
Assignment 2 with solutions, MAP 6505, Fall 2023

13.10.2 (i) Find a sequence of locally integrable function fn(x) in R
3 that converges to the

spherical delta-function:

fn → δSa
in D ′ , (δSa

, ϕ) =

∮

|x|=a

ϕ(x) dS

(ii) Find a sequence of test functions ϕn ∈ D(R3) that converges to the spherical delta function
in the distributional sense.

Solution: (i) By analogy with a mass density of a point particle, consider a thin sphere
of unit mass and radius a. An infinitely thin sphere is an idealization of a spherical layer,
Ωn : a − a

n
≤ |x| ≤ a + a

n
, n = 2, 3, .... For simplicity, one can assume that the mass is

uniformly distributed within the layer so that the mass density is constant in the layer and zero
outside of it:

ρn(x) =
1

Vn

, x ∈ Ωn , ρn(x) = 0, x /∈ Ωn , Vn =
8πa3

3n

(

3 +
1

n2

)

,

where Vn is the volume of Ωn. The total mass is
∫

ρn d
3x = 1 for any n. In the limit n → ∞,

the layer tends to a sphere of radius a.
Let us find the distributional limit of ρn. In spherical coordinates, x = ẑr where ẑ is the

unit outward normal on the unit sphere,

d3x = r2drdSz , r = |x| ,

∫

|z|=1

dSz = 4π ,

and dSz is the area element on the unit sphere (written via spherical angles). For any test
function ϕ, by the integral mean value theorem there exists |rn − a| ≤ a

n
such that

(ρn, ϕ) =
1

Vn

∫

Ωn

ϕ(x) d3x =
1

Vn

∫

|z|=1

∫ a+ a

n

a− a

n

ϕ(zr)r2dr dSz

=
2a

nVn

∫

|z|=1

ϕ(ẑrn)r
2
n dSz

Note that rn = rn(ẑ) in general. In the limit n → ∞, rn → a, nVn → 8πa3, and by continuity
of the test function ϕ(ẑrn) → ϕ(ẑa). The order of taking the limit and integration can be
interchanged by the Lebesgue dominated convergence theorem because the integrand is bounded
by a constant |ϕ(ẑrn)r

2
n| ≤ 2a2 sup |ϕ| that is integrable on a unit sphere. Thus

lim
n→∞

(ρn, ϕ) =
1

4π

∫

|z|=1

ϕ(ẑa) dSz =
1

4πa2

∫

|x|=a

ϕ(x) dS ⇒ 4πa2ρn → δSa
in D′(R3) .

where a2dSz = dS is the area element on the sphere |x| = a.

(ii) Let rn → 0, rn > 0, as n→ ∞. Then by the theorem about bump functions,

ρn(x) =

∫

|y|=a

ωrn
(x− y) dS ,



where ωrn
is a hat function, is a test function with support in a spherical layer a− rn ≤ |x| ≤

a+ rn, and by Fubini’s theorem and the normalization property of the hat function,

∫

ρn(x) d
3x =

∫

|y|=a

∫

ωrn
(x− y) d3x dS =

∫

|y|=a

dS = 4πa2

By Part (i), ρn → δSa
in D′. Alternatively, ρn = ωrn

∗ δSa
is a regularization of δSa

that con-
verges to δSa

in D′ (see properties of the regularization of distributions). Since support of δSa

is bounded, its regularization is a test function.

13.10.4. Let n be a positive integer and θ(x) is the step function. Find the following lim-
its in the distributional sense or show that the limit does not exist:

(i) lim
t→∞

tneitx ,

(ii) lim
t→∞

xneitx ,

(iii) lim
t→∞

sinn(tx) ,

(iv) lim
t→∞

eitxθ(x) ,

(v) lim
t→∞

tneitxθ(x) .

that is, if the limit exists, then give an explicit rule how to compute the value of the limit
distribution for a test function.

