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CHAPTER 1

Integration in Euclidean spaces

1. Euclidean spaces and functions on them

1.1. Euclidean spaces. Elements (vectors) of a real (or complex) Eu-
clidean space RN (or CN ) are denoted by Roman letters, e.g., x, y,
etc. They are ordered N−tuples of real (or complex) numbers, x =
(x1, x2, ..., xN). Components of x are labeled by indices i or j. The
inner (dot) product and the norm (length) are defined, respectively, by

(x, y) =
N
∑

i=1

xiyi , |x| =
√

(x, x)

where z̄ denotes the complex conjugation of z. Unless stated otherwise,
Einstein’s summation rule over repeated indices will be used through-
out the text:

N
∑

j=1

N
∑

i=1

Aijxiyj
def
= Aijxiyj

The norm satisfies the triangle inequality

| |x| − |y| | ≤ |x− y| ≤ |x|+ |y| ,

and the Schwartz inequality holds for the inner product

(1.1) |(x, y)| ≤ |x||y| ,

Two vectors are called orthogonal if their inner product vanishes.
Any N orthogonal vectors {n̂a}N

1 form an orthogonal basis in RN

and, if |n̂a| = 1, the basis is called orthonormal. Any vector x has a
unique expansion:

x = xan̂a , xa =
(x, n̂a)

|n̂a|2
.

Orthogonal vectors êa, a = 1, 2, ..., N , with components êai = δai form
the standard basis in RN . The standard basis is orthonormal, (êa, êb) =
δab.

3



4 1. INTEGRATION IN EUCLIDEAN SPACES

1.1.1. Sequences in RN . Indices n or m are used to label elements in
a Euclidean space. In particular, a sequence of points is denoted by
{xn}∞1 or simply {xn} (by default, the index enumerating elements of
a point sequence ranges over all positive integers). A sequence {xn} is
said to converge to x if

lim
n→∞

|xn − x| = 0

and in this case, one also writes xn → x. It follows from the inequalities

|xnj − xj| ≤ |xn − x| ≤
N
∑

i=1

|xni − xi| ,

where xnj and xj are the jth components of the vectors xn and x,
respectively, that xn → x in RN if and only if the sequences of com-
ponents converge to the corresponding components of the limit point,
xnj → xj in R for every j = 1, 2, ..., N .

A sequence {xn}∞1 is called a Cauchy sequence if

|xn − xm| → 0 for n, m → ∞ .

In other words, the distance |xn − xm| can be made arbitrary small
for all sufficiently large n and m. The Cauchy criterion states that a
sequence in a Euclidean space converges to some point if and only if it
is a Cauchy sequence. If {xn} is a Cauchy sequence in RN , then the
sequences of components {xni} are Cauchy sequences in R and vice
versa. The assertion follows from the Cauchy criterion for numerical
sequences.

Every convergent sequence is bounded. Indeed, if xn → x, then
|xn − x| < 1 for all n > m and some m. This implies that at most
finitely many elements of a convergent sequence are outside of any
ball centered at the limit point. Therefore the sequence lies in a ball
centered at x and of radius maxn≤m{|xn−x|, 1} and, hence, is bounded.
This also implies that any Cauchy sequence is bounded.

The converse in not true. However, every bounded sequence in a
Euclidean space has a convergent subsequence (the Bolzano-Weierstrass
theorem).

Let us show first this is true for R. Suppose a ≤ xn ≤ b for all
elements of a numerical sequence {xn}. If the sequence has finitely
many distinct elements, then the assertion is true. So without loss of
generality all elements are assumed to distinct. Put y1 = x1. Suppose
there are infinitely many elements of the sequence {xn} that are greater
than x1. Then one can select a monotonically increasing subsequence
yk < yk+1 by choosing y2 to be the first element xn, n = 1, 2, ..., that
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is greater than x1: y2 = xn2 > x1. Then y3 = xn3 is the first element
that is greater than xn2 and so on. Every monotonic sequence that
is bounded, yk ≤ b, converges. If there only finitely many elements
that are greater than x1, then there should be infinitely many elements
that are less than x1. So, one can select a monotonically decreasing
subsequence in the same fashion. This subsequence is bounded from
below by a and, hence, converges. In RN , the above argument is applied
to each component of a vector xn ∈ RN . Since a sequence in RN

converges if and only if all sequences of the components converges, the
conclusion of the theorem is also true in RN .

1.1.2. Basic sets in a Euclidean space. A collection of all points whose
distance from x is less than a > 0,

Ba(x) = {y ∈ RN | |x − y| < a} ,

is called an open ball of radius a centered at x. For brevity, Ba(0) = Ba.
A set Ω is bounded if it lies in a ball of sufficiently large radius, Ω ⊂ Ba.

A neighborhood of a point x is Ba(x) for some a > 0. A point x in a
set Ω is called an interior point if there exists a neighborhood of x that
lies in Ω, Ba(x) ⊂ Ω for small enough a. A point x is called a limit
point of Ω if any neighborhood of x has a point of Ω distinct from x.
Clearly, a limit point of Ω may or may not be in Ω. For example, the
limit points of an open interval (a, b) form the closed interval [a, b]. A
set that contains all its limit points is called closed. The set obtained
from Ω by adding all its limit points is called the closure of Ω and will
be denoted by Ω̄. The reader is advised to show that the closure is
closed. The closure Ω̄ is the smallest closed set that contains Ω.

An open box R in RN is a collection of points whose coordinates
span open bounded intervals, aj < xj < bj, j = 1, 2, ..., N . For brevity,

R = (a1, b1) × (a2, b2) × · · · × (aN , bN) .

A box is closed if all intervals are closed.
A collection of all interior points is called the interior of Ω and will

be denoted by Ωo. The interior of Ω is the largest open set that lies in
Ω. By the Cauchy criterion, any Cauchy sequence in Ω converges to
a limit point of Ω. So, the closure of Ω consists of limit points of all
Cauchy sequences in Ω.

The set Ωc = RN\Ω is called the complement of Ω. The complement
of a closed set is open (a proof is left to the reader as an exercise).
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1.1.3. The boundary of a set. The boundary of Ω is the difference be-
tween the closure and interior of Ω:

∂Ω = Ω̄ \ Ωo

1.1.4. Heine-Borel theorem. Bounded and closed sets in a Euclidean
space are called compact. They have a remarkable property. Let Ω be
a set RN . Suppose that a collection of open sets {Uα} labeled by an
index α is such that their union contains Ω:

Ω ⊂
⋃

α

Uα

The collection {Uα} is called an open cover of Ω. The nature of index α
is not specified. For example, it can range over any set in a Euclidean
space. If α can take infinitely many values, then the cover is called
infinite, otherwise it is called finite.

The following statement, known as the Heine-Borel theorem, holds1.
Every infinite open cover of a compact set has a finite subcover. A proof
can be found in Appendix.

In particular, any set Ω is covered by the union of open balls of
radius a > 0 centered at every point of Ω:

Ω ⊂
⋃

x∈Ω

Ba(x)

If Ω is closed and bounded in RN , then, by the Heine-Borel theorem,
one can find a finitely many points in Ω such that the union of open
balls centered at these points contains Ω:

Ω̄ = Ω , Ω ⊂ BR ⇒ Ω ⊂
n
⋃

j=1

Ba(xj)

for any a > 0 and some {xj}n
j=1.

Intuitively, this assertion is obvious for any bounded set. For ex-
ample, a bounded set Ω in R is contained in a bounded interval R. Let
us take an open cover of R that consists of open intervals of length 2a
labeled by the midpoints. Then it is also a cover of Ω. The length of
R does not exceed na/2 for a large enough integer n. Then there are n
points in R whose distance from its left and right neighbors does not
exceed a/2. The intervals of length 2a centered at these points form
a finite subcover of R and, hence, Ω. Of course, it can happen that
one or more selected midpoints are not in Ω. But for any interval with
such a midpoint can be replaced by a suitable interval centered at a

1see, e.g., W. Rudin, Principles of mathematical analysis, Chapter 2
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point of Ω within the distance a/2 from the selected midpoint. This
argument is readily extended to a bounded set in RN .

Why is compactness required in the Heine-Borel theorem? The rea-
son can be illustrated by the following example. Suppose Ω = (0, 1] ⊂
R. Take a sequence {xn} ⊂ (0, 1] that converges to 0 strictly monoton-
ically, e.g., xn = 1

n
. Let x1 = 1. Consider a cover of Ω by open intervals

(xn

2
, 3xn

2
) (balls of radius 1

2
xn centered at xn). Clearly, it is not possible

to select a finite subcover because for any interval in the cover there
are points of Ω close enough to x = 0 that are not this interval. Now
if Ω = [0, 1], then the constructed set of intervals is not a cover of Ω
as the point x = 0 does not belong to the union of the intervals. To
obtain a cover, one should add at least one open interval that contains
x = 0. But this interval must also contain a small neighborhood of
x = 0 of some radius a and, hence, this interval and finitely many in-
tervals centered at xn > a

2
form a finite subcover of a compact interval

[0, 1]. A similar example is not difficult to construct in RN . The idea
is that if Ω has a limit point that does not belong to Ω, then one can
construct an open cover that has no finite subcover (e.g., using open
spherical shells centered at the limit point and whose inner and outer
radii are monotonically decreasing to zero).

1.1.5. A dense subset in a set. A subset Ω′ of a set Ω is called dense if
for any point x ∈ Ω one can find a point y ∈ Ω′ that is arbitrary close
to x. In other words, any ball centered at x contains points of Ω′. For
example, rational numbers are dense in R. Points in RN with rational
coordinates are dense in RN .

1.1.6. Parametric curves. A vector function is a vector-valued function
on an interval, xi = xi(t), a ≤ t ≤ b, i = 1, 2, ..., N , or, for brevity,
x = x(t). A vector function is continuous if every component of x(t)
is continuous. A continuous vector function is also called a parametric
curve in RN (think of a trajectory of a point-like particle if t is a physical
time). A parametric curve is closed if x(a) = x(b). A parametric curve
is simple if x(t1) = x(t2) implies t1 = t2, unless the curve is closed
and t1 = a and t2 = b. In other words, a simple curve has no self-
intersections.

1.1.7. A region in RN . A set Ω is connected if any two points in it can
be connected by a parametric curve that lies in Ω. A connected open
set will be called a region and the closure of a region will be called a
closed region.
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1.1.8. A neighborhood of a set. The union of open balls centered at all
points of a set Ω is called a neighborhood of Ω. By construction, a
neighborhood of Ω is open. In what follows, if all balls have the same
radius a, then the corresponding neighborhood is said to have radius
a. For example, a neighborhood of a closed ball |x| ≤ R is an open ball
|x| < R + a.

1.1.9. Distance between sets. A distance between sets A and B is de-
fined by

d(A, B) = inf
x∈A, y∈B

|x− y| .

which is the greatest lower bound (infimum) for lengths of all interval
with endpoints in A and B. The function |x − y| may not reach its
minimum at some x ∈ A and some y ∈ B, but the infimum always
exists for any set of non-negative reals.

It is important to note that the distance can vanish even if the sets
do not intersect. Let Ω be a region and let x be not in Ω. Suppose
that the distance between x and Ω vanishes

d(Ω, x) = inf
y∈Ω

|y − x| = 0 .

Then x belongs to the boundary of Ω. Indeed, take a point y1 in Ω
and put a = |y1 − x|. Then one can find a point y2 in Ω such that
|y2 − x| ≤ a

2
. By repeating this procedure a sequence of points yn in Ω

can be obtained such that |yn−x| ≤ 2−na. This means that x is a limit
point of Ω. Since Ω is open, x must be in the boundary ∂Ω = Ω̄ \ Ω.
Furthermore, d(Ω, x) > 0 if and only if x does not belong to the closure
Ω̄, or, in other words, x lies in the complement of Ω̄.

The distance d(Ω, x) is a continuous function of x. Indeed, let
xn → x. For any y and z in Ω,

|y − xn| − |z − x| ≤ |y − x| − |z − x| + |x − xn| ,
|y − xn| − |z − x| ≥ |y − xn| − |z − xn| − |x− xn| ,

by the triangle inequality. By taking the infimum over y and z,

|d(Ω, x) − d(Ω, xn)| ≤ |x− xn| .

Therefore d(Ω, xn) → d(Ω, x) for xn → x, which means that d(Ω, x) is
continuous at any x (see also Sec. 1.2). By the extreme value theorem,
if A is a compact set, then there exists a point x∗ in A such that

d(Ω, A) = d(Ω, x∗) .
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1.1.10. A proper subset. A bounded set Ω′ is said to be a proper subset
of a set Ω if its closure lies in the interior of Ω, Ω′ ⊂ Ωo. A proper
subset has a characteristic property that the distance between it and
the boundary ∂Ω does not vanish:

d(Ω′, ∂Ω) > 0 .

The boundary ∂Ω is a closed set (it can be viewed as the intersection of
two closed sets, Ω̄ and the complement of Ωo, which is closed because
Ωo is open). If Ω is bounded, then its boundary is also bounded and,
in this case, there exists x∗ ∈ ∂Ω such that

d(Ω′, ∂Ω) = d(Ω′, x∗) > 0

because x∗ is not in Ωo and, hence, cannot be in Ω′ ⊂ Ωo. If Ω is
not bounded, then its boundary can be unbounded too. In this case,
consider the part of the boundary ∂Ω that lies in the closed ball of
radius R, ∂ΩR = ∂Ω ∩ BR. Then ∂ΩR is closed and bounded for any
R > 0. Since Ω′ is bounded, one can take R large enough so that BR

contains Ω′ and

d(Ω′, ∂Ω) = d(Ω′, ∂ΩR) = d(Ω′, x∗) > 0 , x∗ ∈ ∂ΩR .

It also follows that for any proper subset Ω′ of a region Ω there exists
a neighborhood of Ω′ of radius δ > 0 that is also a proper subset of Ω.
Indeed, by the above reasoning, one can take δ = 1

2
d(Ω′, ∂Ω) > 0.

1.2. Functions on a Euclidean space. A function f : Ω ⊆ RN → R is a
rule that assigns a unique number f(x) to every point x ∈ Ω. The sets
Ω and f(Ω) ⊂ R are called the domain and the range of f . If f(x) is a
complex number (the range lies in the complex plane), then f is called
complex-valued. Let y be a limit point of Ω. A function f is said to
have a limit A at y if for any sequence {xn} ⊂ Ω, the sequence {f(xn)}
converges to the number A. In this case, one writes

lim
x→y

f(x) = A or f(x) → A as x → y .

1.2.1. The characteristic function of a set. For any set Ω, the function
defined by

χ
Ω
(x) =

{

1 , x ∈ Ω
0 , x /∈ Ω

is called the characteristic function of Ω.
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1.2.2. The classes Cp(Ω) and Cp(Ω̄). Let Ω be open. A function f is
continuous at a point x ∈ Ω if for any sequence {xn} in Ω that converges
to x, the image sequence {f(xn)} converges to f(x), and f is said to
be continuous on Ω if it is continuous at every point of Ω. The class of
all functions that are continuous on Ω will be denoted by C0(Ω). The
class of functions whose partial derivatives up to order p are continuous
on Ω will be denoted by Cp(Ω).

Let y ∈ ∂Ω. For an open Ω, f is not defined at any point of the
boundary. Suppose that for any sequence {xn} in Ω that converges to
a boundary point y, the sequence {f(xn)} has a limit. In this case, f is
said to have a continuous extension to a boundary point y by the rule

f(y) = lim
x→y

f(x)

The class of continuous functions on an open set Ω that have a contin-
uous extension to every point of the boundary of Ω will be denoted by
C0(Ω̄). Similarly, the class of functions whose partial derivatives are
continuous up to order p on an open set Ω and have continuous exten-
sions to every point of the boundary of Ω will be denoted by Cp(Ω̄).
If Ω = RN or an explicit form of Ω is irrelevant, it will be said that f
is from class Cp. The class C∞(Ω) consists of functions whose partial
derivatives of any order are continuous on Ω. If all partial derivatives of
any order of a function f have continuous extensions to the boundary,
then f is from class C∞(Ω̄).

In what follows, functions from classes C1 and C∞ will be referred
to as continuously differentiable and smooth functions, respectively.

1.2.3. Uniform continuity. A function f is said to be uniformly contin-
uous on a set Ω if for any ε > 0 there exists δ = δ(ε) > such that

|f(x) − f(y)| < ε whenever |x− y| < δ

for all x and y in Ω. In other words, values of the function differ
from each other by no more than ε whenever the arguments lie in a
ball of radius δ. Clearly, every uniformly continuous function on Ω is
continuous on Ω. The converse is not true. The key difference between
uniform continuity and continuity is that in the latter δ depends on ε
and a point at which the function is continuous, δ = δ(ε, y) if f(x) →
f(y) as x → y. It is always possible to find the same δ for all points
in Ω. A good candidate for such a uniform δ would be infΩ δ(ε, y) if
f is continuous at every y ∈ Ω. But the infimum can be zero. The
function f(x) = 1

x
is continuous on Ω = (0, 1). Fix ε > 0. Then

|f(x) − f(y)| = |x − y|/(xy) < ε always fails for any |x − y| < δ and
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any δ if x and y are close enough to zero. This shows that the uniform
continuity depends very much on the set rather than on a point.

The following assertion provides sufficient conditions for uniform
continuity2. Let f be continuous on Ω. If Ω is compact, then f is
uniformly continuous on Ω.

1.2.4. Support of a function. The closure of the set on which a function
f does not vanish is called the support of f and denoted supp f :

supp f = A, A = {x | f(x) 6= 0} .

For example, the support of f(x) = sin(x) is R. The support of the
characteristic function of a set Ω is the closure Ω̄.

1.2.5. Extreme properties of a function. If the range of a function is
bounded, then the function is called bounded (on its domain). For a
function bounded on Ω

−∞ < inf
Ω

f ≤ f(x) ≤ sup
Ω

f < ∞ , x ∈ Ω

However, these bounds are not generally reached by f at some points
in Ω. In other words, the inequalities are strict for a generic bounded
function. Sufficient conditions for a function to attain its extreme val-
ues are stated in the extreme value theorem. It states that a continuous
function always attains its extreme values on a compact set. In other
words, there exist x± ∈ Ω such that

inf
Ω

f = min
Ω

f = f(x−) , sup
Ω

f = max
Ω

f = f(x+) .

if f is continuous and Ω is bounded and closed in RN .

1.3. Notations for partial derivatives. In what follows, for brevity partial
derivatives will written as

∂g(x)

∂xj
= Djg = ∂jg .

Any partial derivative of a function g of order α will be denoted by

Dαg
def
= DαN

N · · ·Dα1
1 g =

∂ |α|g

∂xα1
1 · · · ∂xαN

N

, |α| = α1 + · · · + αN .

A monomial of order α in components of x ∈ RN will be denoted by

xα = xα1
1 · · · xαN

N .

2W. Rudin, Principles of mathematical analysis, Chapter 4
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The Taylor polynomial of order n for g about x = 0 will be written as

pn(x) =
n
∑

|α|=0

∑

α1+···+αN=α

xα1
1 · · · xαN

N

α1! · · ·αN !

( ∂ |α|g

∂xα1
1 · · · ∂xαN

N

)

x=0

def
=

n
∑

α=0

Dαg(0)

α!
xα , α! = α1! · · ·αN !

Similarly, for the binomial expansion of any partial derivative of order
α of the product of two functions

Dα(fg) = DαN

N · · ·Dα1
1 (fg) = DαN

N · · ·Dα2
2

α1
∑

β1=0

(

α1

β1

)

Dα1−β1
1 gDβ1

1 f

=

αN
∑

βN=0

· · ·
α1
∑

β1=0

(

αN

βN

)

· · ·
(

α1

β1

)

DαN−βN

N gDβN

N f · · ·Dα1−β1
1 gDβ1

1 f

def
=

α
∑

β=0

(

α

β

)

Dα−βfDβg ,

(

α

β

)

=
α!

β!(α− β)!
.

Let g(x, y) be a function of two variables x ∈ RN and y ∈ RM . Any
partial derivative of g of order α with respect to x will be denoted by
Dα

xg(x, y). Mixed partials are

Dα
x Dβ

y g(x, y) = Dα
x (Dβ

y g(x, y)) = Dβ
y (Dα

x g(x, y))

1.4. Smooth boundary of a region in RN . The boundary ∂Ω of a region
Ω is called smooth if in a neighborhood of any point, ∂Ω is a level set
of a function g from class C1 whose gradient ∇g does not vanish:

∂Ω = {x ∈ RN | g(x) = 0 , ∇g(x) 6= 0} .

Recall that ∇g is a vector whose components are first partials of g.
The boundary ∂Ω is said to be from class Cp if, in addition, g ∈ Cp,
p ≥ 2.

Let xj = xj(t) be a parametric curve that lies in the level set
g(x) = 0. Then the vector v(t) = x′(t) is tangent to the curve. Since
the equation g(x(t)) = 0 holds for all t, its differentiation shows that
the gradient of g is orthogonal to v at any point of the curve:

0 =
d

dt
g(x(t)) =

(

∇g(x(t)), v(t)
)

.

Tangent vectors to all curves through any point x on the level set
form a tangent plane to the level set through the point x, and, hence,
the gradient ∇g(x) is orthogonal to all vectors in this plane. Thus,
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the gradient ∇g is normal to the boundary ∂Ω. In particular, a unit
normal to the boundary ∂Ω can be defined by

n̂(x) =
∇g(x)

|∇g(x)| , x ∈ ∂Ω

The vector −n̂(x) is also a unit normal to ∂Ω. If f is from class C1(Ω̄),
then

∂f

∂n
def
=
(

n̂(x),∇f(x)
)

, x ∈ ∂Ω ,

is called a normal derivative of f on the boundary of Ω.

1.4.1. Example: Smooth boundary of a region in R3. Let g be from the
class C1(R3) and ∇g 6= 0. Without loss of generality ∂3g 6= 0 at some
point x = y of the level set. Then by the implicit function theorem
the equation g(x1, x2, x3) = 0 can be solved in a neighborhood of y
with respect to x3, that is, there exists a function f(x1, x2) such that
g(x1, x2, f(x1, x2)) = 0 for all (x1, x2) in a neighborhood of (y1, y2).
Moreover, the function f is from class C1 and

∂1f = −∂1g

∂3g

∣

∣

∣

x3=f
, ∂2f = −∂2g

∂3g

∣

∣

∣

x3=f
.

The latter equations are known are implicit differentiation equations.
So, a smooth boundary of a region in R3 locally looks like a graph of
a C1 function of two variables, which is a two-dimensional surface in
space.

For example, let Ω = Ba. Then its boundary is a sphere which
is a level set g(x) = |x|2 = a2. The gradient ∇g = 2x is continuous
and does not vanish on the sphere. It is also normal to the sphere.
The derivative ∂3g = 2x3 does not vanish if x3 > 0 or x3 < 0. So, in
a neighborhood of any point in the upper hemisphere the sphere is a
graph x3 =

√

a2 − x2
1 − x2

2 while it is the graph x3 = −
√

a2 − x2
1 − x2

2

near any point in the lower hemisphere. Near any point at which
∂3g = 0, the equation cannot be solved for x3 and should be solved
either with respect to x1 (if ∂1g 6= 0) or x2 (if ∂2g 6= 0).

This picture has a natural generalization to higher dimensional
spaces. A smooth boundary of a region in RN is locally a graph of a C1

function of N − 1 variables obtained by solving the equation g(x) = 0
with respect one of the variables. It defines an N − 1 dimensional
surface in RN .
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1.5. Sequences and series of functions. A sequence of functions {fn} is
said to converge pointwise to a function f on a set Ω if for all x ∈ Ω

lim
n→∞

fn(x) = f(x) .

In general, the limit function does not inherit properties of terms of
the sequence. For example, f may not be continuous on Ω even if the
terms of the sequence are continuous on Ω. It is easy to construct an
example. Let fn(x) = 0 if x < 0, fn(x) = nx if 0 ≤ x ≤ 1

n
, and

fn(x) = 1 if x > 1
n
. The limit function is the step function f(x) = 0 if

x < 0 and f(x) = 1 if x ≥ 0. It is not continuous at x = 0.
Suppose a sequence of continuously differentiable functions con-

verges pointwise to a function f on Ω. Two essential questions arise:

(i) Is the limit function continuously differentiable?
(ii) If so, can the derivative of the limit function be obtained as

the limit of the sequence of the derivatives of terms?

The answer is negative to both questions. As an example, put

fn(x) =







0 , x < 0
(nx)2[1 − (1 − nx)2] , 0 ≤ x ≤ 1

n

1 , x > 1
n

Then fn ∈ C1(R). The sequence fn converges to the step function
which is not differentiable at x = 0, whereas f ′

n(0) = 0. A sequence
gn(x) = sin(nx)/n converges to g(x) = 0 for all x ∈ R. The terms and
the limit function are from class C∞. However g′

n(x) has no limit for
all x, and g′

n(2πm) = 1 for any integer m, but g′(x) = 0 for all x.
A lesson here is that stronger conditions than a mere pointwise

convergence are required in order for the limit function to inherit the
smoothness properties of the terms as well as for rearranging the order
of taking the limit and partial derivatives. The said conditions are
based on the concept of uniform convergence.

1.5.1. Uniform convergence. A sequence of functions {fn} is said to
converge uniformly to a function f on a set Ω if

lim
n→∞

sup
Ω

|fn(x) − f(x)| = 0 .

Clearly, every uniformly convergent sequence converges pointwise. The
converse is false. For example, if fn(x) is the sequence converging to
the step function as defined in Sec. 1.5. Then

sup |fn(x) − f(x)| = 1 .

for all n and, hence, fn does not converge to f uniformly on R.
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Similarly to uniform continuity, the uniform convergence depends
on the set. For example, fn converges to the step function f uniformly
on Ω = (−∞,−a) ∪ (a,∞) for any a > 0. If one thinks about terms
of a pointwise convergent sequence as an approximation to the limit
function, then |fn(x)−f(x)| is an absolute error of the approximation at
a point x. The pointwise convergence means that the error can be made
smaller than any positive number ε for all large enough n > m where
m naturally depends on ε and the point x. The uniform convergence
means that the integer m is independent of x so that the error of the
approximation is uniformly bounded by ε for all points in Ω. A natural
candidate for such m is the largest integer for all x, that is, supΩ m(ε, x).
If the sequence converges pointwise but not uniformly on Ω, then the
supremum is either infinite or cannot be made small by decreasing ε.
So, the approximation f(x) ≈ fn(x) is not good everywhere in Ω.

1.5.2. Cauchy criterion for uniform convergence. A verification of uni-
form convergence by the definition requires an explicit form of the limit
function. The limit function can be hard to calculate or only some prop-
erties of terms of the sequence are known but not their explicit form.
In this case, the Cauchy criterion is essential. It states that a sequence
of functions {fn} converges uniformly on a set Ω if and only if

sup
Ω

|fn(x) − fm(x)| → 0

as n, m → ∞.
If {fn} converges to a function f uniformly on Ω, then

|fn(x)− fm(x)| ≤ |f(x) − fn(x)| + |f(x) − fm(x)|
≤ sup

Ω
|f(x) − fn(x)|+ sup

Ω
|f(x) − fm(x)|

for all x ∈ Ω. Therefore

sup
Ω

|fn(x) − fm(x)| ≤ sup
Ω

|f(x) − fn(x)| + sup
Ω

|f(x) − fm(x)|

and the sequence satisfies the Cauchy criterion for uniform convergence.
Conversely, suppose that the sequence obeys the Cauchy criterion.

Since
|fn(x)− fm(x)| ≤ sup

Ω
|fn(x) − fm(x)|

the numerical sequence {fn(x)} is a Cauchy sequence for any x in Ω
and, hence, {fn} converges pointwise to a function f(x) in Ω. By taking
the limit m → ∞ in the Cauchy criterion first, it is concluded that the
sequence converges uniformly to f on Ω:

lim
n→∞

lim
m→∞

sup
Ω

|fn(x) − fm(x)| = lim
n→∞

sup
Ω

|fn(x) − f(x)| = 0 .
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This completes the proof.

1.5.3. Uniform convergence of functional series. Suppose that a function
is defined by a series that converges pointwise:

f(x) =
∞
∑

n=1

fn(x) , x ∈ Ω

Recall a numerical series converges if the sequence of its partial sums
converges. Therefore by definition

f(x) = lim
n→∞

sn(x) , sn(x) =

n
∑

k=1

fk(x)

for every x in Ω. It also follows from this definition that the sum of
a functional series does not generally inherit smoothness properties of
terms in the series. So, the order of taking a limit x → x0 and sum-
mation in the series cannot generally be interchanged. Similarly, the
order of taking partial derivatives and summation cannot also be in-
terchanged. These operations become legitimate under additional con-
ditions based on uniform continuity. By definition, a series converges
uniformly on Ω if its sequence of partial sums converges uniformly on
Ω. Here is a useful criterion for a uniform convergence of a functional
series.

Let {fn} be a sequence of bounded functions on a set Ω such that
the series of bounds converges:

∑

n

Mn < ∞ , Mn = sup
Ω

|fn(x)| .

Then the series
∑

n fn(x) converges uniformly on Ω.
Indeed, by the Cauchy criterion for uniform convergence in Sec.1.5.2,

the sequence of partial sums converges uniformly on Ω to some function
f because

sup
Ω

|sn(x) − sm(x)| = sup
Ω

∣

∣

∣

n
∑

k=m+1

fk(x)
∣

∣

∣
≤

n
∑

k=m+1

Mk → 0

as n > m → ∞ because
∑

k Mk < ∞ and, hence, its partial sums form
a Cauchy sequence.

1.5.4. Continuity and uniform convergence. It turns out that the uni-
form convergence is sufficient for the continuity of the limit function3.

Suppose that a sequence of continuous functions converges to a func-
tion f uniformly on a set Ω. Then the function f is continuous on Ω.

3W. Rudin, Principles of Mathematical Analysis, Chapter 7
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In particular, if a series of continuous functions converges uniformly,
then the order of taking the limit and summation can be interchanged:

(1.2) lim
x→x0

∑

n

fn(x) =
∑

n

lim
x→x0

fn(x) =
∑

n

fn(x0) .

In the theory of trigonometric Fourier series, it is proved that if f
is a continuous and 2π periodic function on R, then its trigonomet-
ric Fourier converges to f uniformly. Furthermore, if f has a jump-
discontinuity at x0, then its trigonometric Fourier series at x = x0

converges to the mid-point to (f+ +f−)/2 where f(x) → f± as x → x±
0

(the left and right limits). In this case, the limit x → x0 of the sum
of the series does not exist, whereas the sum of the series of the terms
at x = x0 exists. The convergence of the series is not uniform on any
interval containing x0.

For example, the trigonometric Fourier series

f(x) =
2

π

∞
∑

n=1

sin(nx)

n

converges for all x, where f(0) = 0, f(−x) = −f(x), and f(x) = 1− x
π

for 0 < x ≤ π. The sum is not continuous at x = 0. Relation (1.2)
fails for this series. The convergence is not uniform on any interval
containing x = 0.

1.5.5. Differentiation and uniform continuity. The following theorem
holds4.

Let {fn} be a sequence of differentiable functions on [a, b] such that
{fn(c)} converges for some c ∈ [a, b]. If {f ′

n} converges uniformly to a
function g on [a, b], then {fn} converges uniformly to a function f on
[a, b] and f ′ = g.

By combining this assertion with Secs. 1.5.4 and 1.5.5, the following
useful criterion for continuity and differentiability of functional series
can be established.

Proposition 1.1. (Differentiation of a series)
Let {fn} be a sequence of continuous and bounded functions on a set
Ω ⊂ RN such that the series of the bounds converge:

∑

n

Mn < ∞ , Mn = sup
Ω

|fn(x)| .

4W. Rudin, Principles of Mathematical Analysis, Chapter 7
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Then the following series converges to a continuous function on Ω:

f(x) =
∑

n

fn(x) .

If, in addition, fn ∈ C1(Ω) and partial derivatives are bounded on Ω
so that the series of bounds also converges,

∑

n

M (1)
n < ∞ , M (1)

n = sup
Ω

∣

∣

∣Dfn(x)
∣

∣

∣ ,

then the function f is from class C1(Ω) and

Df(x) = D
∑

n

fn(x) =
∑

n

Dfn(x) .

Clearly, similar sufficient conditions for term-by-term differentiation
of a convergent functional series of smooth functions can be established
for higher order partials Dpf . The criterion is simple and easy to
use. Unfortunately, it fails to detect smoothness of the sum of a series
in many cases and, hence, has a limited applicability. For example,
the sum of the trigonometric Fourier series discussed in Sec.1.5.4 is
from class C∞ on any open interval that does not contain x = 2πn
with n being any integer. But the series of first derivatives of terms
does not even converge pointwise everywhere, not to mention uniform
convergence.
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2. Sets of measure zero in a Euclidean space

2.1. Volume of a set. Let R be a rectangular box in RN . A component
xi of any x ∈ R spans an interval [ai, bi]. By definition, the length of
this interval is bi − ai and the volume of R is the product of lengths of
intervals spanned by each component:

VN (R) =
N
∏

i=1

(bi − ai) .

The volume of other sets can be defined by a limiting procedure in
which the set is approximated by the union of rectangular boxes. This
will be discussed in the next sections using the Riemann and Lebesgue
theories of integration. The objective of this section is to characterize
sets of zero volume which will play a significant role throughout the
book.

In what follows, the volume of a ball Ba in RN will be used. Recall
that a volume of a region Ω ⊂ RN is defined by the integral

V (Ω) =

∫

Ω

dNx

provided the integral exists (a review of Riemann integration theory
is given in Section 3). If Ω is a ball of radius a, then this integral
can be evaluated in spherical coordinates. The task can however be
accomplished by technically simpler means.

2.1.1. Volume of a ball in RN . Let VN (a) be the volume in question.
First note that by the scaling transformation x = y/a,

VN (a) =

∫

|x|<a

dNx = aN

∫

|y|<1

dNy = VN (1)aN .

This property will be essential for what follows, while the constant
VN (1) is not relevant. The scaling property also follows from a dimen-
sional analysis because any ball is characterized by just one constant,
the radius, that has dimension of length.

The constant CN = VN (1) (the volume of a unit ball) can be calcu-
lated recursively. Let r be a coordinate along a diameter of the ball so
that −1 ≤ r ≤ 1. A cross-section of the ball by a plane perpendicular
to the diameter at a point r is an N − 1 dimensional ball centered at
r of radius

√
1 − r2. The volume of a portion of the ball between two

such planes at a distance dr is therefore dVN = VN−1(
√

1 − r2)dr and,
hence,

VN (1) =

∫ 1

−1

VN−1(
√

1 − r2) dr , V1(1) = 2 .
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By the scaling property for VN−1, the above equation is reduced to the
recurrence relation

CN = CN−1

∫ 1

−1

(

1 − s2
)N

2
− 1

2
ds , C1 = 2

Evaluating the integral, one infers that

VN (a) =
π

N
2

Γ(1 + N
2
)
aN

where Γ is Euler’s gamma function:

Γ(z) = lim
b→∞

∫ b

0

e−ttz−1 dt

It has the following properties:

Γ(z + 1) = zΓ(z) , Γ(1) = 1 , Γ(1
2
) =

√
π

The first one is established by integration by parts, while the other two
are proved by a direct evaluation of the integral.

If σ
N
(a) is the surface area of the sphere |x| = a, then dVN (a) =

σ
N
(a)da. It follows from this relation that the surface area of the unit

sphere in RN reads

(2.1) σ
N

= σ
N
(1) =

Nπ
N
2

Γ(1 + N
2
)

=
2π

N
2

Γ(N
2
)
.

2.2. Definition of a set of measure zero in RN . The volume of a point
in a Euclidean space is equal to zero because it is contained in a ball
of arbitrary small radius. Similarly, any finite collection of points has
the zero volume because it is contained in a the union of balls whose
total volume can be arbitrary small. This observation is extended to
all sets.

A set in RN is said to be of measure zero if it can be covered by a
union of open balls whose total volume can be made smaller than any
preassigned positive number.

For brevity, one writes µ(Ω) = 0 if Ω is a set of measure zero where
µ stands for the word ”measure”. A rationale for this term will be
introduced later in the framework of the Lebesgue integration theory.

It is worth noting that the use of open balls in the above definition
is not a necessity. One can also use open rectangular boxes. Any open
rectangular box has non-vanishing dimensions aj > 0, j = 1, 2, ..., N ,
and is contained in an open ball of radius a/2 where a2 = ajaj. Con-
versely, any open ball of radius a > 0 is contained is an open rectangular
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box with dimensions aj = 2a. So, the conditions a1a2 · aN → 0 and
a → 0 are equivalent in the definition of a set of measure zero.

2.2.1. Examples of sets of measure zero.

• A finite collection of points in space is a set of measure zero.
• A segment of a straight line of finite length L is a set of measure

zero. Indeed, let us split it into n pieces of length L/n. Each
such segment can be covered by a ball of radius L/n centered
at the midpoint of the segment. The total volume is

Vn = nVN (L/n) = CNn(L/n)N → 0

as n → ∞ for any dimension N ≥ 2.
• Generalizing the previous example, a Euclidean space RM can

be viewed a hyper-plane in a higher dimensional Euclidean
space RN , N > M . Any rectangular box in RM is a set of
measure zero in RM . For example, a rectangle in a plane in a
three-dimensional space is a set of measure zero. A proof of
this assertion is left to the reader as an exercise.

2.3. Properties of sets of measure zero. An obvious property of any set
of measure is that any subset of a set of measure zero is also a set of
measure zero.

Let us show that a countable union of sets of measure zero is also
a set of measure zero.

