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CHAPTER 1

Integration in Euclidean spaces

1. Riemann integral in Euclidean spaces

1.1. Euclidean spaces. Elements (vectors) of a real (or complex) Eu-
clidean space RN (or CN ) are denoted by Roman letters, e.g., x, y,
etc. They are ordered N−tuples of real (or complex) numbers, x =
(x1, x2, ..., xN). Components of x are labeled by i or j. The inner (dot)
product and the norm (length) are defined, respectively, by

(x, y) =
N
∑

i=1

xiyi , |x| =
√

(x, x)

where z̄ denotes the complex conjugation of z. Unless stated otherwise,
Einstein’s summation rule over repeated indices will be used through-
out the text:

N
∑

j=1

N
∑

i=1

Aijxiyj
def
= Aijxiyj

1.1.1. Cauchy sequences in RN . Indices n or m are used to label el-
ements in a Euclidean space. In particular, a sequence of points is
denoted by {xn}∞1 or simply {xn} (by default, the index enumerat-
ing elements of a point sequence ranges over all positive integers). A
sequence {xn} is said to converge to x if

lim
n→∞

|xn − x| = 0

and in this case, one also writes xn → x. It follows from the inequality
|xnj−xj| ≤ |xn−x|, where xnj and xj are the jth components of vectors
xn and x, respectively, that xn → x in RN if and only if the sequences
of components converge to the corresponding components of the limit
point, xnj → xj in R for every j = 1, 2, ..., N .

A sequence {xn}∞1 is called a Cauchy sequence if

|xn − xm| → 0 for n, m → ∞
In other words, the distance |xn − xm| can be made arbitrary small
for all sufficiently large n and m. The Cauchy criterion states that a
sequence in a Euclidean space converges to some point if and only if it
is a Cauchy sequence.

3



4 1. INTEGRATION IN EUCLIDEAN SPACES

1.1.2. Basic sets in a Euclidean space. A collection of all points whose
distance from x is less than a > 0,

Ba(x) = {y ∈ RN | |x − y| < a} ,

is called an open ball of radius a centered at x. For brevity, Ba(0) = Ba.
A set Ω is bounded if it lies in a ball of sufficiently large radius, Ω ⊂ Ba.

A neighborhood of a point x is Ba(x) for some a > 0. A point x in a
set Ω is called an interior point if there exists a neighborhood of x that
lies in Ω, Ba(x) ⊂ Ω for small enough a. A point x is called a limit
point of Ω if any neighborhood of x has a point of Ω distinct from x.
Clearly, a limit point of Ω may or may not be in Ω. For example, the
limit points of an open interval (a, b) form the closed interval [a, b]. A
set that contains all its limit points is called closed. The set obtained
from Ω by adding all its limit points is called the closure of Ω and will
be denoted by Ω̄. The reader is advised to show that the closure is
closed. The closure Ω̄ is the smallest closed set that contains Ω.

An open box R in RN is a collection of points whose coordinates
span open bounded intervals, aj < xj < bj, j = 1, 2, ..., N . For brevity,

R = (a1, b1) × (a2, b2) × · · · × (aN , bN) .

A box is closed if all intervals are closed.
A collection of all interior points is called the interior of Ω and will

be denoted by Ωo. The interior of Ω is the largest open set that lies in
Ω. By the Cauchy criterion, any Cauchy sequence in Ω converges to
a limit point of Ω. So, the closure of Ω consists of limit points of all
Cauchy sequences in Ω.

The set Ωc = RN\Ω is called the complement of Ω. The complement
of a closed set is open (a proof is left to the reader as an exercise).

1.1.3. Heine-Borel theorem. Let Ω be a bounded and closed set in RN .
Suppose that a collection of open sets {Uα} labeled by an index a is
such that their union contains Ω

Ω ⊂
⋃

α

Uα

Then there exists a finite sub-collection such that the union of open sets
from it also contains Ω. The statement is known as the Heine-Borel
theorem1.

1see, e.g., W. Rudin, Principles of mathematical analysis, Chapter 2
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In particular, any set Ω is covered by the union of open balls of
radius a > 0 centered at every point of Ω:

Ω ⊂
⋃

x∈Ω

Ba(x)

If Ω is closed and bounded in RN , then, by the Heine-Borel theorem,
one can find a finitely many points in Ω such that the union of open
balls centered at these points contains Ω:

Ω̄ = Ω , Ω ⊂ BR ⇒ Ω ⊂
n
⋃

j=1

Ba(xj)

for any a > 0 and some {xj}n
j=1.

Let us show first that the theorem holds for a box. Without loss
of generality, let Ω = I0 be a closed cube with side of length L and let
the origin be its center so that the coordinates of points in the cube
range over the intervals, −L

2
≤ xj ≤ L

2
. Let {Ua} be an open cover

of I0. Suppose there exists no finite subcover of I0. The cube I0 is
the union of 2N cubes with edges of length L

2
. At least one of these

cubes, denoted I1, must be covered by uncountably many Uα. The
argument can be repeated. The cube I1 is the union of 2N cubes with
edges of length L

4
and at least one of them, denoted I2, is not covered

by the union of finitely many Uα. By repeating the argument over and
over, a sequence of cubes is generated such that In+1 ⊂ In, n = 0, 1, ...,
each In is not covered by the union of finitely many open sets Uα, and
|x− y| ≤ L

√
N2−n for any two points x and y in In.

Next note that there exists a point z that lies in all In. If N = 1,
then In = [an, bn] where {an} and {bn} are monotonically increas-
ing and decreasing sequences, respectively. Since the sequence {a}
is bounded, say, by b0, it has a limit equal to z = sup{an}. On the
other hand, z ≤ bm for any m because am ≤ bn for any n and m. This
implies that z lies in any interval In. If N > 1, then the same argu-
ment can be applied to every coordinate of any point in In. If the jth

coordinate of points in In takes values in the closed interval [ajn, bjn],
then zj = supn{ajn}, and z lies in every In.

Now it is easy to see a contradiction. Take any Uα that contains z.
Since Uα is open, one can find an open ball Bε(z) that lies in Uα. On
the other hand, the diameter of In can be made arbitrary small with
increasing n. Therefore for all n large enough, In ⊂ Bε(z) ⊂ Uα (if√

NL2−n < 2ε), which means that In is covered by a single Uα and,
hence, a contradiction.
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Finally, let Ω be bounded and closed in RN . Then it lies in a cube
I with a large enough edge. Let {Uα} be an open cover of Ω. The
complement Ωc is an open set. Then the collection {Uα} and Ωc is
an open cover of I from which one can select a finite subcover of I
and, hence, of Ω. If Ωc belongs to the selected subcover, then one can
remove it from the subcover and still get a finite subcover of Ω because
Ω and Ωc have no common points. This completes the proof of the
Heine-Borel theorem.

1.1.4. The boundary of a set. The boundary of Ω is the difference be-
tween the closure and interior of Ω:

∂Ω = Ω̄ \ Ωo

1.1.5. A region in RN . A vector function is a vector-valued function
on an interval, xi = xi(t), a ≤ t ≤ b, i = 1, 2, ..., N , or, for brevity,
x = x(t). A vector function is continuous if every component of x(t)
is continuous. A continuous vector function is also called a parametric
curve in RN (think of a trajectory of a point-like particle if t is a physical
time). A set Ω is connected if any two points in it can be connected by
a parametric curve that lies in Ω. A connected open set will be called
a region and the closure of a region will be called a closed region.

1.1.6. A neighborhood of a set. The union of open balls centered at all
points of a set Ω is called a neighborhood of Ω. By construction, a
neighborhood of Ω is open. In what follows, if all balls have the same
radius a, then the corresponding neighborhood is said to have radius
a. For example, a neighborhood of a closed ball |x| ≤ R is an open ball
|x| < R + a.

1.1.7. Distance between sets. A distance between sets A and B is de-
fined by

d(A, B) = inf
x∈A, y∈B

|x− y| .
Let Ω be a region and let x is not in Ω. Suppose that the distance
between x and Ω vanishes

d(Ω, x) = inf
y∈Ω

|y − x| = 0 .

Then x belongs to the boundary of Ω. Indeed, take a point y1 in Ω
and put a = |y1 − x|. Then one can find a point y2 in Ω such that
|y2 − x| ≤ a

2
. By repeating this procedure a sequence of points yn in Ω

can be obtained such that |yn−x| ≤ a2−n. This means that x is a limit
point of Ω. Since Ω is open, x must be in the boundary ∂Ω = Ω̄ \ Ω.
Furthermore, d(Ω, x) > 0 if and only if x does not belong to the closure
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Ω̄, or, in other words, x lies in the complement of Ω̄. Note that d(Ω, x)
is a continuous function of x. By the extreme value theorem, if A is a
closed and bounded set, then there exists a point x∗ in A such that

d(Ω, A) = d(Ω, x∗) .

1.1.8. A proper subset of a region. A bounded set Ω′ is said to be a
proper subset of a region Ω if its closure lies in Ω, Ω′ ⊂ Ω. A proper
subset has a characteristic property that the distance between it and
the boundary ∂Ω does not vanish:

d(Ω′, ∂Ω) > 0 .

The boundary ∂Ω is a closed set (it can be viewed as the intersection
of two closed sets, Ω̄ and the complement of Ω, which is closed because
Ω is open). If Ω is bounded, then its boundary is also bounded and, in
this case, there exists x∗ ∈ ∂Ω such that

d(Ω′, ∂Ω) = d(Ω′, x∗) > 0

because x∗ is not in Ω and, hence, cannot be in Ω′ ⊂ Ω. If Ω is
not bounded, then its boundary can be unbounded too. In this case,
consider the part of the boundary ∂Ω that lies in the closed ball of
radius R, ∂ΩR = ∂Ω ∩ BR. Then ∂ΩR is closed and bounded for any
R > 0. Since Ω′ is bounded, one can take R large enough so that BR

contains Ω′ and

d(Ω′, ∂Ω) = d(Ω′, ∂ΩR) = d(Ω′, x∗) > 0 , x∗ ∈ ∂ΩR .

It also follows that for any proper subset Ω′ of a region Ω there exists
a neighborhood of Ω′ of radius δ > 0 that is also a proper subset of Ω.
Indeed, by the above reasoning, one can take δ = 1

2
d(Ω′, ∂Ω) > 0.

1.2. Functions on a Euclidean space. A function f : Ω ⊆ RN → R is a
rule that assigns a unique number f(x) to every point x ∈ Ω. The sets
Ω and f(Ω) ⊂ R are called the domain and the range of f . If f(x) is a
complex number (the range lies in the complex plane), then f is called
complex-valued. Let y be a limit point of Ω. A function f is said to
have a limit A at y if for any sequence {xn} ⊂ Ω, the sequence {f(xn)}
converges to the number A. In this case, one writes

lim
x→y

f(x) = A or f(x) → A as x → y .
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1.2.1. The characteristic function of a set. For any set Ω, the function
defined by

χ
Ω
(x) =

{

1 , x ∈ Ω
0 , x /∈ Ω

is called the characteristic function of Ω.

1.2.2. The classes Cp(Ω) and Cp(Ω̄). Let Ω be open. A function f is
continuous at a point x ∈ Ω if for any sequence {xn} in Ω that converges
to x, the image sequence {f(xn)} converges to f(x), and f is said to
be continuous on Ω if it is continuous at every point of Ω. The class of
all functions that are continuous on Ω will be denoted by C0(Ω). The
class of functions whose partial derivatives up to order p are continuous
on Ω will be denoted by Cp(Ω).

Let y ∈ ∂Ω. For an open Ω, f is not defined at any point of the
boundary. Suppose that for any sequence {xn} in Ω that converges to
a boundary point y, the sequence {f(xn)} has a limit. In this case, f is
said to have a continuous extension to a boundary point y by the rule

f(y) = lim
x→y

f(x)

The class of continuous functions on an open set Ω that have a contin-
uous extension to every point of the boundary of Ω will be denoted by
C0(Ω̄). Similarly, the class of functions whose partial derivatives are
continuous up to order p on an open set Ω and have continuous exten-
sions to every point of the boundary of Ω will be denoted by Cp(Ω̄). If
Ω = RN or an explicit form of Ω is irrelevant, it will be said that f is
from class Cp.

1.2.3. Uniform continuity. A function f is said to be uniformly contin-
uous on a set Ω if for any ε > 0 there exists δ = δ(ε) > such that

|f(x) − f(y)| < ε whenever |x− y| < δ

for all x and y in Ω. In other words, values of the function differ
from each other by no more than ε for all points in Ω which lie in a
ball of radius δ. Clearly, every uniformly continuous function on Ω is
continuous on Ω. The converse is not true. The key difference between
uniform continuity and continuity is that in the latter δ depends on ε
and a point at which the function is continuous, δ = δ(ε, y) if f(x) →
f(y) as x → y. It is always possible to find the same δ for all points
in Ω. For example, f(x) = 1

x
is continuous on Ω = (0, 1). Fix ε > 0.

Then |f(x) − f(y)| = |x − y|/(xy) < ε always fails for any |x− y| < δ
and any δ if x and y a close enough to zero.
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The following assertion provides sufficient conditions for uniform
continuity2. Let f be continuous on Ω. If Ω is bounded and closed in
RN , then f is uniformly continuous on Ω.

1.2.4. Support of a function. The closure of the set on which a function
f does not vanish is called the support of f and denoted supp f :

supp f = D , D = {x | f(x) 6= 0} .

For example, the support of f(x) = sin(x) is R. The support of the
characteristic function of a set Ω is the closure Ω̄.

1.2.5. Sequences of functions. A sequence of functions {fn} is said to
converge pointwise to a function f on a set Ω if for all x ∈ Ω

lim
n→∞

fn(x) = f(x) .

In general, the limit function does not inherit properties of terms of
the sequence. For example, f may not be continuous on Ω even if the
terms of the sequence are continuous on Ω. It is easy to construct an
example. Let fn(x) = 0 if x < 0, fn(x) = nx if 0 ≤ x ≤ 1

n
, and

fn(x) = 1 if x > 1
n
. The limit function is the step function f(x) = 0 if

x < 0 and f(x) = 1 if x ≥ 0. It is not continuous at x = 0. A stronger
condition than just a pointwise convergence is required in order for the
limit function to be continuous.

Definition 1.1. (Uniform convergence)
A sequence of functions {fn} is said to converge uniformly to a function
f on a set Ω if

lim
n→∞

sup
Ω

|fn(x) − f(x)| = 0 .

Clearly, every uniformly convergent sequence converges pointwise.
The converse is false. For example, if fn(x) is the sequence defined
above. Then

sup |fn(x) − f(x)| = 1 .

for all n and, hence, fn does not converge to f uniformly on R. Note
also that the uniform convergence depends on the set. For example, fn

converges to the step function f uniformly on Ω = (−∞,−a) ∪ (a,∞)
for any a > 0. If one thinks about terms of a pointwise convergent
sequence as an approximation to the limit function, then |fn(x)−f(x)|
is an absolute error of the approximation at a point x. The pointwise
convergence means that the error can be made smaller than any positive
number ε for all large enough n > m where m naturally depends on ε

2W. Rudin, Principles of mathematical analysis, Chapter 4
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and the point x. The uniform convergence means that the integer m
is independent of x so that the error of the approximation is uniformly
bounded by ε for all points in Ω.

Theorem 1.1. (Cauchy criterion for uniform convergence)
A sequence of functions {fn} converges uniformly on a set Ω if and
only

sup
Ω

|fn(x) − fm(x)| → 0

as n, m → ∞.

If {fn} converges to a function f uniformly on Ω, then

|fn(x)− fm(x)| ≤ |f(x) − fn(x)| + |f(x) − fm(x)|
≤ sup

Ω
|f(x) − fn(x)|+ sup

Ω
|f(x) − fm(x)|

for all x ∈ Ω. Therefore

sup
Ω

|fn(x) − fm(x)| ≤ sup
Ω

|f(x) − fn(x)| + sup
Ω

|f(x) − fm(x)|

and the sequence satisfies the Cauchy criterion for uniform convergence.
Conversely, suppose that the sequence obeys the Cauchy criterion.

Since
|fn(x)− fm(x)| ≤ sup

Ω
|fn(x) − fm(x)|

the numerical sequence {fn(x)} is a Cauchy sequence for any x in Ω
and, hence, {fn} converges pointwise to a function f(x) in Ω. By taking
the limit m → ∞ in the Cauchy criterion first, it is concluded that the
sequence converges uniformly to f on Ω:

lim
n→∞

lim
m→∞

sup
Ω

|fn(x) − fm(x)| = lim
n→∞

sup
Ω

|fn(x) − f(x)| = 0 .

This completes the proof.
It turns out that the uniform convergence is sufficient for the con-

tinuity of the limit function.

Theorem 1.2. (Continuity and uniform convergence)3

Suppose that a sequence of continuous functions converges to a function
f uniformly on a set Ω. Then the function f is continuous on Ω.

Suppose a sequence of continuously differentiable functions con-
verges pointwise to a function f on Ω. Two essential questions arise:

(i) Is the limit function continuously differentiable?
(ii) If so, can the derivative of the limit function be obtained as

the limit of the sequence of the derivatives of terms?

3W. Rudin, Principles of Mathematical Analysis, Chapter 7
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The answer is negative to both questions. As an example, put

fn(x) =







0 , x < 0
(nx)2[1 − (1 − nx)2] , 0 ≤ x ≤ 1

n
1 , x > 1

n

Then fn ∈ C1(R). The sequence fn converges to the step function
which is not differentiable at x = 0, whereas f ′

n(0) = 0. The sequence
fn(x) = sin(nx)/

√
n converges pointwise to f(x) = 0 in R. The terms

of the sequence are continuously differentiable infinitely many times
and so is the limit function. However, the sequence of the derivatives
f ′

n(x) =
√

n cos(nx) does not converge to f ′(x) = 0.

Theorem 1.3. (Differentiation and uniform continuity)
Let {fn} be a sequence of differentiable functions on [a, b] such that
{fn(c)} converges for some c ∈ [a, b]. If {f ′

n} converges uniformly to a
function g on [a, b], then {fn} converges uniformly to a function f on
[a, b] and f ′ = g.

1.2.6. Functional series. Let {fn} be a sequence of bounded functions
on a set Ω such that the series of bounds converges:

∑

n

Mn < ∞ , Mn = sup
Ω

|fn(x)| .

Then the series
∑

n fn(x) converges uniformly on Ω. Indeed, consider
a sequence of partial sums

sn(x) =
n
∑

k=1

fk(x) .

Then by the Cauchy criterion for uniform convergence 1.1, it converges
uniformly on Ω to a function f because

sup
Ω

|sn(x) − sm(x)| = sup
Ω

∣

∣

∣

n
∑

k=m+1

fk(x)
∣

∣

∣ ≤
n
∑

k=m+1

Mk → 0

as n > m → ∞ because
∑

k Mk < ∞ and, hence, its partial sums form
a Cauchy sequence.

By combining this assertion with Theorems 1.2 and 1.3, the fol-
lowing useful criterion for continuity and differentiability of functional
series can be established.

Proposition 1.1. (Differentiation of a series)
Let {fn} be a sequence of continuous and bounded functions on a set
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Ω ⊂ RN such that the series of the bounds converge:
∑

n

Mn < ∞ , Mn = sup
Ω

|fn(x)| .

Then the following series converges to a continuous function on Ω:

f(x) =
∑

n

fn(x) .

If, in addition, fn ∈ C1(Ω) and partial derivatives are bounded on Ω
so that the series of bounds also converges,

∑

n

M (j)
n < ∞ , M (j)

n = sup
Ω

∣

∣

∣

∂fn(x)

∂xj

∣

∣

∣ ,

then the function f is from class C1(Ω) and

∂f(x)

∂xj
=

∂

∂xj

∑

n

fn(x) =
∑

n

∂fn(x)

∂xj
.

This offers a simple criterion for interchanging the order of differ-
entiation and summation in a functional series.

1.3. Smooth boundary of a set in RN . The boundary ∂Ω of a set Ω is
called smooth if in a neighborhood of any point, ∂Ω is a level set of a
function from class C1

∂Ω = {x ∈ RN | g(x) = 0}
and the gradient of g does not vanish

∇g =

(

∂g

∂x1

,
∂g

∂x2

, ...,
∂g

∂xN

)

6= 0 .

The boundary ∂Ω is said to be from class Cp if, in addition, g ∈ Cp,
p ≥ 2.

Let xj = xj(t) be parametric equation of a curve that lies in the
level set g(x) = 0. Then the vector v(t) = x′(t) is tangent to the curve.
Since the equation g(x(t)) = 0 holds for all t, its differentiation shows
that the gradient of g is orthogonal to v at any point of the curve:

0 =
d

dt
g(x(t)) =

(

∇g(x(t)), v(t)
)

Tangent vectors to all curves through any point x on the level set
form a tangent plane to the level set through the point x, and, hence,
the gradient ∇g(x) is orthogonal to all vectors in this plane. Thus,
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the gradient ∇g is normal to the boundary ∂Ω. In particular, a unit
normal to the boundary ∂Ω can be defined by

n̂(x) =
∇g(x)

|∇g(x)| , x ∈ ∂Ω

The vector −n̂(x) is also a unit normal to ∂Ω. If f is from class C1(Ω̄),
then

∂f

∂n
def
=
(

n̂(x),∇f(x)
)

, x ∈ ∂Ω

is called a normal derivative of f on the boundary of Ω.

1.3.1. Notations for partial derivatives. In what follows, partial deriva-
tives are often denoted by

∂jg =
∂g(x)

∂xj

, ∂i∂
2
j g(x) =

∂3g

∂xi∂2xj

, etc.

A collection of all partial derivatives of a function g of order α will be
denoted by Dαg. For example,

D2g = {∂i∂jg} , i, j = 1, 2, ..., N .

The symbol Dαg in equations stands for any partial derivative of order
α. For example, the product rule has the form

D(fg) = gDf + fDg .

1.3.2. Smooth boundary of a set in R3. Let g be from the class C1(R3)
and ∇g 6= 0. Without loss of generality ∂3g 6= 0 at some point x = y
of the level set. Then by the implicit function theorem the equation
g(x1, x2, x3) = 0 can be solved in a neighborhood of y with respect to x3,
that is, there exists a function f(x1, x2) such that g(x1, x2, f(x1, x2)) =
0 for all (x1, x2) in a neighborhood of (y1, y2). Moreover, the function
f is from class C1 and

∂1f = −∂1g

∂3g

∣

∣

∣

x3=f
, ∂2f = −∂2g

∂3g

∣

∣

∣

x3=f
.

The latter equations are known are implicit differentiation equations.
So, a smooth boundary of a set R3 locally looks like a graph of a C1

function of two variables, which is a two-dimensional surface in space.
For example, let Ω = Ba. Then its boundary is a sphere which

is a level set g(x) = |x|2 = a2. The gradient ∇g = 2x is continuous
and does not vanish on the sphere. It is also normal to the sphere.
The derivative ∂3g = 2x3 does not vanish if x3 > 0 or x3 < 0. So, in
a neighborhood of any point in the upper hemisphere the sphere is a
graph x3 =

√

a2 − x2
1 − x2

2 while it is the graph x3 = −
√

a2 − x2
1 − x2

2
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near any point in the lower hemisphere. Near any point at which
∂3g = 0, the equation cannot be solved for x3 and should be solved
either with respect to x1 (if ∂1g 6= 0) or x2 (if ∂2g 6= 0).

This picture has a natural generalization to higher dimensional
spaces. A smooth boundary of a region in RN is locally a graph of a C1

function of N − 1 variables obtained by solving the equation g(x) = 0
with respect one of the variables. It defines an N − 1 dimensional
surface in RN .

1.4. A Riemann integral. Suppose a function f of a real variable x
is bounded on [a, b], that is, m ≤ f(x) ≤ M for all x ∈ [a, b]. A
finite collection of points P = {xs} in [a, b] that contains a and b is
called a partition of [a, b]. The points from P are endpoints of partition
intervals Rs = [xs−1, xs]. The smallest partition of [a, b] contains two
points P = {a, b}. Put

Ms = sup
Rs

f(x) , ms = inf
Rs

f(x)

By boundedness of f , the supremum and infimum exist on any subset
of [a, b]. Define the upper and lower sums of f , respectively, by

U(P, f) =
∑

s

Ms∆xs , L(P, f) =
∑

s

ms∆xs .

where ∆xs = xs −xs−1 and the summation is carried over all partition
intervals.

A partition P ′ is called a refinement of P if P ⊂ P ′. In other words,
every point of P also belongs to P ′ but P ′ has points which are not in
P . Clearly, under a refinement of a partition P some of its partition
intervals are split into smaller intervals. Recall that

sup
A

f(x) ≤ sup
B

f(x) , inf
A

f(x) ≥ inf
B

f(x) , A ⊂ B

These relations imply that the lower sum is increasing upon a refine-
ment whereas the upper sum is decreasing:

m(b − a) ≤ L(P, f) ≤ L(P ′, f)

≤ U(P ′, f) ≤ U(P, f) ≤ M(b − a) , P ⊂ P ′ .

The values of L(P, f) for all partitions form a set of reals that is
bounded from above by M(b − a) and, hence, it has the supremum
(the least upper bound). Similarly, the values of U(P, f) for all parti-
tions form a set bounded from below by m(b − a) and therefore this
set has the infimum (the greatest lower bound).
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A bounded function f is said to be Riemann integrable on [a, b] if
the supremum of lower sums is equal to the infimum of upper sums
and, in this case, their value is called a Riemann integral of f over
[a, b]:

sup
P

L(P, f) = inf
P

U(P, f) =

∫ b

a

f(x) dx .

1.4.1. The fundamental theorem of calculus. Let f be continuous on [a, b]
and F be an antiderivative of f , that is, F ′ = f . Then

∫ b

a

f(x) dx = F (b)− F (b) .

1.4.2. Riemann sums. A Riemann sum for a function f and a partition
P is defined by

R(P, f) =
∑

s

f(x∗
s)∆xs

For any partition P , the inequality ms ≤ f(x∗
s) ≤ Ms implies that

L(P, f) ≤ R(P, f) ≤ U(P, f)

for any choice of sample points in the Riemann sum. Riemann sums
can be used for approximations of the Riemann integral.

Proposition 1.2. Let f be a Riemann integrable function on [a, b].
For any positive number ε > 0, there exist a partition Pε such that

∣

∣

∣

∫ b

a

f(x) dx − R(P, f)
∣

∣

∣
≤ ε , Pε ⊂ P

for any choice of sample points in the Riemann sum and any refinement
P of Pε.

In other words, the Riemann integral can be approximated by a
Riemann sum with an arbitrary small error ε. Indeed, since f is inte-
grable, for any partition P

L(P, f) ≤
∫ b

a

f(x) dx ≤ U(P, f)

Therefore
∣

∣

∣

∫ b

a

f(x) dx −R(P, f)
∣

∣

∣ ≤ U(P, f) − L(P, f)

Fix ε. Then the integrability of f implies that there exists a partition
Pε such that

U(P, f) − L(P, f) ≤ ε , Pε ⊂ P

and the conclusion of the proposition follows.
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Let f be integrable on [a, b]. Then it follows from the integrability
of f that one can find a sequence of partitions Pn ⊂ Pn+1 such that

lim
n→∞

R(Pn, f) =

∫ b

a

f(x) dx

The sequences of the lower and upper sums, L(Pn, f) and U(Pn, f),
also have the same limit. The maximal length of partition intervals
associated with Pn must be decreasing to zero, maxs ∆xs → 0 as n →
∞, otherwise it would be impossible to make the difference U(Pn, f)−
L(Pn, f) arbitrary small. For example, one can take a sequence of
uniform partitions Pn (all partition intervals have equal lengths) defined
by x0 = a, xj = xj−1 + ∆x, j = 1, 2, ..., 2n, and ∆x = (b − a)/2n.

1.4.3. Area under the graph of a continuous function. If f is continuous
on interval [a, b] and f(x) ≥ 0. The region Ω in a plane defined by
a ≤ x ≤ b and 0 ≤ y ≤ f(x) contains the union of rectangles Rs ×
[0, ms] with the total area being equal to L(P, f), whereas the union
of rectangles Rs × [0, Ms], with the total area being equal to U(P, f),
contains Ω. The Riemann integral of f defines the area of Ω. The
lower sum is an estimate of the area from below and the upper sum is
its estimate from above.

1.4.4. Generalization to a Euclidean space. Let a function f be bounded
on a box R = [a1, b1] × · · · × [aN , bN ] in RN . Its volume is V =
(b1 − a1) · · · (bN − aN). Each coordinate interval can be partitioned
so that R is partitioned by boxes Rs of smaller volumes ∆Vs where s
enumerates all partition boxes so that V =

∑

s ∆Vs. A partition P of
R is a collection of all vertices of partition boxes. A partition P ′ is a
refinement of P if P ⊂ P ′. The lower and upper sums of a bounded
function f are defined in the same way as in the one-dimensional case

L(P, f) =
∑

s ms∆Vs , ms = infRs f(x)
U(P, f) =

∑

s Ms∆Vs , ms = supRs
f(x)

They have the same properties as in the one-dimensional case.
A bounded function f is said to be Riemann integrable on R if the

greatest lower bound of upper sums is equal to the least upper bound of
lower sums and, in this case, their value is called the Riemann integral
of f over R:

∫

R

f(x) dNx = inf
P

U(P, f) = sup
P

U(P, f)

Theorem 1.4. (Fubini’s theorem)
Let f(x) be continuous function on a closed rectangle R. Then it is
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Riemann integrable on R and
∫

Ω

f(x) dNx =

∫ b1

a1

· · ·
∫ bN

aN

f(x1, ..., xN) dxN · · · dx1

Here xj, j = 1, 2, ..., N , are coordinates of a point x in RN , and the
iterated integral can be computed in any order.

The Fubini allows one to calculate the integral by means of the
fundamental theorem of calculus.

1.4.5. Volume under the graph of a continuous function. Let f(x, y) be a
a non-negative continuous function of two real variables on a rectangle
R = [a1, b1] × [a2, b2]. Let Ω be the (closed) solid above the rectangle
and below the graph z = f(x, y). Then the upper and lower sums
are estimates of the volume of Ω from above and below, respectively,
because the union of three-dimensional boxes Rs × [0, Ms] contains Ω,
where Rs are partition rectangles, while Ω contains the union of boxes
Rs×[0, ms]. Upon refinement the estimates tends to one another so that
the integral of f over the rectangle gives, by definition, the volume of
Ω. This geometrical interpretation of the Riemann integral can readily
be extended to any Euclidean space.

1.4.6. An example of a non-integrable function. Continuity is not nec-
essary for Riemann integrability. Suppose that a function g coincides
with a continuous function f on interval [a, b] everywhere but a point
c, g(c) 6= f(x). Then g is still integrable on [a, b]. The lower and upper
sums for f and g only differs by the term corresponding to a partition
interval containing c, but this term can be made arbitrary small (cf.
Sec. 1.4.2). Therefore, g is integrable and the integrals of f and g are
equal. Clearly, a continuous function can be altered at finitely many
points without destroying its integrability.

The Riemann integrability can be lost if a continuous function is
altered at infinitely many points. A simple example is provided by the
Dirichlet function defined by

fD(x) =

{

1 , x ∈ Q

0 , x /∈ Q

where Q is the set of all rational numbers. It is continuous nowhere
and not Riemann integrable on any interval. Indeed, since any interval
contains rational and irrational numbers, for any partition the lower
sum is equal to zero, whereas the upper sum is equal to the length
of the interval. So, the limits of the lower and upper sums cannot be
equal.
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1.4.7. Riemann integral over a region. Let Ω be a bounded set in RN

and f be a bounded function on Ω. Let us extend f to RN by zero, that
is, f(x) = 0 if x 6= Ω. The extension can also be written as χ

Ω
(x)f(x)

where χ
Ω

is the characteristic function of Ω. The Riemann integral of
f over Ω is defined by

∫

Ω

f(x) dNx =

∫

R

χ
Ω
(x)f(x) dNx

where R is any rectangle that contains Ω, provided χ
Ω
f is integrable

on R. Clearly, χ
Ω
f is generally not continuous and, hence, Fubini’s

theorem does not apply.

Proposition 1.3. Let Ω be a bounded region with piecewise smooth
boundary and f be from class C0(Ω̄). Then f is Riemann integrable on
Ω.

