
CHAPTER 4

Convolution and Fourier transform

29. Direct product of distributions.

29.1. Direct product of regular distributions. Let f(x) and g(y) be lo-
cally integrable functions of their arguments, x ∈ R

N and y ∈ R
M .

Then the function of two variables that is the product of f and g is
locally integrable

h(x, y) = f(x)g(y) ∈ Lloc (RN+M )

Indeed, any bounded region Ω in R
N+M is contained in the direct prod-

uct BR1
× BR2

of two balls, |x| < R1 and |y| < BR2
. For example, if

x ∈ R and y ∈ R, then any bounded region in R
2 is contained in a

rectangle

Ω ⊂ BR1
× BR2

= (−R1, R1) × (−R2, R2)

In general, if z ∈ R
N+M , then

|z|2 = |x|2 + |y|2 ⇒ |z| ≤ |x|+ |y|

so that |z| < R1 +R2 and

∫∫

Ω

|h(x, y)|dNxdMy ≤
∫

BR1

|f(x)| dNx

∫

BR2

|g(x)| dMy <∞

by local integrability of f and g.
With every pair of regular distributions f(x) and g(y) one can asso-

ciate a unique regular distribution of two variables h(x, y) = f(x)g(y)
that acts on a test function of two variables by the rule that follows
from the Fubini’s theorem:

(h, ϕ) =

∫∫

h(x, y)ϕ(x, y) dNxdMy

=

∫

f(x)

(
∫

g(y)ϕ(x, y) dMy

)

dNx

= (f, ψ) , ψ(x) =

∫

g(y)ϕ(x, y) dMy

375
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Or, alternatively

(h, ϕ) =

∫∫

h(x, y)ϕ(x, y) dNxdMy

=

∫

g(y)

(
∫

f(x)ϕ(x, y) dNx

)

dMy

= (g, φ) , φ(y) =

∫

f(x)ϕ(x, y) dNx

This shows that the action of the distribution of two variables h(x, y)
on a test function is defined via the actions of distributions of single
variable, provided the result of the actions of these distributions on a
test function of two variables is a test function:

ψ(x) =
(

g(y), ϕ(x, y)
)

∈ D(RN ) ,

φ(y) =
(

f(x), ϕ(x, y)
)

∈ D(RM )

This is indeed so by Proposition 19.2. Thus, the product of two regular
distributions of distinct variables is a linear continuous functional of
two variables.

29.2. Direct (or tensor) product of distributions. Proposition 19.2 holds
for all distributions. This allows us to extend the direct product to all
distributions of distinct variables.

Definition 29.1. The direct (or tensor) product of two distribu-
tions f(x) ∈ D ′(RN ) and g(y) ∈ D ′(RM) is a distribution of two
variables h(x, y) ∈ D ′(RN+M), denoted as

h(x, y) = f(x) · g(y)
that acts on any test function of two variables ϕ(x, y) ∈ D(RN+M ) by
the rule

(

h(x, y), ϕ(x, y)
)

= (f, ψ) , ψ(x) =
(

g(y), ϕ(x, y)
)

or, in brief,
(f · g, ϕ) = (f, (g, ϕ))

This rules does define a functional on D(RN+M ) by Proposition
19.2. However its linearity and continuity is yet to be established.
A proof is based on interpreting the direct product distribution as
the adjoint transformation of a linear continuous transformation of the
space of test functions into another space of test functions. The ad-
joint transformation maps a space of distributions to another space of
distributions and this transformation is linear and cotinuous.
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For any distribution g ∈ D′(RN ) the transformation (19.3) defines a
linear map Tg : D(RN+M ) → D(RN ). If Tg is proved to be continuous,
then its adjoint

T ∗
g : D′(RN ) → D′(RN+M )

is also a linear continuous transformation, and T ∗
g (f)(x, y) = f(x) ·g(y)

because
(

T ∗
g (f), ϕ

)

= (f, Tg(ϕ)) =
(

f(x),
(

g(y), ϕ(x, y)
))

= (f · g, ϕ)

Thus, for consistency of the definition of the direct product it is suffi-
cient to establish continuity of the transformation Tg.

Theorem 29.1. (Consistency of the direct product)
For any distribution g ∈ D ′(RM), the transformation Tg of D(RN+M )
into D(RN ) defined by

Tg(ϕ)(x) =
(

g(y), ϕ(x, y)
)

is linear and continuous so that its adjoint T ∗
g (f) = f ·g is a distribution

from D′(RN+M ) for any distribution f ∈ D′(RN ).

By Proposition 19.2

DαTg(ϕ)(x) =
(

g(y), Dα
xϕ(x, y)

)

Suppose that ϕn(x, y) → 0 in D(RN+M ). Let us show that

ψn = Tg(ϕn) → 0 in D(RN ) ⇔ lim
n→∞

sup |Dαψn| = 0

for any α ≥ 0. Suppose that the latter is false. Then there exist β and
a sequence of points {xn} such that

|Dβψn(xn)| ≥ δ > 0

for some δ > 0. Supports of all ψn lie in an interval |x| ≤ R if sup-
ports of all ϕn are in a ball of radius R. Therefore the sequence {xn}
is bounded. By the Bolzano-Weierstrass theorem, every bounded se-
quence in R

N contains a convergent subsequence xnk
→ x′ as k → ∞.

