Therefore the Lebesgue integrability means the absolute integrability. If the integral does not converge (converge) absolutely in a particular regularization, then it does not converge (converges) in any regularization. It follows

$$
\begin{aligned}
\int_{\pi}^{\infty} \frac{|\sin (x)|}{x} d x & =\sum_{n=1}^{\infty} \int_{\pi n}^{\pi(n+1)} \frac{|\sin (x)|}{x} d x \\
& \geq \sum_{n=1}^{\infty} \frac{1}{\pi n} \int_{\pi n}^{\pi(n+1)}|\sin (x)| d x=\sum_{n=1}^{\infty} \frac{2}{\pi n}=\infty
\end{aligned}
$$

So, $\frac{\sin (x)}{x}$ is not integrable on \mathbb{R}. The absolute value $\left|\frac{e^{i k x}}{x}\right|=\frac{1}{|x|}$ is not integrable,

$$
\int \frac{d x}{|x|}=2 \lim _{a \rightarrow 0^{+}}=\int_{a}^{\frac{1}{a}} \frac{d x}{x}=-4 \lim _{a \rightarrow 0^{+}} \ln (a)=\infty
$$

and so is $\frac{e^{i k x}}{x}$. The function $\frac{\cos (x)}{\sqrt{|x|}}$ is integrable on any bounded interval containing $x=0$:

$$
\int_{0}^{a} \frac{|\cos (x)|}{\sqrt{|x|}} d x \leq \int_{0}^{a} \frac{d x}{\sqrt{x}}=2 \sqrt{a}<\infty
$$

However it is not absolutely integrable on any unbounded interval:

$$
\int_{\pi}^{\infty} \frac{|\cos (x)|}{\sqrt{|x|}} d x=\sum_{n=1}^{\infty} \int_{\pi n}^{\pi(n+1)} \frac{|\cos (x)|}{\sqrt{|x|}} d x \geq \sum_{n=1}^{\infty} \frac{2}{\sqrt{\pi n}}=\infty
$$

similarly to the first function in question. The fourth function is also not integrable because

$$
\lim _{a \rightarrow \infty} \int_{-a}^{a} e^{-x} d x=\lim _{a \rightarrow \infty}\left(e^{a}-e^{-a}\right)=\infty
$$

The last function is integrable on \mathbb{R} because

$$
\begin{aligned}
& x^{100} \leq 100!e^{|x|} \\
\Rightarrow \quad & \lim _{a \rightarrow \infty} \int_{-a}^{a} e^{-x^{2}+|x|} d x=2 e^{\frac{1}{4}} \lim _{a \rightarrow \infty} \int_{-\frac{1}{2}}^{a-\frac{1}{2}} e^{-y^{2} d y}<\sqrt{\pi} e^{\frac{1}{4}}<\infty
\end{aligned}
$$

where $y=x-\frac{1}{2}$ and after the change of variables the integration region was enlarged to the whole \mathbb{R} to get the last inequality.
4.8 (1 pt). Let $f \in \mathcal{L}(\mathbb{R})$ such that $\int f(x) d x=1$ and φ be a continuous function with bounded support. Put $f_{n}(x)=n f(n x), n=1,2, \ldots$. Show that

$$
\lim _{n \rightarrow \infty} \int f_{n}(x) \varphi(x) d x=\varphi(0)
$$

Hint: Use the Lebesgue dominated convergence theorem and that any continuous function with bounded support is bounded.

Solution: One infers that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int f_{n}(x) \varphi(x) d x & \stackrel{(1)}{=} \lim _{n \rightarrow \infty} \int f(y) \varphi(y / n) d y \\
& \stackrel{(2)}{=} \int f(y) \lim _{n \rightarrow \infty} f(y) \varphi(y / n) d y \\
& \stackrel{(3)}{=} \varphi(0) \int f(y) d y \stackrel{(4)}{=} \varphi(0)
\end{aligned}
$$

