
Assignment 3 (Final) with solutions, MAP 6505, Fall’23

1. Generalized initial value problem for an oscillator. Consider the initial value problem
for an oscillator (e.g., a pendulum):

u′′(t) + 2γu′(t) + ω2u(t) = f(t) , t > 0 ; u
∣

∣

∣

t=0
= u0 , u′

∣

∣

∣

t=0
= u1

where γ ≥ 0 is a damping coefficient. A classical problem is to find u ∈ C2(t > 0) ∩ C1(t ≥ 0)
that satisfy the equation and the initial condition (under some restrictions on smoothness of
the inhomogeneity (external force) f(t) that is defined on [0,∞)).
(i) Convert the problem to a generalized Cauchy problem in the algebra D′

+, that is,

v′′(t) + 2γv′(t) + ω2v(t) = g(t) , v ∈ D′
+ , g ∈ D′

+ .

Find the explicit form of the distribution g.
(ii) Solve the generalized Cauchy problem by finding a fundamental solution G(t) (a causal
Green’s function):

G′′(t) + 2γG′(t) + ω2G(t) = δ(t) , G ∈ D′
+

Show that the solution to the generalized Cauchy problem is unique in D′
+.

(iii) Assume that f is locally integrable and find an integral representation of v(t). Find the
most general condition on f(t) under which v(t) is the classical solution.
(iv) Suppose u0 = u1 = 0 (the oscillator is at rest for t < 0). One wants to model a situation in
which the oscillator gets a kick at a time T > 0. The kick is defined as an idealization of the
process when the momentum (velocity) of the oscillator suddenly changes under the action of
an external force f at a time moment t = T . For example, f(t) = f0ωa(t−T ) where ωa is a hat
function with a → 0+. In the limit, such a force can be modeled by f(t) = f0δ(t− T ). Show
that the solution is smooth (classical) in the intervals (0, T ) and (T,∞) and bounded for all t
in this case, |v(t)| = M <∞. Find the distributional solution if the oscillator gets the kicks of
the same amplitude periodically

f(t) = f0

∞
∑

n=0

δ(t− nT )

(v) Investigate if the solution in this case remains bounded for all values of parameters γ ≥ 0
and T > 0. If this is not so, then find a particular set of parameters γ and T for which the
solution is not bounded for all t.
Hint: Recall the resonance phenomenon for a harmonic oscillator.

Solution: (i) Suppose u(t) is a classical solution. Put v(t) = θ(t)u(t) which is a regular
distribution. Its derivatives are

v′(t) = θ(t){u′(t)}+ disct=0u δ(t) = θ(t){u′(t)} + u0 δ(t)

v′′(t) = θ(t){u′′(t)} + disct=0{u
′} δ(t) + u0δ

′(t) = θ(t){u′′(t)} + u1 δ(t) + u0δ
′(t)

Therefore any classical solution is a distributional solution to the generalized Cauchy problem

v′′(t) + 2γv′(t) + ω2v(t) = g(t) , g ∈ D′
+



where a distributional solution v is sought in D′
+ (distributions with support in [0,∞)). A

classical solution is obtained from the distributional one if

g(t) = θ(t)f(t) + (2γu0 + u1)δ(t) + u0δ
′(t)

for a smooth enough f(t).

(ii) A particular fundamental solution for the stated differential operator can be found in the
form E(t) = θ(t)Z(t) where

Z ′′ + 2γZ ′ + ω2Z = 0 , Z(0) = 0 , Z ′(1) = 1

The characteristic equation for this differential equation reads r2 + 2γr + ω2 = 0. Its roots are
r± = −γ ± iωγ where ωγ = (ω2 − γ2)1/2. In what follows it is assumed that ω2 > γ2 (small
damping regime). Other cases are treated in the same way (or just replace ωγ by i|ωγ| in what
follows). Therefore

Z(t) = e−γt
(

A cos(ωγt) +B sin(ωγt)
)

Using the initial data,

E(t) =
θ(t)

ωγ

e−γt sin(ωγt)

A general solution reads

G(t) = E(t) + e−γt
(

C1 cos(ωγt) + C2 sin(ωγt)
)

Since the causal Green’s function must vanish for all t < 0, one has to take C1 = C2 = 0. The
causal Green’s function reads G(t) = E(t) and it is unique.

