
Assignment 1 with solutions, MAP 6505, Fall 2023

3.3 (1 pt). Which of the following functions are Lebesgue integrable on R:

sin(x)

x
,

eikx

x
,

cos(x)
√

|x|
, e−x , x100e−x2

Solution: All of these functions are continuous almost everywhere. Therefore the Lebesgue
integrability means the absolute integrability. If the integral does not converge (converge) abso-
lutely in a particular regularization, then it does not converge (converges) in any regularization.
It follows

∫ ∞

π

| sin(x)|
x

dx =
∞

∑

n=1

∫ π(n+1)

πn

| sin(x)|
x

dx

≥
∞

∑

n=1

1

πn

∫ π(n+1)

πn

| sin(x)| dx =
∞

∑

n=1

2

πn
= ∞

So, sin(x)
x

is not integrable on R. The absolute value | eikx

x
| = 1

|x| is not integrable,

∫

dx

|x| = 2 lim
a→0+

=

∫ 1

a

a

dx

x
= −4 lim

a→0+
ln(a) = ∞

and so is eikx

x
. The function cos(x)√

|x|
is integrable on any bounded interval containing x = 0:

∫ a

0

| cos(x)|
√

|x|
dx ≤

∫ a

0

dx√
x

= 2
√

a < ∞

However it is not absolutely integrable on any unbounded interval:

∫ ∞

π

| cos(x)|
√

|x|
dx =

∞
∑

n=1

∫ π(n+1)

πn

| cos(x)|
√

|x|
dx ≥

∞
∑

n=1

2√
πn

= ∞

similarly to the first function in question. The fourth function is also not integrable because

lim
a→∞

∫ a

−a

e−xdx = lim
a→∞

(ea − e−a) = ∞

The last function is integrable on R because

x100 ≤ 100!e|x|

⇒ lim
a→∞

∫ a

−a

e−x2+|x|dx = 2e
1

4 lim
a→∞

∫ a− 1

2

− 1

2

e−y2dy <
√

πe
1

4 < ∞

where y = x − 1
2

and after the change of variables the integration region was enlarged to the
whole R to get the last inequality.



4.8 (1 pt). Let f ∈ L(R) such that
∫

f(x) dx = 1 and ϕ be a continuous function with
bounded support. Put fn(x) = nf(nx), n = 1, 2, .... Show that

lim
n→∞

∫

fn(x)ϕ(x) dx = ϕ(0)

Hint: Use the Lebesgue dominated convergence theorem and that any continuous function with
bounded support is bounded.

Solution: One infers that

lim
n→∞

∫

fn(x)ϕ(x) dx
(1)
= lim

n→∞

∫

f(y)ϕ(y/n) dy

(2)
=

∫

f(y) lim
n→∞

f(y)ϕ(y/n) dy

(3)
= ϕ(0)

∫

f(y) dy
(4)
= ϕ(0)

Here (1) is obtained by changing variables, y = nx so that dy = ndx, (2) follows from the
Lebesgue dominated convergence theorem. Any continuous function on R with a bounded
support must be bounded sup |ϕ| = M < ∞. Therefore the integrand has an integrable bound
independent of n:

|f(y)ϕ(y/n)| ≤ M |f(y)| ∈ L
and the absolute value of an integrable function is integrable. The equality (3) follows from
continuity of ϕ and (4) holds by the hypothesis.

5.6 (2 pts). Let

f(x, y) =
x2 − y2

(x2 + y2)2
, (x, y) ∈ Ω = (1,∞) × (1,∞)