The integral can be evaluated by reducing it to an iterated integral
(similarly to Fubini’s theorem). Let Ω ⊂ R3 be such that any line
parallel to the x3 coordinate axis intersects Ω at most along one line
segment (an interval on the line). Then let DΩ be the projection of Ω
onto the plane x3 = 0, that is, (x1, x2, x3) → (x1, x2, 0) ∈ DΩ. Then for
any point (x1, x2, 0) in DΩ, h1(x1, x2) ≤ x3 ≤ h2(x1, x2) for all points
in Ω. Here the graphs x3 = hi(x1, x2) are boundaries of Ω from above
(i = 2) and from below (i = 1). Then

∫

Ω

f(x1, x2, x3) d3x =

∫

DΩ

(

∫ h2(x1,x2)

h1(x1,x2)

f(x1, x2, x3) dx3

)

d2x

The integral over DΩ can be further reduced to a double iterated in-
tegral in a similar fashion and the resulting triple iterated integral can
be evaluated by the fundamental theorem of calculus. For example,
the integral over a ball of radius a centered at the origin in R3 can be
reduced to the following triple iterated integral:

∫

Ba

f(x) d3x =

a
∫

−a

√
a2−x2

1
∫

−
√

a2−x2
1

√
a2−x2

1−x2
2

∫

−
√

a2−x2
1−x2

2

f(x1, x2, x3) dx3 dx2 dx1

Note that the projection D of Ba is the disk, x2
1 + x2

2 ≤ a2. This
procedure can be extended to an integral of any dimensions.

1.5. Properties of the Riemann integrals. A complex-valued function f
is Riemann integrable on Ω if its real and imaginary parts are integrable
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and
∫

Ω

f(x) dNx =

∫

Ω

Re f(x) dNx + i

∫

Ω

Im f(x) dNx

1.5.1. Linearity. If f and g are Riemann integrable on Ω, then their
linear combination is integrable and

∫

Ω

(

αf(x) + βg(x)
)

dNx = α

∫

Ω

f(x) dNx + β

∫

Ω

g(x) dNx

for any (real or complex) numbers α and β.

1.5.2. Positivity. If f(x) ≥ 0 and f is integrable on Ω, then
∫

Ω

f(x) dN x ≥ 0 .

1.5.3. Integrability of the absolute value. If f is Riemann integrable on
Ω, then its absolute value is also integrable on Ω and

∣

∣

∣

∣

∫

Ω

f(x) dNx

∣

∣

∣

∣

≤
∫

Ω

|f(x)| dNx

The converse is false. For example, put f(x) = 1 if x is rational, and
f(x) = −1 otherwise. This function is not integrable on any interval
[a, b] because its lower sum is equal to −(b − a) and the upper sum is
equal to b−a for any partition. However, the absolute value |f(x)| = 1
is continuous and, hence, integrable on [a, b].

1.5.4. Additivity. Let subsets Ω1,2 ⊂ Ω be closed and bounded, and
Ω1 ∪Ω2 = Ω but the interiors of Ω1,2 do not intersect. If f is integrable
on Ω1,2, then it is integrable on Ω and

∫

Ω

f(x) dNx =

∫

Ω1

f(x) dNx +

∫

Ω2

f(x) dN x

In particular, if f is continuous on a bounded closed region Ω with
a piecewise smooth boundary and the regions Ω1,2 are obtained by
cutting Ω into two pieces by a smooth surface, then the above equation
holds.

1.5.5. Continuity. Let Ωn be a family of subsets of a bounded set Ω
labeled by a positive integer n such that

Ωn ⊂ Ωn+1 ,
⋃

n

Ωn = Ω

In other words, subsets Ωn becomes larger with increasing n and in the
limit n → ∞, Ωn becomes Ω. If a function f is Riemann integrable on
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Ω and on each Ωn, then

lim
n→∞

∫

Ωn

f(x) dNx =

∫

Ω

f(x) dNx

For example, let Ω be an open bounded set, and its boundary be
smooth. Then any f from the class C0(Ω̄) is integrable on Ω. The
subsets Ωn can be obtained by removing closed balls of radius 1/n cen-
tered at every point of the boundary of Ω. The boundaries ∂Ωn are
also smooth if ∂Ω is smooth enough. Then f is integrable on Ωn, and
the sequence of integrals of f over Ωn converges to the integral of f
over Ω.

1.5.6. More on Riemann integrability. The sets Ω1 and Ω2 in the addi-
tivity property can share a common boundary, that is, their boundaries
can intersect, ∂Ω1 ∩ ∂Ω1 6= ∅. Suppose that the boundaries ∂Ω1,2 are
smooth and their intersection is also a smooth surface. If f ∈ C0(Ω̄1,2),
then by Proposition 1.3 the function f is Riemann integrable on Ω1,2

and the additivity property holds. It is worth noting that f is generally
not continuous on Ω because it can have jump discontinuities at the
common points of the boundaries ∂Ω1,2. If x is a point of ∂Ω1 ∩ ∂Ω1,
then the value f(x) obtained by a continuous extension from Ω1 is
generally not the same as that obtained by the extension from Ω2. In
other words, the Riemann integrability holds for some non-continuous
functions.

Proposition 1.4. Let Ω be a bounded region and χ
Ω

be its charac-
teristic function. Then a function f is integrable on Ω if the extension
χ

Ω
f is not continuous on finitely many smooth surfaces.

An interesting question arises: How to characterize all Riemann
integrable functions. To answer this question the concept of sets of
zero measure is needed.

1.6. Volume (or measure) of a set. The area of a rectangle with sides
of length a1 and a2 is defined as a1a2. Similarly, the volume of a
rectangular box in a Euclidean space is defined by

VN (R) = a1a2 · · · aN =

∫

R

dNx

where aj, j = 1, 2, ..., N , are lengths of the adjacent edges of the box.
Similarly, the volume of any bounded set Ω is defined by

V (Ω) =

∫

Ω

dNx
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provided the unit function is Riemann integrable on Ω. In particu-
lar, a bounded region with a piecewise smooth boundary always has a
volume.

Clearly, the volume is additive, that is, the volume of the union of
non-overlapping sets is the sum of the volumes

V (Ω1 ∪ Ω2) = V (Ω1) + V (Ω2) , Ω1 ∩ Ω2 = ∅
In particular, if Ω is divided by smooth surfaces into finitely many
pieces, then by Proposition 1.4, the volume of Ω is the sum of volumes of
the pieces. The volume is non-negative and increasing with increasing
Ω:

V (Ω1) ≤ V (Ω2) , Ω1 ⊂ Ω2

These basic properties of the volume follow from the properties of the
Riemann integral.

1.6.1. Volume of a ball in RN . Let VN (a) be the volume of a ball Ba ⊂
RN (it exists because the boundary of the ball is a smooth surface). By
the scaling property, VN (a) = aNVN (1). To find VN , let r a coordinate
along a diameter of the ball so that −a ≤ r ≤ a for the whole diameter.
The cross-section of the ball by the plane perpendicular to the diameter
at a point r is a ball centered at r of radius

√
a2 − r2. The volume of a

portion of the ball between two such planes at a distance dr is therefore
dVN = VN−1(

√
a2 − r2)dr and, hence,

VN (a) =

∫ a

−a

VN−1(
√

a2 − r2) dr , V1(a) = 2a .

Put CN = VN (1). Using the scaling property it is concluded that

CN = CN−1

∫ 1

−1

(

1 − s2
)

N
2
− 1

2
ds , C1 = 2

Evaluating the integral, one infers that

VN (a) =
π

N
2

Γ(1 + N
2
)
aN

where Γ is Euler’s gamma function:

Γ(z) = lim
b→∞

∫ b

0

e−ttz−1 dt

It has the following properties:

Γ(z + 1) = zΓ(z) , Γ(1) = 1 , Γ(1
2
) =

√
π

The first one is established by integration by parts, while the other two
are proved by a direct evaluation of the integral.
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If σ
N
(a) is the surface area of the sphere |x| = a, then dVN (a) =

σ
N
(a)da. It follows from this relation that the surface area of the unit

sphere in RN reads

(1.1) σ
N

= σ
N
(1) =

Nπ
N
2

Γ(1 + N
2
)

=
2π

N
2

Γ(N
2
)
.

1.7. Sets of measure zero in RN . The volume of a point in a Euclidean
space is equal to zero because it is contained in a ball of arbitrary small
radius. Similarly, any finite collection of points has the zero volume
because it is contained in a the union of balls whose total volume can
be arbitrary small. This observation is extended to all sets.

Definition 1.2. (Sets of measure zero in RN )
A set in RN is said to be of measure zero if it can be covered by a
union of open balls whose total volume can be made smaller than any
preassigned positive number.

For brevity, one writes µ(Ω) = 0 where µ stands for ”measure”.

1.7.1. Examples of sets of measure zero.

• A finite collection of points in space is a set of measure zero.
• A segment of a straight line of finite length L is a set of measure

zero. Indeed, let us split it into n pieces of length L/n. Each
such segment can be covered by a ball of radius L/n centered
at the midpoint of the segment. The total volume is

Vn = nVN (L/n) = CNn(L/n)N → 0

as n → ∞ for any dimension N ≥ 2.
• Generalizing the previous example, a Euclidean space RM can

be viewed a hyper-plane in a higher dimensional Euclidean
space RN , N > M . Any rectangular box in RM is a set of
measure zero in RM . For example, a rectangle in a plane in a
three-dimensional space is a set of measure zero. A proof of
this assertion is left to the reader as an exercise.

• Any subset of a set of measure zero is also a set of measure
zero.

Theorem 1.5. A countable union of sets of measure zero is also a
set of measure zero.

Let

G =

∞
⋃

n=1

Gn
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where all Gn are sets of measure zero. Fix ε. Then Gn is contained
in a union of open balls with the total volume ε/2n. Therefore G is
contained in the union of all such balls with the total volume being

V =

∞
∑

n=1

2−nε =
ε

2

(

1 +
1

2
+
(1

2

)2

+
(1

2

)3

+ · · ·
)

=
ε

2
· 1

1 − 1
2

= ε

Since ε is arbitrary, G is a set of measure zero.
An immediate consequence of this theorem is that a countable col-

lection of points is a set of measure zero. For example, all rational
numbers in the interval [0, 1] are countable. So, they form a set mea-
sure zero (a set of zero length). Furthermore, the whole real line is a
countable union of unit intervals. This implies that all rational num-
bers form a set of measure zero in R. Points with rational coordinates
in the rectangle [0, 1] × [0, 1] are also countable. Indeed, pairs (an, bn)
with an and bn from countable sets (n = 1, 2, ...) can be counted in the
order (a1, b1), (a1, b2), (a2, b2), (a2, b3), etc. So, all points with rational
coordinates in R2 form a set of measure zero. This conclusion is readily
extended to a Euclidean space of any dimension.

Remark. Are there sets of measure zero in R that are not countable?
The answer is affirmative. There are uncountable collections of num-
bers which contain no interval. One of the most famous examples is
the Cantor set.

Other uncountable sets of measure zero in RN include Euclidean
subspaces. A line in space is also a set measure zero because it is a
union of countably many line segments of a finite length. Similarly, any
subspace RM of RN is a set of measure zero if M < N because it is a
union of countably many boxes, and any box in RM is a set of measure
zero in RN , N > M . What about measures of curves and surfaces in
space?

1.7.2. Curves in a Euclidean space. Intuitively, a curve as a point set
in a Euclidean space can be obtained by a continuous deformation
(without breaking) of a line segment that has a continuous inverse.
The existence of the inverse is needed to avoid gluing parts of the
segment together upon deformation. Any such deformation can be
described by a continuous one-to-one mapping of an interval into R.
So, by definition, a curve is the range of a continuous vector function
x(t) on [a, b] that is one-to-one except possibly at the boundary points
of the interval. If x(a) = x(b), then the curve is called closed.

The equations x = x(t) are called parametric equations of the curve
and t is a parameter on the curve (it labels points of the curve). Let
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t = t(τ ) where t(τ ) a continuous one-to-one function [α, β] → [a, b].
Then the composition X(τ ) = x(t(τ )) has the same range and x =
X(τ ) are also parametric equation of the same curve. So, there are
many mappings of an interval into RN that define the same curve. A
particular choice of the mapping is called a parameterization of the
curve.

A curve has a self-intersection point if two points of an interval
are glued together upon deformation. This implies that any mapping
whose range in the curve is not one-to-one at t = t1 and t = t2 > t1
because x(t1) = x(t2) and it is one-to-one on (a, t1), (t1, t2), and (t2, b).
Clearly, in this way one can define a curve with any number of self-
intersections by a mapping (modulo a reparameterization).

The curve is said to be from class C1 if there exists a continuously
differentiable parameterization x = x(t) on [a, b]. A curve is piecewise
C1 if it consists of finitely many C1 pieces.

1.7.3. M -surfaces in RN . By analogy with curves, an M dimensional
surface (or simply M-surface) in RN , M < N , can be defined as a
continuous deformation of an M dimensional box that has a continuous
inverse. Let D be a closed and bounded set in RM and F be a continuous
mapping of a neighborhood of D into RN that is one-to-one on the
interior of D. Then the range F (D) ⊂ RN is called an M-surface.
The equations x = F (y), y ∈ D, are called parametric equations of the
M-surface, and D is called the parameter domain. There are infinitely
many mappings of a closed bounded set in RM that have the same
range in RN . If g : D′ → D, where D′ is a closed bounded set in RM ,
is a continuous and one-to-one, then the composition G(z) = F (g(z))
has the same range G(D′) = F (D). Self-intersecting M-surfaces can
also be described by a continuous mapping of D that is one-to-one in
the interior of D except some of its points. A surface is said to be from
class C1 if all components of F have continuous partial derivatives.

Let y0 be an interior point of D. Consider a coordinate line through
y0. The image of this line x = F (y) is the curve in SM . The curve
is from class C1 if F ∈ C1. The span of all unit tangent vectors
Ta = wa/|wa| where wa = ∂F/∂ya, a = 1, 2, ..., M , computed at y = y0,
is called a tangent space of SM at a point x0 = F (y0). Since F is
one-to-one near y0, the rank of the matrix of partial derivatives ∂F/∂y
is equal to M . So, the tangent space is an M-plane through x0.

The mapping F is not required to be one-to-one on the boundary
∂D. In this way surfaces with different topologies can be obtained
through identification of certain points of the boundary of D upon
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deformation. For example, a unit sphere in R3 has the following para-
metric equations:

x1 = cos(ξ1) , x2 = sin(ξ1) cos(ξ2) , x3 = sin(ξ1) sin(ξ2) ,

where D = [0, π]× [0, 2π] is the parameter domain. Here ξ1 and ξ2 are
the zenith and polar angles of the spherical coordinates. The boundary
lines ξ2 = 0 and ξ2 = 2π have the same image curve (the semi-circle
from the north to south pole of the sphere), whereas the boundary
lines ξ1 = 0 and ξ1 = π are mapped to single points, the north and
south poles, respectively. With these identification, the rectangle D is
topologically equivalent to a sphere (it can be continuously deformed
to a sphere).

Similarly, the parametric equations

x1 =
(

a + b cos(ξ1)
)

cos(ξ2) , x1 =
(

a + b cos(ξ1)
)

sin(ξ2) ,

x3 = b sin(ξ1) , D = [0, 2π] × [0, 2π] ,

describe a torus with radii a > b. The cross section of the torus by the
plane x3 = 0 is the union of two circles of radii a± b. The cross section
of the torus by a half-plane bounded by the x3 coordinate axis is a
circle of radius b. The position of the half-plane is defined by the polar
angle ξ2 in the plane x3 = 0, whereas the angle ξ1 defines a position of
the point on the circle of intersection. The map identifies the opposite
boundary lines of the rectangle D. After this identification D becomes
topologically equivalent to a torus.

1.7.4. Smooth transformations of sets of measure zero. A transformation
of RN is a function F : RN → RN . If all components of F are continu-
ously differentiable, then the transformation is said to be from class C1.
If, in addition, its Jacobian does not vanish, then the transformation
is called non-singular:

F : RN → RN , det

(

∂Fj

∂yi

)

6= 0

Since the Jacobian does not vanish, the transformation is invertible in
a neighborhood of each point by the inverse function theorem4.

Therefore, any straight line passing through a point y0 becomes
a curve passing through the point x0 = F (y0) in a neighborhood of
x0. Parametric equations of a line passing through y0 and parallel to
a vector v read y = y0 + vt where t is a real parameter. Then the
image curve is x = x(t) = F (y0 + vt) so that its tangent vector has

4W. Rudin, Principles of Mathematical Analysis, Chapter 9.
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components x′
i(t) = (v,∇)Fi where ∇ is the gradient operator. Since

the Jacobian matrix ∂jFi is continuous and not singular, the tangent
vector x′(t) is continuous and does not vanish anywhere. So, the curve
is also from class C1.

Similarly, F maps a 2-plane through y0 into a C1 2-surface in
a neighborhood of x0 = F (y0). Parametric equations of a 2-plane
through y0 that is parallel to two linearly independent vectors u and v
are y = y(t, s) = y0 + su+ tv, where s and t are real parameters. Para-
metric equations of the image 2-surface are x = x(t, s) = F (y(t, s)).
At every point, the surface has two non-vanishing continuous tangent
vectors ∂tx(t, s) and ∂sx(t, s) that are linearly independent because
the matrix ∂jFi is not singular and continuous. It is not difficult to
see that the image of an M-plane through y0 is an M-surface through
x0 = F (y0) from class C1.

This suggests that the question about measure of smooth surfaces
can be studied by investigating images of sets of measure zero under
transformations from class C1. The following two theorems answer the
posed question 5.

Theorem 1.6. The image of a set of measure zero Ω in RN under
a transformation F of RN from class C1 is a set of measure zero:

µ(Ω) = 0 ⇒ µ(F (Ω)) = 0 .

For example, a transformation of R3 can be written in the form

x1 = F1(y) , x2 = F2(y) , z = F3(y) , y = (y1, y2, y3) .

Then the coordinate plane y3 = 0 (or its portion) is a 2-surface

x1 = F1(y1, y2, 0) , x2 = F2(y1, y2, 0) , x3 = F3(y1, y2, 0)

Since a coordinate plane or any its portion is a set of measure zero in
R3, any parametric surface in R3 defined by continuously differentiable
functions is a set of measure zero.

Theorem 1.7. Let D be an open set in RM and the mapping F :
D → RN is from class C1(D) and the the rank of the Jacobian matrix
∂Fj/∂ya, j = 1, 2, ..., N , a = 1, 2, ..., M , y ∈ D, is equal to M < N .
Then the image of D is a set of measure zero in RN ,

µ(F (D)) = 0 .

By this theorem any M-surface from class C1 is a set of measure
zero in RN and, by Theorem 1.6 any image of a C1 surface under a
transformation from class C1 is also a set of measure zero. For example,

5J.M. Lee, Introduction to smooth manifolds
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a 2-sphere and a torus and their C1 transformations are sets of measure
zero in R3.

Recall that a boundary of a region is smooth if it is a level set
of a function from class C1 whose gradient does not vanish. By the
implicit function theorem, the equation g(x) = 0 can be solved with
respect to one of the components of x, say, with respect to xN so that
xN = f(y) where xj = yj, j = 1, 2, ..., N − 1. Since f is continuously
differentiable, these equations can be viewed as parametric equations
of an N − 1 dimensional smooth surface in RN . Therefore, a piecewise
smooth boundary of a region in RN is a set of measure zero.

Remark. The condition that a transformation in Theorems 1.6 and
1.7 is from class C1 is essential. If one takes a merely continuous
transformation C0 (so that the image of a line is a curve that does not
necessarily have a tangent vector everywhere), then the theorems are
false. There are so-called space-filling curves or surfaces. For example,
if Ω = [0, 1] × {0} ⊂ R2 (a unit interval on the first coordinate axis),
then one can construct a continuous transformation F (t) = (x(t), y(t))
such that it maps this interval, t ∈ [0, 1], onto a square [0, 1] × [0, 1].
Geometrically, it looks like a curve filling the square (a set of non-
zero measure). In other words, the parametric curve (x(t), y(t)) passes
through every point of the square as t spans the interval 6.

1.8. Riemann integrable functions. The class of Riemann integrable func-
tions is described in the following theorem 7.

Theorem 1.8. (Lebesgue’s criterion for Riemann integrability)
A bounded function is Riemann integrable on a rectangular box in a
Euclidean space if and only if it is not continuous at most on a set of
measure zero.

It is worth mentioning that it is possible to construct a function on
R that is not continuous at rational numbers but continuous otherwise
(e.g., Thomae’s function). The rational numbers form a countable set
of measure zero. This function is Riemann integrable on any bounded
interval. The characteristic function of the Cantor set (which is not
continuous on an uncountable set of measure zero) is also Riemann
integrable on any bounded interval.

1.9. Change of variables. Let Ω′ ⊂ RN be a closed and bounded region
with a piecewise smooth boundary. Let x = F (y) be a transformation

6W. Rudin, Principles of mathematical analysis, Exercises in Chapter 7
7see, e.g., S. Abbott, Understanding Analysis, Springer, 2010
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in RN from class C1 such that it is one-to-one on the interior of Ω′ and
its Jacobian does not vanish in Ω′ except possibly on the boundary of
Ω′. Let f be an integrable function on Ω = F (Ω′). Then

∫

Ω

f(x) dN x =

∫

Ω′
f(F (y))J(y) dNy , J(y) =

∣

∣

∣
det
(∂Fj

∂yk

)∣

∣

∣

1.10. Riemann integrability and uniform convergence. Suppose that a
sequence {fn} of Riemann integrable functions on Ω converges point-
wise to a function f . Then the function f is not generally Riemann
integrable. Even if f happens to be Riemann integrable of Ω, then the
integral of f is not generally equal to the limit of the integrals of fn.
The first assertion can be illustrated by the function f(x) defined by

f(x) = lim
n→∞

lim
m→∞

(

cos(πxn!)
)2m

The first limit is equal to zero if xn! is not an integer and to 1 if xn!
is an integer. Therefore f(x) = 0 if x is not rational and f(x) = 1 if
x is rational because any rational number can be written as a ratio of
integers x = p/q and n!/q is an integer if n ≥ q. The limit function is
the Dirichlet function that is not Riemann integrable on any interval.
Clearly, the terms of the sequence are continuous and, hence, integrable
on any bounded interval.

To illustrate the second assertion, put fn(x) = 2nx(1 − x2)n where
x ∈ [0, 1] and n = 1, 2, .... It is not difficult to verify that the sequence
converges pointwise

f(x) = lim
n→∞

fn(x) = 0 , 0 ≤ x ≤ 1

However,

lim
n→∞

∫ 1

0

fn(x) dx = lim
n→∞

n

n + 1
= 1 6= 0 =

∫ 1

0

f(x) dx

where the second equality has been obtained by evaluating the integral.
So, the order of neither differentiation nor integration of a convergent
functional sequence can be interchanged with taking the limit, unless
the functional sequence satisfies additional conditions.

Theorem 1.9. 8 Let {fn} be a sequence of Riemann integrable func-
tions on a bounded region Ω that converges uniformly to a function f
on Ω. Then f is Riemann integrable on Ω and

lim
n→∞

∫

Ω

fn(x) dNx =

∫

Ω

lim
n→∞

fn(x) dNx =

∫

Ω

f(x) dN x .

8see, e.g., W. Rudin, Principles of Mathematical Analysis
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This theorem offers a sufficient condition for interchanging the order
of Riemann integration and taking the limit with respect to a parameter
of the integrand.

1.11. Exercises.

1. Show that a plane in a there-dimensional space is a set of mea-
sure zero.

2. Can a set in RN be a set of measure zero in RN if it has an in-
terior point? Give an example or show that the answer is negative.

3. Let f be a function from class C1(R). Show that f(Q) is a set
of measure zero where Q denotes all rational numbers.

4. Use spherical coordinates in RN to calculate the volume of an N
dimensional ball.

5. Suppose that

f(x) =
∞
∑

n=0

cn(x − x0)
n , |x − x0| < R .

(i) Show that the convergence of the series implies that |cn|δn → 0 as
n → ∞ for any 0 < δ < R.
(ii) Show that

|cn(x − x0)
n| ≤ Mqn , |x − x0| ≤ δ

for some constants M > 0 and 0 < q < 1 and any δ < R. Use this
inequality to show that the power series converges uniformly in the
interval |x − x| ≤ δ < R.
(iii) Show that f is from class C∞ by investigating uniform convergence
of series of derivatives of the terms.
(iv) Prove that cn = f (n)(x0)/n!.

6. (i) Use the power series representation of the exponential function
to show that

∣

∣

∣
eiαeix − 1

∣

∣

∣
≤ e|α| − 1 , x ∈ R
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(ii) Use this inequality to show that eiαeix

converges to 1 uniformly on
R as α → 0 and prove that

lim
α→0

∫ b

a

eiαeix

dx = b− a .
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2. Improper Riemann integrals

2.1. Preliminaries. The Riemann integral is defined for a bounded func-
tion f and a bounded region Ω. Intuitively, a Riemann integral over an
unbounded region can be defined as the limit of integrals over bounded
subregions. For example, one can take subregions that are intersections
of an unbounded region with a ball of radius a, compute the integrals
over these subregions, and then investigate the limit a → ∞. Simi-
larly, if a function is not bounded in a neighborhood of a point, one
can reduce the region of integration by removing a ball of radius a cen-
tered at this point, compute the integral, and then investigate the limit
a → 0+. If there are more then one of such points, the reduced region
is obtained by removing the union of such balls centered at all singular
points of the function. By combining the two ideas, one can define the
integral of an unbounded function over an unbounded region.

For example, a continuous function f(x) = e−x can be integrated
over an unbounded interval [0,∞) using the rule

∫ ∞

0

e−x dx
def
= lim

b→∞

∫ b

0

e−x dx = lim
b→∞

(1 − e−b) = 1 .

Note f is integrable on every [0, b] because f is continuous. So, the
rule makes sense. The function f(x) = x−1/2 is not bounded on [0, 1],
but it is continuous on every [a, 1] so it makes sense to define

∫ 1

0

dx√
x

def
= lim

a→0+

∫ 1

a

dx√
x

= lim
a→0+

(2 − 2
√

a) = 2 .

Similarly, the function f(x) = e−xx−1/2 is not bounded on [0,∞), but
it is continuous on any interval [ 1

a2 , a
2]. So, the integral can be defined

by
∫ ∞

0

e−x dx√
x

def
= lim

a→∞

∫ a2

1
a2

e−x dx√
x

= 2 lim
a→∞

∫ a

1
a

e−y2

dy

= 2 lim
a→∞

(

∫ 1

1
a

+

∫ a

1

)

e−y2

dy = 2 lim
a→∞

∫ a

0

e−y2

dy =
√

π ,

where x = y2 and the continuity of the integral was used to take the
limit in the integral over [ 1

a
, 1].

A Riemann integral in which the integrand or region of integra-
tion or both are not bounded are referred to as an improper Riemann
integral. A limiting procedure used to define the improper Riemann in-
tegral is called a regularization. A consistency of this definition requires
answering the key question: Does the value of the improper integral
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depend on the regularization? The answer is not straightforward, es-
pecially for higher dimensional integrals.

2.1.1. An example. Consider the following function of two real vari-
ables:

f(x, y) =
x2 − y2

(x2 + y2)2

Evidently it is defined everywhere except the origin. One can choose
f(0, 0) to be any number. Regardless of the choice, f is not bounded
in any neighborhood of the origin. Suppose one wants to integrate this
function over a bounded closed region

Ω = {(x, y) |x2 + y2 ≤ 1 , x ≥ 0 , y ≥ 0}
which is the part of the unit disk that lies in the positive quadrant.
So, f is not bounded on Ω. In attempt to mimic a one-dimensional
improper integral, let us take a subregion Ωa ⊂ Ω

Ωa = {(x, y) | a2 ≤ x2 + y2 ≤ 1 , x ≥ 0 , y ≥ 0}
so that Ωa gets larger with decreasing a and becomes Ω when a = 0.
Using the polar coordinates it is not difficult to show that

∫∫

Ωa

f(x, y) dxdy = 0

Alternatively, the result follows from the symmetry argument. The
region Ωa is symmetric under the reflection about the line y = x:
(x, y) → (y, x), whereas the integrand is skew-symmetric, f(x, y) =
−f(y, x). Can one conclude that the improper Riemann integral of f
over Ω exists and is equal to zero?

It is obvious that Ω can be obtained in many ways as the limit of
subregions. For example, consider a collection of subregions which are
defined in polar coordinates

x = r cos(θ) , y = r sin(θ)

by the conditions

Ωk = {(x, y) | ak ≤ r ≤ 1 , βk ≤ θ ≤ π/2} , k = 1, 2, ...

where {ak} and {βk} are positive sequences that converge to 0 mono-
tonically. These regions coincide with Ωa with a = ak in which a small
sector with the angle βk is removed. So, with increasing k, the region
Ωk gets larger and eventually becomes Ω in the limit k → ∞:

Ωk ⊂ Ωk+1 ⊂ Ω ,
∞
⋃

k=1

Ωk = Ω
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The latter union is a proper mathematical way of saying that Ωk “ap-
proaches Ω and coincides with Ω in the limit k → ∞”. Using polar
coordinates
∫∫

Ωk

f(x, y) dxdy =

∫ 1

ak

∫ π/2

βk

r2 cos(2θ)

r4
rdrdθ =

1

2
sin(2βk) ln(ak)

The right-hand side is an indeterminate form “0 × ∞” in the limit
k → ∞. The limit may or may not exist and, even if it exists, it can
have any value! Indeed, take ak = e−c/βk where c > 0 so that ak → 0
monotonically if βk → 0 monotonically. Then

lim
k→∞

∫∫

Ωk

f(x, y) dxdy = − lim
k→∞

c sin(2βk)

2βk

= −c

If ak = βk, then the limit is 0 and, if ak = e−c/β2
k , c > 0, then the limit

is −∞. The reader is asked to verify that if the range of the polar angle
in Ωk is restricted to the interval 0 ≤ θ ≤ π/2 − βk, then the limit can
be made arbitrary positive number or +∞ by a suitable choice of ak.

So, the value of the improper integral really depends on its reg-
ularization, that is, on its very definition! A similar result can be
established for the integral of f over an unbounded region x2 + y2 ≥ 1,
x ≥ 0, y ≥ 0 (see Exercises). Naturally, one wants a definitive (or
unique) value of an improper integral, and, for this reason, our naive
attempt to define improper Riemann integrals should be amended in
some way to eliminate the noted deficiency.

2.2. Improper Riemann integrals. Let Ω ⊂ RN be bounded or un-
bounded. An exhaustion of Ω is a sequence of subsets {Ωk}∞1 such
that

• each Ωk is bounded, closed, and contained in Ω;
• Ωk+1 contains Ωk;
• the union of all Ωk coincides with Ω except possibly a set of

measure zero.

Examples of exhaustions were given in the previous section. If a
bounded function f is Riemann integrable on a closed bounded set
Ω and on each Ωk, then by continuity of the Riemann integral

lim
k→∞

∫

Ωk

f(x) dNx =

∫

Ω

f(x) dNx .

If f is not bounded and/or Ω is not bounded, the improper integral is
defined by demanding that the continuity property still holds.
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Definition 2.1. Let {Ωk}∞1 be an exhaustion of Ω. Suppose that a
function f on Ω is Riemann integrable on each Ωk. Then the function
f is said to be Riemann integrable on Ω if the limit

lim
k→∞

∫

Ωk

f(x) dNx =

∫

Ω

f(x) dNx

exists and is independent of the choice of Ωk. In this case, the value of
the limit is called an improper Riemann integral of f over Ω.

So, by this definition, the function of two variables considered in the
previous section is not integrable on the part of a disk that lies in the
positive quadrant or on its complement because the value of the limit
depends on the choice of exhaustions (or regularization). To show that
an improper integral does not exist, it is sufficient to find two regular-
izations in which the limits are not equal. However, it is impossible to
check the independence of the limit by computing the improper integral
in every possible regularization. It is therefore important to establish
criteria for the existence of improper integrals so that if the limit exists
in a particular regularization, then it exists in any other one and has
the same value.

2.3. Improper integrals of non-negative functions. Suppose that f(x) is
non-negative on Ω. For any exhaustion, the sequence of integrals is
monotonically increasing

0 ≤
∫

Ωk

f(x) dNx ≤
∫

Ωk+1

f(x) dN x

by the positivity property of the Riemann integral and that Ωk ⊂ Ωk+1.
Any monotonic sequence converges if only if it is bounded. So, there
are only two possibilities: either the limit is a number

lim
k→∞

∫

Ωk

f(x) dN x = sup
k

∫

Ωk

f(x) dN x = If

or it is infinite, If = ∞. Suppose that If < ∞. Let {Ω′
k} be another

exhaustion of Ω. Then the sequence of the integrals is bounded:
∫

Ω′
k

f(x) dNx ≤ If

because f(x) ≥ 0 and Ω′
k ⊂ Ω for any k′. Since the sequence is also

increasing monotonically, it converges

lim
k→∞

∫

Ω′
k

f(x) dNx = sup
k′

∫

Ω′
k

f(x) dNx = I ′
f ≤ If
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and its limit cannot exceed If . On the other hand, one can swap the
roles of the exhaustions and use the same argument show that

∫

Ωk

f(x) dNx ≤ I ′
f ⇒ If ≤ I ′

f

because Ωk ⊂ Ω and f(x) ≥ 0. Therefore If = I ′
f and the value of the

limit does not depend on the choice of the exhaustion.
Suppose now that If = ∞. Then I ′

f = ∞. Indeed, if I ′
f < ∞,

then the sequence of integrals of f over {Ωk} is bounded by I ′
f < ∞

by the above argument (as Ωk ⊂ Ω for any k) so that, by taking the
supremum over k, If ≤ I ′

f < ∞, which is a contradiction.