A solution to the generalized initial value problem

v = G ∗ g

provided the convolution exists. Since D′
+ is the convolution algebra and G ∈ D′

+, G has a
convolution with any g ∈ D′

+ and G ∗ g ∈ D′
+. So, a solution always exists. A general solution

to the homogeneous problem has only trivial solution in D′
+ (its convolution with G exists only

if C1 = C2 = 0 as above). Thus, the solution to the generalized initial value problem has a
unique solution and, hence, if a classical solution exists (among distributional solutions), it is
also unique.

(iii) Since G ∗ δ = G, G ∗ δ′ = G′, and G(t) has no jump-discontinuity at t = 0 so that
G′(t) = θ(t)Z ′(t) and f is locally integrable,

v(t) = θ(t)u(t) , u(t) =

∫ t

0

Z(t− τ )f(τ ) dτ + (u1 + 2γu0)Z(t) + u0Z
′(t)

(see a derivation of the first term in the textbook). Therefore a classical solution (if it exists)
must have the form for t > 0:

u(t) =
1

ωγ

∫ t

0

e−γ(t−τ ) sin
(

ωγ(t− τ )
)

f(τ ) dτ + e−γt
(

(u1 + γu0)
sin(ωγt)

ωγ
+ u0 cos(ωγt)

)



It follows from this relation that u ∈ C0(t ≥ 0) because it is continuous for t > 0 for any
bounded f (by continuity of Z) and

lim
t→0+

u(t) = u0

In order to have u ∈ C1(t ≥ 0), f is required to be from class C0(t ≥ 0) so that the fundamental
theorem of calculus applies in order to differentiate the integral. In this case

u′(t) =

∫ t

0

e−γ(t−τ ) cos
(

ωγ(t− τ )
)

f(τ ) dτ −−
γ

ωγ

∫ t

0

e−γ(t−τ ) sin
(

ωγ(t− τ )
)

(t− τ )f(τ ) dτ

+e−γt
(

(u1 + γu0) cos(ωγt)− u0ωγ sin(ωγt)
)

− γe−γt
(

(u1 + γu0)
sin(ωγt)

ωγ
+ u0 cos(ωγt)

)

and by continuity of the integral

lim
t→0+

u′(t) = u1 + γu0 − γu0 = u1

So, the initial conditions are fulfilled. It follows from the integral representation of u′(t) that
the second derivative u′′(t) exists and is continuous for all t > 0 if f from class C0(t ≥ 0) by
the same reasoning as for the existence and continuity of u′. Thus, a classical solution from
class C2(t > 0) ∩ C1(t ≥ 0) exists and is unique if f ∈ C0(t ≥ 0).

(iv) Let g(t) = f0δ(t − T ). Using the shift property of the convolution G(t) ∗ g(t − T ) =
(G ∗ g)(t− T ), a distributional solution to the initial value problem reads

v(t) = (G ∗ g)(t− T ) = f0G(t− T ) = f0θ(t− T )Z(t− T )

which is a continuous function. Note that G(t) is continuous at t = 0 and G′(t) = θ(t)Z ′(t) has
a jump discontinuity at t = 0. So, the solution is a smooth function everywhere except t = T
where its derivative has a jump discontinuity, and it is bounded

|v(t)| ≤
f0

ωγ

Owing to continuity of the convolution in the algebra D′
+, if a series converges in D′

