Assignment 2 with solutions, MAP 6505, Fall 2023

13.10.2 (i) Find a sequence of locally integrable function f,(x) in R? that converges to the
spherical delta-function:

fo— bs, in D’ (5sa,80):% () dS
|z|=a

(i) Find a sequence of test functions ¢, € D(R?) that converges to the spherical delta function
in the distributional sense.

SOLUTION: (i) By analogy with a mass density of a point particle, consider a thin sphere
of unit mass and radius a. An infinitely thin sphere is an idealization of a spherical layer,
Oy a— %2 < |z <a+ % n =23, .. Forsimplicity, one can assume that the mass is
uniformly distributed within the layer so that the mass density is constant in the layer and zero
outside of it:

1 8ra’ 1
n TR EQn> n :07 Qn> V;L: <3 _)7
pula) =0 @ pula) =0, w¢ (34
where V,, is the volume of €,. The total mass is [ p, d*z =1 for any n. In the limit n — oo,
the layer tends to a sphere of radius a.
Let us find the distributional limit of p,. In spherical coordinates, x = Zr where 2 is the
unit outward normal on the unit sphere,

&z = r*drdS., r=|z|, / ds, = 4n,

|z|=1

and dS, is the area element on the unit sphere (written via spherical angles). For any test
function ¢, by the integral mean value theorem there exists |r,, — a| < % such that
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Note that 7, = r,(2) in general. In the limit n — oo, 7, — a, nV,, — 8ra®, and by continuity
of the test function ¢(Zr,) — @(Za). The order of taking the limit and integration can be
interchanged by the Lebesgue dominated convergence theorem because the integrand is bounded
by a constant |o(2r,)7r2| < 2a%sup |g| that is integrable on a unit sphere. Thus
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lim (pp, p) = —/ o(za)dS, = / o(x)dS = 4md’p, — dg, in D'(R?).
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where a?dS, = dS is the area element on the sphere |z| = a.

(i) Let r,, = 0, 7, > 0, as n — oo. Then by the theorem about bump functions,

Pn(T) :/||= Wr, (v —y)dS,



where w,, is a hat function, is a test function with support in a spherical layer a — 7, < |z| <
a + r,, and by Fubini’s theorem and the normalization property of the hat function,

/pn(:v) dr = / /wrn (x —y)d*xdS = / dS = 4ma®
lyl=a lyl=a

By Part (i), p, — s, in D'. Alternatively, p, = w,., * dg, is a regularization of Jg, that con-
verges to dg, in D’ (see properties of the regularization of distributions). Since support of dg,
is bounded, its regularization is a test function.

13.10.4. Let n be a positive integer and 6(x) is the step function. Find the following lim-
its in the distributional sense or show that the limit does not exist:
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that is, if the limit exists, then give an explicit rule how to compute the value of the limit
distribution for a test function.

SOLUTION: (iv) For any test function ¢, by integration by parts
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The support of ¢ lies in a bounded interval |x| < R for some R > 0. Therefore
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Thus, the limit exists and the limit distribution is the zero distribution.

(v) Let n = 1. Then the integration by parts yields (as in Part (iv))
e

<t6itm9(z), gp(:v)) = ip(0) + z/ o (z) da

0

The last integral vanishes in the limit ¢ — oo by the same argument as in Part (iv) if ¢ is
replaced by ¢’ in it. Thus

te'f(x) — id(xr) inD ast— oo

Let n = 2. Then integrating by parts twice
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Therefore the limit does not exist because the integral vanishes in the limit (replace ¢ by ¢”
in Part (iv)) whereas the first term is not unbounded as ¢ — oo. For any n > 2, one can
integrate by parts n times to reduce the integral to the sum a polynomial of degree n — 1 in
the parameter ¢ with coefficients being proportional to ©®(0), k = 0,1,...,n — 1, stemming
from the boundary terms, and the integral of ™ (x)e™® over (0,00) that vanishes in the limit
t — oo. Thus, the limit does not exist for any n > 2.

15.5.7. Let t € R and = € R%. Find the support of the distribution defined by the rule

(f, ) :/Ooo /|m|zctg0(af,t) ds dt

where dS stands for the line integral over the circle |z| = ¢t, and ¢ > 0 is a constant.

SOLUTION: The integration is curried out over the cone I'* : |z] = c¢t, t > 0 in R3 spanned by
r € R? and t € R. The distance between (zg,ty) € R* and the cone I'" is not zero if the point
(x0,t0) is not in I'". Therefore there exists an open ball B, of a small enough radius a and
centered at (xg,to) that has no intersection with I'". Then f(z,t) = 0 if (z,¢) € B, because
for any test function ¢ € D(B,), (f,¢) = 0. Thus, f(z,t) = 0 in the complement of I'" and,
hence, supp f =I'".