Theorem 2.1. (Improper integral for non-negative functions)
Suppose that

(i) f(x) ≥ 0 , ∀x ∈ Ω;
(ii) {Ωn} and {Ω′

n} are exhaustions of Ω;
(iii) f is Riemann integrable on each Ωn and Ω′

n

Then

lim
n→∞

∫

Ωn

f(x) dNx = lim
n→∞

∫

Ω′
n

f(x) dNx

where the limit can also be +∞.

By the integrability of the absolute value, the functions

f±(x) =
1

2

(

|f(x)| ± f(x)
)

≥ 0

are Riemann integrable if f is Riemann integrable. The function f+(x)
coincides with f(x) whenever f(x) ≥ 0 and vanishes otherwise, whereas
f−(x) coincides with −f(x) whenever f(x) ≤ 0 and vanishes otherwise.
Thus, any Riemann integrable function can be written as the difference
of two non-negative integrable functions:

f(x) = f+(x)− f−(x) ,
∫

Ω

f(x) dNx =

∫

Ω

f+(x) dNx −
∫

Ω

f−(x) dNx

and vice versa (integrability of f± implies integrability of f and |f | =
f+ + f− by the linearity of the integral).

Using the limit laws, the following theorem can be established from
the above representation.

Theorem 2.2. Suppose that the improper integrals of f± over Ω ex-
ist. Then the improper integral of f over Ω exists and can be computed
in any exhaustion {Ωn} of Ω.
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Indeed, by the limit laws and the existence of the improper integral
of f±,

∫

Ω

f(x) dN x = lim
n→∞

∫

Ωn

(

f+(x) − f−(x)
)

dNx

= lim
n→∞

∫

Ωn

f+(x) dNx − lim
n→∞

∫

Ωn

f−(x) dNx

=

∫

Ω

f+(x) dNx−
∫

Ω

f−(x) dNx

and, by Theorem 2.1 the values of the limits in the right side of the
equation do not depend on the choice of the exhaustion (or regulariza-
tion) of the integrals.

Corollary 2.1. Let {Ωn} be an exhaustion of Ω. Suppose that f
and its absolute |f | are integrable on each Ωn and

lim
n→∞

∫

Ωn

|f(x)| dNx =

∫

Ω

|f(x)| dNx < ∞

Then the improper integral of f over Ω exists and
∫

Ω

f(x) dN x = lim
n→∞

∫

Ωn

f(x) dNx

In other words, if the improper integral of the absolute value of f
converges in any particular regularization, then the improper integral
of f exists and can be computed in any suitable regularization. Indeed,
since

0 ≤ f±(x) ≤ |f(x)|
It is concluded that monotonic sequences of integrals of f± over Ωn are
bounded:

0 ≤
∫

Ωn

f±(x) dNx ≤
∫

Ωn

|f(x)| dNx ≤
∫

Ω

|f(x)| dNx < ∞

and, hence, converge. By Theorem 2.1 the limits are independent of
the choice of Ωn. By Theorem 2.2, the improper integral of f over Ω
exists (it is independent of regularization).

2.4. Absolutely and conditionally convergent integrals. Am improper Rie-
mann integral of a function f over a region Ω is called absolutely con-
vergent if

lim
n→∞

∫

Ωn

|f(x)| dNx = If < ∞

The absolute convergence of the Riemann integral implies the existence
of the improper Riemann integral.
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If the limit

lim
n→∞

∫

Ωn

f(x) dNx

exists for some exhaustion (regularization) {Ωn} but the integral does
not converge absolutely, then the integral of f is said to be condition-
ally convergent in the exhaustion {Ωn}. Absolutely and conditionally
convergent integrals are analogous to absolutely and conditionally con-
vergent series as illustrated below.

2.4.1. Conditionally convergent integrals. Let the integral of f over Ω
be conditionally convergent. In this case, the integrals of f± must
diverge, and the value of a conditionally convergent integral is an in-
determinate form “∞ − ∞” which can happen to be a number in a
particular regularization:

lim
n→∞

∫

Ωn

f(x) dNx = lim
n→∞

(
∫

Ωn

f+(x) dNx −
∫

Ωn

f−(x) dNx

)

Indeed, the divergence of the integral of |f | = f+ + f− implies that
either the integral of f+, or f−, or both diverge because f± ≥ 0. The
conditional convergence of the integral of f (the existence of the limit
in the left side) is only possible when the integrals of f± diverge.

The integrals of f± resemble the (divergent) series of positive and
negative terms of a conditionally convergent series. The sum of such
a series depends on the arrangement of terms (the order in which the
terms are added). In the case of conditionally convergent integrals, the
value depends on the choice of the exhaustion (or regularization). In
other words, by choosing a suitable exhaustion one can always make
the difference of the integrals of f+ and f− over Ωn to be convergent to
any desired number even though both the sequences diverges to +∞,
similarly to that the sum of a conditionally convergent numerical series
can be made any number or infinity by a suitable rearrangement of
terms 9. This is illustrated with the following example.

Consider the improper integral
∫ ∞

0

sin(x)

x
dx = lim

n→∞

∫ bn

0

sin(x)

x
dx

where {bn} is positive, monotonically increasing, unbounded sequence.
Here the integrand extended to x = 0 by continuity (the integrand
approaches 1 as x → 0+). In particular, let us take

bn = πn , n = 1, 2, ...

9This is known as the Riemann theorem about rearrangements (see, e.g., W.
Rudin, Principles of mathematical analysis, Chapter 3).
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This regularization corresponds to the exhaustion:

Ωn = [0, πn]

so that
Ωn = Ωn−1 ∪ Sn , Sn = [π(n− 1), πn] .

If the limit exists, then is equal to the sum of the series
∫ ∞

0

sin(x)

x
dx =

∞
∑

n=1

∫

Sn

sin(x)

x
dx =

∞
∑

n=1

∫ πn

π(n−1)

sin(x)

x
dx

This is an alternating series because the integrand is positive on S2k−1

and negative on S2k. It follows from the inequality

| sin(x)|
πn

≤ | sin(x)|
x

≤ | sin(x)|
π(n − 1)

, n > 1

that
2

πn
≤ an ≤ 2

π(n − 1)
, an =

∫ πn

π(n−1)

| sin(x)|
x

dx > 0

and
∫ ∞

0

sin(x)

x
dx =

∞
∑

n=1

(−1)n+1an

The sequence {an} is positive and converges to 0 monotonically because

an+1 ≤
2

πn
≤ an

By the alternating series test, the series converges.
However, by the comparison test:

2

π

n
∑

k=1

1

k
≤
∫ πn

0

| sin(x)|
x

=

n
∑

k=1

ak ⇒
∫ ∞

0

| sin(x)|
x

dx = ∞

the series and the integral do not converge absolutely because
∑

1
n

=
∞. So, the integral is only conditionally convergent and does not exist
in the sense of Definition 2.1. Its value depends on the choice of reg-
ularization. In particular, the sum can be made equal to any desired
number by a suitable rearrangement in the series. A rearrangement
corresponds to a different exhaustion made of unions of the intervals
Sn.

Consider a rearrangement {S ′
n} of the sequence of intervals {Sn}

and put
Ω′

1 = S ′
1 , Ω′

n+1 = Ω′
n ∪ S ′

n+1

So, Ω′
n is a collection of any n intervals from {Sn}, and Ω′

n+1 is obtained
by adding any of remaining intervals in the collection {Sn}. In other
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words, the order in which the intervals from {Sn} are added to obtain
an exhaustion is changed, but

∞
⋃

n=1

Ωn =
∞
⋃

n=1

Ω′
n = [0,∞) .

The function is still integrable on any finite collection of intervals Ω′
n.

Therefore in this exhaustion (regularization)

∫ ∞

0

sin(x)

x
dx =

∞
∑

n=1

∫

S′
n

sin(x)

x
dx

The series in the right-hand side is a rearrangement of the alternating
series

∑

n(−1)n+1an.
Let us show that a rearrangement can converge to any number or

±∞. Fix a number If > 0. Make Ω′
1 to be the union of odd intervals,

S1, S3 and so on until S2n−1 where n is the smallest integer for which
the integral over the union becomes greater than If . Then start adding
even intervals, S2, S4, and so on until the integral becomes less than
If . The union of Ω′

1 and the added even intervals is Ω′
2. Then begin to

add remaining odd intervals until the integral becomes greater than If

again. The union of Ω′
2 and the added shells makes Ω′

3. In each step,
the overshot or undershot necessarily occurs because the integrals over
all odd and all even intervals diverge to +∞ and −∞, respectively. In
this way, the sequence of integrals

∫

Ω′
n

f(x) dNx , Ω′
n ⊂ Ω′

n+1 ,

oscillates about If and converges to If because the overshot or un-
dershot of the integral is decreasing with increasing the number of
iterations:

∣

∣

∣

∣

If −
∫

Ω′
n

f(x) dNx

∣

∣

∣

∣

≤
∫

Skn

|f(x)| dNx → 0

for some kn ≥ n so that kn → ∞ as n → ∞. Since {Ω′
n} is an ex-

haustion of Ω by construction, the integral conditionally converges to
a preassigned positive number If . A similar exhaustion can be con-
structed to make the integral converging to any negative number. The
reader is asked to construct exhaustions in which the integral converges
to either +∞ or −∞, or does not converge at all (e.g., oscillates be-
tween any two numbers).
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2.5. Absolutely convergent integrals. There are tests for absolute con-
vergence of improper integrals that are analogous to the corresponding
tests for absolute convergence of series.

2.5.1. The comparison test. Let f and g be Riemann integrable on Ω,
and

|f(x)| ≤ g(x) , ∀x ∈ Ω

Then
∫

Ω

|f(x)| dNx ≤
∫

Ω

g(x) dNx

If now f and g are not integrable in the proper sense, then for any
exhaustion {Ωn}

∫

Ωn

|f(x)| dNx ≤
∫

Ωn

g(x) dNx

If the improper integral of g converges, then the integral f converges
absolutely because

∫

Ωn

g(x) dNx ≤
∫

Ω

g(x) dNx < ∞

⇒ lim
n→∞

∫

Ωn

|f(x)| dNx ≤
∫

Ω

g(x) dNx

By Theorem 2.2 the limit does not depend on the choice of the exhaus-
tion and the improper integral of f exists.

Theorem 2.3. (Comparison test for absolute convergence)
Let {Ωn} be an exhaustion of a region Ω and a function f be integrable
on any Ωn. If the absolute value |f(x)| is bounded on Ω by a function
whose improper Riemann integral over Ω exists,

|f(x)| ≤ g(x) , x ∈ Ω , lim
n→∞

∫

Ωn

g(x) dNx < ∞ ,

then the improper integral of f over Ω also exists and converges abso-
lutely.

2.5.2. Integrals over unbounded regions. Suppose Ω = RN and f is a
continuous function. Clearly it is integrable on any ball Ωn = Bn (that
is, |x| ≤ n, n = 1, 2, ...). So the existence of the improper integral
would depend on how fast f falls off as |x| → ∞.

Proposition 2.1. Let f be integrable on any ball and

|f(x)| ≤ M

|x|p , |x| ≥ R
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for some positive constants M and R, and p > N , then the improper
integral of f over the whole space exists and

∫

RN

f(x) dNx = lim
n→∞

∫

|x|≤n

f(x) dNx < ∞ .

Consider the case N = 2. The integral over the whole plane is split
into the integral over the disk BR and the rest of the plane R2 \ BR.
Since the integral over BR is a regular integral, one has to investigate
the convergence of the improper integral over the rest of the plane.
Since |f(x)| ≥ 0, if it converges in a particular regularization, then it
converges in any other regularization to the same value. Let Ωn be an
annulus R ≤ |x| ≤ n. Then

∫

Ωn

|f(x)| d2x ≤
∫

Ωn

M

|x|p d2x =

∫ 2π

0

∫ n

R

M

rp
rdrdθ

=
2πM

p − 2

(

1

Rp−2
− 1

np−2

)

The right side converges if p > N = 2 when n → ∞. Therefore the
integral of f converges absolutely and, hence, the improper integral of
f exists by the comparison test (it can be computed in any suitable
regularization).

For N > 2 note that the volume of a spherical shell of thickness dr
and radius r is the differential of the volume of the ball of radius r:

dVN (r) = σNrN−1dr

where σN = NVN (1) is the area of the unit sphere in RN . Then using
spherical coordinates

∫

Ωn

|f(x)| d2x ≤
∫

Ωn

M

|x|p dNx = σN

∫ n

R

M

rp
rN−1dr

The integral converges in the limit n → ∞ if p > N .

2.5.3. Integrals of unbounded functions. Suppose f is not bounded in
any neighborhood of a particular point, and it is continuous otherwise.
Without loss of generality, the singular point can be chosen to be the
origin x = 0 (values of |f(x)| becomes infinitely large as x approaches
0). Then the absolute integrability depends on how fast |f(x)| diverges
as x → 0.

Proposition 2.2. Suppose that f is not bounded in any ball Ba

and integrable on Ω \ Ba where Ω contains x = 0. If

|f(x)| ≤ M

|x|p , |x| ≤ a
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for some constants M and R, and p < N , then the improper integral
of f exists and

∫

Ω

f(x) dNx = lim
a→0+

∫

Ω\Ba

f(x) dNx .

A proof of this assertion can also be done by using spherical coordi-
nates in RN . Let Ωa,R be the intersection of Ω with the spherical shell
a2 ≤ |x|2 ≤ R2. The integral of f over Ω \ BR exists by continuity of
f . Then

∫

Ωa,R

|f(x)| dNx ≤
∫

a≤|x|≤R

M

|x|p dNx = σN

∫ R

a

M

rp
rN−1dr

=
σNM

N − p

(

RN−p − aN−p
)

So the integral converges in the limit a → 0+ if p < N . Therefore the
integral of f converges absolutely by the comparison test, and, hence,
the improper integral of f exists.

2.6. Improper integrals of complex-valued functions. Let f be a complex-
valued function of N real variables. If {Ωn} is an exhaustion of Ω, then
the integral of f over Ω is said to converge in this exhaustion if the
integrals of the real and imaginary parts of f converge, and in this case

lim
n→∞

∫

Ωn

f(x) dNx = lim
n→∞

∫

Ωn

Re f(x) dN x + i lim
n→∞

∫

Ωn

Im f(x) dNx

It follows from the inequalities

|Re f | ≤ |f | , |Im f | ≤ |f |
that the integrals of the real and imaginary parts of f converge ab-
solutely if the integral of the absolute value converges. The converse
follows from the inequality

|f | ≤ |Re f | + |Im f |
that is,

• the integral of a complex-valued function converges absolutely
if and only if the integral of the absolute value converges.

2.7. Gaussian integrals. The objective is to prove that

(2.1) IN(A, b) =

∫

RN

e−(x,Ax)+(b,x) dNx =
πN/2

det(A)
e

1
4
(b,A−1b)
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where the quadratic form

(x, Ax) =
N
∑

k,n=1

Aknxkxn > 0 , ∀x 6= 0

is strictly positive if x 6= 0. The integrals of this type are known
as Gaussian integrals. They are routinely used in various applications.
Note that the integrand is positive and, hence, if the integral converges,
then it converges absolutely. Therefore it can be computed in any
convenient regularization.

2.7.1. A special case. Consider a two-dimensional Gaussian integral

I2 =

∫∫

R2

e−x2−y2

dxdy

Let Ωn be a disk of radius n, x2+y2 ≤ n2. Then using polar coordinates

I2 = lim
n→∞

∫∫

Ωn

e−x2−y2

dxdy = lim
n→∞

∫ 2π

0

∫ n

0

e−r2

rdrdθ

= π lim
n→∞

∫ n2

0

e−s ds = π

Since the value of the absolutely convergent integral does not depend
on the regularization, put Ω′

n = [−n, n] × [−n, n] so that by Fubini’s
theorem

π = lim
n→∞

∫∫

Ω′
n

e−x2−y2

dxdy = lim
n→∞

∫ n

−n

e−x2

dx

∫ n

−n

e−y2

dy

Therefore, by the limit laws,

I1 =

∫ ∞

−∞
e−x2

dx =
√

π

because I2
1 = π. Using a scaling transformation, y =

√
ax

I1(a) =

∫ ∞

−∞
e−ax2

dx =
I1(1)√

a
=

√
π√
a

Furthermore using the scaling and shift transformation

y =
√

a x , s = y − b

2
√

a
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one infers that

I1(a, b) =

∫ ∞

−∞
e−ax2+bx dx = lim

n→∞

∫ n

−n

e−ax2+bx dx

=
1√
a

lim
n→∞

∫ n
√

a

−n
√

a

e
−y2+ b√

a
y
dy

=
e

b2

4a√
a

lim
n→∞

∫ n
√

a+ b
2
√

a

−n
√

a− b
2
√

a

e−s2

ds

(1)
=

I1(1, 0)√
a

e
b2

4a =

√
π√
a

e
b2

4a

Since the value of I1(1, 0) = I1 does not depend on the choice of the
exhaustion, the final equality (1) holds. The result (2.1) is established
for N = 1.

2.7.2. General case. Let an exhaustion {Ωn} of RN be rectangular
boxes, |xj| ≤ n, j = 1, 2, ..., N . Let A be a diagonal matrix with
diagonal elements aj. The condition (x, Ax) > 0 implies that the di-
agonal elements are strictly positive, aj > 0. By Fubini’s theorem one
infers that

IN(A, b) =

∫

RN

exp
(

−
N
∑

j=1

(ajx
2
j − bjxj)

)

dNx

= lim
n→∞

N
∏

j=1

∫ n

−n

e−ajx2
j+bjxj dxj

=
N
∏

j=1

I1(aj, bj) =
πN/2

√
a1a2 · · · aN

exp

(

1

4

N
∑

j=1

b2
j

aj

)

Any matrix A can be written as a sum of symmetric and skew-
symmetric matrix:

A =
1

2

(

A + AT
)

+
1

2

(

A − AT
)

≡ B + C

where B is symmetric, BT = B (here BT denotes the transposed matrix
B), and C is skew-symmetric, CT = −C . A quadratic form vanishes
identically for a skew-symmetric matrix because

(x, Cx) = (CTx, x) = −(Cx, x) = −(x, Cx) ⇒ (x, Cx) = 0

Therefore without loss of generality A = AT (a symmetric matrix). Any
symmetric matrix A is diagonalizable, and there exists an orthogonal
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matrix U ,

UT = U−1

such that

A = UT aU , aij = ajδij

where a is a real diagonal matrix. The diagonal elements aj are eigen-
values of A. The positivity of a quadratic form requires that all eigen-
values of A are strictly positive because

(x, Ax) = (x, UTaUx) = (Ux, aUx) = (y, ay) =

N
∑

j=1

ajy
2
j

and Ux = 0 if and only if x = 0 since U is the invertible matrix.
The transformation y = Ux preserves the distance in RN because

|y|2 = (y, y) = (Ux, Ux) = (x, UTUx) = (x, x) = |x|2

because UTU = UUT = I is the unit matrix Iij = δij. An orthogonal
transformations is a composition of rotations and reflections (xj → pjxj

where pj = ±1). Owing to the absolute convergence of the Gaussian in-
tegral with a diagonal matrix A and that the Jacobian of an orthogonal
transformation is equal to one,

dNx =

∣

∣

∣

∣

det

(

∂xj

∂yi

)∣

∣

∣

∣

dNy = | detUT | dNy = dNy

one infers that

IN(A, b) = lim
n→∞

∫

Ωn

e−(x,Ax)+(b,x)dNx = lim
n→∞

∫

U (Ωn)

e−(y,ay)+(Ub,y)dNy

=

∫

RN

e−(y,ay)+(Ub,y)dNy

=
πN/2

√
a1a2 · · · aN

exp

(

1

4

N
∑

j=1

c2
j

aj

)

where c = Ub. Since the transformation U preserves the distances
between points, for any exhaustion {Ωn}, the image {U(Ωn} is also an
exhaustion of RN .

Next, note that

a1a2 · · · aN = det a = det(UAUT ) = (detU)2 det A = detA

Therefore detA 6= 0 and the inverse A−1 exists and

A−1 = (UTaU)−1 = U−1a−1(UT )−1 = UT a−1U
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It is then concluded that

N
∑

j=1

c2
j

aj
= (c, a−1c) = (Ub, a−1Ub) = (b, UTa−1Ub) = (b, A−1b)

and the relation (2.1) follows.

2.8. Exercises.

1. Consider the improper integral
∫∫

Ω

x2 − y2

(x2 + y2)2
dxdy

where

Ω = {(x, y) |x2 + y2 ≥ 1 , x ≥ 0 , y ≥ 0}
Take an exhaustion {Ωn} which is a rectangle in the polar coordinates
(r, θ) ∈ [1, an] × [αn, π/2 − βn] where αn and βn are positive and tend
to 0 monotonically, while 1 < an increases monotonically to infinity, as
n → ∞. Show that there is a choice of αn, βn, and an such that the
sequence of integrals over Ωn can converge to any real number or ±∞.

2. For the integrand in Problem 1, find f±(x, y) and show that for
any exhaustion the improper integrals of f± diverge

∫∫

Ω

f±(x, y) dxdy = ∞

3. Prove Proposition 2.1 for N = 3 using spherical coordinates.

4. Prove Proposition 2.2 for N = 3 using spherical coordinates.

5. Let f(t) be a continuous function and t ≥ 0. Then for any ball
Ba ⊂ RN

∫

Ba

f(|x|) dNx = σN

∫ a

0

f(r) rN−1dr , σN =

∫

|x|=1

dS =
2πN/2

Γ(N/2)
,

where σN is the surface area of the unit sphere |x| = 1. The assertion is
proved by converting the integral to spherical coordinates in RN . Use
this result to prove Propositions 2.1 and 2.2.
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6. Let p and q be positive integers. Do the following improper in-
tegrals exist in the sense of Definition 2.1?

(i)

∫ ∞

0

sin2(x)

xp
dx

(ii)

∫ ∞

1

cosq(x)

xp
dx ,

(iii)

∫ 1

0

sinp

(

1

x

)

dx

7. Put

In(a) =

∫ ∞

0

xne−ax2

dx , n = 0, 1, ..

(i) Show that the integral converges absolutely.
(ii) Use integration by parts to prove the recurrence relation

In+2 =
n + 1

2a
In

(iii) Find I0(a) and I1(a). Use the above recurrence relation to find
In(a).

8. Let σN be the surface area of a unit sphere |x| = 1 in RN .
(i) Let Ωn be an exhaustion of RN made of balls |x| ≤ n. Show that

∫

Ωn

e−(x,x) dNx = σN

∫ n

0

e−r2

rN−1 dr

(ii) Use this result and the result of Problem 1 to find σN and the
volume VN (a) of a ball of radius a in terms of Euler’s gamma function.
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3. Lebesgue integral

3.1. Piecewise continuous functions on R. Suppose a function f is not
continuous at a point x = c and has a jump discontinuity at x = c.
The latter means that the right and left limits of f(x) at x = c exist
but are not equal:

lim
x→c+

f(x) = f+(c) , lim
x→c−

f(x) = f−(c) , f+(c) 6= f−(c)

A piecewise continuous function is a function that is not continuous at
finitely many points in any bounded interval and has jump discontinu-
ities at these points.

First note that points at which a piecewise continuous function
has jump discontinuities form a countable set. Indeed a real line can
be viewed as the union of countable many intervals and in each such
interval the function has finitely many jump discontinuities. So, a
collection {cn} of all such points is either finite or form a sequence. The
sequence cannot have any limit point because otherwise the function
would have infinitely many jump discontinuities in any open interval
containing the limit point. In each interval (cn, cn+1), the function is
continuous and has a continuous extension to [cn, cn+1].

Put
m = inf{cn} , M = sup{cn}

If the sequence {cn} is not bounded from below, then m = −∞ and
otherwise m is the smallest number in {cn}. If the sequence {cn} has
no upper bound, then M = ∞ and otherwise M is the largest number
in the collection {cn}. Clearly, if −∞ < m ≤ M < ∞, that is, the
collection {cn} has the smallest and largest number, then the collection
must be finite. Let {Ωn} denote a collection of open intervals (cn, cn+1)
together with (−∞, m) and (M,∞) (if these intervals are not empty).
This collection of intervals has the following characteristic properties:

(i) the intervals do not overlap:

Ωn ∩ Ωn′ = ∅ , n 6= n′ ,

(ii) any bounded interval (a, b) is covered by finitely many closed
intervals Ωn:

(a, b) ⊂
k
⋃

n=j

Ωn ,

(iii) the union of closures of the intervals coincides with whole real
line:

⋃

n

Ωn = R .
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This observation allows us to give an alternative definition of a piece-
wise continuous function which can be extended to the multivariable
case.

Definition 3.1. (A piecewise continuous function)
A function f : R → R is said to be piecewise continuous on R if
there exists an at most countable collection of open intervals Ωn with
no common points such that any bounded interval is covered by finitely
many closed intervals Ωn, and f ∈ C0(Ωn).

A piecewise continuous function is not continuous on {cn} which is a
set measure zero. One can also say that a piecewise continuous function
is continuous almost everywhere. Therefore any piecewise continuous
function is Riemann integrable on any [a, b]. The value of the Rie-
mann integral does not depend on the values of a piecewise continuous
function at the points where it is not continuous.

3.2. Measurable functions on R. Let A be a set of functions that is
defined by some characteristic property (e.g., continuity, or integrabil-
ity, etc.). Then the limit function of a pointwise convergent sequence
{fn} ⊂ A does not in general belong to A. One can ask how large
the set A should be in order to be complete in the sense that the limit
function of every pointwise convergent sequence in A belongs to A. It
turns out that such a set of functions exists and is known as a set of
measurable functions.

Suppose that a sequence {fn} of functions on R converges pointwise
almost everywhere. In other words, a numerical sequence {fn(x)} can
have no limit for some points x that form a set of measure zero. In this
case, one writes

lim
n→∞

fn(x) = f(x) a.e.

For example,

lim
n→∞

[cos(πx)]n = 0 a.e.

Note that the limit does not exist if x is an integer. If x is not an
integer, then | cos(πx)| < 1 and the limit is equal to zero. But the
integers form a set of measure zero.

Definition 3.2. (A measurable function)
A function f is called measurable if it coincides almost everywhere
with the limit of an almost everywhere convergent sequence of piecewise
continuous functions.
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3.2.1. Measurable sets. A set of real numbers is called measurable if its
characteristic function is measurable. Clearly, any interval (bounded
or unbounded, closed or open or semi-open) is measurable. Any set
of measure zero is measurable. The following properties of measurable
sets can also be established:

• The complement of a measurable set is measurable.
• The union or intersection of countably many measurable sets

is measurable.
• Every open or closed set is measurable.

3.3. Properties of measurable functions. 10 Evidently, every piecewise
continuous function f is measurable because one can take a sequence of
piecewise continuous functions fn(x) = f(x) of identical terms which
obviously converges to f(x). Suppose that f is a measurable function
and g coincides with f almost everywhere. Then g is also measurable.
Indeed, Let fn be a sequence of piecewise continuous functions that
converges to f almost everywhere. Since f and g differ only on a set
of measure zero, fn converges to g almost everywhere, too:

f(x) is measurable
f(x) = g(x) a.e.

}

⇒ g(x) is measurable

3.3.1. Algebraic operations with measurable functions. Using the basic
limit laws, it is not difficult to see that the set of measurable functions
is closed relative to algebraic operations of addition, multiplication, and
division:

f(x) is measurable
g(x) is measurable

}

⇒







f(x) + g(x) is measurable
f(x)g(x) is measurable
f(x)/g(x), g(x) 6= 0, is measurable

Indeed, if fn(x) and gn(x) are sequences of piecewise continuous func-
tions, then the functions fn(x) + gn(x), fn(x)gn(x), and fn(x)/gn(x),
gn(x) 6= 0, also form sequences of piecewise continuous functions, and
the above assertion follows from the basic laws of limits. This also im-
plies that linear combinations of measurable functions are measurable.
Sets that are complete relative to additions and multiplications by a
number are called a linear space. Thus, the set of measurable functions
is a linear space.

10Proofs of the listed properties of measurable functions can be found in: A.N.
Kolmogorov and S.V. Fomin, Elements of the theory of functions and functional
analysis
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3.3.2. Absolute value of a measurable function. Given two functions f
and g, define the following functions

max(f, g)(x) =

{

f(x) , f(x) > g(x)
g(x) , f(x) ≤ g(x)

min(f, g)(x) =

{

g(x) , f(x) > g(x)
f(x) , f(x) ≤ g(x)

One can prove that the functions max(f, g) and min(f, g) are measur-
able, if f and g are measurable. It follows that the absolute value

|f(x)| = max(f, 0)(x) −min(f, 0)(x)

of a measurable function f is measurable.

3.3.3. Measurable and Riemann integrable functions. One can prove the
following property

Proposition 3.1. A function that is not continuous on a set of
measure zero is measurable.

Therefore every Riemann integrable function is measurable by The-
orem 1.8. Furthermore, every function for which the improper Riemann
integral exists is also measurable. So, the set of measurable functions
contains all Riemann integrable functions (either in the proper or im-
proper sense).

There are measurable functions that are not Riemann integrable.
For example, the Dirichlet function introduced in Section 1.4.6 is mea-
surable but not Riemann integrable on any interval. The set Q of
rational numbers has measure zero in R. Therefore fD(x) = 0 a.e., but
any constant function and, in particular, g(x) = 0 is measurable and,
hence, so is the Dirichlet function.

3.3.4. Composition of measurable functions. A composition of measur-
able functions is measurable

3.3.5. Completeness of the set of measurable functions.

Theorem 3.1. A function that coincides almost everywhere with
the limit of an almost everywhere convergent sequence of measurable
functions is measurable.

3.3.6. Non-measurable sets and functions. Thus, the set of measurable
functions is quite large. Are there non-measurable functions and sets?
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It appears that one can prove that they exist11 using the so called axiom
of choice:

• Let {Ea} be a collection of subsets of a set E (the indexing set
a is of arbitrary nature). Then there exists a choice function,
a → x(a) where x(a) ∈ Ea for all a.

No example of an explicit non-measurable functions has been con-
structed so far. This suggests that all functions and sets that can
possibly be used in applications or otherwise are measurable. For this
reason, in what follows all sets are assumed to be measurable and all
functions are assumed to be measurable and bounded almost every-
where.

3.4. Definition of the Lebesgue integral. To avoid any confusion between
Riemann and Lebesgue integrals, the Riemann integral (proper or im-
proper) will be denoted as

R
∫

Ω

f(x) dx , Ω ⊆ R ,

in what follows.

Definition 3.3. (The space L+)
Let a real function f(x) be the limit of a non-decreasing sequence of
piecewise continuous functions fn(x) such that the sequence of Riemann
integrals is bounded:

fn(x) ≤ fn+1(x) , n = 1, 2, ..., , ∀x ∈ R ,

R
∫

fn(x) dx ≤ M , n = 1, 2, ... ,

for some number M . The limit of the non-decreasing sequence of Rie-
mann integrals is called the Lebesgue integral of f and is denoted by
the symbol

∫

f(x)dx so that
∫

f(x) dx = lim
n→∞

R
∫

fn(x) dx .

The set of all such functions is denoted by L+.

Definition 3.4. (Lebesgue integral)
A function f is called Lebesgue integrable if it can be represented as
the difference of two functions from the set L+:

f(x) = f1(x) − f2(x) , f1 ∈ L+ , f2 ∈ L+

11see, e.g., A.N. Kolmogorov and S.V. Fomin, Elements of the theory of func-
tions and functional analysis, Chapter 5, Sec. 1.3
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The number
∫

f1(x) dx −
∫

f2(x) dx =

∫

f(x) dx

is called the Lebesgue integral of the function f . The set of all Lebesgue
integrable functions is denoted by L.

3.4.1. The Lebesgue integral over a set. A function f is said to be
Lebesgue integrable on a measurable set Ω ⊂ R, if fχ

Ω
∈ L, where

χ
Ω

is the characteristic function of Ω, and the number
∫

f(x)χ
Ω
(x) dx =

∫

Ω

f(x) dx

is called the Lebesgue integral of f over Ω. The class of all Lebesgue
integrable functions is denoted by L(Ω).

3.4.2. Consistency of the definition. Definition 3.3 makes sense only if
the Lebesgue integral does not depend on the choice of the sequence
{fn}. Similarly, Definition 3.4 is consistent if the Lebesgue integral is
independent of the choice of f1 and f2. To show the consistency, the
following property of the Lebesgue integral has to be established.