+, its
convolution with any G ∈ D′

+ exists in D′
+ and is given by the series of convolutions of terms

with G (this series converges in D′
+). Thus the solution to the stated generalized initial value

problem exists and is given by the series

v(t) = f0G(t) ∗
∑

n≥0

δ(t− nT ) = f0

∑

n≥0

G(t) ∗ δ(t− nT ) = f0

∑

n≥0

θ(t− nT )Z(t− nT )

This function is smooth in any interval (mT, (m + 1)T ), m = 0, 1, 2, ..., (from C∞) and is
continuous at t = mT for any m. Thus, v ∈ C0. Indeed, the characteristic function for the
interval (mT, (m+ 1)T ) is

χm(t) = θ(t−mT )− θ(t− (m+ 1)T ) .

Then the solution can be written in the form

v(t) =

∞
∑

m=0

χm(t)vm(t) , vm(t) = f0

m
∑

n=0

Z(t− nT )



The smooth functions vm(t) define the solution in the intervals (mT, (m+ 1)T ). By continuity
of Z(t), vm has continuous extensions to the end-points of the interval such that vm−1(mT ) =
vm(mT ) which implies continuity of v(t) at t = mT :

lim
t→mT−

v(t) = vm−1(mT ) = vm(mT ) = lim
t→mT +

v(t) .

For example, v0(T ) = Z(T ) and v1(T ) = Z(T )+Z(0) = Z(T ) = v0(T ). This shows that v(t) is
continuous at t = T . Then v1(2T ) = Z(2T )+Z(T ) and v2(2T ) = Z(2T )+Z(T )+Z(0) = v1(T )
because Z(0) = 0 so that v(t) is continuous at t = 2T . An extension of the argument to any m
is obvious.

It is also worth noting that if the bound max |vm(t)| ≤ M <∞ does not depend on m, then
the solution v(t) is bounded for all t ≥ 0:

|v(t)| ≤ sup
m≥0

max
[mT,(m+1)T ]

|vm(t)| ≤ M <∞ .

(v) Let us find an upper bound on vm(t) if γ > 0. Using |Z(t)| ≤ e−γt/ωf , one infers that

|vm(t)| ≤
f0

ωf
e−γt

m
∑

n=0

(

eγT
)n

=
f0

ωf
e−γt e

(m+1)γT − 1

eγT − 1

where the equation for the geometric partial sum has been used. The bound is monotonically
decreasing over the interval (mT, (m+ 1)T ) and, hence, attains its largest value at t = mT so
that

|vm(t)| ≤
f0

ωf

eγT − e−γT

eγT − 1

The bound does not depend on m and, hence, the solution remains bounded for any T > 0 if
γ > 0. If γ = 0, then setting γ = 0 in the sum yields the bound that increases with increasing
m:

|vm(t)| ≤
f0

ω

m
∑

n=0

1 =
f0

ω
(m+ 1)

However this does not imply that the solution is not bounded. Let us calculate vm(t) in the
case γ = 0. The method would actually work for any γ, but the analysis is somewhat more
cumbersome that the one given above to show boundedness of the solution if γ > 0. Using
again the partial geometric sum,

vm(t) =
f0

ω

m
∑

n=0

sin[ω(t− nT )] =
f0

ω
Im

m
∑

n=0

eiω(t−nT ) =
f0

ω
Im eiωt 1 − e−i(m+1)T

1 − e−iωT

This shows that if T 6= 2π
ω
N where N is any positive integer, then the solution remains bounded

because the bound does not depend on m:

|vm(t)| ≤
f0

ω

∣

∣

∣

∣

∣

sin[ωT
2

(m+ 1)]

sin(ωT
2

)

∣

∣

∣

∣

∣

≤
f0

ω

1

| sin(ωT
2

)|
, ωT 6= 2πN .

If ωT = 2πN , then the solution is not bounded for t ≥ 0 because its amplitude grows linearly
with increasing m:

vm(t) =
f0

ω

m
∑

n=0

sin(ω(t− nT )) =
f0

ω
sin(ωt)

m
∑

n=0

1 =
f0

ω
sin(ωt) (m+ 1)



So, the amplitude of oscillations increases by f0/ω after each ”kick”. The ”kicks” are in reso-

nance with the oscillator frequency.