Let

G =
∞
⋃

n=1

Gn

where µ(Gn) = 0 for all n. Fix ε > 0. Then each Gn can be contained
in a union of open balls with the total volume ε/2n. Therefore G is
contained in the union of all such balls with the total volume being

V =

∞
∑

n=1

2−nε =
ε

2

(

1 +
1

2
+
(1

2

)2

+
(1

2

)3

+ · · ·
)

=
ε

2
· 1

1 − 1
2

= ε

Since ε is arbitrary, G is a set of measure zero.
An immediate consequence of this theorem is that a countable col-

lection of points is a set of measure zero. For example, all rational
numbers in the interval [0, 1] are countable. Any positive rational num-
ber in this interval is a fraction of positive integers, n/m, n ≤ m. The
set of pairs (n, m) is countable. So, rational numbers in [0, 1] form
a set measure zero (a set of zero length). All rational numbers is a
countable union of rational numbers in intervals [n, n + 1] where n is
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an integer. This implies that all rational numbers form a set of mea-
sure zero in R. Furthermore, points with rational coordinates in the
rectangle [0, 1]× [0, 1] are also countable. Indeed, pairs (an, bn) with an

and bn from countable sets (n = 1, 2, ...) can be counted in the order
(a1, b1), (a1, b2), (a2, b2), (a2, b3), etc. So, all points with rational co-
ordinates in R2 form a set of measure zero. This conclusion is readily
extended to a Euclidean space of any dimension.

Remark. Are there sets of measure zero in R that are not countable?
The answer is affirmative. There are uncountable collections of num-
bers which contain no interval. One of the most famous examples is
the Cantor set.

Other uncountable sets of measure zero in RN include Euclidean
subspaces. A line in space is also a set measure zero because it is a
union of countably many line segments of a finite length. Similarly, any
subspace RM of RN is a set of measure zero if M < N because it is a
union of countably many boxes, and any box in RM is a set of measure
zero in RN , N > M . What about measures of curves and surfaces in
space?

2.4. Smooth transformations of sets of measure zero. It is natural to ask
if a curve in a Euclidean space is a set of measure zero because a curve
looks like a continuous deformation of a line. If Ω is an open set in RN ,
then it cannot be a set of measure zero as it always contains an open
ball of some radius. Is the boundary ∂Ω a set of measure zero? An open
set can be obtained by a continuous deformation of an open rectangular
box, like a combination of local stretching, compressing, and twisting,
but without breaking the set into unconnected pieces. The word “local”
means “in a neighborhood of a point”. It will always be used in this
sense. A face of a box lies in a hyperplane RN−1. So the boundary ∂Ω
locally looks like a continuous deformation of a hyperplane RN−1 in RN .
Therefore in order to answer these questions, one should investigate sets
of measure under continuous transformations.

2.4.1. Curves in a Euclidean space as point sets. Intuitively, a curve as
a point set in a Euclidean space can be obtained by a continuous de-
formation (without breaking) of a line segment that has a continuous
inverse. The existence of the inverse is needed to avoid gluing parts of
the segment together upon deformation. The result of such a deforma-
tion can be viewed as the range of a continuous vector function x(t)
on an interval [a, b] that is one-to-one except possibly at the boundary
points of the interval. If x(a) = x(b), then the curve is called closed. So,
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any curve as point set is a simple parametric curve (cf. Sec.1.1.6). It
should be noted that there exists infinitely many simple parameteriza-
tions for the same curve as a point set in a Euclidean space. If t = t(τ )
is a one-to-one continuous map of [α, β] to [a, b], then y(τ ) = x(t(τ ))
are also parametric equations of the same curve (the vector functions
y(τ ) and x(t) have the same range). The described process is called a
reparameterization of a curve.

A curve has a self-intersection point if two points of an interval
are glued together upon deformation. This implies that any mapping
whose range in the curve is not one-to-one at t = t1 and t = t2 > t1
because x(t1) = x(t2) and it is one-to-one on (a, t1), (t1, t2), and (t2, b).
Clearly, in this way one can define a curve with any number of self-
intersections as the range of a parametric curve (modulo a reparame-
terization).

2.4.2. Smooth curves. Suppose that a curve has a simple parameter-
ization from class C1 on [a, b]. Then x′(t) is a tangent vector and
ŵ(t) = x′(t)/|x′(t)| is a unit tangent vector. If x′(t) does not vanish
anywhere, then the unit tangent vector is continuous along the curve.
If x′(c) = 0 for some t = c, then ŵ(c) is defined by the left and right
limits ŵ(c) = limt→c+ ŵ(t) = limt→c− ŵ(t), provided they exists and
are equal. A curve is called smooth if it has a continuous unit tangent
vector, and a closed curve is smooth if, in addition, ŵ(a) = ŵ(b). Here
ŵ(a) is defined by the right limit t → a+, while ŵ(b) is defined by the
left limit t → b− for any parameterization. A unit tangent vector along
a curve can be defined only in two ways. If ŵ is a unit tangent vector,
then −ŵ is also a unit tangent vector. A particular choice is called the
orientation of the curve. If ŵ(a) = −ŵ(b), then the closed curve has a

cusp, like the graph y =
√

|x| at x = 0. So, to check if a given curve
is smooth one should find a simple parameterization from class C1 (if
none exists, then the curve is not smooth) and check if ŵ(t) can be
continuously defined along the curve. A curve is piecewise smooth if it
consists of finitely many smooth pieces.

2.4.3. M -surfaces in RN . By analogy with curves, an M dimensional
surface (or simply M-surface) in RN , M < N , can be defined as a
continuous deformation of an M dimensional rectangular box that has
a continuous inverse.

Let R be an open rectangular box in RM and F be a continuous
mapping of a neighborhood of R into RN that is one-to-one on R.
Then the range F (R) ⊂ RN is called an M-surface. The equations
x = F (ξ) are called parametric equations of the M-surface. As in the
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case of curves, there are infinitely many parametric equations for the
same surface. Self-intersecting M-surfaces can also be described by a
continuous mapping of R that is one-to-one except some points in R.

By definition, the mapping F is defined in a neighborhood of R and,
hence, on the boundary ∂R. This condition ensures that F restricted
to the boundary ∂R is also a continuous map and, hence, the boundary
∂SM is a surface of dimension M−1 (or a finite union of such surfaces).
A restriction of F to ∂R, although being continuous, is not required to
be one-to-one. In this way, surfaces with non-trivial topology can be
obtained through identification of certain points of the boundary of R
upon deformation.

For example, a unit sphere in R3 is obtained by the mapping of R2

to R3:

x1 = cos(ξ1) , x2 = sin(ξ1) cos(ξ2) , x3 = sin(ξ1) sin(ξ2) .

Here ξ1 and ξ2 are the zenith and polar angles of the spherical coor-
dinates. Therefore the mapping is one-to-one in R = (0, π) × (0, 2π).
The boundary lines ξ2 = 0 and ξ2 = 2π have the same image curve
(the semi-circle from the north to south pole of the sphere), whereas
the boundary lines ξ1 = 0 and ξ1 = π are mapped to single points,
the north and south poles, respectively. With these identifications, the
closure R̄ is mapped into a sphere |x| = 1.

Similarly, the parametric equations

x1 = [a + b cos(ξ1)] cos(ξ2) , x1 = [a + b cos(ξ1)] sin(ξ2) , x3 = b sin(ξ1) ,

describe a torus with radii a > b. The cross section of the torus by the
plane x3 = 0 is the union of two circles of radii a± b. The cross section
of the torus by a half-plane bounded by the x3 coordinate axis is a
circle of radius b. The position of the half-plane is defined by the polar
angle ξ2 in the plane x3 = 0, whereas the angle ξ1 defines a position of
the point on the circle of intersection. By geometry, the map is one-to-
one in R = (0, 2π)× (0, 2π). The map identifies the opposite boundary
lines of the rectangle R. So, the range F (R̄) is a 2-torus in R3.

2.4.4. Smooth M -surfaces. Let SM be an M-surface in RN . In a neigh-
borhood of any point x0 ∈ SM , the surface is an image of a open box
R under a continuous one-to-one mapping x = F (ξ), ξ ∈ R. Consider
coordinate lines through ξ0 ∈ R, where x0 = F (ξ0). There are M such
lines with parametric equations ξ = ξa(t) = ξ0 + têa, a = 1, 2, ..., M ,
where {êa} is the standard basis in RM . The images of these lines are
curves in SM described by parametric equations x = xa(t) = F (ξa(t)).
Suppose that the components of F have continuous partial derivatives
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on R. The matrix of partial derivatives will be denoted by DF so that
its elements are

(DF )ia = ∂Fi/∂ξa .

Suppose that the rank of DF is equal to M everywhere in R. Then x =
xa(t) are smooth curves intersecting at x0 = F (ξ0) in SM . The tangent
vectors x′

a(t) = ∂F/∂ξa are continuous and do not vanish anywhere
because they are columns of DF and rank[DF ] = M . The M tangent
vectors

wa = x′
a(0) = ∂aF (ξ0)

at the point of intersection are linearly independent in RN and, hence,
their span is an M-plane in RN . It is called a tangent space of SM at
a point x0 = F (ξ0).

Furthermore any smooth curve in a neighborhood of ξ0 is mapped
into a smooth curve in SM is a neighborhood of x0 = F (ξ0). Indeed,
if ξ = ξ(t) ∈ C1 and ξ′(t) 6= 0 (such parameterization always exists
for a smooth curve). Then the curve x = F (ξ(t)) also has a non-zero
continuous tangent vector x′(t) = DFξ′(t) because the matrix DF
is continuous and its rank is M everywhere so that the curve has a
continuous unit tangent vector. An M-surface is called smooth near a
point x0 if SM near x0 is an image of an open box R under a mapping
from class C1 such that rank[DF ] = M . An M-surface is smooth if
it is smooth near any point. In other words, a smooth surface looks
like a tangent M-plane is a sufficiently small neighborhood of any of
its points, just like a smooth curve looks like its tangent line near any
point.

It should be noted that if x = F (ξ) are parametric equations for the
whole SM , the condition rank[DF ] = M can be broken on the boundary
∂R because F is not required to be one-to-one on ∂R but SM can still
be smooth near any point of F (∂R). For a smooth surface one can
find another parameterization x = F̃ (ξ) such that rank[DF̃ ] = M in a
neighborhood of any ”bad” point of F (∂R). For example, consider a
two-sphere in R3. The rank of DF for the parameterization given in
Sec.2.4.3 is equal to 1 for the boundary lines ξ1 = 0 or ξ1 = π because
∂F/∂ξ2 vanishes on them. Their images are points x = ±ê1 of the unit
sphere, |x| = 1. However, one can take another parameterization of the
sphere near x = ±ê1 in which the zenith angle ξ1 is counted from, say,
ê3 not from ê1, and the polar angle ξ2 is defined in the plane orthogonal
to ê3. In this parameterization, the points x = ±ê1 are the images of
interior points of R and, hence, the surface is smooth near x = ±ê1.
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2.4.5. Smooth transformations of RN . A transformation of RN is a func-
tion F : RN → RN . If all components of F are continuously differen-
tiable, then the transformation is said to be from class C1. If, in ad-
dition, its Jacobian does not vanish, then the transformation is called
non-singular:

F : RN → RN , J = det[DF ] 6= 0 .

Since the Jacobian J does not vanish, the transformation is invertible
in a neighborhood of each point by the inverse function theorem5.

Therefore, any straight line passing through a point y0 becomes a
curve passing through the point x0 = F (y0) in a neighborhood of x0.
Parametric equations of a line passing through y0 and parallel to a unit
vector v̂ read y = y0 + tv̂ where t is a real parameter. Then the image
curve is x = x(t) = F (y0 + tv̂) so that its tangent vector is given by the
directional derivative of F , x′(t) = (v̂,∇)Fi = DvF . Since the Jacobian
matrix DF is continuous and not singular, the tangent vector x′(t) is
continuous and does not vanish anywhere. So, the curve is smooth.

Similarly, F maps a 2-plane through y0 into a smooth 2-surface
in a neighborhood of x0 = F (y0). Parametric equations of a 2-plane
through y0 that is parallel to two linearly independent vectors u and v
are y = y(t, s) = y0 + su+ tv, where s and t are real parameters. Para-
metric equations of the image 2-surface are x = x(t, s) = F (y(t, s)).
At every point, the surface has two non-vanishing continuous tangent
vectors ∂tx(t, s) and ∂sx(t, s) that are linearly independent because the
matrix DF is not singular and continuous. It is not difficult to see that
the image of an M-plane through y0 is a smooth M-surface through
x0 = F (y0).

Suppose that a set is covered by a union of open balls. A continuous
transformation maps an open set into an open set. So, the transforma-
tion F from class C1 maps an open ball Ba of radius a into an open
set whose volume tends to zero as aN , just like the volume of the ball.
Indeed, recall that a volume of F (Ba) is given by the integral of unit
function over F (Ba). This integral can be transformed to an integral
over Ba by the change of variables x = F (y), where |y| < a. Let a < 1
(as a → 0 anyway). Then

Va =

∫

F (Ba)

dNx =

∫

Ba

J(y) dNy = aN

∫

|z|<1

J(az) dNz ≤ CaN ,

where C = max|y|≤1 J . Since J is continuous and does not vanish
anywhere, it can always be set positive by adjusting a sign of one of

5W. Rudin, Principles of Mathematical Analysis, Chapter 9.
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components of F . If a set is covered by the union of open balls of
total volume less than any preassigned positive number ε, then the
image of this set is covered by the union of open sets of total volume
less than Cε. Although F (B) is not a ball, intuitively this observation
suggests that a set of zero volume is mapped into a set of zero volume
by a non-singular transformation from class C1 as ε is arbitrary. If a
C1 transformation is singular at some points, then the volume element
dNx = J(y)dNy can vanish on some set. So, the volume of F (Ba)
can even vanish if J = 0 in Ba, and, hence, the conjecture seems to
hold when the transformation of RN is not non-singular everywhere.
Although the reasoning is not rigorous, nonetheless it led us to a correct
statement 6.

Theorem 2.1. The image of a set of measure zero Ω in RN under
a transformation F of RN from class C1 is a set of measure zero:

µ(Ω) = 0 ⇒ µ(F (Ω)) = 0 .

Any smooth M-surface in RN can be obtained by a C1 mapping of
RM into RN . Any M-plane in RN is a set of measure zero. It turns
out that any smooth deformation of such a plane also produces a set
of measure zero in RN .

Theorem 2.2. Let Ω be an open set in RM and the mapping F :
Ω → RN is from class C1(Ω) and the the rank of the Jacobian matrix
DF is equal to M < N . Then the image of Ω is a set of measure zero
in RN ,

µ(F (Ω)) = 0 .

Thus, any smooth M-surface is a set of measure zero in RN , and
any transformation of RN into itself from class C1 maps this surface
into a set of measure zero.

Recall that a boundary of a region is smooth if it is a level set of a
function from class C1 whose gradient does not vanish. By the implicit
function theorem, the equation g(x) = 0 can be solved with respect to
one of the components of x with respect to which the partial derivative
of g does not vanish near x0 on the boundary. For example, xN = f(y)
where xj = yj, j = 1, 2, ..., N −1, and by the implicit function theorem
f is continuously differentiable. The latter equations can be viewed as
parametric equations of an N − 1 dimensional smooth surface in RN .
Therefore, a piecewise smooth boundary of a region in RN is a set of
measure zero.

6Proofs of Theorems 2.1 and 2.2 can be found in: J.M. Lee, Introduction to
smooth manifolds
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3. Riemann integral

3.1. Definition of a Riemann integral in a Euclidean space. Let a function
f be bounded on a box R = [a1, b1] × · · · × [aN , bN ] in RN , that is,
m ≤ f(x) ≤ M for all x in R. The volume of R is V = (b1−a1) · · · (bN−
aN) (by definition). Each coordinate interval can be partitioned into
intervals of smaller lengths. By doing so, R is partitioned by boxes
Rs of smaller volumes ∆Vs where s enumerates all partition boxes so
that V =

∑

s ∆Vs. A partition P of R is a collection of all vertices
of partition boxes. For example, let R be a rectangle in a plane and
each side be partitioned into 3 intervals. Then the partition P consists
of 16 points being vertices of 9 partition rectangles. A partition P ′ is
called a refinement of P if P ⊂ P ′. A refinement can be obtained by
adding just one point in the interior of a partition box. In this case, this
partition box becomes the union of 2N partition boxes in the refined
partition.

Since f is bounded, one can define the lower and upper sums of f
associated with a partition P , denoted by L and U , respectively,

L(P, f) =
∑

s ms∆Vs , ms = infRs f(x)
U(P, f) =

∑

s Ms∆Vs , ms = supRs
f(x)

Recall the basic properties of the supremum and infimum:

sup
A

f(x) ≤ sup
B

f(x) , inf
A

f(x) ≥ inf
B

f(x) , A ⊂ B

These relations imply that the lower sum is increasing upon a refine-
ment whereas the upper sum is decreasing:

mV ≤ L(P, f) ≤ L(P ′, f) ≤ U(P ′, f) ≤ U(P, f) ≤ MV , P ⊂ P ′ .

The values of L(P, f) for all partitions form a set of reals that is
bounded from above by MV and, hence, it has the least upper bound
(supremum). Similarly, the values of U(P, f) for all partitions form a
set bounded from below by mV and therefore this set has the greatest
lower bound (infimum).

A bounded function f is said to be Riemann integrable on R if the
greatest lower bound of upper sums is equal to the least upper bound of
lower sums and, in this case, their value is called the Riemann integral
of f over R:

∫

R

f(x) dNx = inf
P

U(P, f) = sup
P

U(P, f) .

3.2. Riemann integrability. For continuous functions, the Riemann in-
tegral exists and can be evaluated via their antiderivatives.
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3.2.1. The fundamental theorem of calculus. Let f be continuous on [a, b]
and F be an antiderivative of f , that is, F ′ = f . Then

∫ b

a

f(x) dx = F (b)− F (b) .

3.2.2. Fubini’s theorem. Let f(x) be continuous function on a closed
rectangle R. Then it is Riemann integrable on R and

∫

Ω

f(x) dNx =

∫ b1

a1

· · ·
∫ bN

aN

f(x1, ..., xN) dxN · · · dx1

Here xj, j = 1, 2, ..., N , are coordinates of a point x in RN , and the
iterated integral can be computed in any order.

The Fubini allows one to calculate the integral by means of the fun-
damental theorem of calculus applied to each of the iterated integrals.

3.2.3. An example of a non-integrable function. Continuity is not nec-
essary for Riemann integrability. Suppose that a function g coincides
with a continuous function f on interval [a, b] everywhere but a point
c, g(c) 6= f(x). Then g is still integrable on [a, b]. The lower and upper
sums for f and g only differs by the term corresponding to a partition
interval containing c, but this term can be made arbitrary small by
refining the partition. Therefore, g is integrable and the integrals of
f and g are equal. Clearly, a continuous function can be altered at
finitely many points without destroying its integrability.

The Riemann integrability can be lost if a continuous function is
altered at infinitely many points. A simple example is provided by the
Dirichlet function defined by

fD(x) =

{

1 , x ∈ Q

0 , x /∈ Q

where Q is the set of all rational numbers. It is continuous nowhere
and not Riemann integrable on any interval. Indeed, since any interval
contains rational and irrational numbers, for any partition the lower
sum is equal to zero, whereas the upper sum is equal to the length
of the interval. So, the limits of the lower and upper sums cannot be
equal.

3.2.4. Class of Riemann integrable functions. The class of Riemann in-
tegrable functions is described in the following theorem 7.

7see, e.g., S. Abbott, Understanding Analysis, Springer, 2010
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Theorem 3.1. (Lebesgue’s criterion for Riemann integrability)
A bounded function is Riemann integrable on a rectangular box in a
Euclidean space if and only if it is not continuous at most on a set of
measure zero.

It is worth mentioning that it is possible to construct a function on
R that is not continuous at rational numbers but continuous otherwise
(e.g., Thomae’s function). The rational numbers form a countable set
of measure zero. This function is Riemann integrable on any bounded
interval. The characteristic function of the Cantor set (which is not
continuous on an uncountable set of measure zero) is also Riemann
integrable on any bounded interval.

3.2.5. Riemann sums. If the function is not continuous but still Rie-
mann intgerable, then Fubini’s theorem cannot be used to calculate
the integral. In this case, the integral can be approximated with any
desired accuracy by means of Riemann sums.

A Riemann sum for a function f and a partition P is defined by

R(P, f) =
∑

s

f(x∗
s)∆Vs ,

where xs is a sample point in a partition box Rs. For any partition P ,
the inequality ms ≤ f(x∗

s) ≤ Ms implies that

L(P, f) ≤ R(P, f) ≤ U(P, f)

for any choice of sample points in the Riemann sum. Riemann sums
can be used for approximations of the Riemann integral. By refining
the partition, the Riemann sum converges to the integral by the squeeze
principle. So, the following assertion holds.

Let f be a Riemann integrable function on a box R. For any positive
number ε > 0, there exists a partition Pε such that

∣

∣

∣

∫

R

f(x) dNx −R(P, f)
∣

∣

∣ ≤ ε , Pε ⊂ P

for any choice of sample points in the Riemann sum and any refinement
P of Pε.

3.2.6. Geometrical interpretation of a Riemann integral. Let f be con-
tinuous and non-negative on interval [a, b]. Let P be a partition of
[a, b] and Rs be the partition intervals. A planar region Ω defined by
a ≤ x ≤ b and 0 ≤ y ≤ f(x) contains the union of rectangles Rs×[0, ms]
with the total area being equal to L(P, f), whereas the union of rect-
angles Rs× [0, Ms], with the total area being equal to U(P, f), contains
Ω. The Riemann integral of f defines the area of Ω. The lower sum is
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an estimate of the area from below and the upper sum is its estimate
from above.

Similarly, let f(x, y) be a a non-negative continuous function of
two real variables on a rectangle R = [a1, b1] × [a2, b2]. Let Ω be the
solid above the rectangle and below the graph z = f(x, y). Then the
upper and lower sums are estimates of the volume of Ω from above
and below, respectively, because the union of three-dimensional boxes
Rs × [0, Ms] contains Ω, where Rs are partition rectangles, while Ω
contains the union of boxes Rs×[0, ms]. Upon refinement the estimates
tends to one another so that the integral of f over the rectangle gives,
by definition, the volume of Ω. This geometrical interpretation of the
Riemann integral can readily be extended to any Euclidean space.

3.3. Riemann integral over a set. Let Ω be a bounded set in RN and f
be bounded on Ω. Let us extend f to RN by zero, that is, f(x) = 0
if x 6= Ω. The extension can also be written as χ

Ω
(x)f(x) where χ

Ω
is

the characteristic function of Ω. The Riemann integral of f over Ω is
defined by

∫

Ω

f(x) dNx =

∫

R

χ
Ω
(x)f(x) dNx ,

where R is any rectangle that contains Ω, provided χ
Ω
f is integrable

on R.
Suppose f is not continuous on a set of measure zero in Ω. Then

χΩf is not continuous also on the boundary ∂Ω. If the boundary is
a set of measure zero, then χΩf is integrable by Theorem 3.1. In
particular, any continuous function on a bounded closed region with
piecewise smooth boundary is integrable because such a boundary is a
set of measure zero.

Let Ω be a bounded region with piecewise smooth boundary and f be
from class C0(Ω̄). Then f is Riemann integrable on Ω. Furthermore,
if f is bounded and not continuous on finitely many smooth surfaces in
Ω, then f is also integrable on Ω.

3.3.1. Volume (or measure) of a set. By Fubini’s theorem, the volume of
a rectangular box R in a Euclidean space can be written as an integral

VN (R) = a1a2 · · · aN =

∫

R

dNx

where aj, j = 1, 2, ..., N , are lengths of the adjacent edges of the box.
Similarly, the volume of any bounded set Ω is defined by

V (Ω) =

∫

Ω

dNx
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provided the unit function is Riemann integrable on Ω. In particu-
lar, a bounded region with a piecewise smooth boundary always has a
volume.

By definition, the volume of a set of measure zero must be zero.
However, this is not so for some sets of measure zero if the volume is
defined via the Riemann integral of the characteristic function of the
set. The problem is that the characteristic function is not Riemann
integrable for some sets of measure zero. For example, the set of all
points with rational coordinates in a Euclidean space has measure zero,
but its characteristic function is nowhere continuous and, hence, not
Riemann integrable on any box. The situation looks really paradoxical
because the above observation suggests that a set that has a volume
contains subsets for which the volume does not even exist! Alterna-
tively, if a set of measure zero is removed from a set of volume V , then
the volume of the resulting set cannot even be defined. Intuitively, one
might expect that the volume of any subset should exists and be less
than the volume of the whole set, or, if a set of zero volume is removed
from a set of volume V , then the volume of the resulting set is still V .

This deficiency of the Riemann volume stems from the very defini-
tion of the Riemann integral. Riemann integrability can be destroyed
by altering an integrable function on a set of measure zero. For ex-
ample, the Dirichlet function, that is not Riemann integrable, can be
obtained from the zero function by changing its values to unit val-
ues at rational values of the argument. This substantial drawback is
eliminated in the Lebesgue integration theory which will be discussed
later.

3.4. Properties of the Riemann integrals. A complex-valued function f
is Riemann integrable on Ω if its real and imaginary parts are integrable
and

∫

Ω

f(x) dNx =

∫

Ω

Re f(x) dNx + i

∫

Ω

Im f(x) dNx

3.4.1. Linearity. If f and g are Riemann integrable on Ω, then their
linear combination is integrable and

∫

Ω

(

αf(x) + βg(x)
)

dNx = α

∫

Ω

f(x) dNx + β

∫

Ω

g(x) dNx

for any (real or complex) numbers α and β.

3.4.2. Positivity. If f(x) ≥ 0 and f is integrable on Ω, then
∫

Ω

f(x) dN x ≥ 0 .
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3.4.3. Integrability of the absolute value. If f is Riemann integrable on
Ω, then its absolute value is also integrable on Ω and

∣

∣

∣

∣

∫

Ω

f(x) dNx

∣

∣

∣

∣

≤
∫

Ω

|f(x)| dNx

The converse is false. For example, put f(x) = 1 if x is rational, and
f(x) = −1 otherwise. This function is not integrable on any interval
[a, b] because its lower sum is equal to −(b − a) and the upper sum is
equal to b−a for any partition. However, the absolute value |f(x)| = 1
is continuous and, hence, integrable on [a, b].

3.4.4. Additivity. Let subsets Ω1,2 ⊂ Ω be closed and bounded, and
Ω1 ∪Ω2 = Ω but the interiors of Ω1,2 do not intersect. If f is integrable
on Ω1,2, then it is integrable on Ω and

∫

Ω

f(x) dNx =

∫

Ω1

f(x) dNx +

∫

Ω2

f(x) dN x

In particular, if f is continuous on a bounded closed region Ω with
a piecewise smooth boundary and the regions Ω1,2 are obtained by
cutting Ω into two pieces by a smooth surface, then the above equation
holds.

3.4.5. Continuity. Let Ωn be a family of subsets of a bounded set Ω
labeled by a positive integer n such that

Ωn ⊂ Ωn+1 ,
⋃

n

Ωn = Ω .

In other words, subsets Ωn becomes larger with increasing n and in the
limit n → ∞, Ωn becomes Ω. If a function f is Riemann integrable on
Ω and on each Ωn, then

lim
n→∞

∫

Ωn

f(x) dNx =

∫

Ω

f(x) dNx .

For example, let Ω be an open bounded set, and its boundary be
smooth. Then any f from the class C0(Ω̄) is integrable on Ω. The
subsets Ωn can be obtained by removing closed balls of radius 1/n cen-
tered at every point of the boundary of Ω. The boundaries ∂Ωn are
also smooth if ∂Ω is smooth enough. Then f is integrable on Ωn, and
the sequence of integrals of f over Ωn converges to the integral of f
over Ω.
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3.5. Change of variables. Let Ω′ ⊂ RN be a closed and bounded region
with a piecewise smooth boundary. Let x = F (y) be a transformation
in RN from class C1 such that it is one-to-one on the interior of Ω′ and
its Jacobian does not vanish in Ω′ except possibly on the boundary of
Ω′. Let f be an integrable function on Ω = F (Ω′). Then

∫

Ω

f(x) dNx =

∫

Ω′
f(F (y))J(y) dNy , J(y) = | det[DF ]| .

3.6. Riemann integrability and uniform convergence. Suppose that a se-
quence {fn} of Riemann integrable functions on Ω converges pointwise
to a function f . Then the function f is not generally Riemann inte-
grable. Even if f happens to be Riemann integrable of Ω, then the
integral of f is not generally equal to the limit of the integrals of fn.
The first assertion from the representation of the Dirichlet function by
the double limit:

fD(x) = lim
n→∞

lim
m→∞

(

cos(πxn!)
)2m

.

The first limit is equal to zero if xn! is not an integer and to 1 if xn!
is an integer. Therefore f(x) = 0 if x is not rational and f(x) = 1 if
x is rational because any rational number can be written as a ratio of
integers x = p/q and n!/q is an integer if n ≥ q. The limit function is
the Dirichlet function that is not Riemann integrable on any interval.
Clearly, the terms of the sequence are continuous and, hence, integrable
on any bounded interval.

To illustrate the second assertion, put fn(x) = 2nx(1 − x2)n where
x ∈ [0, 1] and n = 1, 2, .... It is not difficult to verify that the sequence
converges pointwise

f(x) = lim
n→∞

fn(x) = 0 , 0 ≤ x ≤ 1

However,

lim
n→∞

∫ 1

0

fn(x) dx = lim
n→∞

n

n + 1
= 1 6= 0 =

∫ 1

0

f(x) dx

where the second equality has been obtained by evaluating the integral.
So, the order of neither differentiation nor integration of a convergent
functional sequence can be interchanged with taking the limit, unless
the functional sequence satisfies additional conditions.

Theorem 3.2. 8 Let {fn} be a sequence of Riemann integrable func-
tions on a bounded region Ω that converges uniformly to a function f

8see, e.g., W. Rudin, Principles of Mathematical Analysis
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on Ω. Then f is Riemann integrable on Ω and

lim
n→∞

∫

Ω

fn(x) dNx =

∫

Ω

lim
n→∞

fn(x) dNx =

∫

Ω

f(x) dN x .

This theorem offers a sufficient condition for interchanging the order
of Riemann integration and taking the limit with respect to a parameter
of the integrand.

3.7. Exercises.

1. Can a set in RN be a set of measure zero in RN if it has an in-
terior point? Give an example or show that the answer is negative.

2. Let f be a function from class C1(R). Show that f(Q) is a set
of measure zero where Q denotes all rational numbers.

3. Use spherical coordinates in RN to calculate the volume of an N
dimensional ball.

4. Suppose that

f(x) =
∞
∑

n=0

cn(x − x0)
n , |x − x0| < R .

(i) Show that the convergence of the series implies that |cn|δn → 0 as
n → ∞ for any 0 < δ < R.
(ii) Show that

|cn(x − x0)
n| ≤ Mqn , |x − x0| ≤ δ

for some constants M > 0 and 0 < q < 1 and any δ < R. Use this
inequality to show that the power series converges uniformly in the
interval |x − x| ≤ δ < R.
(iii) Show that f is from class C∞ by investigating uniform convergence
of series of derivatives of the terms.
(iv) Prove that cn = f (n)(x0)/n!.

5. (i) Use the power series representation of the exponential function
to show that

∣

∣

∣
eiαeix − 1

∣

∣

∣
≤ e|α| − 1 , x ∈ R
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(ii) Use this inequality to show that eiαeix

converges to 1 uniformly on
R as α → 0 and prove that

lim
α→0

∫ b

a

eiαeix

dx = b− a .
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4. Improper Riemann integrals

4.1. Preliminaries. The Riemann integral is defined for a bounded func-
tion f and a bounded region Ω. Intuitively, a Riemann integral over an
unbounded region can be defined as the limit of integrals over bounded
subregions. For example, one can take subregions that are intersections
of an unbounded region with a ball of radius a, compute the integrals
over these subregions, and then investigate the limit a → ∞. Simi-
larly, if a function is not bounded in a neighborhood of a point, one
can reduce the region of integration by removing a ball of radius a cen-
tered at this point, compute the integral, and then investigate the limit
a → 0+. If there are more then one of such points, the reduced region
is obtained by removing the union of such balls centered at all singular
points of the function. By combining the two ideas, one can define the
integral of an unbounded function over an unbounded region.

For example, a continuous function f(x) = e−x can be integrated
over an unbounded interval [0,∞) using the rule

∫ ∞

0

e−x dx
def
= lim

b→∞

∫ b

0

e−x dx = lim
b→∞

(1 − e−b) = 1 .

Note f is integrable on every [0, b] because f is continuous. So, the
rule makes sense. The function f(x) = x−1/2 is not bounded on [0, 1],
but it is continuous on every [a, 1] so it makes sense to define

∫ 1

0

dx√
x

def
= lim

a→0+

∫ 1

a

dx√
x

= lim
a→0+

(2 − 2
√

a) = 2 .

Similarly, the function f(x) = e−xx−1/2 is not bounded on [0,∞), but
it is continuous on any interval [ 1

a2 , a
2]. So, the integral can be defined

by
∫ ∞

0

e−x dx√
x

def
= lim

a→∞

∫ a2

1
a2

e−x dx√
x

= 2 lim
a→∞

∫ a

1
a

e−y2

dy

= 2 lim
a→∞

(

∫ 1

1
a

+

∫ a

1

)

e−y2

dy = 2 lim
a→∞

∫ a

0

e−y2

dy =
√

π ,

where x = y2 and the continuity of the integral was used to take the
limit in the integral over [ 1

a
, 1].

A Riemann integral in which the integrand or region of integration
or both are not bounded are referred to as an improper Riemann inte-
gral. A limiting procedure used to define the improper Riemann inte-
gral is called a regularization. A consistency of this definition requires
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answering the key question: Does the value of the improper integral
depend on the regularization? The answer is not straightforward.

4.1.1. An example. Consider the following function of two real vari-
ables:

f(x, y) =
x2 − y2

(x2 + y2)2

Evidently it is defined everywhere except the origin. One can choose
f(0, 0) to be any number. Regardless of this choice, f is not bounded
in any neighborhood of the origin. Suppose one wants to integrate this
function over a bounded closed region

Ω = {(x, y) |x2 + y2 ≤ 1 , x ≥ 0 , y ≥ 0}
which is the part of the unit disk that lies in the positive quadrant.
So, f is not bounded on Ω. In attempt to mimic a one-dimensional
improper integral, let us take a subregion Ωa ⊂ Ω

Ωa = {(x, y) | a2 ≤ x2 + y2 ≤ 1 , x ≥ 0 , y ≥ 0}
so that Ωa gets larger with decreasing a and becomes Ω when a = 0.
Using the polar coordinates it is not difficult to show that

∫∫

Ωa

f(x, y) dxdy = 0 .

Alternatively, the result follows from a symmetry argument. The region
Ωa is symmetric under the reflection about the line y = x: (x, y) →
(y, x), whereas the integrand is skew-symmetric, f(x, y) = −f(y, x).
Can one conclude that the improper Riemann integral of f over Ω
exists and is equal to zero?

It is obvious that Ω can be obtained in many ways as the limit of
subregions. For example, consider a collection of subregions which are
defined in polar coordinates

x = r cos(θ) , y = r sin(θ)

by the conditions

Ωk = {(x, y) | ak ≤ r ≤ 1 , βk ≤ θ ≤ π/2} , k = 1, 2, ...

where {ak} and {βk} are positive sequences that converge to 0 mono-
tonically. In addition to removing a disk of radius a = ak as in the
previous regularization, a sector with the angle βk is removed from Ω.
So, with increasing k, the region Ωk gets larger and eventually becomes
Ω in the limit k → ∞:

Ωk ⊂ Ωk+1 ⊂ Ω ,
∞
⋃

k=1

Ωk = Ω



4. IMPROPER RIEMANN INTEGRALS 39

The latter union is a proper mathematical way of saying that Ωk “ap-
proaches Ω and coincides with Ω in the limit k → ∞”. Using polar
coordinates
∫∫

Ωk

f(x, y) dxdy =

∫ 1

ak

∫ π/2

βk

r2 cos(2θ)

r4
rdrdθ =

1

2
sin(2βk) ln(ak)

The right-hand side is an indeterminate form “0 × ∞” in the limit
k → ∞. The limit may or may not exist and, even if it exists, it can
have any value! Indeed, take ak = e−c/βk where c > 0 so that ak → 0
monotonically if βk → 0 monotonically. Then

lim
k→∞

∫∫

Ωk

f(x, y) dxdy = − lim
k→∞

c sin(2βk)

2βk

= −c .

If ak = βk, then the limit is 0 and, if ak = e−c/β2
k , c > 0, then the

limit is −∞. The reader is asked to verify that if the range of the polar
angle in Ωk is restricted to the interval 0 ≤ θ ≤ π/2−βk, then the limit
can be made arbitrary positive number or +∞ by a suitable choice of
ak. A similar result can be established for the integral of f over an
unbounded region x2 + y2 ≥ 1, x ≥ 0, y ≥ 0 (see Exercises).

The above example shows that the improper integral can depend
on its regularization. Naturally, one wants a definitive (or unique)
value of an improper integral, and, for this reason, a naive attempt to
define improper Riemann integrals should be amended in some way to
eliminate the noted deficiency.

4.2. Improper Riemann integrals. Let Ω ⊂ RN be bounded or un-
bounded. An exhaustion of Ω is a sequence of subsets {Ωk}∞1 such
that

• each Ωk is bounded, closed, and contained in Ω;
• Ωk+1 contains Ωk;
• the union of all Ωk coincides with Ω except possibly a set of

measure zero.

Examples of exhaustions were given in the previous section. If a
bounded function f is Riemann integrable on a closed bounded set
Ω and on each Ωk, then by continuity of the Riemann integral

lim
k→∞

∫

Ωk

f(x) dNx =

∫

Ω

f(x) dNx .

Clearly, continuity holds for any choice of the sequence {Ωk}. If f is
not bounded and/or Ω is not bounded, the improper integral is defined
by demanding that the continuity property still holds.
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Definition 4.1. Let {Ωk}∞1 be an exhaustion of Ω. Suppose that a
function f on Ω is Riemann integrable on each Ωk. Then the function
f is said to be Riemann integrable on Ω if the limit

lim
k→∞

∫

Ωk

f(x) dNx =

∫

Ω

f(x) dNx

exists and is independent of the choice of Ωk. In this case, the value of
the limit is called an improper Riemann integral of f over Ω.