(i) Calculate the iterated integral
∫ ∞

1

(
∫ ∞

1

|f(x, y)| dx

)

dy

Is it true that f ∈ L(Ω)?
(ii) Calculate and compare the iterated integrals

∫ ∞

1

(
∫ ∞

1

f(x, y) dx

)

dy ,

∫ ∞

1

(
∫ ∞

1

f(x, y) dy

)

dx

Solution: (i) To evaluate the integral, let us use the identity

f(x, y) =
x2 − y2

(x2 + y2)2
= − ∂

∂x

x

x2 + y2

so that
∫ ∞

1

(
∫ ∞

1

|f(x, y)| dx

)

dy =

∫ ∞

1

(
∫ ∞

y

−
∫ y

1

)

f(x, y) dx dy

=

∫ ∞

1

(

1

y
− 1

1 + y2

)

dy = ∞



where the first equality follows from that f(x, y) ≥ 0 if x ≥ y, and the second is obtained by the
fundamental theorem of calculus and the aforementioned identity. By the first part of Fubini’s
theorem the function f(x, y) is not integrable on (1,∞) × (1,∞).

(ii) By the identity used in Part (i) and the fundamental theorem of calculus
∫ ∞

1

(
∫ ∞

1

f(x, y) dx

)

dy =

∫ ∞

1

dy

1 + y2
=

π

4

The second integral is evaluated using the identity

f(x, y) =
x2 − y2

(x2 + y2)2
=

∂

∂y

y

x2 + y2

and the fundamental theorem of calculus
∫ ∞

1

(
∫ ∞

1

f(x, y) dy

)

dx = −
∫ ∞

1

dx

1 + x2
= −π

4
.

The second part of Fubini’s theorem does not hold because the function is not absolutely
(Lebesgue) integrable.

8.4 (6 pts). Solution to the Poisson equation. Suppose that ρ ∈ C1(R3) and has a bounded
support Ω. Suppose that the boundary ∂Ω is smooth (or piecewise smooth). Prove that

∆u(x) = −4πρ(x) , x ∈ R
3 , u(x) =

∫

ρ(y)

|x− y| d3y

by justifying each of the following assertions:

(i) u ∈ C1(R3) , u ∈ C∞
(

R
3 \ Ω

)

,

(ii) ∆x
1

|x− y| = 0 , ∀x 6= y

(iii) x /∈ Ω ⇒ ∆u(x) = 0 ,

(iv) x ∈ Ω ⇒ ∆u(x) = −
(

∇,

∫

Ω

ρ(y)∇y
1

|x − y| d
3y

)

= −
∫

Ω

(

∇yρ(y),∇y
1

|x − y|

)

d3y

= −
(

∫

Ω\Bε(x)

+

∫

Bε(x)

) (

∇yρ(y),∇y
1

|x − y|

)

d3y

(v) lim
ε→0

∫

Ω\Bε(x)

(

∇yρ(y),∇y
1

|x − y|

)

d3y = 4πρ(x) , x ∈ Ω

(vi) lim
ε→0

∫

Bε(x)

(

∇yρ(y),∇y
1

|x− y|

)

d3y = 0

where ∇ denotes the gradient.

Solution: (i) It was proved in this section that the function

u(x) =

∫

Ω

ρ(y)

|x − y|α dy , |ρ(y)| ≤ M ,



is from Cp(RN ) and C∞
(

R
N \ Ω̄

)

. In the case in question, N = 3, α = 1, and, hence, p = 1.

The integration region Ω is the support of ρ and, hence, a closed subset in R
3.

(ii) By a direct evaluation of partial derivatives

∆
1

|x| = (∇,∇)
1

|x| = −
(

∇,
x

|x|3
)

= − 1

|x|3 (∇, x)−
(

x,∇ 1

|x|3
)

= − 3

|x|3 +
3(x, x)

|x|5 = 0 , ∀x 6= 0

Shifting the variable x by a constant vector y, it is concluded that

∆x
1

|x − y| = 0 , ∀x 6= y

(iii) Any partial derivative Dβ of u(x) for x /∈ Ω can be evaluated by rearranging the order of
integration and differentiation. In particular,

∆u(x) =

∫

Ω

ρ(y)∆x
1

|x − y| d
3y = 0 , ∀x ∈ R

3 \ Ω ,

by Part (ii) because y 6= x if y spans Ω.