2. Fourier transforms of distributions. Show that

(i) F
[

P
1

x2

]

(k) = −π|k| ,

(ii) F [|x|](k) = −2P
1

k2
.

Find the Fourier transform of the following distributions

(iii) f(x0, x) = θ(x0 − |x|) , x0 ∈ R , x ∈ R

(iv) δCa
(x) , x ∈ R

2 , (δCa
, ϕ) =

∫

|x|=a

ϕ(x) ds

Hints: Use the continuity of the Fourier transform and that fa(x0, x) = e−ax0f(x0, x) → f(x0, x)
in S ′ (prove this!). For (iv), recall an integral representation of the Bessel functions Jν(z).

Solution: (i) Recall that
d

dx
P

1

x
= −P

1

x2

By taking the Fourier transform of this relation and using the Fourier transform of a derivative

F
[

P
1

x2

]

(k) = −F
[ d

dx
P

1

x

]

(k) = ikF
[

P
1

x

]

(k) = ik · iπε(k) = −π|k|

(ii) Swapping the variables x and k in the above relation and taking the inverse Fourier transform
of both sides

P
1

k2
= −πF−1[|x|](k) = −

1

2
F [| − k|](x) = −

1

2
F [|x|](k)

from which the desired relation follows.

(iii) Put fa(x0, x) = e−ax0f(x0, x), a > 0, so that fa → fa, as a → 0+ pointwise almost
everywhere in R2. Let us show that fa → f in S ′ as a→ 0+. If the latter is true, then

F [f ](k0, k) = lim
a→0+

F [fa](k0, k) in S ′

by continuity of the Fourier transform. Then F [fa] is just the classical Fourier transforms
because fa is integrable on R2. Its limit in S ′ should be calculated.

For any test function ϕ ∈ S,

|fa(x0, x)ϕ(x0, x)| ≤ |ϕ(x0, x)| ∈ L(R2)

Therefore by the Lebesgue dominated convergence theorem

lim
a→0+

(fa, ϕ) = lim
a→0+

∫ ∫

fa(x0, x)ϕ(x0, x) dx dx0 =

∫ ∫

f(x0, x)ϕ(x0, x) dx dx0 = (f, ϕ)



So, fa → f in S ′ as required. Next,

F [fa](k0, k) =

∫ ∫

eik0x0+ikxfa(x0, x) dxdx0 =

∫ ∞

0

e−x0(a−ik0)

∫ x0

−x0

eikxdx dx0

=
1

ik

∫ ∞

0

(

e−x0[a−i(k0+k)] − e−x0[a−i(k0−k)]
)

dx0

=
1

k

( 1

k0 + k + ia
−

1

k0 − k + ia

)

=
2

k2 − (k0 + ia)2

The distributional limit is nothing but a distributional regularization of a singular function

F [f ](k0, k) = Reg
2

k2 − k2
0

.

The regularization prescription is defined by shifting the poles k0 = ±|k| in the complex k0

plane like in the Sokhotsky distributions. The action of this distribution on a test function can
be written via the direct product of the principle value and Sokhotsky’s distributions

(

F [f ](k0, k), ϕ(k0, k)
)

= lim
a→0+

∫ ∫

ϕ(k0, k)

k

( 1

k0 + k + ia
−

1

k0 − k + ia

)

dk0 dk

= lim
a→0+

lim
ε→0+

∫

|k|>ε

∫

ϕ(k0, k)

k

( 1

k0 + k + ia
−

1

k0 − k + ia

)

dk0 dk

= lim
a→0+

lim
ε→0+

∫

|k|>ε

∫

1

k
·

1

k0 + ia

(

ϕ(k0 − k, k) − ϕ(k0 + k, k)
)

dk0 dk

=
(

P
1

k
·

1

k0 + i0
, ψ(k0, k)