15.5.15. Prove each of the following distributional limits
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SOLUTION: (iii) It has been shown in the notes that
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Put ¢_(x) = ¢(—x) for any test function ¢. Then p_ is also a test function. The above limit
means that

lim (em P%, gp_(:v)) = 1mp_(0) = imp(0).

t—o00
On the other hand, by changing variables x = —y
itx

<em P%,gp_(:v)) = p.v. / %(_I) dr = —p.v. / M dy = —(e_m P%,gp(z))

Therefore 1
e " P= — —ird(z) ast— +oo,
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and by the Sokhotsky equation and properties of the delta function
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as required.

17.7.2. (i) Let {x,} be any sequence or real numbers, and {z,} be a sequence that has
no limit points. Show the series
Z and(x — x,)

converges in the sense of distribution (converges in D').
(i) In part (i), assume that x, — xo. Does the series converge in the sense of distributions?
If not, construct an explicit example of the sequence {a,} for which the series does not converge.

SOLUTION: (i). If {z,} has no limit point, then any interval |z| < R can contain only finitely
many terms of the sequence for any R > 0. Suppose that there are infinitely many distinct
terms in a bounded interval. Divide the interval in two intervals of equal length. Then at
least one of the two intervals must also contain infinitely many terms. Divide that interval
into two intervals of equal length again. Then one of the two intervals must contain infinitely
many terms and so on. By repeating this procedure, a sequence of nested intervals I, C Iy
with infinitely many terms of the sequence is obtained. The length of the intervals tends to
zero. Since the intervals are nested, one can pick one element of the sequence in each of them,
T, € Ig, N1 < ny, to obtain a Cauchy subsequence {z,, }. By the Cauchy criterion, it has
a limit point that lies in the original interval, thus leading to a contradiction. This is known
as the Bolzano-Weierstrass theorem: Every bounded sequence in RY has a convergent subse-
quence (or a limit point). Thus, for any test function with support in [—R, R], only finitely
many terms contribute to the value of the series:

(D andle = ). 0(@)) = D anglea) = > anplen)
n n |zn|<R

and hence the series converges for any ¢ and any choice of a,.

(i) Take a bump function n(z) for an interval (zg — 1,29 + 1). It is a test function such
that n(x) = 1 if |z — x¢| < 1. Since x,, — =z, there are only finitely many terms outside
(xo— 1,29+ 1), say, for |n| < ng, and infinitely many terms in the interval (zo — 1, ¢+ 1), say,
for |n| > ng. Then

(Zané(z—zn),n(z)) = Z ann(xy,) + Z an
n In|<ng |n|>n0
So, the series diverges if > a, diverges. For example, put a,, = 1.
16.7.9. Put fi(z) = a(x)é6®(sin(z)), & = 0,1,2,..., where a € C*®. Here 6% (sin(z)) is

understood as 0¥)(z) where the substitution z = sin(z) is made. Express f;, in terms of shifted
delta functions and its derivatives or show that fj is not a distribution.



SOLUTION: The solution is given in detail for £k = 1. The other cases are solved along the
same line of reasoning. Let us find first ¢'(sin(z)) and then multiply it by a smooth func-
tion. The change of variables y = sin(x) = F(x) is studied in the notes. The function F(x)
defines a C' transformation R — [—1,1]. It is a diffeomorphism F = F, : Q, — (—1,1)
for every Q, = (=5 + mn, 5 + 7n), n is any integer. If sin~!(y) is the inverse of Fy, then
Fl(y) = 7n +sin"*(y). This change of variable in a distribution f € D’ was shown to
define a distribution only if the support of f lies in (—1,1) (because the Jacobian vanishes
F'(F7'(£1)) = 0). Since the support of ¢'(z) is just x = 0, §’(sin(z)) exists as a distribution.