(iv) If x ∈ Ω, then only the first partials can be evaluated by rearranging the order of in-
tegration and differentiation. In this case,

∇u(x) =

∫

Ω

ρ(y)∇x
1

|x − y| d
3y

(1)
= −

∫

Ω

ρ(y)∇y
1

|x − y| d
3y

(2)
= −

∮

∂Ω

ρ(y)
ny

|x− y| dSy +

∫

Ω

∇yρ(y)
1

|x − y| d
3y

(3)
=

∫

Ω

∇yρ(y)
1

|x − y| d
3y

Here: (1) is justified by ∇xf(x − y) = −∇yf(x − y) for any C1 function f ; (2) the divergence
theorem was applied to integrate by parts, where ny is the outward unit normal on the boundary
∂Ω and dSy is the surface area element; (3) the surface integral vanishes because ρ vanishes on
∂Ω.

Next, note that the components of the gradient ∇ρ are bounded because ρ ∈ C1 and has
a bounded support (partial derivatives of ρ vanish outside of a ball, and, hence, by continuity
must attain their extreme values). Therefore by the aforementioned theorem, the components
of the gradient ∇u are from the class C1 and their partial derivatives can be obtained by
changing the order of differentiation and integration. In particular, for x ∈ Ω,

∆u(x) = (∇,∇u)
(1)
= −

∫

Ω

(

∇yρ(y),∇y
1

|x− y|

)

d3y

(2)
= − lim

ε→0+

(
∫

Ω\Bε(x)

+

∫

Bε(x)

) (

∇yρ(y),∇y
1

|x− y|

)

d3y

Here (1) is again due to ∇xf(x − y) = −∇yf(x − y) and (2) is due to the additivity of the
integral where Bε(x) is the ball of radius ε centered at x (note that ∇ρ(y) = 0 if y /∈ Ω̄ for this



reason the second integral can be extended to the whole Bε(x) if x ∈ ∂Ω).

(v) Let us estimate the behavior of the integral over Bε(x) as ε → 0+.

∣

∣

∣

∣

∫

Bε(x)

(

∇yρ(y),∇y
1

|x − y|

)

d3y

∣

∣

∣

∣

(1)

≤
∫

Bε(x)

∣

∣

∣

∣

(

∇yρ(y),∇y
1

|x− y|

)
∣

∣

∣

∣

d3y

(2)

≤
∫

Bε(x)

∣

∣

∣
∇yρ(y)

∣

∣

∣

∣

∣

∣

∣

∇y
1

|x − y|

∣

∣

∣

∣

d3y

(3)
=

∫

Bε(x)

∣

∣

∣
∇yρ(y)

∣

∣

∣

1

|x− y|2 d3y

(4)

≤ M

∫

Bε(x)

d3y

|x − y|2 = M

∫

Bε

d3z

|z|2
(5)
= 4πMε → 0 as ε → 0

Here (1) is by the properties of the integral;
(2) is by the Cauchy-Schwartz inequality for the dot product |(a, b)| ≤ |a||b| for any a, b ∈ R

N ;
(3) is by a direct evaluation of the gradient, |∇|x|−1| = | − x|x|−3| = |x|−2;
(4) the gradient ∇ρ is continuous on a closed and bounded region Ω and, hence, is bounded
|∇ρ| ≤ sup |∇ρ| = M by the extreme value theorem;
(5) after the change of variables z = y − x so that the new integration region is centered at
the origin, the integral is evaluated in spherical coordinates; d3z = r2 sin φdrdφdθ, r = |z|, and
(r, φ, θ) ∈ [0, ε]×[0, π]×[0, 2π]. It is concluded that the integral over Bε(x) tends to 0 as ε → 0+.