)

ψ(k0, k) = ϕ(k0 − k, k) − ϕ(k0 + k, k)

The function ψ is a test function of two variables because it is obtained by a non-singular
transformation of the argument (k0, k) → (k0 ± k, k) in a test function. Thus, the limit is the
direct product:

F [f ](k0, k) = P
1

k
·
( 1

k0 + k + i0
−

1

k0 − k + i0

)

(iv) Let η(x) be a bump function from D for a neighborhood of the circle |x| = a (the support
of δSa

. Using the theorem about the Fourier transform of compactly supported distributions,

F [δSa
](k) =

(

δSa
(x), η(x)ei(k,x)

)

=

∫

|x|=a

ei(k,x) dS =

∫ π

−π

eia|k| cos(φ)adφ

= 2πaJ0(a|k|)

where the integral representation of Bessel functions was used:

Jn(z) =
1

π

∫ π

0

eiz cos(φ) cos(nφ) dφ , z ∈ C

3. Convolution of distributions. Find each of the following convolutions or show that the
convolution does not exist:

(i) θ(x) ∗
(

xθ(x)
)

,
d

dx

[(

xθ(x)
)

∗
(

xθ(x)
)]

(ii)
1

|x|
∗ ∆δSa

(x) , x ∈ R
3



where δSa
(x) is the spherical delta function.

Solution: (i) This is a convolution in D′
+. If f and g are bounded functions that vanish

for x < 0, then their classical convolution exists:

(f ∗ g)(x) = θ(x)

∫ ∞

0

f(x− y)g(y) dy = θ(x)

∫ x

0

f(x− y)g(y) dy ,

Therefore

θ(x) ∗
(

xθ(x)
)

= θ(x)

∫ x

0

y dy =
1

2
θ(x)x2

Since the convolution exists in D′
+ in the second part of the question, it can be differentiated

d

dx

[(

xθ(x)
)

∗
(

xθ(x)
)]

=
[ d

dx

(

xθ(x)
)]

∗
(

xθ(x)
)

= θ(x) ∗
(

xθ(x)
)

=
1

2
θ(x)x2

because (xθ(x))′ = θ(x) + xδ(x) = θ(x).

(iv) The convolution 1
|x|

∗ δSa
(x) exists because the spherical delta function has a compact sup-

port. Therefore the operator ∆ can be moved to act on the other distribution which happens
to be proportional to its fundamental solution:

1

|x|
∗ ∆δSa

(x) = ∆
( 1

|x|
∗ δSa

(x)
)

= ∆
1

|x|
∗ δSa

(x) = −4πδ(x) ∗ δSa
(x) = −4πδSa

(x)

4. Cauchy problem for the transfer equation. The Cauchy problem for the transfer
or flow equation is to find a solution to the following initial value problem:

1

c

∂u(x, t)

∂t
+ (s,∇x)u(x, t) + αu(x, t) = f(x, t) , t > 0 , x ∈ R

N

u
∣

∣

∣

t=0
= u0(x)

where s ∈ R
N , |s| = 1, c > 0, and α > 0. A classical solution must be from class u ∈

C1(t > 0) ∩ C0(t ≥ 0) if it exists (under some smoothness conditions on the inhomogeneity f
and the initial data u0).
(i) Let u be a classical solution. Consider the distributions from D′(RN+1):

v(x, t) = θ(t)u(x, t) , g(x, t) = θ(t)f(x, t)

Using similar arguments as for the Cauchy problem for the heat equation, show that

Lv =
[1

c
∂t + (s,∇x) + α

]

v(x, t) = g(x, t) +
1

c
u0(x) · δ(t) in D′(RN+1)

(ii) Let Gc be the causal Green’s function for the transfer operator L:

LGc(x, t) = δN(x) · δ(t) , Gc ∈ D′(RN+1) , suppGc ⊂ {t ≥ 0}

Show that its Fourier transform with respect to x satisfies the equation

[1

c
∂t − i(s, k) + α

]

Fx[Gc](k, t) = δ(t)



and find its solution.
(iii) Use the inverse Fourier transform with respect to variable k ∈ RN to show that

Gc(x, t) = cθ(t)e−αct · δ(x− cts)

(iv) Assume that u0 ∈ D′(RN) with a bounded support, and g(x, t) ∈ D′(RN+1) with a bounded
support that lies in t ≥ 0. Show that the equation

Lv(x, t) = g(x, t) +
1

c
u0(x) · δ(t) , v(t, x) = 0 , t < 0 .

has a unique solution and express it using the convolution of distributions (give arguments for
the uniqueness and the existence of the convolution).
(v) Assume that f(x, t) is smooth in the half-space t ≥ 0 and u0(x) is also smooth. Find
an explicit (integral) representation for the solution v(x, t). Find sufficient conditions on on
smoothness of f such that v(x, t) ∈ C1(t > 0) ∩ C0(t ≥ 0)

Solution: (i) Using the rule for distributional differentiation of piecewise smooth functions,

Dxv(t, x) = θ(t){Dxu(t, x)} ,

Dtv(t, x) = θ(t){Dtu(t, x)}+ disct=0u δ(t) = θ(t){Dtu(t, x)}+ δ(t) · u0(x) .

It follows from this relations that

Lv(t, x) = θ(t){Lu(t, x)}+
1

c
δ(t) · u0(x) = θ(t)f(t, x) +

1

c
δ(t) · u0(x) .

(ii) Let us try to find the Green’s function of L in the space of temperate distributions. If it
exists, then it can be found by the Fourier method. By taking the Fourier transform of both
sides of the equation with respect to the variable x, and using the property that F [Df ](k) =
−ikF [f ](k), f ∈ S ′, it is concluded that the Fourier transform F [G](k, t) satisfies the ordinary
differential equation

[1

c

d

dt
− i(s, k) + α

]

Fx[Gc](k, t) = δ(t) , Fx[Gc](k, t) = 0 , t < 0

This problem has been shown (see the textbook) to have a unique distributional solution of the
form Fx[Gc](k, t) = cθ(t)Z(t, x) where

[1

c

d

dt
− i(s, k) + α

]

Z(t, k) = 0 , Z(0, k) = 1 .

Note the factor c in the solution and the factor 1
c

at the derivative in the equation (to be
compared with the unit factor in the textbook). Thus,

Fx[Gc](k, t) = cθ(t)e−αct+ic(s,k)t ∈ S ′(RN+1)

Since α ≥ 0, the solution is a smooth function in t > 0 that is bounded

|Fx[Gc](k, t)| ≤ c



and, hence, it is a regular temperate distribution. Therefore Gc is also a temperate distribution.

(iii) To find the inverse Fourier transform, recall that

F [δ(x− x0)](k) = ei(k,x0) , F−1[ei(k,x0)] = δ(x− x0) .

Therefore for any test function ϕ(x, t) ∈ S,

(Gc, ϕ) =
(

Fx[Gc],F
−1
x [ϕ]

)

= c

∫ ∞

0

∫

e−αteic(s,k)tF−1
x [ϕ](k, t) dNkdt

(1)
= c

∫ ∞

0

e−αt
(

eic(s,k)t,F−1
x [ϕ](k, t)

)

dt

= c

∫ ∞

0

e−αt
(

F−1
k [eic(s,k)t](x), ϕ(x, t)

)

dt

= c

∫ ∞

0

e−αt
(

δ(x− cst), ϕ(x, t)
)

dt

= c

∫ ∞

0

e−αctϕ(cst, t) dt

Here (1) holds by the consistency theorem for the direct product of temperate distributions,
that is, (f(y), ϕ(x, y)) is a test function from S for any test function ϕ of two variables and any
temperate distribution f . So, Gc is a line-delta function supported on the half-line in RN+1

that is parallel to the vector s. Its parametric equations are x = cst, t = t, t > 0. Since
S ′ ⊂ D′, the causal Green’s function exists in D′(RN+1).