Proposition 3.2. Suppose that f ∈ L+ and f(x) ≥ 0 a.e. Let
{fn} be a sequence satisfying the hypotheses of Definition 3.3. Then
the Lebesgue integral is non-negative,

∫

f(x) dx = lim
n→∞

R
∫

fn(x) dx ≥ 0

Let f1(x) = 0 if |x| > R and f1(x) ≥ −M if |x| ≤ R for some
positive numbers R and M . Since {fn} is monotonically increasing,

fn(x) ≥ 0 , |x| > R ; fn(x) ≥ −M , |x| ≤ R .

Let S ⊂ [−R, R] be a set of points at which either one of the terms of
the sequence has a jump discontinuity or the sequence {fn(x)} does not
converge to f(x). Then S is a set of measure zero. It can be covered
by the union Iε of open intervals whose total length does not exceed
an arbitrary small positive number ε > 0. The set Ω = [−R, R] \ Iε

is bounded and closed. The functions fn are continuous on Ω and
fn(x) → f(x) ≥ 0 for any x in Ω. Therefore for any x ∈ Ω, one can
find an integer nx (that depends on x) and a positive number δ(x) > 0
such that

fnx(y) ≥ −ε , y ∈ B(x, δx) = (x − δx, x + δx) .

The neighborhoods B(x, δx), x ∈ Ω, form an open cover of the
closed and bounded set Ω ⊂ R. By the Heine-Borel theorem (Sec.
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1.1.3), this cover has a finite subcover B(xj, δj). Put n0 = maxj{nxj
}.

Since {fn} is non-decreasing,

fn0(x) ≥ fnx(x) ≥ −ε , x ∈ Ω ⊆ BR = [−R, R] .

and outside of Ω

fn0(x) ≥ −M , x ∈ Iε

Then for all n > n0,

R
∫

fn(x) dx ≥ R
∫

fn0(x) dx ≥ R
∫ R

−R

fn0(x) dx

≥ −εR
∫

BR

dx −MR
∫

Iε

dx ≥ −ε(2R + M)

because the total length of intervals in the union Iε does not exceed ε.
This inequality implies that

∫

f(x) dx = lim
n→∞

R
∫

fn(x) dx ≥ −ε(2R + M)

Since ε > 0 can be chosen less than any preassigned positive number,
the Lebesgue integral of f is non-negative.

Proposition 3.3. Let f ∈ L+. Then the Lebesgue integral of f is
independent of the choice of a sequence {fn} in Definition 3.3.

Let {fn} and {gn} be two sequences that define the Lebesgue inte-
gral of a function f from L+. Put

A = lim
n→∞

R
∫

fn(x) dx , B = lim
n→∞

R
∫

gn(x) dx .

One has to show that the limits are equal, A = B. For any k,

lim
n→∞

(

fn(x) − gk(x)
)

= f(x) − gk(x) ≥ 0 , a.e.

because {gk} is monotonically increasing and converging to f . By
Proposition 3.2 applied to the sequence {fn − gk} (k is fixed) that
converges to f − gk, it is concluded that

lim
n→∞

R
∫

(

fn(x) − gk(x)
)

dx = A −R
∫

gk(x) dx ≥ 0 .

This inequality holds for any k. Therefore, by taking the limit k → ∞,
it is found that A ≥ B. Swapping the roles of the sequences {fn} and
{gn} in this reasoning, it is inferred that B ≥ A, and, hence, A = B.

Proposition 3.4. Let f ∈ L. Then the Lebesgue integral of f is
independent of the choice of functions f1 and f2 in Definition 3.4.
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Suppose that there is another pair of functions g1,2 ∈ L+ such that

f1(x)− f2(x) = f(x) = g1(x) − g2(x) .

It follows from the basic laws for limits and Definition 3.3 that f1 + g2

and g1 + f2 are also from L+ and
∫

(

f1(x) + g2(x)
)

dx =

∫

f1(x) dx +

∫

g2(x) dx

and similarly for g1 + f2. Therefore integrating the equality

f1(x) + g2(x) = g1(x) + f2(x)

and using the above integral relation it is concluded that
∫

f(x) dx =

∫

f1(x)dx −
∫

f2(x)dx =

∫

g1(x)dx −
∫

g2(x)dx .

This completes the proof of consistency of the definition of the Lebesgue
integral.

3.5. Riemann and Lebesgue integrals in R. If the Lebesgue integral of
a piecewise continuous function f over any bounded interval coincides
with the Riemann integral because any such function is from class L+:

f ∈ C0[a, b] ⇒
∫ b

a

f(x) dx = R
∫ b

a

f(x) dx

Note that one can take fn(x) = f(x)χ
[a,b]

(x) in Definition 3.3.

3.5.1. Linearity. By the limit laws and linearity of the Riemann inte-
gral, the Lebesgue integral is also linear, that is, if f and g are inte-
grable, then their linear combination is integrable and

∫

(

αf(x) + βg(x)
)

dx = α

∫

f(x) dx + β

∫

g(x) dx .

3.5.2. Lebesgue integrability and set of measure zero. One of the key
differences between the Lebesgue and Riemann integrals is that alter-
ations of an integrable function on a set measure zero does not affect
integrability and the value of the integral does not change. Let f(x) = 0
a.e. Put fn(x) = 0 in Definition 3.3. Clearly fn converges to f almost
everywhere. Therefore

f(x) = 0 a.e. ⇒
∫

Ω

f(x) dx = 0
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In particular, the Lebesgue integral of the Dirichlet function vanishes
over any (measurable) set

∫

Ω

fD(x) dx = 0

because fD(x) = 0 a.e.
One can show that the converse is also true if f is a non-negative

function12

Proposition 3.5. Let f(x) ≥ 0. Then its Lebesgue integral van-
ishes if and only if f(x) = 0 almost everywhere.

It follow from linearity of Lebesgue integral that if f ∈ L and g
differs from f only on a set of measure zero, then g is also integrable
and its integral is equal to the integral of f :

f ∈ L , g(x) = f(x) a.e. ⇒ g ∈ L ,

∫

g(x) dx =

∫

f(x) dx

Thus, in full contrast to the Riemann integral, the Lebesgue integral is
insensitive to alterations of an integrable function on sets of measure
zero. Note that if f is continuous and g(x) = f(x) a.e., then g can be
continuous nowhere, just like the Dirichlet function, and hence g may
not even be Riemann integrable.

3.5.3. Lebesgue integrability of Riemann integrable functions. Let us show
that any function f that is Riemann integrable on [a, b] is Lebesgue in-
tegrable and

R
∫ b

a

f(x) dx =

∫ b

a

f(x) dx

As noted earlier, for any Riemann integrable function f there exists a
sequence of partitions Pn such that Pn+1 is a refinement of Pn and

lim
n→∞

L(Pn, f) = lim
n→∞

U(Pn, f) = R
∫ b

a

f(x) dx

Define two sequences of piecewise constant functions

Ln(x) = ms , x ∈ Rs , Un(x) = Ms , x ∈ Rs

where Rs are partition intervals for Pn. Then

Ln(x) ≤ Ln+1(x) ≤ f(x) ≤ Un+1(x) ≤ Un(x)

12see, e.g., A.N. Kolmogorov and S.V. Fomin, Elements of the theory of func-
tions and functional analysis, Chapter 5.
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The sequence {Ln(x)} is monotonically increasing and bounded from
above, and the {Un(x)} is monotonically decreasing and bounded from
below. Therefore they converge for all x:

lim
n→∞

Ln(x) = L(x) , lim
n→∞

Un(x) = U(x) .

and
L(x) ≤ f(x) ≤ U(x) , a ≤ x ≤ b .

The limit function L is Lebesgue integrable because the sequence of its
Riemann integrals is nothing but the sequence of lower sums for f :

∫ b

a

L(x) dx = lim
n→∞

R
∫ b

a

Ln(x) = lim
n→∞

L(Pn, f)

Similarly, the function −U(x) is also Lebesgue integrable because the
sequence {−Un} satisfies the conditions in Definition 3.3. Therefore U
is Lebesgue integrable and

∫ b

a

U(x) dx = lim
n→∞

R
∫ b

a

Un(x) dx = lim
n→∞

U(Pn, f)

Thus, the Lebesgue integrals of U and L are equal, and therefore the
integral of a non-negative function U(x) − L(x) ≥ 0 vanishes. By
Proposition 3.5, this implies that U(x) = L(x) a.e. and, hence,

f(x) = L(x) a.e.

from which it follows that f is Lebesgue integrable and
∫ b

a

f(x) dx = R
∫ b

a

f(x) dx .

3.5.4. Lebesgue and improper Riemann integrals. Suppose that f is not
bounded on (a, b) but f ∈ C0(a, b) (f is singular at one or both end-
points of the interval). Suppose that the improper Riemann integral of
f over (a, b). This implies that

R lim
n→∞

∫ bn

an

f±(x) dx = R
∫ b

a

f±(x) dx < ∞

for an exhaustion [an, bn] ⊂ (a, b) where an and bn converge mono-
tonically to a and b, respectively. It follows that f± are from class
L+ because they are limits of monotonically increasing sequences of
piecewise continuous functions χn(x)f±(x) where χn is the character-
istic function of [an, bn] whose Riemann integrals are bounded. Since
f(x) = f+(x) − f−(x), it is concluded that f is Lebesgue integrable
on (a, b) and its Lebesgue integral is equal to the improper Riemann
integral. Conversely, if a continuous function is Lebesgue integrable,



58 1. INTEGRATION IN EUCLIDEAN SPACES

then its Riemann integral converges absolutely is equal to the Lebesgue
integral. Clearly, the argument can readily be extended to a continu-
ous (or piecewise continuous) function on an unbounded interval. So,
for continuous (or piecewise continuous) functions, the Lebesgue and
absolutely convergent Riemann integrals are equivalent.

In fact, a more general assertion is true (see Sec. 4.10).

Proposition 3.6. If the function f(x) and |f(x)| are Riemann
integrable on a set Ω (possibly in the improper sense), then they are
Lebesgue integrable on Ω, and their Lebesgue and Riemann integrals
are equal:

R
∫

Ω

f±(x) < ∞ dx ⇒
∫

Ω

f(x) dx = R
∫

Ω

f(x) dx

where f±(x) = 1
2
(|f(x)| ± f(x)).

Thus, any function g that coincides almost everywhere with an
absolutely Riemann integrable function f is Lebesgue integrable and,
in this case, the Lebesgue integral of g is equal to the Riemann integral
of f .

3.5.5. The Lebesgue integral of a complex-valued function. A complex-
valued function f(x), x ∈ R, is said to be integrable if its real and
imaginary parts are integrable, and in this case

∫

f(x)dx =

∫

Re f(x) dx + i

∫

Im f(x) dx ,

It follows from Proposition 3.6 that if the Riemann integral of a complex-
valued function converges absolutely, then the function is Lebesgue
integrable and its Lebesgue and Riemann integrals are equal.

3.6. Lebesgue integral in RN . The Lebesgue integral in any Euclidean
space is defined in the same way, that is, as a limit of Riemann integrals
of piecewise continuous functions.

3.6.1. Piecewise continuous functions on RN . Recall that a region is an
open connected set RN . A function f is called piecewise continuous in
RN if

(i) there is at most countably many non-intersecting regions Ωn,
n = 1, 2, ...,

(ii) with piecewise smooth boundaries ∂Ωn,
(iii) any ball is contained in the union of finitely many closed re-

gions Ωn,
(iv) the union of Ωn coincides with RN , and
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(v) f ∈ C 0(Ωn)

This definition is to be compared with the definition of a piecewise
continuous function on R. Regions Ωn are analogs of open intervals.

A piecewise continuous function is continuous almost everywhere
and at any point where it is not continuous the function can only have
a jump discontinuity. A piecewise continuous function is bounded on
any ball. Therefore a piecewise continuous function with a bounded
support is Riemann integrable on RN .

3.6.2. Definition of the Lebesgue integral in RN . Let a real-valued func-
tion f coincide almost everywhere with the limit of a non-decreasing
sequence of piecewise continuous functions fn(x),

fn(x) ≤ fn+1(x) , ∀x ∈ RN , n = 1, 2, ..

such that the sequence of the Riemann integrals is bounded:

R
∫

fn(x) dNx ≤ M ,

for all n, where the Riemann integral is understood in the improper
sense if supports of fn are not finite. The limit

lim
n→∞

R
∫

fn(x)dNx =

∫

f(x)dNx < ∞

of this non-decreasing bounded sequence is called the Lebesgue integral
of f . The set of such functions is denoted by L+. A real function f is
called Lebesgue integrable if it can be represented as the difference of
two functions from L+, f = f1 − f2, f1,2 ∈ L+ and

∫

f(x)dNx =

∫

f1(x)dNx−
∫

f2(x)dNx .

The set of Lebesgue integrable functions is denoted by L. The proof
of consistency of the Lebesgue integral over R given in Sec.3.4.2 is
easily extended to RN by replacing all intervals in R in Sec.3.4.2 by the
corresponding balls in RN .

Similarly to the one dimensional case, a function f is said to be from
L(Ω) if the function χ

Ω
f ∈ L, where χ

Ω
is the characteristic function

of the set Ω and, in this case,
∫

Ω

f dNx =

∫

χ
Ω
f dNx
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3.6.3. Lebesgue and Riemann integrability in RN . Let Ω be a region in
RN and f ∈ C0(Ω). Then f ∈ L(Ω) if and only if its Riemann integral
over Ω converges absolutely, that is, if and only if

lim
n→∞

R
∫

Ωn

|f(x)| dNx < ∞

for some exhaustion (or regularization) {Ωn} of Ω, and, in this case,
∫

Ω

f(x) dN x = lim
n→∞

R
∫

Ωn

f(x) dN x .

A proof of this assertion is left to the reader (cf. Sec. 3.5.4).
Proposition 3.6 can be extended to integrals in RN . Let f an ab-

solutely Riemann integrable function and g(x) = f(x) a.e.. Then g is
Lebesgue integrable and its integral is equal to the Riemann (improper)
integral of f .

3.7. Exercises.

1. Let f(x) = 0 if x is rational and f(x) = e−x otherwise Find the
Lebesgue integral

∫ ∞

0

f(x) dx

or show that it does not exist.
2. Let LQ be a collection of lines through the origin in R2 such that the
angle between any two lines is equal πq where q is a rational number.
Let f(x) = 0 if x ∈ LQ and f(x) = e−|x|2 otherwise. Investigate the
existence of the integrals

∫

f(x) d2x , R
∫

f(x) d2x

and, if an integral exists, find its value.
3. Which of the following functions are Lebesgue integrable on R:

sin(x)

x
,

eikx

x
,

cos(x)
√

|x|
, e−x , x100e−x2

4. A function is said to be Lebesgue square integrable on Ω, or from
the space L2(Ω), if |f |2 ∈ L(Ω). Which of the functions from Problem
3 are square integrable?

5. Let f be continuous and Lebesgue integrable on RN . Show that
its Fourier transform

F [f ](k) =

∫

ei(k,x) f(x) dNx

exists for any k ∈ RN .
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4. Properties of the Lebesgue integral in RN

Properties of the Lebesgue integral are analogous to the properties
of the Riemann integral (cf. Sec. 1.5) because the Lebesgue integral
coincides with the absolutely convergent Riemann integral whenever
the latter exists (Proposition 3.6).

The key difference between the Lebesgue and Riemann integrals is
that the Lebesgue integral is insensitive to alterations of the integrand
on sets of measure zero, whereas the Riemann integrability can be
lost after such alterations. This leads to simplifications of theorems
about integrability of the limit function of a functional sequence. In
particular, the hypotheses of the uniform convergence can be weakened
and simplified, which is a major advantage of the Lebesgue integral.

In what follows, a Lebesgue integrable function will be called just
integrable and integrals are always understood in the Lebesgue sense
(unless stated otherwise) and the term integrability means integrability
in the Lebesgue sense. In mathematical literature, Lebesgue integrable
functions are often called summable to distinguish them from integrable
functions in the Riemann sense.

4.1. The set L is a linear space. If f and g are integrable, then their
linear combination is also integrable and

∫

(

c1f(x) + c2g(x)
)

dNx = c1

∫

f(x) dNx + c2

∫

g(x) dNx .

So, the set L(Ω) of Lebesgue integrable functions on Ω ⊂ RN is a linear
space. Recall that the Riemann integral has the same property. This
property follows from the limit laws. If {fn} and {gn} are sequences of
piecewise continuous functions that define the integrals of f and g, then
by linearity of the Riemann integral the sequence c1fn + c2gn defines
the integral of the linear combination c1f + c2g.

4.2. Monotonicity. Suppose that f and g are integrable. Then13

f(x) ≥ 0 ⇒
∫

f(x) dNx ≥ 0

and, as a consequence,

f(x) ≥ g(x) ⇒
∫

f(x) dNx ≥
∫

g(x) dNx

13see Proposition 3.2
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4.3. Integrals on sets of measure zero. The Lebesgue integral is insen-
sitive to alterations of a function on sets of measure zero. If f ∈ L,
then every function that coincides with f almost everywhere is also
integrable and its Lebesgue integral has the same value. Similarly, if f
is not Lebesgue integrable, then any other function that differs from f
on a set of measure zero is also non-integrable. In other words,

f(x) = g(x) a.e. ⇒
∫

f(x) dN x =

∫

g(x) dNx

and both the integrals either exist or do not exist simultaneously. As
noted earlier, this property is not true for the Riemann integral.

In particular, if the integral of any (measurable) function over a set
of measure zero vanishes:

χ
Ω
(x)f(x) = 0 a.e. ⇒

∫

Ω

f(x) dNx =

∫

χ
Ω
(x)f(x) dNx = 0 .

4.4. Additivity of the Lebesgue integral. Suppose that f is integrable
on Ω and Ω′ and the intersection Ω∩Ω′) is a set of measure zero. Then
f is integrable on the union Ω ∪ Ω′ and

∫

Ω∪Ω′
f(x) dNx =

∫

Ω

f(x) dNx +

∫

Ω′
f(x) dNx .

This follows from that

χ
Ω∪Ω′(x) = χ

Ω
(x) + χ

Ω′(x) a.e.

and the linearity of the Lebesgue integral.

4.5. Lebesgue measure of a set. If the characteristic function of a set
Ω ⊂ RN is integrable, then the number

µ(Ω) =

∫

χ
Ω
(x)dNx

is called the Lebesgue measure of Ω. For example, if Ω is a bounded
region with a smooth boundary, then its characteristic function is piece-
wise continuous and the Lebesgue measure is equal to the volume of
Ω defined by the Riemann integral. If Ω is not bounded, then the vol-
ume is defined by the improper Riemann integral. The volume can be
infinite if the improper Riemann integral diverges.

In general, a characteristic function of a measurable set is measur-
able. So, every bounded measurable set Ω has the Lebesgue measure.
If a measurable set is not bounded and its characteristic function is
not integrable, then the set is said to have infinite measure µ(Ω) = ∞
(similarly to sets of infinite volume). Thus, in contrast to the volume,
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the Lebesgue measure is defined on all measurable sets if it is allowed
to have the infinite value. The Lebesgue measure has the following
properties similarly to the volume14.

4.5.1. Positivity. The Lebesgue measure is non-negative function of a
set:

µ(Ω) ≥ 0

and it vanishes if and only if Ω is a set of measure zero.

4.5.2. Monotonicity. The Lebesgue measure is increasing with enlarg-
ing the set:

Ω1 ⊂ Ω2 ⇒ µ(Ω1) ≤ µ(Ω2) .

In particular,
µ(Ω) ≤ µ(Ω̄)

and the strict inequality is also possible. Let Ω ⊂ R consists of all
rational numbers in an interval [a, b]. Evidently χ

Ω
(x) = 0 a.e. and

µ(Ω) = 0. However, Ω̄ = [a, b] and µ(Ω̄) = b − a > 0.

4.5.3. Countable additivity. If a set is the union of countably many
non-intersecting sets, then its measure is the sum of measures of sets
in the union:

Ω =
⋃

n

Ωn , Ωn ∩ Ωm = ∅ , n 6= m ⇒ µ(Ω) =
∑

n

µ(Ωn)

In particular, the Lebesgue measure of Ω does not change when a set
of measure zero is removed from Ω:

µ(Ω \ Ω′) = µ(Ω) if µ(Ω′) = 0

For example, if Ω is a bounded region with a piecewise smooth bound-
ary, then Ω̄ = Ω ∪ ∂Ω has the same Lebesgue measure.

4.5.4. Measure of an unbounded set. Let Ω be an unbounded set. Let
Ωn a sequence of subsets of a finite measure such that Ωn ⊂ Ωn+1 for
any n and the union of all Ωn coincides with Ω up to a set of measure
zero. Then it follows from the countable additivity that

Ω =
⋃

n

Ωn , Ωn ⊂ Ωn+1 ⇒ µ(Ω) = lim
n→∞

µ(Ωn) .

This procedure can be used to evaluate the measure of unbounded sets.
The limit either exists or is infinite and does not depend on the choice

14Proofs of the properties of the Lebesgue measure can be found in: A.N.
Kolmogorov and S.V. Fomin, Elements of the theory of functions and functional
analysis, Chapter 5, Sec. 1
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of exhaustion of Ω (similarly to the absolutely convergent Riemann
integrals). For example, Ωn = Ω ∩ Bn where Bn is a ball of radius n.

4.5.5. Continuity. Let {Ωn} be a sequence of set embedded into one
another Ωn+1 ⊂ Ωn and Ω is the intersection of all Ωn. Then

Ω =
⋂

n

Ωn , Ωn+1 ⊂ Ωn ⇒ µ(Ω) = lim
n→∞

µ(Ωn)

For example, if Ω is a bounded set, then one can take Ωa to be the
union of open ball of radius a that are centered at every point of Ω.
Then µ(Ωa) → µ(Ω) as a → 0+.

4.5.6. Geometrical properties of measurable sets. The symmetric differ-
ence of two sets A and B is defined by

A 4 B = (A \ B) ∪ (B \ A)

So, it consists of elements that are either in A or B but not in their
intersection. Therefore, if µ(A4B) = 0, then A and B differs at most
by a set of measure zero.

Two rectangular boxes are called almost disjoint if their interiors
do not intersect. In other words, two almost disjoint boxes can have a
non-empty intersection of their boundaries. A set is called elementary
if it can be represented as a finite union of almost disjoint rectangular
boxes. The measure of an elementary set is just its volume. One can
show that

• the union, intersection, difference, and symmetric difference of
two elementary sets is elementary;

• the union, intersection, set difference, and symmetric differ-
ence of two elementary sets is elementary.

Any measurable set has the following characteristic property. For
any measurable set A and any ε > 0, there exists an elementary set B
such that

µ(A 4 B) < ε

In other words, any measurable set in RN can be ”approximated with
any desired accuracy” by a finite collection of almost disjoint boxes.

4.6. Upper and lower bounds. Suppose that f ∈ L(Ω) and f is bounded
almost everywhere in Ω, then

m ≤ f(x) ≤ M a.e. ⇒ mµ(Ω) ≤
∫

Ω

f(x) dNx ≤ Mµ(Ω)

A similar property also holds for the Riemann integral over an interval
(without a.e.).
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4.7. Integrability of the absolute value. If f ∈ L, then |f | ∈ L. If f is
measurable and |f | ∈ L, then f ∈ L and

∣

∣

∣

∣

∫

f(x)dNx

∣

∣

∣

∣

≤
∫

|f(x)|dNx .

In view of the early remark about non-measurable functions, the inte-
grability of f and |f | is practically equivalent in the Lebesgue theory.
So, if f is measurable, then the integrals

∫

f(x) dx and

∫

|f(x)| dx

exist or do not exist simultaneously.
This property does not hold for the Riemann integral. For example,

let f(x) = 1 if x ∈ Q and f(x) = −1 otherwise so that |f(x)| = 1 for
all x. Clearly, |f(x)| is Riemann integrable on any bounded interval,
while this is not so for f(x). In the Lebesgue theory, f(x) = −1 a.e.
(because Q has measure zero) and therefore it is Lebesgue integrable
on any bounded interval.

4.8. Vanishing integral of the absolute value. Recall that, if f is con-
tinuous and the Riemann integral of the absolute value |f | vanishes,
then f(x) = 0. The converse is obviously true. The Lebesgue integral
has a similar property: if f ∈ L and the integral of |f | vanishes, then
f(x) = 0 almost everywhere (and the converse is obviously true):

f ∈ L ,

∫

|f(x)|dx = 0 ⇔ f(x) = 0 , a.e.

4.9. Comparison test for integrability. If a function g is integrable on Ω
and |f(x)| ≤ g(x) a.e., then f is also integrable on Ω:

|f(x)| ≤ g(x) a.e. , g ∈ L(Ω) ⇒ f ∈ L(Ω)

This implies that any bounded (and measurable) function is Lebesgue
integrable on any bounded (and measurable) set. Indeed,

|f(x)| ≤ M a.e. ⇒
∫

Ω

|f(x)| dNx ≤ Mµ(Ω) < ∞

because Ω is bounded. In particular, all Riemann integrable functions
(in the proper sense) are bounded. Therefore, every Riemann inte-
grable function is Lebesgue integrable.

For example,
∣

∣

∣
sin
( 1

|x|p
)∣

∣

∣
≤ 1 a.e.
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for any real p. Therefore sin(|x|−p) in integrable on any bounded inter-
val. If p > 0, the function is not defined at x = 0. One can assign any
value to the function at x = 0. The Lebesgue integral does not change.

4.9.1. Comparison tests. Let f be integrable on Ω \ BR(x0) and f is
not bounded in a ball BR(x0), then f is integrable on Ω ⊂ RN if

|f(x)| ≤ M

|x − x0|p
a.e. , p < N , x ∈ BR(x0)

because the Riemann integral of the right side of this inequality was
shown to converge absolutely. Similarly, if Ω is not bounded and f is
integrable on Ω ∩ BR for some ball BR, then f is integrable on Ω if

|f(x)| ≤ M

|x|p a.e., |x| > R , p > N

for some M .

4.10. Absolute continuity of the Lebesgue integral. Consider the Lebesgue
integral as a function of the integration set:

(4.1) F (Ω) =

∫

Ω

f(x) dN x .

The function F has the following properties15.

Theorem 4.1. Suppose that

Ω =
⋃

n

Ωn , Ωk ∩ Ωn = ∅ , k 6= n

and f is integrable on Ω. Then f is integrable on any Ωn and

(4.2)

∫

Ω

f(x) dN x =
∑

n

∫

Ωn

f(x) dNx

where there the series converges absolutely. Conversely, if f is inte-
grable on every Ωn and the series

∑

n

∫

Ωn

|f(x)| dN < ∞

converges, then f is integrable on Ω and relation (4.2) holds.

15A proof can be found in: A.N. Kolmogorov and S.V. Fomin, Elements of the
theory of functions and functional analysis, Chapter 5, Sec. 5
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There are a few consequences that can be deduced from this theo-
rem. A measurable set Ω in Theorem 4.1 is represented as the union
of arbitrary non-intersecting measurable sets. Therefore the Lebesgue
integrability on Ω implies the Lebesgue integrability on any measurable
subset of Ω:

f ∈ L(Ω) , Ω′ ⊂ Ω ⇒ f ∈ L(Ω′)

Note that if f is bounded almost everywhere and Ω is bounded, then
this conclusion follows from the comparison test |f(x)| ≤ Mχ

Ω
(x) a.e.

and that µ(Ω′) ≤ µ(Ω) < ∞.
The convergence of the series in (4.2) implies that the terms of the

series must tend to zero. Therefore for any function f ∈ L(Ω) one
can find a measurable subset Ω′ such that the integral of f over Ω′ is
arbitrary small. This property is known as the absolute continuity of
the Lebesgue integral.

Theorem 4.2. For any ε > 0 there exists δ > 0 such that
∣

∣

∣

∣

∫

Ω′
f(x) dNx

∣

∣

∣

∣

< ε whenever µ(Ω′) < δ , Ω′ ⊂ Ω .

The assertion is obvious if f is bounded almost everywhere on Ω
because

∣

∣

∣

∣

∫

Ω′
f(x) dN x

∣

∣

∣

∣

≤
∫

Ω′
|f(x)| dNx ≤ Mµ(Ω′)

if |f(x)| ≤ M a.e.. In this case, δ = ε/M .
By the absolute continuity of the Lebesgue integral, if f ∈ L(Ω),

then for any ε > 0 one can find a proper subregion Ω′ or a region Ω
(cf. Sec. 1.1.8) such that

∫

Ω\Ω′
|f(x)| dNx < ε

For example, if Ω is bounded, then Ω′ can be constructed by removing
closed balls of sufficiently small radius from Ω whose centers are on the
boundary ∂Ω.

4.10.1. Lebesgue integral over unbounded regions. Let {Ωn} be an ex-
haustion of a region Ω. If f is integrable on Ω, then

(4.3) lim
n→∞

∫

Ωn

f(x) dNx =

∫

Ω

f(x) dNx .

In contrast to the continuity of the Riemann integral, the integrability
of f on every Ωn is redundant because f is integrable on any measurable
subset of Ω. Conversely, suppose one wants to investigate integrability
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of f on Ω. If f ∈ L(Ωn) for all n, then its absolute value is also
integrable on every Ωn. By the second part of Theorem 4.1, if the limit

lim
n→∞

∫

Ωn

|f(x)| dNx < ∞

exists (not infinite), then f is integrable on Ω and (4.3) holds. In
what follows, this continuity property will often be used to investigate
integrability in combination with comparison tests.

4.10.2. The space Lloc(Ω) of locally integrable functions. Let Ω ⊂ RN

be an open set and f is continuous on Ω. Then f is integrable on
any proper bounded subset Ω′ of Ω, Ω′ ⊂ Ω and Ω′ ⊂ BR for some
R. However, f is not necessarily integrable on Ω. Recall that in this
case, the integrability means that the Riemann integral of f converges
absolutely on Ω if f has singular points on the boundary of Ω, or Ω is
not bounded, or both. A function f is called locally integrable on an
open set Ω ⊆ RN if it is integrable on any proper bounded subset of
Ω. The class of such function is denoted by Lloc(Ω) or simply by Lloc

if Ω = RN :

f ∈ Lloc(Ω) :

∫

Ω′
|f(x)| dNx < ∞

for any proper bounded subset Ω′ of Ω.

4.10.3. The space L(Ω; σ). Let σ be a non-negative integrable function
on Ω. Then the function

µσ(Ω) =

∫

Ω

σ(x) dNx

has the same properties at the Lebesgue measure µ(Ω). It is defined
on all measurable sets, it is non-negative, monotonic, and countably
additive, and the condition µ(Ω) = 0 implies µσ(Ω) = 0

Let σ(x) ≥ 0. A function f is called Lebesgue integrable on Ω with
weight (or measure) σ if the product fσ is integrable on Ω. The space
of all integrable functions on Ω with weight σ is denoted by L(Ω; σ).

4.11. Taking limits under the integral sign. It was shown that the limit
of a pointwise convergent sequence of Riemann integrable functions
is not generally Riemann integrable. A uniform convergence of the
sequence is sufficient for the Riemann integrability of the limit function
(cf. Theorem 1.9). In the Lebesgue theory, taking limits under the
integral sign is simpler (requires weaker conditions). This stems from
insensitivity of the Lebesgue integral to alterations of the integrand on
sets of measure zero. Here a few theorems stating sufficient conditions
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for interchanging the order of taking the limit and integral are discussed
(their proofs can be found in16)

4.11.1. The Lebesgue dominated convergence theorem. Let a sequence of
(measurable) functions {fn}∞1 converge to f a.e.,

lim
n→∞

fn(x) = f(x) a.e.

If there exists an integrable function g independent of n such that

|fn(x)| ≤ g(x) a.e. , g ∈ L ,

then f ∈ L and

(4.4) lim
n→∞

∫

fn(x)dx =

∫

lim
n→∞

fn(x)dx =

∫

f(x)dx .

This theorem is perhaps one of the most useful theorems from anal-
ysis. To illustrate it, recall the first example in Section 1.10. The
sequence is bounded by g(x) = 1 that is integrable on any bounded
interval and, hence, (4.4) holds for any such interval. The limit func-
tion is the Dirichlet function that is nowhere continuous and, hence,
not Riemann integrable, but it is Lebesgue integrable because it is zero
almost everywhere.

4.11.2. Example. Let

fn(x) =
n sin(x2/n)

x2(x2 + a2
n)

, x 6= 0 ,

where an > 0 and an → a > 0 as n → ∞. The functions fn are not
defined at x = 0. For example, they can be extended by continuity
fn(x) → 1/a2

n as x → 0, or one can set fn(0) = bn for some sequence
{bn}. Then

lim
n→∞

fn(x) =
1

x2 + a2
a.e.