Solution: (iv) For any test function ϕ, by integration by parts

(

eitxθ(x), ϕ(x)
)

=

∫ ∞

0

eitxϕ(x) dx =
eitx

it
ϕ(x)

∣

∣

∣

∞

0
−

1

it

∫ ∞

0

eitxϕ′(x) dx

The support of ϕ lies in a bounded interval |x| ≤ R for some R > 0. Therefore

∣

∣

∣

(

eitxθ(x), ϕ(x)
)
∣

∣

∣
≤

|ϕ(0)|

t
+
R sup |ϕ′|

t
→ 0 as t → ∞ .

Thus, the limit exists and the limit distribution is the zero distribution.

(v) Let n = 1. Then the integration by parts yields (as in Part (iv))

(

teitxθ(x), ϕ(x)
)

= iϕ(0) + i

∫ ∞

0

eitxϕ′(x) dx

The last integral vanishes in the limit t → ∞ by the same argument as in Part (iv) if ϕ is
replaced by ϕ′ in it. Thus

teitxθ(x) → iδ(x) in D′ as t → ∞

Let n = 2. Then integrating by parts twice

(

t2eitxθ(x), ϕ(x)
)

= itϕ(0) + it

∫ ∞

0

eitxϕ′(x) dx = itϕ(0) − ϕ′(0) +

∫ ∞

0

eitxϕ′′(x) dx



Therefore the limit does not exist because the integral vanishes in the limit (replace ϕ by ϕ′′

in Part (iv)) whereas the first term is not unbounded as t → ∞. For any n > 2, one can
integrate by parts n times to reduce the integral to the sum a polynomial of degree n − 1 in
the parameter t with coefficients being proportional to ϕ(k)(0), k = 0, 1, ..., n − 1, stemming
from the boundary terms, and the integral of ϕ(n)(x)eitx over (0,∞) that vanishes in the limit
t→ ∞. Thus, the limit does not exist for any n ≥ 2.

15.5.7. Let t ∈ R and x ∈ R
2. Find the support of the distribution defined by the rule

(f, ϕ) =

∫ ∞

0

∫

|x|=ct

ϕ(x, t) dS dt

where dS stands for the line integral over the circle |x| = ct, and c > 0 is a constant.

Solution: The integration is curried out over the cone Γ+ : |x| = ct , t ≥ 0 in R
3 spanned by

x ∈ R
2 and t ∈ R. The distance between (x0, t0) ∈ R

3 and the cone Γ+ is not zero if the point
(x0, t0) is not in Γ+. Therefore there exists an open ball Ba of a small enough radius a and
centered at (x0, t0) that has no intersection with Γ+. Then f(x, t) = 0 if (x, t) ∈ Ba because
for any test function ϕ ∈ D(Ba), (f, ϕ) = 0. Thus, f(x, t) = 0 in the complement of Γ+ and,
hence, supp f = Γ+.

15.5.15. Prove each of the following distributional limits

(i) lim
t→+∞

eitx

x+ i0+
= 0

(ii) lim
t→+∞

e−itx

x− i0+
= 0

(iii) lim
t→+∞

e−itx

x+ i0+
= −2πiδ(x)

(iv) lim
t→+∞

cos(tx)P
1

x
= 0

Solution: (iii) It has been shown in the notes that

eitx P
1

x
→ πiδ(x) as t→ +∞

Put ϕ−(x) = ϕ(−x) for any test function ϕ. Then ϕ− is also a test function. The above limit
means that

lim
t→∞

(

eitx P
1

x
, ϕ−(x)

)

= iπϕ−(0) = iπϕ(0) .

On the other hand, by changing variables x = −y

(

eitx P
1

x
, ϕ−(x)

)

= p.v.

∫

eitxϕ(−x)

x
dx = −p.v.

∫

e−ityϕ(y)

y
dy = −

(

e−itx P
1

x
, ϕ(x)

)

Therefore

e−itx P
1

x
→ −iπδ(x) as t → +∞ ,



and by the Sokhotsky equation and properties of the delta function

e−itx

x+ i0+
= e−itx

(

− iπδ(x) + P
1

x

)

= −iπδ(x) + e−itxP
1

x
→ −2πiδ(x) as t → +∞

as required.