Let Ky = supp f (a bounded closed interval in (—1,1)). Then there exists is a bump
function nn € D(—1,1) such that n(y) = 1 in a neighborhood of K that is a proper subset in
(—=1,1). Moreover, n(y)f(y) = f(y) by the hypothesis. For any ¢ € D(R), put

o(mn + (=1)"sin"!(y)) € D(—1,1)

)
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It defines a linear continuous transformation of D(R) into D(—1,1) (proved in the notes). By
definition, f(F(y)) = T5(f)(y) is the adjoint transformation of D'(—1,1) to D'(R):

(56in(a), 9(@)) = (5. Tr@))) = o Tr(o))| _

where the last equality is by definition of ¢’. All derivatives of 1 vanish in a neighborhood of
y = 0. The derivative of n(y)/4/1 — y? vanishes at y = 0 because 7/(0) = 0. So, only the
derivative of ¢(7n + (—1)"sin"*(y)) contributes. Since 1(0) = 1 this contribution reads

(96in(@), p(2)) = =S (1" (rn) = F(sin(a)) = D (~1)"(x — )

For any smooth function a and any g, one has
a(zo)d'(x —x0) = [a(xo)d(z — x0)] = [a(z)d(x — x0)] = d'(x)d(x — x0) + a(x)d' (z — x0)
= d'(z0)d(z — xo) + a(x)d'(z — o)

It follows from this relation that

a(z)d'(sin(z)) = Z(—l)" [a(wn)é'(z —mn) —a'(mn)d(z — 7n)

n

17.9.3. Let f(x) = In(|z|) where z € R%
(i) Show that f(z) is a harmonic function wherever it is twice continuously differentiable (that
is, outside of any neighborhood of = = 0):

{am(a))} =

(i) Use the same method as for the Laplacian of the Coulomb potential in R? to find A ln(|z|)
in R? in the distributional sense.



SOLUTION: (i) For x # 0, In(]z|) is a smooth function whose first and second (classical)
derivatives are

€T 05 221
{0;In(|z|)} = ﬁ {0k0; In(|z])} = ﬁ - |;|4k ,
d;; 2w 2 2z

where Einstein’s summation rule was used (e.g., d;; = 2 in R?).

(ii) For any test function ¢, the following chain of equalities holds

(atn(ie. o@) € (). Ap) 2 [m(ehapt) o
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=  Aln(|z|) =276(x), =z eR>.

Here (1) is by definition of derivatives of distributions, (2) holds because In(|z|) is locally
integrable (a regular distribution), (3) holds because the integral converges absolutely and does
not depend on a regularization (continuity of the Lebesgue integral), (4) is obtained by Green’s
identity combined with that Aln(|z|) = 0 for = # 0 and the normal derivative 9/0n = (n, V)
coincides with —0/0r where r = |z| because the unit outward normal for the boundary |z| = a
of the integration region is 7 = —z/a (no boundary contribution comes from the boundary
|x| = R — oo because ¢ has a bounded support), (5) follows from the estimate

‘ / g—i dS‘ < sup | Dy| dS = 2masup | Dyl
|z|=a

|z|=a

and that aln(a) — 0 as a — 07 (note that dS = adS,), and (6) is justified by the Lebesgue
dominated convergence theorem because |¢(az)| < sup |¢| < oo and a constant is integrable on
the unit circle.

18.9.7. Let Q € RY be an open set, and €, = R \ Q be its complement. Supposed that f is
a piecewise continuous function such that f € C*(Q) and f € C'(.). So, f is generally not
continuous at any point of the boundary 0€2. Let the boundary 02 be piecewise smooth and
the jump discontinuity of f at a point x € J€) defined by

[flon(2) = lim f(y) = lim f(2), y€Q, 2€Q, v €00

Yy—z

be continuous on 0f). Show that
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where n(zx) is a unit outward normal at = € 0S.

SOLUTION: To simplify notations, for any x € 02, put

frl@) =lmf(y), yeQ, f(o)=lmfG), €, [fl=fi—f.

Z—X

Define
Q" ={xeQ|d(z,00) <a} CQ

and similarly for Q¢. So, Q¢ is obtained from €2 by removing closed balls of radius a that are
centered at all points of 0f). For any test function ¢, the following chain of equalities holds
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as required. Here (1) is by definition of a distributional derivative, (2) holds because f is locally
integrable, (3) is by the continuity of the Lebesgue integral, (4) is by integration by parts and
that d¥§ = —d¥; is dXf is the oriented outward area element for the boundary of €. (note
that supp ¢ C Bpg so that any part of the sphere || = R in Q or €. does not contribute
to the boundary surface integrals), (5) is again by continuity of the Lebesgue integral and by
that {0;f} has continuous extensions from (2 and from €. to 0€2. Finally, (6) follows from the
definition of the simple layer distribution and that d¥; = n;dS where n; are components of the
unit outward normal on 0.

+ lim /Q {03 (@)}e() Nz + , f-(@)p(x) dX;

19.9.6. Let f(x) =1 — |z|if || < 1 and f(x 4+ 2) = f(z). Show that
1" l’) _ _22 6i7r(2n+1)m

in the sense of distributions.