So, by this definition, the function of two variables considered in the
previous section is not integrable on the part of a disk that lies in the
positive quadrant or on its complement because the value of the limit
depends on the choice of exhaustions (or regularization). To show that
an improper integral does not exist, it is sufficient to find two regular-
izations in which the limits are not equal. However, it is impossible to
check the independence of the limit by computing the improper integral
in every possible regularization. It is therefore important to establish
criteria for the existence of improper integrals so that if the limit exists
in one particular regularization, then it exists in any other one and has
the same value.

4.3. Improper integrals of non-negative functions. Suppose that f(x) is
non-negative on Ω. For any exhaustion, the sequence of integrals is
monotonically increasing

0 ≤
∫

Ωk

f(x) dNx ≤
∫

Ωk+1

f(x) dN x

by the positivity property of the Riemann integral and that Ωk ⊂ Ωk+1.
Any monotonic sequence converges if only if it is bounded. So, there
are only two possibilities: either the limit is a number

lim
k→∞

∫

Ωk

f(x) dN x = sup
k

∫

Ωk

f(x) dN x = If

or it is infinite, If = ∞. Suppose that If < ∞. Let {Ω′
k} be another

exhaustion of Ω. Then the sequence of the integrals is bounded:
∫

Ω′
k

f(x) dNx ≤ If

because f(x) ≥ 0 and Ω′
k ⊂ Ω for any k′. Since the sequence is also

increasing monotonically, it converges

lim
k→∞

∫

Ω′
k

f(x) dNx = sup
k′

∫

Ω′
k

f(x) dNx = I ′
f ≤ If
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and its limit cannot exceed If . On the other hand, one can swap the
roles of the exhaustions and use the same argument show that

∫

Ωk

f(x) dNx ≤ I ′
f ⇒ If ≤ I ′

f

because Ωk ⊂ Ω and f(x) ≥ 0. Therefore If = I ′
f and the value of the

limit does not depend on the choice of the exhaustion.
Suppose now that If = ∞. Then I ′

f = ∞. Indeed, if I ′
f < ∞,

then the sequence of integrals of f over {Ωk} is bounded by I ′
f < ∞

by the above argument (as Ωk ⊂ Ω for any k) so that, by taking the
supremum over k, If ≤ I ′

f < ∞, which is a contradiction.

Theorem 4.1. (Improper integral for non-negative functions)
Suppose that

(i) f(x) ≥ 0 , ∀x ∈ Ω;
(ii) {Ωn} and {Ω′

n} are exhaustions of Ω;
(iii) f is Riemann integrable on each Ωn and Ω′

n

Then

lim
n→∞

∫

Ωn

f(x) dNx = lim
n→∞

∫

Ω′
n

f(x) dNx

where the limit can also be +∞.

By the integrability of the absolute value, the functions

f±(x) =
1

2

(

|f(x)| ± f(x)
)

≥ 0

are Riemann integrable if f is Riemann integrable. The function f+(x)
coincides with f(x) whenever f(x) ≥ 0 and vanishes otherwise, whereas
f−(x) coincides with −f(x) whenever f(x) ≤ 0 and vanishes otherwise.
Thus, any Riemann integrable function can be written as the difference
of two non-negative integrable functions:

f(x) = f+(x)− f−(x) ,
∫

Ω

f(x) dNx =

∫

Ω

f+(x) dNx −
∫

Ω

f−(x) dNx

and vice versa (integrability of f± implies integrability of f and |f | =
f+ + f− by the linearity of the integral).

Using the limit laws, the following theorem can be established from
the above representation.

Theorem 4.2. Suppose that the improper integrals of f± over Ω ex-
ist. Then the improper integral of f over Ω exists and can be computed
in any exhaustion {Ωn} of Ω.
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Indeed, by the limit laws and the existence of the improper integral
of f±,

∫

Ω

f(x) dN x = lim
n→∞

∫

Ωn

(

f+(x) − f−(x)
)

dNx

= lim
n→∞

∫

Ωn

f+(x) dNx − lim
n→∞

∫

Ωn

f−(x) dNx

=

∫

Ω

f+(x) dNx−
∫

Ω

f−(x) dNx

and, by Theorem 4.1 the values of the limits in the right side of the
equation do not depend on the choice of the exhaustion (or regulariza-
tion) of the integrals.

Corollary 4.1. Let {Ωn} be an exhaustion of Ω. Suppose that f
and its absolute |f | are integrable on each Ωn and

lim
n→∞

∫

Ωn

|f(x)| dNx =

∫

Ω

|f(x)| dNx < ∞

Then the improper integral of f over Ω exists and
∫

Ω

f(x) dN x = lim
n→∞

∫

Ωn

f(x) dNx

In other words, if the improper integral of the absolute value of f
converges in any particular regularization, then the improper integral
of f exists and can be computed in any suitable regularization. Indeed,
since

0 ≤ f±(x) ≤ |f(x)|
It is concluded that monotonic sequences of integrals of f± over Ωn are
bounded:

0 ≤
∫

Ωn

f±(x) dNx ≤
∫

Ωn

|f(x)| dNx ≤
∫

Ω

|f(x)| dNx < ∞

and, hence, converge. By Theorem 4.1 the limits are independent of
the choice of Ωn. By Theorem 4.2, the improper integral of f over Ω
exists (it is independent of regularization).

4.4. Absolutely and conditionally convergent integrals. Am improper Rie-
mann integral of a function f over a region Ω is called absolutely con-
vergent if

lim
n→∞

∫

Ωn

|f(x)| dNx = If < ∞

The absolute convergence of the Riemann integral implies the existence
of the improper Riemann integral.
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If the limit

lim
n→∞

∫

Ωn

f(x) dNx .

exists for some exhaustion (regularization) {Ωn} but the integral does
not converge absolutely, then the integral of f is said to be condition-
ally convergent in the exhaustion {Ωn}. Absolutely and conditionally
convergent integrals are analogous to absolutely and conditionally con-
vergent series as illustrated below.

4.4.1. Conditionally convergent integrals. Let the integral of f over Ω
be conditionally convergent. In this case, the integrals of f± must
diverge, and the value of a conditionally convergent integral is an in-
determinate form “∞ − ∞” which can happen to be a number in a
particular regularization:

lim
n→∞

∫

Ωn

f(x) dNx = lim
n→∞

(
∫

Ωn

f+(x) dNx −
∫

Ωn

f−(x) dNx

)

Indeed, the divergence of the integral of |f | = f+ + f− implies that
either the integral of f+, or f−, or both diverge because f± ≥ 0. The
conditional convergence of the integral of f (the existence of the limit
in the left side) is only possible when the integrals of f± diverge.

The integrals of f± resemble the (divergent) series of positive and
negative terms of a conditionally convergent series. The sum of such
a series depends on the arrangement of terms (the order in which the
terms are added). In the case of conditionally convergent integrals, the
value depends on the choice of the exhaustion (or regularization). In
other words, by choosing a suitable exhaustion one can always make
the difference of the integrals of f+ and f− over Ωn to be convergent to
any desired number even though both the sequences diverges to +∞,
similarly to that the sum of a conditionally convergent numerical series
can be made any number or infinity by a suitable rearrangement of
terms 9. This is illustrated with the following example.

Consider the improper integral
∫ ∞

0

sin(x)

x
dx = lim

n→∞

∫ bn

0

sin(x)

x
dx

where {bn} is positive, monotonically increasing, unbounded sequence.
Here the integrand extended to x = 0 by continuity (the integrand
approaches 1 as x → 0+). In particular, let us take

bn = πn , n = 1, 2, ...

9This is known as the Riemann theorem about rearrangements (see, e.g., W.
Rudin, Principles of mathematical analysis, Chapter 3).
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This regularization corresponds to the exhaustion:

Ωn = [0, πn]

so that
Ωn = Ωn−1 ∪ Sn , Sn = [π(n− 1), πn] .

If the limit exists, then is equal to the sum of the series
∫ ∞

0

sin(x)

x
dx =

∞
∑

n=1

∫

Sn

sin(x)

x
dx =

∞
∑

n=1

∫ πn

π(n−1)

sin(x)

x
dx

This is an alternating series because the integrand is positive on S2k−1

and negative on S2k. It follows from the inequality

| sin(x)|
πn

≤ | sin(x)|
x

≤ | sin(x)|
π(n − 1)

, n > 1

that
2

πn
≤ an ≤ 2

π(n − 1)
, an =

∫ πn

π(n−1)

| sin(x)|
x

dx > 0

and
∫ ∞

0

sin(x)

x
dx =

∞
∑

n=1

(−1)n+1an

The sequence {an} is positive and converges to 0 monotonically because

an+1 ≤
2

πn
≤ an

By the alternating series test, the series converges.
However, by the comparison test:

2

π

n
∑

k=1

1

k
≤
∫ πn

0

| sin(x)|
x

=

n
∑

k=1

ak ⇒
∫ ∞

0

| sin(x)|
x

dx = ∞

the series and the integral do not converge absolutely because
∑

1
n

=
∞. So, the integral is only conditionally convergent and does not exist
in the sense of Definition 4.1. Its value depends on the choice of reg-
ularization. In particular, the sum can be made equal to any desired
number by a suitable rearrangement in the series. A rearrangement
corresponds to a different exhaustion made of unions of the intervals
Sn.

Consider a rearrangement {S ′
n} of the sequence of intervals {Sn}

and put
Ω′

1 = S ′
1 , Ω′

n+1 = Ω′
n ∪ S ′

n+1

So, Ω′
n is a collection of any n intervals from {Sn}, and Ω′

n+1 is obtained
by adding any of remaining intervals in the collection {Sn}. In other
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words, the order in which the intervals from {Sn} are added to obtain
an exhaustion is changed, but

∞
⋃

n=1

Ωn =
∞
⋃

n=1

Ω′
n = [0,∞) .

The function is still integrable on any finite collection of intervals Ω′
n.

Therefore in this exhaustion (regularization)

∫ ∞

0

sin(x)

x
dx =

∞
∑

n=1

∫

S′
n

sin(x)

x
dx

The series in the right-hand side is a rearrangement of the alternating
series

∑

n(−1)n+1an.
Let us show that a rearrangement can converge to any number or

±∞. Fix a number If > 0. Make Ω′
1 to be the union of odd intervals,

S1, S3 and so on until S2n−1 where n is the smallest integer for which
the integral over the union becomes greater than If . Then start adding
even intervals, S2, S4, and so on until the integral becomes less than
If . The union of Ω′

1 and the added even intervals is Ω′
2. Then begin to

add remaining odd intervals until the integral becomes greater than If

again. The union of Ω′
2 and the added shells makes Ω′

3. In each step,
the overshot or undershot necessarily occurs because the integrals over
all odd and all even intervals diverge to +∞ and −∞, respectively. In
this way, the sequence of integrals

∫

Ω′
n

f(x) dNx , Ω′
n ⊂ Ω′

n+1 ,

oscillates about If and converges to If because the overshot or un-
dershot of the integral is decreasing with increasing the number of
iterations:

∣

∣

∣

∣

If −
∫

Ω′
n

f(x) dNx

∣

∣

∣

∣

≤
∫

Skn

|f(x)| dNx → 0

for some kn ≥ n so that kn → ∞ as n → ∞. Since {Ω′
n} is an ex-

haustion of Ω by construction, the integral conditionally converges to
a preassigned positive number If . A similar exhaustion can be con-
structed to make the integral converging to any negative number. The
reader is asked to construct exhaustions in which the integral converges
to either +∞ or −∞, or does not converge at all (e.g., oscillates be-
tween any two numbers).
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4.5. Absolutely convergent integrals. There are tests for absolute con-
vergence of improper integrals that are analogous to the corresponding
tests for absolute convergence of series.

4.5.1. The comparison test. Let f and g be Riemann integrable on Ω,
and

|f(x)| ≤ g(x) , ∀x ∈ Ω

Then
∫

Ω

|f(x)| dNx ≤
∫

Ω

g(x) dNx

If now f and g are not integrable in the proper sense, then for any
exhaustion {Ωn}

∫

Ωn

|f(x)| dNx ≤
∫

Ωn

g(x) dNx

If the improper integral of g converges, then the integral f converges
absolutely because

∫

Ωn

g(x) dNx ≤
∫

Ω

g(x) dNx < ∞

⇒ lim
n→∞

∫

Ωn

|f(x)| dNx ≤
∫

Ω

g(x) dNx

By Theorem 4.2 the limit does not depend on the choice of the exhaus-
tion and the improper integral of f exists.

Theorem 4.3. (Comparison test for absolute convergence)
Let {Ωn} be an exhaustion of a region Ω and a function f be integrable
on any Ωn. If the absolute value |f(x)| is bounded on Ω by a function
whose improper Riemann integral over Ω exists,

|f(x)| ≤ g(x) , x ∈ Ω , lim
n→∞

∫

Ωn

g(x) dNx < ∞ ,

then the improper integral of f over Ω also exists and converges abso-
lutely.

4.5.2. Integrals over unbounded regions. Suppose Ω = RN and f is a
continuous function. Clearly it is integrable on any ball Ωn = Bn (that
is, |x| ≤ n, n = 1, 2, ...). So the existence of the improper integral
would depend on how fast f falls off as |x| → ∞.

Proposition 4.1. Let f be integrable on any ball and

|f(x)| ≤ M

|x|p , |x| ≥ R
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for some positive constants M and R, and p > N , then the improper
integral of f over the whole space exists and

∫

RN

f(x) dNx = lim
n→∞

∫

|x|≤n

f(x) dNx < ∞ .

Consider the case N = 2. The integral over the whole plane is split
into the integral over the disk BR and the rest of the plane R2 \ BR.
Since the integral over BR is a regular integral, one has to investigate
the convergence of the improper integral over the rest of the plane.
Since |f(x)| ≥ 0, if it converges in a particular regularization, then it
converges in any other regularization to the same value. Let Ωn be an
annulus R ≤ |x| ≤ n. Then

∫

Ωn

|f(x)| d2x ≤
∫

Ωn

M

|x|p d2x =

∫ 2π

0

∫ n

R

M

rp
rdrdθ

=
2πM

p − 2

(

1

Rp−2
− 1

np−2

)

The right side converges if p > N = 2 when n → ∞. Therefore the
integral of f converges absolutely and, hence, the improper integral of
f exists by the comparison test (it can be computed in any suitable
regularization).

For N > 2 note that the volume of a spherical shell of thickness dr
and radius r is the differential of the volume of the ball of radius r:

dVN (r) = σNrN−1dr

where σN is the area of the unit sphere in RN . Then using spherical
coordinates

∫

Ωn

|f(x)| d2x ≤
∫

Ωn

M

|x|p dNx = σN

∫ n

R

M

rp
rN−1dr

The integral converges in the limit n → ∞ if p > N .

4.5.3. Integrals of unbounded functions. Suppose f is not bounded in
any neighborhood of a particular point, and it is continuous otherwise.
Without loss of generality, the singular point can be chosen to be the
origin x = 0 (values of |f(x)| becomes infinitely large as x approaches
0). Then the absolute integrability depends on how fast |f(x)| diverges
as x → 0.

Proposition 4.2. Suppose that f is not bounded in any ball Ba

and integrable on Ω \ Ba where Ω contains x = 0. If

|f(x)| ≤ M

|x|p , |x| ≤ a
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for some constants M and R, and p < N , then the improper integral
of f exists and

∫

Ω

f(x) dNx = lim
a→0+

∫

Ω\Ba

f(x) dNx .

A proof of this assertion can also be done by using spherical coordi-
nates in RN . Let Ωa,R be the intersection of Ω with the spherical shell
a2 ≤ |x|2 ≤ R2. The integral of f over Ω \ BR exists by continuity of
f . Then

∫

Ωa,R

|f(x)| dNx ≤
∫

a≤|x|≤R

M

|x|p dNx = σN

∫ R

a

M

rp
rN−1dr

=
σNM

N − p

(

RN−p − aN−p
)

So the integral converges in the limit a → 0+ if p < N . Therefore the
integral of f converges absolutely by the comparison test, and, hence,
the improper integral of f exists.

4.6. Improper integrals of complex-valued functions. Let f be a complex-
valued function of N real variables. If {Ωn} is an exhaustion of Ω, then
the integral of f over Ω is said to converge in this exhaustion if the
integrals of the real and imaginary parts of f converge, and in this case

lim
n→∞

∫

Ωn

f(x) dNx = lim
n→∞

∫

Ωn

Re f(x) dN x + i lim
n→∞

∫

Ωn

Im f(x) dNx

It follows from the inequalities

|Re f | ≤ |f | , |Im f | ≤ |f |
that the integrals of the real and imaginary parts of f converge ab-
solutely if the integral of the absolute value converges. The converse
follows from the inequality

|f | ≤ |Re f | + |Im f |
that is,

• the integral of a complex-valued function converges absolutely
if and only if the integral of the absolute value converges.

4.7. Gaussian integrals. The objective is to prove that

(4.1) IN(A, b) =

∫

RN

e−(x,Ax)+(b,x) dNx =
πN/2

det(A)
e

1
4
(b,A−1b)
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where the quadratic form

(x, Ax) =
N
∑

k,n=1

Aknxkxn > 0 , ∀x 6= 0

is strictly positive if x 6= 0. The integrals of this type are known
as Gaussian integrals. They are routinely used in various applications.
Note that the integrand is positive and, hence, if the integral converges,
then it converges absolutely. Therefore it can be computed in any
convenient regularization.

4.7.1. A special case. Consider a two-dimensional Gaussian integral

I2 =

∫∫

R2

e−x2−y2

dxdy

Let Ωn be a disk of radius n, x2+y2 ≤ n2. Then using polar coordinates

I2 = lim
n→∞

∫∫

Ωn

e−x2−y2

dxdy = lim
n→∞

∫ 2π

0

∫ n

0

e−r2

rdrdθ

= π lim
n→∞

∫ n2

0

e−s ds = π

Since the value of the absolutely convergent integral does not depend
on the regularization, put Ω′

n = [−n, n] × [−n, n] so that by Fubini’s
theorem

π = lim
n→∞

∫∫

Ω′
n

e−x2−y2

dxdy = lim
n→∞

∫ n

−n

e−x2

dx

∫ n

−n

e−y2

dy

Therefore, by the limit laws,

I1 =

∫ ∞

−∞
e−x2

dx =
√

π

because I2
1 = π. Using a scaling transformation, y =

√
ax

I1(a) =

∫ ∞

−∞
e−ax2

dx =
I1(1)√

a
=

√
π√
a

Furthermore using the scaling and shift transformation

y =
√

a x , s = y − b

2
√

a
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one infers that

I1(a, b) =

∫ ∞

−∞
e−ax2+bx dx = lim

n→∞

∫ n

−n

e−ax2+bx dx

=
1√
a

lim
n→∞

∫ n
√

a

−n
√

a

e
−y2+ b√

a
y
dy

=
e

b2

4a√
a

lim
n→∞

∫ n
√

a+ b
2
√

a

−n
√

a− b
2
√

a

e−s2

ds

(1)
=

I1(1, 0)√
a

e
b2

4a =

√
π√
a

e
b2

4a .

Since the value of I1(1, 0) = I1 does not depend on the choice of the
exhaustion, the final equality (1) holds. The result (4.1) is established
for N = 1.

4.7.2. General case. Let an exhaustion {Ωn} of RN be rectangular
boxes, |xj| ≤ n, j = 1, 2, ..., N . Let A be a diagonal matrix with
diagonal elements aj. The condition (x, Ax) > 0 implies that the di-
agonal elements are strictly positive, aj > 0. By Fubini’s theorem one
infers that

IN(A, b) =

∫

RN

exp
(

−
N
∑

j=1

(ajx
2
j − bjxj)

)

dNx

= lim
n→∞

N
∏

j=1

∫ n

−n

e−ajx2
j+bjxj dxj

=
N
∏

j=1

I1(aj, bj) =
πN/2

√
a1a2 · · · aN

exp

(

1

4

N
∑

j=1

b2
j

aj

)

Any matrix A can be written as a sum of symmetric and skew-
symmetric matrix:

A =
1

2

(

A + AT
)

+
1

2

(

A − AT
)

≡ B + C

where B is symmetric, BT = B (here BT denotes the transposed matrix
B), and C is skew-symmetric, CT = −C . A quadratic form vanishes
identically for a skew-symmetric matrix because

(x, Cx) = (CTx, x) = −(Cx, x) = −(x, Cx) ⇒ (x, Cx) = 0

Therefore without loss of generality A = AT (a symmetric matrix). Any
symmetric matrix A is diagonalizable, and there exists an orthogonal
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matrix U ,

UT = U−1

such that

A = UT aU , aij = ajδij

where a is a real diagonal matrix. The diagonal elements aj are eigen-
values of A and the columns of U are the corresponding unit eigenvec-
tors. The positivity of a quadratic form requires that all eigenvalues of
A are strictly positive because

(x, Ax) = (x, UT aUx) = (Ux, aUx) = (y, ay) =

N
∑

j=1

ajy
2
j .

The transformation y = Ux preserves the distance in RN because

|y|2 = (y, y) = (Ux, Ux) = (x, UTUx) = (x, x) = |x|2

because UTU = UUT = I is the unit matrix Iij = δij. An orthogonal
transformations is a composition of rotations and reflections (xj → pjxj

where pj = ±1). Owing to the absolute convergence of the Gaussian in-
tegral with a diagonal matrix A and that the Jacobian of an orthogonal
transformation is equal to one,

dNx =

∣

∣

∣

∣

det

(

∂xj

∂yi

)∣

∣

∣

∣

dNy = | detUT | dNy = dNy

one infers that

IN(A, b) = lim
n→∞

∫

Ωn

e−(x,Ax)+(b,x)dNx = lim
n→∞

∫

U (Ωn)

e−(y,ay)+(Ub,y)dNy

=

∫

RN

e−(y,ay)+(Ub,y)dNy

=
πN/2

√
a1a2 · · · aN

exp

(

1

4

N
∑

j=1

c2
j

aj

)

where c = Ub. Since the transformation U preserves the distances
between points, for any exhaustion {Ωn}, the image {U(Ωn} is also an
exhaustion of RN .

Next, note that

a1a2 · · · aN = det a = det(UAUT ) = (detU)2 det A = detA

Therefore detA 6= 0 and the inverse A−1 exists and

A−1 = (UTaU)−1 = U−1a−1(UT )−1 = UT a−1U .
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It is then concluded that
N
∑

j=1

c2
j

aj
= (c, a−1c) = (Ub, a−1Ub) = (b, UTa−1Ub) = (b, A−1b)

and the relation (4.1) follows.

4.8. Exercises.

1. Consider the improper integral
∫∫

Ω

x2 − y2

(x2 + y2)2
dxdy

where

Ω = {(x, y) |x2 + y2 ≥ 1 , x ≥ 0 , y ≥ 0}
Take an exhaustion {Ωn} which is a rectangle in the polar coordinates
(r, θ) ∈ [1, an] × [αn, π/2 − βn] where αn and βn are positive and tend
to 0 monotonically, while 1 < an increases monotonically to infinity, as
n → ∞. Show that there is a choice of αn, βn, and an such that the
sequence of integrals over Ωn can converge to any real number or ±∞.

2. For the integrand in Problem 1, find f±(x, y) and show that for
any exhaustion the improper integrals of f± diverge

∫∫

Ω

f±(x, y) dxdy = ∞

3. Prove Proposition 4.1 for N = 3 using spherical coordinates.

4. Prove Proposition 4.2 for N = 3 using spherical coordinates.

5. Let p and q be positive integers. Do the following improper in-
tegrals exist in the sense of Definition 4.1?

(i)

∫ ∞

0

sin2(x)

xp
dx

(ii)

∫ ∞

1

cosq(x)

xp
dx ,

(iii)

∫ 1

0

sinp

(

1

x

)

dx

6. Put

In(a) =

∫ ∞

0

xne−ax2

dx , n = 0, 1, ..
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(i) Show that the integral converges absolutely.
(ii) Use integration by parts to prove the recurrence relation

In+2 =
n + 1

2a
In

(iii) Find I0(a) and I1(a). Use the above recurrence relation to find
In(a).

7. Let σN be the surface area of a unit sphere |x| = 1 in RN .
(i) Let Ωn be an exhaustion of RN made of balls |x| ≤ n. Show that

∫

Ωn

e−(x,x) dNx = σN

∫ n

0

e−r2

rN−1 dr

(ii) Use this result and the result of Problem 6 to find σN and the
volume VN (a) of a ball of radius a in terms of Euler’s gamma function.
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5. Lebesgue integral

5.1. Piecewise continuous functions on R. Suppose a function f is not
continuous at a point x = c and has a jump discontinuity at x = c.
The latter means that the right and left limits of f(x) at x = c exist
but are not equal:

lim
x→c+

f(x) = f+(c) , lim
x→c−

f(x) = f−(c) , f+(c) 6= f−(c)

A piecewise continuous function is a function that is not continuous at
finitely many points in any bounded interval and has jump discontinu-
ities at these points.

First note that points at which a piecewise continuous function
has jump discontinuities form a countable set. Indeed a real line can
be viewed as the union of countable many intervals and in each such
interval the function has finitely many jump discontinuities. So, a
collection {cn} of all such points is either finite or form a sequence. The
sequence cannot have any limit point because otherwise the function
would have infinitely many jump discontinuities in any open interval
containing the limit point. In each interval (cn, cn+1), the function is
continuous and has a continuous extension to [cn, cn+1].

Put
m = inf{cn} , M = sup{cn}

If the sequence {cn} is not bounded from below, then m = −∞ and
otherwise m is the smallest number in {cn}. If the sequence {cn} has
no upper bound, then M = ∞ and otherwise M is the largest number
in the collection {cn}. Clearly, if −∞ < m ≤ M < ∞, that is, the
collection {cn} has the smallest and largest number, then the collection
must be finite. Let {Ωn} denote a collection of open intervals (cn, cn+1)
together with (−∞, m) and (M,∞) (if these intervals are not empty).
This collection of intervals has the following characteristic properties:

(i) the intervals do not overlap:

Ωn ∩ Ωn′ = ∅ , n 6= n′ ,

(ii) any bounded interval (a, b) is covered by finitely many closed
intervals Ω̄n:

(a, b) ⊂
k
⋃

n=j

Ω̄n ,

(iii) the union of closures of the intervals coincides with whole real
line:

⋃

n

Ω̄n = R .
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This observation allows us to give an alternative definition of a piece-
wise continuous function which can be extended to the multivariable
case.

5.1.1. Definition of a piecewise continuous function. A function f : R →
R is said to be piecewise continuous on R if there exists an at most
countable collection of open intervals Ωn with no common points such
that any bounded interval is covered by finitely many closed intervals
Ω̄n, and f ∈ C0(Ω̄n).

A piecewise continuous function is not continuous on {cn} which is a
set measure zero. One can also say that a piecewise continuous function
is continuous almost everywhere. Therefore any piecewise continuous
function is Riemann integrable on any [a, b]. The value of the Rie-
mann integral does not depend on the values of a piecewise continuous
function at the points where it is not continuous.

5.2. Measurable functions on R. Let A be a set of functions that is
defined by some characteristic property (e.g., continuity, or integrabil-
ity, etc.). Then the limit function of a pointwise convergent sequence
{fn} ⊂ A does not in general belong to A. One can ask how large
the set A should be in order to be complete in the sense that the limit
function of every pointwise convergent sequence in A belongs to A. It
turns out that such a set of functions exists and is known as a set of
measurable functions.

Suppose that a sequence {fn} of functions on R converges pointwise
almost everywhere. In other words, a numerical sequence {fn(x)} can
have no limit for some points x that form a set of measure zero. In this
case, one writes

lim
n→∞

fn(x) = f(x) a.e.

For example,

lim
n→∞

[cos(πx)]n = 0 a.e.

Note that the limit does not exist if x is an integer. If x is not an
integer, then | cos(πx)| < 1 and the limit is equal to zero. But the
integers form a set of measure zero.

A function f is called measurable if it coincides almost everywhere
with the limit of an almost everywhere convergent sequence of piecewise
continuous functions.

5.2.1. Measurable sets. A set of real numbers is called measurable if its
characteristic function is measurable. Clearly, any interval (bounded
or unbounded, closed or open or semi-open) is measurable. Any set
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of measure zero is measurable. The following properties of measurable
sets can also be established:

• The complement of a measurable set is measurable.
• The union or intersection of countably many measurable sets

is measurable.
• Every open or closed set is measurable.

5.3. Properties of measurable functions. 10 Evidently, every piecewise
continuous function f is measurable because one can take a sequence of
piecewise continuous functions fn(x) = f(x) of identical terms which
obviously converges to f(x). Suppose that f is a measurable function
and g coincides with f almost everywhere. Then g is also measurable.
Indeed, Let fn be a sequence of piecewise continuous functions that
converges to f almost everywhere. Since f and g differ only on a set
of measure zero, fn converges to g almost everywhere, too:

f(x) is measurable
f(x) = g(x) a.e.

}

⇒ g(x) is measurable

5.3.1. Algebraic operations with measurable functions. Using the basic
limit laws, it is not difficult to see that the set of measurable functions
is closed relative to algebraic operations of addition, multiplication, and
division:

f(x) is measurable
g(x) is measurable

}

⇒







f(x) + g(x) is measurable
f(x)g(x) is measurable
f(x)/g(x), g(x) 6= 0, is measurable

Indeed, if fn(x) and gn(x) are sequences of piecewise continuous func-
tions, then the functions fn(x) + gn(x), fn(x)gn(x), and fn(x)/gn(x),
gn(x) 6= 0, also form sequences of piecewise continuous functions, and
the above assertion follows from the basic laws of limits. This also im-
plies that linear combinations of measurable functions are measurable.
Sets that are complete relative to additions and multiplications by a
number are called a linear space. Thus, the set of measurable functions
is a linear space.

10Proofs of the listed properties of measurable functions can be found in: A.N.
Kolmogorov and S.V. Fomin, Elements of the theory of functions and functional
analysis
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5.3.2. Absolute value of a measurable function. Given two functions f
and g, define the following functions

max(f, g)(x) =

{

f(x) , f(x) > g(x)
g(x) , f(x) ≤ g(x)

min(f, g)(x) =

{

g(x) , f(x) > g(x)
f(x) , f(x) ≤ g(x)

One can prove that the functions max(f, g) and min(f, g) are measur-
able, if f and g are measurable. It follows that the absolute value

|f(x)| = max(f, 0)(x) −min(f, 0)(x)

of a measurable function f is measurable.

5.3.3. Measurable and Riemann integrable functions. One can prove the
following property

• A function that is not continuous on a set of measure zero is
measurable.

Therefore every Riemann integrable function is measurable by Theo-
rem 3.1. Furthermore, every function for which the improper Riemann
integral exists is also measurable. So, the set of measurable functions
contains all Riemann integrable functions (either in the proper or im-
proper sense).

There are measurable functions that are not Riemann integrable.
For example, the Dirichlet function introduced in Section 3.2.3 is mea-
surable but not Riemann integrable on any interval. The set Q of
rational numbers has measure zero in R. Therefore fD(x) = 0 a.e., but
any constant function and, in particular, g(x) = 0 is measurable and,
hence, so is the Dirichlet function.

5.3.4. Composition of measurable functions. A composition of measur-
able functions is measurable

5.3.5. Completeness of the set of measurable functions.

Theorem 5.1. A function that coincides almost everywhere with
the limit of an almost everywhere convergent sequence of measurable
functions is measurable.

5.3.6. Non-measurable sets and functions. Thus, the set of measurable
functions is quite large. Are there non-measurable functions and sets?
It appears that one can prove that they exist11 using the so called axiom
of choice:

11see, e.g., A.N. Kolmogorov and S.V. Fomin, Elements of the theory of func-
tions and functional analysis, Chapter 5, Sec. 1.3
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• Let {Ea} be a collection of subsets of a set E (the indexing set
a is of arbitrary nature). Then there exists a choice function,
a → x(a) where x(a) ∈ Ea for all a.

No example of an explicit non-measurable functions has been con-
structed so far. This suggests that all functions and sets that can
possibly be used in applications or otherwise are measurable. For this
reason, in what follows all sets are assumed to be measurable and all
functions are assumed to be measurable and bounded almost every-
where. A function f is not bounded at x0 if |f(x)| → ∞ as x → x0.
The set of all such points is a set of measure zero for a function that is
bounded a.e.

5.4. Definition of the Lebesgue integral. To avoid any confusion between
Riemann and Lebesgue integrals, the Riemann integral (proper or im-
proper) will be denoted as

R
∫

Ω

f(x) dx , Ω ⊆ R ,

in what follows.
The main deficiency of the Riemann integral is its sensitivity to al-

terations of an integrable function on sets of measure zero (cf. Sec.3.3.1).
To find a remedy, one should get rid of the definition of the integral
via the lower and upper sums because there are sets of measure zero
densely defined in any interval (cf. Sec.1.1.5) so that by altering values
of an integrable function on a set of measure zero, one can drive the up-
per (or lower) sum to any limit, thus destroying Riemann integrability.
Since practically any function can be obtained as the pointwise limit
of an almost everywhere convergent sequence of piecewise continuous
functions, that are integrable on any interval, one could define a new
integral of a function f as the limit of Riemann integrals of piecewise
continuous functions that converge to f . Then by properties of mea-
surable functions (see Sec. 5.3), alterations of the function f on a set
of measure zero would not change the value of the integral because the
latter is defined by the limit of the same sequence of Riemann integrals
of piecewise continuous functions.

To make this work, one should make sure that the said sequence
of Riemann integrals converges. If the function is bounded from be-
low (e.g., f(x) ≥ 0 a.e.), then it can be obtained as the limit of
non-decreasing sequence of piecewise continuous functions. Therefore
the sequence of Riemann integrals is monotonically increasing and has
a limit, provided it is bounded. Similarly, the integral of any mea-
surable function that is bounded from above can be defined as the
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limit of a non-increasing sequence of Riemann integrals if the latter
is bounded. Furthermore, any measurable function can be written as
a difference of two measurable functions bounded from above and be-
low (see Sec.5.3.2). Therefore, the integral of any measurable function
can be defined as the difference of two integrals, just like the improper
Riemann integral in Sec. 4.3. By construction, the new and Riemann
integrals coincide for piecewise continuous functions on any bounded
set. Furthermore, one would anticipate that the new integral also co-
incides with an absolutely convergent Riemann integral whenever the
latter exists. Finally, the new integral does not change if the integrand
is altered on any set of measure zero. Let us formalize the idea.

5.4.1. The space L+. Let a real function f(x) be the limit of a non-
decreasing sequence of piecewise continuous functions fn(x) almost ev-
erywhere such that the sequence of Riemann integrals is bounded:

fn(x) ≤ fn+1(x) , n = 1, 2, ..., , ∀x ∈ R ,

R
∫

fn(x) dx ≤ M , n = 1, 2, ... ,

for some number M . The limit of the non-decreasing sequence of Rie-
mann integrals is called the Lebesgue integral of f and is denoted by
the symbol

∫

f(x)dx so that
∫

f(x) dx = lim
n→∞

R
∫

fn(x) dx .

The set of all such functions is denoted by L+.

5.4.2. The space of Lebesgue integrable function L. A function f is called
Lebesgue integrable if it can be represented as the difference of two
functions from the set L+:

f(x) = f1(x) − f2(x) , f1 ∈ L+ , f2 ∈ L+

The number
∫

f1(x) dx −
∫

f2(x) dx =

∫

f(x) dx

is called the Lebesgue integral of the function f . The set of all Lebesgue
integrable functions is denoted by L.

5.4.3. The Lebesgue integral over a set. A function f is said to be
Lebesgue integrable on a measurable set Ω ⊂ R, if fχ

Ω
∈ L, where

χ
Ω

is the characteristic function of Ω, and the number
∫

f(x)χ
Ω
(x) dx =

∫

Ω

f(x) dx
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is called the Lebesgue integral of f over Ω. The class of all Lebesgue
integrable functions is denoted by L(Ω).

5.4.4. Consistency of the definition. Definition 5.4.1 makes sense only if
the Lebesgue integral does not depend on the choice of the sequence
{fn}. Similarly, Definition 5.4.2 is consistent if the Lebesgue integral
is independent of the choice of f1 and f2. This is indeed so as shown
in Appendix.

5.5. Riemann and Lebesgue integrals in R. If the Lebesgue integral of
a piecewise continuous function f over any bounded interval coincides
with the Riemann integral because any such function is from class L+:

f ∈ C0[a, b] ⇒
∫ b

a

f(x) dx = R
∫ b

a

f(x) dx

Note that one can take fn(x) = f(x)χ
[a,b]

(x) in Definition 5.4.1.

5.5.1. Lebesgue integrability and sets of measure zero. One of the key
differences between the Lebesgue and Riemann integrals is that alter-
ations of an integrable function on a set measure zero does not affect
integrability and the value of the integral does not change. Let f(x) = 0
a.e. Put fn(x) = 0 in Definition 5.4.1. Clearly fn converges to f almost
everywhere. Therefore

f(x) = 0 a.e. ⇒
∫

Ω

f(x) dx = 0

In particular, the Lebesgue integral of the Dirichlet function vanishes
over any (measurable) set

∫

Ω

fD(x) dx = 0

because fD(x) = 0 a.e.
One can show that the converse is also true if f is a non-negative

function12

Proposition 5.1. Let f(x) ≥ 0. Then its Lebesgue integral van-
ishes if and only if f(x) = 0 almost everywhere.

It follows from linearity of Lebesgue integral that if f ∈ L and g
differs from f only on a set of measure zero, then g is also integrable

12see, e.g., A.N. Kolmogorov and S.V. Fomin, Elements of the theory of func-
tions and functional analysis, Chapter 5.
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and its integral is equal to the integral of f :

f ∈ L , g(x) = f(x) a.e. ⇒ g ∈ L ,

∫

g(x) dx =

∫

f(x) dx

Thus, in full contrast to the Riemann integral, the Lebesgue integral is
insensitive to alterations of an integrable function on sets of measure
zero. Note that if f is continuous and g(x) = f(x) a.e., then g can be
continuous nowhere, just like the Dirichlet function, and hence g may
not even be Riemann integrable.