17.7.2. (i) Let {xn} be any sequence or real numbers, and {xn} be a sequence that has
no limit points. Show the series

∑

n

anδ(x− xn)

converges in the sense of distribution (converges in D′).
(ii) In part (i), assume that xn → x0. Does the series converge in the sense of distributions?
If not, construct an explicit example of the sequence {an} for which the series does not converge.

Solution: (i). If {xn} has no limit point, then any interval |x| ≤ R can contain only finitely
many terms of the sequence for any R > 0. Suppose that there are infinitely many distinct
terms in a bounded interval. Divide the interval in two intervals of equal length. Then at
least one of the two intervals must also contain infinitely many terms. Divide that interval
into two intervals of equal length again. Then one of the two intervals must contain infinitely
many terms and so on. By repeating this procedure, a sequence of nested intervals Ik−1 ⊂ Ik

with infinitely many terms of the sequence is obtained. The length of the intervals tends to
zero. Since the intervals are nested, one can pick one element of the sequence in each of them,
xnk

∈ Ik, nk−1 < nk, to obtain a Cauchy subsequence {xnk
}. By the Cauchy criterion, it has

a limit point that lies in the original interval, thus leading to a contradiction. This is known
as the Bolzano-Weierstrass theorem: Every bounded sequence in R

N has a convergent subse-
quence (or a limit point). Thus, for any test function with support in [−R,R], only finitely
many terms contribute to the value of the series:

(

∑

n

anδ(x− xn), ϕ(x)
)

=
∑

n

anϕ(xn) =
∑

|xn|≤R

anϕ(xn)

and hence the series converges for any ϕ and any choice of an.

(ii) Take a bump function η(x) for an interval (x0 − 1, x0 + 1). It is a test function such
that η(x) = 1 if |x − x0| ≤ 1. Since xn → x0, there are only finitely many terms outside
(x0 − 1, x0 +1), say, for |n| < n0, and infinitely many terms in the interval (x0 − 1, x0 + 1), say,
for |n| ≥ n0. Then

(

∑

n

anδ(x− xn), η(x)
)

=
∑

|n|<n0

anη(xn) +
∑

|n|≥n0

an

So, the series diverges if
∑

n an diverges. For example, put an = 1.

16.7.9. Put fk(x) = a(x)δ(k)(sin(x)), k = 0, 1, 2, ..., where a ∈ C∞. Here δ(k)(sin(x)) is
understood as δ(k)(z) where the substitution z = sin(x) is made. Express fk in terms of shifted
delta functions and its derivatives or show that fk is not a distribution.



Solution: The solution is given in detail for k = 1. The other cases are solved along the
same line of reasoning. Let us find first δ′(sin(x)) and then multiply it by a smooth func-
tion. The change of variables y = sin(x) = F (x) is studied in the notes. The function F (x)
defines a C∞ transformation R → [−1, 1]. It is a diffeomorphism F = Fn : Ωn → (−1, 1)
for every Ωn = (−π

2
+ πn, π

2
+ πn), n is any integer. If sin−1(y) is the inverse of F0, then

F−1
n (y) = πn + sin−1(y). This change of variable in a distribution f ∈ D′ was shown to

define a distribution only if the support of f lies in (−1, 1) (because the Jacobian vanishes
F ′(F−1

n (±1)) = 0). Since the support of δ′(x) is just x = 0, δ′(sin(x)) exists as a distribution.
Let Kf = supp f (a bounded closed interval in (−1, 1)). Then there exists is a bump

function η ∈ D(−1, 1) such that η(y) = 1 in a neighborhood of Kf that is a proper subset in
(−1, 1). Moreover, η(y)f(y) = f(y) by the hypothesis. For any ϕ ∈ D(R), put

TF (ϕ)(y) = η(y)
∑

n

ϕ(F−1
n (y))

|F ′(F−1
n (y)|

=
η(y)