Indeed, the limit may or may not exist at x = 0, and for x 6= 0, the
limit follows from that

lim
y→0

sin(y)

y
= 1

where y = x2/n → 0 as n → ∞. Then

lim
n→∞

∫ ∞

−∞
fn(x) dx =

∫ ∞

−∞

dx

x2 + a2
=

π

2a

16A.N. Kolmogorov nad S.V. Fomin, Elements of the theory functions and
functional analysis
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provided there exists a Lebesgue integrable bound g, |fn(x)| ≤ g(x)
a.e., that is independent of the parameter n. To find g(x), note first
that | sin(y)| ≤ |y|, and it follows that

|fn(x)| ≤ 1

x2 + a2
n

a.e.

A positive sequence an converges to a > 0 and, hence, its greatest
lower bound cannot be equal to zero a0 = infn{an} > 0. Indeed, any
interval |x − a| < δ < a contains all but finitely many terms of the
sequence {an}. Since an > 0, a0 is the smallest among finitely many
terms outside the interval. If an 6= a, then for small enough δ there
will always be terms outside the interval. Therefore

|fn(x)| ≤ 1

x2 + a2
n

≤ 1

x2 + a2
0

= g(x) a.e. , a0 = inf
n
{an} > 0 .

4.11.3. An example of a convergent sequence with no integrable bound. If
there exists no integrable bound, then (4.4) can be false. Consider the
sequence

fn(x) =
n

1 + n2x2
, x ∈ R

Then for any n,
∫

fn(x) dx = lim
b→∞

∫ b

−b

ndx

1 + n2x2
= lim

b→∞

∫ bn

−bn

dy

1 + y2
= π

However the integral of the limit function is zero. Indeed, the sequence
converges to zero if x 6= 0 and to infinity if x = 0. Therefore

lim
n→∞

fn(x) = 0 a.e.

and

lim
n→∞

∫

fn(x) dx = π 6= 0 =

∫

lim
n→∞

fn(x) dx

Note that 2
3
n ≤ fn(x) ≤ n if |x| ≤ 1

n
. This implies that if fn(x) ≤ g(x)

for all x and all n, then g(x) ∼ 1
|x| near x = 0 which is not integrable.

4.11.4. Levi’s theorem. If the sequence has no integrable bound, then
the integrability of the limit function can be established by means of
Levi’s theorem: Let {fn} be an almost everywhere non-decreasing se-
quence of integrable functions, fn ∈ L(Ω), and the sequence of the
integrals of fn is bounded,

fn(x) ≤ fn+1(x) a.e.
∣

∣

∣

∣

∫

fn(x) dNx

∣

∣

∣

∣

≤ M ,
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for all n. Then there exists f ∈ L(Ω) such that

lim
n→∞

fn(x) = f(x) a.e.

and the relation (4.4) holds.
As an example, put

fn(x) =

(

1 +
xfD(x)

n

)n

where fD is the Dirichlet function. Recall the sequence (1 + p/n)n

converges to ep and it is monotonically increasing if p > 0. Therefore
fn(x) ≤ fn+1(x) if x ≥ 0 and

0 ≤
∫ b

a

fn(x) dx ≤
∫ b

a

ex dx < ∞ , 0 ≤ a < b < ∞ .

The limit function is

f(x) = lim
n→∞

fn(x) = 1 a.e.

because f(x) = ex if x is rational and f(x) = 1 otherwise so that

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx = b − a .

In Levi’s theorem the hypothesis of the boundedness of a sequence
by an integrable function is replaced by the hypothesis of monotonicity
of the sequence and boundedness of the sequence of integrals. The
monotonicity hypothesis is essential. For example, the sequence of
functions in Sec. 4.11.3 has a bounded sequence of integrals. But,
by graphing fn(x), it is not difficult to see that the sequence is not
monotonic: if n > m, then fn(x) > fm(x) near x = 0 and fn(x) <
fm(x) for all large enough |x|.

There is a simple consequence of Levi’s theorem for functions de-
fined by functional series of non-negative terms that allows one to in-
terchange the summation and integration signs.

Corollary 4.1. If fn(x) ≥ 0 and

∞
∑

n=1

∫

Ω

fn(x) dNx < ∞

then there exists f ∈ L(Ω) such that

∞
∑

n=1

fn(x) = f(x) a.e.
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and
∫

Ω

(

∞
∑

n=1

fn(x)
)

dNx =
∞
∑

n=1

∫

Ω

fn(x) dNx

Note that partial sums of the series
∑

n fn(x) form a sequence sat-
isfying the hypotheses of Levi’s theorem.

For example, the series
∞
∑

n=1

1

n(1 + n2x2)

converges almost everywhere to f(x) that is integrable on R and
∫ ∞

−∞
f(x) dx =

π

2

∞
∑

n=1

1

n2
=

π

2
· π2

6
=

π3

12

The series converges for any x 6= 0 and diverges for x = 0. So, f exists
almost everywhere. Its integrability follows from that fn(x) > 0 and

∫ ∞

−∞
fn(x) dx =

π

2
· 1

n2
,

∞
∑

n=1

1

n2
< ∞ .

4.12. Exercises.

1. Can the Lebesgue measure of an unbounded region be finite? If
so, construct an example. Hint: Think of the area under the graph of
a non-negative continuous function on R.

2. Construct an example of set in RN that contains an open ball
|x| < R whose measure is equal to the volume of the ball but the clo-
sure of the set has measure that twice as much as the volume of the
ball.
3. Are there any values of p for which the function

f(x) =
sin2(|x|)
|x|p , x ∈ RN

is integrable on
(i) a bounded set that contains x = 0;
(ii) RN ;
(iii) on the complement of a region containing x = 0

4. Suppose that

|f(x)| ≤ M

1 + |x|p
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For what values of p does f have a Fourier transform

F [f ](k) =

∫

ei(k,x)f(x) dN x , k ∈ RN

5. Suppose |f(x)| ≤ M |x|p a.e., where p > 0. For what values of p is
the function e−|x|f(x) is integrable on RN? Give an upper bound of
the value of the integral.

6. Let fn(x) =
(

1 − x/n
)n

, n = 1, 2, ....

(i) Show that fn(x) converges to e−x uniformly on [0, 1], that is,

lim
n→∞

sup
[0,1]

∣

∣fn(x)− e−x
∣

∣ = 0

Note that fn(x) − e−x is continuous on [0, 1] and, hence, attains its
extreme values on [0, 1]. Find them and compute the limit. Conclude
that

lim
n→∞

∫ 1

0

fn(x) =

∫ 1

0

e−x dx

(ii) Show that |fn(x)| ≤ M for all x ∈ [0, 1], where M is some constant
independent of n. Use the Lebesgue dominated convergence theorem
to established the same result.

7. Let ϕ ∈ C1(R) and the support of ϕ is bounded. Show that

lim
n→∞

∫

einxϕ(x) dx = 0

Hint: Use integration by parts in combination with the Lebesgue dom-
inated convergence theorem (or with the theorem about the uniform
convergence and integrability).

8. Let f ∈ L(R) such that
∫

f(x) dx = 1 and ϕ be a continuous
function with bounded support. Put fn(x) = nf(nx), n = 1, 2, ....
Show that

lim
n→∞

∫

fn(x)ϕ(x) dx = ϕ(0)

Hint: Use the Lebesgue dominated convergence theorem and that any
continuous function with bounded support is bounded.

9. Use the Lebesgue dominated convergence theorem to find the fol-
lowing limit

lim
n→∞

n

∫ π
4

0

e−n2 sin(2t) dt
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5. Functions defined by Lebesgue integrals

Let f(x, y) be a function of two variables x ∈ RN and y ∈ RM .
Suppose that f is Lebesgue integrable with respect to y for any x.
Then the integral defines a function

u(x) =

∫

f(x, y) dMy .

Under what conditions on the function f is the function u integrable,
or continuous, or differentiable? These questions will be answered in
this section.

5.1. Fubini’s theorem. Suppose that the iterated integral of |f(x, y)| ex-
ists, then f is Lebesgue integrable on RN+M :

∫ (∫

|f(x, y)| dNx

)

dMy < ∞ ⇒ f(x, y) ∈ L(RN+M )

Conversely, if f is Lebesgue integrable, then the function defined by the
integrals of f either with respect to x or y

h(x) =

∫

f(x, y) dMy , g(y) =

∫

f(x, y) dNx

exist almost everywhere and are Lebesgue integrable:

f ∈ L(RN+M ) ⇒ h ∈ L(RN ) , g ∈ L(RM)

and, in this case, the integral of f is equal to the iterated integrals:
∫∫

f(x, y) dNxdMy =

∫ (∫

f(x, y) dNx

)

dMy

=

∫ (∫

f(x, y) dMy

)

dNx

Funini’s theorem also holds if f is defined on Ω × Ω′, that is, x ∈
Ω ⊂ RN and y ∈ Ω′ ⊂ RM . Indeed, one can replace f(x, y) by
χ

Ω
(x)χ

Ω′(y)f(x, y) in the above formulation and use the definition of
the Lebesgue integral over a region.

It should be noted that if f is not integrable, then its iterated
integrals either do not exist or, if they exist, they are not equal. The
latter can happens if f has a conditionally convergent Riemann integral.
For example, consider

h(x) = lim
b→0+

∫ 1

b

x2 − y2

(x2 + y2)2
dy = lim

b→0+

∫ 1

b

∂

∂y

y

x2 + y2
dy

= lim
b→0+

y

x2 + y2

∣

∣

∣

1

b
=

1

1 + x2
, x 6= 0
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Similarly,

g(y) = lim
a→0+

∫ 1

a

x2 − y2

(x2 + y2)2
dx = − lim

a→0+

∫ 1

b

∂

∂x

x

x2 + y2
dx

= − lim
a→0+

x

x2 + y2

∣

∣

∣

1

a
= − 1

y2 + 1
, y 6= 0

Therefore, the functions

h(x) =

∫ 1

0

f(x, y) dy =
1

1 + x2
a.e.

g(y) =

∫ 1

0

f(x, y) dx = − 1

1 + y2
a.e.

are integrable on (0, 1) and
∫ 1

0

(∫ 1

0

f(x, y) dy

)

dx =

∫ 1

0

h(x) dx =
π

4
,

∫ 1

0

(∫ 1

0

f(x, y) dx

)

dy =

∫ 1

0

g(y) dy = −π

4

It was shown earlier that the improper Riemann integral of f over
any bounded closed region that contains the origin does not converge
absolutely so that f is not Lebesgue integrable.

The first part of Fubini’s theorem is a criterion for Lebesgue inte-
grability of a function of two variables, while the second part gives a
criterion for changing the order of integration. If

∫

Ω

∫

Ω′
|f(x, y)| dNxdMy < ∞

in any particular order, then
∫

Ω

∫

Ω′
f(x, y) dMydNx =

∫

Ω′

∫

Ω

f(x, y) dNxdMy

In the above example
∫ 1

0

(
∫ 1

0

|f(x, y)|dx

)

dy = ∞

This is left to the reader as an exercise.

5.2. Continuity.

Theorem 5.1. (Continuity of a function defined by an integral)
Let f(x, y) be defined on RN × Ω, Ω ⊂ RM . Suppose f is continuous
in y ∈ Ω for almost all x ∈ RN , and there exists an integrable function
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F (x) such that |f(x, y)| ≤ F (x) a.e. for every y ∈ Ω. Then the
function

g(y) =

∫

f(x, y)dNx

is continuous on Ω, that is,

lim
z→y

∫

f(x, z)dNx =

∫

Ω

lim
z→y

f(x, z)dNx =

∫

f(x, y)dNx

for any y ∈ Ω

Recall that g is continuous at a point y if and only if for any sequence
{yn} converging to y, the sequence {g(yn)} converges to g(y). Consider
the sequence of functions fn(x) = f(x, yn). Then

lim
n→∞

fn(x) = f(x, y) a.e.

because f(x, y) is continuous in y for almost every x ∈ RN . The
sequence {fn} is bounded for all n by a Lebesgue integrable function

|fn(x)| ≤ F (x)

for any choice of {yn}. By the Lebesgue dominated convergence theo-
rem

lim
n→∞

g(yn) = lim
n→∞

∫

fn(x) dNx =

∫

lim
n→∞

fn(x)dNx = g(y)

This proves the theorem.

5.2.1. Continuity of the Fourier transform. As an example, let us show
that the Fourier transform of a Lebesgue integrable function is a con-
tinuous function:

F [f ](k) =

∫

ei(k,x)f(x) dN x , k ∈ RN

First note that the Fourier transform exists for any k ∈ RN because
|ei(k,x)f(x)| = |f(x)| and the absolute value is integrable if f ∈ L. Let
g(x, k) = ei(k,x)f(x). The exponential ei(k,x) is continuous with respect
to k for any x and so is g(x, k). So,

g(x, k) ∈ C0 , ∀x ; |g(x, k)| = |f(x)| ∈ L
By the stated theorem F [f ](k) =

∫

g(x, k) dNx is a continuous func-
tion.
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5.3. Differentiability. In what follows the following notations for partial
derivatives are adopted

Dp
xf =

∂pf(x, y)

∂xi1∂xi2 . . . ∂xip

for any choice of i1, i2,..., ip from 1 to N (here x ∈ RN). So, Dp
xf

stands for any partial derivative of f of order p with respect to x.

Theorem 5.2. (Differentiation of an integral)
Let f(x, y) be defined on RN × (a, b). Suppose that the partial deriv-
ative Dyf(x, y) is continuous in y ∈ (a, b) for almost all x ∈ RN .
Furthermore, there exists an integrable function F (x) such that for ev-
ery y ∈ (a, b), |Dyf(x, y)| ≤ F (x) almost everywhere, and the integral
of f(x, y) with respect to x exists for some particular y0 ∈ (a, b). Then
the function

g(y) =

∫

f(x, y)dNx ∈ C1(a, b)

has the derivative continuous in (a, b) and the following equality holds

(5.1) h′(y) =
d

dy

∫

f(x, y)dNx =

∫

Dyf(x, y) dNx .

Put

φ(y) =

∫

Dyf(x, y) dNx

Since Dyf(x, y) is continuous in y for almost every x and is bounded
by an integrable function:

Dyf(x, y) ∈ C0(a, b) ∀x ; |Dyf(x, y)| ≤ F (x) ∈ L
by the theorem about continuity of a function defined by the Lebesgue
integral, the function φ(y) is continuous on (a, b). Therefore for any y
and y0 in (a, b), its integral

Φ(y) =

∫ y

y0

φ(t) dt ∈ C1(a, b)

is continuously differentiable in (a, b) and, by the Fundamental theorem
of calculus,

Φ′(y) = φ(y)

Since F ∈ L, one infers that
∫ b

a

∫

|Dyf(x, y)| dNx dy ≤
∫ b

a

∫

F (x) dNx dy

= (b − a)

∫

F (x) dNx < ∞
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Therefore the function Dyf(x, y) is Lebesgue integrable on RN × (a, b)
by the first part of Fubini’s theorem. By the second part of Fubini’s
theorem, the order of integration can be changed:

Φ(y) =

∫ y

y0

∫

Dtf(x, t) dNxdt =

∫ ∫ y

y0

Dtf(x, t) dt dNx

=

∫

[f(x, y)− f(x, y0)] d
Nx = g(y) − g(y0)

This shows that g(y) is continuously differentiable and g′(y) = Φ′(y) =
φ(y) as required. This completes the proof of the theorem.

It is clear from the proof that the same result holds if y ∈ Ω ⊂ RM .
If Ω is open, then each coordinate yi ranges over some open interval
for given values of the other coordinates. Similarly, g(y) is from class
Cp if partial derivatives Dβ

y f(x, y), β = 1, 2, ..., p, are continuous with
respect to y for almost every x and are bounded by Lebesgue integrable
functions, |Dβ

y f(x, y)| ≤ Fβ(x) ∈ L:

Dβ
y f(x, y) ∈ C0(Ω) ∀x ; |Dβ

y f(x, y)| ≤ Fβ(x) ∈ L , β ≤ p ,

⇒ g(y) =

∫

f(x, y) dNx ∈ Cp(Ω)

⇒ Dβ
y g(y) =

∫

Dβ
y f(x, y) dNx , β ≤ p

So, the order of differentiation with respect to parameters and the in-
tegration with respect to other variables can be interchanged if partial
derivatives of the integrand with respect to parameters are bounded by
a Lebesgue integrable function that is independent of the parameters.

5.3.1. Interchanging the order of integration and differentiation. Theo-
rem 5.2 states sufficient but not necessary conditions for differentiation
of the integral with respect to a parameter. In fact, the integral can
be differentiable infinitely many times while partial derivatives with
respect to parameters do not have integrable bounds independent of
parameters. This implies that in general the order of differentiation
and integration cannot be interchanged. For example, one can show
that17,

∫ ∞

−∞

eikx

1 + x2
dx = π e−|k|

This function is infinitely many times differentiable on any interval that
does not contain k = 0. However, the derivatives of the integrand with

17Example 1 in Sec. 7.3
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respect to k are not even integrable:

∣

∣

∣

dn

dkn

eikx

1 + x2

∣

∣

∣
=

|x|n
1 + x2

/∈ L , n > 0 .

5.3.2. Differentiability of the Fourier transform. Let us investigate differ-
entiability of the Fourier transform in RN . It follows from integrability
of f that

∫

|f(x)| dNx = lim
R→∞

∫

BR

|f(x)| dNx < ∞

and, owing to non-negativity of the absolute value,

|f(x)| → 0 as |x| → ∞
For x ∈ RN , define

xβ = xβ1
1 xβ2

2 · · ·xβN

N , β1 + β2 + · · · + βN = β , βj ≥ 0

where βj are non-negative integers. In other words, xβ stands for any
monomial of order β in coordinates of x. In particular, it follows from
|xi| ≤ |x| that

|xβ| ≤ |x|β.
Then

∣

∣

∣
Dβ

kei(k,x)f(x)
∣

∣

∣
=
∣

∣

∣
iβxβei(k,x)f(x)

∣

∣

∣
≤ |x|β|f(x)|

The Fourier transform is from class Cp if |x|p|f(x)| ∈ L and

Dβ
kF [f ](k) = Dβ

k

∫

ei(k,x)f(x) dNx = iβ
∫

ei(k,x)xβf(x) dNx

= F [(ix)βf(x)](k) , β = 1, 2, ..., p

So, differentiability of the Fourier transform depends on how fast the
function decreases in the asymptotic region |x| → ∞.

Recall that if f is integrable on any ball |x| < R and |f(x)| =
O(|x|−m), m > N , in the asymptotic region |x| → ∞, then f ∈ L.
Therefore the Fourier transform F [f ] is p times continuously differen-
tiable if

|f(x)| = O(|x|−n) , n > N + p

in the asymptotic region |x| → ∞. In particular, if f decreases faster
than any power function, its Fourier transform is from class C∞:

lim
|x|→∞

|x|p|f(x)| = 0 for all p ⇒ F [f ](k) ∈ C∞
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5.3.3. Differentiability of a Gaussian integral. Let us prove that for n =
1, 2, ..., and t > 0

∫ ∞

−∞
x2ne−tx2

dx =
√

π (−1)n dn

dtn
t−1/2 .

For n = 0, the Gaussian integral can easily be computed

h(t) =

∫ ∞

−∞
e−tx2

dx =
√

π t−1/2 .

Let f(x, t) = e−tx2
. Fix t0 > 0 (an arbitrary positive number). Using

the power series for ex about x = 0 is not difficult to establish the
inequality

|x|m ≤ m!e|x| , x ∈ R .

Therefore for every positive integer n

x2ne−tx2 ≤ (2n)!e−tx2+|x| ≤ (2n)!e−t0x2+|x| = gn(x)

for all 0 < t0 ≤ t < ∞ and x ∈ R. The function gn(x) is integrable. In
particular

|f ′
t(x, t)| = x2e−tx2 ≤ g1(x) , 0 < t0 ≤ t < ∞

and all x ∈ R. Therefore
d

dt

∫ ∞

−∞
e−tx2

dx =

∫ ∞

−∞

∂

∂t
e−tx2

dx = −
∫ ∞

−∞
x2e−tx2

dx = −√
π(t−1/2)′

which holds for all t0 ≤ t < 0. Since t0 > 0 is arbitrary, the above
relation is true for all t > 0. Repeating this argument successively for
f(x, t) = x2n−2e−tx2

, n = 1, 2, ... it is concluded that

(−1)nh(n)(t) = (−1)n
√

π
dn

dtn
t−1/2 = (−1)n dn

dtn

∫ ∞

−∞
e−tx2

dx

= (−1)n

∫ ∞

−∞

∂n

∂tn
e−tx2

dx =

∫ ∞

−∞
x2ne−tx2

dx .

for all t > 0.

5.4. Exercises.

1. Let

f(x, y) =
xy

(x2 + y2)2
, (x, y) ∈ (−1, 1) × (−1, 1) = Ω ⊂ R2

(i) Show that

h(x) =

∫ 1

−1

f(x, y) dy = 0 , g(y) =

∫ 1

−1

f(x, y) dx = 0
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so that these functions are integrable on (−1, 1) and their integrals
vanish.
(ii) Show that the function f is not integrable on the rectangle Ω. Ex-
plain why Fubini’s theorem does not apply in this case.

2. Let {xn} and {yn} be sequences in [0, 1] that converge to 0 monoton-
ically, x1 = 1 > x2 > · · · and y1 = 1 > y2 > · · · . Put ∆xn = xn − xn+1

and ∆yn = nn − yn+1, and suppose that

p =
∆xn

∆xn+1
, q =

∆yn

∆yn+1

for any n. Consider the function of two real variables

f(x, y) =







pnqn , (x, y) ∈ [xn+1, xn] × (yn+1, yn] ,
−pnqn+1 , (x, y) ∈ [xn+2, xn+1) × (yn+1, yn] ,

0 , otherwise

(i) Is the function f piecewise continuous? Explain.
(ii) Evaluate the iterated integrals of f :

∫ ∫

f(x, y) dxdy ,

∫ ∫

f(x, y) dydx .

(iii) Is the function f integrable on R2?

3. (i) Show that the function defined by the integral

h(x) =

∫ ∞

−∞

cos(kx)

k2 + m2
dk ,

where m is a positive constant, exists and is continuous for all x ∈ R.
(ii) Find an explicit form of h(x). Is h(x) differentiable for all x? Is it
true that

h′(x) =

∫ ∞

−∞

∂

∂x

cos(kx)

k2 + m2
dk ,

if h′(x) exists for some x?

4. Let f(u) = 1 − |u| if |u| ≤ 1 and f is extended periodically to
all u ∈ R, f(u + 2) = f(u). Define a function

F (t) =

∫ ∞

0

f(tx)

1 + xp
dx , p > 2 , t ∈ R
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(i) Show that F (t) exists and F (−t) = F (t);
(ii) Show that F ∈ C1(a, b) for any 0 < a < b and

F ′(t) =

∫ ∞

0

xf ′(tx)

1 + xp
dx , 0 < a ≤ t ≤ b

Hint: Consider a change of the integration variable u = tx. Use the
theorem about differentiation of a function defined by a Lebesgue in-
tegral.
(iii) Show that

∣

∣

∣

∣

f(xt) − f(0)

t

∣

∣

∣

∣

≤ |x|

(iv) Use the above inequality and the Lebesgue dominated convergence
theorem to show that the left and right limits

lim
t→0±

F (t)− F (0)

t

exist but are not equal. Is F differentiable at t = 0?

5. Let A be a positive matrix (all eigenvalues are strictly positive).
Define the function

J(y) =

∫

e−(x,Ax)+(x,y) dNx , y ∈ RN

(i) Show that J ∈ C∞ and

Dβ
y J(y) =

∫

Dβ
y e−(x,Ax)+(x,y) dNx .

(ii) Calculate J(y) and show that for any polynomial P (x)
∫

P (x)e−(x,Ax) dNx = P (Dy)J(y)
∣

∣

∣

y=0

6. Let

f(x, y) =
x2 − y2

(x2 + y2)2
, (x, y) ∈ Ω = (1,∞) × (1,∞)

(i) Calculate the iterated integral
∫ ∞

1

(∫ ∞

1

|f(x, y)| dx

)

dy

Is it true that f ∈ L(Ω)?
(ii) Calculate and compare the iterated integrals

∫ ∞

1

(
∫ ∞

1

f(x, y) dx

)

dy ,

∫ ∞

1

(
∫ ∞

1

f(x, y) dy

)

dx
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6. Line and surface integrals

6.1. Line integrals in a Euclidean space. Let x = x(t), a ≤ t ≤ b, be a
parameterization of a curve C . Consider a partition P = {tn} of [a, b].
Put

L(P, C) =
∑

n

|x(tn) − x(tn−1)|

The number L(P, C) is the length of a polygonal path with vertices
at x(tn) on the curve C . Upon a refinement of P , the polygon path
gets closer to the curve C but its length is increasing by the triangle
inequality:

L(P, C) ≤ L(P ′, C) , P ⊂ P ′

for any refinement P ′ of P . The quantity

LC = sup
P

L(P, C)

is called the arclength of C . Note that LC can be infinite.
One can prove that18 if a curve is from class C1, then

LC =

∫ b

a

|x′(t)| dt < ∞

In physics, this equation has a simple meaning. If x = x(t) is the
trajectory of a point-like particle, then x′(t) is the velocity vector, and
its magnitude |x′(t)| is the speed. The distance traveled along path C
is the integral of the speed with respect to time.

6.1.1. Natural parameterization of a smooth curve. Let x = x(t) be a
parameterization of a curve C from class C1. Define an arclength pa-
rameter by

s = s(t) =

∫ t

a

|x′(τ )| dτ .

Then s′(t) = |x′(t)| > 0 and, hence, s(t) is monotonic and maps [a, b]
onto [0, LC]. The map is invertible, t = t(s). A parameterization of C
in terms of the arclength, x = X(s) = x(t(s)), is called a natural param-
eterization of C . Note that X ′(s) is a unit tangent vector, |X ′(s)| = 1,
as one infers from the chain rule, dX(s)/ds = (dx(t)/dt)(ds/dt)−1.

18W. Rudin, Principles of mathematical analysis, Theorem 6.27
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6.1.2. Line integral of a scalar function. Let x(s) be a natural parame-
terization of a curve C and f(x) be continuous in a neighborhood of
C . Then the integral

∫

C

f ds =

∫ LC

0

f(x(s)) ds

exists and is called a line integral of a function f over a curve C . A
line integral can be defined for any f as long as the function f(x(s))
is integrable on [0, LC]. One might think about a thin wire with a
non-uniform mass density f(x) so that dm(x) = f(x)ds is the mass in
a segment of length ds at a sample point x of the segment. The line
integral is equal to the total mass of the wire.

If x = x(t) is any parameterization of a curve from class C1, then
using the change of variables, ds = |x′(t)|dt,

∫

C

f ds =

∫ b

a

f(x(t)) |x′(t)| dt .

Recall that the center of mass a collection of point-like particles with
positions xp and masses mp (the index p labels the particles) is

xc =
1

m

∑

p

mpxp , m =
∑

p

mp

Suppose these particles are assembled into a smooth curve C with a
linear mass density σ(x) so that dm(xp) = σ(xp)ds is the mass of a
segment of the curve of length ds at a sample point xp. Then it follows
that the coordinates of the center of mass of this wire are given by the
following line integrals:

x0j =
1

m

∫

C

σ(x)xj ds , m =

∫

C

σ(x) ds

6.1.3. Line integral of a vector field. Let T be a unit tangent vector at
some point of a smooth curve. Then the vector −T is also a unit tan-
gent vector. A unit tangent vector is continuous for a curve from class
C1. Therefore there are only two ways of choosing the latter. If a curve
connects points xa and xb, then a natural parameter can be counted
either from xa or from xb, the derivatives of the corresponding natural
parameterizations are opposite unit tangent vectors at any point of the
curve. This choice defines an orientation of the curve C .

Let C be a curve oriented by a unit tangent vector T . Let F (x) be
a continuous vector field (its components Fj(x) are continuous). The
dot product

FT (x) =
(

F (x), T (x)
)

, x ∈ C
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is the tangent component of the vector field F at a point x of C . If
x = x(s) is a natural parameterization of C such that x′(s) = T (x(s)),
then FT = (F, x′). The line integral

∫

C

FT (x) ds =

∫

C

Fj(x)dxj

where Einstein’s summation rule over repeated indices j is assumed, is
called the integral of a vector field F along a curve C .

If F (x) is a force acting on a point-like particle at a point x, then the
work done by F in moving the particle along an infinitesimal straight-
line segment from x to x + dx is given by

dW (x) = Fj(x)dxj = |F (x)| cos(θ) ds ,

where θ is the angle between F (x) and T (x) and |dx| = ds. The line
integral of F along C is nothing but the total work done by F in moving
the particle along the curve C .

Let x = x(t) be a parameterization of a curve C such that x′(t)
defines the correct orientation of C . Then by changing variable in the
line integral, dxj = x′(t) dt, one infers that

∫

C

Fj(x)dxj =

∫ b

a

Fj(x(t))x′
j(t) dt

Let −C be the curve C with the opposite orientation, then
∫

−C

Fj(x)dxj = −
∫

C

Fj(x)dxj .

Consequently, any parameterization can be used to evaluate the line
integral over a curve from class C1 (if a parameterization defines an
opposite parameterization, the sign of the integral should be changed
after evaluating it).

If x = x(t) is a physical trajectory of a point-particle of mass m,
then the trajectory satisfies Newton’s Law mx′′(t) = F (x(t)) (recall
that the second derivative x′′(t) is the acceleration of the particle).
Then the work done by F in moving the particle is a net change of the
kinetic energy 1

2
mv2, where v(t) = x′(t) is the velocity of the particle,

W =

∫

C

Fj(x)dxj =

∫ b

a

mv′
j(t)vj(t)dt =

1

2
mv2(b) − 1

2
mv2(a) .

6.1.4. Fundamental theorem for line integrals. A vector field is said to
be conservative in an open set Ω if it is the gradient of some function
U , that is, F = ∇U in Ω. The function U is called a potential of F .
Note that U is not unique as it can be changed by an additive constant.
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Let C be a C1 curve in an open set Ω and a vector field F be
conservative in Ω. Then
∫

C

Fjdxj =

∫ b

a

∂U

∂xj

dxj

dt
dt =

∫ b

a

dU(x(t)) = U(x(b)) − U(x(a))

Thus, for a conservative vector field, its line integral along a path from
point A to point B does not depend on the path and is determined by the
difference of its potential at the endpoints of the path. This comprises
the fundamental theorem for line integrals.

In physics, this is a familiar statement that the work done by a
conservative force is determined by the net change change of a potential
energy V :

W = V (A) − V (B) , F = −∇V .

Combining this relation with the work being the net change of kinetic
energy, it is concluded that the energy of a particle

E(t) =
1

2
v2(t) + V (x(t))

remains constant along any trajectory in a conservative force field,
E(b) = E(a). It can also be shown that E ′(t) = 0 by a direct evaluation
of the derivative E ′(t) and Newton’s Law.

6.2. Surface area. Let S be an M-surface from class C1 and x = F (y)
be its parameterization, y ∈ D. Then vectors wa = ∂aF are tangent to
the surface. Define a matrix W whose columns are the tangent vectors
wa ∈ RN :

WM = [w1 w2 · · · wM ] , wa =
∂F

∂ya

Then the area of S is defined by the integral

(6.1) AS =

∫

D

J(y) dMy , J =
√

det(W T
MWM)

where W T
M is the transposed matrix WM . Note that J(y) is continuous

on a closed and bounded D and, hence, the integral exists for any C1

surface in RN .
The quantity J(y) is the volume on M dimensional parallelepiped

with adjacent sides being vectors wa. It is easy to verify the assertion
for M = 2. If 0 ≤ θ ≤ π is the angle between w1 and w2, then the area
of parallelogram with adjacent sides w1 and w2 is

V2 = |w1||w2| sin(θ) =
√

|w1|2|w2|2 − (w1, w2)2 =
√

det(W T
2 W2)
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because

W T
2 W2 =

(

|w1|2 (w1, w2)
(w1, w2) |w2|2

)

Consider an n dimensional parallelepiped with adjacent sides w1, w2,...,
wn. Its volume is denoted by Vn. Its base is the n − 1 dimensional
parallelepiped with adjacent sides w1, w2,..., wn−1 with volume Vn−1.
Then

Vn = Vn−1h ,

where h is the height. If w
‖
n is the orthogonal projection of wn onto

span{w1, ..., wn−1}, then by the Pythagorean theorem

h2 = |wn|2 − |w‖
n|2 .

One has
w‖

n = c1w1 + c2w2 + · · · + cn−1wn−1 ,

where the constants ca are such that wn − w
‖
n is orthogonal to all wa,

a = 1, 2, ..., n− 1, so that
n−1
∑

b=1

(wa, wb)cb = (wa, wn) .