(vi) Let us analyze the second integral in the limit ε → 0+:

∫

Ω\Bε(x)

(

∇yρ(y),∇y
1

|x − y|

)

d3y

(1)
=

∮

∂(Ω\Bε(x))

ρ(y)
∂

∂ny

1

|x − y| dSy −
∫

Ω\Bε(x)

ρ(y)∆y
1

|x − y| d
3y

(2)
=

∮

∂(Ω\Bε(x))

ρ(y)
∂

∂ny

1

|x − y| dSy + 0

(3)
=

(
∮

∂Ω

+

∮

∂Bε(x)

)

ρ(y)
∂

∂ny

1

|x − y| dSy

(4)
= 0 −

∮

|z|=ε

ρ(z + x)
∂

∂|z|
1

|z| dSz

(5)
=

1

ε2

∮

|z|=ε

ρ(z + x) dSz

(6)
=

4πε2

ε2
ρ(zε + x)

⇒ ∆u(x) = − lim
ε→0

∫

Ω\Bε(x)

(

∇yρ(y),∇y
1

|x− y|

)

d3y

= −4π lim
ε→0

ρ(zε + x)
(7)
= −4πρ(x)



Here (1) the Green’s formula was used to integrate by parts, and ny is the outward unit normal
on the boundary of the integration domain (note that the singular point y = x is not in the
integration region and, hence, the hypotheses of the Green’s formula are met);
(2) ∆y|y − x|−1 = 0 for any y 6= x;
(3) The boundary consists of two pieces, ∂Ω and the sphere |y−x| = ε, if x is an interior point.
Since ρ = 0 on the boundary ∂Ω, The surface integral over ∂Ω vanishes. If x ∈ ∂Ω, then the
first integral is taken over the part of ∂Ω that is not in the ball Bε(x), but the latter does not
matter as ρ = 0 on ∂Ω anyway. The second surface integral is taken over the part of the sphere
∂Bε(x) lies in Ω, but since ρ = 0 outside Ω, the integral can be extended to the whole sphere.
(4) For any x ∈ Ω, the first surface integral is equal to zero, while the second one is taken over
the whole sphere |y−x| = ε. In the second integral, put z = y−x so that the normal derivative
on the sphere |z| = ε oriented toward the origin (the outward normal on the boundary of the
integration region) is the negative of the radial derivative, and dSy = dSz since a sphere remains
a sphere under a parallel translation.
(5) The radial derivative on the sphere was evaluated.
(6) The integral mean value theorem was used, where zε is a point on the sphere, |zε| = ε, and
4πε2 is the sphere area.
(7) By continuity of ρ and that zε → 0 as ε → 0+.

9.2 (4 pts). Consider the function defined by the Fourier integral

F (k) =

∫ ∞

−∞

cos(kx)

1 + x4
dx

(i) Show that F ∈ C2(R)
(ii) Show that F ∈ C3(|k| ≥ δ) for any δ > 0.
(iii) Use the residue theorem to find an explicit form of F (k). Compute F ′′′(k). Does it exist
for all k?
(iv) Can F ′′′(k) be obtained by interchanging the order of D3

k and integration with respect to
x? If so, evaluate the integral after differentiation of the integrand with respect to k.

Solution: (i) One has
∣

∣

∣

∂p

∂pk

cos(kx)

1 + x4

∣

∣

∣
≤ |x|p

1 + x4
∈ L , p = 1, 2 ,

and the first and second partial derivatives of the integrand with respect to k are continuous
for all x. By Theorem 5.2, F ∈ C2.

(ii) The integrable bound of the third derivative that is independent of the parameter k does
not exist. So, put

F ′′
n (k) = −

∫ n

−n

x2 cos(kx)

1 + x4
dx → F ′′(k)

as n → ∞ for any k ∈ R. Then
∣

∣

∣

∂

∂k

x2 cos(kx)

1 + x4

∣

∣

∣
≤ |x|3

1 + x4
∈ L(−n, n)

By Theorem 5.2,

F ′′′
n (k) = −2

∫ n

0

x3 sin(kx)

1 + x4
dx .