√

1 − y2

∑

n

ϕ(πn+ (−1)n sin−1(y)) ∈ D(−1, 1)

It defines a linear continuous transformation of D(R) into D(−1, 1) (proved in the notes). By
definition, f(F (y)) = T ∗

F (f)(y) is the adjoint transformation of D′(−1, 1) to D′(R):

(

δ′(sin(x), ϕ(x)
)

=
(

δ′(y), TF(ϕ)(y)
)

= −
d

dy
TF (ϕ)(y)

∣

∣

∣

y=0

where the last equality is by definition of δ′. All derivatives of η vanish in a neighborhood of
y = 0. The derivative of η(y)/

√

1 − y2 vanishes at y = 0 because η′(0) = 0. So, only the
derivative of ϕ(πn+ (−1)n sin−1(y)) contributes. Since η(0) = 1 this contribution reads

(

δ′(sin(x)), ϕ(x)
)

= −
∑

n

(−1)nϕ′(πn) ⇒ δ′(sin(x)) =
∑

n

(−1)nδ′(x− πn)

For any smooth function a and any x0, one has

a(x0)δ
′(x− x0) = [a(x0)δ(x− x0)]

′ = [a(x)δ(x− x0)]
′ = a′(x)δ(x− x0) + a(x)δ′(x− x0)

= a′(x0)δ(x− x0) + a(x)δ′(x− x0)

It follows from this relation that

a(x)δ′(sin(x)) =
∑

n

(−1)n
[

a(πn)δ′(x− πn)− a′(πn)δ(x− πn)
]

17.9.3. Let f(x) = ln(|x|) where x ∈ R
2.

(i) Show that f(x) is a harmonic function wherever it is twice continuously differentiable (that
is, outside of any neighborhood of x = 0):

{

∆ ln(|x|)
}

= 0

(ii) Use the same method as for the Laplacian of the Coulomb potential in R
3 to find ∆ ln(|x|)

in R
2 in the distributional sense.



Solution: (i) For x 6= 0, ln(|x|) is a smooth function whose first and second (classical)
derivatives are

{∂j ln(|x|)} =
xj

|x|2
, {∂k∂j ln(|x|)} =

δjk

|x|2
−

2xjxk

|x|4
,

⇒ {∆ ln(|x|)} =
δjj

|x|2
−

2xjxj

|x|4
=

2

|x|2
−

2|x|2

|x|4
= 0 , x 6= 0 .

where Einstein’s summation rule was used (e.g., δjj = 2 in R
2).

(ii) For any test function ϕ, the following chain of equalities holds

(

∆ ln(|x|), ϕ(x)
)

(1)
=

(

ln(|x|),∆ϕ(x)
)

(2)
=

∫

ln(|x|)∆ϕ(x) d2x

(3)
= lim

a→0+

∫

|x|>a

ln(|x|)∆ϕ(x) d2x

(4)
= lim

a→0+

(

ln(a)

∫

|x|=a

∂ϕ

∂n
dS +

1

a

∫

|x|=a

ϕdS
)

(5)
= lim

a→0+

∫

|z|=1

ϕ(az) dSz
(6)
= ϕ(0)

∫

|z|=1

dSz = 2πϕ(0)

⇒ ∆ ln(|x|) = 2πδ(x) , x ∈ R
2 .

Here (1) is by definition of derivatives of distributions, (2) holds because ln(|x|) is locally
integrable (a regular distribution), (3) holds because the integral converges absolutely and does
not depend on a regularization (continuity of the Lebesgue integral), (4) is obtained by Green’s
identity combined with that ∆ ln(|x|) = 0 for x 6= 0 and the normal derivative ∂/∂n = (n̂,∇)
coincides with −∂/∂r where r = |x| because the unit outward normal for the boundary |x| = a
of the integration region is n̂ = −x/a (no boundary contribution comes from the boundary
|x| = R→ ∞ because ϕ has a bounded support), (5) follows from the estimate

∣

∣

∣

∫

|x|=a

∂ϕ

∂n
dS

∣

∣

∣
≤ sup |Dϕ|

∫

|x|=a

dS = 2πa sup |Dϕ|

and that a ln(a) → 0 as a → 0+ (note that dS = adSz), and (6) is justified by the Lebesgue
dominated convergence theorem because |ϕ(az)| ≤ sup |ϕ| <∞ and a constant is integrable on
the unit circle.