SOLUTION: The function has a period 2. So it can be expanded into a Fourier series over
€™ where n is an integer. Since f’(z) is locally integrable, the Fourier series converges uni-
formly to f. This guarantees that the Fourier coefficients a,, are bounded |a,| < M because
a, — 0 as |n| — oo. By the theorem about differentiation of Fourier series in the distributional
sense, the distributional derivative of a regular distribution f can be obtained by term-by-term
differentiation of its Fourier series:

f(l’) = 1+ Z aneiwnm - f//(l') _ —7T2 Z n2an6i7mm c D/ .

n#0 n#0



It remains to calculate the Fourier coefficients:
1 ' 1 /0 ' 1 /1 '
a, = —/ f(z)e ™ dx = —/ (x+ Ve ™ dx + —/ (1 —x)e "™ dx
2/, 2/, 2 J,
z' 0
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So, as, = 0 and substituting as,,1 into the series for f”, it is concluded that
f//(l') _ _22 6i7r(2n+1)m

as required.

ALTERNATIVE SOLUTION: In the Poisson summation formula, replace z by 7wz and by the
scaling property of the delta function, the formula has the following form

;5@ —2n) = %Ze”m

n

In this equation, replace x by x — 1 so that

Zé(a: —2n—1) = %Z(—l)"e”m

n

The classical derivative {f’} is a piecewise constant function. So, {f”(x)} = 0 a.e. It does not

exist at x = n where {f’} has a jump discontinuity, disc,[{f'}] = —2(—1)". By the relation

between the classical and distributional derivatives of a piecewise smooth function

F(x) = —225@ —2n) + 225(:17 —2n—1)=— Z[l — (=1)"e"™ = _QZem(an)m‘

n

20.6.1. Let xp > 0. Find the product of distributions

. 1 ,
() 0l —0),
(ii) P|:1£_| §(z? —x?),
1 1

i —P—
(i) T —x9+10 2’

SOLUTION (ii) The singular support of Pﬁ is {0} and the singular support of §(z? — 23) is
{#£x0}. They do not overlap. Therefore the product exists and can be found by the localization
method. Let us take three open intervals whose union is R and each of which contains only
one of the three singular points:

O = (—00,-9), Q= (—zo+0,20—0), Q3=(500)



for some 0 < § < x/2. Using the property that d(g(z)) = |¢'(a)|'0(z — a) near any simple
isolated root a of g and vanishes otherwise,

x+x9) , TEWD,
5(I2—I0):2— 0 , €
Yol S(x—m) , TeQs

and the principal value distribution is a function from class C'*° outside any neighborhood of
x =0

1 1 1 1
P—e=—, €, P—=—, €3,
z| @ x| =
Let f € D' denote the product in question. Then f has the following form on each of Q’s:
1 1 1
1 1
flz) = fg(l’):;2—%5(l’—l’0) 2—I35(a:—:v0), x €3
1
flz) = fz(if)ZO'PHZO, z € )y

Let ¢ be a test function from D(R) and K = supp¢. Take a partition of unity ; € D(;),
j =1,2,3, such that
U1(x) + o) + 3(z) =1, z€K.

Then by the localization method,

(F.0) = (fthio) + (fortbad) + (For ) = 5o (Va(—20)p(—0) + s(w)p(ao))

2
)
1

= 5 (et-m) + o)
Here 11 (—x0) = 1 and 93(xo) = 1 because 12 3(—x¢) = 0 and ¢ 2(xg) = 0 by the construction
of partition of unity. Thus,

1 1
f(z) = Pm §(z? —23) = 2—% <5(:B + o) + 0(z — a:o))
(iii). The singular support of 73;—2 is {0} and the singular support of [x—z+1i0] " is {z¢}. They
do not overlap. Therefore the product exists and can be found by the localization method. It
is convenient to use the Sokhotsky equation

1 1

- - — _inblr= P
T — xg + 10 imd(w = z0) + T — o

Sincer%:ml—ZECoonear:B:a:o;éO

, 1 %
—imd(z — ZE(])'PF =——=

%5(:17 — x9)

To find the product of two principal value distributions, take two open intervals covering R
each of which contains only one of the two singular points

Oy = (—o0,29—6), Q9 =(500)



for some 0 < § < x0/2. Let f = P——P=. Then

T—x0

1 1 1 1
P;, ze, f(x)=falz)=—3P ;T €.