If c ∈ Rn−1 with components ca satisfying the above equation, then

c = (W T
n−1Wn−1)

−1W T
n−1wn

because (wa, wb) are matrix elements of W T
n−1Wn−1 and this matrix is

invertible because wa are linearly independent. Therefore

|w‖
n|2 = (w‖

n, w
‖
n) = cTW T

n−1Wn−1c = wT
n Wn−1(W

T
n−1Wn−1)

−1W T
n−1wn

On the other hand, Wn is obtained from Wn−1 by adding an extra
column wn so that in the block-matrix notation, Wn = [Wn−1 wn].
Using the block-matrix multiplication

W T
n Wn =

[

W T
n−1

wT
n

]

[Wn−1 wn] =

[

W T
n−1Wn−1 W T

n−1wn

wT
nWn−1 |wn|2

]

Suppose that the equation for the volume is correct for n−1. It follows
from the determinant of a block-matrix

det

[

A B
C D

]

= detA det(D −CA−1B)

that the equation is also correct for n

det(W T
n Wn) = det(W T

n−1Wn−1)(|wn|2 − |w‖
n|2)

= V 2
n−1(|wn|2 − |w‖

n|2) = V 2
n

By mathematical induction, the equation is true for any n ≤ N .
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A linearization of F an a point y∗ is the linear function L : D → RN

defined by

L(y) = F (y∗) +
M
∑

a=1

wa(y
∗)(ya − y∗

a) , wa(y
∗) =

∂F

∂ya

∣

∣

∣

y=y∗
.

It maps D into the tangent space of S at a point x∗ = F (y∗). Equation
(6.1) has a simple geometrical meaning. For any partition box Rp

in D, the surface area of F (Rp) is approximated by the volume of a
parallelepiped that is the image L(Rp) of a partition box Rp in the
tangent space taken at a sample point xp = F (yp), yp ∈ Rp. The total
volume depends on the choice of sample points. But since it depends
continuously on them for a C1 surface, variations of the volume related
to different choice of sample points do not contribute in the limit when
dimensions of all partition boxes tend to zero uniformly, just like a
Riemann sum converges to the integral of a continuous function for
any choice of sample points.

6.3. Surface integrals in RN of a scalar function. Let S be a M-surface
from class C1. Let x = F (y) be a parameterization of S. The surface
integral of a function f is defined by

∫

S

f(x) dS
def
=

∫

D

f(F (y))J(y) dMy

if f(F (y)) is integrable on D.

6.3.1. Integration over a sphere in RN . A sphere of radius a in RN is
defined by

|x|2 = x2
1 + x2

2 + · · · + x2
N = a2

Its parameterization

x1 = a cos(ξ1) ,

x2 = a sin(ξ1) cos(ξ2) ,

xN−1 = a sin(ξ1) sin(ξ2) · · · sin(ξN−2) cos(ξN−1) ,

xN = a sin(ξ1) sin(ξ2) · · · sin(ξN−2) sin(ξN−1) ,

where ξp ∈ [0, π] for p < N − 1 and ξN−1 ∈ [0, 2π], can be obtained
using spherical coordinates. Here 0 ≤ ξ1 ≤ π is the angle between the
x1 axis and the vector x. This axis is called the axis of a spherical
coordinate system. Let x⊥ be the orthogonal projection of x onto the
N − 1 dimensional plane orthogonal to the first coordinate axis. Then
the length of the projection is |x⊥| = a sin(ξ1). With this choice, x2

is the scalar projection of x⊥ onto the second coordinate axis, where
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0 ≤ ξ2 ≤ π is the angle between x⊥ and the x2 coordinate axis. Then
the length of the orthogonal projection of x⊥ onto the plane orthogonal
to the second coordinate axis is a sin(ξ1) sin(ξ2), and x3 is the scalar
projection of this vector projection onto the third axis. This procedure
is repeated N times to get all xj as functions of the angles ξa. The
angle between any two vectors changes from 0 (parallel vectors) to π
(anti-parallel vectors), which explains the range of ξb for b < N − 1,
and ξN−1 is nothing but a polar angle a 2-plane.

The tangent vectors to curves that are images of the coordinate
lines of parameters ξ are orthogonal:

wb =
∂x

∂ξb
⇒ (wb, wb′) = |wb|2δbb′ ,

|w1| = a , |wb| = a sin(ξ1) sin(x2) · · · sin(ξb−1) , b = 2, 3, ..., N − 1

J(ξ) = aN−1 sinN−2(ξ1) sinN−3(ξ2) · · · sin(ξN−2) .

Then an integral of a function over the sphere is reduced to the following
iterated integral
∫

|x|=a

f(x) dS =

∫ 2π

0

∫ π

0

· · ·
∫ π

0

f(x(ξ))J(ξ) dξ1 · · · dξN−2 dξN−1

By construction of the spherical coordinate system, the integral
over a unit sphere in RN can also be written as an iterated integral
over a sphere in RN−1 of radius |x⊥| = sin(ξ1) and an integral over the
angle with the axis of the spherical coordinates ξ1
∫

|x|=1

f(x) dSN =

∫ π

0

∫

|y|=1

f
(

ê1 cos(ξ1) + y sin(ξ1)
)

sinN−2(ξ1) dSN−1 dξ1

where dSM is the surface area element of a unit sphere in RM , and
ê1 is the unit vector parallel to the axis of the spherical coordinates.
If the function f(x) is invariant under rotations about the axis of the
spherical coordinate system, then it depends only on x1 = cos(ξ1) and
|x⊥| = sin(ξ1), that is, f(x) = g(ξ1). In this case,

∫

|x|=1

f(x) dS = σ
N−1

∫ π

0

g(ξ1) sinN−2(ξ1) dξ1 .

where σ
N

is the surface are of a unit sphere in RN .

6.3.2. Levi-Civita symbol. Let the symbol εj1j2···jN
be defined so that it

is skew-symmetric under permutation of any two indices, and ε12···N =
1. This symbol is called the Levi-Civita symbol in RN . Any symbol
with N indices has NN indexed values. But the Levi-Civita symbol
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has only one independent value because its indexed values vanish if
any two indices are equal and

εj1j2···jN
= (−1)P ε12···N

where P is the number of permutations needed to convert the set
j1j2 · · · jN to 12 · · ·N by permutations.

The product of two symbols can be expressed in terms the Kro-
necker delta symbol:

εi1i2···iN εj1j2···jN
= det









δi1j1 δi1j2 · · · δi1jN

δi2j1 δi2j2 · · · δi2jN

...
...

...
δiN j1 δiNj2 · · · δiNjN









def
= δj1j2···jN

i1i2···iN

The determinant of Kronecker deltas, denoted by δj···
i··· , is called the

generalized Kronecker delta symbol. This symbol is convenient to write
any contraction of indices in the product of Levi-Civita symbols:

N
∑

i1,i2,...,in=1

εi1i2···inin+1···iN εi1i2···injn+1···jN
= n!δ

jn+1jn+2···jN

in+1in+2···iN

Note that free indices in the contraction take integer values from 1 to
N whereas the generalized Kronecker delta symbol in this equation is
defined by the determinant of an (N − n) × (N − n) matrix.

Let Aij be an N × N matrix. It is proved in linear algebra that

detA = εj1j2···jN
A1j1A2j2 · · ·ANjN

where the Einstein summation rule is used for repeated indices. The ab-
solute value | detA| is the volume on an N−dimensional parallelepiped
with adjacent sides being the vectors defined by the columns of the
matrix A.

For any N −1 vectors wa, a = 1, 2, ...., N−1, define a vector n with
components

ni = εij1···jN−1
w1j1

w2j2
· · ·w

N−1jN−1

This vector is not zero if and only if the non-zero vectors wa are linearly
independent, and n is orthogonal to the span of vectors wa because
(n, wa) = 0. This follows from the skew-symmetry of the Levi-Civita
symbol under a permutation of two indices.

6.3.3. Oriented surface area element of the boundary of a region. Let Ω
be an open set in RN and its boundary be from class C1. If x = F (ξ)
is a parameterization of the boundary ∂Ω, then the span of vectors
wa = ∂aF is the tangent space to ∂Ω which is an N − 1 dimensional



6. LINE AND SURFACE INTEGRALS 91

plane that is orthogonal to the vector n defined by the Levi-Civita
symbol and the tangent vectors wa. So, the vector n will called a
normal to the boundary ∂Ω.

Using the contraction formula for one index in the product of Levi-
Civita symbols, one infers that

|n|2 = nini = δ
j1j2···jN−1

i1i2···iN−1
w

1j1
w

2j2
· · ·w

N−1jN−1
w

1i1
w

2i2
· · ·w

N−1iN−1

= det(W TW ) = J2(ξ)

So, the length of n is equal to the volume of the parallelepiped with
adjacent sides being vectors wa. The vector

dΣi = nid
N−1ξ

is called an oriented surface area element on the boundary ∂Ω and

|dΣ| = |n|dN−1ξ = J(ξ) dN−1ξ .

6.4. Flux of a vector field. Consider a vector field F : RN → RN . Let
S be an N −1 surface from class C1 described by parametric equations
xj = xj(ξ), ξ ∈ D. The surface integral

Φ =

∫

S

(F, dΣ) =

∫

D

Fj(x(ξ))nj(ξ) dN−1ξ

is called a flux of the vector field F across the surface S.
Suppose that F describes a flow of some quantity. For example,

consider a moving air with the velocity vector field v(x) and mass
density ρ(x). Then F (x) = ρ(x)v(x) is a mass flow. Suppose that
|n(ξ)| 6= 0 so that n̂ = n/|n| is a unit normal vector. By construction

dΦ(x) =
(

F (x), dΣ(x)
)

= (F, n̂) dS = ρ(x)
(

v(x), n̂(x)
)

dS(x)

is the mass carried by the flow per unit time across the surface dS at a
sample point x of the surface in the direction of n̂(x). Note that (v, n̂)
is the normal component of the velocity (the scalar projection of v on
n̂ at a point x). If the vector field is orthogonal to the normal, the flux
vanishes. Therefore Φ is the total mass carried by the flow across S
per unit time.

6.4.1. Flux integral in R3. The 3-dimensional Levi-Civita symbol de-
fines the components of the cross product of two vectors

(x × y)i = εijkxjyk

A parameterization of a 2-surface S in R3 is defined by a C1 map of a
rectangle in R2 to R3

x = x(ξ1, ξ2) , (ξ1, ξ2) ∈ [a, b]× [c, d] = D
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such that the normal vector

n(ξ) =
∂x

∂ξ1
× ∂x

∂ξ2

is not zero in D except possibly on the boundary of D. The surface
area is given by

A(S) =

∫

S

dS =

∫ b

a

∫ d

c

|n(ξ)| dξ2dξ1

A surface integral of a continuous function f(x) over S is given by
∫

S

f(x) dS =

∫ b

a

∫ d

c

f(x(ξ)) |n(ξ)| dξ2dξ1

and a flux of a vector field F (x) across S reads
∫

S

(F, dΣ) =

∫ b

a

∫ d

c

(

F (x(ξ)), n(ξ)
)

dξ2 dξ1

6.4.2. Orientable surfaces. If the vector field is tangent to a surface,
then its flux across this surface vanishes. So, the definition of the flux
makes sense only if it is not possible to get across the surface at a
point x by traveling along the surface and getting back to x but on the
”other side” of the surface. To make this concept precise, let n̂ be unit
normal to the surface at x. Then −n̂ is also a unit normal at x and no
other unit normal vectors exist. One can define a side of the surface by
saying that n̂ always points up from the surface. For example, on the
outer side of the sphere, the unit normal points from the sphere center,
and on the inner side the unit normal points toward the center. So, in
a neighborhood of any point of a C1 surface there are always two sides.

Suppose n̂ can be defined continuously on the whole S. This implies
that a net variation of n̂ along any closed curve in S must be zero. In
this case, S must have two sides, one is defined by n̂ and the other by
−n̂, like a sphere or a portion of a plane. It would be impossible to get
to the other side of the surface at any point by traveling along a closed
curve in the surface because it would contradict the continuity of n̂.

A surface is said to be orientable if a continuous unit normal vector
can be defined on it. In this case, the surface is oriented by the unit
normal vector. An orientable surface can have two orientations. The
flux of a vector field can only be defined across an orientable surface,
and its changes its sign when the orientation is changed.

If a smooth surface is one-sided or non-orientable, then there should
exist a closed curve such that the net change of a unit normal vector
along it is not zero. Imagine an ant carrying a flagpole as a unit normal
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always pointing up from the surface. Since a surface is one-sided, it is
possible to find a closed path in the surface such that, when the ant is
back to the initial point, the pole points in the direction opposite the
initial one. This implies that it is not possible to define a continuous
unit normal vector on a one-sided surface. For a C1 surface it is always
possible to define a continuous unit normal in a neighborhood of any
point (as a unit normal to the tangent space). If however the surface is
not orientable, then it is impossible to extend the unit normal vector
continuously to the whole surface. It turns out that non-orientable
surface do exist. Here is the simplest example.

6.4.3. Möbius strip. Consider a circle in a plane. Take a pole perpen-
dicular to the plane. If the midpoint of the pole is moved along the
circle while keeping the pole orthogonal to the plane, the pole sweeps a
portion of a cylinder. Let z be a vector perpendicular to the plane, and
xm be the position vector of the pole midpoint relative to the center
of the circle. The vectors z and xm are orthogonal and their span is a
plane normal to the circle at any point. At every point of the circle,
the pole occupies that same position in this plane. Now image that
the pole is rotated in this plane as its midpoint moves around the cir-
cle. Suppose that when the midpoint returns to the initial point, the
pole net rotation angle is π so that it will occupy the same (staring)
position. The surface swept by the pole is smooth and one-sided by
construction. If in the beginning of the motion, the swept surface is
colored so that one side is red, and the other is blue, then at the end of
the motion, the red side is glued to the blue one and vice versa. So, it
is impossible to define the either ”red” or ”blue” normal continuously
on this surface because, after making around the circle, the normal be-
comes the opposite to that at the starting point. This surface is known
as a Möbius strip.

It is not difficult to find its parametric equations. Let ξ1 be a pa-
rameter that labels points on the pole, so that the straight line segment
x1 = a, x2 = 0, and x3 = 1

2
ξ1, −b ≤ ξ ≤ b, is the initial position of the

pole of length b. So, the pole is parallel to the x3 axis and its midpoint
at a distance a from the origin on the x1 axis. The midpoint moves
along a circle x1 = a cos(ξ2), x2 = a sin(ξ2), x3 = 0, making one full
turn when 0 ≤ ξ2 ≤ 2π. Suppose that the pole is rotated through the
angle 1

2
θ and the midpoint rotates through the angle ξ2 so that the

pole rotates through the angle π as the midpoint returns to the initial
position. Then the projection of the position vector of a point of the
pole relative to the midpoint onto the x3 axis is 1

2
ξ1 cos(ξ2/2), and its

projection on the axis from the origin to the midpoint is 1
2
ξ1 sin(ξ2/2).
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Therefore the position vector of a point of the pole relative to the origin
reads

x1 =
(

a +
ξ1

2
sin(ξ2/2)

)

cos(ξ2) ,

x2 =
(

a +
ξ1

2
sin(ξ2/2)

)

sin(ξ2) ,

x3 =
ξ1

2
cos(ξ2/2) ,

where (ξ1, ξ2) ∈ D = [−b, b] × [0, 2π]. These are the parametric equa-
tions of a Möbius strip.

Let us investigate continuity of a unit normal vector along the circle
traversed by the midpoint of the pole, that is, when ξ1 = 0. The vector

n(ξ) =
∂x

∂ξ1
× ∂x

∂ξ2

is normal to the surface. By evaluating the derivatives, the cross prod-
uct, and setting ξ1 = 0, the normal is found to be

n1(0, ξ2) =
1

2
sin(ξ2/2) cos(ξ2) ,

n2(0, ξ2) =
1

2
sin(ξ2/2) sin(ξ2) ,

n3(0, ξ2) =
1

2
cos(ξ2/2) .

so that |n(0, ξ2)| = a/2. The values ξ2 = 0 and ξ2 = 2π correspond to
the same point of the circle. It follows from this equations that

n(0, 2π) = −n(0, 0)

Therefore a continuous unit normal cannot be defined. Note that para-
metric equations define a smooth map of the rectangle Ω = [−b, b] ×
[0, 2π] to R3 that is one-to-one in the interior, but maps the bound-
aries ξ = 0 and ξ = 2π onto the same set. This identification is done
with a twist which leads to a one-sided smooth surface. One can easily
construct a similar map that sends the boundaries ξ = 0 and ξ = 2π
to the same line segment with any numbers of twists. A surface with
an odd number of twists is one-sided. Note that the unit normal n̂(ξ)
computed for the map x = x(ξ) can be a continuous function on the
closed rectangle Ω. But the surface can nonetheless be one-sided be-
cause the map is not one-to-one on the boundary and for this reason n̂
cannot always be continuously defined on the surface.
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It is worth noting that there are surfaces without boundaries (like
a sphere) that are one-sided. An example is provided by the famous
Klein bottle.

6.5. The divergence (Gauss-Ostrogradsky) theorem. Let Ω be a bounded
region with a smooth boundary which is a level set of a C1 function g
with the non-vanishing gradient. The boundary divides RN into two
non-intersecting regions. Then unit normal n̂ = ∇g/|∇g| is continuous
on the boundary (cf. Sec. 1.3). The boundary ∂Ω is said to be oriented
positively if the unit normal points outward from Ω. The other orienta-
tion is called negative. Unless stated otherwise, ∂Ω will always denote
the positively oriented boundary of Ω. The divergence of a vector field
F is defined by

div F (x) =
N
∑

j=1

∂Fj(x)

∂xj

= (∇, F ) ,

where ∇ is a formal vector with components being ∂/∂xj.

Theorem 6.1. Let Ω be an open bounded set in RN such that its
boundary piecewise smooth. Suppose that a vector field F and a func-
tion u are from class C1(Ω). Then

∫

Ω

(∇, F )u dNx = −
∫

Ω

(F,∇u) dNx +

∫

∂Ω

u (F, dΣ) ,

where dΣ = n̂dS is the surface area element on ∂Ω oriented positively.

In particular, if u(x) = 1, then
∫

Ω

div F dNx =

∫

∂Ω

(F, n̂) dS .

This statement is known as the divergence or Gauss-Ostrogradsky the-
orem. Recall that if F describes a flow of some quantity, then the
divergence of F is the density of sources of the flow. The divergence
theorem states that the net flux of a vector field across the boundary
of a bounded region is equal to the sum of all sources of the field in
the region. It should be noted that the boundary ∂Ω can have several
disjoint pieces. For example, Ω can have several ”cavities” obtained
by removing proper open subsets from Ω. All separate parts of ∂Ω are
oriented outward and the surface integral is the sum over all separate
parts.



96 1. INTEGRATION IN EUCLIDEAN SPACES

6.5.1. Green’s theorem. In a two-dimensional Euclidean space, con-
sider a bounded region Ω whose boundary is a C1 closed curve without
self-intersections. Suppose that the boundary curve is oriented coun-
terclockwise (the x2 axis is directed upward, while the x1 is directed
to the right). If xj = xj(t) are parametric equations of the boundary,
then the unit normal to the boundary directed outward is

nj(t) = εjiTi(t) , Tj(t) =
x′

j(t)

|x′(t)|
Indeed, suppose the origin is in the interior of Ω and T1 < 0 and T2 > 0
(for a counterclockwise orientation). Since n1 = T2 and n2 = −T1,
n1,2 > 0. This implies that T is obtained by rotating n counterclockwise
through the angle π

2
. Any continuous deformation of the boundary

preserves this property of T and n. So the equation holds for any
shape of Ω that can be continuously deformed to a disk.

The dot product of any two vectors Aj and Bj is equal to the dot
product of the (dual) vectors εjkAk and εjkBk so that

Fjdxj = FjTjds = εjkFknjds = εjkFkdΣj

Therefore by the divergence theorem for a vector field εjkFk

∮

∂Ω

Fjdxj =

∫

Ω

εjk∂jFk d2x =

∫

Ω

(

∂F1

∂x2
− ∂F2

∂x1

)

d2x

This statement is known as Green’s theorem.
It is also valid if Ω has holes, that is, if its boundary contains several

closed curves without self-intersections. In this case, the outer bound-
ary must be oriented counterclockwise, while all the inner boundaries
must be oriented clockwise. Indeed, let us cut a region Ω without any
holes by a curve C into two regions Ω1 and Ω2. Then Green’s theorem
can be applied to both of them. Note that the curve C is a part of
the boundaries ∂Ω1 and ∂Ω2, but it has opposite orientation in them
so that for any line integral of a vector field

∮

∂Ω1

+

∮

∂Ω2

=

∮

∂Ω

because the line integral over the cut curve C is cancelled. The line in-
tegrals in the left side also contain integration over the inner boundary
of Ω (over the boundary of the hole) that must be oriented clockwise if
∂Ω1 and ∂Ω2 are oriented counterclockwise. Evidently, this argument
can be extended to any number of holes.
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6.6. Integration by parts in RN . It follows from the fundamental theo-
rem of calculus that for any two functions from class C1[a, b],

∫ b

a

u(x)v′(x) dx = u(x)v(x)
∣

∣

∣

b

a
−
∫ b

a

u′(x)v(x) dx

This equation has a multi-variable generalization.
Let b be a non-zero constant vector and v is a function from class

C1(Ω). Put F = bv in Theorem 6.1. Then
∫

Ω

u(b,∇)v dNx =

∮

∂Ω

vu(b, dΣ) −
∫

Ω

v(b,∇)u dNx

Since the vector b is arbitrary, the integration by parts can be stated
in the form

∫

Ω

u(x)Djv(x) dNx =

∮

∂Ω

v(x)u(x)dΣj −
∫

Ω

v(x)Dju(x) dNx .

where Dj = ∂/∂xj, j = 1, 2, ..., N . If Ω is not bounded, the integration
by parts can still be used with a suitable regularization. For example,
it can be applied to a part of Ω that lies in a ball of radius R and the
limit R → ∞ should be taken after evaluation of the integrals. The
answer may depend on the regularization if the improper integral does
not converge absolutely.

Suppose that u and v are from class Cp and their supports are in Ω.
This implies that any partial derivative of u and v up order p vanishes
on the boundary ∂Ω. Then by applying the integration by parts several
times

∫

Ω

uDβ
xv dNx = (−1)β

∫

Ω

vDβ
xu dNx , 0 ≤ β ≤ p

where Dβ
xu stands for any partial derivative of order β. The surface

integrals arising upon integration by parts vanish because of the said
properties of the functions u and v.

6.6.1. Green’s identity. Let the boundary of a bounded region Ω be
oriented outward by a unit normal n̂, and let u and v be functions
from class C2 in a neighborhood of Ω. Integrating the identity

u∆v − ∆uv = ∂j

(

u∂jv − ∂juv
)

where ∆ = ∂j∂j is the Laplace operator, over Ω and using the diver-
gence theorem to transform the integral in the right-hand side to a
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surface integral, one infers that
∫

Ω

(

u∆v −∆uv
)

dNx =

∫

∂Ω

(

u∂jv − ∂juv
)

dΣj

=

∫

∂Ω

(

u
∂v

∂n
− ∂u

∂n
v
)

dS

This is known as Green’s first identity. Here ∂v
∂n

= (n̂,∇v) is the normal
derivative of v.

6.7. Exercises.

1. Suppose S is a surface in R3 obtained by a revolution of the graph
x3 = f(s), a ≤ s ≤ b, about the x3 axis.
(i) Show that its parametric equations can be written in the form

x1 = s cos(φ) , x2 = s sin(φ) , x3 = f(s) , (s, φ) ∈ [a, b]× [0, 2π]

or

x1(s, t) =
s(1 − t2)

1 + t2
, x2 =

2st

1 + t2
, x3 = f(s) , (s, t) = [a, b] × R

(ii) Find the normal vectors n(s, φ) and n(s, t) for both parameteriza-
tions. Express the surface area in terms of the function f .

2. Let σN be the surface are of a unit sphere, |x| = 1, in RN . Suppose
f is continuous on RN . Show that

lim
a→0+

1

σNaN−1

∫

|x|=a

f(x) dS = f(0)

3. Show that the volume of a bounded region in RN with a piecewise
smooth boundary is given by the surface integral

V (Ω) =
1

N

∮

∂Ω

xjdΣj

Use this relation to show that the volume VN and the surface area σN

of an N−ball of radius a are related by

VN (a) =
a

N
σN (a) .

4. Suppose that u and its partial derivative ∂ju are continuous and

|u(x)| ≤ M0

|x|α ,
∣

∣

∣

∂u

∂xj

∣

∣

∣ ≤ M1

|x|β , |x| > R > 0
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for some constants M0,1. Show that if α > N − 1 and β > N , then
∫

∂u

∂xj
dNx = 0

Hint: Reduce the integration domain to [−a, a] × RN−1 and use con-
tinuity of the Lebesgue integral as a → ∞. Use Fubini’s theorem to
evaluate the integral with respect to xj and then investigate the limit.

5. Put

u(x, y) =
arctan(x)

1 + y2
, x, y ∈ R

Show that the partial derivative Dxu = ∂u
∂x

is integrable in the plane
R2 spanned by real variables x and y, and find the value of the integral
of Dxu(x, y) over the plane. Does the answer contradict to the result
of Problem 4?

6. Suppose that u and v are from class C1 and

|u(x)| ≤ A0

|x|α0
, |Du(x)| ≤ A1

|x|α1
,

|v(x)| ≤ b0

|x|β0
, |Dv(x)| ≤ B1

|x|β1
,

for all |x| > R > 0 and constants A0,1 and B0,1. Find a condition on
parameters α0,1 and β0,1 under which

∫

u(x)Dv(x) dNx = −
∫

Du(x)v(x) dNx
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7. Cauchy line integrals of analytic functions

7.1. Functions of a complex variable. A function f : Ω ⊂ C → C is
called a function of a complex variable. A function f(z) has a limit
w ∈ C at z0 if |f(z) − w| → 0 as |z − z0| → 0, and in this case one
writes

lim
z→z0

f(z) = w .

A function f is continuous at z0 if f(z) → f(z0) as z → z0, and f
is continuous on a set Ω is it is continuous at all point of Ω. The
derivative defined by

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)

∆z

provided the limit exists. In particular, (zn)′ = nzn−1 for integer n. A
function f is (complex) differentiable on a set Ω if the derivative exists
at every point of Ω.

7.1.1. Analytic functions. A function of a complex variable is said to be
analytic at a point z0 if in a neighborhood of z0 it is given by a power
series:

f(z) =

∞
∑

n=0

cn(z − z0)
n , |z − z0| < R , R > 0 .

A function is analytic on a set Ω if it is analytic at every point of
Ω. Using Proposition 1.1 one can show that f is from class C∞ and
its derivatives can be obtained by term-by-term differentiation of the
series and cn = f (n)(z0)/n! (see Exercises). By the Taylor theorem,

f(z) =
∞
∑

n=0

f (n)(z1)

n!
(z − z1)

n , |z − z1| < R1

for some R1 > 0 and any z1 in the disk, |z1 − z0| < R. Therefore
analyticity at a point implies analyticity in a neighborhood of the point.

For example,

ez =
∞
∑

n=0

zn

n!

is analytic in the whole complex plane because the above series has
infinite radius of convergence. The function

f(z) =
1

1 − z
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is analytic everywhere except the point z = 1. Recall that

1

1 − z
=

∞
∑

n=0

zn , |z| < 1

This shows that the function is analytic in the open disk |z| < 1. Let
z0 6= 1. Then the following identity holds

1

1 − z
=

1

1 − z0

1

1 − z−z0

1−z0

Therefore near z0, the function is represented by a power series

1

1 − z
=

1

1 − z0

∞
∑

n=0

(

z − z0

1 − z0

)n

, |z − z0| < |1 − z0|

whose radius of convergence coincides with the distance from 1 to z0.

7.1.2. Holomorphic functions. A function f(z) is said to be holomor-
phic on an open set Ω of the complex plane if it is differentiable in a
neighborhood of every point of Ω. In particular, the functions ez and

1
1−z

are holomorphic on their domains.
A major theorem in complex analysis states that every holomor-

phic function is analytic and vice versa19. Note that every analytic
function is differentiable so it is holomorphic. It turns out that a com-
plex differentiability (the existence of the derivative f ′(z)) implies that
all derivatives exist so that the function can be given by a Taylor series
(which is a power series) so that the function is analytic.

7.1.3. Cauchy-Riemann equations. Let f(z) be analytic. Put z = x+ iy
so that

f(z) = u(x, y) + iv(x, y) , x =
1

2
(z + z̄) , y =

1

2i
(z + z̄)

Since f(z) is independent of z̄, it follows from the chain rules ∂z̄ =
1
2
∂x − 1

2i
∂y that

∂f(z)

∂z̄
= 0 ⇒ ∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

These relations are known as the Cauchy-Riemann equations. It follows
from them that real and imaginary parts of an analytic function in Ω are
harmonic functions, that is, they are solutions to the Laplace equation

∆u(x, y) = 0 , ∆v(x, y) = 0

19see, e.g.,
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The assertion follows from Clairaut’s theorem ∂x∂yu = ∂y∂xu (and
similarly for v).

The set of analytic functions is closed under basic algebraic opera-
tions with functions. The sum and product of two analytic functions
on Ω is analytic on Ω. The reciprocal of an analytic function is ana-
lytic except points where the functions vanishes. A composition of two
analytic functions is analytic.

7.1.4. Poles. A function f(z) is said to have a pole at z = z0 of order
n if near z0

(7.1) f(z) =
n
∑

k=1

ak

(z − z0)k
+ g(z) ,

where g is analytic at z0. If n = 1, the pole is called simple. The
coefficient a1 is called the residue of f at the pole z0 and is denoted by

a1 = res
z0

f

If the pole is simple, then

res
z0

f = lim
z→z0

(z − z0)f(z)

For example,
1

1 + z2
=

1

2i

(

1

z − i
− 1

z + i

)

So, the function has two simple poles at z = ±i and

res
±i

1

1 + z2
= ± 1

2i

7.2. The line integral in a complex plane. A curve in the complex plane is
defined in the same as a curve in R2, that is, by a continuous mapping
of an interval to C that is one-to-one except possibly finitely many
points in the interval. If z = w(t), a ≤ t ≤ b, are parametric equations,
then the curve is closed if w(a) = w(b). If w(t1) = w(t2) implies that
t1 = t2 (except possibly for t1 = a and t2 = b for a closed curve), then
the curve is called simple (no self-intersections). If w′(t) is continuous
on [a, b], the curve is said to be from class C1.

For example

z = aeit , 0 ≤ t ≤ 2π

is a circle of radius a centered at the origin because |z(t)| = a. The
circle is oriented counterclockwise. Parametric equations z = ae−it

describe the same circle oriented clockwise.
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Let z = w(t), a ≤ t ≤ b, be parametric equations of a curve C from
class C1 in the complex plane. Let f(z) be a continuous function of a
complex variable z. Then the integral

∫

C

f(z) dz =

∫ b

a

f(w(t))w′(t) dt

is called the Cauchy line integral of f over the curve C . Note that
the integral depends on the orientation of C in full contrast to the
line integral of a scalar function. The Cauchy line integral changes its
sign if the orientation of the curve is changed. Parametric equations
z = w(τ (t)), a ≤ t ≤ b, τ (t) = b + a − t, describe the same curve
but with opposite orientation, denoted by −C . Then by changing the
integration variable

∫

−C

f(z) dz =

∫ b

a

f(w(τ (t)))w′(τ (t))τ ′(t) dt

=

∫ a

b

f(w(τ ))w′(τ ) dτ = −
∫

C

f(z) dz .

For example, if C is a circle |z| = a oriented counterclockwise, then
for any integer n

∮

C

zn dz =

∫ 2π

0

aneint iaeit dt = ian+1

∫ 2π

0

ei(n+1)t dt

=

{

0 , n 6= −1
2πi , n = −1

(7.2)

By the 2π periodicity of the integrand.
A region is called simply connected if any closed curve can be contin-

uously contracted to a point in the region without crossing its bound-
ary. In other words, a simply connected region in the complex plane
has no holes.