18.9.7. Let Ω ⊂ R
N be an open set, and Ωc = R

N \ Ω be its complement. Supposed that f is
a piecewise continuous function such that f ∈ C1(Ω) and f ∈ C1(Ωc). So, f is generally not
continuous at any point of the boundary ∂Ω. Let the boundary ∂Ω be piecewise smooth and
the jump discontinuity of f at a point x ∈ ∂Ω defined by

[f ]
∂Ω

(x) = lim
y→x

f(y) − lim
z→x

f(z) , y ∈ Ω , z ∈ Ωc , x ∈ ∂Ω

be continuous on ∂Ω. Show that

∂f

∂xj

=
{ ∂f

∂xj

}

− nj[f ]
∂Ω
δ

∂Ω



where n(x) is a unit outward normal at x ∈ ∂Ω.

Solution: To simplify notations, for any x ∈ ∂Ω, put

f+(x) = lim
y→x

f(y) , y ∈ Ω , f−(x) = lim
z→x

f(z) , z ∈ Ωc , [f ]
∂Ω

= f+ − f− .

Define
Ωa = {x ∈ Ω | d(x, ∂Ω) < a} ⊂ Ω

and similarly for Ωa
c . So, Ωa is obtained from Ω by removing closed balls of radius a that are

centered at all points of ∂Ω. For any test function ϕ, the following chain of equalities holds

(∂jf, ϕ)
(1)
= −(f, ∂jϕ)

(2)
= −

∫

Ω

f(x)∂jϕ(x) dNx−

∫

Ωc

f(x)∂jϕ(x) dNx

(3)
= − lim

a→0+

∫

Ωa

f(x)∂jϕ(x) dNx− lim
a→0+

∫

Ωa
c

f(x)∂jϕ(x) dNx

(4)
= lim

a→0+

∫

Ωa

{∂jf(x)}ϕ(x) dNx−

∫

∂Ω

f+(x)ϕ(x) dΣj

+ lim
a→0+

∫

Ωa
c

{∂jf(x)}ϕ(x) dNx+

∫

∂Ω

f−(x)ϕ(x) dΣj

(5)
=

∫

{∂jf(x)}ϕ(x) dNx−

∫

∂Ω

[f ]
∂Ω

(x)ϕ(x) dΣj

(6)
=

(

{∂jf} − nj[f ]
∂Ω
δ

∂Ω
, ϕ

)

,

as required. Here (1) is by definition of a distributional derivative, (2) holds because f is locally
integrable, (3) is by the continuity of the Lebesgue integral, (4) is by integration by parts and
that dΣc

j = −dΣj is dΣc
j is the oriented outward area element for the boundary of Ωc (note

that suppϕ ⊂ BR so that any part of the sphere |x| = R in Ω or Ωc does not contribute
to the boundary surface integrals), (5) is again by continuity of the Lebesgue integral and by
that {∂jf} has continuous extensions from Ω and from Ωc to ∂Ω. Finally, (6) follows from the
definition of the simple layer distribution and that dΣj = njdS where nj are components of the
unit outward normal on ∂Ω.

19.9.6. Let f(x) = 1 − |x| if |x| < 1 and f(x+ 2) = f(x). Show that

f ′′(x) = −2
∑

n

eiπ(2n+1)x

in the sense of distributions.