Here (1) is obtained by changing variables, $y=n x$ so that $d y=n d x,(2)$ follows from the Lebesgue dominated convergence theorem. Any continuous function on \mathbb{R} with a bounded support must be bounded $\sup |\varphi|=M<\infty$. Therefore the integrand has an integrable bound independent of n :

$$
|f(y) \varphi(y / n)| \leq M|f(y)| \in \mathcal{L}
$$

and the absolute value of an integrable function is integrable. The equality (3) follows from continuity of φ and (4) holds by the hypothesis.
5.6 (2 pts). Let

$$
f(x, y)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \quad(x, y) \in \Omega=(1, \infty) \times(1, \infty)
$$

(i) Calculate the iterated integral

$$
\int_{1}^{\infty}\left(\int_{1}^{\infty}|f(x, y)| d x\right) d y
$$

Is it true that $f \in \mathcal{L}(\Omega)$?
(ii) Calculate and compare the iterated integrals

$$
\int_{1}^{\infty}\left(\int_{1}^{\infty} f(x, y) d x\right) d y, \quad \int_{1}^{\infty}\left(\int_{1}^{\infty} f(x, y) d y\right) d x
$$

Solution: (i) To evaluate the integral, let us use the identity

$$
f(x, y)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=-\frac{\partial}{\partial x} \frac{x}{x^{2}+y^{2}}
$$

so that

$$
\begin{aligned}
\int_{1}^{\infty}\left(\int_{1}^{\infty}|f(x, y)| d x\right) d y & =\int_{1}^{\infty}\left(\int_{y}^{\infty}-\int_{1}^{y}\right) f(x, y) d x d y \\
& =\int_{1}^{\infty}\left(\frac{1}{y}-\frac{1}{1+y^{2}}\right) d y=\infty
\end{aligned}
$$

where the first equality follows from that $f(x, y) \geq 0$ if $x \geq y$, and the second is obtained by the fundamental theorem of calculus and the aforementioned identity. By the first part of Fubini's theorem the function $f(x, y)$ is not integrable on $(1, \infty) \times(1, \infty)$.
(ii) By the identity used in Part (i) and the fundamental theorem of calculus

$$
\int_{1}^{\infty}\left(\int_{1}^{\infty} f(x, y) d x\right) d y=\int_{1}^{\infty} \frac{d y}{1+y^{2}}=\frac{\pi}{4}
$$

The second integral is evaluated using the identity

$$
f(x, y)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{\partial}{\partial y} \frac{y}{x^{2}+y^{2}}
$$

and the fundamental theorem of calculus

$$
\int_{1}^{\infty}\left(\int_{1}^{\infty} f(x, y) d y\right) d x=-\int_{1}^{\infty} \frac{d x}{1+x^{2}}=-\frac{\pi}{4}
$$

The second part of Fubini's theorem does not hold because the function is not absolutely (Lebesgue) integrable.
8.4 (6 pts). Solution to the Poisson equation. Suppose that $\rho \in C^{1}\left(\mathbb{R}^{3}\right)$ and has a bounded support Ω. Suppose that the boundary $\partial \Omega$ is smooth (or piecewise smooth). Prove that

$$
\Delta u(x)=-4 \pi \rho(x), \quad x \in \mathbb{R}^{3}, \quad u(x)=\int \frac{\rho(y)}{|x-y|} d^{3} y
$$

by justifying each of the following assertions:

$$
\begin{array}{ll}
\text { (i) } & u \in C^{1}\left(\mathbb{R}^{3}\right), \quad u \in C^{\infty}\left(\mathbb{R}^{3} \backslash \Omega\right), \\
\text { (ii) } & \Delta_{x} \frac{1}{|x-y|}=0, \quad \forall x \neq y \\
\text { (iii) } & x \notin \Omega \Rightarrow \Delta u(x)=0, \\
\text { (iv) } & x \in \Omega \Rightarrow \Delta u(x)=-\left(\nabla, \int_{\Omega} \rho(y) \nabla_{y} \frac{1}{|x-y|} d^{3} y\right) \\
& =-\int_{\Omega}\left(\nabla_{y} \rho(y), \nabla_{y} \frac{1}{|x-y|}\right) d^{3} y \\
& =-\left(\int_{\Omega \backslash B_{\varepsilon}(x)}+\int_{B_{\varepsilon}(x)}\right)\left(\nabla_{y} \rho(y), \nabla_{y} \frac{1}{|x-y|}\right) d^{3} y \\
\text { (v) } & \lim _{\varepsilon \rightarrow 0} \int_{\Omega \backslash B_{\varepsilon}(x)}\left(\nabla_{y} \rho(y), \nabla_{y} \frac{1}{|x-y|}\right) d^{3} y=4 \pi \rho(x), \quad x \in \Omega \\
\text { (vi) } & \lim _{\varepsilon \rightarrow 0} \int_{B_{\varepsilon}(x)}\left(\nabla_{y} \rho(y), \nabla_{y} \frac{1}{|x-y|}\right) d^{3} y=0
\end{array}
$$

where ∇ denotes the gradient.
Solution: (i) It was proved in this section that the function

$$
u(x)=\int_{\Omega} \frac{\rho(y)}{|x-y|^{\alpha}} d y, \quad|\rho(y)| \leq M
$$

is from $C^{p}\left(\mathbb{R}^{N}\right)$ and $C^{\infty}\left(\mathbb{R}^{N} \backslash \bar{\Omega}\right)$. In the case in question, $N=3, \alpha=1$, and, hence, $p=1$. The integration region Ω is the support of ρ and, hence, a closed subset in \mathbb{R}^{3}.
(ii) By a direct evaluation of partial derivatives

$$
\begin{aligned}
\Delta \frac{1}{|x|} & =(\nabla, \nabla) \frac{1}{|x|}=-\left(\nabla, \frac{x}{|x|^{3}}\right)=-\frac{1}{|x|^{3}}(\nabla, x)-\left(x, \nabla \frac{1}{|x|^{3}}\right) \\
& =-\frac{3}{|x|^{3}}+\frac{3(x, x)}{|x|^{5}}=0, \quad \forall x \neq 0
\end{aligned}
$$

Shifting the variable x by a constant vector y, it is concluded that

$$
\Delta_{x} \frac{1}{|x-y|}=0, \quad \forall x \neq y
$$

(iii) Any partial derivative D^{β} of $u(x)$ for $x \notin \Omega$ can be evaluated by rearranging the order of integration and differentiation. In particular,

$$
\Delta u(x)=\int_{\Omega} \rho(y) \Delta_{x} \frac{1}{|x-y|} d^{3} y=0, \quad \forall x \in \mathbb{R}^{3} \backslash \Omega
$$

by Part (ii) because $y \neq x$ if y spans Ω.
(iv) If $x \in \Omega$, then only the first partials can be evaluated by rearranging the order of integration and differentiation. In this case,

$$
\begin{aligned}
\nabla u(x) & =\int_{\Omega} \rho(y) \nabla_{x} \frac{1}{|x-y|} d^{3} y \stackrel{(1)}{=}-\int_{\Omega} \rho(y) \nabla_{y} \frac{1}{|x-y|} d^{3} y \\
& \stackrel{(2)}{=}-\oint_{\partial \Omega} \rho(y) \frac{n_{y}}{|x-y|} d S_{y}+\int_{\Omega} \nabla_{y} \rho(y) \frac{1}{|x-y|} d^{3} y \\
& \stackrel{(3)}{=} \int_{\Omega} \nabla_{y} \rho(y) \frac{1}{|x-y|} d^{3} y
\end{aligned}
$$

Here: (1) is justified by $\nabla_{x} f(x-y)=-\nabla_{y} f(x-y)$ for any C^{1} function $f ;(2)$ the divergence theorem was applied to integrate by parts, where n_{y} is the outward unit normal on the boundary $\partial \Omega$ and $d S_{y}$ is the surface area element; (3) the surface integral vanishes because ρ vanishes on $\partial \Omega$.