5.5.2. Lebesgue integrability of Riemann integrable functions. Let us show
that any function f that is Riemann integrable on [a, b] is Lebesgue in-
tegrable and

R
∫ b

a

f(x) dx =

∫ b

a

f(x) dx

As noted earlier, for any Riemann integrable function f there exists a
sequence of partitions Pn such that Pn+1 is a refinement of Pn and

lim
n→∞

L(Pn, f) = lim
n→∞

U(Pn, f) = R
∫ b

a

f(x) dx

Define two sequences of piecewise constant functions

Ln(x) = ms , x ∈ Rs , Un(x) = Ms , x ∈ Rs

where Rs are partition intervals for Pn. Then

Ln(x) ≤ Ln+1(x) ≤ f(x) ≤ Un+1(x) ≤ Un(x)

The sequence {Ln(x)} is monotonically increasing and bounded from
above, and the {Un(x)} is monotonically decreasing and bounded from
below. Therefore they converge for all x:

lim
n→∞

Ln(x) = L(x) , lim
n→∞

Un(x) = U(x) .

and
L(x) ≤ f(x) ≤ U(x) , a ≤ x ≤ b .

The limit function L is Lebesgue integrable because the sequence of its
Riemann integrals is nothing but the sequence of lower sums for f :

∫ b

a

L(x) dx = lim
n→∞

R
∫ b

a

Ln(x) = lim
n→∞

L(Pn, f)

Similarly, the function −U(x) is also Lebesgue integrable because the
sequence {−Un} satisfies the conditions in Definition 5.4.1. Therefore
U is Lebesgue integrable and

∫ b

a

U(x) dx = lim
n→∞

R
∫ b

a

Un(x) dx = lim
n→∞

U(Pn, f)
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Thus, the Lebesgue integrals of U and L are equal, and therefore the
integral of a non-negative function U(x) − L(x) ≥ 0 vanishes. By
Proposition 5.1, this implies that U(x) = L(x) a.e. and, hence,

f(x) = L(x) a.e.

from which it follows that f is Lebesgue integrable and
∫ b

a

f(x) dx = R
∫ b

a

f(x) dx .

5.5.3. Lebesgue and improper Riemann integrals. Suppose that f is not
bounded on (a, b) but f ∈ C0(a, b) (f is singular at one or both end-
points of the interval). Suppose that the improper Riemann integral of
f over (a, b). This implies that

R lim
n→∞

∫ bn

an

f±(x) dx = R
∫ b

a

f±(x) dx < ∞

for an exhaustion [an, bn] ⊂ (a, b) where an and bn converge mono-
tonically to a and b, respectively. It follows that f± are from class
L+ because they are limits of monotonically increasing sequences of
piecewise continuous functions χn(x)f±(x) where χn is the character-
istic function of [an, bn] whose Riemann integrals are bounded. Since
f(x) = f+(x) − f−(x), it is concluded that f is Lebesgue integrable
on (a, b) and its Lebesgue integral is equal to the improper Riemann
integral. Conversely, if a continuous function is Lebesgue integrable,
then its Riemann integral converges absolutely is equal to the Lebesgue
integral. Clearly, the argument can readily be extended to a continu-
ous (or piecewise continuous) function on an unbounded interval. So,
for continuous (or piecewise continuous) functions, the Lebesgue and
absolutely convergent Riemann integrals are equivalent.

In fact, a more general assertion is true (see Sec. 6.10).

Proposition 5.2. If the function f(x) and |f(x)| are Riemann
integrable on a set Ω (possibly in the improper sense), then they are
Lebesgue integrable on Ω, and their Lebesgue and Riemann integrals
are equal:

R
∫

Ω

f±(x) < ∞ dx ⇒
∫

Ω

f(x) dx = R
∫

Ω

f(x) dx

where f±(x) = 1
2
(|f(x)| ± f(x)).

Thus, any function g that coincides almost everywhere with an
absolutely Riemann integrable function f is Lebesgue integrable and,
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in this case, the Lebesgue integral of g is equal to the Riemann integral
of f .

5.5.4. The Lebesgue integral of a complex-valued function. A complex-
valued function f(x), x ∈ R, is said to be integrable if its real and
imaginary parts are integrable, and in this case

∫

f(x)dx =

∫

Re f(x) dx + i

∫

Im f(x) dx .

It follows from Proposition 5.2 that if the Riemann integral of a complex-
valued function converges absolutely, then the function is Lebesgue
integrable and its Lebesgue and Riemann integrals are equal.

5.6. Lebesgue integral in RN . The Lebesgue integral in any Euclidean
space is defined in a similar way, that is, as a limit of Riemann integrals
of piecewise continuous functions. However, the notion of a piecewise
continuous function of several variables requires a refinement related
to the boundary of sets of continuity of the function.

5.6.1. Piecewise continuous functions on RN . Recall that a region is an
open connected set RN . A function f is called piecewise continuous in
RN if

(i) there is at most countably many non-intersecting regions Ωn,
n = 1, 2, ...,

(ii) with piecewise smooth boundaries ∂Ωn,
(iii) any ball is contained in the union of finitely many closed re-

gions Ωn,
(iv) the union of Ωn coincides with RN , and
(v) f ∈ C 0(Ωn)

This definition is to be compared with the definition of a piecewise
continuous function on R. Regions Ωn are analogs of open intervals.

A piecewise continuous function is continuous almost everywhere
and at any point where it is not continuous the function can only have
a jump discontinuity. A piecewise continuous function is bounded on
any ball. Therefore a piecewise continuous function with a bounded
support is Riemann integrable on RN .

5.6.2. Definition of the Lebesgue integral in RN . Let a real-valued func-
tion f coincide almost everywhere with the limit of a non-decreasing
sequence of piecewise continuous functions fn(x),

fn(x) ≤ fn+1(x) , ∀x ∈ RN , n = 1, 2, ..
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such that the sequence of the Riemann integrals is bounded:

R
∫

fn(x) dNx ≤ M ,

for all n, where the Riemann integral is understood in the improper
sense if supports of fn are not finite. The limit

lim
n→∞

R
∫

fn(x)dNx =

∫

f(x)dNx < ∞

of this non-decreasing bounded sequence is called the Lebesgue integral
of f . The set of such functions is denoted by L+. A real function f is
called Lebesgue integrable if it can be represented as the difference of
two functions from L+, f = f1 − f2, f1,2 ∈ L+ and

∫

f(x)dNx =

∫

f1(x)dNx−
∫

f2(x)dNx .

The set of Lebesgue integrable functions is denoted by L. The proof
of consistency of the Lebesgue integral over R given in Appendix 1.2

is easily extended to RN by replacing all intervals in R by the corre-
sponding balls in RN .

Similarly to the one dimensional case, a function f is said to be from
L(Ω) if the function χ

Ω
f ∈ L, where χ

Ω
is the characteristic function

of the set Ω and, in this case,
∫

Ω

f dNx =

∫

χ
Ω
f dNx .

5.6.3. Lebesgue and Riemann integrability in RN . Let Ω be a region in
RN and f ∈ C0(Ω). Then f ∈ L(Ω) if and only if its Riemann integral
over Ω converges absolutely, that is, if and only if

lim
n→∞

R
∫

Ωn

|f(x)| dNx < ∞

for some exhaustion (or regularization) {Ωn} of Ω, and, in this case,
∫

Ω

f(x) dN x = lim
n→∞

R
∫

Ωn

f(x) dN x .

A proof of this assertion is left to the reader (cf. Sec. 5.5.3).
Proposition 5.2 can be extended to integrals in RN . Let f be an

absolutely Riemann integrable function and g(x) = f(x) a.e.. Then g is
Lebesgue integrable and its integral is equal to the Riemann (improper)
integral of f .
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5.7. Exercises.

1. Let f(x) = 0 if x is rational and f(x) = e−x otherwise. Find
the Lebesgue integral

∫ ∞

0

f(x) dx

or show that it does not exist.
2. Let LQ be a collection of lines through the origin in R2 such that the
angle between any two lines is equal πq where q is a rational number.
Let f(x) = 0 if x ∈ LQ and f(x) = e−|x|2 otherwise. Investigate the
existence of the integrals

∫

f(x) d2x , R
∫

f(x) d2x

and, if an integral exists, find its value.
3. Which of the following functions are Lebesgue integrable on R:

sin(x)

x
,

eikx

x
,

cos(x)
√

|x|
, e−x , x100e−x2

4. A function is said to be Lebesgue square integrable on Ω, or from
the space L2(Ω), if |f |2 ∈ L(Ω). Which of the functions from Problem
3 are square integrable?

5. Let f be continuous and Lebesgue integrable on RN . Show that
its Fourier transform

F [f ](k) =

∫

ei(k,x) f(x) dNx

exists for any k ∈ RN .
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6. Properties of the Lebesgue integral in RN

Properties of the Lebesgue integral are analogous to the properties
of the Riemann integral (cf. Sec. 3.4) because the Lebesgue integral
coincides with the absolutely convergent Riemann integral whenever
the latter exists (Proposition 5.2).

The key difference between the Lebesgue and Riemann integrals
is that the Lebesgue integral is insensitive to alterations of the inte-
grand on sets of measure zero, whereas the Riemann integrability can
be lost after such alterations. Apart from eliminating the aforemen-
tioned deficiency in the definition of volume of a set (cf. Sec.3.3.1), this
also leads to simplifications of theorems about integrability of the limit
function of a functional sequence. In particular, the hypotheses of the
uniform convergence can be weakened and simplified, which is a major
advantage of the Lebesgue integral in applications.

In what follows, a Lebesgue integrable function will be called just
integrable and integrals are always understood in the Lebesgue sense
(unless stated otherwise) and the term integrability means integrability
in the Lebesgue sense. In mathematical literature, Lebesgue integrable
functions are often called summable to distinguish them from integrable
functions in the Riemann sense.

6.1. The set L is a linear space. If f and g are integrable, then their
linear combination is also integrable and

∫

(

c1f(x) + c2g(x)
)

dNx = c1

∫

f(x) dNx + c2

∫

g(x) dNx .

So, the set L(Ω) of Lebesgue integrable functions on Ω ⊂ RN is a linear
space. This property follows from the limit laws. If {fn} and {gn} are
sequences of piecewise continuous functions that define the integrals
of f and g, then by linearity of the Riemann integral the sequence
c1fn + c2gn defines the integral of the linear combination c1f + c2g.

6.2. Monotonicity. Suppose that f and g are integrable. Then13

f(x) ≥ 0 ⇒
∫

f(x) dNx ≥ 0

and, as a consequence,

f(x) ≥ g(x) ⇒
∫

f(x) dNx ≥
∫

g(x) dNx

13see Proposition 1.1 in Appendix
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6.3. Integrals on sets of measure zero. The Lebesgue integral is insen-
sitive to alterations of a function on sets of measure zero. If f ∈ L,
then every function that coincides with f almost everywhere is also
integrable and its Lebesgue integral has the same value. Similarly, if f
is not Lebesgue integrable, then any other function that differs from f
on a set of measure zero is also non-integrable. In other words,

f(x) = g(x) a.e. ⇒
∫

f(x) dN x =

∫

g(x) dNx

and both the integrals either exist or do not exist simultaneously. As
noted earlier, this property is not true for the Riemann integral.

In particular, if the integral of any (measurable) function over a set
of measure zero vanishes:

χ
Ω
(x)f(x) = 0 a.e. ⇒

∫

Ω

f(x) dNx =

∫

χ
Ω
(x)f(x) dNx = 0 .

6.4. Additivity of the Lebesgue integral. Suppose that f is integrable
on Ω and Ω′ and the intersection Ω∩Ω′ is a set of measure zero. Then
f is integrable on the union Ω ∪ Ω′ and

∫

Ω∪Ω′
f(x) dNx =

∫

Ω

f(x) dNx +

∫

Ω′
f(x) dNx .

This follows from that

χ
Ω∪Ω′(x) = χ

Ω
(x) + χ

Ω′(x) a.e.

and the linearity of the Lebesgue integral.

6.5. Lebesgue measure of a set. If the characteristic function of a set
Ω ⊂ RN is integrable, then the number

µ(Ω) =

∫

χ
Ω
(x)dNx

is called the Lebesgue measure of Ω. For example, if Ω is a bounded
region with a smooth boundary, then its characteristic function is piece-
wise continuous and the Lebesgue measure is equal to the volume of
Ω defined by the Riemann integral. If Ω is not bounded, then the vol-
ume is defined by the improper Riemann integral. The volume can be
infinite if the improper Riemann integral diverges.

In general, a characteristic function of a measurable set is measur-
able. So, every bounded measurable set Ω has the Lebesgue measure.
If a measurable set is not bounded and its characteristic function is
not integrable, then the set is said to have infinite measure µ(Ω) = ∞
(similarly to sets of infinite volume). Thus, in contrast to the volume,
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the Lebesgue measure is defined on all measurable sets if it is allowed
to have the infinite value. The Lebesgue measure has the following
properties similarly to the volume14.

6.5.1. Positivity. The Lebesgue measure is non-negative function of a
set:

µ(Ω) ≥ 0

and it vanishes if and only if Ω is a set of measure zero.

6.5.2. Monotonicity. The Lebesgue measure is increasing with enlarg-
ing the set:

Ω1 ⊂ Ω2 ⇒ µ(Ω1) ≤ µ(Ω2) .

In particular,
µ(Ω) ≤ µ(Ω̄)

and the strict inequality is also possible. Let Ω ⊂ R consists of all
rational numbers in an interval [a, b]. Evidently χ

Ω
(x) = 0 a.e. and

µ(Ω) = 0. However, Ω̄ = [a, b] and µ(Ω̄) = b − a > 0.

6.5.3. Countable additivity. If a set is the union of countably many
non-intersecting sets, then its measure is the sum of measures of sets
in the union:

Ω =
⋃

n

Ωn , Ωn ∩ Ωm = ∅ , n 6= m ⇒ µ(Ω) =
∑

n

µ(Ωn)

In particular, the Lebesgue measure of Ω does not change when a set
of measure zero is removed from Ω:

µ(Ω \ Ω′) = µ(Ω) if µ(Ω′) = 0

For example, if Ω is a bounded region with a piecewise smooth bound-
ary, then Ω̄ = Ω ∪ ∂Ω has the same Lebesgue measure.

6.5.4. Measure of an unbounded set. Let Ω be an unbounded set. Let
Ωn a sequence of subsets of a finite measure such that Ωn ⊂ Ωn+1 for
any n and the union of all Ωn coincides with Ω up to a set of measure
zero. Then it follows from the countable additivity that

Ω =
⋃

n

Ωn , Ωn ⊂ Ωn+1 ⇒ µ(Ω) = lim
n→∞

µ(Ωn) .

This procedure can be used to evaluate the measure of unbounded sets.
The limit either exists or is infinite and does not depend on the choice

14Proofs of the properties of the Lebesgue measure can be found in: A.N.
Kolmogorov and S.V. Fomin, Elements of the theory of functions and functional
analysis, Chapter 5, Sec. 1
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of exhaustion of Ω (similarly to the absolutely convergent Riemann
integrals). For example, Ωn = Ω ∩ Bn where Bn is a ball of radius n.

6.5.5. Continuity. Let {Ωn} be a sequence of set embedded into one
another Ωn+1 ⊂ Ωn and Ω is the intersection of all Ωn. Then

Ω =
⋂

n

Ωn , Ωn+1 ⊂ Ωn ⇒ µ(Ω) = lim
n→∞

µ(Ωn)

For example, if Ω is a bounded set, then one can take Ωa to be the
union of open ball of radius a that are centered at every point of Ω.
Then µ(Ωa) → µ(Ω) as a → 0+.

6.5.6. Geometrical properties of measurable sets. The symmetric differ-
ence of two sets A and B is defined by

A 4 B = (A \ B) ∪ (B \ A)

So, it consists of elements that are either in A or B but not in their
intersection. Therefore, if µ(A4B) = 0, then A and B differs at most
by a set of measure zero.

Two rectangular boxes are called almost disjoint if their interiors
do not intersect. In other words, two almost disjoint boxes can have a
non-empty intersection of their boundaries. A set is called elementary
if it can be represented as a finite union of almost disjoint rectangular
boxes. The measure of an elementary set is just its volume. One can
show that

• the union, intersection, difference, and symmetric difference of
two elementary sets is elementary;

• the union, intersection, set difference, and symmetric differ-
ence of two elementary sets is elementary.

Any measurable set has the following characteristic property. For
any measurable set A and any ε > 0, there exists an elementary set B
such that

µ(A 4 B) < ε

In other words, any measurable set in RN can be ”approximated with
any desired accuracy” by a finite collection of almost disjoint boxes.

6.6. Upper and lower bounds. Suppose that f ∈ L(Ω) and f is bounded
almost everywhere in Ω, then

m ≤ f(x) ≤ M a.e. ⇒ mµ(Ω) ≤
∫

Ω

f(x) dNx ≤ Mµ(Ω) .

A similar property also holds for the Riemann integral over an interval
(without a.e.).
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6.7. Integrability of the absolute value. If f ∈ L, then |f | ∈ L. If f is
measurable and |f | ∈ L, then f ∈ L and

∣

∣

∣

∣

∫

f(x)dNx

∣

∣

∣

∣

≤
∫

|f(x)|dNx .

In view of the early remark about non-measurable functions, the inte-
grability of f and |f | is practically equivalent in the Lebesgue theory.
So, if f is measurable, then the integrals

∫

f(x) dx and

∫

|f(x)| dx

exist or do not exist simultaneously. This property does not hold for
the Riemann integral (see Sec. 3.4.3).

6.8. Vanishing integral of the absolute value. Recall that, if f is con-
tinuous and the Riemann integral of the absolute value |f | vanishes,
then f(x) = 0. The converse is obviously true. The Lebesgue integral
has a similar property that follows from Proposition 5.1: if f ∈ L and
the integral of |f | vanishes, then f(x) = 0 almost everywhere (and the
converse is obviously true):

f ∈ L ,

∫

|f(x)|dx = 0 ⇔ f(x) = 0 , a.e.

6.9. Comparison test for integrability. If a function g is integrable on Ω
and |f(x)| ≤ g(x) a.e., then f is also integrable on Ω:

|f(x)| ≤ g(x) a.e. , g ∈ L(Ω) ⇒ f ∈ L(Ω)

This implies that any bounded (and measurable) function is Lebesgue
integrable on any bounded (and measurable) set. Indeed,

|f(x)| ≤ M a.e. ⇒
∫

Ω

|f(x)| dNx ≤ Mµ(Ω) < ∞

because Ω is bounded.
For example,

∣

∣

∣ sin
( 1

|x|p
)∣

∣

∣ ≤ 1 a.e.

for any real p. Therefore sin(|x|−p) in integrable on any bounded inter-
val. If p > 0, the function is not defined at x = 0. One can assign any
value to the function at x = 0. The Lebesgue integral does not change.
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Let |f(x)| → ∞ for x → x0 and f be integrable on Ω\BR(x0), then
f is integrable on Ω ⊂ RN if

|f(x)| ≤ M

|x − x0|p
a.e. , p < N , x ∈ BR(x0)

because the Riemann integral of the right side of this inequality was
shown to converge absolutely. Similarly, let Ω be not bounded and
|f(x)| → ∞ for |x| → ∞. Let f be integrable on Ω∩ BR for some ball
BR. Then f is integrable on Ω if

|f(x)| ≤ M

|x|p a.e., |x| > R , p > N

for some M .

6.10. Absolute continuity of the Lebesgue integral. Consider the Lebesgue
integral as a function of the integration set:

(6.1) F (Ω) =

∫

Ω

f(x) dN x .

The function F has the following properties15.

Theorem 6.1. Suppose that

Ω =
⋃

n

Ωn , Ωk ∩ Ωn = ∅ , k 6= n

and f is integrable on Ω. Then f is integrable on any Ωn and

(6.2)

∫

Ω

f(x) dN x =
∑

n

∫

Ωn

f(x) dNx

where there the series converges absolutely. Conversely, if f is inte-
grable on every Ωn and the series

∑

n

∫

Ωn

|f(x)| dN < ∞

converges, then f is integrable on Ω and relation (6.2) holds.

There are a few consequences that can be deduced from this theo-
rem. A measurable set Ω in Theorem 6.1 is represented as the union
of arbitrary non-intersecting measurable sets. Therefore the Lebesgue
integrability on Ω implies the Lebesgue integrability on any measurable
subset of Ω:

f ∈ L(Ω) , Ω′ ⊂ Ω ⇒ f ∈ L(Ω′)

15A proof can be found in: A.N. Kolmogorov and S.V. Fomin, Elements of the
theory of functions and functional analysis, Chapter 5, Sec. 5
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Note that if f is bounded almost everywhere and Ω is bounded, then
this conclusion follows from the comparison test |f(x)| ≤ Mχ

Ω
(x) a.e.

and that µ(Ω′) ≤ µ(Ω) < ∞.
The convergence of the series in (6.2) implies that the terms of the

series must tend to zero. Therefore for any function f ∈ L(Ω) one can
find a measurable subset Ω′ ⊂ Ω such that the integral of f over Ω′ is
arbitrary small. This property is known as the absolute continuity of
the Lebesgue integral.

Theorem 6.2. For any ε > 0 there exists δ > 0 such that
∣

∣

∣

∣

∫

Ω′
f(x) dNx

∣

∣

∣

∣

< ε whenever µ(Ω′) < δ , Ω′ ⊂ Ω .

The assertion is obvious if f is bounded almost everywhere on Ω
because

∣

∣

∣

∣

∫

Ω′
f(x) dN x

∣

∣

∣

∣

≤
∫

Ω′
|f(x)| dNx ≤ Mµ(Ω′)

if |f(x)| ≤ M a.e.. In this case, δ = ε/M .
By the absolute continuity of the Lebesgue integral, if f ∈ L(Ω),

then for any ε > 0 one can find a proper subregion Ω′ or a region Ω
(cf. Sec. 1.1.10) such that

∫

Ω\Ω′
|f(x)| dNx < ε .

For example, if Ω is bounded, then Ω′ can be constructed by removing
closed balls of sufficiently small radius from Ω whose centers are on the
boundary ∂Ω.

6.10.1. Lebesgue integral over unbounded regions. Let {Ωn} be an ex-
haustion of a region Ω. If f is integrable on Ω, then

(6.3) lim
n→∞

∫

Ωn

f(x) dNx =

∫

Ω

f(x) dNx .

In contrast to the continuity of the Riemann integral, the integrability
of f on every Ωn is redundant because f is integrable on any measurable
subset of Ω. Conversely, suppose one wants to investigate integrability
of f on Ω. If f ∈ L(Ωn) for all n, then its absolute value is also
integrable on every Ωn. By the second part of Theorem 6.1, if the limit

lim
n→∞

∫

Ωn

|f(x)| dNx < ∞

exists (not infinite), then f is integrable on Ω and (6.3) holds. In
what follows, this continuity property will often be used to investigate
integrability in combination with comparison tests.
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6.10.2. Asymptotic behavior of integrable functions. If a function f of a
real variable x is integrable on R, then

∫

|f(x)| dx = lim
n→∞

∫

Ωn

|f(x)| dx < ∞

for any exhaustion {Ωn} of R. Does this imply that f(x) → 0 as
|x| → ∞? The answer is negative. It is not difficult to find an example
of an integrable function that has no limit as |x| → ∞.

Let f(x) = 0 if x < 0 and for x > 0 the function is piecewise
constant. In each interval (n − 1, n), n = 1, 2, ..., f(x) is not zero in a
subinterval of length an ≤ 1 where f(x) = hn > 0. Let the sequence
hn → ∞ for n → ∞. Then, evidently, f(x) has no limit as x → ∞.
It is not even bounded on (R,∞) for any R > 0. But with a suitable
choice of an, f is integrable. For example, let hn = n. Put an = 1

n3 .
Then

∫

f(x) dx =
∞
∑

n=1

anhn =
∞
∑

n=1

1

n2
< ∞ .

It is clear that similar examples can be constructed for smooth func-
tions.

So, an integrable function does not tend to zero in the asymptotic
region, but its average over any interval (R, R + a) and the average of
its absolute value tend to zero when R → ∞ for any length a. Indeed,
given a > 0, one has

∫

f(x) dx =

∞
∑

n=−∞

∫ an

(n−1)a

f(x) dx .

Since |f(x)| is integrable for any integrable f , the same series represen-
tation holds for the integral of |f(x)|. By the convergence of the series,
their terms must tend to zero:

lim
|n|→∞

∫ an

(n−1)a

|f(x)| dx = 0 , lim
|n|→∞

∫ an

(n−1)a

f(x) dx = 0 .

This observation can be extended to Lebesgue integrable functions
in RN . For example, let R(xc) be a box with fixed dimensions centered
at xc (the point of intersection of main diagonals of the box). Then
the average of an integrable function over R(xc) tends to zero when
|xc| → ∞. The integral of an integrable function in RN over a spherical
shell BR+a\BR tends to zero for R → ∞ for any a > 0 but the values
of f(x) may not even be bounded for |x| > R.
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6.11. The space Lloc(Ω) of locally integrable functions. Let Ω ⊂ RN be
an open set and f be continuous on Ω. Then f is integrable on any
proper subset Ω′ of Ω because Ω′ ⊂ Ω and Ω′ is bounded (see Sec.
1.1.10). However, f is not necessarily integrable on Ω. Recall that
in this case, the integrability means that the Riemann integral of f
converges absolutely on Ω if f has singular points on the boundary of
Ω, or Ω is not bounded, or both. A function f is called locally integrable
on an open set Ω ⊆ RN if it is integrable on any proper bounded subset
of Ω. The class of such function is denoted by Lloc(Ω) or simply by
Lloc if Ω = RN :

f ∈ Lloc(Ω) :

∫

Ω′
|f(x)| dNx < ∞

for any proper subset Ω′ of Ω.

6.12. The space L(Ω; σ). Let σ be a non-negative integrable function
on Ω. Then the function

µσ(Ω) =

∫

Ω

σ(x) dNx

has the same properties at the Lebesgue measure µ(Ω). It is defined
on all measurable sets, it is non-negative, monotonic, and countably
additive, and the condition µ(Ω) = 0 implies µσ(Ω) = 0

Let σ(x) ≥ 0. A function f is called Lebesgue integrable on Ω with
weight (or measure) σ if the product fσ is integrable on Ω. The space
of all integrable functions on Ω with weight σ is denoted by L(Ω; σ).

6.13. Interchanging the order of taking the limit and integration. It was
shown that the limit of a pointwise convergent sequence of Riemann
integrable functions is not generally Riemann integrable. A uniform
convergence of the sequence is sufficient for the Riemann integrability
of the limit function (cf. Theorem 3.2). In the Lebesgue theory, taking
limits under the integral sign is simpler (requires weaker conditions).
This stems from insensitivity of the Lebesgue integral to alterations of
the integrand on sets of measure zero. Here a few theorems stating
sufficient conditions for interchanging the order of taking the limit and
integral are discussed (their proofs can be found in16)

16A.N. Kolmogorov nad S.V. Fomin, Elements of the theory functions and
functional analysis



6. PROPERTIES OF THE LEBESGUE INTEGRAL IN RN 75

6.13.1. The Lebesgue dominated convergence theorem. Let a sequence of
(measurable) functions {fn}∞1 converge to f a.e.,

lim
n→∞

fn(x) = f(x) a.e.

If there exists an integrable function g independent of n such that

|fn(x)| ≤ g(x) a.e. , g ∈ L ,

then f ∈ L and

(6.4) lim
n→∞

∫

fn(x)dx =

∫

lim
n→∞

fn(x)dx =

∫

f(x)dx .

This theorem is perhaps one of the most useful theorems in math-
ematical analysis. To illustrate it, recall the first example in Sec. 3.6.
The sequence is bounded by g(x) = 1 that is integrable on any bounded
interval and, hence, (6.4) holds for any such interval. The limit func-
tion is the Dirichlet function that is nowhere continuous and, hence,
not Riemann integrable, but it is Lebesgue integrable because it is zero
almost everywhere.

6.13.2. Example. Let

fn(x) =
n sin(x2/n)

x2(x2 + a2
n)

, x 6= 0 ,

where an > 0 and an → a > 0 as n → ∞. The functions fn are not
defined at x = 0. However they can either be extended by continuity
fn(x) → 1/a2

n = fn(0) as x → 0 or one can set fn(0) = bn for some
sequence {bn}. Then

lim
n→∞

fn(x) =
1

x2 + a2
a.e.

Indeed, the limit may or may not exist at x = 0, and for x 6= 0, the
limit follows from that

lim
y→0

sin(y)

y
= 1

where y = x2/n → 0 as n → ∞. Then

lim
n→∞

∫ ∞

−∞
fn(x) dx =

∫ ∞

−∞

dx

x2 + a2
=

π

2a

provided there exists a Lebesgue integrable bound g, |fn(x)| ≤ g(x)
a.e., that is independent of the parameter n. To find g(x), note first
that | sin(y)| ≤ |y|, and it follows that

|fn(x)| ≤ 1

x2 + a2
n

a.e.
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A positive sequence an converges to a > 0 and, hence, its greatest
lower bound cannot be equal to zero a0 = infn{an} > 0. Indeed, any
interval |x − a| < δ < a contains all but finitely many terms of the
sequence {an}. Since an > 0, a0 is the smallest among finitely many
terms outside the interval. If an 6= a, then for small enough δ there
will always be terms outside the interval. Therefore

|fn(x)| ≤ 1

x2 + a2
n

≤ 1

x2 + a2
0

= g(x) a.e. , a0 = inf
n
{an} > 0 .

6.13.3. An example of a convergent sequence with no integrable bound. If
there exists no integrable bound, then (6.4) can be false. Consider the
sequence

fn(x) =
n

1 + n2x2
, x ∈ R

Then for any n,
∫

fn(x) dx = lim
b→∞

∫ b

−b

ndx

1 + n2x2
= lim

b→∞

∫ bn

−bn

dy

1 + y2
= π

However the integral of the limit function is zero. Indeed, the sequence
converges to zero if x 6= 0 and to infinity if x = 0. Therefore

lim
n→∞

fn(x) = 0 a.e.

and

lim
n→∞

∫

fn(x) dx = π 6= 0 =

∫

lim
n→∞

fn(x) dx .

Note that 2
3
n ≤ fn(x) ≤ n if |x| ≤ 1

n
. This implies that if fn(x) ≤ g(x)

for all x and all n, then g(x) ∼ 1
|x| near x = 0 which is not integrable.

6.13.4. Levi’s theorem. If the sequence has no integrable bound, then
the integrability of the limit function can be established by means of
Levi’s theorem: Let {fn} be an almost everywhere non-decreasing se-
quence of integrable functions, fn ∈ L(Ω), and the sequence of the
integrals of fn is bounded,

fn(x) ≤ fn+1(x) a.e.
∣

∣

∣

∣

∫

fn(x) dNx

∣

∣

∣

∣

≤ M ,

for all n. Then there exists f ∈ L(Ω) such that

lim
n→∞

fn(x) = f(x) a.e.

and the relation (6.4) holds.
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As an example, put

fn(x) =

(

1 +
xfD(x)

n

)n

where fD is the Dirichlet function. Recall the sequence (1 + p/n)n

converges to ep and it is monotonically increasing if p > 0. Therefore
fn(x) ≤ fn+1(x) if x ≥ 0 and

0 ≤
∫ b

a

fn(x) dx ≤
∫ b

a

ex dx < ∞ , 0 ≤ a < b < ∞ .

The limit function is

f(x) = lim
n→∞

fn(x) = 1 a.e.

because f(x) = ex if x is rational and f(x) = 1 otherwise so that

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx = b − a .

In Levi’s theorem the hypothesis of the boundedness of a sequence
by an integrable function is replaced by the hypothesis of monotonicity
of the sequence and boundedness of the sequence of integrals. The
monotonicity hypothesis is essential. For example, the sequence of
functions in Sec. 6.13.3 has a bounded sequence of integrals. But,
by graphing fn(x), it is not difficult to see that the sequence is not
monotonic: if n > m, then fn(x) > fm(x) near x = 0 and fn(x) <
fm(x) for all large enough |x|.

There is a simple consequence of Levi’s theorem for functions de-
fined by functional series of non-negative terms that allows one to in-
terchange the summation and integration signs.

Corollary 6.1. If fn(x) ≥ 0 and

∞
∑

n=1

∫

Ω

fn(x) dNx < ∞

then there exists f ∈ L(Ω) such that

∞
∑

n=1

fn(x) = f(x) a.e.

and
∫

Ω

(

∞
∑

n=1

fn(x)
)

dNx =
∞
∑

n=1

∫

Ω

fn(x) dNx
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Note that partial sums of the series
∑

n fn(x) form a sequence sat-
isfying the hypotheses of Levi’s theorem.

For example, the series
∞
∑

n=1

1

n(1 + n2x2)

converges almost everywhere to f(x) that is integrable on R and
∫ ∞

−∞
f(x) dx =

π

2

∞
∑

n=1

1

n2
=

π

2
· π2

6
=

π3

12

The series converges for any x 6= 0 and diverges for x = 0. So, f exists
almost everywhere. Its integrability follows from that fn(x) > 0 and

∫ ∞

−∞
fn(x) dx =

π

2
· 1

n2
,

∞
∑

n=1

1

n2
< ∞ .

6.14. Change of variables in the Lebesgue integral. Let Ω be an open
set in RN and x = x(y) be a transformation of RN from class C1(Ω̄)
that is one-to-one on Ω. Let Ω′ = x(Ω) and J(y) = det[Dx(y)] be the
Jacobian of the transformation. Then in order for f(x) to be integrable
on Ω, it is necessary and sufficient that f(x(y))J(y) is integrable on Ω′

and, in this case,
∫

Ω

f(x) dNx =

∫

Ω′
f(x(y))|J(y)| dNy .

6.15. Exercises.

1. Can the Lebesgue measure of an unbounded region be finite? If
so, construct an example. Hint: Think of the area under the graph of
a non-negative continuous function on R.

2. Construct an example of set in RN that contains an open ball
|x| < R whose measure is equal to the volume of the ball but the clo-
sure of the set has measure that twice as much as the volume of the
ball.
3. Are there any values of p for which the function

f(x) =
sin2(|x|)
|x|p , x ∈ RN

is integrable on
(i) a bounded set that contains x = 0;
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(ii) RN ;
(iii) on the complement of a region containing x = 0

4. Suppose that

|f(x)| ≤ M

1 + |x|p
For what values of p does f have a Fourier transform

F [f ](k) =

∫

ei(k,x)f(x) dN x , k ∈ RN

5. Suppose |f(x)| ≤ M |x|p a.e., where p > 0. For what values of p is
the function e−|x|f(x) is integrable on RN? Give an upper bound of
the value of the integral.

6. Let fn(x) =
(

1 − x/n
)n

, n = 1, 2, ....

(i) Show that fn(x) converges to e−x uniformly on [0, 1], that is,

lim
n→∞

sup
[0,1]

∣

∣fn(x)− e−x
∣

∣ = 0

Note that fn(x) − e−x is continuous on [0, 1] and, hence, attains its
extreme values on [0, 1]. Find them and compute the limit. Conclude
that

lim
n→∞

∫ 1

0

fn(x) =

∫ 1

0

e−x dx

(ii) Show that |fn(x)| ≤ M for all x ∈ [0, 1], where M is some constant
independent of n. Use the Lebesgue dominated convergence theorem
to established the same result.

7. Let ϕ ∈ C1(R) and the support of ϕ is bounded. Show that

lim
n→∞

∫

einxϕ(x) dx = 0

Hint: Use integration by parts in combination with the Lebesgue dom-
inated convergence theorem (or with the theorem about the uniform
convergence and integrability).

8. Let f ∈ L(R) such that
∫

f(x) dx = 1 and ϕ be a continuous
function with bounded support. Put fn(x) = nf(nx), n = 1, 2, ....
Show that

lim
n→∞

∫

fn(x)ϕ(x) dx = ϕ(0)
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Hint: Use the Lebesgue dominated convergence theorem and that any
continuous function with bounded support is bounded.

9. Use the Lebesgue dominated convergence theorem to find the fol-
lowing limit

lim
n→∞

n

∫ π
4

0

e−n2 sin(2t) dt
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7. Functions defined by Lebesgue integrals

Let f(x, y) be a function of two variables x ∈ RN and y ∈ RM .
Suppose that f is Lebesgue integrable with respect to y for any x.
Then the integral defines a function

u(x) =

∫

f(x, y) dMy .

Under what conditions on the function f is the function u integrable,
or continuous, or differentiable? These questions will be answered in
this section.

7.1. Fubini’s theorem. Suppose that the iterated integral of |f(x, y)| ex-
ists, then f is Lebesgue integrable on RN+M :

∫ (∫

|f(x, y)| dNx

)

dMy < ∞ ⇒ f(x, y) ∈ L(RN+M )

Conversely, if f is Lebesgue integrable, then the function defined by the
integrals of f either with respect to x or y

h(x) =

∫

f(x, y) dMy , g(y) =

∫

f(x, y) dNx

exist almost everywhere and are Lebesgue integrable:

f ∈ L(RN+M ) ⇒ h ∈ L(RN ) , g ∈ L(RM)

and, in this case, the integral of f is equal to the iterated integrals:
∫∫

f(x, y) dNxdMy =

∫ (∫

f(x, y) dNx

)

dMy

=

∫ (∫

f(x, y) dMy

)

dNx

Funini’s theorem also holds if f is defined on Ω × Ω′, that is, x ∈
Ω ⊂ RN and y ∈ Ω′ ⊂ RM . Indeed, one can replace f(x, y) by
χ

Ω
(x)χ

Ω′(y)f(x, y) in the above formulation and use the definition of
the Lebesgue integral over a region.