Solution: The function has a period 2. So it can be expanded into a Fourier series over
eiπnx, where n is an integer. Since f ′(x) is locally integrable, the Fourier series converges uni-
formly to f . This guarantees that the Fourier coefficients an are bounded |an| < M because
an → 0 as |n| → ∞. By the theorem about differentiation of Fourier series in the distributional
sense, the distributional derivative of a regular distribution f can be obtained by term-by-term
differentiation of its Fourier series:

f(x) = 1 +
∑

n6=0

ane
iπnx ⇒ f ′′(x) = −π2

∑

n6=0

n2ane
iπnx ∈ D′ .



It remains to calculate the Fourier coefficients:

an =
1

2

∫ 1

−1

f(x)e−iπnxdx =
1

2

∫ 0

−1

(x+ 1)e−iπnx dx+
1

2

∫ 1

0

(1 − x)e−iπnx dx

=
i

2πn

∫ 0

−1

(x+ 1)de−iπnx +
i

2πn

∫ 1

0

(1 − x)de−iπnx

=
i

2πn

(

1 −

∫ 0

−1

e−iπnxdx− 1 +

∫ 1

0

e−iπnxdx
)

=
1 − (−1)n

π2n2

So, a2n = 0 and substituting a2n+1 into the series for f ′′, it is concluded that

f ′′(x) = −2
∑

n

eiπ(2n+1)x

as required.

Alternative solution: In the Poisson summation formula, replace x by πx and by the
scaling property of the delta function, the formula has the following form

∑

n

δ(x− 2n) =
1

2

∑

n

eiπnx

In this equation, replace x by x− 1 so that

∑

n

δ(x− 2n − 1) =
1

2

∑

n

(−1)neiπnx

The classical derivative {f ′} is a piecewise constant function. So, {f ′′(x)} = 0 a.e. It does not
exist at x = n where {f ′} has a jump discontinuity, discn[{f ′}] = −2(−1)n. By the relation
between the classical and distributional derivatives of a piecewise smooth function

f ′′(x) = −2
∑

n

δ(x− 2n) + 2
∑

n

δ(x− 2n− 1) = −
∑

n

[1 − (−1)n]eiπnx = −2
∑

n

eiπ(2n+1)x .

20.6.1. Let x0 > 0. Find the product of distributions

(i)
1

x± i0
δ′(x− x0) ,

(ii) P
1

|x|
δ(x2 − x2

0) ,

(iii)
1

x− x0 + i0
P

1

x2
,

Solution (ii) The singular support of P 1
|x|

is {0} and the singular support of δ(x2 − x2
0) is

{±x0}. They do not overlap. Therefore the product exists and can be found by the localization
method. Let us take three open intervals whose union is R and each of which contains only
one of the three singular points:

Ω1 = (−∞,−δ) , Ω2 = (−x0 + δ, x0 − δ) , Ω3 = (δ,∞)



for some 0 < δ < x0/2. Using the property that δ(g(x)) = |g′(a)|−1δ(x− a) near any simple
isolated root a of g and vanishes otherwise,

δ(x2 − x2
0) =

1

2x0







δ(x+ x0) , x ∈ Ω1

0 , x ∈ Ω1

δ(x− x0) , x ∈ Ω3

and the principal value distribution is a function from class C∞ outside any neighborhood of
x = 0:

P
1

|x|
= −

1

x
, x ∈ Ω1 , P

1

|x|
=

1

x
, x ∈ Ω3 ,

Let f ∈ D′ denote the product in question. Then f has the following form on each of Ω’s:

f(x) = f1(x) = −
1

x

1

2x0
δ(x+ x0) =

1

2x2
0

δ(x+ x0) , x ∈ Ω1

f(x) = f3(x) =
1

x

1

2x0
δ(x− x0) =

1

2x2
0

δ(x− x0) , x ∈ Ω3

f(x) = f2(x) = 0 · P
1

|x|
= 0 , x ∈ Ω2

Let ϕ be a test function from D(R) and K = suppϕ. Take a partition of unity ψj ∈ D(Ωj),
j = 1, 2, 3, such that

ψ1(x) + ψ2(x) + ψ3(x) = 1 , x ∈ K .