T4 x— x

f(@) = filz) =

r — X9

Let ¢ be a test function from D(R) and K = supp¢. Take a partition of unity ; € D(Q;),
7 =1,2, such that
(z) +o(x)=1, xzeK.

Then by the localization method,

(fo) = (fhwl@)‘l‘(fz,i/}ggo):<’P%’M)+<P 1 %(I)SD(I))

T — T T — T 22

Put I, = (—o0, —a)U(a, o —b) U (x¢+0b,00). Then using the definitions of the principal value
distributions and that v, (0) = 1 by construction,

(f,¢) = lim lim

a—0t b—0+

<¢1(I)S0(5B) I ¢(0) + wg(:v)go(a?)) dx

x¥(x —xy)  wor?  x%(x — 1)

Using the partial fraction decomposition

1 1 < 1 o 1)
22(r —x0) wi\w—x0 22
and that ¢ + 15 = 1 in the support of ¢, one infers that
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Thus, the product in question is given by
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where the Sokhotsky equation was used again.

20.6.1. Find a general distributional solution f € D'(R) to the equations

(i) 2 flr) =1,

(i)  (z—a)’flx) =z,

(i) 2%z —1)f(x) =2> +1,
(iv)  (z—a)f(x)=0d"(x), a#0

SOLUTION: (iv) A general solution to the associated homogeneous equation is

(r—a)h(x) =0 = h(z)=ci(zr—a),



where ¢ is a constant. A particular solution can be found by the localization method. Since
the support of ¢'(x) is = 0 and — is from class C™ near 2 = 0 (because a # 0), a particular
solution reads

folw) = —— () =

Tr—a

/ 1, i .
6(2)) + a0 = =@ + 50)

a2
Thus,
o) = %5(:5) _ %5'(1«) bz — a)

ALTERNATIVE SOLUTION: Any solution to the problem is also a solution to the equation
Pz —a)f(x)=2%(x) =0 = f(x)=ci6(x)+ c28'(x) + cd(z — a)
Substituting this distribution into the original equation, one gets
§(z) = (xr—a) (clé(z) + 20" () + cd(x — a)) = —c1ad(x) — cpad’(z) — c26(x)
The original equation is satisfied only if ¢y = —i and ¢ = a%

22.8.2. Find a general distributional solution to each of the following equations

i)  (@—a(z-b)f'(z)=1

(i)  (z—a)(z—0)f"(z)=0(x)

(i)  fl(z)+a(x)f(x)=6(x), aecC™
(iv)  af'(z)+zalz)f(z) =6(z), aecC™

SOLUTION: (ii) Let a and b be non-equal and non-zero. Put g(z) = f”(z). Then the associated
homogeneous equation has a general solution

(x—a)(x=b)g(z) =0 = g(r)=cid(x—a)+cd(x—D>)

where ¢, are arbitrary constants. A localization method can be used to find a particular
solution. Since the support of 6(z) is z = 0 and [(z — a)(x — b)] ™! is from class C* near z = 0
(assuming a and b are not equal to 0), a particular solution reads

1 1

1) = = 0 = o

6(x)
Applying the antiderivative twice to g, one infers

f'(x) = D 'g=c(x—a)+cf(x—b)— %9(:5) +c1,

fl@) = D = calz — bz — a) + ez — D)z — b) — %9(:17) + e+

where ¢g 1 are integration constants. Here it was used that that D=!(f(z—x0)) = (D7 f)(x—x0)
(an antiderivative of a shifted distribution is the shifted antiderivative of the distribution).



Let a # 0 but b = 0 (a solution in the case a = 0 and b # 0 is obtained by swapping a
and b in what follows). Then any solution to the problem is also a solution to

?(r—a)glx)=20(z) =0 = g(x)=cd(z —a)+cd(z)+c1d' ()
A substitution into the original equation yields
§(z) = x(x —a)g(z) = c1x(r — a)d'(z) = crad(z) = ¢ =~
because z2§'(z) = 0 and xd'(x) = —(z). Therefore
f(z) = D%g(z) = co(z — a)0(x — a) + cozf(x) + ée(z) +c1+
where c; o are integration constants.

Let a = b = 0. Then any solution to the problem is also a solution to
Pglx)=20(x) =0 = g(x)=cod(x) + 1’ (x) + c26”(x)
A substitution into the original equation yields

§(x) = 2%g(z) = 220" (v) = 2c20(x) = 2= %

because 120" (x) = 25(x). Therefore
1
f(z) =D ?g(x) = (cor + 1)0(x) + 55(:17) + ¢ + 3T

where cg 3 are integration constants.