Consider the direct product cθ(t)e−αct · δ(x). Then Gc is obtained from it by a non-singular
linear transformation of the argument (t, x) → (t, x− cts):

Gc(x, t) = cθ(t)e−αct · δ(x− cts) ∈ D′(RN+1) .

Indeed, owing to the definitions of the direct product and a linear transform of the argument
in a distribution, the action of Gc on a test function reads

(Gc, ϕ) =
(

cθ(t)e−αt · δ(x− cst), ϕ(x, t)
)

=
(

cθ(t)e−αt · δ(x), ϕ(x+ cts, t)
)

=
(

cθ(t)e−αt,
(

δ(x), ϕ(x+ cts, t)
))

=
(

cθ(t)e−αt, ϕ(cts, t)
)

= c

∫ ∞

0

e−αctϕ(cts, t) dt .

as required.

(iv) Consider first the case when g = 0 and the inhomogeneity is h(t, x) = c−1δ(t) · u0(x)
where u0 ∈ D′. Then the solution is given by the convolution v = Gc ∗ h provided the convo-
lution exists. Let us investigate the convolution. Let ηn(t, τ, x, y) be a unit sequence in R2N+2.
Then using the definitions of the convolution and the direct product, one infers that for any



ϕ ∈ D

(

Gc ∗ h, ϕ) = lim
n→∞

(

Gc(t, y) · h(τ, x), ηn(t, τ, x, y)ϕ(t+ τ, x+ y)
)

= c−1 lim
n→∞

(

Gc(t, y),
(

u0(x), ηn(t, 0, x, y)ϕ(t, x+ y)
))

= lim
n→∞

(

θ(t)e−αt,
(

u0(x), ηn(t, 0, x, cts)ϕ(t, x+ cts)
))

= lim
n→∞

(

θ(t)e−αt,
(

u0(x− cts), ηn(t, 0, x− cts, cts)ϕ(t, x)
))

= lim
n→∞

(

θ(t)e−αt · u0(x− cts), ηn(t, 0, x− cts, cts)ϕ(t, x)
)

=
(

θ(t)e−αt · u0(x− cts), ϕ(t, x)
)

where the definition of a linear transformation of the argument in distributions has been used.
Since ϕ ∈ D(RN+1, the sequence ηn(t, 0, x−cts, cts)ϕ(t, x) converges to ϕ(t, x) in D(RN+1). The
proof is identical to that given in the textbook when discussing the existence of the convolution
for distributions with bounded support (note that terms of the sequence coincide with ϕ for all
large enough n). The limit follows from the continuity of the direct product Thus,

(Gc ∗ h)(t, x) = θ(t)e−αt · u0(x− cts) .

for any u0 ∈ D′(RN ).
Let now the inhomogeneity be any distribution g(t, x) that vanishes in the half-space t < 0

so that g(t, x) = η(t)g(t, x) where η is a bump function for [0,∞). The same holds for the
Green’s function, Gc(t, x) = η(t)Gc(t, x). Then the solution to the generalized Cauchy problem
is given by the convolution Gc ∗ g. Let us investigate the convolution using the same line of
arguments

(

Gc ∗ g, ϕ) = lim
n→∞

(

Gc(t, y) · g(τ, x), η(t)η(τ )ηn(t, τ, x, y)ϕ(t+ τ, x+ y)
)

= c lim
n→∞

(

θ(t)e−αt,
(

g(τ, x), ηn(t, τ, x, cts)η(t)η(τ )ϕ(t+ τ, x+ cts)
)

= c

∫ ∞

0

e−αt
(

g(τ, x), ψ(t, τ, x)
)

dt

ψ(t, τ, x) = η(t)η(τ )ϕ(t+ τ, x+ cts) ,

where ψ is a test function from D(RN+2), as shown below, and the existence of the limit follows
from continuity of the functional g. Therefore the action of g on ψ is a test function of one real
variable t so that integral exists for any distribution g vanishing in the lower half-space. Thus,
the convolution exists, and is given by the above equation.