Then by the localization method,

(f, ϕ) = (f1, ψ1ϕ) + (f2, ψ2ϕ) + (f3, ψ3ϕ) =
1

2x2
0

(

ψ1(−x0)ϕ(−x0) + ψ3(x0)ϕ(x0)
)

=
1

2x2
0

(

ϕ(−x0) + ϕ(x0)
)

Here ψ1(−x0) = 1 and ψ3(x0) = 1 because ψ2,3(−x0) = 0 and ψ1,2(x0) = 0 by the construction
of partition of unity. Thus,

f(x) = P
1

|x|
δ(x2 − x2

0) =
1

2x2
0

(

δ(x+ x0) + δ(x− x0)
)

(iii). The singular support of P 1
x2 is {0} and the singular support of [x−x0+i0]

−1 is {x0}. They
do not overlap. Therefore the product exists and can be found by the localization method. It
is convenient to use the Sokhotsky equation

1

x− x0 + i0
= −iπδ(x− x0) + P

1

x− x0

Since P 1
x2 = 1

x2 ∈ C∞ near x = x0 6= 0

−iπδ(x− x0)P
1

x2
= −

iπ

x2
0

δ(x− x0)

To find the product of two principal value distributions, take two open intervals covering R

each of which contains only one of the two singular points

Ω1 = (−∞, x0 − δ) , Ω2 = (δ,∞)



for some 0 < δ < x0/2. Let f = P 1
x−x0

P 1
x2 . Then

f(x) = f1(x) =
1

x− x0
P

1

x2
, x ∈ Ω1 , f(x) = f2(x) =

1

x2
P

1

x− x0
, x ∈ Ω2 .

Let ϕ be a test function from D(R) and K = suppϕ. Take a partition of unity ψj ∈ D(Ωj),
j = 1, 2, such that

ψ1(x) + ψ2(x) = 1 , x ∈ K .

Then by the localization method,

(f, ϕ) = (f1, ψ1ϕ) + (f2, ψ2ϕ) =
(

P
1

x2
,
ψ1(x)ϕ(x)

x− x0

)

+
(

P
1

x− x0
,
ψ2(x)ϕ(x)

x2

)

Put Iab = (−∞,−a)∪ (a, x0− b)∪ (x0 + b,∞). Then using the definitions of the principal value
distributions and that ψ1(0) = 1 by construction,

(f, ϕ) = lim
a→0+

lim
b→0+

∫

Iab

(ψ1(x)ϕ(x)

x2(x− x0)
+
ϕ(0)

x0x2
+
ψ2(x)ϕ(x)

x2(x− x0)

)

dx

Using the partial fraction decomposition

1

x2(x− x0)
=

1

x2
0

( 1

x− x0
−
x0

x2
−

1

x

)

and that ψ1 + ψ2 = 1 in the support of ϕ, one infers that

(f, ϕ) = lim
a→0+

lim
b→0+

∫

Iab

( 1

x2
0

ϕ(x)

x− x0
−

1

x0

ϕ(x)− ϕ(0)

x2
−

1

x2
0

ϕ(x)

x

)

dx

=
1

x2
0

(

P
1

x− x0
, ϕ

)

−
1

x0

(

P
1

x2
, ϕ

)

−
1

x2
0

(

P
1

x
, ϕ

)

.

Thus, the product in question is given by

1

x− x0 + i0
P

1

x2
=

1

x2
0

P
1

x− x0
−

1

x0
P

1

x2
−

1

x2
0

P
1

x
−
iπ

x2
0

δ(x− x0)

=
1

x2
0

1

x− x0 + i0
−

1

x0
P

1

x2
−

1

x2
0

P
1

x

where the Sokhotsky equation was used again.