It should be noted that if f is not integrable, then its iterated
integrals either do not exist or, if they exist, they are not equal. The
latter can happens if f has a conditionally convergent Riemann integral.
For example, consider

h(x) = lim
b→0+

∫ 1

b

x2 − y2

(x2 + y2)2
dy = lim

b→0+

∫ 1

b

∂

∂y

y

x2 + y2
dy

= lim
b→0+

y

x2 + y2

∣

∣

∣

1

b
=

1

1 + x2
, x 6= 0
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Similarly,

g(y) = lim
a→0+

∫ 1

a

x2 − y2

(x2 + y2)2
dx = − lim

a→0+

∫ 1

b

∂

∂x

x

x2 + y2
dx

= − lim
a→0+

x

x2 + y2

∣

∣

∣

1

a
= − 1

y2 + 1
, y 6= 0

Therefore, the functions

h(x) =

∫ 1

0

f(x, y) dy =
1

1 + x2
a.e.

g(y) =

∫ 1

0

f(x, y) dx = − 1

1 + y2
a.e.

are integrable on (0, 1) and
∫ 1

0

(
∫ 1

0

f(x, y) dy

)

dx =

∫ 1

0

h(x) dx =
π

4
,

∫ 1

0

(
∫ 1

0

f(x, y) dx

)

dy =

∫ 1

0

g(y) dy = −π

4

It was shown earlier that the improper Riemann integral of f over
any bounded closed region that contains the origin does not converge
absolutely so that f is not Lebesgue integrable.

The first part of Fubini’s theorem is a criterion for Lebesgue inte-
grability of a function of two variables, while the second part gives a
criterion for changing the order of integration. If

∫

Ω

∫

Ω′
|f(x, y)| dNxdMy < ∞

in any particular order, then
∫

Ω

∫

Ω′
f(x, y) dMydNx =

∫

Ω′

∫

Ω

f(x, y) dNxdMy

In the above example
∫ 1

0

(
∫ 1

0

|f(x, y)|dx

)

dy = ∞

This is left to the reader as an exercise.

7.2. Continuity of a function defined by an integral. Recall that g is con-
tinuous at a point y if and only if for any sequence {yn} converging
to y, the sequence {g(yn)} converges to g(y). If g(y) is defined by an
integral of f(x, y) with respect to x, then under what conditions on
f(x, y) the function g is continuous.
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Theorem 7.1. Let f(x, y) be defined on RN ×Ω, Ω ⊂ RM . Suppose
f is continuous in y ∈ Ω for almost all x ∈ RN , and there exists
an integrable function F (x) such that |f(x, y)| ≤ F (x) a.e. for every
y ∈ Ω. Then the function

g(y) =

∫

f(x, y)dNx

is continuous on Ω, that is,

lim
z→y

∫

f(x, z)dNx =

∫

Ω

lim
z→y

f(x, z)dNx =

∫

f(x, y)dNx

for any y ∈ Ω.

The assertion follows from the Lebsgue dominated convergence the-
orem. Consider the sequence of functions fn(x) = f(x, yn). Then

lim
n→∞

fn(x) = f(x, y) a.e.

because f(x, y) is continuous in y for almost every x ∈ RN . The
sequence {fn} is bounded for all n by a Lebesgue integrable function

|fn(x)| ≤ F (x)

for any choice of {yn}. By the Lebesgue dominated convergence theo-
rem

lim
n→∞

g(yn) = lim
n→∞

∫

fn(x) dNx =

∫

lim
n→∞

fn(x)dNx = g(y) ,

which holds for any y in Ω and, hence, g ∈ C0(Ω).

7.3. Differentiation of an integral with respect to parameters.

Theorem 7.2. Let f(x, y) be defined on RN × (a, b). Suppose that
the partial derivative Dyf(x, y) is continuous in y ∈ (a, b) for almost
all x ∈ RN . Furthermore, there exists an integrable function F (x)
such that for every y ∈ (a, b), |Dyf(x, y)| ≤ F (x) almost everywhere,
and the integral of f(x, y) with respect to x exists for some particular
y0 ∈ (a, b). Then the function

g(y) =

∫

f(x, y)dNx ∈ C1(a, b)

has the derivative continuous in (a, b) and the following equality holds

(7.1) h′(y) =
d

dy

∫

f(x, y)dNx =

∫

Dyf(x, y) dNx .
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Put

φ(y) =

∫

Dyf(x, y) dNx

Since Dyf(x, y) is continuous in y for almost every x and is bounded
by an integrable function:

Dyf(x, y) ∈ C0(a, b) ∀x ; |Dyf(x, y)| ≤ F (x) ∈ L

by Theorem 7.1, the function φ(y) is continuous on (a, b). Therefore
for any y and y0 in (a, b), its integral

Φ(y) =

∫ y

y0

φ(t) dt ∈ C1(a, b)

is continuously differentiable in (a, b) and, by the Fundamental theorem
of calculus,

Φ′(y) = φ(y)

Since F ∈ L, one infers that

∫ b

a

∫

|Dyf(x, y)| dNx dy ≤
∫ b

a

∫

F (x) dNx dy

= (b − a)

∫

F (x) dNx < ∞

Therefore the function Dyf(x, y) is Lebesgue integrable on RN × (a, b)
by the first part of Fubini’s theorem. By the second part of Fubini’s
theorem, the order of integration can be changed:

Φ(y) =

∫ y

y0

∫

Dtf(x, t) dNxdt =

∫ ∫ y

y0

Dtf(x, t) dt dNx

=

∫

[f(x, y)− f(x, y0)] d
Nx = g(y) − g(y0)

This shows that g(y) is continuously differentiable and g′(y) = Φ′(y) =
φ(y) as required. This completes the proof of the theorem.

It is clear from the proof that the same result holds if y ∈ Ω ⊂ RM .
If Ω is open, then each coordinate yi ranges over some open interval
for given values of the other coordinates. Similarly, g(y) is from class
Cp if partial derivatives Dβ

y f(x, y), β = 1, 2, ..., p, are continuous with
respect to y for almost every x and are bounded by Lebesgue integrable
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functions, |Dβ
y f(x, y)| ≤ Fβ(x) ∈ L:

Dβ
y f(x, y) ∈ C0(Ω) ∀x ; |Dβ

y f(x, y)| ≤ Fβ(x) ∈ L , β ≤ p ,

⇒ g(y) =

∫

f(x, y) dNx ∈ Cp(Ω)

⇒ Dβ
y g(y) =

∫

Dβ
y f(x, y) dNx , β ≤ p

So, the order of differentiation with respect to parameters and the in-
tegration with respect to other variables can be interchanged if partial
derivatives of the integrand with respect to parameters are bounded by
a Lebesgue integrable function that is independent of the parameters.

7.3.1. On interchanging the order of integration and differentiation. The-
orem 7.2 states sufficient but not necessary conditions for differentiation
of the integral with respect to a parameter. In fact, the integral can
be differentiable infinitely many times while partial derivatives with
respect to parameters do not have integrable bounds independent of
parameters. This implies that in general the order of differentiation
and integration cannot be interchanged. For example, one can show
that17,

∫ ∞

−∞

eikx

1 + x2
dx = π e−|k|

This function is infinitely many times differentiable on any interval that
does not contain k = 0. However, the derivatives of the integrand with
respect to k are not even integrable:

∣

∣

∣

dn

dkn

eikx

1 + x2

∣

∣

∣
=

|x|n
1 + x2

/∈ L , n > 0 .

7.4. The Fourier transform. The Fourier transform of a Lebesgue inte-
grable function is defined by

F [f ](k) =

∫

ei(k,x)f(x) dN x , k ∈ RN .

First note that the Fourier transform exists for any k ∈ RN because
|ei(k,x)f(x)| = |f(x)| and the absolute value is integrable if f ∈ L. Let
g(x, k) = ei(k,x)f(x). The exponential ei(k,x) is continuous with respect
to k for any x and so is g(x, k). So,

g(x, k) ∈ C0 , ∀x ; |g(x, k)| = |f(x)| ∈ L
By Theorem 7.1, the Fourier transform is continuous.

17Example 1 in Sec. 9.2.2
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7.4.1. Differentiability of the Fourier transform. Using the notations in-
troduced in Sec.1.3,

∣

∣

∣
Dβ

kei(k,x)f(x)
∣

∣

∣
=
∣

∣

∣
iβxβei(k,x)f(x)

∣

∣

∣
≤ |x||β||f(x)|

where the latter inequality follows from |xj| ≤ |x|. By Theorem 7.2 the
Fourier transform is from class Cp if |x|p|f(x)| ∈ L and

Dβ
kF [f ](k) = Dβ

k

∫

ei(k,x)f(x) dNx = iβ
∫

ei(k,x)xβf(x) dNx

= F [(ix)βf(x)](k) , β = 1, 2, ..., p

So, differentiability of the Fourier transform depends on the asymptotic
behavior of the function, that is, when |x| → ∞.

Recall that if f is integrable on any ball |x| < R and |f(x)| =
O(|x|−m), m > N , in the asymptotic region |x| → ∞, then f ∈ L.
Therefore the Fourier transform F [f ] is p times continuously differen-
tiable if

|f(x)| = O(|x|−n) , n > N + p

in the asymptotic region |x| → ∞. In particular, if f decreases faster
than any power function, its Fourier transform is from class C∞:

lim
|x|→∞

|x|p|f(x)| = 0 for all p ⇒ F [f ](k) ∈ C∞ .

7.5. Differentiability of Gaussian integrals. Let us prove that for n =
1, 2, ..., and t > 0

∫ ∞

−∞
x2ne−tx2

dx = (−1)n dn

dtn

∫ ∞

−∞
e−tx2

dx =
√

π (−1)n dn

dtn
t−1/2 .

Let f(x, t) = e−tx2
. Fix t0 > 0 (an arbitrary positive number). Using

the power series for ex about x = 0 is not difficult to establish the
inequality

|x|m ≤ m!e|x| , x ∈ R .

Therefore for every positive integer n

|Dn
t f(t, x)| = x2ne−tx2 ≤ (2n)!e−tx2+|x| ≤ (2n)!e−t0x2+|x| = gn(x)

for all 0 < t0 ≤ t < ∞ and x ∈ R. The function gn(x) is inte-
grable. Therefore the order of differentiation and integration can be
interchanged leading to the desired result:

(−1)n dn

dtn

∫ ∞

−∞
e−tx2

dx = (−1)n

∫ ∞

−∞

∂n

∂tn
e−tx2

dx =

∫ ∞

−∞
x2ne−tx2

dx .

for all t > 0.
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7.6. Fundamental theorem of Lebesgue integral calculus. In the Riemann
integration theory, the fundamental theorem of calculus states that if
a function f is from class C1, then

∫ b

a

f ′(x) dx = f(b) − f(a) .

The statement is also true for the Lebesgue integral. The Lebesgue
integral exists even if f ′(x) does not exist on a set of measure zero, but
the assertion may be false as the function f may lack continuity. Let
f(x) = arctan( 1

x
) if x 6= 0 and f(0) = 0. This function is not continuous

at x = 0. Its derivative exists for x 6= 0, f ′(x) = −(1+x2)−1, and f ′(0)
does not exist (because u is not continuous at x = 0). However, the
function f ′(x) has a continuous extension to x = 0 because f ′(x) → −1
as x → 0± (the left and right limits are equal). So, the Riemann integral
of f ′ exists, as an improper integral, over any interval containing x = 0,
and it is equal to the Lebesgue integral. But the fundamental theorem
of calculus fails. For example, the integral of f ′(x) over (−1, 1) is equal
to −π/2, while f(1) − f(−1) = π/2.

What is the largest set of functions for which the fundamental the-
orem of calculus holds if the integral is understood in the Lebesgue
sense? Consider the equation

f ′(x) = g(x) a.e.

where g is a “nice” function, e.g., g is continuous. This is a linear
equation. Therefore its general solution is the sum of a particular
solution and a general solution of the associated homogeneous equation
(g = 0). A particular solution is easy to find using the fundamental
theorem of calculus so that

f(x) = h(x) +

∫ x

a

g(y) dy , h′(x) = 0 a.e.

If h′(x) = 0 everywhere, then h(x) = c is a constant and f(b) − f(a)
does not depend on c for any choice of a and b. Otherwise,

f(b) − f(a) = h(b)− h(a) +

∫ b

a

g(y) dy .

There are non-zero functions with the vanishing almost everywhere
derivative. So, if the fundamental theorem of calculus holds for f , then
it does not hold for f + h where h′ = 0 a.e. because the integral of h′

vanishes over any interval.
For example, take a piecewise constant function h. Then its deriva-

tive is zero almost everywhere and its integral vanishes on any interval,
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whereas h(b) − h(a) 6= 0 if a and b lie in different intervals of conti-
nuity. Evidently, the function f + h is not continuous. So, continuity
is necessary just like in the Riemann theory. However, it is not suffi-
cient because there are continuous functions whose derivative is zero
almost everywhere. The most famous one is the so called Cantor lad-
der, a function that is continuous, monotonically increasing, and whose
derivative vanishes almost everywhere18:

h(x) ∈ C0 , h′(x) = 0 a.e. , h(x) < h(y) , x < y

One can always set h(0) = 0 and, in this case, by monotonicity

0 =

∫ x

0

h′(y)dy < h(x) ,

and the inequality is strict. So, the class of functions in question is
smaller than the space of continuous functions but larger than the
space of continuously differentiable functions.

7.6.1. Absolutely continuous functions. The answer to the question posed
in the previous section is provided by absolutely continuous functions.

Definition 7.1. (Absolutely continuous functions)
A function f is called absolutely continuous on an interval I if for any
ε > 0 there exists δ > 0 such that for any finite collection of non-
overlapping intervals Ij = (aj, bj) ⊂ I, j = 1, 2, ..., n, Ij ∩ Ik = ∅,
j 6= k, the total absolute variation of u on these intervals does exceed ε
whenever the total length of the intervals does not exceed δ:

n
∑

j=1

|f(bj) − f(aj)| < ε whenever

n
∑

j=1

|bj − aj| < δ .

Clearly every absolutely continuous function is continuous. If a
function is absolutely continuous on a closed interval [a, b], then it is
uniformly continuous on it. Roughly speaking, an absolutely continu-
ous function cannot oscillate ”too fast” so that it would have a finite
variation on a finite set of intervals of an arbitrary small total length.
For example, f(x) = x sin( 1

x
) for x 6= 0 and f(0) = 0 is uniformly con-

tinuous on any bounded interval containing x = 0, but not absolutely
continuous.

Absolutely continuous function are proved to have the following
characteristic properties 19.

18A.N. Kolmogorov and S.V. Fomin, Elements of the theory of functions and
functional analysis, Chapter VI, Sec. 4

19A.N. Kolmogorov and S.V. Fomin, Elements of the theory of functions and
functional analysis, Chapter VI
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Theorem 7.3. If f is absolutely continuous on [a, b], then it is
differentiable almost everywhere, the derivative is locally integrable and

f(x) = f(a) +

∫ x

a

f ′(y) dy .

Conversely, for every absolutely continuous function f , there exists a
a Lebesgue integrable function g ∈ L(a, b) such that

f(x) = f(a) +

∫ x

a

g(y) dy ,

and in this case

f ′(x) = g(x) a.e.

The first part of this theorem is known as the fundamental theorem
of Lebesgue integral calculus which is due to Lebesgue. The second
part can be used as an alternative definition of absolutely continuous
functions (in which case, Definition 7.1 becomes a theorem). In appli-
cations, the latter characteristic property is far more convenient and
easier to use than Definition 7.1.

By Theorem 2.1, any set of measure zero in R is mapped to a set
of measure zero by a function from class C1. Absolutely continuous
functions have the same property. If Ω ⊂ [a, b] and µ(Ω) = 0, then
µ(f(Ω)) = 0 for any absolutely continuous f on [a, b]. This assertion
is known as the Luzin theorem.

The set of absolutely continuous functions on an interval I will be
denoted as AC0(I). It is a linear space with respect the usual addition
of functions and multiplication of a function by a number. A function
f is absolutely continuous on R if it is absolutely continuous on any
bounded interval. The space of such functions is denoted by AC0(R)
or AC0 for brevity. Functions from class AC0 play a fundamental role
in the analysis of self-adjoint extensions of differential operators (like
momentum and kinetic energy operators in quantum mechanics).

7.6.2. Integration by parts. Using Theorem 7.3, it is not difficult to
show that the product of two absolutely continuous functions is also ab-
solutely continuous, and if an absolutely continuous function does not
vanish anywhere, then its reciprocal is absolutely continuous. There-
fore, by integrating the identity (uv)′ = u′v + uv′ that holds almost
everywhere, the integration by part is extended to absolutely continu-
ous functions,

∫ b

a

u(x)v′(x)dx = u(x)v(x)
∣

∣

∣

b

a
−
∫ b

a

u′(x)v(x) dx , u, v ∈ AC0 ,
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where the integral is understood in the Lebesgue sense.

7.7. Exercises.

1. Let

f(x, y) =
xy

(x2 + y2)2
, (x, y) ∈ (−1, 1) × (−1, 1) = Ω ⊂ R2

(i) Show that

h(x) =

∫ 1

−1

f(x, y) dy = 0 , g(y) =

∫ 1

−1

f(x, y) dx = 0

so that these functions are integrable on (−1, 1) and their integrals
vanish.
(ii) Show that the function f is not integrable on the rectangle Ω. Ex-
plain why Fubini’s theorem does not apply in this case.

2. Let {xn} and {yn} be sequences in [0, 1] that converge to 0 monoton-
ically, x1 = 1 > x2 > · · · and y1 = 1 > y2 > · · · . Put ∆xn = xn − xn+1

and ∆yn = nn − yn+1, and suppose that

p =
∆xn

∆xn+1
, q =

∆yn

∆yn+1

for any n. Consider the function of two real variables

f(x, y) =







pnqn , (x, y) ∈ [xn+1, xn] × (yn+1, yn] ,
−pnqn+1 , (x, y) ∈ [xn+2, xn+1) × (yn+1, yn] ,

0 , otherwise

(i) Is the function f piecewise continuous? Explain.
(ii) Evaluate the iterated integrals of f :

∫ ∫

f(x, y) dxdy ,

∫ ∫

f(x, y) dydx .

(iii) Is the function f integrable on R2?

3. (i) Show that the function defined by the integral

h(x) =

∫ ∞

−∞

cos(kx)

k2 + m2
dk ,

where m is a positive constant, exists and is continuous for all x ∈ R.
(ii) Find an explicit form of h(x). Is h(x) differentiable for all x? Is it
true that

h′(x) =

∫ ∞

−∞

∂

∂x

cos(kx)

k2 + m2
dk ,
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if h′(x) exists for some x?

4. Let f(u) = 1 − |u| if |u| ≤ 1 and f is extended periodically to
all u ∈ R, f(u + 2) = f(u). Define a function

F (t) =

∫ ∞

0

f(tx)

1 + xp
dx , p > 2 , t ∈ R

(i) Show that F (t) exists and F (−t) = F (t);
(ii) Show that F ∈ C1(a, b) for any 0 < a < b and

F ′(t) =

∫ ∞

0

xf ′(tx)

1 + xp
dx , 0 < a ≤ t ≤ b

Hint: Consider a change of the integration variable u = tx. Use the
theorem about differentiation of a function defined by a Lebesgue in-
tegral.
(iii) Show that

∣

∣

∣

∣

f(xt) − f(0)

t

∣

∣

∣

∣

≤ |x|

(iv) Use the above inequality and the Lebesgue dominated convergence
theorem to show that the left and right limits

lim
t→0±

F (t)− F (0)

t

exist but are not equal. Is F differentiable at t = 0?

5. Let A be a positive matrix (all eigenvalues are strictly positive).
Define the function

J(y) =

∫

e−(x,Ax)+(x,y) dNx , y ∈ RN

(i) Show that J ∈ C∞ and

Dβ
y J(y) =

∫

Dβ
y e−(x,Ax)+(x,y) dNx .

(ii) Calculate J(y) and show that for any polynomial P (x)
∫

P (x)e−(x,Ax) dNx = P (Dy)J(y)
∣

∣

∣

y=0

6. Let

f(x, y) =
x2 − y2

(x2 + y2)2
, (x, y) ∈ Ω = (1,∞) × (1,∞)
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(i) Calculate the iterated integral
∫ ∞

1

(
∫ ∞

1

|f(x, y)| dx

)

dy

Is it true that f ∈ L(Ω)?
(ii) Calculate and compare the iterated integrals

∫ ∞

1

(∫ ∞

1

f(x, y) dx

)

dy ,

∫ ∞

1

(∫ ∞

1

f(x, y) dy

)

dx
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8. Line and surface integrals

8.1. Line integrals in a Euclidean space. Let C be a curve in RN from
a point xa to a point xb (xa = xb is admissible). A finite collection of
points P = {xn} of C that contain xa and xb is called a partition of C .
The points in P are ordered along the curve. P can be viewed as the
image of a partition of a line segment from which C is obtained by a
continuous deformation. A refinement of P is a partition that contains
P . Put

L(P, C) =
∑

n

|xn − xn−1| .

The number L(P, C) is the length of a polygonal path with vertices at
xn on the curve. Upon a refinement of P , the polygon path gets closer
to the curve but its length is increasing by the triangle inequality:

L(P, C) ≤ L(P ′, C) , P ⊂ P ′

for any refinement P ′ of P . The quantity

LC = sup
P

L(P, C)

is called the arclength of C . Note that LC can be infinite.
If the curve is smooth, then there exists a simple parameterization

of it from class C1. Let x = x(t), a ≤ t ≤ b, be such a parameterization.
Then20

LC =

∫ b

a

|x′(t)| dt < ∞ .

In physics, this equation has a simple meaning. If x = x(t) is the
trajectory of a point-like particle, then x′(t) is the velocity vector, and
its magnitude |x′(t)| is the speed. The distance traveled along path C
is the integral of the speed with respect to time.

8.1.1. Natural parameterization of a smooth curve. Let x = x(t) be a
parameterization of a smooth curve C such that x′(t) 6= 0. Define an
arclength parameter by

s = s(t) =

∫ t

a

|x′(τ )| dτ .

Then s′(t) = |x′(t)| > 0 and, hence, s(t) is monotonic and maps [a, b]
onto [0, LC]. The map is invertible, t = t(s). A parameterization of C
in terms of the arclength, x = X(s) = x(t(s)), is called a natural param-
eterization of C . Note that X ′(s) is a unit tangent vector, |X ′(s)| = 1,
as one infers from the chain rule, dX(s)/ds = (dx(t)/dt)(ds/dt)−1.

20W. Rudin, Principles of mathematical analysis, Theorem 6.27
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8.1.2. Line integral of a scalar function. Let x(s) be a natural parameter-
ization of a smooth curve C and f(x) be continuous in a neighborhood
of C . Then the integral

∫

C

f ds =

∫ LC

0

f(x(s)) ds

exists and is called a line integral of a function f over a curve C . A
line integral can be defined for any f as long as the function f(x(s)) is
integrable on [0, LC ]. If x = x(t) is any parameterization of a smooth
curve, then using the change of variables, ds = |x′(t)|dt,

∫

C

f ds =

∫ b

a

f(x(t)) |x′(t)| dt .

Recall that the center of mass a collection of point-like particles
with positions xp and masses mp (the index p labels the particles) is

xc =
1

m

∑

p

mpxp , m =
∑

p

mp .

Suppose these particles are assembled into a smooth curve C with a
linear mass density σ(x) so that dm(xp) = σ(xp)ds is the mass of a
segment of the curve of length ds at a sample point xp. Then it follows
that the coordinates of the center of mass of this wire are given by the
following line integrals:

x0j =
1

m

∫

C

σ(x)xj ds , m =

∫

C

σ(x) ds .

8.1.3. Line integral of a vector field. Let T be a unit tangent vector
at some point of a smooth curve. Then the vector −T is also a unit
tangent vector. Since a unit tangent vector is continuous for a smooth
curve, there are only two ways of defining a continuous T for a smooth
curve. If a curve connects points xa and xb, then a natural parameter
can be counted either from xa or from xb, the derivatives of the corre-
sponding natural parameterizations are opposite unit tangent vectors
at any point of the curve. This choice defines an orientation of the
curve C .

Let C be a smooth curve oriented by a unit tangent vector T . Let
F (x) be a continuous vector field (its components Fj(x) are continu-
ous). The dot product

FT (x) =
(

F (x), T (x)
)

, x ∈ C

is the tangent component of the vector field F at a point x of C . If
x = x(s) is a natural parameterization of C such that x′(s) = T (x(s)),
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then FT = (F, x′). The line integral
∫

C

FT (x) ds =

∫

C

Fj(x)dxj

where Einstein’s summation rule over repeated indices j is assumed, is
called the integral of a vector field F along a curve C . The integral is
extended to all vector fields whose tangent component is integrable on
C .

Let x = x(t) be a simple parameterization of a curve C such that
x′(t) defines the correct orientation of C . Then by changing variable
in the line integral, dxj = x′(t) dt, one infers that

∫

C

Fj(x)dxj =

∫ b

a

Fj(x(t))x′
j(t) dt

Let −C be the curve C with the opposite orientation, then
∫

−C

Fj(x)dxj = −
∫

C

Fj(x)dxj .

Consequently, any parameterization can be used to evaluate the line
integral over a curve from class C1 (if a parameterization defines an
opposite parameterization, the sign of the integral should be changed
after evaluating it). It should be noted that the line integral is defined
for any piecewise smooth parametric that is not simple. In other words,
the vector function x = x(t) may trace out some part of the curve
multiple times, like, e.g., a particle moving back and forth along the
same path. In this case, the line integral is nothing but the sum of line
integrals over smooth simple pieces oriented accordingly.

8.1.4. Line integrals as a work done by a force. If F (x) is a force acting
on a point-like particle at a point x, then the work done by F in moving
the particle along an infinitesimal straight-line segment from x to x+dx
is given by

dW (x) = Fj(x)dxj = |F (x)| cos(θ) ds ,

where θ is the angle between F (x) and T (x) and |dx| = ds. The line
integral of F along C is nothing but the total work done by F in moving
the particle along the curve C .

If x = x(t) is a physical trajectory of a point-particle of mass m,
then the trajectory satisfies Newton’s Law mx′′(t) = F (x(t)) (recall
that the second derivative x′′(t) is the acceleration of the particle).
Then the work done by F in moving the particle is a net change of the
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kinetic energy 1
2
m|v|2, where v(t) = x′(t) is the velocity of the particle,

W =

∫

C

Fj(x)dxj =

∫ b

a

mv′
j(t)vj(t)dt =

1

2
m|v(b)|2 − 1

2
m|v(a)|2 .

8.1.5. Fundamental theorem for line integrals. A vector field is said to
be conservative in an open set Ω if it is the gradient of a function
U ∈ C1(Ω), that is, F = ∇U in Ω. The function U is called a potential
of F . Note that U is not unique as it can be changed by an additive
constant.

Let C be a smooth curve in Ω outgoing from a point xa and ending
at a point xb, and a vector field F be conservative in Ω. Then using a
parameterization of C such that x = x(t), a ≤ t ≤ b, x(a) = xa, and
x(tb) = xb, one infers that

∫

C

Fjdxj =

∫ b

a

∂U

∂xj

dxj

dt
dt =

∫ b

a

dU(x(t)) = U(xb) − U(xa) .

Thus, for a conservative vector field, its line integral does not depend
on the curve and is determined by the difference of its potential at the
endpoints of the curve. This comprises the fundamental theorem for
line integrals. In particular, the line integral of a conservative vector
field vanishes for a closed curve.

8.1.6. Conservative forces in physics. In physics, the fundamental the-
orem for line integrals is interpreted as the energy conservation for a
particle moving under a conservative force F = −∇U . The minus sign
in the latter relation is a convention used in physics to make the total
energy to be the sum of the kinetic and potential energy U as is shown
shortly. The work done by a conservative force is determined by the
net change change of a potential energy U :

W =

∫

C

Fjdxj = U(xa) − U(xb) .

Combining this relation with the work being the net change of kinetic
energy established in Sec.8.1.4, it is concluded that the energy of a
particle

E(t) =
m

2
|v(t)|2 + U(x(t))

remains constant along any trajectory of the particle moving under a
conservative force, E(a) = E(b) for any time interval a ≤ t ≤ b, or
E ′(t) = 0. The latter can also be established by a direct evaluation of
the derivative E ′(t) and invoking the Newton’s Law, mv′ = −∇U .
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8.2. Surface area. Let S be a smooth M-surface and x = F (y) be its
parameterization, y ∈ R (see Sec.2.4.3). Define a matrix W whose
columns are the tangent vectors wa ∈ RN :

WM = [w1 w2 · · · wM ] , wa =
∂F

∂ya
.

Then the area of S is defined by the integral

(8.1) AS =

∫

R

J(y) dMy , J =
√

det(W T
MWM ) ,

where W T
M is the transposed matrix WM . Note that J(y) is continuous

on R̄ and, hence, the integral exists for any smooth M-surface in RN .
The Jacobian J(y) is the volume of an M dimensional parallelepiped

with adjacent sides being vectors wa at a point F (y). It is easy to verify
the assertion for M = 2. If 0 ≤ θ ≤ π is the angle between w1 and w2,
then the area of parallelogram with adjacent sides w1 and w2 is

V2 = |w1||w2| sin(θ) =
√

|w1|2|w2|2 − (w1, w2)2 =
√

det(W T
2 W2)

because

W T
2 W2 =

(

|w1|2 (w1, w2)
(w1, w2) |w2|2

)

Consider an n dimensional parallelepiped with adjacent sides w1, w2,...,
wn. Its volume is denoted by Vn. Its base is the n − 1 dimensional
parallelepiped with adjacent sides w1, w2,..., wn−1 with volume Vn−1.
Then

Vn = Vn−1h ,

where h is the height. If w
‖
n is the orthogonal projection of wn onto

span{w1, ..., wn−1}, then by the Pythagorean theorem

h2 = |wn|2 − |w‖
n|2 .

One has

w‖
n = c1w1 + c2w2 + · · · + cn−1wn−1 ,

where the constants ca are such that wn − w
‖
n is orthogonal to all wa,

a = 1, 2, ..., n− 1, so that

n−1
∑

b=1

(wa, wb)cb = (wa, wn) .

If c ∈ Rn−1 with components ca satisfying the above equation, then

c = (W T
n−1Wn−1)

−1W T
n−1wn
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because (wa, wb) are matrix elements of W T
n−1Wn−1 and this matrix is

invertible because wa are linearly independent. Therefore

|w‖
n|2 = (w‖

n, w
‖
n) = cTW T

n−1Wn−1c = wT
n Wn−1(W

T
n−1Wn−1)

−1W T
n−1wn .

On the other hand, Wn is obtained from Wn−1 by adding an extra
column wn so that in the block-matrix notation, Wn = [Wn−1 wn].
Using the block-matrix multiplication

W T
n Wn =

[

W T
n−1

wT
n

]

[Wn−1 wn] =

[

W T
n−1Wn−1 W T

n−1wn

wT
nWn−1 |wn|2

]

Suppose that the equation for the volume is correct for n−1. It follows
from the determinant of a block-matrix

det

[

A B
C D

]

= detA det(D −CA−1B)

that the equation is also correct for n

det(W T
n Wn) = det(W T

n−1Wn−1)(|wn|2 − |w‖
n|2)

= V 2
n−1(|wn|2 − |w‖

n|2) = V 2
n

By mathematical induction, the equation is true for any n ≤ N .
A linearization of F an a point y∗ is the linear function L : D → RN

defined by

L(y) = F (y∗) +
M
∑

a=1

wa(y
∗)(ya − y∗

a) , wa(y
∗) =

∂F

∂ya

∣

∣

∣

y=y∗
.

It maps R into the tangent space of S at a point x∗ = F (y∗). Equation
(8.1) has a simple geometrical meaning. For any partition box Rp

in R, the surface area of F (Rp) is approximated by the volume of a
parallelepiped that is the image L(Rp) of a partition box Rp in the
tangent space taken at a sample point xp = F (yp), yp ∈ Rp. The total
volume depends on the choice of sample points. But since it depends
continuously on them for a C1 surface, variations of the volume related
to different choice of sample points do not contribute in the limit when
dimensions of all partition boxes tend to zero uniformly, just like a
Riemann sum converges to the integral of a continuous function for
any choice of sample points.

If F is a continuous map such that the Jacobian J exists almost
everywhere, then the integral (8.1) understood in the Lebesgue sense
is also called the surface Lebesgue measure of S. This is not to be
confused with the Lebesgue measure of S in RN . If S is smooth, then
its Lebesgue measure is zero (as an RN volume of S).
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8.3. Surface integrals in RN of a scalar function. Let S be a smooth M-
surface. Let x = F (y), y ∈ R, be a parameterization of S. The surface
integral of a function f is defined by

∫

S

f(x) dS
def
=

∫

R

f(F (y))J(y) dMy

if f(F (y)) is integrable on R.

8.3.1. Integration over a sphere in RN . A sphere of radius a in RN is
defined by

|x|2 = x2
1 + x2

2 + · · · + x2
N = a2

Its parameterization

x1 = a cos(ξ1) ,

x2 = a sin(ξ1) cos(ξ2) ,

xN−1 = a sin(ξ1) sin(ξ2) · · · sin(ξN−2) cos(ξN−1) ,

xN = a sin(ξ1) sin(ξ2) · · · sin(ξN−2) sin(ξN−1) ,

where ξp ∈ [0, π] for p < N − 1 and ξN−1 ∈ [0, 2π], can be obtained
using spherical coordinates. Here 0 ≤ ξ1 ≤ π is the angle between
the standard basis vector ê1 and the position vector x. The vector ê1

sets an axis of a spherical coordinate system. Let x⊥ be the orthogonal
projection of x onto the N−1 dimensional plane orthogonal to ê1. Then
the length of the projection is |x⊥| = a sin(ξ1). With this choice of the
axis, x2 is the scalar projection of x⊥ onto ê2, where 0 ≤ ξ2 ≤ π is the
angle between x⊥ and ê2. Then the length of the orthogonal projection
of x⊥ onto the plane orthogonal to ê2 is a sin(ξ1) sin(ξ2), and x3 is the
scalar projection of this vector projection onto ê3. This procedure is
repeated N times to get all xj as functions of the angles ξa. The angle
between any two vectors changes from 0 (parallel vectors) to π (anti-
parallel vectors), which explains the range of ξb for b < N − 1, and
ξN−1 is nothing but a polar angle a 2-plane spanned by êN−1 and êN .

The tangent vectors to curves that are images of the coordinate
lines of parameters ξ are orthogonal:

wb =
∂x

∂ξb
⇒ (wb, wb′) = |wb|2δbb′ ,

|w1| = a , |wb| = a sin(ξ1) sin(x2) · · · sin(ξb−1) , b = 2, 3, ..., N − 1

J(ξ) = aN−1 sinN−2(ξ1) sinN−3(ξ2) · · · sin(ξN−2) .
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Then an integral of a function over the sphere is reduced to the following
iterated integral
∫

|x|=a

f(x) dS =

∫ 2π

0

∫ π

0

· · ·
∫ π

0

f(x(ξ))J(ξ) dξ1 · · · dξN−2 dξN−1 .

By construction of the spherical coordinate system, the integral
over a unit sphere in RN can also be written as an iterated integral
over a sphere in RN−1 of radius |x⊥| = sin(ξ1) and an integral over the
angle with the axis of the spherical coordinates ξ1
∫

|x|=1

f(x) dSN =

∫ π

0

∫

|y|=1

f
(

ê1 cos(ξ1) + y sin(ξ1)
)

sinN−2(ξ1) dSN−1 dξ1

where dSM is the surface area element of a unit sphere in RM , and
ê1 is the unit vector parallel to the axis of the spherical coordinates.
If the function f(x) is invariant under rotations about the axis of the
spherical coordinate system, then it depends only on x1 = cos(ξ1) and
|x⊥| = sin(ξ1), that is, f(x) = g(ξ1). In this case,

∫

|x|=1

f(x) dS = σ
N−1

∫ π

0

g(ξ1) sinN−2(ξ1) dξ1 .

where σ
N

is the surface are of a unit sphere in RN . In particular, if
f(x) = 1 so that g(ξ1) = 1, then this equation gives the recurrence
relation to compute σN (cf. (2.1)):

σN = σN−1B
(N − 1

2
,
1

2

)

= σN−1

Γ(N
2
− 1

2
)Γ(1

2
)

Γ(N
2
)

,

where

B(a, b) = 2

∫ π/2

0

(sin(ξ))2a−1(cos(ξ))2b−1 dξ

is the beta function. It is proved that

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
.

8.3.2. Levi-Civita symbol. Let the symbol εj1j2···jN
be defined so that it

is skew-symmetric under permutation of any two indices, and ε12···N =
1. This symbol is called the Levi-Civita symbol in RN . Any symbol
with N indices has NN indexed values. But the Levi-Civita symbol
has only one independent value because its indexed values vanish if
any two indices are equal and

εj1j2···jN
= (−1)P ε12···N = (−1)P ,
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where P is the number of permutations needed to convert the set
j1j2 · · · jN to 12 · · ·N by permutations.

The product of two symbols can be expressed in terms the Kro-
necker delta symbol:

(8.2) εi1i2···iN εj1j2···jN
= det









δi1j1 δi1j2 · · · δi1jN

δi2j1 δi2j2 · · · δi2jN

...
...

...
δiN j1 δiN j2 · · · δiN jN









def
= δj1j2···jN

i1i2···iN .

The determinant of Kronecker deltas, denoted by δj···
i··· , is called the

generalized Kronecker delta symbol. This symbol is convenient to write
any contraction of indices in the product of Levi-Civita symbols:

N
∑

i1,i2,...,in=1

εi1i2···inin+1···iN εi1i2···injn+1···jN
= n!δ

jn+1jn+2···jN

in+1in+2···iN .

Note that free indices in the contraction take integer values from 1 to
N whereas the generalized Kronecker delta symbol in this equation is
defined by the determinant of an (N − n) × (N − n) matrix.