Next, note that the components of the gradient $\nabla \rho$ are bounded because $\rho \in C^{1}$ and has a bounded support (partial derivatives of ρ vanish outside of a ball, and, hence, by continuity must attain their extreme values). Therefore by the aforementioned theorem, the components of the gradient ∇u are from the class C^{1} and their partial derivatives can be obtained by changing the order of differentiation and integration. In particular, for $x \in \Omega$,

$$
\begin{aligned}
\Delta u(x) & =(\nabla, \nabla u) \stackrel{(1)}{=}-\int_{\Omega}\left(\nabla_{y} \rho(y), \nabla_{y} \frac{1}{|x-y|}\right) d^{3} y \\
& \stackrel{(2)}{=}-\lim _{\varepsilon \rightarrow 0^{+}}\left(\int_{\Omega \backslash B_{\varepsilon}(x)}+\int_{B_{\varepsilon}(x)}\right)\left(\nabla_{y} \rho(y), \nabla_{y} \frac{1}{|x-y|}\right) d^{3} y
\end{aligned}
$$

Here (1) is again due to $\nabla_{x} f(x-y)=-\nabla_{y} f(x-y)$ and (2) is due to the additivity of the integral where $B_{\varepsilon}(x)$ is the ball of radius ε centered at x (note that $\nabla \rho(y)=0$ if $y \notin \bar{\Omega}$ for this
reason the second integral can be extended to the whole $B_{\varepsilon}(x)$ if $\left.x \in \partial \Omega\right)$.
(v) Let us estimate the behavior of the integral over $B_{\varepsilon}(x)$ as $\varepsilon \rightarrow 0^{+}$.

$$
\begin{aligned}
\left|\int_{B_{\varepsilon}(x)}\left(\nabla_{y} \rho(y), \nabla_{y} \frac{1}{|x-y|}\right) d^{3} y\right| & \stackrel{(1)}{\leq} \int_{B_{\varepsilon}(x)}\left|\left(\nabla_{y} \rho(y), \nabla_{y} \frac{1}{|x-y|}\right)\right| d^{3} y \\
& \stackrel{(2)}{\leq} \int_{B_{\varepsilon}(x)}\left|\nabla_{y} \rho(y)\right|\left|\nabla_{y} \frac{1}{|x-y|}\right| d^{3} y \\
& \stackrel{(3)}{=} \int_{B_{\varepsilon}(x)}\left|\nabla_{y} \rho(y)\right| \frac{1}{|x-y|^{2}} d^{3} y \\
& \stackrel{(4)}{\leq} M \int_{B_{\varepsilon}(x)} \frac{d^{3} y}{|x-y|^{2}}=M \int_{B_{\varepsilon}} \frac{d^{3} z}{|z|^{2}} \\
& \stackrel{(5)}{=} 4 \pi M \varepsilon \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

Here (1) is by the properties of the integral;
(2) is by the Cauchy-Schwartz inequality for the dot product $|(a, b)| \leq|a||b|$ for any $a, b \in \mathbb{R}^{N}$;
(3) is by a direct evaluation of the gradient, $\left.|\nabla| x\right|^{-1}|=|-x| x|^{-3}\left|=|x|^{-2}\right.$;
(4) the gradient $\nabla \rho$ is continuous on a closed and bounded region Ω and, hence, is bounded $|\nabla \rho| \leq \sup |\nabla \rho|=M$ by the extreme value theorem;
(5) after the change of variables $z=y-x$ so that the new integration region is centered at the origin, the integral is evaluated in spherical coordinates; $d^{3} z=r^{2} \sin \phi d r d \phi d \theta, r=|z|$, and $(r, \phi, \theta) \in[0, \varepsilon] \times[0, \pi] \times[0,2 \pi]$. It is concluded that the integral over $B_{\varepsilon}(x)$ tends to 0 as $\varepsilon \rightarrow 0^{+}$.
(vi) Let us analyze the second integral in the limit $\varepsilon \rightarrow 0^{+}$:

$$
\begin{aligned}
& \int_{\Omega \backslash B_{\varepsilon}(x)}\left(\nabla_{y} \rho(y), \nabla_{y} \frac{1}{|x-y|}\right) d^{3} y \\
& \stackrel{(1)}{=} \oint_{\partial\left(\Omega \backslash B_{\varepsilon}(x)\right)} \rho(y) \frac{\partial}{\partial n_{y}} \frac{1}{|x-y|} d S_{y}-\int_{\Omega \backslash B_{\varepsilon}(x)} \rho(y) \Delta_{y} \frac{1}{|x-y|} d^{3} y \\
& \stackrel{(2)}{=} \oint_{\partial\left(\Omega \backslash B_{\varepsilon}(x)\right)} \rho(y) \frac{\partial}{\partial n_{y}} \frac{1}{|x-y|} d S_{y}+0 \\
& \stackrel{(3)}{=}\left(\oint_{\partial \Omega}+\oint_{\partial B_{\varepsilon}(x)}\right) \rho(y) \frac{\partial}{\partial n_{y}} \frac{1}{|x-y|} d S_{y} \\
& \stackrel{(4)}{=} 0-\oint_{|z|=\varepsilon} \rho(z+x) \frac{\partial}{\partial|z|} \frac{1}{|z|} d S_{z} \\
& \stackrel{(5)}{=} \frac{1}{\varepsilon^{2}} \oint_{|z|=\varepsilon} \rho(z+x) d S_{z} \\
& \stackrel{(6)}{=} \frac{4 \pi \varepsilon^{2}}{\varepsilon^{2}} \rho\left(z_{\varepsilon}+x\right) \\
& =-\lim _{\varepsilon \rightarrow 0} \int_{\Omega \backslash B_{\varepsilon}(x)}\left(\nabla_{y} \rho(y), \nabla_{y} \frac{1}{|x-y|}\right) d^{3} y \\
& \Rightarrow \quad-4 \pi \lim _{\varepsilon \rightarrow 0} \rho\left(z_{\varepsilon}+x\right) \stackrel{(7)}{=}-4 \pi \rho(x)
\end{aligned}
$$

Here (1) the Green's formula was used to integrate by parts, and n_{y} is the outward unit normal on the boundary of the integration domain (note that the singular point $y=x$ is not in the integration region and, hence, the hypotheses of the Green's formula are met);
(2) $\Delta_{y}|y-x|^{-1}=0$ for any $y \neq x$;
(3) The boundary consists of two pieces, $\partial \Omega$ and the sphere $|y-x|=\varepsilon$, if x is an interior point. Since $\rho=0$ on the boundary $\partial \Omega$, The surface integral over $\partial \Omega$ vanishes. If $x \in \partial \Omega$, then the first integral is taken over the part of $\partial \Omega$ that is not in the ball $B_{\varepsilon}(x)$, but the latter does not matter as $\rho=0$ on $\partial \Omega$ anyway. The second surface integral is taken over the part of the sphere $\partial B_{\varepsilon}(x)$ lies in Ω, but since $\rho=0$ outside Ω, the integral can be extended to the whole sphere.
(4) For any $x \in \Omega$, the first surface integral is equal to zero, while the second one is taken over the whole sphere $|y-x|=\varepsilon$. In the second integral, put $z=y-x$ so that the normal derivative on the sphere $|z|=\varepsilon$ oriented toward the origin (the outward normal on the boundary of the integration region) is the negative of the radial derivative, and $d S_{y}=d S_{z}$ since a sphere remains a sphere under a parallel translation.
(5) The radial derivative on the sphere was evaluated.
(6) The integral mean value theorem was used, where z_{ε} is a point on the sphere, $\left|z_{\varepsilon}\right|=\varepsilon$, and $4 \pi \varepsilon^{2}$ is the sphere area.
(7) By continuity of ρ and that $z_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0^{+}$.
9.2 (4 pts). Consider the function defined by the Fourier integral

$$
F(k)=\int_{-\infty}^{\infty} \frac{\cos (k x)}{1+x^{4}} d x
$$

(i) Show that $F \in C^{2}(\mathbb{R})$
(ii) Show that $F \in C^{3}(|k| \geq \delta)$ for any $\delta>0$.
(iii) Use the residue theorem to find an explicit form of $F(k)$. Compute $F^{\prime \prime \prime}(k)$. Does it exist for all k ?
(iv) Can $F^{\prime \prime \prime}(k)$ be obtained by interchanging the order of D_{k}^{3} and integration with respect to x ? If so, evaluate the integral after differentiation of the integrand with respect to k.