It remains to show that ψ ∈ D(RN+2) for any ϕ ∈ D(RN+1) and the existence of the limit.
The support of ϕ(t, x) lies in, say, |t| < T and |x| < R. Therefore ϕ(t+τ, x+cts) = 0 if |t+τ | > T
and |x+cts| > R. Owing to that the bump function η(t) vanishes for all t < −δ for some δ > 0,
the support of ψ is bounded in the variables t and τ . It lies in the triangle, t > −δ, τ > −δ,
and t+ τ < T . This implies that ψ(t, τ, x) = 0 for all |x| > R+ c(T + δ) (note that |s| = 1) and
all t and τ outside the said triangle. Thus, the support of ψ is bounded. Since η and ϕ are from
class C∞, ψ is a test function. Therefore the sequence ψn = ηn(t, τ, x, cts)ψ(t, τ, x) converges
to ψ(t, τ, x) in D(RN+2). The proof is identical to that given in the textbook when discussing



the existence of the convolution for distributions with bounded support. By continuity of the
direct product f(t) · g(τ, x), (f · g, ψn) → (f · g, ψ) as n→ ∞ for any distributions f and g.

Suppose now that g(t, x) = f(t, x) is a regular distribution that vanishes for t < 0. Then

(Gc ∗ g, ϕ) =

∫ ∞

0

∫ ∞

0

∫

e−αtf(τ, x)ϕ(t+ τ, x+ cts) dNx dτ dt

(1)
=

∫ ∞

0

∫ ∞

0

∫

e−αtf(τ, x− cts)ϕ(t+ τ, x) dNx dt dτ

(2)
=

∫ ∞

0

∫ ∞

τ

e−αc(t−τ )

∫

f(τ, x− cs(t− τ ))ϕ(x, t) dNx dt dτ

(3)
=

∫ ∞

0

∫ ∫ t

0

e−αc(t−τ )f(τ, x− cs(t− τ ))ϕ(x, t) dτ dNx dt

Here (1) is obtained by the shift of the integration variable x and a subsequent change of order
of integration with respect to t and τ (allowed by Fubini’s theorem because the support of
ϕ(t+ τ, x) is bounded in all three variables t, τ and x in the stated region of integration and
f is locally integrable), (2) is obtained by the shift of the integration variable t, and (3) is
obtained by reversing the order of integration with respect to t and τ (the integration with
respect to x can be carried out in any order by Fubini’s theorem). This shows that the solution
to the generalized Cauchy problem has the integral representation for t > 0

u(t, x) =

∫ t

0

e−αc(t−τ )f(τ, x− cs(t− τ )) dτ

Evidently, u(t, x) → 0 as t→ 0+ (it satisfies the zero initial condition).

(v) If the inhomogeneity and the initial data are continuous functions, u0 ∈ C0 and f ∈
C0(t ≥ 0), then the distributional solution

u(t, x) = e−αtu0(x− cts) +

∫ t

0

e−αc(t−τ )f(τ, x− cs(t− τ )) dτ

is continuous and satisfies the initial conditions, u(t, x) → u0(x) as t → 0+ by continuity of u0

and f . Thus, u ∈ C0(t ≥ 0). The solution belongs to class C1(t > 0) if, in addition, u0 ∈ C1

and f ∈ C1(t > 0) by the same line of reasonings as in Problem 1 (iii) for continuity of Dtu (the
necessity of these conditions for continuity of Dxu is obvious). In this case, the distributional
solution is a solution to the classical Cauchy problem for the transfer equation, and it is unique.