For example, the 3-dimensional Levi-Civita symbol defines the com-
ponents of the cross product of two vectors

(a × b)i = εijkajbk .

The relation

εijkεiln = det

(

δjl δjn

δkl δkn

)

= δjlδkn − δjnδkl ,

is convenient for expanding the double cross product:

(a × (b × c))i = εijkajεklnblcn = εkijεklnajblcn

= (δilδjn − δinδjk)ajblcn = bi(a, c)− ci(a, b) ,

which is the so called “bac-minus-cab” rule for the double cross product.
Similarly, for the dot product of vectors being cross products:

(a × b, c × d) = εijkεilnajbkcldn = (a, c)(b, d) − (a, d)(b, c) .

Let Aij be an N × N matrix. By setting {i1i2 · · · iN} = {12 · · ·N}
in (8.2) and multiplying it by A1j1A2j2 · · ·ANjN

with the subsequent
summation over repeated indices, one infers that

detA = εj1j2···jN
A1j1A2j2 · · ·ANjN

.

The absolute value | detA| is the volume on an N−dimensional paral-
lelepiped with adjacent sides being the vectors defined by the columns
of the matrix A.
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For any N −1 vectors wa, a = 1, 2, ...., N−1, define a vector n with
components

(8.3) ni = εij1···jN−1
w

1j1
w

2j2
· · ·w

N−1jN−1
.

This vector is not zero if and only if the non-zero vectors wa are linearly
independent, and n is orthogonal to the span of vectors wa because
(n, wa) = 0. This follows from the skew-symmetry of the Levi-Civita
symbol under a permutation of two indices.

8.3.3. Oriented surface area element of the boundary of a region. Let Ω
be an open set in RN with a smooth boundary. If x = F (ξ) is a
parameterization of the boundary ∂Ω, then the span of vectors wa =
∂aF is the tangent space to ∂Ω which is an N − 1 dimensional plane
that is orthogonal to the vector n defined in (8.3). So, the vector n will
be called a normal to the boundary ∂Ω.

Using the contraction formula for one index in the product of Levi-
Civita symbols, one infers that

|n|2 = nini = δ
j1j2···jN−1

i1i2···iN−1
w1j1

w2j2
· · ·w

N−1jN−1
w1i1

w2i2
· · ·w

N−1iN−1

= det(W TW ) = J2(ξ) .

So, the length of n is equal to the volume of the parallelepiped with
adjacent sides being vectors wa. The vector

dΣi = nid
N−1ξ

is called an oriented surface area element on the boundary ∂Ω and

|dΣ| = |n|dN−1ξ = J(ξ) dN−1ξ .

8.3.4. Orientable surfaces. Let S be a smooth N − 1 surface in RN and
x = F (ξ) be its parameterization, ξ ∈ R ⊂ RN−1. If the Jacobian
J does not vanish at a point ξ, then a continuous unit normal vector
n̂ = n/|n| can be defined in a neighborhood of the point x = F (ξ) of S.
If J vanishes at a particular point, then n̂ is defined by a continuous
extension which exists for a smooth surface (by definition, cf. Secs.
2.4.2 and 2.4.4). The choice of a unit normal vector is not unique
because −n̂ is also a unit normal vector that is continuous near x =
F (ξ). Therefore a unit normal vector can be continuously defined in
two ways on every patch of a smooth surface which is, by definition,
the image of a proper subset of an open box R. One can say that each
such patch has two sides, one side is seen from the tip of a chosen unit
normal vector, and the other can be seen only if the direction of the
unit normal is reversed. Indeed, a proper subset of R is a portion of an
N −1 plane that is deformed into a portion of S by the map F without
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any boundary identifications because any identification can only occur
on the boundary of the box R. So the image has two sides just like two
sides of a portion of the plane.

Suppose n̂ can be continuously extended to the whole S. This
implies that a net variation of n̂ along any closed curve in S must be
zero. In this case, S must have two sides, one is defined by n̂ and the
other by −n̂, like a sphere or a portion of a plane. Imagine that each
side of a patch of S is colored, say, in red (for n̂) and blue (for −n̂). It
would be impossible to flip the colors of the patch by moving the latter
along any closed curve in S because it would contradict the continuity
of n̂.

A surface is said to be orientable if a continuous unit normal vector
can be defined on it. In this case, the surface is oriented by the unit
normal vector. An orientable surface can have two orientations.

If a smooth surface is one-sided or non-orientable, then there should
exist a closed curve such that the net change of a unit normal vector
along it is not zero. Imagine an ant carrying a flagpole as a unit
normal always pointing up from the surface. Since a surface is one-
sided, it is possible to find a closed path in the surface such that, when
the ant is back to the initial point, the pole points in the direction
opposite the initial one. This implies that it is not possible to define
a continuous unit normal vector on a one-sided surface. It turns out
that non-orientable surface do exist. Here is the simplest example.

8.3.5. Möbius strip. Consider a circle in a plane. Take a pole perpen-
dicular to the plane. If the midpoint of the pole is moved along the
circle while keeping the pole orthogonal to the plane, the pole sweeps a
portion of a cylinder. Let z be a vector perpendicular to the plane, and
xm be the position vector of the pole midpoint relative to the center
of the circle. The vectors z and xm are orthogonal and their span is a
plane normal to the circle at any point. At every point of the circle,
the pole occupies that same position in this plane.

Now image that the pole is rotated in this plane about the midpoint
while the midpoint moves around the circle. Suppose that when the
midpoint returns to the initial point, the pole net rotation angle is π
so that it will occupy the same (staring) position but the endpoints are
swapped. If the pole is oriented by a vector T , then the final position
is oriented by −T . The surface swept by the pole is smooth and one-
sided by construction. If in the beginning of the motion, the swept
surface is colored so that one side is red, and the other is blue, then at
the end of the motion, the red side is glued to the blue one and vice
versa. So, it is impossible to continuously define the either ”red” or
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”blue” normal on this surface because, after making around the circle,
the normal becomes the opposite to that at the starting point. This
surface is known as a Möbius strip.

It is not difficult to find its parametric equations. Let ξ1 be a pa-
rameter that labels points on the pole, so that the straight line segment
x1 = a, x2 = 0, and x3 = 1

2
ξ1, −b ≤ ξ ≤ b, is the initial position of the

pole of length b. So, the pole is parallel to the x3 axis and its midpoint
at a distance a from the origin on the x1 axis. The midpoint moves
along a circle x1 = a cos(ξ2), x2 = a sin(ξ2), x3 = 0, making one full
turn when 0 ≤ ξ2 ≤ 2π. Suppose that the pole is rotated through the
angle 1

2
θ and the midpoint rotates through the angle ξ2 so that the

pole rotates through the angle π as the midpoint returns to the initial
position. Then the projection of the position vector of a point of the
pole relative to the midpoint onto the x3 axis is 1

2
ξ1 cos(ξ2/2), and its

projection on the axis from the origin to the midpoint is 1
2
ξ1 sin(ξ2/2).

Therefore the position vector of a point of the pole relative to the origin
reads

x1 =
(

a +
ξ1

2
sin(ξ2/2)

)

cos(ξ2) ,

x2 =
(

a +
ξ1

2
sin(ξ2/2)

)

sin(ξ2) ,

x3 =
ξ1

2
cos(ξ2/2) ,

where (ξ1, ξ2) ∈ R = [−b, b] × [0, 2π]. These are the parametric equa-
tions of a Möbius strip.

Let us investigate continuity of a unit normal vector along the circle
traversed by the midpoint of the pole, that is, when ξ1 = 0. The vector

n(ξ) =
∂x

∂ξ1
× ∂x

∂ξ2

is normal to the surface, where × denotes the cross (or vector) product
in R3. Recall that (x × y)i = εijkxjyk where εijk is the Levi-Civita
symbol in R3. By evaluating the derivatives, the cross product, and
setting ξ1 = 0, the normal is found to be

n1(0, ξ2) =
1

2
sin(ξ2/2) cos(ξ2) ,

n2(0, ξ2) =
1

2
sin(ξ2/2) sin(ξ2) ,

n3(0, ξ2) =
1

2
cos(ξ2/2) .
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so that |n(0, ξ2)| = a/2. The values ξ2 = 0 and ξ2 = 2π correspond to
the same point of the circle. It follows from this equations that

n(0, 2π) = −n(0, 0)

Therefore a unit normal cannot be continuously defined on the Möbius
strip.

The parametric equations define a smooth map of the rectangle R
to R3 that is one-to-one in the interior of R, but maps the boundaries
ξ = 0 and ξ = 2π onto the same set. This identification is done with
a twist (obtained by rotating the boundary through the angle π before
the identification), which leads to a one-sided smooth surface. One can
easily construct a similar map that sends the boundaries ξ = 0 and
ξ = 2π to the same line segment with any numbers of twists. A surface
with an odd number of twists is one-sided.

It is worth noting that there are surfaces without boundaries (like
a sphere) that are one-sided. An example is provided by the famous
Klein bottle.

8.4. Flux of a vector field. Consider a vector field F : RN → RN .
Let S be a smooth orientable N − 1 surface described by parametric
equations xj = xj(ξ), ξ ∈ R. The surface integral

Φ =

∫

S

(F, dΣ) =

∫

R

Fj(x(ξ))nj(ξ) dN−1ξ

is called a flux of the vector field F across the surface S. The flux of
a vector field can only be defined across an orientable surface, and its
changes its sign when the orientation is changed.

Suppose that F describes a flow of some quantity. For example,
consider a moving air with the velocity vector field v(x, t) and mass
density ρ(x, t) where t is time and x is a position in space. Then
F = ρv is a mass flow. If S is a smooth orientable surface, then there
exists a continuous unit tangent vector n̂ on S. By construction

dΦ(x, t) =
(

F (x, t), dΣ(x)
)

= ρ(x, t)
(

v(x, t), n̂(x)
)

dS(x)

is the mass carried by the flow per unit time across the surface of area
dS at a sample point x in the direction of n̂(x). Let m(Ω, t) be the total
mass in a bounded region Ω. Then the flux of F cross the boundary
∂Ω defines the rate of change of mass with respect to time:

dm(Ω, t)

dt
=

d

dt

∫

Ω

ρ(x, t) d3x = −
∫

∂Ω

ρ(x, t)
(

v(x, t), n̂(x)
)

dS(x) .
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where n̂ points outward from Ω. Observe the minus sing in the right-
hand side. If the flux is positive, then the mass stored in Ω is decreasing
because there is a net mass carried away from Ω by the flow across the
boundary ∂Ω. This is the integral form of the mass conservation law.

Note that (v, n̂) is the normal component of the velocity vector
field (the scalar projection of v on n̂ at a point x). If the vector field
is orthogonal to the normal, the flux vanishes. Therefore, if the flow
is tangential to the surface, the flux vanishes. This implies that the
mass cannot be carried across S by such a flow. Therefore the surface
must have two sides (or be orientable) in order for the concept of the
flux to make sense. For one-sided surface, a mass flow tangential to the
surface can carry a non-zero mass across the surface. For example, a
particle can get to the other side of a surface patch dΣ(x) of a Möbius
band at a point x by moving tangentially to the band along a closed
curve so that dΦ = 0 on the curve but a mass is transferred across the
patch dΣ(x).

8.4.1. Flux integral in R3. A parameterization of a 2-surface S in R3 is
defined by a C1 map of a rectangle in R2 to R3

x = x(ξ1, ξ2) , (ξ1, ξ2) ∈ [a, b]× [c, d] = R

such that the normal vector

n(ξ) =
∂x

∂ξ1
× ∂x

∂ξ2

is not zero in R except possibly on the boundary of R. The surface
area is given by

A(S) =

∫

S

dS =

∫ b

a

∫ d

c

|n(ξ)| dξ2dξ1

A surface integral of a function f(x) over S is given by
∫

S

f(x) dS =

∫ b

a

∫ d

c

f(x(ξ)) |n(ξ)| dξ2dξ1

and a flux of a vector field F (x) across S reads
∫

S

(F, dΣ) =

∫ b

a

∫ d

c

(

F (x(ξ)), n(ξ)
)

dξ2 dξ1

8.5. The divergence (Gauss-Ostrogradsky) theorem. Let Ω be a bounded
region with a smooth boundary which is a level set of a C1 function g
with the non-vanishing gradient. The boundary divides RN into two
non-intersecting regions. Then unit normal n̂ = ∇g/|∇g| is continuous
on the boundary (cf. Sec. 1.4). The boundary ∂Ω is said to be oriented
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positively if the unit normal points outward from Ω. The other orienta-
tion is called negative. Unless stated otherwise, ∂Ω will always denote
the positively oriented boundary of Ω. The divergence of a vector field
F is defined by

div F (x) =
N
∑

j=1

∂Fj(x)

∂xj
= (∇, F ) ,

where ∇ is a formal vector with components being ∂/∂xj.

Theorem 8.1. Let Ω be an open bounded set in RN such that its
boundary piecewise smooth. Suppose that a vector field F and a func-
tion u are from class C1(Ω). Then

∫

Ω

u (∇, F ) dNx = −
∫

Ω

(F,∇u) dNx +

∫

∂Ω

u (F, dΣ) ,

where dΣ = n̂dS is the surface area element on ∂Ω oriented positively.

In particular, if u(x) = 1, then
∫

Ω

div F dNx =

∫

∂Ω

(F, n̂) dS .

This statement is known as the divergence or Gauss-Ostrogradsky the-
orem. Recall that if F describes a flow of some quantity, then the
divergence of F is the density of sources of the flow. The divergence
theorem states that the net flux of a vector field across the boundary
of a bounded region is equal to the sum of all sources of the field in
the region. It should be noted that the boundary ∂Ω can have several
disjoint pieces. For example, Ω can have several ”cavities” obtained
by removing proper open subsets from Ω. All separate parts of ∂Ω are
oriented outward and the surface integral is the sum over all separate
parts.

8.5.1. Green’s theorem. In a two-dimensional Euclidean space, con-
sider a bounded region Ω whose boundary is a C1 closed curve without
self-intersections. Suppose that the boundary curve is oriented coun-
terclockwise (the x2 axis is directed upward, while the x1 is directed
to the right). If xj = xj(t) are parametric equations of the boundary,
then the unit normal to the boundary directed outward is

nj(t) = εjiTi(t) , Tj(t) =
x′

j(t)

|x′(t)|
Indeed, suppose the origin is in the interior of Ω and T1 < 0 and T2 > 0
(for a counterclockwise orientation). Since n1 = T2 and n2 = −T1,
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n1,2 > 0. This implies that T is obtained by rotating n counterclockwise
through the angle π

2
. Any continuous deformation of the boundary

preserves this property of T and n. So the equation holds for any
shape of Ω that can be continuously deformed to a disk.

The dot product of any two vectors Aj and Bj is equal to the dot
product of the (dual) vectors εjkAk and εjkBk:

εjkAkεjnBn = δknAkBn = AkBk ,

by the properties of the Levi-Civita symbol in R2 so that

Fjdxj = FjTjds = εjkFknjds = εjkFkdΣj

Therefore by the divergence theorem for a vector field εjkFk
∮

∂Ω

Fjdxj =

∫

Ω

εjk∂jFk d2x =

∫

Ω

(

∂F1

∂x2

− ∂F2

∂x1

)

d2x(8.4)

This statement is known as Green’s theorem.
It is also valid if Ω has holes, that is, if its boundary contains several

closed curves without self-intersections. In this case, the outer bound-
ary must be oriented counterclockwise, while all the inner boundaries
must be oriented clockwise. Indeed, let us cut a region Ω without any
holes by a smooth curve C into two regions Ω1 and Ω2. Then Green’s
theorem can be applied to both of them. Note that the curve C is a
part of the boundaries ∂Ω1 and ∂Ω2, but it has opposite orientation in
them so that for any line integral of a vector field

∮

∂Ω1

+

∮

∂Ω2

=

∮

∂Ω

because the line integral over the cut curve C is cancelled. The line in-
tegrals in the left side also contain integration over the inner boundary
of Ω (over the boundary of the hole) that must be oriented clockwise if
∂Ω1 and ∂Ω2 are oriented counterclockwise. Evidently, this argument
can be extended to any number of holes.

8.6. Integration by parts in RN . The fundamental theorem of calculus
has a multi-variable generalization. Let b be a non-zero constant vector
and v is a function from class C1(Ω). Put F = bv in Theorem 8.1. Then

∫

Ω

u(b,∇)v dNx =

∮

∂Ω

vu(b, dΣ) −
∫

Ω

v(b,∇)u dNx

Since the vector b is arbitrary, the integration by parts can be stated
in the form

∫

Ω

u(x)Djv(x) dNx =

∮

∂Ω

v(x)u(x)dΣj −
∫

Ω

v(x)Dju(x) dNx .
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where Dj = ∂/∂xj, j = 1, 2, ..., N . If Ω is not bounded, the integration
by parts can still be used with a suitable regularization. For example,
it can be applied to a part of Ω that lies in a ball of radius R and the
limit R → ∞ should be taken after evaluation of the integrals. The
answer may depend on the regularization if the improper integral does
not converge absolutely.

Suppose that u and v are from class Cp and their supports are in Ω.
This implies that any partial derivative of u and v up order p vanishes
on the boundary ∂Ω. Then by applying the integration by parts several
times

∫

Ω

uDβv dNx = (−1)β

∫

Ω

vDβu dNx , 0 ≤ β ≤ p ,

where Dβu stands for any partial derivative of order β. The surface
integrals arising upon integration by parts vanish because of the said
properties of the functions u and v.

8.6.1. Green’s identity. Let the boundary of a bounded region Ω be
oriented outward by a unit normal n̂, and let u and v be functions
from class C2(Ω). Integrating the identity

u∆v − ∆uv = ∂j

(

u∂jv − ∂juv
)

where ∆ = ∂j∂j is the Laplace operator, over Ω and using the diver-
gence theorem to transform the integral in the right-hand side to a
surface integral, one infers that

∫

Ω

(

u∆v −∆uv
)

dNx =

∫

∂Ω

(

u∂jv − ∂juv
)

dΣj

=

∫

∂Ω

(

u
∂v

∂n
− ∂u

∂n
v
)

dS(8.5)

This is known as Green’s first identity. Here ∂v
∂n

= (n̂,∇v) is the normal
derivative of v.

8.7. Exercises.

1. Suppose S is a surface in R3 obtained by a revolution of the graph
x3 = f(s), a ≤ s ≤ b, about the x3 axis.
(i) Show that its parametric equations can be written in the form

x1 = s cos(φ) , x2 = s sin(φ) , x3 = f(s) , (s, φ) ∈ [a, b]× [0, 2π]
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or

x1(s, t) =
s(1 − t2)

1 + t2
, x2 =

2st

1 + t2
, x3 = f(s) , (s, t) = [a, b] × R

(ii) Find the normal vectors n(s, φ) and n(s, t) for both parameteriza-
tions. Express the surface area in terms of the function f .

2. Let σN be the surface are of a unit sphere, |x| = 1, in RN . Suppose
f is continuous on RN . Show that

lim
a→0+

1

σNaN−1

∫

|x|=a

f(x) dS = f(0)

3. Show that the volume of a bounded region in RN with a piecewise
smooth boundary is given by the surface integral

V (Ω) =
1

N

∮

∂Ω

xjdΣj

Use this relation to show that the volume VN and the surface area σN

of an N−ball of radius a are related by

VN (a) =
a

N
σN (a) .

4. Suppose that u and its partial derivative ∂ju are continuous and

|u(x)| ≤ M0

|x|α ,
∣

∣

∣

∂u

∂xj

∣

∣

∣
≤ M1

|x|β , |x| > R > 0

for some constants M0,1. Show that if α > N − 1 and β > N , then
∫

∂u

∂xj
dNx = 0

Hint: Reduce the integration domain to [−a, a] × RN−1 and use con-
tinuity of the Lebesgue integral as a → ∞. Use Fubini’s theorem to
evaluate the integral with respect to xj and then investigate the limit.

5. Put

u(x, y) =
arctan(x)

1 + y2
, x, y ∈ R

Show that the partial derivative Dxu = ∂u
∂x

is integrable in the plane
R2 spanned by real variables x and y, and find the value of the integral
of Dxu(x, y) over the plane. Does the answer contradict to the result
of Problem 4?
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6. Suppose that u and v are from class C1 and

|u(x)| ≤ A0

|x|α0
, |Du(x)| ≤ A1

|x|α1
,

|v(x)| ≤ b0

|x|β0
, |Dv(x)| ≤ B1

|x|β1
,

for all |x| > R > 0 and constants A0,1 and B0,1. Find a condition on
parameters α0,1 and β0,1 under which

∫

u(x)Dv(x) dNx = −
∫

Du(x)v(x) dNx
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9. Cauchy line integrals of analytic functions

9.1. Functions of a complex variable. A function f : Ω ⊂ C → C is
called a function of a complex variable. A function f(z) has a limit
w ∈ C at z0 if |f(z) − w| → 0 as |z − z0| → 0, and in this case one
writes

lim
z→z0

f(z) = w or f(z) → w as z → z0 .

A function f is continuous at z0 if f(z) → f(z0) as z → z0, and f
is continuous on a set Ω is it is continuous at all point of Ω. The
derivative defined by

f ′(z) = lim
∆z→0

f(z + ∆z)− f(z)

∆z

provided the limit exists. In particular, (zn)′ = nzn−1 for any integer
n. A function f is (complex) differentiable on a set Ω if the derivative
exists at every point of Ω.

9.1.1. Analytic functions. A function of a complex variable is said to be
analytic at a point z0 if in a neighborhood of z0 it is given by a power
series:

f(z) =
∞
∑

n=0

cn(z − z0)
n , |z − z0| < R , R > 0 .

A function is analytic on a set Ω if it is analytic at every point of
Ω. Using Proposition 1.1 one can prove the Taylor theorem that f
is from class C∞ and its derivatives can be obtained by term-by-term
differentiation of the series and cn = f (n)(z0)/n! (see Exercises). By
the Taylor theorem,

f(z) =
∞
∑

n=0

f (n)(z1)

n!
(z − z1)

n , |z − z1| < R1

for some R1 > 0 and any z1 in the disk, |z1 − z0| < R. Therefore
analyticity at a point implies analyticity in a neighborhood of the point.

For example,

ez =
∞
∑

n=0

zn

n!

is analytic in the whole complex plane because the above series has
infinite radius of convergence. The function

f(z) =
1

1 − z
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is analytic everywhere except the point z = 1. Recall that

1

1 − z
=

∞
∑

n=0

zn , |z| < 1

This shows that the function is analytic in the open disk |z| < 1. Let
z0 6= 1. Then the following identity holds

1

1 − z
=

1

1 − z0

1

1 − z−z0

1−z0

Therefore near z0, the function is represented by a power series

1

1 − z
=

1

1 − z0

∞
∑

n=0

(

z − z0

1 − z0

)n

, |z − z0| < |1 − z0|

whose radius of convergence coincides with the distance from 1 to z0.
The set of analytic functions is closed under basic algebraic opera-

tions with functions. The sum and product of two analytic functions
on Ω is analytic on Ω. The reciprocal of an analytic function is an-
alytic except points where the functions vanishes. A composition of
two analytic functions is analytic. These properties readily follow from
basic algebraic rules for addition, multiplication, and division of power
series.

9.1.2. Holomorphic functions. A function f(z) is said to be holomor-
phic on an open set Ω of the complex plane if it is differentiable in a
neighborhood of every point of Ω. In particular, the functions ez and

1
1−z

are holomorphic on their domains.
A major theorem in complex analysis states that every holomor-

phic function is analytic and vice versa21. Note that every analytic
function is differentiable so it is holomorphic. It turns out that a com-
plex differentiability (the existence of the derivative f ′(z)) implies that
all derivatives exist so that the function can be given by a Taylor series
(which is a power series) so that the function is analytic.

9.1.3. Cauchy-Riemann equations. Let f(z) be analytic. Put z = x+ iy
in the power series representation of f so that

f(z) = u(x, y) + iv(x, y) , x =
1

2
(z + z̄) , y =

1

2i
(z + z̄) .

21see, e.g.,
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Since f(z) is independent of z̄, it follows from the chain rules ∂z̄ =
1
2
∂x − 1

2i
∂y that

(9.1)
∂f(z)

∂z̄
= 0 ⇒ ∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

These relations are known as the Cauchy-Riemann equations.
The functions u and v are from class C∞ by analyticity of f . In

particular, using the Cauchy-Riemann equations it is not difficult to
show that that real and imaginary parts of an analytic function in
Ω are harmonic functions, that is, they are solutions to the Laplace
equation

∆u(x, y) = 0 , ∆v(x, y) = 0 .

The assertion follows from Clairaut’s theorem ∂x∂yu = ∂y∂xu (and
similarly for v) that holds for smooth functions.

9.1.4. Poles. A function f(z) is said to have a pole at z = z0 of order
n if near z0

(9.2) f(z) =
n
∑

k=1

ak

(z − z0)k
+ g(z) ,

where g is analytic at z0. If n = 1, the pole is called simple. The
coefficient a1 is called the residue of f at the pole z0 and is denoted by

a1 = res
z0

f .

If the pole is simple, then

res
z0

f = lim
z→z0

(z − z0)f(z) .

For example,

1

1 + z2
=

1

2i

(

1

z − i
− 1

z + i

)

.

So, the function has two simple poles at z = ±i and

res
±i

1

1 + z2
= ± 1

2i
.

The reciprocal of sin(z) has simple poles at z = zn = πn, where n is
an integer, and

res
zn

1

sin(z)
= lim

z→zn

z − zn

sin(z)
= 1 .

by the power series representation of sin(z) about z = zn.
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9.2. The line integral in a complex plane. A curve in the complex plane
is defined in the same as a curve in R2. It is the range of a continuous
mapping of an interval to C which is one-to-one except possibly some
points of the interval. Any such mapping is described by parametric
equations z = w(t), a ≤ t ≤ b. The curve is closed if w(a) = w(b).
If w(t1) = w(t2) implies that t1 = t2 (except possibly for t1 = a and
t2 = b for a closed curve), then the curve is called simple (otherwise
the curve has a self-intersection at z = w(t1) = w(t2)). If there exists a
parameterization from class C1 such that w′(t) does not vanish and, for
a closed curve, w′(a) = w′(b), then the curve is smooth. The direction
in which the curve is traversed by z = w(t) with increasing t is called
an orientation of the curve.

For example

z = w(t) = aeit , 0 ≤ t ≤ 2π

is a circle of radius a centered at the origin because |w(t)| = a. The
circle is a smooth curve because w′(t) is continuous and |w′(t)| = a 6= 0.
The circle is oriented counterclockwise. Parametric equations z = ae−it

describe the same circle oriented clockwise.
Let z = w(t), a ≤ t ≤ b, be parametric equations of a smooth

curve C in the complex plane. Let f(z) be a continuous function of a
complex variable z. Then the integral

∫

C

f(z) dz =

∫ b

a

f(w(t))w′(t) dt

is called the Cauchy line integral of f over the curve C . Note that
the integral depends on the orientation of C in full contrast to the
line integral of a scalar function. The Cauchy line integral changes its
sign if the orientation of the curve is changed. Parametric equations
z = w(τ (t)), a ≤ t ≤ b, τ (t) = b + a − t, describe the same curve
but with opposite orientation, denoted by −C . Then by changing the
integration variable

∫

−C

f(z) dz =

∫ b

a

f(w(τ (t)))w′(τ (t))τ ′(t) dt

=

∫ a

b

f(w(τ ))w′(τ ) dτ = −
∫

C

f(z) dz .
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For example, if C is a circle |z| = a oriented counterclockwise, then
for any integer n

∮

C

zn dz =

∫ 2π

0

aneint iaeit dt = ian+1

∫ 2π

0

ei(n+1)t dt

=

{

0 , n 6= −1
2πi , n = −1

(9.3)

By the 2π periodicity of the integrand.

9.2.1. Cauchy’s integral theorem. A region in a Euclidean space is called
simply connected if any closed curve can be continuously contracted to
a point in the region without crossing its boundary. In particular, a
simply connected region in the complex plane has no holes.

Theorem 9.1. Let f be analytic in a simply connected region and
C be a simple, closed, and smooth curve in this region. Then the line
integral of f over C vanishes

∮

C

f(z) dz = 0 .

This theorem follows from Green’s theorem (8.4) and the Cauchy-
Riemann equations (9.1). The hypotheses of Green’s theorem are met
for the Cauchy integral if C = ∂Ω (the boundary of some simply con-
nected Ω). Therefore by Green’s theorem and the Cauchy-Riemann
equations
∮

C

f(z)dz =

∮

C

(udx − vdy) + i

∮

C

(vdx + udy)

= −
∫∫

Ω

(

∂v

∂x
+

∂u

∂y

)

dxdy + i

∫∫

Ω

(

∂u

∂x
− ∂v

∂y

)

dxdy

= 0 .

Green’s theorem holds for piecewise simple curves and, hence, Cauchy’s
integral theorem is valid for simply connected regions with piecewise
smooth boundaries.

9.2.2. The residue theorem. If the function is analytic except some
points where it has poles, the Cauchy integral is determined by the
residues of the poles.

Theorem 9.2. Let f have finitely many poles at z = zk, k =
1, 2, ..., n, in a simply connected region Ω, the boundary ∂Ω is smooth
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and oriented counterclockwise. Then
∮

∂Ω

f(z) dz = 2πi
n
∑

k=1

res
zk

f(z) .

Take zk and connect it to some point on the boundary by a smooth
curve Ck. Let Ωa be the region obtained from Ω by removing the curves
Ck and the disks |z − zk| ≤ a. Then the boundary of Ωa consists of
∂Ω, the circles |z − zk| = a, denoted by Sk, and the curves Ck. If
∂Ω is oriented counterclockwise, then ∂Ωa must also be oriented coun-
terclockwise. This implies that the circles Sk are oriented clockwise,
and the curves Ck must be traversed twice (from the boundary toward
the pole and back after traversing Sk clockwise). Let C+

k denote Ck

oriented from the boundary to the pole, and C−
k from the pole to the

boundary. The function f is analytic in Ωa. By the Cauchy integral
theorem

∫

∂Ωa

f(z) dz = 0 .

On the other hand,

∫

∂Ωa

f(z) dz =

∫

∂Ω

f(z) dz +
n
∑

k=1

(

∫

C+
k

+

∫

C−
k

+

∮

Sk

)

f(z) dz

The integrals over C±
k are taken along the same curve but with opposite

orientations. So, they cancel each other in the sum. Near zk, f has the
form (9.2). So, only the term proportional to (z − zk)

−1 contributes to
the integral over Sk according to (9.3). Since the circles Sk are oriented
clockwise, there is an extra minus sign as compared to (9.3) so that

∫

∂Ωa

f(z) dz =

∫

∂Ω

f(z) dz − 2πi
n
∑

k=1

res
zk

f(z)

and the conclusion of the residue theorem follows.

Example 1. Let k be real parameter. Put

(9.4) F (k) =

∫ ∞

−∞

eikx

1 + x2
dx .

The integral converges absolutely for any k because

lim
n→∞

∫ n

−n

∣

∣

∣

∣

eikx

1 + x2

∣

∣

∣

∣

dx = lim
n→∞

∫ n

−n

dx

1 + x2
= π < ∞ .
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Therefore F (k) can be computed in any suitable regularization. In
particular,

F (k) = lim
n→∞

∫ n

−n

eikx

1 + x2
dx

One has F (0) = π. Put f(z) = eikz(1 + z2)−1. The function f has
two simple poles at z = ±i and analytic otherwise. If k > 0, it decays
exponentially with increasing |z| if the upper half-plane, Im z > 0. If
k < 0, it decays exponentially with increasing |z| in the lower half-
plane, Im z < 0.

Let C+
n be the closed contour that consists of the interval [−n, n]

in the real axis and the circular arc |z| = n, Im z ≥ 0, denoted S+
n . If

C+
n is oriented counterclockwise, then by the residue theorem

∮

C+
n

f(z) dz =

∫ n

−n

f(x) dx +

∫

S+
n

f(z) dz

= 2πi res
i

f(z) = πe−k , k > 0 .

The integral over S+
n vanishes in the limit n → ∞:

∣

∣

∣

∣

∫

S+
n

f(z) dz

∣

∣

∣

∣

(1)
=

∣

∣

∣

∣

∣

∫ π

0

eikneit

1 + n2e2it
ineit dt

∣

∣

∣

∣

∣

(2)

≤ n

∫ π

0

e−kn sin(t)

|1 + n2e2it| dt

(3)

≤ n

∫ π

0

dt

|1 + n2e2it|
(4)

≤ n

n2 − 1

∫ π

0

dt =
πn

n2 − 1
→ 0

as n → ∞. A justification for this chain of inequalities is as follows:
(1) is obtained by using the parametric equation of S+

n , z = neit,
0 ≤ t ≤ π; (2) is obtained by moving the absolute value into the integral
and by calculating |f(neit)|; (3) holds because k > 0 and sin(t) ≥ 0 if
0 ≤ t ≤ π; (4) follows from the triangle inequality ||z1|−|z2|| ≤ |z1−z2|
for z1 = 1 and z2 = n2e2it. Thus, by taking the limit n → ∞, its
concluded that F (k) = πe−k if k > 0.

Similarly, if k < 0, take the closed contour C−
n that consists of the

interval [−n, n] in the real axis and the circular arc |z| = n, Im z ≤ 0,
denoted S−

n . If Cn is oriented clockwise, then by the residue theorem
∮

C−
n

f(z) dz =

∫ n

−n

f(x) dx +

∫

S−
n

f(z) dz

= −2πi res
−i

f(z) = πek , k < 0

The reader is asked to show that
∣

∣

∣

∣

∫

S−
n

f(z) dz

∣

∣

∣

∣

≤ πn

n2 − 1
, n > 1 ,
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using the same line of arguments as in the case of integration over S+
n ,

but with k < 0. Thus,

F (k) = πe−|k| .

Example 2: Fresnel’s integrals. Consider the improper integral
∫ ∞

0

eix2

dx
def
= lim

n→∞

∫ n

0

eix2

dx

The integral does not converge absolutely because the integral of the
absolute value of the integrand, |eix2| = 1, diverges. So, the value of the
integral depends on regularization. This fact is emphasized by using

the symbol
def
= (the definition of the left-hand side). In particular, in

the regularization defined by the above limit, the integral converges
and its real and imaginary parts are known as Fresnel’s integrals.

In the complex plane, consider a closed contour C that is the bound-
ary of the wedge of the disk of radius n: z = ρeiθ where 0 ≤ ρ ≤ n
and 0 ≤ θ ≤ π

4
. It consist of three smooth pieces. The first goes from

z = 0 to z = n along the real axis, the second from z = n to z =
√

in
along the circle |z| = n, and the third goes back to the origin along the
line segment from z =

√
in. Here

√
i = eiπ/4. Parametric equations of

these three pieces can be chosen respectively as

C1 : z = t , t ∈ [0, n] ;

C2 : z = neit , t ∈ [0, π/4] ;

C3 : z =
√

it , t ∈ [n, 0] .

Note that C3 must be oriented from z =
√

in to z = 0. This is indicated
by the range [n, 0] of the parameter: from t = n to t = 0, which
corresponds to the lower and upper limits of integration. The function
eiz2

is analytic. Therefore its line integral over C vanishes:
∮

C

eiz2

dz =

(∫

C1

+

∫

C2

+

∫

C3

)

eiz2

dz = 0 .

One has for these integrals
∫

C1

eiz2

dz =

∫ n

0

eit2 dt ,

∫

C2

eiz2

dz =

∫ π/4

0

ein2e2it

ineit dt ,

∫

C3

eiz2

dz =

∫ 0

n

e−t2
√

i dt = −eiπ/4

∫ n

0

e−t2dt .
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Let us show that the integral over the circular arc vanishes in the limit
n → ∞. One has

∣

∣

∣

∣

∫

C2

eiz2

dz

∣

∣

∣

∣

(1)

≤ n

∫ π/4

0

e−n2 sin(2t) dt
(2)

≤ n

∫ π/4

0

e−4n2t/π dt

(3)
=

π

4n

(

1 − e−n2
)

→ 0

as n → ∞. The inequalities are justified as follows: (1) is obtained by
moving the absolute value into the integral and calculating |f(neit)|;
(2) follows from the inequality sin(2t) ≥ 4t/π that holds in the interval
0 ≤ t ≤ π/4. Note that the graph of sin(2t) is concave downward in
the interval [0, π/4]. So the secant line through the origin (0, 0) and
the point (π/4, 1) on the graph lies below the graph, which comprises
the said inequality; (3) is obtained by evaluating the integral.

Thus the integrals over C3 and C1 are equal in the limit:
∫ ∞

0

eix2

dx
def
= lim

n→∞

∫ n

0

eix2

dx = eiπ/4

∫ ∞

0

e−x2

dx =

√
π

2
ei π

4 .

Example 3. Let us evaluate the conditionally convergent integral that
was discussed in Sec.4.4.1:

I =

∫ ∞

−∞

sin(x)

x
dx

def
= lim

n→∞

∫ n

−n

sin(x)

x
dx .

Owing to the continuity of the Riemann integral (cf. Sec.3.4.5)

I = lim
n→∞

lim
a→0+

Im

(∫ −a

−n

+

∫ n

a

)

eix

x
dx .

The function f(z) = eiz/z is analytic everywhere except at z = 0.
Let C be a closed contour that is oriented counterclockwise and

consists of two intervals [−n,−a] and [a, n] on the real axis, and two
circular arcs Ca, |z| = a, and Cn, |z| = n, which lie in the upper half-
plane, Im z ≥ 0. The function f is analytic in the region bounded by
C and, hence, its line integral over C vanishes:

∮

C

eiz dz

z
=

(∫ −a

−n

+

∫ n

a

)

eixdx

x
+

∫

Ca

eiz dz

z
+

∫

Cn

eiz dz

z
= 0

The imaginary part of the first two terms is equal to the integral in
question after taking the limits a → 0+ and then n → ∞. The integral
over the arc Cn vanishes in the limit n → ∞. Indeed,

∣

∣

∣

∣

∫

Cn

eiz dz

z

∣

∣

∣

∣

(1)

≤
∫ π

0

e−n sin(t) dt
(2)→ 0 , n → ∞ ,
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where (1) is obtained by using the parametric equation z = neit and
calculating |f(neit)|; (2) follows from the Lebesgue dominated conver-
gence theorem because |e−n sin(t)| ≤ 1 ∈ L(0, π) and e−n sin(t) → 0 a.e.
as n → ∞.