Solution: (i) One has

$$
\left|\frac{\partial^{p}}{\partial^{p} k} \frac{\cos (k x)}{1+x^{4}}\right| \leq \frac{|x|^{p}}{1+x^{4}} \in \mathcal{L}, \quad p=1,2
$$

and the first and second partial derivatives of the integrand with respect to k are continuous for all x. By Theorem 5.2, $F \in C^{2}$.
(ii) The integrable bound of the third derivative that is independent of the parameter k does not exist. So, put

$$
F_{n}^{\prime \prime}(k)=-\int_{-n}^{n} \frac{x^{2} \cos (k x)}{1+x^{4}} d x \rightarrow F^{\prime \prime}(k)
$$

as $n \rightarrow \infty$ for any $k \in \mathbb{R}$. Then

$$
\left|\frac{\partial}{\partial k} \frac{x^{2} \cos (k x)}{1+x^{4}}\right| \leq \frac{|x|^{3}}{1+x^{4}} \in \mathcal{L}(-n, n)
$$

By Theorem 5.2,

$$
F_{n}^{\prime \prime \prime}(k)=-2 \int_{0}^{n} \frac{x^{3} \sin (k x)}{1+x^{4}} d x
$$

The sequence $F_{n}^{\prime \prime \prime}(k)$ converges by Abel's theorem for conditionally convergent integrals for all $|k| \geq \delta>0$ and any such δ because

$$
\begin{aligned}
\left|\int_{c}^{d} \sin (k x) d x\right| & =\left|\frac{\cos (k d)-\cos (k c)}{k}\right| \leq \frac{2}{|k|} \leq \frac{2}{\delta} \\
\left(\frac{x^{3}}{1+x^{4}}\right)^{\prime} & =\frac{x^{2}\left(3-x^{4}\right)}{\left(1+x^{4}\right)^{2}}<0, \quad x>2
\end{aligned}
$$

so that the factor at $\sin (k x)$ in the integrand is monotonically decreasing for all $x>2$. Therefore there exists a function $G(k)$ such that $F_{n}^{\prime \prime \prime}(k) \rightarrow G(k)$ as $n \rightarrow \infty$ for all k (note that $G(0)=0$ because $\left.F_{n}^{\prime \prime \prime}(0)=0\right)$. By the second part of Abel's theorem

$$
\left|F_{n}^{\prime \prime \prime}(k)-G(k)\right| \leq 2 \cdot \frac{2}{\delta} \cdot \frac{n^{3}}{1+n^{4}}, \quad|k| \geq \delta>0, \quad n>2
$$

Therefore $F_{n}^{\prime \prime \prime} \rightarrow G$ converges uniformly on the set $|k| \geq \delta>0$

$$
\sup _{|k| \geq \delta>0}\left|F_{n}^{\prime \prime \prime}(k)-G(k)\right| \leq \frac{4}{\delta} \frac{n^{3}}{1+n^{4}} \rightarrow 0
$$

as $n \rightarrow \infty$. By Theorem 1.3, $G(k)=F^{\prime \prime \prime}(k)$ and $F \in C^{3}(k \neq 0)$ because $\delta>0$ is arbitrary.
(iii) Consider the function $f(z)=e^{i k z}\left(1+z^{4}\right)^{-1}$ which is analytic in the complex plane and has four simple poles

$$
z_{1}=\frac{1+i}{\sqrt{2}}, \quad z_{2}=\frac{i-1}{\sqrt{2}}, \quad z_{3}=-z_{1}, \quad z_{4}=-z_{2}
$$