The sequence F ′′′
n (k) converges by Abel’s theorem for conditionally convergent integrals for all

|k| ≥ δ > 0 and any such δ because

∣

∣

∣

∫ d

c

sin(kx) dx
∣

∣

∣
=

∣

∣

∣

cos(kd) − cos(kc)

k

∣

∣

∣
≤ 2

|k| ≤
2

δ
( x3

1 + x4

)′
=

x2(3 − x4)

(1 + x4)2
< 0 , x > 2

so that the factor at sin(kx) in the integrand is monotonically decreasing for all x > 2. Therefore
there exists a function G(k) such that F ′′′

n (k) → G(k) as n → ∞ for all k (note that G(0) = 0
because F ′′′

n (0) = 0). By the second part of Abel’s theorem

|F ′′′
n (k) − G(k)| ≤ 2 · 2

δ
· n3

1 + n4
, |k| ≥ δ > 0 , n > 2 .

Therefore F ′′′
n → G converges uniformly on the set |k| ≥ δ > 0

sup
|k|≥δ>0

|F ′′′
n (k) − G(k)| ≤ 4

δ

n3

1 + n4
→ 0

as n → ∞. By Theorem 1.3, G(k) = F ′′′(k) and F ∈ C3(k 6= 0) because δ > 0 is arbitrary.

(iii) Consider the function f(z) = eikz(1 + z4)−1 which is analytic in the complex plane and has
four simple poles

z1 =
1 + i√

2
, z2 =

i− 1√
2

, z3 = −z1 , z4 = −z2

Then

F (k) = Re lim
R→∞

∫ R

−R

f(z) dz

Let k ≥ 0. Take the closed contour in the complex plane that consists of the interval IR =
[−R, R] in the real axis and the circular arc C+

R : |z| = R, Im z ≥ 0. Then the integral of f over
the arc vanishes in the limit R → ∞ because for all R > 1

∣

∣

∣

∫

C+

R

f(z)dz
∣

∣

∣
=

∣

∣

∣

∫ π

0

f(Reit)Reitdt
∣

∣

∣
≤

∫ π

0

Re−kR sin(t)

|1 + R4e4it| dt

≤ R

R4 − 1

∫ π

0

dt =
πR

R4 − 1
→ 0

as R → ∞. By the residue theorem

∫ ∞

−∞

eikx

1 + x4
dx = 2πi

(

Resz1
f(z) + Resz1

f(z)
)

=
π

2

(eikz1

z1
− eikz2

z2

)

If k ≤ 0, then the residue theorem is applied to the closed contour that consists of the interval
IR and the circular arc C−

R : |z| = R, Im z ≤ 0. The integral of f over the arc vanishes in the
limit R → ∞ by the same argument. Therefore

∫ ∞

−∞

eikx

1 + x4
dx = −2πi

(

Resz3
f(z) + Resz4

f(z)
)

=
π

2

(eikz4

z4

− eikz3

z3

)



The extra minus sign is due to the negative orientation of the contour. Therefore

F (k) =
π√
2

e−|k|/
√

2
(

cos(k/
√

2) + sin(|k|/
√

2)
)

It follows from the explicit form of F (k) that F ∈ C∞(k 6= 0). Near k = 0, using the power
series for the exponential and trigonometric functions in the variable q = k/

√
2

F (k) =
π√
2

(

1 − |q|+ 1

2
q2 − 1

6
|q|3 + O(q4)

)(

1 + |q| − 1

2
q2 − 1

3
|q|3 + O(q4)

)

=
π√
2

(

1 − q2 +
1

2
|q|3 + O(q4)

)

This shows that F ∈ C2 but F ′′′(0) does not exists.

(iv) No. The said integral does not exist for any k 6= 0 because it does not converge abso-
lutely:

∞
∑

n=2

∫ π(n+1)/k

πn/k

x3| sin(kx)|
1 + x4

dx ≥
∞

∑

n=2

2(πn
k

)3

1 + (πn
k

)4
= ∞ , k 6= 0

Note that the left-hand side is the integral of the absolute value of the third derivative of
the integrand with respect to k over the interval (2π/k,∞). If k = 0, then the said integral
vanishes but the explicit form of F shows that F ′′′(0) does not exist. So, the order of D3

k and
the integration cannot be interchanged for any k.