Let us evaluate the limit of the integral over Ca as a → 0+. Using
the parametric equation z = aeit

lim
a→0+

∫

Ca

eiz dz

z
= −i lim

a→0+

∫ π

0

eiaeit

dt = −i

∫ π

0

lim
a→0+

eiaeit

dt = −iπ

where the minus sign in the first equality is due to the opposite orienta-
tion of Ca in the chosen parameterization, while the order of integration
and taking the limit can be interchanged by the Lebesgue dominated
convergence theorem because |eiaeit| ≤ 1 ∈ L(0, π) for all a ≥ 0. It is
then concluded that

lim
n→∞

∫ n

−n

sin(x)

x
dx = π .

9.3. Gaussian integrals with complex parameters. Consider the following
Gaussian integral

IN (A, b) =

∫

RN

e−(x,Ax)+2(b,x) dNx , bj ∈ C ,

in which parameters bj are complex and the matrix A is positive, that
is, (x, Ax) > 0 for any x 6= 0. This integral converges absolutely
because bj = βj + iαj and

∣

∣

∣
e−(x,Ax)+2(b,x)

∣

∣

∣
= e−(x,Ax)

∣

∣

∣
e2(β,x)+i(α,x)

∣

∣

∣
= e−(x,Ax)+2(β,x)

so that the integral of the absolute value converges for any β ∈ RN .
To compute the integral, consider first a one-dimensional case:

I(b) =

∫ ∞

−∞
e−x2+2ibx

where b is real. Since I(b) is independent of regularization, put

I(b) = lim
n→∞

∫ n

−n

e−x2−2ibx dx .

Let Rb be a rectangle in the complex plane Re z ∈ [−n, n] and Im z ∈
[0, b]. Since e−z2

is analytic,
∮

∂Rb

e−z2

dz = 0 .
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Rewriting this line integral as the sum of ordinary integrals over four
intervals comprising the boundary of Rb, one gets
∫ n

−n

e−x2

dx −
∫ n

−n

e−(t+ib)2dt +

∫ b

0

e−(n+it)2dt −
∫ b

0

e−(n−it)2dt = 0 .

The second integral is the line integral of e−z2
over the top horizontal

boundary of Rb: z = t+ ib, −n ≤ t ≤ n. The integrals over the vertical
intervals vanish in the limit n → ∞:
∣

∣

∣

∣

∫ b

0

e−(n±it)2dt

∣

∣

∣

∣

≤
∫ b

0

|e−(n±it)2|dt = e−n2

∫ b

0

et2dt ≤ beb2e−n2 → 0

as n → ∞. Note that by monotonicity et2 ≤ eb2 if 0 ≤ t ≤ b. Therefore
∫ ∞

−∞
e−x2

dx = lim
n→∞

∫ n

−n

e−(t+ib)2dt

It follows from this relation that

I(b) = lim
n→∞

∫ n

−n

e−t2−2ibtdt =
√

π e−b2 .

Using shift and scaling transformations of the integration variable and
the above result, one can show that

I(a, ξ) =

∫ ∞

−∞
e−ax2+2ξx dx =

√

π

a
eξ2/a , ξ ∈ C , a > 0 .

Technicalities are left to the reader as an exercise.
To compute the integral in RN , one can follows the same line of

arguments used to evaluate the Gaussian integral I(A, b) with real b.
First, new integration variables are introduced in which the quadratic
form is diagonal, (x, Ax) = (y, ay) where a is a diagonal matrix. In
doing so, the integral is proved to be the product of one-dimensional
integrals so that

I(A, b) =
π

N
2√

detA
e(b,A−1b) , b ∈ CN

for any positive definite matrix A. Technicalities are left to the reader
as an exercise.

9.4. Exercises.

1. Let

f(z) =

∞
∑

n=0

cn(z − z0)
n , |z − z0| < R
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(i) Show that the convergence of the series implies that |cn|δn → 0 as
n → ∞ for any δ < R.
(ii) Show that

|cn(z − z0)
n| ≤ Mqn , q < 1 , |z − z0| ≤ δ < R

for some constants M and q and any δ, then use Proposition 1.1 to
show that the series converges uniformly.
(iii) Show that the series obtained by term-by-term differentiation of
the power series any number of times also converge uniformly in the
disk |z − z0| < R so that f is from class C∞ and cn = f (n)(z0)/n!.

2. Prove the equation for the Gaussian integral I(a, ξ).

3. Prove the equation for the Gaussian integral I(A, b).

4. Evaluate

I(a, b) =

∫ ∞

−∞
eiax2+bxdx

def
= lim

ε→0+

∫ ∞

−∞
e−εx2+iax2+bxdx ,

where a ∈ R and b ∈ C.

5. Evaluate
∫

ei(x,Ax)dNx
def
= lim

ε→0+

∫

ei(x,Ax)−ε(x,x)dNx , det(A) 6= 0 .

Express the answer in terms of the matrix A.

6. Let Ω ⊂ C be closed, bounded, and simply connected, and its
boundary ∂Ω is piecewise smooth and oriented counterclockwise. Use
the residue theorem to prove the identity

f(z) =
1

2πi

∮

∂Ω

f(w)

w − z
dw

for any function f that is analytic on Ω and any point z that is in the
interior of Ω.

7. Suppose that f is analytic everywhere. Let z and z′ be two points
in the complex, and Cn be a circle of radius n > 2|z − z′| centered at
z and oriented counterclockwise.
(i) Show that for any w ∈ Cn

|w − z′| >
n

2
.
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(ii) Put w = z +neit, where 0 ≤ t ≤ 2π. Use the identity from Problem
6 to show that

|f(z) − f(z′)| ≤ |z − z′|
πn

∫ 2π

0

|f(neit)| dt

(iii) Prove Liouville’s theorem which states that a function that is ana-
lytic in C and bounded

|f(z)| ≤ M , ∀z ∈ C

is constant. In particular, if f is analytic everywhere and f(z) → 0 as
|z| → ∞, then f(z) = 0.
Hint: Show that |f(z)− f(z′)| is smaller than any preassigned positive
number.

8. Let u(x, y) be a real harmonic function in R2.
(i) Show that u(x, y) can always be written as a real or imaginary part
of f(z) + g(z̄) where f and g are analytic functions in the complex
plane and z = x + iy. Hint: rewrite the Laplace operator in terms of
complex derivatives with respect to z and z̄.
(ii) Use Liouville’s theorem to show that a harmonic function that van-
ishes in the limit x2 + y2 → ∞ is the zero function.
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10. Potential-like integrals

10.1. Preliminaries. Let E(x) be a conservative vector field in R3, that
is, E(x) = −∇u(x) where u is a potential of E. The divergence of a
vector field is proportional to the density of sources of E. If the density
ρ(x) is known, then the potential satisfies the Poisson equation:

(10.1) div E(x) = −∆u(x) = 4πGρ(x) ,

where ∆ is the Laplace operator, G is a constant, and 4π is a convention
factor whose significance will be clarified later.

For example, a static electric or gravitational field is conservative.
A point-like particle located at y ∈ R3 creates an electric (or gravita-
tional) potential at a point x

du(x) = G
dm(y)

|x− y|
where dm(y) is an electric charge (or mass) of the particle, and the
constant G is a universal constant for the electromagnetic theory (or
the gravity theory). The law is known as the Coulomb law in electricity
and as the Newton gravity law in the gravity theory. If electric charges
or masses are distributed over a region Ω, then du(x) with dm(y) =
ρ(y)d3y is the potential at x created by an element of volume d3y at a
point y. By the superposition principle (the total field at a point is the
vector sum of the fields created by all sources), the potential at x is

(10.2) u(x) = G

∫

Ω

ρ(y)

|x − y| d
3y .

This suggests that the potential defined by this integral should be a
solution to the Poisson equation. To verify the assertion, one has to
show that u has second partials and to figure out a way for computing
them. Note that if one formally interchange the order of taking the
integral and the Laplacian, then the result is obviously wrong because

(10.3) ∆x
1

|x− y| = 0 , x 6= y ,

that is, for any given x the integrand vanishes a.e., but ∆u 6= 0 (see
Exercise 4). Thus one has to investigate if the potential integral (10.2)
has second partials and find a method to calculate them in order to
verify the Poisson equation.

10.2. Potential-like integrals. Let Ω be a bounded region in RN . Put

u(x) =

∫

Ω

ρ(y)

|x− y|α dNy , x ∈ RN .
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If x ∈ Ω̄, then the integrand is singular at y = x. A sufficient condition
for the integral to exist is to require that ρ is bounded, |ρ(y)| ≤ M ,
and α < N because by the comparison test

|ρ(y)|
|x− y|α ≤ M

|x− y|α ∈ L(Ω) if α < N

for a bounded region Ω. If x does not belong to the closure Ω, then
|x − y|−α is continuous on Ω and, hence, bounded. In this case, the
integral exists if ρ ∈ L(Ω). Without loss of generality, Ω can be viewed
as support of the density ρ and the integral is taken over RN . The
objective is to investigate smoothness of u(x) in RN .

In what follows, the following result will be used.

Proposition 10.1. Let BR be a ball of radius R, |y| < R. Then
there exists a constant Cα such that

(10.4)

∫

BR

dNy

|x − y|α ≤ CαRN−α .

To prove this relation, consider two cases. First, suppose |x| >
2R. In this case, using the triangle inequality and that |y| < R, it is
concluded that

|x − y| ≥ |x| − |y| > R ⇒ 1

|x− y|α <
1

Rα
.

Therefore
∫

BR

dNy

|x− y|α ≤ 1

Rα

∫

BR

dNy =
σN

Rα

∫ R

0

rN−1 dr =
σN

N
RN−α ,

where σN is the surface area of the unit sphere |y| = 1. Suppose that
|x| ≤ 2R. Using the new variables z = y − x,

∫

BR

dNy

|x − y|α =

∫

BR(x)

dNz

|z|α ≤
∫

B3R

dNz

|z|α ≤ σN

∫ 3R

0

rN−α−1 dr

=
3N−ασN

N − α
RN−α ,

here it was used that the ball of radius R centered at x is contained in
the ball of radius 3R centered at the origin if |x| ≤ 2R. The assertion
follows if

Cα = max

{

σN

N
,

3N−ασN

N − α

}

.



10. POTENTIAL-LIKE INTEGRALS 127

10.3. Smoothness on the complement of support of the density. Here it
is proved that if x in the complement of Ω, that is, x is neither in Ω
or in its boundary ∂Ω, the potential integral has partial derivatives of
any order,

(10.5) u(x) ∈ C∞
(

RN \ Ω
)

,

and

(10.6) Dβ
xu(x) =

∫

Ω

ρ(y)Dβ
x

1

|x− y|α dNy

The distance between two non-intersecting regions is not zero only if
their boundaries do not have common points. Let Ωδ ⊂ RN \Ω be such
that

d(Ωδ , Ω) = δ > 0

For example, if Ω = Ba is a ball of radius a, then Ωδ is the complement
of the ball of radius a + δ, that is, x ∈ Ωδ if |x| > a + δ.

Define a function of two variables

f(x, y) =
ρ(y)

|x− y|α

Since |x − y| ≥ δ > 0 for any y ∈ Ω and x ∈ Ωδ, its partial derivatives
of any order are continuous at any x ∈ Ωδ for any y:

∂

∂xi
f(x, y) = αρ(y)

yi − xi

|x − y|α+2

∂2

∂xj∂xi

f(x, y) = αρ(y)

(

(α + 2)(xi − yi)(xj − yj)

|x − y|α+4
− δij

|x− y|α+2

)

and similarly for Dβ
xf . Furthermore, they are bounded by Lebesgue

integrable functions independent of x:
∣

∣

∣

∣

∂

∂xi
f(x, y)

∣

∣

∣

∣

≤ α|ρ(y)| 1

|x − y|α+1
≤ α

δα+1
|ρ(y)| ∈ L(Ω)

∣

∣

∣

∣

∂2

∂xj∂xi
f(x, y)

∣

∣

∣

∣

≤ α|ρ(y)|(α + 2) + δij

|x − y|α+2
≤ α(α + 3)

δα+2
|ρ(y)| ∈ L(Ω)

where x ∈ Ωδ and y ∈ Ω. Here the inequality |xj| ≤ |x| was used. In
general,

|Dβ
xf(x, y)| ≤ Mβ

δα+β
|ρ(y)| ∈ L(Ω)

for some constant Mβ (that depends on α). By Theorem 7.2 u has
continuous partial derivatives of any order in Ωδ for any δ > 0, and the
conclusions (10.5) and (10.6) follow.
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10.4. Asymptotic behavior. Let us investigate the asymptotic behavior
of the potential-like integral when |x| → ∞. Since Ω is bounded there
is a ball BR that contains it. It follows from the triangle inequality

|x − y| ≥ |x| − |y| , |x| > R , y ∈ Ω

and |ρ(y)| ≤ M that

|u(x)| ≤
∫

Ω

M

(|x| − |y|)α
dNy ≤ M

|x|α
∫

Ω

dNy

(1 − |y|/R)α
=

Cα,0

|x|α ,

where |x| > R. So, the potential falls off to zero as |x| → 0. A similar
analysis applied to Eq. (10.6) shows that

|Dβu(x)| ≤ Cα,β

|x|α+β
, |x| > R .

Technical details are left to the reader as an exercise.

10.5. Continuity on support of the density. If the density is bounded,

|ρ(y)| ≤ M , ∀y ∈ Ω

then the potential integral is a continuous function everywhere, u ∈ C0.
Let x0 and x be two points in Ω. One has to show that u(x) can

get arbitrary close to u(x0) and stay arbitrary close for all x that are
close enough to x0. Put

g(x, y) =

∣

∣

∣

∣

1

|x0 − y|α − 1

|x − y|α
∣

∣

∣

∣

Then

|u(x0) − u(x)| ≤
∫

Ω

|ρ(y)| g(x, y) dNy ≤ M

∫

Ω

g(x, y) dNy

= M

(∫

Ω\BR(x0)

+

∫

BR(x0)

)

g(x, y) dNy

Let us show that the integrals can be made arbitrary small for suffi-
ciently small radius R such that |x0 − x| < R. This would prove the
assertion.

Using (10.4),
∫

BR(x0)

g(x, y) dNy ≤
∫

BR(x0)

dNy

|x0 − y|α +

∫

BR(x0)

dNy

|x0 − y|α
≤ 2CαRN−α → 0

as R → 0 because N > α.
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To show that the other integral is also small, note that the function
g(x, y) is a continuous function in the set

|x − x0| ≤
R

2
, |y − x0| ≥ R , y ∈ Ω

This set is bounded and closed. By the extreme value theorem, g
attains its extreme values in the set. In particular, since g(x, y) ≥ 0,
its absolute minimum is reached at x = x0, g(x0, y) = 0. Its maximum
is reached at some point that depends on R, x = xR and y = yR. The
maximal value depends on R:

max g = g(xR, yR) = C(R)

If R → 0, then x → x0. Therefore by continuity of g, the maximal
value C(R) tends to 0 as R → 0. Hence,

∫

Ω\BR(x0)

g(x, y) dNy ≤ C(R)µ
(

Ω \ BR(x0)
)

≤ C(R)µ(Ω) → 0

as R → 0. Note that the measure (volume) µ(Ω) < ∞ is finite because
Ω is bounded. Therefore the integral can be made arbitrary small if
R → 0 for all x close enough to x0: |x− x0| ≤ R

2
.

10.6. Differentiability on support of the density. If the density is bounded,
|ρ(y)| ≤ M , then the potential integral has continuous partial deriva-
tives up to order p everywhere with p being the largest integer such that
α + p < N , and, in this case, u ∈ Cp(RN ) and

(10.7) Dβ
xu(x) =

∫

Ω

ρ(y)Dβ
x

1

|x − y|α dNy , β ≤ p .

Put

uj(x) =

∫

Ω

ρ(y)
∂

∂xj

1

|x− y|α dNy = α

∫

Ω

ρ(y)
xj − yj

|x− y|α+2
dNy .

If uj are proved to be continuous and Dju = uj, then the assertion is
true if p = 1. The continuity of uj is proved in the same way as the
continuity of u. One has

|uj(x0) − uj(x)| ≤ αM

∫

Ω

gj(x, y) dNy

= αM

(
∫

Ω\Ba(x0)

+

∫

Ba(x0)

)

gj(x, y) dNy ,
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where

gj(x, y) =

∣

∣

∣

∣

x0j − yj

|x0 − y|α+2
− xj − yj

|x − y|α+2

∣

∣

∣

∣

.

The integral over the ball Ba(x0) can be made arbitrary small for all
|x0 − x| < a with small enough a. This conclusion follows from (10.4)
and the inequality

∣

∣

∣

∣

xj − yj

|x − y|α+2

∣

∣

∣

∣

≤ 1

|x− y|α+1
.

Note that (10.4) holds if α+1 < N in this case. Using the continuity of
gj(x, y) in the same way as the continuity of g(x, y) when proving the
continuity of u, one can show that the integral over the complement of
the ball, Ω\Ba(x0), can also be made arbitrary small for all |x0−x| < a

2
and small enough a > 0.

A proof of the equality Dju = uj is analogous to the proof of
Theorem 7.2. Since uj is continuous, by the fundamental theorem of
calculus

∂

∂ξj

∫ ξj

x0j

uj(x1, ..., xj, ..., xN) dxj = uj(x1, ..., ξj, ..., xN)

On the other hand, using Fubini’s theorem
∫ ξj

x0j

uj(x) dxj =

∫ ξj

x0j

∫

Ω

ρ(y)
∂

∂xj

1

|x− y|α dNydxj

(1)
=

∫

Ω

ρ(y)

∫ ξj

x0j

∂

∂xj

1

|x− y|α dxj dNy

= u(x1, ..., ξj, ..., xN) − u(x1, ..., x0j, ..., xN)

Taking the partial derivative ∂
∂ξj

of both sides of this relation, it is con-

cluded that the partial derivatives of u coincide with uj. Here (1) holds
because the integrand in the iterated integral is Lebesgue integrable on
Ω × (x0j, ξj) and, by Fubini’s theorem the order of integration can be
changed. Indeed the iterated integral of the absolute value is finite:
∫ ξj

x0j

∫

Ω

∣

∣

∣

∣

ρ(y)
∂

∂xj

1

|x− y|α
∣

∣

∣

∣

dNydxj ≤ αM

∫ ξj

x0j

∫

Ω

dNy

|x− y|α+1
dxj

≤ αM

∫ ξj

x0j

∫

BR

dNy

|x − y|α+1
dxj

≤ αM |ξj − x0j|Cα+1R
N−α−1

where the boundedness of Ω was used, Ω ⊂ BR for large enough radius
R, and the latter inequality follows from Proposition 10.1 if α+1 < N .
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If α + 2 < N , then the above arguments can be applied to the
functions uj(x) (instead of u) to show that partial derivatives of uj (or
second partials of u) are continuous and the conclusion of the stated
theorem holds. This iterative process holds as long as α + β < N ,
β = 0, 1, ..., p.

10.6.1. Smooth density with a bounded support. In applications, one
often deal with densities that are compactly supported and smooth in
the interior of the support. In this case, the potential integral can be
a smoother function than that found in the previous section.

Let a compact set Ω with a smooth boundary be a support of ρ
and partial derivatives of ρ be continuous on Ω. In this case, the
integration by parts in the integral representation (10.7) of the partials
Du is permitted,

Du(x) =

∫

ρ(y)Dx
1

|x − y|α dNy = −
∫

Ω

ρ(y)Dy
1

|x− y|α dNy

= −
∫

∂Ω

ρ(y) dΣy

|x − y|α +

∫

Ω

Dρ(y)

|x − y|α dNx ,(10.8)

despite that the integrand is singular for any x ∈ Ω. This is established
by the standard trick based on using the continuity of the Lebesgue
integral. Suppose that x is in the interior of Ω. Then a ball Ba(x) lies
in the interior of Ω for any small enough radius a. The density ρ and
|x − y|−α are from class C1 in Ω \ Ba(x) and the integration by parts
is justified:

Du(x) = − lim
a→0+

∫

Ω\Ba(x)

ρ(y)Dy
1

|x − y|α dNy = −
∫

∂Ω

ρ(y) dΣy

|x− y|α

+ lim
a→0+

(
∮

∂Ba(x)

ρ(y)(y − x)

|x − y|α+1
dSy +

∫

Ω\Ba(x)

Dyρ(y)

|x − y|α dNy

)

,

where the boundary of Ω\Ba(x) is oriented outward. It consists of ∂Ω
and the sphere |y − x| = a. The outward unit normal on the sphere
is ny = (x − y)/a (it is directed toward the center of the ball) and
dΣy = nydSy. Since Dρ are continuous on Ω, they are bounded and,
hence, by continuity of the Lebesgue integral

lim
a→0+

∫

Ω\Ba(x)

Dyρ(y)

|x− y|α dNy =

∫

Ω

Dyρ(y)

|x − y|α dNy .
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It remains to show that the integral over the sphere vanishes in the
limit a → 0+. Since |ρ(y)| ≤ M , one has

∣

∣

∣

∮

∂Ba(x)

ρ(y)(y − x)

|x− y|α+1
dSy

∣

∣

∣
≤ M

aα

∫

|z|=a

dS =
MσNaN−1

aα
→ 0

because by assumption α + p < N for some integer p ≥ 1. This
competes a proof of Eq. (10.8).

There are two consequences of (10.8). First, if the density vanishes
on the boundary ∂Ω, that is, ρ is from class C0 in the whole space (it
does not have a jump-discontinuity at ∂Ω), then the surface integral in
(10.8) vanishes. Therefore the second partials D2u are also continuous
in the whole space and can be computed by rule (10.7) applied to the
representation (10.8) of Du. Furthermore if ρ is from class Cq(RN ),
then all its partials up to order q vanish on ∂Ω. Therefore the inte-
gration by parts can be carried out q times, and all surface integrals
arising upon this procedure vanish. It follows that the potential is from
class Cp+q and

(10.9) DβDqu(x) =

∫

Ω

Dq
yρ(y)Dβ

x

1

|x − y|α dNy ,

where β ≤ p. In particular, if the density ρ and all its partial deriva-
tives of any order are continuous in the whole space and have bounded
support, then u is from class C∞.

Second, if ρ is not continuously extendable to whole space, then
the smoothness of Du also depends on the smoothness of the surface
integral in (10.8). This kind of surface integrals are called surface
potentials:

v(x) =

∫

S

σ(y)

|x− y|α dSy ,

where S is a smooth M surface in RN , M ≤ N − 1. Evidently, if
x is not in the surface S, then partials of any order of the integrand
with respect to x are bounded on ∂Ω (there is no singularity in the
integrand) and, hence, by Theorem 7.2 v is from class C∞ in RN \S,
provided the density σ is bounded on S and S has a finite surface area.
A loss of smoothness happens on S. One can show that if the surface
density σ is bounded on S, then v ∈ Cp where p is the largest integer
for which α + p < M (see Exercises), which is more restrictive than
the condition in (10.7). For example, if α + 1 < N but α + 2 ≥ N ,
then the surface potential in (10.8) is not differentiable at ∂Ω (here
M = N − 1), whereas the second integral is differentiable everywhere
if |Dρ| is bounded.
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10.6.2. Constant density. To further illustrate the point, let ρ(x) = ρ0

is a non-zero constant in a ball Ω = BR ⊂ R3 and vanishes otherwise.
The density is not continuous at the boundary sphere |x| = R where it
has a jump discontinuity, while all its partials vanish for |x| 6= R and,
hence, have continuous extensions to |x| = R. Let α = 1 so that u(x)
is an electric potential of a uniformly charged ball or a gravitational
potential of a ball with uniformly distribution mass. The potential is
easy to calculate in spherical coordinates with the axis parallel to x:

u(x) = 2πρ0

∫ R

0

∫ π

−π

sin(φ) dφ r2 dr
√

r2 + |x|2 − 2 cos(φ)r|x|

=
πρ0

|x|

∫ R

0

(

r + |x| − |r − |x||
)

r dr

=
πρ0

3

{

3R2 − |x|2 , |x| < R
2R3

|x| , |x| ≥ R

Here α + 1 < N but α + 2 = N . So, u and its gradient are continuous
everywhere, which also readily follows from the explicit form. However,
the second partials have jump discontinuities on the sphere |x| = R.
Since ∇ρ = 0, the gradient of u (or the field) is defined only by the
surface integral

∇u(x) = ρ0

∮

|y|=R

dΣy

|x − y| .

By the aforementioned assertion, the field is continuous because α <
N − 1, but the partials of the field components are generally not con-
tinuous because α+1 = N − 1, which is indeed so by the explicit form
of u.

10.7. Solutions to the Poisson equation in R3. The Newton gravity law
or the Coulomb law are obtained from experimental observations and,
hence, are mathematical models for the physical reality. The solution
(10.2) is heuristically derived from these models and the superposition
principle. A standard objective of mathematical modeling of reality is
to investigate a mathematical consistency of any such model. If the
Poisson equation indeed describes a potential of a static gravitational
or electric field created by distributed sources, it is then expected that

(i) a solution exists;
(ii) it is unique (up to an additive constant);
(iii) it depends continuously on the density, that is, small variations

of the density produce small variations of the solution.
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A problem whose solution always exists, is unique, and depends contin-
uously on parameters is called a well-posed problem. So, mathematical
models of the physical reality should lead to well-posed problems.

A classical problem for the Poisson equation (10.1) is to find a
function u from class C2 that satisfies the equation for a given density
ρ that is smooth enough in order for a solution to exist. Let ρ be
from class C1 and supported in a bounded region Ω with a smooth
boundary. Let us show that (10.2) is a solution to (10.1). If x is in the
complement of Ω, then it follows from (10.3) and (10.7) that

∆u(x) = G

∫

Ω

ρ(y)∆x
1

|x − y| d
3y = 0 , x ∈ Ωc

as required. By (10.9),

∆u(x) = −G

∫

Ω

(

∇yρ(y),∇y
1

|x − y|
)

d3y , x ∈ Ω .

because ρ(y) = 0 if y ∈ ∂Ω, ρ is continuously differentiable and ∇x|x−
y| = −∇y|x− y|. Let Ba(x) be a ball of radius a > 0 centered at x and
x be in the interior of Ω. By continuity of the Lebesgue integral and
integration by parts

∆u(x) = −G lim
a→0+

∫

Ω\Ba(x)

(

∇yρ(y),∇y
1

|x − y|

)

d3y

= −G lim
a→0+

(
∫

|y−x|=a

ρ(y)
(

∇y
1

|x − y| , dΣy

)

−
∫

Ω\Ba(x)

ρ(y)∆y
1

|x− y| d3y

)

By (10.3) the volume integral vanishes. Changing variables in the sur-
face integral y = az + x so that the integration sphere becomes the
unit sphere |z| = 1 and dΣ = −za2dSz (the sphere is oriented by the
unit normal directed toward the center), one infers that

∆u(x) = −G lim
a→0+

∫

|z|=1

ρ(x + az)dSz = −4πGρ(x)

because by the Lebesgue dominated convergence theorem the order
of taking the limit and integration can be interchanged. Note that ρ
is bounded and continuous. The same conclusion can be reached if
x ∈ ∂Ω. In this case, Ba(x) is not contained in the interior of Ω for
all small enough a so that the surface integral is taken over the part of
the sphere that lies in Ω. However, this does not change the conclusion
because the Lebesgue dominated convergence theorem still applies to
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this part of the sphere. Note that ρ(x) = 0 if x ∈ ∂Ω. Thus, (10.2) is
a solution to (10.1).

The solution (10.2) is not unique because any solution can be changed
by adding to it a general solution to the Laplace equation (any har-
monic function in space). The uniqueness is achieved by imposing a
boundary condition in the asymptotic region |x| → ∞. The asymptotic
condition must be such that the only harmonic function that satisfies
it is a constant function because there is no field in space without
sources. It will be shown later that if ρ is compactly supported, then it
is sufficient to demand that any solution is bounded in the asymptotic
region. This is the case for (10.2) because it is falling off as |x|−1 when
|x| → ∞. Thus, the solution is unique.

Let us investigate its continuity with respect to ρ. Let u(x) and
ũ(x) be solutions (10.2) for the densities ρ(x) and ρ̃(x), respectively.
Their supports are bounded and lie in a ball of radius R. Suppose that

sup |ρ(x) − ρ̃(x)| ≤ ε0 .

Then it follows from (10.4) that

|u(x)− ũ(x)| ≤
∫

|y|<R

|ρ(y)− ρ̃(y)|
|x− y| d3y ≤ C1R

2ε0 ,

which holds for any x ∈ R3. So, small variations of the density produce
small changes in the potential. The Poisson equation supplemented by
appropriate boundary conditions provides a good mathematical model
for static gravity and electrostatics.

If the density is compactly supported and smooth, but not continu-
ous on the boundary of its support Ω, the Poisson equation (10.1) does
not make sense on ∂Ω. However, the function (10.2) satisfies (10.1) for
any x that is not in ∂Ω. The reasonings go along the same line as for a
continuous density but in this case Eq. (10.8) must be used to calculate
the gradient of u instead of (10.9). The surface integral is a smooth
function for all x in the interior of Ω (Exercise 3) so that ∆u can be
computed in the same way as for a continuous density with an extra
term given by the surface integral. The surface integral is canceled by
the boundary term arising from the integration by parts in the integral
over Ω\Ba(x) (Exercise 4). A general solution differs from (10.2) in
Ωc by a harmonic function and in the interior of Ω also by a harmonic
function. So, a general solution may not decay to zero when |x| → ∞
and it is not necessarily continuous at ∂Ω in contrast to (10.2). It will
be shown later that if the solution is required to be bounded in space
and continuous at ∂Ω, then (10.2) is the unique solution to the Poisson
equation in this case. It depends continuously on the density just as
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in the previously considered case. Thus, the problem is well posed in
this case as well.

10.8. Exercises.

1. Show that if ρ is a bounded function, then the function defined
by the line integral in R2

v(x) =

∫

S

ρ(y)

|x − y|α dsy

where S is a circle |y| = a, is continuous in R2 if 0 < α < 1, and u is
from class C∞ in R2 \ S and, in this case,

Dβ
xv(x) =

∫

S

Dβ
x

ρ(y)

|x − y|α dsy

Hint: If y1 = a cos(θ) and y2 = a sin(θ), then dsy = adθ and 0 ≤ θ ≤ 2π
for S.

2. Extend the conclusion of Problem 1 to the case when S is a smooth
simple curve of a finite length.

3. Surface potentials. Let S be an smooth M surface in RN , M ≤
N − 1. Define a function v by the surface integral (called a surface
potential)

v(x) =

∫

S

ρ(y)

|x − y|α dSy , 0 < α < M

(i) Show that v ∈ C∞(RN \ S);
(ii) Show that v ∈ Cp(RN ) where p is the largest integer such that
α + p < M , and

Dβ
xv(x) =

∫

S

Dβ
x

ρ(y)

|x − y|α dSy

where β ≥ 0 in (i) and 0 ≤ β ≤ p in (ii).

4. Solution to the Poisson equation.

Let Ω ⊂ R3 be an open bounded set with a smooth boundary. Suppose
that ρ ∈ C1(Ω̄) and ρ(x) = 0 if x is not in Ω̄. Show that

∆u(x) = −4πρ(x) , x ∈ R3\∂Ω , u(x) =

∫

ρ(y)

|x− y| d3y
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and u is continuous at ∂Ω by justifying each of the following assertions:

(i) u ∈ C1(R3) ,

(ii) ∆x
1

|x − y| = 0 , ∀x 6= y

(iii) x /∈ Ω̄ ⇒ ∆u(x) = 0 ,

(iv) x ∈ Ω ⇒ ∆u(x) = −
(

∇,

∫

∂Ω

ρ(y)dΣy

|x − y|

)

− lim
a→0+

∫

Ω\Ba(x)

(

∇yρ(y),∇y
1

|x − y|

)

d3y

(v) ∆u(x) = − lim
a→0+

∫

|y−x|=a

ρ(y)
(

∇y
1

|x− y| , dΣy

)

= −4πρ(x) .

5. The Poisson equation in RN . Let ρ be a smooth compactly supported
function in RN , N ≥ 3.
(i) Show that

∆x
1

|x − y|N−2
= 0 , x 6= y .

(ii) Show that

∆u(x) = −GNρ(x) , u(x) =

∫

ρ(y) dNy

|x − y|N−2
.

where GN = (N − 2)σN and σN is the area of the unit sphere |x| = 1.

(iii) Let Ω be a bounded region in RN with a smooth boundary. Let
the density ρ vanish outside of Ω and be smooth in Ω. Suppose, in
addition, that ρ is piecewise continuous (ρ is from class C0(Ω̄)). In-
vestigate continuity of partials Dβu and find the largest order β for
which the partials are continuous and can be calculated by interchang-
ing the order of differentiation and integration. In particular, show
that u satisfies the Poisson equation for any x /∈ ∂Ω.
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11. Functions defined by improper integrals

11.1. Conditionally convergent integrals. Let {Ωn} be an exhaustion of
Ω. Let f be locally integrable on Ω. Consider a sequence of integrals

∫

Ωn

f(x) dN x .

If f is integrable on Ω, then the sequence always converges to the
integral of f over Ω by continuity of the Lebesgue integral. If f is not
integrable on Ω, then the sequence may still converge but the limit
depends on the choice of the exhaustion because it does not converges
absolutely

f /∈ L(Ω) ⇒
∫

Ω

|f(x)| dNx = lim
n→∞

∫

Ωn

|f(x)| dNx = ∞ .

In this case, f is said to be conditionally integrable on Ω and the value
of the limit is called a conditional integral of f over Ω. The word
”conditional” refers to that the limit must be computed in a specified
exhaustion (or regularization) of the integral.

11.2. Abel’s theorem. Abel’s theorem for conditionally convergent in-
tegrals is similar to Abel’s theorem for conditionally convergent series.
Hypotheses of the theorem are:

(i) f(x) = α(x)β(x) , ∀x > a

(ii) α(x) > 0 , α(x) → 0 monotonically for x → ∞
(iii) β ∈ C0[a,∞) , α ∈ AC0[0,∞) .

(iv)

∣

∣

∣

∣

∫ d

c

β(x) dx

∣

∣

∣

∣

≤ σ , ∀c, d ≥ a

The latter condition means that integrals of β over any finite interval
are bounded and the bound σ is independent of the interval. The
conclusion of the theorem is that the limit

I(a) = lim
R→∞

∫ R

a

f(x) dx

exists, and for any b > a

|I(b)| ≤ σα(b) .

The latter relation provides an estimate of the rate of convergence in
the following sense:

∣

∣

∣

∣

I(a)−
∫ R

a

f(x) dx

∣

∣

∣

∣

≤ σα(R) → 0 as R → ∞
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Note that the integrability of f on (a,∞) is not required. So, the inte-
gral of |f(x)| over (a,∞) can diverge. The hypothesis for the function
β implies that the mean value of β over an interval is decreasing with
increasing the length of the interval. This happens when β is bounded
and oscillates about zero, like trigonometric functions. For example,
the integrals

∣

∣

∣

∣

∫ d

c

eikx dx

∣

∣

∣

∣

=

∣

∣

∣

∣

eikd − eikc

ik

∣

∣

∣

∣

≤ 2

k
= σ

are bounded and the bound is independent of the interval of integration.
The monotonic decrease of α and boundedness of β does not guarantee
integrability of βα on (a,∞). But owing to monotonicity of α and
oscillations of β, there are cancellations in the integral of the product
αβ over an ever increasing interval so that the integral conditionally
converges. Abel’s theorem offers sufficient conditions for conditional
convergence of the integral.

Let us prove Abel’s theorem. Put

σa(x) =

∫ x

a

β(y) dy .

By continuity of β, the function σa is continuously differentiable, and
σ′

a(x) = β(x) by the fundamental theorem of calculus. By the hypoth-
esis (iv), the function σa is bounded:

|σa(x)| ≤ σ , x > a .

Since α is absolutely continuous, the integration by parts is permitted
in the integral of f over (a, R) (see Sec.7.6.2):
∫ R

a

f(x) dx =

∫ R

a

α(x) dσa(x) = α(R)σa(R) −
∫ R

a

σa(x)α′(x) dx

because σa(a) = 0. Since α(R) → 0 as R → ∞, it is concluded that
|α(R)σa,R| ≤ σα(R) → 0 and, therefore the integral of f converges if
and only if the integral of σaα

′ converges. But α′(x) ≤ 0 a.e. because
α is monotonically decreasing, which implies that the said integral con-
verges absolutely:

∫ R

a

|σa(x)α′(x)| dx ≤ σ

∫ R

a

|α′(x)| dx = −σ

∫ R

a

α′(x) dx

= σα(a)− σα(R) ≤ σα(a) < ∞ ,

by Theorem 7.3. The above inequalities also hold if the integration
interval (a, R) is changed to (b, R) where b > a. By taking the limit
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R → ∞, it is concluded that

|I(b)| =
∣

∣

∣

∣

lim
R→∞

∫ R

b

σa(x)α′(x) dx

∣

∣

∣

∣

≤ lim
R→∞

∫ R

b

|σa(x)α′(x)| dx ≤ σα(b) ,

as required.

11.3. Differentiability of Fourier transforms revisited. It was shown in
Sec. 7.4.1 that the Fourier transform

F (k) =

∫ ∞

−∞
eikxf(x) dx

is from class Cp if xpf(x) is integrable on R. It turns out that even if
xpf(x) is not integrable it is possible to show that F can be from class
Cp at least in some interval without evaluating the integral explicitly,
provided the Fourier integral of xpf(x) converges conditionally. The
technique is based on combining Abel’s theorem and Theorem 1.5.5.
The basic idea is illustrated with Example (9.4).