Theorem 7.1. (Cauchy’s integral theorem)
Let f be analytic in a simply connected region and C be a simple, closed
curve in this region from class C1. Then the line integral of f over C
vanishes

∮

C

f(z) dz = 0

This theorem follows from Green’s theorem. Recall that
∮

∂Ω

F1(x, y)dx + F2(x, y)dy =

∫∫

Ω

(

∂F2

∂y
− ∂F1

∂x

)

dxdy
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where the boundary ∂Ω is oriented counterclockwise. The hypotheses
of Green’s theorem are met for the Cauchy integral if C = ∂Ω (the
boundary of some simply connected Ω). Therefore by Green’s theorem
and the Cauchy-Riemann equations
∮

C

f(z)dz =

∮

C

(udx − vdy) + i

∮

C

(vdx + udy)

= −
∫∫

Ω

(

∂v

∂x
+

∂u

∂y

)

dxdy + i

∫∫

Ω

(

∂u

∂x
− ∂v

∂y

)

dxdy

= 0

7.3. The residue theorem.

Theorem 7.2. Let f have finitely many poles at z = zk, k =
1, 2, ..., n, in a simply connected region Ω. If the boundary ∂Ω is from
class C1 and oriented counterclockwise, then

∮

∂Ω

f(z) dz = 2πi
n
∑

k=1

res
zk

f(z)

Take zk and connect it to some point on the boundary by a smooth
curve Ck. Let Ωa be the region obtained from Ω by removing the curves
Ck and the disks |z − zk| ≤ a. Then the boundary of Ωa consists of
∂Ω, the circles |z − zk| = a, denoted by Sk, and the curves Ck. If
∂Ω is oriented counterclockwise, then ∂Ωa must also be oriented coun-
terclockwise. This implies that the circles Sk are oriented clockwise,
and the curves Ck must be traversed twice (from the boundary toward
the pole and back after traversing Sk clockwise). Let C+

k denote Ck

oriented from the boundary to the pole, and C−
k from the pole to the

boundary. The function f is analytic in Ωa. By the Cauchy integral
theorem

∫

∂Ωa

f(z) dz = 0

On the other hand,

∫

∂Ωa

f(z) dz =

∫

∂Ω

f(z) dz +
n
∑

k=1

(

∫

C+
k

+

∫

C−
k

+

∮

Sk

)

f(z) dz

The integrals over C±
k are taken along the same curve but with opposite

orientations. So, they cancel each other in the sum. Near zk, f has the
form (7.1). So, only the term proportional to (z − zk)

−1 contributes to
the integral over Sk according to (7.2). Since the circles Sk are oriented
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clockwise, there is an extra minus sign as compared to (7.2) so that
∫

∂Ωa

f(z) dz =

∫

∂Ω

f(z) dz − 2πi
n
∑

k=1

res
zk

f(z)

and the conclusion of the residue theorem follows.

Example 1. Let k be real parameter. Put

(7.3) F (k) =

∫ ∞

−∞

eikx

1 + x2
dx .

The integral converges absolutely for any k because
∣

∣

∣

∣

eikx

1 + x2

∣

∣

∣

∣

=
1

1 + x2
,

lim
n→∞

∫ n

−n

dx

1 + x2
= lim

n→∞
arctan(x)

∣

∣

∣

n

−n
= π < ∞

Therefor F (k) can be computed in any suitable regularization. In par-
ticular,

F (k) = lim
n→∞

∫ n

−n

eikx

1 + x2
dx

One has F (0) = π. Put f(z) = eikz(1 + z2)−1. The function f has
two simple poles at z = ±i and analytic otherwise. If k > 0, it decays
exponentially with increasing |z| if the upper half-plane, Im z > 0. If
k < 0, it decays exponentially with increasing |z| in the lower half-
plane, Im z < 0.

Let C+
n be the closed contour that consists of the interval [−n, n]

in the real axis and the circular arc |z| = n, Im z ≥ 0, denoted S+
n . If

C+
n is oriented counterclockwise, then by the residue theorem

∮

C+
n

f(z) dz =

∫ n

−n

f(x) dx +

∫

S+
n

f(z) dz

= 2πi res
i

f(z) = πe−k , k > 0

The integral over S+
n vanishes in the limit n → ∞:

∣

∣

∣

∣

∫

S+
n

f(z) dz

∣

∣

∣

∣

(1)
=

∣

∣

∣

∣

∣

∫ π

0

eikneit

1 + n2e2it
ineit dt

∣

∣

∣

∣

∣

(2)

≤ n

∫ π

0

e−kn sin(t)

|1 + n2e2it| dt

(3)

≤ n

∫ π

0

dt

|1 + n2e2it|
(4)

≤ n

n2 − 1

∫ π

0

dt =
πn

n2 − 1
→ 0

as n → ∞. Here
(1) is obtained by using the parametric equation of S+

n , z = neit,
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0 ≤ t ≤ π;
(2) is obtained by moving the absolute value into the integral and by
calculating |f(neit)|;
(3) holds because k > 0 and sin(t) ≥ 0 if 0 ≤ t ≤ π;
(4) follows from the triangle inequality ||z1|− |z2|| ≤ |z1−z2| for z1 = 1
and z2 = n2e2it. Thus, by taking the limit n → ∞, its concluded that
F (k) = πe−k if k > 0.

Similarly, if k < 0, take the closed contour C−
n that consists of the

interval [−n, n] in the real axis and the circular arc |z| = n, Im z ≤ 0,
denoted S−

n . If Cn is oriented clockwise, then by the residue theorem

∮

C−
n

f(z) dz =

∫ n

−n

f(x) dx +

∫

S−
n

f(z) dz

= −2πi res
−i

f(z) = πek , k < 0

The reader is asked to show that
∣

∣

∣

∣

∫

S−
n

f(z) dz

∣

∣

∣

∣

≤ πn

n2 − 1
, n > 1 ,

using the same line of arguments as in the case of integration over S+
n ,

but with k < 0. Thus,

F (k) = πe−|k|

Example 2: Fresnel’s integrals. Consider the improper integral

∫ ∞

0

eix2

dx
def
= lim

n→∞

∫ n

0

eix2

dx

The integral does not converge absolutely because the integral of the
absolute value of the integrand, |eix2| = 1, diverges. So, the value of the
integral depends on regularization. This fact is emphasized by using

the symbol
def
= (the definition of the left-hand side). In particular, in

the regularization defined by the above limit, the integral converges
and its real and imaginary parts are known as Fresnel’s integrals.

In the complex plane, consider a closed contour C that is the bound-
ary of the wedge of the disk of radius n that corresponds to the interval
[0, π

4
] of the polar angle. It consist of three pieces. The first goes from

z = 0 to z = n along the real axis, the second from z = n to z =
√

in
along the circle |z| = n, and the third goes back to the origin along the
line segment from z =

√
in. Here

√
i = eiπ/4. Parametric equations of
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these three pieces can be chosen respectively as

C1 : z = t , t ∈ [0, n] ;

C2 : z = neit , t ∈ [0, π/4] ;

C3 : z =
√

it , t ∈ [n, 0] .

Note that C3 must be oriented from z =
√

in to z = 0. This is indicated
by the range [n, 0] of the parameter: from t = n to t = 0, which
corresponds to the lower and upper limits of integration. The function
eiz2

is analytic. Therefore its line integral over C vanishes:
∮

C

eiz2

dz =

(∫

C1

+

∫

C2

+

∫

C3

)

eiz2

dz = 0

One has for these integrals
∫

C1

eiz2

dz =

∫ n

0

eit2 dt ,

∫

C2

eiz2

dz =

∫ π/4

0

ein2e2it

ineit dt ,

∫

C3

eiz2

dz =

∫ 0

n

e−t2
√

i dt = −eiπ/4

∫ n

0

e−t2dt

Let us show that the integral over the circular arc vanishes in the limit
n → ∞. One has

∣

∣

∣

∣

∫

C2

eiz2

dz

∣

∣

∣

∣

(1)

≤ n

∫ π/4

0

e−n2 sin(2t) dt
(2)

≤ n

∫ π/4

0

e−4n2t/π dt

(3)
=

π

4n

(

1 − e−n2
)

→ 0

as n → ∞. Here
(1) is obtained by moving the absolute value into the integral and
calculating |f(neit)|;
(2) follows from the inequality sin(2) ≥ 4t/π that holds in the interval
0 ≤ t ≤ π/4. Note that the graph of sin(2t) is concave downward in
the interval [0, π/4]. So the secant line through the origin (0, 0) and
the point (π/4, 1) on the graph lies below the graph, which comprises
the said inequality.
(3) is obtained by evaluating the integral.

Using the Gaussian integral
∫ ∞

0

eix2

dx
def
= lim

n→∞

∫ n

0

eix2

dx = eiπ/4

∫ ∞

0

e−x2

dx =

√
π

2
ei π

4
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Example 3. Let us evaluate the conditionally convergent integral that
was discussed earlier:

I =

∫ ∞

−∞

sin(x)

x
dx

def
= lim

n→∞

∫ n

−n

sin(x)

x
dx

Owing to the continuity of the Riemann integral

I = lim
n→∞

lim
a→0+

Im

(∫ −a

−n

+

∫ n

a

)

eix

x
dx

The function f(z) = eiz/z is analytic everywhere except at z = 0.
Let C be a closed contour that is oriented counterclockwise and

consists of two intervals [−n,−a] and [a, n] on the real axis, and two
circular arcs Ca, |z| = a, and Cn, |z| = n, which lie in the upper half-
plane, Im z ≥ 0. The function f is analytic in the region bounded by
C and, hence, its line integral over C vanishes:

∮

C

eiz dz

z
=

(∫ −a

−n

+

∫ n

a

)

eixdx

x
+

∫

Ca

eiz dz

z
+

∫

Cn

eiz dz

z
= 0

The imaginary part of the first two terms is equal to the integral in
question after taking the limits a → 0+ and then n → ∞. The integral
over the arc Cn vanishes in the limit n → ∞. Indeed,

∣

∣

∣

∣

∫

Cn

eiz dz

z

∣

∣

∣

∣

(1)

≤
∫ π

0

e−n sin(t) dt
(2)→ 0 , n → ∞ ,

where (1) is obtained by using the parametric equation z = neit and
calculating |f(neit)|; (2) follows from the Lebesgue dominated conver-
gence theorem because |e−n sin(t)| ≤ 1 ∈ L(0, π) and e−n sin(t) → 0 a.e.
as n → ∞.

Let us evaluate the limit of the integral over Ca as a → 0+. Using
the parametric equation z = aeit

lim
a→0+

∫

Ca

eiz dz

z
= −i lim

a→0+

∫ π

0

eiaeit

dt = −i

∫ π

0

lim
a→0+

eiaeit

dt = −iπ

where the minus sign is due to the opposite orientation of Ca in the
chosen parameterization, and the order of integration and taking the
limit can interchanged by the Lebesgue dominated convergence theo-
rem because |eiaeit| ≤ 1 ∈ L(0, π) for all a ≥ 0. It is then concluded
that

lim
n→∞

∫ n

−n

sin(x)

x
dx = π .
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7.4. Gaussian integrals with complex parameters. Consider the following
Gaussian integral

IN(A, b) =

∫

RN

e−(x,Ax)+2(b,x) dNx , bj ∈ C

in which parameters bj are complex. This integral converges absolutely
because bj = βj + iαj and

∣

∣

∣e−(x,Ax)+2(b,x)
∣

∣

∣ = e−(x,Ax)
∣

∣

∣e2(β,x)+i(α,x)
∣

∣

∣ = e−(x,Ax)+2(β,x)

so that the integral of the absolute value converges for any β ∈ RN .
To compute the integral, consider first a one-dimensional case:

I(b) =

∫ ∞

−∞
e−x2+2ibx

where b is real. Since I(b) is independent of regularization,

I(b) = lim
n→∞

∫ n

−n

e−x2−2ibx dx

Let Rb be a rectangle in the complex plane Re z ∈ [−n, n] and Im z ∈
[0, b]. Since e−z2

is analytic,
∮

∂Rb

e−z2

dz = 0

Rewriting this line integral as the sum of ordinary integrals over four
intervals comprising the boundary of Rb, one gets
∫ n

−n

e−x2

dx −
∫ n

−n

e−(t+ib)2dt +

∫ b

0

e−(n+it)2dt −
∫ b

0

e−(n−it)2dt = 0

The second integral is the line integral of e−z2
over the top horizontal

boundary of Rb: z = t+ ib, −n ≤ t ≤ n. The integrals over the vertical
intervals vanish in the limit n → ∞:
∣

∣

∣

∣

∫ b

0

e−(n±it)2dt

∣

∣

∣

∣

≤
∫ b

0

|e−(n±it)2|dt = e−n2

∫ b

0

et2dt ≤ beb2e−n2 → 0

as n → ∞. Note that by monotonicity et2 ≤ eb2 if 0 ≤ t ≤ b. Therefore
∫ ∞

−∞
e−x2

dx = lim
n→∞

∫ n

−n

e−(t+ib)2dt

It follows from this relation that

I(b) = lim
n→∞

∫ n

−n

e−t2−2ibtdt =
√

π e−b2



110 1. INTEGRATION IN EUCLIDEAN SPACES

Using shift and scaling transformations of the integration variable and
the above result, one can show that

I(a, ξ) =

∫ ∞

−∞
e−ax2+2ξx dx =

√

π

a
eξ2/a , ξ ∈ C , a > 0

Technicalities are left to the reader as an exercise.
To compute the integral in RN , one can follows the same line of

arguments used to evaluate the Gaussian integral I(A, b) with real b.
First, new integration variables are introduced in which the quadratic
form is diagonal, (x, Ax) = (y, ay) where a is a diagonal matrix. In
doing so, the integral is proved to be the product of one-dimensional
integrals so that

I(A, b) =
π

N
2√

detA
e(b,A−1b) , b ∈ CN

for any positive definite matrix A. Technicalities are left to the reader
as an exercise.

7.5. Exercises.

1. Let

f(z) =
∞
∑

n=0

cn(z − z0)
n , |z − z0| < R

(i) Show that the convergence of the series implies that |cn|δn → 0 as
n → ∞ for any δ < R.
(ii) Show that

|cn(z − z0)
n| ≤ Mqn , q < 1 , |z − z0| ≤ δ < R

for some constants M and q and any δ, then use Proposition 1.1 to
show that the series converges uniformly.
(iii) Show that the series obtained by term-by-term differentiation of
the power series any number of times also converge uniformly in the
disk |z − z0| < R so that f is from class C∞ and cn = f (n)(z0)/n!.

2. Prove the equation for the Gaussian integral I(a, ξ).

3. Prove the equation for the Gaussian integral I(A, b).

4. Evaluate

I(a, b) =

∫ ∞

−∞
eiax2+bxdx

def
= lim

ε→0+

∫ ∞

−∞
e−εx2+iax2+bxdx ,
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where a ∈ R and b ∈ C.

5. Evaluate
∫

RN

ei(x,Ax)dNx
def
= lim

ε→0+

∫

RN

ei(x,Ax)−ε(x,x)dNx , det(A) 6= 0 .

Express the answer in terms of the matrix A.

6. Let Ω ⊂ C be closed, bounded, and simply connected, and its
boundary ∂Ω is piecewise smooth and oriented counterclockwise. Use
the residue theorem to prove the identity

f(z) =
1

2πi

∮

∂Ω

f(w)

w − z
dw

for any function f that is analytic on Ω and any point z that is in the
interior of Ω.

7. Suppose that f is analytic everywhere. Let z and z′ be two points
in the complex, and Cn be a circle of radius n > 2|z − z′| centered at
z and oriented counterclockwise.
(i) Show that for any w ∈ Cn

|w − z′| >
n

2
.

(ii) Put w = z +neit, where 0 ≤ t ≤ 2π. Use the identity from Problem
6 to show that

|f(z) − f(z′)| ≤ |z − z′|
πn

∫ 2π

0

|f(neit)| dt

(iii) Prove Liouville’s theorem which states that a function that is ana-
lytic in C and bounded

|f(z)| ≤ M , ∀z ∈ C

is constant. In particular, if f is analytic everywhere and f(z) → 0 as
|z| → ∞, then f(z) = 0.
Hint: Show that |f(z)− f(z′)| is smaller than any preassigned positive
number.
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8. Potential-like integrals

8.1. Preliminaries. Let E(x) be a conservative vector field in R3, that
is, E(x) = −∇u(x) where u is a potential of E. The divergence of a
vector field is proportional to the density of sources of E. If the density
ρ(x) is known, then the potential satisfies the Poisson equation:

div E(x) = −∆u(x) = 4πGρ(x)

where ∆ is the Laplace operator, G is a constant, and 4π is a convention
factor whose significance will be clarified later.

For example, a static electric or gravitational field is conservative.
A point-like particle located at y ∈ R3 creates an electric (or gravita-
tional) potential at a point x

du(x) = G
dm(y)

|x− y|
where dm(y) is an electric charge (or mass) of the particle, and the
constant G is a universal constant for the electromagnetic theory (or
the gravity theory). The law is known as the Coulomb law in electricity
and as the Newton gravity law in the gravity theory. If electric charges
or masses are distributed over a region Ω, then du(x) with dm(y) =
ρ(y)d3y is the potential at x created by an element of volume d3y at a
point y. By the superposition principle (the total field at a point is the
vector sum of the fields created by all sources), the potential at x is

u(x) = G

∫

Ω

ρ(y)

|x − y| d
3y

This suggests that the potential defined by this integral should be a
solution to the Poisson equation. To verify that that is the case, one
has to show that u has necessary partial derivatives and to figure out
a way for computing them.

8.2. Potential-like integrals. Let Ω be a bounded region in RN . Put

u(x) =

∫

Ω

ρ(y)

|x− y|α dNy , x ∈ RN

If x ∈ Ω̄, then the integrand is singular at y = x. A sufficient condition
for the integral to exist is to require that ρ is bounded, |ρ(y)| ≤ M ,
and α < N because by the comparison test

|ρ(y)|
|x− y|α ≤ M

|x− y|α ∈ L(Ω) if α < N
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for a bounded region Ω. If x does not belong to the closure Ω, then
|x − y|−α is continuous on Ω and, hence, bounded. In this case, the
integral exists if ρ ∈ L(Ω). Without loss of generality, Ω can be viewed
as support of the density ρ and the integral is taken over RN . The
objective is to investigate smoothness of u(x) in RN .

In what follows, the following result will be used.

Proposition 8.1. Let BR be a ball of radius R, |y| < R. Then
there exists a constant Cα such that

(8.1)

∫

BR

dNy

|x − y|α ≤ CαRN−α .

To prove this relation, consider two cases. First, suppose |x| >
2R. In this case, using the triangle inequality and that |y| < R, it is
concluded that

|x− y| ≥ |x| − |y| > R ⇒ 1

|x− y|α <
1

Rα

Therefore
∫

BR

dNy

|x− y|α ≤ 1

Rα

∫

BR

dNy =
σN

Rα

∫ R

0

rN−1 dr =
σN

N
RN−α

where σN is the surface area of the unit sphere |y| = 1. Suppose that
|x| ≤ 2R. Using the new variables z = y − x,

∫

BR

dNy

|x − y|α =

∫

BR(x)

dNz

|z|α ≤
∫

B3R

dNz

|z|α ≤ σN

∫ 3R

0

rN−α−1 dr

=
3N−ασN

N − α
RN−α

here it was used that the ball of radius R centered at x is contained in
the ball of radius 3R centered at the origin if |x| ≤ 2R. The assertion
follows if

Cα = max

{

σN

N
,

3N−ασN

N − α

}

8.3. Smoothness on the complement of support of the density. Here it is
proved that if x in the complement of Ω, that is, x is neither in Ω or
in its boundary ∂Ω, the potential integral has partial derivatives of any
order,

(8.2) u(x) ∈ C∞
(

RN \ Ω
)

,
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and

(8.3) Dβ
xu(x) =

∫

Ω

ρ(y)Dβ
x

1

|x− y|α dNy

The distance between two non-intersecting regions is not zero only if
their boundaries do not have common points. Let Ωδ ⊂ RN \Ω be such
that

d(Ωδ , Ω) = δ > 0

For example, if Ω = Ba is a ball of radius a, then Ωδ is the complement
of the ball of radius a + δ, that is, x ∈ Ωδ if |x| > a + δ.

Define a function of two variables

f(x, y) =
ρ(y)

|x− y|α

Since |x − y| ≥ δ > 0 for any y ∈ Ω and x ∈ Ωδ, its partial derivatives
of any order are continuous at any x ∈ Ωδ for any y:

∂

∂xi
f(x, y) = αρ(y)

yi − xi

|x − y|α+2

∂2

∂xj∂xi
f(x, y) = αρ(y)

(

(α + 2)(xi − yi)(xj − yj)

|x − y|α+4
− δij

|x− y|α+2

)

and similarly for Dβ
xf . Furthermore, they are bounded by Lebesgue

integrable functions independent of x:
∣

∣

∣

∣

∂

∂xi
f(x, y)

∣

∣

∣

∣

≤ α|ρ(y)| 1

|x − y|α+1
≤ α

δα+1
|ρ(y)| ∈ L(Ω)

∣

∣

∣

∣

∂2

∂xj∂xi
f(x, y)

∣

∣

∣

∣

≤ α|ρ(y)|(α + 2) + δij

|x − y|α+2
≤ α(α + 3)

δα+2
|ρ(y)| ∈ L(Ω)

where x ∈ Ωδ and y ∈ Ω. Here the inequality |xj| ≤ |x| was used. In
general,

|Dβ
xf(x, y)| ≤ Mβ

δα+β
|ρ(y)| ∈ L(Ω)

for some constant Mβ (that depends on α). By Theorem 5.2 u has
continuous partial derivatives of any order in Ωδ for any δ > 0, and the
conclusions (8.2) and (8.3) follow.

8.4. Continuity on support of the density. If the density is bounded,

|ρ(y)| ≤ M , ∀y ∈ Ω

then the potential integral is a continuous function everywhere, u ∈ C0.
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Let x0 and x be two points in Ω. One has to show that u(x) can
get arbitrary close to u(x0) and stay arbitrary close for all x that are
close enough to x0. Put

g(x, y) =

∣

∣

∣

∣

1

|x0 − y|α − 1

|x − y|α
∣

∣

∣

∣

Then

|u(x0) − u(x)| ≤
∫

Ω

|ρ(y)| g(x, y) dNy ≤ M

∫

Ω

g(x, y) dNy

= M

(∫

Ω\BR(x0)

+

∫

BR(x0)

)

g(x, y) dNy

Let us show that the integrals can be made arbitrary small for suffi-
ciently small radius R such that |x0 − x| < R. This would prove the
assertion.

Using (8.1),
∫

BR(x0)

g(x, y) dNy ≤
∫

BR(x0)

dNy

|x0 − y|α +

∫

BR(x0)

dNy

|x0 − y|α
≤ 2CαRN−α → 0

as R → 0 because N > α.
To show that the other integral is also small, note that the function

g(x, y) is a continuous function in the set

|x − x0| ≤
R

2
, |y − x0| ≥ R , y ∈ Ω

This set is bounded and closed. By the extreme value theorem, g
attains its extreme values in the set. In particular, since g(x, y) ≥ 0,
its absolute minimum is reached at x = x0, g(x0, y) = 0. Its maximum
is reached at some point that depends on R, x = xR and y = yR. The
maximal value depends on R:

max g = g(xR, yR) = C(R)

If R → 0, then x → x0. Therefore by continuity of g, the maximal
value C(R) tends to 0 as R → 0. Hence,

∫

Ω\BR(x0)

g(x, y) dNy ≤ C(R)µ
(

Ω \ BR(x0)
)

≤ C(R)µ(Ω) → 0

as R → 0. Note that the measure (volume) µ(Ω) < ∞ is finite because
Ω is bounded. Therefore the integral can be made arbitrary small if
R → 0 for all x close enough to x0: |x− x0| ≤ R

2
.
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8.5. Differentiability on support of the density. If the density is bounded,
|ρ(y)| ≤ M , then the potential integral has continuous partial deriva-
tives up to order p everywhere with p being the largest integer such that
α + p < N , and, in this case,

u ∈ Cp(RN ) , Dβ
xu(x) =

∫

Ω

ρ(y)Dβ
x

1

|x − y|α dNy , β ≤ p .

Put

uj(x) =

∫

Ω

ρ(y)
∂

∂xj

1

|x− y|α dNy = α

∫

Ω

ρ(y)
xj − yj

|x− y|α+2
dNy .

If uj are proved to be continuous and Dju = uj, then the assertion is
true if p = 1. The continuity of uj is proved in the same way as the
continuity of u. One has

|uj(x0) − uj(x)| ≤ αM

∫

Ω

gj(x, y) dNy

= αM

(∫

Ω\Ba(x0)

+

∫

Ba(x0)

)

gj(x, y) dNy ,

where

gj(x, y) =

∣

∣

∣

∣

x0j − yj

|x0 − y|α+2
− xj − yj

|x − y|α+2

∣

∣

∣

∣

The integral over the ball Ba(x0) can be made arbitrary small for all
|x0 − x| < a with small enough a. This conclusion follows from (8.1)
and the inequality

∣

∣

∣

∣

xj − yj

|x − y|α+2

∣

∣

∣

∣

≤ 1

|x− y|α+1

Note that (8.1) holds if α+1 < N in this case. Using the continuity of
gj(x, y) in the same way as the continuity of g(x, y) when proving the
continuity of u, one can show that the integral over the complement of
the ball, Ω\Ba(x0), can also be made arbitrary small for all |x0−x| < a

2
and small enough a > 0.

A proof of the equality Dju = uj is analogous to the proof of
Theorem 5.2. Since uj is continuous, by the fundamental theorem of
calculus

∂

∂ξj

∫ ξj

x0j

uj(x1, ..., xj, ..., xN) dxj = uj(x1, ..., ξj, ..., xN)
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On the other hand, using Fubini’s theorem

∫ ξj

x0j

uj(x) dxj =

∫ ξj

x0j

∫

Ω

ρ(y)
∂

∂xj

1

|x− y|α dNydxj

(1)
=

∫

Ω

ρ(y)

∫ ξj

x0j

∂

∂xj

1

|x− y|α dxj dNy

= u(x1, ..., ξj, ..., xN) − u(x1, ..., x0j, ..., xN)

Taking the partial derivative ∂
∂ξj

of both sides of this relation, it is con-

cluded that the partial derivatives of u coincide with uj. Here (1) holds
because the integrand in the iterated integral is Lebesgue integrable on
Ω × (x0j, ξj) and, by Fubini’s theorem the order of integration can be
changed. Indeed the iterated integral of the absolute value is finite:

∫ ξj

x0j

∫

Ω

∣

∣

∣

∣

ρ(y)
∂

∂xj

1

|x− y|α
∣

∣

∣

∣

dNydxj ≤ αM

∫ ξj

x0j

∫

Ω

dNy

|x− y|α+1
dxj

≤ αM

∫ ξj

x0j

∫

BR

dNy

|x − y|α+1
dxj

≤ αM |ξj − x0j|Cα+1R
N−α−1

where the boundedness of Ω was used, Ω ⊂ BR for large enough radius
R, and the latter inequality follows from Proposition 8.1 if α + 1 < N .

If α + 2 < N , then the above arguments can be applied to the
functions uj(x) (instead of u) to show that partial derivatives of uj (or
second partials of u) are continuous and the conclusion of the stated
theorem holds. This iterative process holds as long as α + β < N ,
β = 0, 1, ..., p.

8.5.1. Smooth density with a bounded support. If the density ρ is from
class Cq(RN ) and has a bounded support Ω with a piecewise smooth
boundary ∂Ω, then the potential integral defines a smoother function
than in the case discussed above. A proof is based on the integration
by parts in the integral

Du(x) = D

∫

ρ(y)

|x− y|α dNy =

∫

ρ(y)Dx
1

|x− y|α dNy

= −
∫

Ω

ρ(y)Dy
1

|x− y|α dNy .

After integration by parts, the surface integral over ∂Ω vanishes be-
cause ρ = 0 on ∂Ω, and Du has the same integral representation that
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is studied Sec.8.5 with a new bounded density Dρ because Dρ is con-
tinuous and has a bounded support. This implies that Du ∈ Cp by
Sec.8.5. The argument can be repeated q times, showing that u ∈ Cp+q.

However the derivatives of |x − y|−α are not continuous if x ∈ Ω
and, hence, the hypotheses for integration by parts are not fulfilled. To
justify the integration by parts in this case, note that the integral exists
(that is, it converges absolutely) and, hence, its value does not depend
on a regularization near the singular point y = x. Let us regularize the
integral by removing a ball Ba(x) from Ω where a → 0+. Then ρ and
|x− y|−α are continuously differentiable in Ω \Ba(x) for any a > 0 and
the integration by parts is justified:

Du(x) = − lim
a→0+

∫

Ω\Ba(x)

ρ(y)Dy
1

|x − y|α dNy

= lim
a→0+

(∮

∂Ba(x)

ρ(y)(y − x)

|x− y|α+1
dSy +

∫

Ω\Ba(x)

Dyρ(y)

|x − y|α dNy

)

,

where the boundary of Ω\Ba(x) consists of ∂Ω and the sphere |y−x| =
a. The surface integral over ∂Ω vanishes as noted. The outward unit
normal on the sphere is n = (x − y)/a. Let us show that the surface
integral vanishes in the limit a → 0+. Since |ρ(y)| ≤ M , one has

∣

∣

∣

∮

∂Ba(x)

ρ(y)(y − x)

|x− y|α+1
dSy

∣

∣

∣
≤ M

aα

∫

|z|=a

dS =
MσNaN−1

aα
→ 0

because by assumption α + p < N for some integer p ≥ 1. Therefore
by continuity of the Lebesgue integral

Du(x) = lim
a→0+

∫

Ω\Ba(x)

Dyρ(y)

|x − y|α dNy =

∫

Ω

Dyρ(y)

|x− y|α dNy ,

as desired. The above equation is valid for all derivatives up order
q, that is, one can replace D by Dβ , β ≤ q. For the derivatives of
order higher than q the integration by parts cannot be justified because
ρ ∈ Cq, and they must be computed by the equation from Sec.8.5:

DβDqu(x) =

∫

Ω

Dq
yρ(y)Dβ

x

1

|x − y|α dNy ,

where β ≤ p. In particular, if the density ρ and all its partial deriva-
tives of any order are continuous in the whole space and have bounded
support, then u is from class C∞.

The condition that ρ is from Cq(RN) and has a bounded support is
crucial for the conclusion. Suppose that ρ is defined on a bounded open
Ω and ρ ∈ Cq(Ω̄). Then it does not generally have a Cq extension to
the whole RN with support Ω unless ρ and its partial derivatives up to
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order q vanish at the boundary ∂Ω. In the latter case, the extension is
defined by ρ(x) = 0 for all x in the complement of Ω and the extended
density is from ρ ∈ Cq(RN ). If Dβρ, β ≤ q, do not vanish on the
boundary ∂Ω, the surface integral over ∂Ω in the integration by parts
is not zero and the class of Du depends on the smoothness of this
integral. This kind of surface integrals are called surface potentials:

v(x) =

∫

∂Ω

ρ(y)

|x − y|α dSy .

If the density ρ is bounded on ∂Ω, then v ∈ Cp where p is the largest
integer for which α+p < N−1 (see Exercises), which is more restrictive
than the condition in Sec.8.5. So, derivatives of Du may not exist at the
boundary ∂Ω due to the lack of differentiability of the corresponding
surface potentials.

8.6. Exercises.

1. Show that if ρ is a bounded function, then the function defined
by the line integral in R2

v(x) =

∫

S

ρ(y)

|x − y|α dsy

where S is a circle |y| = a, is continuous in R2 if 0 < α < 1, and u is
from class C∞ in R2 \ S and, in this case,

Dβ
xv(x) =

∫

S

Dβ
x

ρ(y)

|x − y|α dsy

Hint: If y1 = a cos(θ) and y2 = a sin(θ), then dsy = adθ and 0 ≤ θ ≤ 2π
for S.

2. Extend the conclusion of Problem 1 to the case when S a curve
from class C1.

3. Surface potentials. Let S be an M surface in RN from class
C1, M ≤ N − 1. Define a function v by the surface integral (called a
surface potential)

v(x) =

∫

S

ρ(y)

|x − y|α dSy , 0 < α < M

(i) Show that v ∈ C∞(RN \ S);
(ii) Show that v ∈ Cp(RN ) where p is the largest integer such that
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α + p < M , and

Dβ
xv(x) =

∫

S

Dβ
x

ρ(y)

|x − y|α dSy

where β ≥ 0 in (i) and 0 ≤ β ≤ p in (ii).

4. Solution to the Poisson equation. Suppose that ρ ∈ C1(R3) and
has a bounded support Ω. Suppose that the boundary ∂Ω is smooth
(or piecewise smooth). Prove that

∆u(x) = −4πρ(x) , x ∈ R3 , u(x) =

∫

ρ(y)

|x− y| d3y

by justifying each of the following assertions:

(i) u ∈ C1(R3) , u ∈ C∞
(

R3 \ Ω
)

,

(ii) ∆x
1

|x − y| = 0 , ∀x 6= y

(iii) x /∈ Ω ⇒ ∆u(x) = 0 ,

(iv) x ∈ Ω ⇒ ∆u(x) = −
(

∇,

∫

Ω

ρ(y)∇y
1

|x− y| d3y

)

= −
∫

Ω

(

∇yρ(y),∇y
1

|x − y|

)

d3y

= −
(
∫

Ω\Bε(x)

+

∫

Bε(x)

)(

∇yρ(y),∇y
1

|x− y|

)

d3y

(v) lim
ε→0

∫

Ω\Bε(x)

(

∇yρ(y),∇y
1

|x − y|

)

d3y = 4πρ(x) , x ∈ Ω

(vi) lim
ε→0

∫

Bε(x)

(

∇yρ(y),∇y
1

|x − y|

)

d3y = 0

where ∇ denotes the gradient.
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9. Functions defined by improper integrals

9.1. Conditionally convergent integrals. Let {Ωn} be an exhaustion of Ω.
Then the limit of integrals of a locally integrable function f ∈ Lloc(Ω)
over Ωn,

lim
n→∞

∫

Ωn

f(x) dNx,

does not exist if f is not integrable on Ω, and even if it exists then
its value depends on the choice of the exhaustion because the integral
does not converge absolutely:

f /∈ L(Ω) ⇒
∫

Ω

|f(x)| dNx = lim
n→∞

∫

Ωn

|f(x)| dNx = ∞

where the first equality is by the continuity of the Lebesgue integral.
Suppose there exists an exhaustion such that the limit of integrals of f
over Ωn exists. Then f is said to be conditionally integrable on Ω and
the value of the limit is called a conditional integral of f over Ω. Note
that the word ”conditional” refers to that the limit is computed in a
particular exhaustion (or regularization) of the integral, and its value
depends on the choice of the exhaustion (or regularization).