20.6.1. Find a general distributional solution f ∈ D′(R) to the equations

(i) x2f(x) = 1 ,

(ii) (x− a)2f(x) = x ,

(iii) x2(x− 1)f(x) = x2 + 1 ,

(iv) (x− a)f(x) = δ′(x) , a 6= 0

Solution: (iv) A general solution to the associated homogeneous equation is

(x− a)h(x) = 0 ⇒ h(x) = cδ(x− a) ,



where c is a constant. A particular solution can be found by the localization method. Since
the support of δ′(x) is x = 0 and 1

x−a
is from class C∞ near x = 0 (because a 6= 0), a particular

solution reads

fp(x) =
1

x− a
δ′(x) =

( 1

x− a
δ(x)

)′

+
1

(x− a)2
δ(x) = −

1

a
δ′(x) +

1

a2
δ(x)

Thus,

f(x) =
1

a2
δ(x)−

1

a
δ′(x) + cδ(x− a)

Alternative solution: Any solution to the problem is also a solution to the equation

x2(x− a)f(x) = x2δ′(x) = 0 ⇒ f(x) = c1δ(x) + c2δ
′(x) + cδ(x− a)

Substituting this distribution into the original equation, one gets

δ′(x) = (x− a)
(

c1δ(x) + c2δ
′(x) + cδ(x− a)

)

= −c1aδ(x)− c2aδ
′(x) − c2δ(x)

The original equation is satisfied only if c2 = − 1
a

and c1 = 1
a2 .

22.8.2. Find a general distributional solution to each of the following equations

(i) (x− a)(x− b)f ′(x) = 1

(ii) (x− a)(x− b)f ′′(x) = δ(x)

(iii) f ′(x) + a(x)f(x) = δ′(x) , a ∈ C∞

(iv) xf ′(x) + xa(x)f(x) = δ(x) , a ∈ C∞

Solution: (ii) Let a and b be non-equal and non-zero. Put g(x) = f ′′(x). Then the associated
homogeneous equation has a general solution

(x− a)(x− b)g(x) = 0 ⇒ g(x) = caδ(x− a) + cbδ(x− b)

where ca,b are arbitrary constants. A localization method can be used to find a particular
solution. Since the support of δ(x) is x = 0 and [(x− a)(x− b)]−1 is from class C∞ near x = 0
(assuming a and b are not equal to 0), a particular solution reads

gp(x) =
1

(x− a)(x− b)
δ(x) = −

1

ab
δ(x)

Applying the antiderivative twice to g, one infers

f ′(x) = D−1g = caθ(x− a) + cbθ(x− b) −
1

ab
θ(x) + c1 ,

f(x) = D−1f ′ = ca(x− b)θ(x− a) + cb(x− b)θ(x− b)−
x

ab
θ(x) + c1x+ c0

where c0,1 are integration constants. Here it was used that thatD−1(f(x−x0)) = (D−1f)(x−x0)
(an antiderivative of a shifted distribution is the shifted antiderivative of the distribution).



Let a 6= 0 but b = 0 (a solution in the case a = 0 and b 6= 0 is obtained by swapping a
and b in what follows). Then any solution to the problem is also a solution to

x2(x− a)g(x) = xδ(x) = 0 ⇒ g(x) = caδ(x− a) + c0δ(x) + c1δ
′(x)

A substitution into the original equation yields

δ(x) = x(x− a)g(x) = c1x(x− a)δ′(x) = c1aδ(x) ⇒ c1 =
1

a

because x2δ′(x) = 0 and xδ′(x) = −δ(x). Therefore

f(x) = D−2g(x) = ca(x− a)θ(x− a) + c0xθ(x) +
1

a
θ(x) + c1 + c2x

where c1,2 are integration constants.

Let a = b = 0. Then any solution to the problem is also a solution to

x3g(x) = xδ(x) = 0 ⇒ g(x) = c0δ(x) + c1δ
′(x) + c2δ

′′(x)

A substitution into the original equation yields

δ(x) = x2g(x) = c2x
2δ′′(x) = 2c2δ(x) ⇒ c2 =

1

2

because x2δ′′(x) = 2δ(x). Therefore

f(x) = D−2g(x) = (c0x+ c1)θ(x) +
1

2
δ(x) + c2 + c3x

where c2,3 are integration constants.