The function (9.4) is from class C∞ on any interval that does not
contain k = 0. However it is shown in Sec. 7.3.1 that the hypotheses
of Theorem 7.2 are too restrictive to detect differentiability. Can the
differentiability for all k 6= 0 be detected without evaluation of the
integral?

Define a sequence

Fn(k) =

∫ n

−n

g(k, x) dt =

∫ n

−n

eikx

1 + x2
dx .

Since g(k, x) is integrable on R for any x, the sequence Fn(k) converges
to F (k) for any k. Let us show that Fn(k) is continuously differentiable
for any n. Indeed, although |Dxg(k, x)| is not integrable on R, it is
integrable on any bounded interval (−n, n). Therefore By Theorem
7.2, Fn is continuously differentiable and

F ′
n(k) =

∫ n

−n

Dxg(k, x) dx =

∫ n

−n

ixeikx

1 + x2
dx = −2

∫ n

0

x sin(kx)

1 + x2
dx .

Next, one should show that the sequence of derivatives converges to
some function G(x) and then try to find an interval on which this
convergence is uniform. Then by Theorem 1.5.5, F ′(k) exists and
F ′(k) = G(k) in this interval.

A pointwise convergence of F ′
n(k) can be investigated by means of

Abel’s theorem. The integral that defines F ′
n(k) contains the product

of a function α(x) = x/(1 + x2), that is positive and monotonically
decreasing to zero in the interval (1,∞), and the function β(x) =
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sin(kx) whose integrals over any bounded interval are bounded by a
number independent of the interval:

∣

∣

∣

∫ d

c

β(x) dx
∣

∣

∣ =
∣

∣

∣

∫ d

c

sin(kx) dx
∣

∣

∣ =
∣

∣

∣

cos(ck) − cos(dk)

k

∣

∣

∣ ≤ 2

|k| = σ .

provided k 6= 0. By Abel’s theorem, the sequence of derivatives has a
limit for any k 6= 0:

lim
n→∞

F ′
n(k) = G(k) , k 6= 0 .

Let us estimate of the rate of convergence by means of the second part
of Abel’s theorem to show that F ′

n converges to G uniformly on any set
where |x| ≥ δ > 0 and, hence, by Theorem 1.5.5 F ′(x) = G(x) in this
set. Indeed, by Abel’s theorem

|G(k) − F ′
n(k)| ≤ 2σα(n) ≤ 4

δ
· n

1 + n2
, |k| ≥ δ .

Since the above inequality holds for any |k| ≥ δ > 0 any n, the inequal-
ity is preserved if one first takes the supremum in the left side and then
the limit n → ∞ in both sides. The limit in the right side vanishes so
that

lim
n→∞

sup
|k|≥δ>0

|G(k) − F ′
n(k)| = 0 .

This means that F ′
n converges to G uniformly on the set |k| ≥ δ > 0

and therefore F ′(k) = G(k). Since δ > 0 is arbitrary,

F ′(k) =
d

dk

∫ ∞

∞

eikx

1 + k2
dk = lim

n→∞

∫ n

−n

∂

∂k

eikx

1 + x2
dx , k 6= 0 .

This example shows that the lack of an integrable bound of par-
tial derivatives with respect to a parameter that is independent of the
parameter does not imply that the integral is not differentiable with
respect to that parameter. It can be differentiable on a smaller set and
its derivatives can be given by improper integrals of the corresponding
partial derivatives with respect to parameters:

Proposition 11.2. Suppose that f ∈ L but xf(x) is not integrable
on R. If, in addition, xf(x) is monotonic for all |x| ≥ a > 0 and
|xf(x)| → 0 as |x| → ∞, then the Fourier transform of f is continu-
ously differentiable for all non-zero values of the argument and

F ′(k) =
d

dk

∫ ∞

−∞
f(x)eikx dx = lim

n→∞

∫ n

−n

ixf(x)eikx dx , k 6= 0 .

A proof of this proposition is left to the reader as an exercise.
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11.4. Exercises.

1. Prove Proposition 11.2. Put

Fn(k) =

∫ n

−n

eikxf(x) dx , n = 1, 2, ...

(i) Show that Fn converges to the Fourier transform F of f ;
(ii) Prove that Fn ∈ C1 for all n, and

F ′
n(k) =

∫ n

−n

ixf(x) eikx dx .

(iii) Use Abel’s theorem to prove that the sequence F ′
n(k) converges to

some G(k) for any k 6= 0.
(iv) Show that there exists a constant C such that

|F ′
n(k) − G(k)| ≤ C

|k| n
(

|f(n)| + |f(−n)|
)

,

for all k 6= 0 and all n > a.
(v) Prove that F (k) is continuously differentiable for all k 6= 0 and
F ′(k) = G(k).

2. Consider the function defined by the Fourier integral

F (k) =

∫ ∞

−∞

cos(kx)

1 + x4
dx

(i) Show that F ∈ C2(R)
(ii) Show that F ∈ C3(|k| ≥ δ) for any δ > 0.
(iii) Use the residue theorem to find an explicit form of F (k). Compute
F ′′′(k). Does it exist for all k?
(iv) Can F ′′′(k) be obtained by interchanging the order of D3

k and in-
tegration with respect to x? If so, evaluate the integral after differen-
tiation of the integrand with respect to k.
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12. Metric and norm functional spaces

12.1. Metric spaces. The distance between two points x and y in RN is
defined by d(x, y) = |x− y|. The distance defines a numerical measure
of that how two points are close to one another. Consider a collection
of functions, denoted X . Let us define a distance on X as a function
of a pair elements that satisfies the distance axioms: The distance is
a symmetric and non-negative function and vanishes if and only if the
pair contains identical elements, and it obeys the triangle inequality:

d(f, g) = d(g, f) ≥ 0 ,

d(f, g) = 0 ⇔ f = g ,

d(f, g) ≤ d(f, h) + d(h, g)

for any f , g, and h from X . A set X with the distance function is
called a metric space and the distance function is called a metric on X .

A sequence {fn} is said to converge to f in X if d(fn, f) → 0 as
n → ∞ and, in this case, one writes

lim
n→∞

fn = f or fn → f in X .

Similarly, one can define Cauchy sequences in X . A sequence {fn} in
a metric space is called a Cauchy sequence if for any ε > 0 one can find
an integer m such that

d(fn, fk) < ε , n, k > m

In other words, the distance d(fn, fk) can be made arbitrary small for
all sufficiently large n and k. It follows from the triangle inequality

d(fn, fk) ≤ d(fn, f) + d(fk, f)

that every sequence that converges in X is a Cauchy sequence. But in
contrast to RN , a Cauchy sequence in a general metric space may or
may not have a limit element in X . As an example, consider the set
of all rational numbers. It is a metric space with the usual distance
function. Take a sequence of rational numbers {qn} where qn is an
approximation of

√
2 with n decimal places, q1 = 1.4, q2 = 1.41, q3 =

1.414, q4 = 1.4142, etc. This sequence is a Cauchy sequence but it has
no limit in the set of rational numbers.

12.1.1. Functional norm spaces. Let X be a linear functional space, that
is, linear combinations of elements from X belong to X . For example,
functions from class Cp(Ω) form a linear space. A linear functional
space always contains the zero function that is obtained by multiplying
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any function from X by zero. Let us define a norm on X as a function:
X → R, denoted by ‖f‖ for any f ∈ X , that satisfies the norm axioms:

‖f‖ ≥ 0 , ‖f‖ = 0 ⇔ f = 0 ,

‖αf‖ = |α| ‖f‖ ,

‖f + g‖ ≤ ‖f‖ + ‖g‖ ,

for any f and g from X and any number α (it can be complex if X
consists of complex-valued functions). A linear functional space X with
the norm function is called a norm space.

Any norm space is also a metric space with respect to the distance
function defined by the norm

d(f, g) = ‖f − g‖ .

The distance axioms readily follow from the norm axioms. In what
follows, functional spaces are usually linear so that the convergence in
them will always be understood with respect to the distance defined
by the norm.

12.1.2. Dense subsets in a metric space. In practical calculations, it is
sufficient to use only rational numbers because any irrational number
can be approximated by a rational one with any desired accuracy. Nat-
urally, it is interesting to investigate subsets in a metric space whose
elements can approximate any element in a metric space with any de-
sired accuracy.

A subset A ⊂ X in a metric space is called dense if for any element
f in X one can find an element g from A that is arbitrary close to f .
In other words, for any f ∈ X and any ε > 0, there exists g ∈ A such
that

d(f, g) < ε .

This also means that for any f ∈ X , there exists a sequence {fn} ⊂ A
such that

lim
n→∞

d(f, fn) = 0 .

Indeed, if A is dense in X , then for any f ∈ X there always exists
fn ∈ A such that d(f, fn) < 2−n, n = 1, 2, .... By construction, fn → f
in X .

If A is dense in X , then any larger subset of X is dense in X . If
A is dense in B and B is dense in X , then A is dense in X . This
follows from the triangle inequality. Fix f ∈ X and ε > 0. Since B
is dense in X , there exists g ∈ B that is arbitrary close to f , that is,
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d(f, g) < ε. Having found g, one can find h ∈ A that is arbitrary close
to g, d(h, g) < ε. By the triangle inequality, h is arbitrary close to f :

d(h, f) ≤ d(h, g) + d(g, f) < 2ε .

as ε is arbitrary.

12.1.3. Complete functional spaces. A Cauchy sequence in a Euclidean
space always has a limit in it. As noted earlier, in a functional metric
or norm space, every convergent sequence is a Cauchy sequence, but
the converse is false. A metric space is called complete if all Cauchy
sequences have limits in it.

Suppose that a functional space X is not complete. Can it be en-
larged so that the enlarged space is complete? The answer is affirma-
tive. The resulting space space is called a completion of X . However
finding a completion is not straightforward. Suppose that a Cauchy
sequence {fn} ⊂ X has a pointwise limit fn(x) → f(x). If f is not
in X , the distance between f and elements of X is not defined. So, a
completion requires an extension of the distance function to a larger
set of functions. It is proved that such an extension always exists and
X is a dense subset in the completion of X . In the easiest case, when
X is a subset in a larger metric space Y and all Cauchy sequences in X
have limits in Y. The completion of X is obtained by adding all such
limit functions to X , and the distance function does not require any
extension.

It will be clear from what follows that complete functional spaces
play a fundamental role in mathematical modeling of the real world.
However a metric can be defined in many ways on the same space of
functions, producing different metric spaces. A verification of com-
pleteness can be a tedious task on its own, not to mention, the task
of finding a completion. Here the discussion will be limited to specific
examples of functional spaces relevant for applications in physics.

12.2. Space of bounded functions as a metric space. Let B(Ω) be a set of
all bounded functions:

f ∈ B(Ω) : sup
Ω

|f(x)| < ∞ .

B(Ω) is a linear space because a linear combination of bounded func-
tions is a bounded function. The number

‖f‖∞ = sup
Ω

|f(x)|

is called the supremum norm of a bounded function f . The norm
axioms are easy to verify. This space is a metric space with the distance
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defined by the supremum norm:

d(f, g) = sup
Ω

|f(x) − g(x)| = ‖f − g‖∞ .

Proposition 12.1. The space of bounded functions is complete
with respect to the supremum norm.

To prove the assertion, one has to show, first, that any Cauchy
sequence {fn} ⊂ B(Ω) converges to some function f on Ω, second, that
f is bounded, that is, belongs to B(Ω), and, finally, that d(fn, f) → 0
as n → ∞.

Let us show that f exists. By the hypothesis, the distance d(fn, fk)
can be made arbitrary small for all large enough n and k. Therefore
for any x ∈ Ω, a numerical sequence {fn(x)} is a Cauchy sequence in
R because

|fn(x) − fk(x)| ≤ sup
Ω

|fn(x)− fk(x)| = d(fn, fk) .

By the Cauchy criterion for numerical sequences there exists a function
f defined by the pointwise limit:

f(x) = lim
n→∞

fn(x) , x ∈ Ω .

Let us show that f is bounded. Fix ε > 0 and find m such that
d(fn, fk) < ε for all n, k > m. Put

M = max
k=1,2,...,m

{‖fk‖∞, ε}

Then for all n and all x ∈ Ω

|fn(x)| ≤ |fm(x)|+ |fn(x)− fm(x)|
≤ sup

Ω
|fm(x)| + sup

Ω
|fn(x) − fm(x)| ≤ 2M .

By taking the limit n → ∞ in the left side of the inequality, it is
concluded that the limit function is bounded

|f(x)| ≤ 2M , x ∈ Ω ⇒ f ∈ B(Ω) .

Since the inequality

|fn(x)− fk(x)| < ε

holds for all k > m and all x ∈ Ω, one can take the limit k → ∞ in it,
so that |fn(x) − f(x)| ≤ ε for any x ∈ Ω. By taking the supremum in
the left side one infers that

‖fn − f‖∞ ≤ ε ,

which means that d(fn, f) → 0 as n → ∞, as required.
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12.2.1. The subspace C0(Ω̄) in B(Ω). Functions from class C0(Ω̄) form a
linear space and belong to B(Ω) and, hence, C0(Ω̄) can also be viewed as
a norm space with respect to the supremum norm. If {fn} ⊂ C0(Ω̄) is a
Cauchy sequence, then by the same argument as for bounded functions,
it converges pointwise to some bounded function f on Ω̄. Moreover, fn

converges to f uniformly because

|fn(x)− f(x)| ≤ sup
Ω̄

|fn(x)− f(x)| .

By Theorem 1.5.4, the limit function f is continuous on Ω. This shows
that C0(Ω̄) is complete with respect to the supremum distance.

12.2.2. Polynomials in C0. Let P be a set of all polynomials on N real
variables. P is a linear space and P ⊂ C0(Ω̄) for some bounded open
Ω ⊂ RN . So, P is a norm space. However, P is not complete with
respect to the supremum norm. For example, for N = 1 consider

f(x) = ex =
∞
∑

n=0

xn

n!
.

The series converges uniformly on any interval [a, b]. Partial sums of the
series are polynomials from P , whereas ex is not from P . A completion
of P with respect to the supremum norm on [a, b] is the space C0(Ω̄).

Theorem 12.1. (Weierstrass)22 Let Ω be a bounded region in RN

and f ∈ C0(Ω̄). Then there exists a sequence of polynomials Pn that
converges to f uniformly on Ω̄

lim
n→∞

‖Pn − f‖∞ = 0 .

If f is real, then Pn may be taken real. If, in addition, f ∈ Cp(Ω̄),
then the sequences of partial derivatives DβPn converge uniformly to
the corresponding partials of f uniformly for any β ≤ p:

lim
n→∞

‖DβPn − Dβf‖∞ = 0 , β ≤ p .

Weierstrass theorem states that the space of polynomials is dense
is the space of continuous functions on any compact region in a Eu-
clidean space relative to the supremum norm. Since the space C0(Ω̄)
is complete, the completion of P gives the whole space C0(Ω̄).

22W. Rudin, Principles of mathematical analysis
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12.3. Space Cp(Ω̄) as a norm space. Let Ω be open and bounded set
in RN . Consider the space of all functions that have continuous par-
tial derivatives up to order p on Ω and all these derivatives also have
continuous extensions to the boundary ∂Ω. The space is linear and
Cp(Ω̄) ⊂ C0(Ω̄). Therefore Cp(Ω̄) is a norm space with respect to the
supremum norm.

Let {fn} be a sequence of functions from Cp(Ω̄). If it is a Cauchy se-
quence with respect to the supremum norm, then it converges pointwise
to a continuous function f ∈ C0(Ω̄), but f does not necessarily have
continuous derivatives. So, the space Cp(Ω̄), p > 0, is not complete
with respect to the supremum norm. By Theorem 1.5.5, the uniform
convergence of the sequence of all derivatives {Dαfn} up to order p
is sufficient to ensure that the limit function belongs to Cp(Ω̄). The
metric should be modified if one wants Cp(Ω̄) to be a complete space.

For any f, g ∈ Cp(Ω̄), put

d(f, g) = sup
α≤p,Ω̄

|Dαf(x) − Dαg(x)|

= max
α≤p

‖Dαf − Dαg‖∞ def
= ‖f − g‖

Cp .

All the distance axioms are satisfied. The number ‖f‖
Cp will be called

the Cp norm of f , and the distance defined by it will be called the Cp

distance (or metric). If now {fn} is a Cauchy sequence with respect
to this metric, then the sequences of any partials {Dαfn} converge
uniformly to some continuous functions gα for any α ≤ p because

|Dαfn(x) −Dαfk(x)| ≤ ‖Dαfn − Dαfk‖∞ ≤ ‖fn − fk‖Cp ,

for all α ≤ p and all x ∈ Ω̄. If f is the limit function of {fn}, then by
Theorem 1.5.5, f is from class Cp(Ω̄) and gα = Dαf . Thus, the space
Cp(Ω̄) is complete with respect to the Cp metric.

12.3.1. Polynomials in the space Cp. Since Cp ⊂ C0, p > 0, the space
of polynomials P is dense in Cp(Ω̄) relative to the supremum norm for
any bounded Ω ⊂ RN . It also follows from the Weierstrass theorem
that P is dense in Cp(Ω̄) relative to the Cp norm, and the completion
of P relative to Cp norm is Cp(Ω̄) because Cp(Ω̄) is complete.

So, polynomials play the same role in a space of functions from class
Cp on compact regions as rational numbers in the space of reals. For
this reason, polynomial approximations are of fundamental significance
in applications.

12.4. Lebesgue functional spaces Lp(Ω). The space of all functions f
whose powers |f |p, p ≥ 1, are Lebesgue integrable on a set Ω will be
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denoted by Lp(Ω) or simply by Lp if Ω = RN :

f ∈ Lp(Ω) :

∫

Ω

|f(x)|p dNx < ∞ , p ≥ 1 ,

and the number

‖f‖p =
(

∫

Ω

|f(x)|p dNx
) 1

p

will be called the Lp norm of f .

12.4.1. The space L(Ω) as a norm space. For brevity L1 = L. L(Ω) is a
linear space by linearity of the Lebesgue integral. The L norm satisfies
the second and third norm axioms by the properties of the Lebesgue
integral but fails the first one because

‖f‖1 =

∫

Ω

|f(x)| dNx = 0 ⇔ f(x) = 0 a.e.

that is, f(x) 6= 0 for x from some set of measure zero. This is not the
zero function obtained by multiplying any function by zero.

To resolve this problem, let us split all Lebesgue integrable functions
into equivalence classes where each class contains all functions that
differ from one another on sets of measure zero. Then the space L(Ω)
is defined as a collection of all such equivalence classes. In other words,
by saying that f is an element of L(Ω), it is meant that f is a collection
of all functions that differ from one another on a set of measure zero
so that

f = g in L(Ω) ⇔ f(x) = g(x) a.e.

In particular, the zero element f = 0 from L(Ω) is the set of functions
that vanish almost everywhere in Ω. With this redefinition of the space
L(Ω), the first axiom is fulfilled. Furthermore, representatives from the
same equivalence class have the same L norm so that the second and
third norm axiom are not affected by this redefinition of L(Ω).

The distance between any two elements of L(Ω) is defined as the
distance between any two representatives of the corresponding equiva-
lence classes induced by the L norm:

d(f, g) = ‖f − g‖1 =

∫

Ω

|f(x) − g(x)| dNx .

It does not depend on the choice of the representatives as the Lebesgue
integral cannot be changed by alterations of the integrand on any set
of measure zero. The vanishing L distance implies that the functions
are equal pointwise almost everywhere, not everywhere. The differ-
ence between the functions belongs to the equivalence class of the zero
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function and, in this sense, the functions represent the same element
of L(Ω).

12.4.2. The space L2(Ω) as a norm space. The space of square integrable
functions plays a fundamental role in quantum physics (as a Hilbert
space of all states of quantum systems with finitely many degrees of
freedom). In contrast to the space of integrable functions, the linearity
of the space of square integrable function is not so obvious, and the
definition of a metric induced by the L2 norm by analogy with L is not
possible unless the linearity is established.

The set L2 is a linear space. If f ∈ L2(Ω), then for any complex
number c, cf(x) is square integrable. Let f and g be square integrable,
then

|f(x) + g(x)|2 ≤
(

|f(x)| + |g(x)|
)2

≤ 2|f(x)|2 + 2|g(x)|2

for any x. By the comparison test, f + g is square integrable and,
hence, L2(Ω) is a linear space.

The product of square integrable functions is integrable. This prop-
erty follows from the Cauchy-Schwartz inequality that asserts that

(12.1)

∣

∣

∣

∣

∫

Ω

f(x)g(x) dNx

∣

∣

∣

∣

≤ ‖f‖2 ‖g‖2 .

It is a functional (infinite dimensional) analog of (1.1). To prove (12.1),
consider a quadratic non-negative function of a real variable t defined
by

h(t) = ‖|f | − t|g|‖2
2 = A − 2Bt + Ct2 ≥ 0 ,

A = ‖f‖2
2 , C = ‖g‖2

2 , B =

∫

Ω

|f(x)g(x)| dNx

If C = 0, then the inequality holds. If C 6= 0, then h(t) attains its
absolute minimum at t = t∗ = B/C. The inequality follows from
h(t∗) ≥ 0:

h(t∗) = A − B2

C
≥ 0 ⇒ B ≤

√
AC = ‖f‖2 ‖g‖2

Note that the absolute value of the integral in the left-hand side of
(12.1) cannot exceed B.

The L2 norm satisfies the triangle inequality, which is known as the
Minkowski inequality

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2 .
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Indeed, one has

‖f + g‖2
2 = ‖f‖2

2 + ‖g‖2
2 + 2Re

∫

f(x)g(x) dNx

≤
(

‖f‖2 + ‖g‖2

)2

by Re z ≤ |z| and the Cauchy-Schwartz inequality. By taking the
square root, the Minkowski inequality is established.

The distance in L2(Ω) is defined by

d(f, g) = ‖f − g‖2 .

The second distance axiom is fulfilled if, as in the case of L, elements
of L2 are equivalence classes. Each class consists of functions that are
equal almost everywhere. The L2 distance between any two elements
can be computed as the distance between any two functions represent-
ing the corresponding equivalence classes. It does not depend on the
choice of the functions in each class. The triangle inequality follows
from the Minkowski inequality. So, the distance axioms are verified.

12.4.3. Relation between L(Ω) and L2(Ω). Let us show that any square
integrable function on Ω is integrable on Ω if the measure of Ω is finite:

f ∈ L2(Ω) , µ(Ω) < ∞ ⇒ f ∈ L(Ω)

In the Cauchy-Schwartz inequality, let g be the characteristic function
of Ω. This implies that

∫

Ω

|f(x)| dNx ≤ ‖1‖2‖f‖2 =
√

µ(Ω)‖f‖2 < ∞

Since |f | is integrable so is f by Sec. 6.7. The converse is not true. As
an example, consider f(x) = x−1/2 on Ω = (0, 1). Then f ∈ L(0, 1) but
f2(x) = 1

x
is not integrable on (0, 1). Thus,

L2(Ω) ⊂ L(Ω) , µ(Ω) < ∞ ,

If µ(Ω) = ∞, then L2(Ω) contains functions that are not integrable.
For, example f(x) = (1 + x2)−1/2 is not integrable on R, whereas it is
square integrable on R.

12.4.4. Hölder’s inequality. Let f and g be functions on Ω ⊆ RN such
that the powers |f |p and |g|q are integrable on Ω where 1

p
+ 1

q
= 1 and

p, q ≥ 1. Then

(12.2)

∫

Ω

|f(x)g(x)| dNx ≤ ‖f‖p‖g‖q
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This inequality is called Hölder’s inequality. The Cauchy-Schwartz
inequality is a particular case of it when p = q = 1

2
.

Let a and b be non-negative numbers. Then

ab = min
t>0

(tpap

p
+

t−qbq

g

)

,
1

p
+

1

q
= 1 .

This can be verified by a direct calculation of the minimum of a smooth
function. Therefore for t = 1

ab ≤ ap

p
+

bq

q

This inequality is known as Young’s inequality for products. Hölder’s
inequality By setting a = |f(x)|/‖f‖p, b = |g(x)|/‖g‖q in Young’s
inequality and integrating both sides, one infers that

‖fg‖1

‖f‖p‖g‖q
≤ ‖f‖p

p

p‖f‖p
p

+
‖g‖q

q

q‖g‖q
q

=
1

p
+

1

g
= 1 ,

from which Hölder’s inequality follows.

12.4.5. The space Lp as a norm space. The set Lp(Ω) is a linear space.
One has to show that |f+g|p in integrable if |f |p and |g|p are integrable.
First, let show that for any b > a > 0 and p > 1

(a + b)p ≤ 2p−1(ap + bp) .

This inequality follows from the convexity of the function xp for x > 0.
The secant line for the graph y = xp through points x = a and x = b
lies above the graph. In particular for the midpoint x = (a + b)/2, the
convexity implies that

(a + b

2

)p

≤ 1

2
ap +

1

2
bp ,

from which the desired inequality follows. By setting a = |f(x)| and b =
|g(x)|, the integrability of |f(x) + g(x)|p follows from the comparison
test.

The Minkowski inequality holds for functions from class Lp

‖f + g‖p ≤ ‖f‖p + ‖g‖p , p ≥ 1 .
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Therefore the Lp norm satisfies the triangle inequality. The Minkowski
inequality follows from Hölder’s inequality. One has

‖f + g‖p
p =

∫

|f(x) + g(x)|pdNx

≤
∫

(

|f(x)| + |g(x)|
)

|f(x) + g(x)|p−1dNx

=

∫

|f(x)||f(x) + g(x)|p−1dNx +

∫

|g(x)||f(x) + g(x)|p−1dNx

By Hölder’s inequality ‖|f ||f + g|p−1‖1 ≤ ‖f‖p‖|f + g|p−1‖q with q =
p/(p − 1) applied to the two above integrals, one gets

‖f + g‖p
p ≤

(

‖f‖p + ‖g‖g

)

‖f + g‖p−1
p

from which the Minkowski inequality follows.
The distance can be defined by the Lp norm:

d(f, g) = ‖f − g‖p .

It satisfies the distance axioms if Lp is viewed as a space of equivalence
classes where each class consists of all functions that are equal almost
everywhere.

12.5. Completeness of Lp(Ω). It turns out that every Cauchy sequence
in Lp(Ω) has a limit in it so that Lp(Ω) is a complete metric space.

Theorem 12.2. (Riesz-Fisher)23

Let {fn} be a sequence in the space Lp(Ω). Then in order that there
exists an element f toward which the sequence converges in the Lp

norm, it is necessary and sufficient that ‖fn − fk‖p → 0 for n, k → ∞.

12.5.1. Spaces C0
2 and R2. Let Ω be open and bounded. Then the

space of all continuous functions on Ω̄ is a subspace of L2(Ω). This
suggests that there is another way to define a distance in the space of
continuous functions. Any continuous function on a bounded closed
region is square integrable. Put

d(f, g) = ‖f − g‖2 , f, g ∈ C0(Ω̄) .

It also satisfies the distance axioms for all f and g that are continuous
on Ω̄. Indeed, it is non-negative and symmetric and vanishes if and
only if two continuous functions f and g are equal. To see the latter,
assume that f(x0) 6= g(x0) at some x0 in Ω while d(f, g) = 0. By
continuity of f − g, there exists a ball Ba(x0) of some radius a where

23F. Riesz and B. Sz.-Nagy, Functional analysis,
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|f(x) − g(x)| > 0 so that integral cannot vanish as the ball has a non-
zero measure, which contradicts to the condition d(f, g) = 0. The
triangle inequality follows from the Minkowski inequality. The space of
continuous functions equipped with the L2 metric will be denoted C0

2(Ω̄)
to distinguish it from the space C0(Ω̄) with the distance defined by the
supremum norm.

For any two continuous function f and g, one infers that

(12.3) ‖f − g‖2
2 ≤ ‖f − g‖2

∞

∫

Ω

dNx = ‖f − g‖2
∞µ(Ω) .

This inequality implies that every Cauchy sequence {fn} in C0(Ω̄) is
a Cauchy sequence in C0

2(Ω̄) (if µ(Ω) < ∞ which is always the case if
Ω is bounded). However, the converse is false, and there are Cauchy
sequences in C0

2(Ω̄) that do not have a limit in it, that is, the space
C0

2(Ω̄) is not complete.
It is not difficult to construct a Cauchy sequence in C0

2 (Ω̄) whose
pointwise limit is a function that is not continuous. Let Ω = [−1, 1]
and fn(x) = nx if |x| < 1

n
and fn(x) = 1 otherwise. Then for any

x 6= 0, fn(x) → 1 as n → ∞, and fn(0) = 0. So the limit function is
not continuous at x = 0 and, hence, does not belong to C0

2 [−1, 1]. On
the other hand,

‖fn − fk‖2
2 = 2(n − k)2

∫ 1
n

0

x2dx + 2

∫ 1
k

1
n

(1 − kx)2dx → 0

for n > k → ∞.
Let R2(Ω) be the space of Riemann square integrable functions

on Ω in which the distance is defined in the same way as in L2(Ω)
but the integral is understood in the Riemann sense. Then C0

2(Ω̄) ⊂
R2(Ω). In the above example, the limit function belongs to R2(Ω).
Therefore one might conjecture that a completion of C0

2(Ω̄) should
give R2(Ω). However, this is not so. There are Cauchy sequences in
C0

2(Ω̄) that converge to functions that are not from R2(Ω), and R2(Ω)
is not complete either. For example, a double sequence of continuous
functions, fmn(x) = [cos(πm!x)]2n, converges to the Dirichlet function
pointwise

lim
m→∞

( lim
n→∞

fmn(x)) = fD(x) .

Indeed, if x is rational, then x = p/q for some integers p and q. There-
fore m!x is an integer for m ≥ q and the limit is equal to one. If x is
not an integer, then cos2(πm!x) < 1 for any m and the limit is equal to
0. Since fD(x) = 0 a.e., the L2 norm of fnm vanishes in the limit. This
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means that fnm → 0 in L2(a, b) for any interval (a, b). As any conver-
gent sequence, {fnm} is a Cauchy sequence in L2(a, b). On the other
hand, the Riemann and Lebesgue integrals are equal for continuous
functions. Hence the sequence {fnm} is a Cauchy sequence in R2[a, b]
for any interval [a, b]. But its pointwise limit fD(x) is not Riemann
integrable.

Thus, in order to construct a completion of the space R2, the dis-
tance function should be extended to some functions that are not Rie-
mann square integrable. Evidently, this requires a generalization of the
very concept of the Riemann integral. The extension of the distance
function is achieved by replacing the Riemann integral by the Lebesgue
integral. Then the completion of C0

2(Ω̄) or R2(Ω) is the space L2(Ω).
The spaces C0

2(Ω̄) and R2(Ω) become dense subsets in L2(Ω) (see the
next section).

The space L2(Ω) is one of the pillars of mathematical foundations of
quantum physics. It is interesting to note that it is impossible to con-
struct a consistent mathematical model of quantum mechanics using
the Riemann integration theory.

12.5.2. Polynomials in L2(a, b). Let us show that the space of polyno-
mials P is dense in L2(a, b) for any bounded interval.

Let C0
pw denote a set of piecewise continuous functions. Then

P ⊂ C0
2 [a, b] ⊂ C0

pw ⊂ L2(a, b) .

If one shows that C0
pw is dense in L2(a, b), C0

2 [a, b] is dense in C0
pw, and

P is dense in C0
2 [a, b], then P is dense in L2(a, b).

C0
pw is dense in L2(a, b). Let f ∈ L2(a, b). Then f±(x) = 1

2
(|f(x)| ±

f(x)) ≥ 0 are also square integrable on (a, b) and, hence, they are
integrable on (a, b) by Sec.12.4.3. Therefore by Definition 5.4.1 there
exist monotonically increasing sequences h±

n of piecewise continuous
functions such that

lim
n→∞

h±
n (x) = f±(x) a.e.

Let m± ≤ h±
1 (x) for all x in [a, b]. Since h±

n (x) is increasing with
increasing n and f±(x) ≥ 0,

(

f±(x) − h±
n (x)

)2

≤
(

f±(x) − m±
)2

∈ L(a, b) ,
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where the inequality holds for all n almost everywhere. By the Lebesgue
dominated convergence theorem

lim
n→∞

‖f± − h±
n ‖2

2 = lim
n→∞

∫ b

a

(

f±(x) − h±
n (x)

)2

dx = 0 .

By the triangle inequality, the sequence of piecewise continuous func-
tions hn = h+

n − h−
n converges to f in L2(a, b):

‖f − hn‖2 ≤ ‖f+ − h+
n ‖2 + ‖f− − h−

n ‖2 → 0

when n → ∞.

C0[a, b] is dense in C0
pw. Suppose f has a jump discontinuity at x = c ∈

(a, b) and is continuous otherwise in [a, b]. If f(c+) and f(c−) are the
right and left limits of f at c, construct a continuous function hn(x)
such that hn(x) = f(x) if |x−c| < d0

n
where d0 is the smallest number of

b−c and c−a. In the interval [x−
n , x+

n ], where x±
n = c±d0/n, n = 1, 2, ...,

hn(x) is the linear interpolation function such that hn(x±
n ) = f(x±

n ).
Then

‖f − hn‖2
2 =

∫ x+
n

x−
n

|f(x) − hn(x)|2 dx ≤ 8M2d0

n
→ 0

when n → 0 because |hn(x)| ≤ M where M = sup |f(x)| < ∞. A
general piecewise continuous function f has finitely many jump dis-
continuities in (a, b). A sequence of continuous functions converging to
f is constructed in the same way by interpolating f by linear functions
in small intervals containing the points where f is not continuous and
letting the total length of these intervals tend to zero.

P is dense in C0
2 [a, b]. The assertion follows from Eq. (12.3) and the

Weierstrass theorem.
Thus, P is dense in L2(a, b). The assertion can be extended to

L2(Ω) for any bounded Ω ⊂ RN . Any square integrable function on a
bounded region in a Euclidean space can be approximated by a polyno-
mial with any desired accuracy with respect to the L2 norm.

12.5.3. Dense subsets in L2. Let C0
0 denote the space of all continuous

functions on RN with a bounded support. Any function from C0
0 van-

ishes outside a ball of a large enough radius. The space C0
0 is dense in

L2, that is, any square integrable function in a Euclidean space can be
approximated by a compactly supported continuous function with any
desired accuracy with respect to the L2 norm.
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Let f be square integrable in RN . By continuity of the Lebesgue
integral

∫

|f(x)|2 dx = lim
R→∞

∫

|x|<R

|f(x)|2 dNx .

This implies that for any ε > 0 there exists R > 0 such that

‖f − f
R
‖2 < ε , fR(x) = χ

R
(x)f(x) ,

with χ
R

being the characteristic function of the ball |x| ≤ R. Since
C0(|x| ≤ R) is dense in L2(|x| < R), there exists a continuous function
h on |x| ≤ R such that

‖f
R
− χ

R
h‖2 < ε .

The function χ
R
h is compactly supported but not continuous in RN

because it can have a jump discontinuity on the sphere |x| = R. But
there exists a continuous compactly supported function that is arbi-
trary close to χ

R
h with respect to the L2 norm. Indeed, let g(x) = 0 if

|x| > R + δ for some δ > 0 and g(x) = h(x) if |x| ≤ R. In the spheri-
cal shell R < |x| < R + δ, g(x) is a continuous interpolation such that
g(x) = 0 when |x| = R+δ and g(x) = h(x) when |x| = R. For example,
g(x) = h(Rx̂)(R + δ − |x|)/δ where x̂ = x/|x| for R < |x| < R + δ. By
construction, g is from class C0

0 . Therefore it is bounded, |g(x)| ≤ M ,
and

‖g − χ
R
h‖2 =

(
∫

R<|x|<R+δ

|g(x)|2 dx

)1/2

≤ M
√

µ(δ)

where µ(δ) is the volume of the spherical shell R < |x| < R + δ. Since
µ(δ) = O(δ) → 0 as δ → 0, the L2 distance between g and χ

R
h can be

made smaller than any ε > 0 for all small enough δ.
Thus, given ε > 0, one can find R and a function h with the prop-

erties stated above. Having found R and h, one can find a function
g ∈ C0

0 for which M
√

µ(δ) < ε. By the triangle inequality,

‖f − g‖2 ≤ ‖f − f
R
‖2 + ‖f

R
− χ

R
h‖2 + ‖χ

R
h − g‖2 < 3ε .

Since ε is arbitrary, this inequality means that any f ∈ L2 can be
approximated by a continuous compactly supported function with any
desired accuracy with respect to the L2 norm.

The assertion can be extended to all Lebesgue spaces Lp, that is,
the space C0

0 is dense in Lp.
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12.5.4. Polynomials in L2. There exists no good polynomial approxi-
mation for functions from class L2(Ω) if Ω is not bounded. The reason
is that a polynomial is not integrable on a complement of a ball because
it grows with increasing |x|. However polynomials can still be used to
approximate functions from class L2 (or Lp).

For any ε > 0 and any f ∈ L2, there exists R > 0 and a polynomial
p ∈ P such that

‖f − χ
R
p‖2 < ε ,

where χ
R

is the characteristic function of the ball |x| < R.
In other words, any square integrable function on an unbounded

region Ω can be approximated by a function that coincides with a
polynomial in the part of Ω that lies in a ball of some radius R and
vanishes otherwise. A proof follows the same line of reasoning as in the
previous section and the Weierstrass theorem applied to the function
h ∈ C0(|x| ≤ R). Technical details are left to the reader as an exercise.
The statement is also true for Lp.

12.6. Exercises.

1. (i) Show that the space of polynomials is dense in L(a, b) for any
bounded interval (a, b).
(ii) Show that the space of continuous compactly supported functions
is dense in L(R).
(iii) Prove the assertion in Sec.12.5.4 for functions from class L(R).

2. Show that the space C0
0 is dense in Lp(R

N).

3. Prove the assertion in Sec.12.5.4 for functions from class Lp(R
N).