9.2. Abel’s theorem. Abel’s theorem for conditionally convergent inte-
grals is similar to Abel’s theorem for conditionally convergent series.
Hypotheses of the theorem are:

(i) f(x) = α(x)β(x) , ∀x > a

(ii) α(x) > 0 , α(x) → 0 monotonically as x → ∞
(iii) β(x) ∈ C0[a,∞)

(iv)

∣

∣

∣

∣

∫ d

c

β(x) dx

∣

∣

∣

∣

≤ σ , ∀c, d ≥ a

The latter condition means that integrals of β over any finite interval
are bounded and the bound σ is independent of the interval. The
conclusion of the theorem is that the limit

I =

∫ ∞

a

f(x) dx
def
= lim

R→∞

∫ R

a

f(x) dx

exists, and for any b > a
∣

∣

∣

∣

∫ ∞

b

f(x) dx

∣

∣

∣

∣

≤ σα(b)
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The latter relation provides an estimate of the rate of convergence in
the following sense:

∣

∣

∣

∣

I −
∫ R

a

f(x) dx

∣

∣

∣

∣

≤ σα(R) → 0 as R → ∞

The hypothesis for the function β requires that the mean value of β over
an interval is decreasing with increasing the length of the interval. This
happens when β is bounded and oscillates about zero, like trigonometric
functions. For example, the integrals

∣

∣

∣

∣

∫ d

c

eikx dx

∣

∣

∣

∣

=

∣

∣

∣

∣

eikd − eikc

ik

∣

∣

∣

∣

≤ 2

k
= σ

are bounded and the bound is independent of the interval of integration.
The monotonic decrease of α and boundedness of β does not guarantee
integrability of βα on (a,∞). But owing to monotonicity of α and
oscillations of β, there are cancellations in the integral of the product
αβ over an ever increasing interval so that the integral conditionally
converges. Abel’s theorem offers sufficient conditions for conditional
convergence of the integral.

A proof is given under a simplified assumption that α is continu-
ously differentiable. In this case, an integration by parts can be used.
Let

α ∈ C1

Since α is monotonically decreasing, α′(x) ≤ 0. Put

σa(x) =

∫ x

a

β(y) dy

By continuity of β, the function σa is continuously differentiable, and
σ′

a(x) = β(x) by the fundamental theorem of calculus. Furthermore,
σa is bounded by the hypothesis

|σa(x)| ≤ σ , ∀x > a

Using the integration by parts

∫ R

a

f(x) dx =

∫ R

a

α(x) dσa(x) = α(R)σa(R) −
∫ R

a

σa(x)α′(x) dx

because σa(a) = 0. Since α(R) → 0 as R → ∞, it is concluded that
|α(R)σa,R| ≤ σα(R) → 0 and, therefore the integral of f converges if
and only if the integral of σaα

′ converges. But α′(x) ≤ 0, and, hence,
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the integral converges absolutely because
∫ R

a

|σa(x)α′(x)| dx ≤ σ

∫ R

a

|α′(x)| dx = −σ

∫ R

a

α′(x) dx

= σα(a)− σα(R)

≤ σα(a) < ∞
Furthermore it follows that for any b > a

∣

∣

∣

∣

∫ R

b

|σa(x)α′(x) dx

∣

∣

∣

∣

≤
∫ R

b

|σa(x)α′(x)| dx ≤ σα(b)

for all R. By taking the limit R → ∞, it is concluded that
∣

∣

∣

∣

∫ ∞

b

|σa(x)α′(x) dx

∣

∣

∣

∣

≤ σα(b)

as required.

9.3. Differentiability of Fourier transforms revisited. It was shown in Sec.
5.3.2 that the Fourier transform

F (k) =

∫ ∞

−∞
eikxf(x) dx

is from class Cp if xpf(x) is integrable on R. It turns out that even if
xpf(x) is not integrable it is possible to show that F can be from class
Cp at least in some interval without evaluating the integral explicitly,
provided the Fourier integral of xpf(x) converges conditionally. The
technique is based on combining Abel’s theorem and Theorem 1.3. The
basic idea is illustrated with Example (7.3).

The function (7.3) is from class C∞ on any interval that does not
contain k = 0. However it is shown in Sec. 5.3.1 that the hypotheses
of Theorem 5.2 are too restrictive to detect differentiability. Can the
differentiability for all k 6= 0 be detected without evaluation of the
integral?

Define a sequence

Fn(k) =

∫ n

−n

g(k, x) dt =

∫ n

−n

eikx

1 + x2
dx

Since g(k, x) is integrable on R for any x, the sequence Fn(k) converges
to F (k) for any k. Let us show that Fn(k) is continuously differentiable
for any n. Indeed, although |Dxg(k, x)| is not integrable on R, it is
integrable on any bounded interval (−n, n). Therefore By Theorem
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5.2, Fn is continuously differentiable and

F ′
n(k) =

∫ n

−n

Dxg(k, x) dx =

∫ n

−n

ixeikx

1 + x2
dx = −2

∫ n

0

x sin(kx)

1 + x2
dx

Next, one should show that the sequence of derivatives converges to
some function G(x) and then try to find an interval on which this
convergence is uniform. Then by Theorem 1.3, F ′(k) exists and F ′(k) =
G(k) in this interval.

A pointwise convergence of F ′
n(k) can be investigated by means of

Abel’s theorem. The integral that defines F ′
n(k) contains the product

of a function α(x) = x/(1 + x2), that is positive and monotonically
decreasing to zero in the interval (1,∞), and the function β(x) =
sin(kx) whose integrals over any bounded interval are bounded by a
number independent of the interval:
∣

∣

∣

∫ d

c

β(x) dx
∣

∣

∣ =
∣

∣

∣

∫ d

c

sin(kx) dx
∣

∣

∣ =
∣

∣

∣

cos(ck) − cos(dk)

k

∣

∣

∣ ≤ 2

|k| = σ .

provided k 6= 0. By Abel’s theorem, the sequence of derivatives has a
limit for any k 6= 0:

lim
n→∞

F ′
n(k) = G(k) , k 6= 0 .

Let us estimate of the rate of convergence by means of the second part
of Abel’s theorem to show that F ′

n converges to G uniformly on any
set |x| ≥ δ > 0 and, hence, by Theorem 1.3 F ′(x) = G(x) in this set.
Indeed, by Abel’s theorem

|G(k) − F ′
n(k)| ≤ 2σα(n) ≤ 4

δ
· n

1 + n2
, ∀|k| ≥ δ

Since the above inequality holds for any |k| ≥ δ > 0 any n, one can
take the supremum in the left side and then the limit n → ∞ in both
sides. The limit in the right side vanishes so that

lim
n→∞

sup
|k|≥δ>0

|G(k) − F ′
n(k)| = 0 .

This means that F ′
n converges to G uniformly on the set |k| ≥ δ > 0

and therefore F ′(k) = G(k). Since δ > 0 is arbitrary,

F ′(k) =
d

dk

∫ ∞

∞

eikx

1 + k2
dk = lim

n→∞

∫ n

−n

∂

∂k

eikx

1 + x2
dx , k 6= 0

This example shows that the lack of an integrable bound of partial
derivatives with respect to a parameter that is independent of the
parameter does not mean that the integral is not differentiable with
respect to that parameter; it can still be differentiable on a smaller
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set and its derivatives can be given by improper integrals of the corre-
sponding partial derivatives with respect to parameters:

Proposition 9.2. Suppose that f ∈ L but xf(x) is not integrable
on R. If, in addition, xf(x) is monotonic for all |x| ≥ a > 0 and
|xf(x)| → 0 as |x| → ∞, then the Fourier transform of f is continu-
ously differentiable for all non-zero values of the argument and

F ′(k) =
d

dk

∫ ∞

−∞
f(x)eikx dx = lim

n→∞

∫ n

−n

ixf(x)eikx dx , k 6= 0

A proof of this proposition is left to the reader as an exercise.

9.4. Exercises.

1. Prove Proposition 9.2. Put

Fn(k) =

∫ n

−n

eikxf(x) dx , n = 1, 2, ...

(i) Show that Fn converges to the Fourier transform F of f ;
(ii) Prove that Fn ∈ C1 for all n, and

F ′
n(k) =

∫ n

−n

ixf(x) eikx dx .

(iii) Use Abel’s theorem to prove that the sequence F ′
n(k) converges to

some G(k) for any k 6= 0.
(iv) Show that there exists a constant C such that

|F ′
n(k) − G(k)| ≤ C

|k| n
(

|f(n)| + |f(−n)|
)

,

for all k 6= 0 and all n > a.
(v) Prove that F (k) is continuously differentiable for all k 6= 0 and
F ′(k) = G(k).

2. Consider the function defined by the Fourier integral

F (k) =

∫ ∞

−∞

cos(kx)

1 + x4
dx

(i) Show that F ∈ C2(R)
(ii) Show that F ∈ C3(|k| ≥ δ) for any δ > 0.
(iii) Use the residue theorem to find an explicit form of F (k). Compute
F ′′′(k). Does it exist for all k?
(iv) Can F ′′′(k) be obtained by interchanging the order of D3

k and in-
tegration with respect to x? If so, evaluate the integral after differen-
tiation of the integrand with respect to k.
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10. Space of square integrable functions L2(Ω)

10.1. Metric spaces. The distance between two points x and y in RN is
defined by d(x, y) = |x− y|. The distance defines a numerical measure
of that how two points are close to one another. Consider a collection
of elements of any nature, denoted X . Let us define a distance on X
as a function of a pair elements that satisfies the distance axioms: The
distance is a symmetric and non-negative function and vanishes if and
only if the pair contains identical elements, and it obeys the triangle
inequality:

d(f, g) = d(g, f) ≥ 0 ,

d(f, g) = 0 ⇔ f = g ,

d(f, g) ≤ d(f, h) + d(h, g)

for any f , g, and h from X . A set X with the distance function is
called a metric space and the distance function is called a metric on X .

A sequence {fn} is said to converge to f in X if d(fn, f) → 0 as
n → ∞

fn → f in X : lim
n→∞

d(fn, f) = 0

Similarly, one can define Cauchy sequences in X . A sequence {fn} in
a metric space is called a Cauchy sequence if for any ε > 0 one can find
an integer m such that

d(fn, fk) < ε , n, k > m

In other words, the distance d(fn, fk) can be made arbitrary small for
all sufficiently large n and k. It follows from the triangle inequality

d(fn, fk) ≤ d(fn, f) + d(fk, f)

that every sequence that converges in X is a Cauchy sequence. But in
contrast to RN , a Cauchy sequence in a general metric space may or
may not have a limit element in X . As an example, consider the set
of all rational numbers. It is a metric space with the usual distance
function. Take a sequence of rational numbers {qn} where qn is an
approximation of

√
2 with n decimal places, q1 = 1.4, q2 = 1.41, q3 =

1.414, q4 = 1.4142, etc. This sequence is a Cauchy sequence but it has
no limit in the set of rational numbers.

A metric space is called complete if all Cauchy sequences have limits
in it.

There are many ways to define a distance on the same set. Prop-
erties of a metric space depend on the metric even if the metric spaces
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contain the same elements. In particular, the completeness of a metric
space depends on the metric.

10.1.1. Space of bounded functions as a metric space. Let B(Ω) be a set
of all bounded functions:

f ∈ B(Ω) : sup
Ω

|f(x)| < ∞

The number
‖f‖∞ = sup

Ω
|f(x)|

is called the supremum norm of a bounded function f . This set is a
linear space because a linear combination of bounded functions is a
bounded function. In other words, the set B(Ω) is closed relative to
addition of functions and multiplication them by a number. Define the
distance on B(Ω) by

d(f, g) = sup
Ω

|f(x) − g(x)| = ‖f − g‖∞

It satisfies the distance axioms. So, the norm of f can be interpreted
as the distance of f from the zero function, just like the length of a
vector in a Euclidean space.

Every Cauchy sequence of functions in B(Ω) has a pointwise limit.
Indeed, for any x ∈ Ω, a numerical sequence {fn(x)} is a Cauchy
sequence in R because

|fn(x) − fj(x)| ≤ sup
Ω

|fn(x) − fj(x)| = d(fn, fj) .

Therefore by the Cauchy criterion for numerical sequences there exists
a function f defined by the pointwise limit:

f(x) = lim
n→∞

fn(x) , x ∈ Ω

Let us show that f ∈ B(Ω), that is, f is bounded. Fix ε > 0 and find
m such that d(fn, fk) < ε for all n, k > m. Put

M = max
k=1,2,...,m

{‖fk‖∞, ε}

Then for any n and all x in Ω

|fn(x)| ≤ |fm(x)|+ |fn(x) − fm(x)|
≤ sup

Ω
|fm(x)| + sup

Ω
|fn(x) − fm(x)| ≤ 2M

Therefore by taking the limit in the left side of the inequality, it is
concluded that the limit function is bounded

|f(x)| ≤ 2M , x ∈ Ω ⇒ f ∈ B(Ω) .
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Thus, the space of bounded functions is complete relative to the supre-
mum metric.

10.2. Metric spaces C0(Ω) and C0
2(Ω). Let Ω be a bounded closed re-

gion in RN . The space of continuous functions on Ω is a subset of
B(Ω). Therefore the distance defined by the supremum is a distance
function on C0(Ω). The space C0(Ω) is complete because the limit
of a uniformly convergent sequence of continuous functions on Ω is a
continuous function on Ω by Theorem 1.2.

There is another way to define a distance in the space of continu-
ous functions. Any continuous function on a bounded closed region is
square integrable. Put

‖f‖2 =

(
∫

Ω

|f(x)|2 dNx

)1/2

< ∞

Let C0
2(Ω) be the space of continuous functions in which the distance

is defined by

d(f, g) = ‖f − g‖2

It also satisfies the distance axioms for all f and g from C0(Ω). In-
deed, it is non-negative and symmetric and vanishes if and only if two
continuous functions f and g are equal. To see the latter, assume that
f(x0) 6= g(x0) at some x0 in Ω while d(f, g) = 0. By continuity of f−g,
there exists a ball Ba(x0) of some radius a where |f(x) − g(x)| > 0 so
that integral cannot vanish as the ball has a non-zero measure, which
contradicts to the condition d(f, g) = 0. The triangle inequality follows
from the Cauchy-Schwartz inequality

(10.1)

∫

Ω

|f(x)g(x)| dNx ≤ ‖f‖2‖g‖2

which will be proved in the next section. Indeed, for any complex-
valued functions

|f(x) − g(x)| ≤ |f(x) − h(x)|+ |h(x) − g(x)|
by squaring this inequality and integrating both sides, one infers from
the Cauchy-Schwartz inequality that

‖f − g‖2
2 ≤ ‖f − h‖2 + ‖h − g‖2 + 2

∫

Ω

|f(x) − h(x)||h(x) − g(x)| dNx

≤
(

‖f − h‖2 + ‖h − g‖2

)2

and the triangle inequality follows.
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The convergence of a sequence in C0
2(Ω) is called a convergence in

the mean. Uniform convergence implies convergence in the mean if Ω
has a finite measure because

(10.2) ‖fn − f‖2
2 ≤ ‖fn − f‖2

∞

∫

Ω

dNx = ‖fn − f‖2
∞µ(Ω) .

Similarly, if {fn} is a Cauchy sequence in C0(Ω), it is a Cauchy sequence
in C0

2 (Ω) if µ(Ω) < ∞. However, the converse is false, and there are
Cauchy sequences in C0

2(Ω) that do not have a limit in it, that is, the
space of continuous square integrable functions is not complete.

It is not difficult to construct a Cauchy sequence in C0
2 (Ω) whose

pointwise limit is a function that is not from C0
2(Ω). Let Ω = [−1, 1]

and fn(x) = nx if |x| < 1
n

and fn(x) = 1 otherwise. Then for any
x 6= 0, fn(x) → 1 as n → ∞, and fn(0) = 0. So the limit function is
not continuous at x = 0 and, hence, does not belong to C0

2 [−1, 1]. On
the other hand,

‖fn − fk‖2
2 = 2(n − k)2

∫ 1
n

0

x2dx + 2

∫ 1
k

1
n

(1 − kx)2dx → 0

for n > k → ∞.

10.2.1. Proof of the Cauchy-Schwartz inequality. Consider a quadratic
non-negative function of a real variable t defined by

h(t) = ‖|f | − t|g|‖2
2 = A − 2Bt + Ct2 ≥ 0 ,

A = ‖f‖2
2 , C = ‖g‖2

2 , B =

∫

Ω

|f(x)g(x)| dNx

If C = 0, then the inequality holds. If C 6= 0, then t(t) attains its
absolute minimum at t = t∗ = B/C. The inequality follows from
h(t∗) ≥ 0:

h(t∗) = A − B2

C
≥ 0 ⇒ B ≤

√
AC = ‖f‖2 ‖g‖2

10.3. Lebesgue square integrable functions. The space L2(Ω). Recall
that all real numbers are constructed by completion of rational num-
bers by limits of all Cauchy sequences of rational numbers. The same
question can be asked about completion of the space C0

2(Ω). The ex-
tension to the set of all Riemann square integrable functions also does
not produce a complete space because there are sequences of continuous
functions converging to Riemann non-integrable functions. It turns out
that an extension of the set of square integrable continuous functions
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by the set of all Lebesgue square integrable functions gives a complete
space.

The space of all Lebesgue square integrable functions on a set Ω
will be denoted by L2(Ω) or simply by L2 if Ω = RN :

f ∈ L2(Ω) :

∫

Ω

|f(x)|2 dNx < ∞ .

and the number ‖f‖2 will be called the L2−norm of f .

10.3.1. L2(Ω) is a linear space. If f is square integrable, then its mul-
tiplication by a constant produces a square integrable function. Let
f and g be square integrable. For any two complex square integrable
functions f and g

∣

∣

∣

∣

∫

Ω

f(x)g(x) dNx

∣

∣

∣

∣

≤ ‖f‖2 ‖g‖2

which follows from (10.1), and, as a consequence,

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2 .

The latter inequality is known as the Minkowski inequality. It implies
that the sum f(x) + g(x) is square integrable because ‖f + g‖2 < ∞
and, hence, L2(Ω) is a linear space. To prove the Minkowski inequality,
note that

‖f + g‖2
2 = ‖f‖2

2 + ‖g‖2
2 + 2Re

∫

f(x)g(x) dNx

≤
(

‖f‖2 + ‖g‖2

)2

by Re z ≤ |z| and the Cauchy-Schwartz inequality.

10.3.2. Relation between L(Ω) and L2(Ω). Let us show that any square
integrable function on Ω is integrable on Ω if the measure of Ω is finite:

f ∈ L2(Ω) , µ(Ω) < ∞ ⇒ f ∈ L(Ω)

In the Cauchy-Schwartz inequality, let g be the characteristic function
of Ω. This implies that

∫

Ω

|f(x)| dNx ≤ ‖1‖2‖f‖2 =
√

µ(Ω)‖f‖2 < ∞

Since |f | is integrable so is f by Sec. 4.7. The converse is not true. As
an example, consider f(x) = x−1/2 on Ω = (0, 1). Then f ∈ L(0, 1) but
f2(x) = 1

x
is not integrable on (0, 1). Thus,

L2(Ω) ⊂ L(Ω) , µ(Ω) < ∞ ,
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If µ(Ω) = ∞, then L2(Ω) contains functions that are not integrable.
For, example f(x) = (1 + x2)−1/2 is not integrable on R, whereas it is
square integrable on R.

10.3.3. L2(Ω) as a metric space. Let us define the distance in L2(Ω) in
the same way as in C0

2 (Ω). Then the distance satisfies all the distance
axioms but the second one because the distance vanishes for any two
functions that are equal almost everywhere:

d(f, g) = 0 ⇔ f(x) = g(x) a.e.

To resolve this problem, let us split all Lebesgue integrable functions
into equivalence classes where each class contains all functions that
differ from one another on sets of measure zero. Then the space L2(Ω)
is defined as a collection of all such equivalence classes. In other words,
by saying that f is an element of L2(Ω), it is meant that f is a collection
of all functions that differ from one another on a set of measure zero
so that

f = g in L2(Ω) ⇔ f(x) = g(x) a.e.

The distance between any two classes is defined as the L2−distance
between any two representatives of these classes. The distance does not
depend on the choice of the representatives as the Lebesgue integral
cannot be change by alterations of the integrand on a set of measure
zero. With this agreement, the second distance axiom is satisfied. In
particular, the zero element in L2(Ω) is the collection of all functions
that are zero almost everywhere:

f = 0 in L2(Ω) ⇔ f(x) = 0 a.e.

10.3.4. Completeness ofL2(Ω). It turns out that every Cauchy sequence
in L2(Ω) has a limit in it so that L2(Ω) is a complete metric space.

Theorem 10.1. (Riesz-Fisher)20

Let {fn} be a sequence in the space of square integrable functions. Then
in order that there exists an element f toward which the sequence con-
verges in the mean, it is necessary and sufficient that ‖fn − fk‖2 → 0
for n, k → ∞.

The space of square integrable functions plays a fundamental role
in quantum theory. According to one of the postulates of quantum me-
chanics, all possible states of any physical system are elements of some
space L2(Ω), which is a Hilbert space of the system, and a time evolution
of any physical system is governed by the Schroedinger equation in the

20F. Riesz and B. Sz.-Nagy, Functional analysis, Sec. 28
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Hilbert space of the system. Hilbert spaces and the Schroedinger equa-
tion will be discussed later in detail. It will be shown that the space
L2(Ω) admits an inner product, analogous to the dot (or scalar) prod-
uct in Euclidean spaces, and there exist orthogonal functional bases
in L2(Ω) such that any element of L2(Ω) can be expanded over them
into a unique series (called a Fourier series). In this sense and owing to
the completeness of L2(Ω), the space L2(Ω) is an infinite dimensional
generalization of Euclidean (real or complex) spaces.

10.4. Dense subsets in a metric space. In practical calculations, it is suf-
ficient to use only rational numbers because any irrational number can
be approximated by a rational one with any desired accuracy. Nat-
urally, it is interesting to investigate subsets in a metric space whose
elements can approximate any element in a metric space with any de-
sired accuracy.

A subset A ⊂ X in a metric space is called dense is for any element
f in X one can find an element g from A that is arbitrary close to
f (the distance d(f, g) can be made arbitrary small with a suitable
choice of g). Putting this in a more formal way, a subset A is dense in
a metric space X if for any f ∈ X , there exists a sequence {fn} ∈ A
such that

lim
n→∞

d(f, fn) = 0 .

In other words, for any f ∈ X one can find an element from A that is
arbitrary close to f (the distance d(f, g) can be made arbitrary small
with a suitable choice of g). For example, the set of rational numbers
is dense in the space of reals. The set of all vectors in RN with rational
components is dense in RN .

If A is dense in X , then any larger subset of X is dense in X . If
A is dense in B and B is dense in X , then A is dense in X . This
follows from the triangle inequality. Fix f ∈ X and ε > 0. Since B
is dense in X , there exists g ∈ B that is arbitrary close to f , that is,
d(f, g) < ε. Having found g, one can find h ∈ A that is arbitrary close
to g, d(h, g) < ε. By the triangle inequality, h is arbitrary close to f :

d(h, f) ≤ d(h, g) + d(g, f) < 2ε .

as ε is arbitrary.

10.4.1. Polynomials in C0[a, b]. Let P be a set of all polynomials. Then
P ⊂ C0[a, b]. The following theorem shows that P is dense in the
space of continuous functions on any bounded closed interval, and any
continuous function can be approximated by a polynomial with any
desired accuracy relative to the supremum metric.
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Theorem 10.2. (Weierstrass)21 If f is a continuous complex func-
tion on [a, b], there exists a sequence of polynomials Pn that converges
to f uniformly on [a, b]:

lim
n→∞

‖Pn − f‖∞ = 0

If f is real, then Pn may be taken real.

10.4.2. Dense subsets in L2(a, b). Let us show that the space of polyno-
mials P is dense in L2(a, b) for any bounded interval.

Let C0
pw denote a set of piecewise continuous functions. Then

P ⊂ C0[a, b] ⊂ C0
pw ⊂ L2(a, b)

If P is proved to be dense in C0[a, b], C0[a, b] in C0
pw, and C0

pw in L2(a, b)
relative to the L2 distance, then P is dense in L2(a, b).
C0

pw is dense in L2(a, b). Let f ∈ L2(a, b). Then f±(x) = 1
2
(|f(x) ±

f(x)) ≥ 0 are also square integrable on (a, b) and, hence, they are
integrable on (a, b) by Sec.10.3.2. Therefore by Definition 3.3 there
exist monotonically increasing sequences h±

n of piecewise continuous
functions such that

lim
n→∞

h±
n (x) = f±(x) a.e.

Let m± ≤ h±
1 (x) for all x in [a, b]. Since h±

n (x) is increasing with
increasing n and f±(x) ≥ 0,

(

f±(x) − h±
n (x)

)2

≤
(

f±(x) − m±
)2

∈ L(a, b)

where the inequality holds almost everywhere. By the Lebesgue domi-
nated convergence theorem

lim
n→∞

‖f± − h±
n ‖2

2 = lim
n→∞

∫ b

a

(

f±(x) − h±
n (x)

)2

dx = 0

By the triangle inequality, the sequence of piecewise continuous func-
tions hn = h+

n − h−
n converges to f in L2(a, b):

‖f − hn‖2 ≤ ‖f+ − h+
n ‖2 + ‖f− − h−

n ‖2 → 0

when n → ∞.
C0[a, b] is dense in C0

pw relative to the L2 metric. Suppose f has a jump
discontinuity at x = c ∈ (a, b) and is continuous otherwise in [a, b]. If
f(c+) and f(c−) are the right and left limits of f at c, construct a
continuous function hn(x) such that hn(x) = f(x) if |x− c| < d0

n
where

d0 is the smallest number of b − c and c − a. In the interval [x−
n , x+

n ],

21W. Rudin, Principles of mathematical analysis, Theorem 7.26
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where x±
n = c±d0/n, n = 1, 2, ..., hn(x) is the linear function such that

hn(x
±
n ) = f(x±

n ). Then

‖f − hn‖2
2 =

∫ x+
n

x−
n

|f(x) − hn(x)|2 dx ≤ 8M2d0

n
→ 0

when n → 0 because |hn(x)| ≤ M where M = sup |f(x)| < ∞. A
general piecewise continuous function f has finitely many jump dis-
continuities in (a, b). A sequence of continuous functions converging to
f in the mean is constructed in the same way by interpolating f by
linear functions in small intervals containing the points where f is not
continuous and letting the total length of these intervals tend to zero.
P is dense in C0[a, b] relative to the L2 metric. The assertion follows
from Eq. (10.2) and Weierstrass theorem.

10.4.3. Dense subsets in L2(R). Let C0
0 denote the space of all continu-

ous functions on R (or RN) with a bounded support. For any function
from C0

0 , there exists R > 0 such that f(x) = 0 if |x| > R.

Proposition 10.1. The space C0
0 is dense in L2

Let f be square integrable. By continuity of the Lebesgue integral
∫

|f(x)|2 dx = lim
R→∞

∫

|x|<R

|f(x)|2 dx

This implies that for any ε there exists R > 0 such that

‖f − f
R
‖2 < ε , fR(x) = χ

R
(x)f(x) ,

with χ
R

being the characteristic function of [−R, R]. Since C0[−R, R]
is dense in L2(−R, R), there exists a continuous function h on [−R, R]
such that

‖f
R
− χ

R
h‖2 < ε

Let g(x) = 0 if |x| > R + δ for some δ > 0 and g(x) = h(x) if
|x| ≤ R. On the intervals [−R − δ,−R] and [R, R + δ], g(x) coincides
with any continuous monotonic interpolation from g(−R − δ) = 0 to
g(−R) = h(−R) and from g(R) = h(R) to g(R + δ) = 0, respectively.
By construction, g is a continuous function with a bounded support.
Then it follows from |g(x)| ≤ M = max{|h(−R)|, |h(R)|} if R ≤ |x| ≤
R + δ that

‖g − χ
R
h‖2 =

(∫

R<|x|<R+δ

|g(x)|2 dx

)1/2

≤ M
√

2δ < ε

if δ < ε2/(2M2). By the triangle inequality,

‖f − g‖2 ≤ ‖f − f
R
‖2 + ‖f

R
− χ

R
h‖2 + ‖χ

R
h − g‖2 < 3ε
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and since ε is arbitrary, it is concluded that for any f ∈ L2 one can find
a continuous function with bounded support that is arbitrary close to
f in the mean, that is, C0

0 is dense in L2.
Other dense subsets of L2 will be discussed in detail in the next

chapter.

10.5. Exercises.

1. Space Cp(Ω) as a metric space.

(i) For any function from class Cp(a, b) whose derivatives are bounded,
put

‖f‖Cp = sup
β≤p,x∈(a,b)

|f (β)(x)|

where a can be −∞ and b can be ∞. Define the distance by

d(f, g) = ‖f − g‖Cp .

Show that all distance axioms are satisfied.
(ii) Show that the space of p−times continuously differentiable func-
tions with bounded derivatives is complete.
Hint: Take a Cauchy sequence {fn}. Show that the sequence converges
uniformly to a continuous function f by noting that the convergence in
Cp−metric implies convergence in the C0−metric. Next show that the
sequence of derivatives {f ′

n} converges uniformly to some g and f ′ = g.
Repeat the argument to show that f is from the class Cp.
(iii) Show that the set of p−times continuously differentiable functions
with bounded derivatives is not complete with respect to C0−distance
by giving an example of a Cauchy sequence of continuously differen-
tiable functions that converges to a function that is not from C1.
(iv) Let Ω be a region in RN . Put

d(f, g) = ‖f − g‖Cp = sup
β≤p, Ω

|Dβf(x) − Dβfa(x)| .

for any f and g from class Cp(Ω) whose partial derivatives are bounded.
Show that the distance axioms are satisfied and the constructed metric
space is complete.

2. Space L(Ω) as a metric space.

(i) Consider the space L(Ω) as a collection of equivalence classes where
two functions belongs to the same class if the functions are equal almost
everywhere. Use the properties of the Lebesgue integral to show that
L(Ω) is a linear metric space where the distance is defined by

d(f, g) =

∫

Ω

|f(x) − g(x)| dNx
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by verifying the distance axioms.
(ii) Prove that the space of polynomials is dense in L(a, b) for any
bounded interval (a, b).
(iii) Prove that the space of continuous functions with bounded support
is dense in L(R).



CHAPTER 2

Distributions

13. Basic idea of distributions

A distribution is a generalization of the concept of a classical func-
tion. This generalization allows us to introduce a density of some
quantity distributed over sets of zero measure (volume), like the mass
or charge density of a point-like particle, or the electric charge den-
sity of dipoles distributed over a surface, or an intensity of instant and
point-like source of waves in a mathematically correct way. On the
other hand, the very notion of ”instant” and ”point-like” is a math-
ematical idealization because any physical process has a duration in
time and is extended in space, and, hence, only mean values can be
measured. A distribution describing a force applied to a particle that
creates a finite momentum change of the particle during an arbitrary
small interval of time can be viewed as the limit of the mean values of
the force measured over successively smaller periods of time. Similarly,
a density density of some physical quantity possessed by a point par-
ticle (like mass or electric charge) can be viewed as the limit of mean
values of the density over successively smaller regions of space.

13.1. Dirac delta-function. Define a sequence of piecewise constant func-
tions of a real variable:

fn(x) =







n
2
, |x| ≤ 1

n

0 , |x| > 1
n

Clearly,

lim
n→∞

fn(x) = δ(x) =

{

∞ , x = 0
0 , x 6= 0

Therefore, the limit function vanishes almost everywhere, δ(x) = 0 a.e.
However, the limit integral value is not zero:

lim
n→∞

∫ b

a

fn(x) dx = lim
n→∞

1 = 1

for any interval a < 0 < b. There is no contradiction here. The obser-
vation merely means that the order of taking the limit and integration
cannot be interchanged for this functional sequence. Evidently, the
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