Then

$$
F(k)=\operatorname{Re} \lim _{R \rightarrow \infty} \int_{-R}^{R} f(z) d z
$$

Let $k \geq 0$. Take the closed contour in the complex plane that consists of the interval $I_{R}=$ $[-R, R]$ in the real axis and the circular arc $C_{R}^{+}:|z|=R, \operatorname{Im} z \geq 0$. Then the integral of f over the arc vanishes in the limit $R \rightarrow \infty$ because for all $R>1$

$$
\begin{aligned}
\left|\int_{C_{R}^{+}} f(z) d z\right| & =\left|\int_{0}^{\pi} f\left(R e^{i t}\right) R e^{i t} d t\right| \leq \int_{0}^{\pi} \frac{R e^{-k R \sin (t)}}{\left|1+R^{4} e^{4 i t}\right|} d t \\
& \leq \frac{R}{R^{4}-1} \int_{0}^{\pi} d t=\frac{\pi R}{R^{4}-1} \rightarrow 0
\end{aligned}
$$

as $R \rightarrow \infty$. By the residue theorem

$$
\int_{-\infty}^{\infty} \frac{e^{i k x}}{1+x^{4}} d x=2 \pi i\left(\operatorname{Res}_{z_{1}} f(z)+\operatorname{Res}_{z_{1}} f(z)\right)=\frac{\pi}{2}\left(\frac{e^{i k z_{1}}}{z_{1}}-\frac{e^{i k z_{2}}}{z_{2}}\right)
$$

If $k \leq 0$, then the residue theorem is applied to the closed contour that consists of the interval I_{R} and the circular arc $C_{R}^{-}:|z|=R, \operatorname{Im} z \leq 0$. The integral of f over the arc vanishes in the limit $R \rightarrow \infty$ by the same argument. Therefore

$$
\int_{-\infty}^{\infty} \frac{e^{i k x}}{1+x^{4}} d x=-2 \pi i\left(\operatorname{Res}_{z_{3}} f(z)+\operatorname{Res}_{z_{4}} f(z)\right)=\frac{\pi}{2}\left(\frac{e^{i k z_{4}}}{z_{4}}-\frac{e^{i k z_{3}}}{z_{3}}\right)
$$

The extra minus sign is due to the negative orientation of the contour. Therefore

$$
F(k)=\frac{\pi}{\sqrt{2}} e^{-|k| / \sqrt{2}}(\cos (k / \sqrt{2})+\sin (|k| / \sqrt{2}))
$$

It follows from the explicit form of $F(k)$ that $F \in C^{\infty}(k \neq 0)$. Near $k=0$, using the power series for the exponential and trigonometric functions in the variable $q=k / \sqrt{2}$

$$
\begin{aligned}
F(k) & =\frac{\pi}{\sqrt{2}}\left(1-|q|+\frac{1}{2} q^{2}-\frac{1}{6}|q|^{3}+O\left(q^{4}\right)\right)\left(1+|q|-\frac{1}{2} q^{2}-\frac{1}{3}|q|^{3}+O\left(q^{4}\right)\right) \\
& =\frac{\pi}{\sqrt{2}}\left(1-q^{2}+\frac{1}{2}|q|^{3}+O\left(q^{4}\right)\right)
\end{aligned}
$$

This shows that $F \in C^{2}$ but $F^{\prime \prime \prime}(0)$ does not exists.
(iv) No. The said integral does not exist for any $k \neq 0$ because it does not converge absolutely:

$$
\sum_{n=2}^{\infty} \int_{\pi n / k}^{\pi(n+1) / k} \frac{x^{3}|\sin (k x)|}{1+x^{4}} d x \geq \sum_{n=2}^{\infty} \frac{2\left(\frac{\pi n}{k}\right)^{3}}{1+\left(\frac{\pi n}{k}\right)^{4}}=\infty, \quad k \neq 0
$$

Note that the left-hand side is the integral of the absolute value of the third derivative of the integrand with respect to k over the interval $(2 \pi / k, \infty)$. If $k=0$, then the said integral vanishes but the explicit form of F shows that $F^{\prime \prime \prime}(0)$ does not exist. So, the order of D_{k}^{3} and the integration cannot be interchanged for any k.