Since Dαϕn(x, y) converges uniformly to zero,

sup
y

|Dα
xϕnk

(xnk
, y)| ≤ sup

x,y
|Dα

xϕnk
(x, y)| → 0

as k → ∞, from which it follows, by continuity of the functional g,
that

lim
k→∞

Dαψnk
(xnk

) = lim
k→∞

(

g(y), Dα
xϕnk

(xnk
, y)

)

= 0 ,

which is not possible because |Dαψnk
(xnk

)| ≥ δ > 0 for all k, leading
to a contradiction. Thus, Tg is continuous. Then the direct product
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of distributions is a linear continuous functional on D(RN+M ) by the
standard argument:

lim
n→∞

(f · g, ϕn) = lim
n→∞

(T ∗
g (f), ϕn) = lim

n→∞
(f, Tg(ϕn)) = 0

by continuity of f . The linearity of f · g is established in a similar way
and follows from linearity of Tg and f .

29.3. Delta-function of several variables. Let us show that the delta-
function of two variables is the direct product product of two delta-
functions:

δ(x, y) = δ(x) · δ(y) , x ∈ R
N , y ∈ R

M .

Indeed, for any test function of two variables ϕ(x, y),
(

δ(x) · δ(y), ϕ(x, y)
)

=
(

δ(x),
(

δ(y), ϕ(x, y)
))

=
(

δ(x), ϕ(x, 0)
)

= ϕ(0, 0) =
(

δ(x, y), ϕ(x, y)
)

as required. It is also clear that the direct product of delta-functions
is commutative and distributive:

δ(x) · δ(y) = δ(y) · δ(x)
δ(x) ·

(

δ(y) · δ(z)
)

=
(

δ(x) · δ(y)
)

· δ(z)

In particular, the delta-function of x ∈ R
N is the direct product of the

single-variable delta-functions:

δ(x) = δ(x1) · δ(x2) · · · δ(xN)

29.4. Properties of the direct product of distributions. The dot denoting
the direct product of distributions is often omitted as its properties are
similar to the product of ordinary functions of different variables. Here
it will be kept in what follows for consistency.

29.4.1. Approximations of test functions by polynomials. In what follows,
the classical theorem about approximations of continuous functions by
polynomials will be used.

Theorem 29.2. (Weierstrass)
Let Ω be bounded and open in R

N and ψ ∈ Cp(Ω). Then for any ε > 0
there exists a polynomial P such that

sup
α≤p,Ω

|Dαψ(x)−DαP (x)| < ε .
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The Weierstrass theorem asserts that the space of polynomials is
dense in Cp(Ω). Any test function can also be approximated by poly-
nomials in the following sense.

Proposition 29.1. For any test function ϕ, there exists a sequence
of test functions ϕn that converges to ϕ in D and ϕn(x) is a polynomial
for all x from the support of ϕ.

Let us construct the sequence ϕn with required properties explicitly.
The support of a test function ϕ is a closed subset in an open ball
BR. Therefore one can construct a bump function ηϕ that is equal
to 1 in a neighborhood Ω of suppϕ and ηϕ(x) = 0 if |x| ≥ R. Here
suppϕ ⊂ Ω ⊂ BR. By the Weierstrass theorem, for every ε = 1

n
,

n = 1, 2, ..., one can find a polynomial Pn such that

|Dαϕ(x) −DαPn(x)| < 1

n
, |x| ≤ R , α ≤ n ,

because ϕ ∈ C∞(Ω). Then the sequence

(29.1) ϕn(x) = ηϕ(x)Pn(x)

converges to ϕ in the topology of D. Indeed, if x ∈ Ω, thenDαηϕ(x) = 0
for any α > 0, then

|Dαϕ(x) −Dαϕn(x)| = |Dαϕ(x) −DαPn(x)| ≤ 1

n
, x ∈ Ω ⊂ BR .

If x is not in Ω, then Dαϕ(x) = 0 for any α and |DβPn(x)| < 1
n

for
any β < α ≤ n. Using the binomial expansion of the derivative of the
product

|Dαϕ(x)−Dαϕn(x)| ≤
1

n

∑

β<α

Cβ
α sup |Dα−βηϕ| ≡

Aα

n
, x /∈ Ω

where Cβ
α are the binomial coefficients. Therefore for any α and n ≥ α

|Dαϕ(x) −Dαϕn(x)| ≤ Cα

n
, |x| ≤ R ,

where Cα = max{1, Aα} are independent of n. Since the supports of
all terms ϕn lie in the ball BR by construction, the latter inequality
implies that

sup |Dαϕ(x) −Dαϕn(x)| ≤ Cα

n
→ 0 ,

as n→ ∞, which means that ϕn → ϕ in D.
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29.4.2. Commutativity and associativity. The direct product is commu-
tative and associative:

f(x) · g(y) = g(y) · f(x)

f(x) ·
(

g(y) · h(z)
)

=
(

f(x) · g(y)
)

· h(z)

In the case of regular distributions, the assertion follows from Fubini’s
theorem. The details are left to the reader as an exercise. To prove it
for all distributions, note that the commutativity and associativity of
the product of distributions of distinct variables holds for test function
of the form

ϕn(x, y) =
n

∑

j=1

φj(x)ψj(y)

where φ and ψ are test functions of a single variable. Indeed, by lin-
earity of functionals f and g

(f · g, ϕn) =
(

f(x), (g(y), ϕn(x, y))
)

=

n
∑

j=1

(

f(x),
(

g(y), ψj(y)
)

φj(x)
)

=
n

∑

j=1

(

g(y),
(

f(x), φj(x)
)

ψj(y)
)

= (g · f, ϕn)

and similarly for associativity. Next, given a test function of two vari-
ables ϕ(x, y), one can construct a sequence (29.1) that converges to ϕ
in D(RN+M ):

ϕn(x, y) = η1(x)η2(y)Pn(x, y)

where η1,2 are test functions of one variable that take unit value in a
neighborhood of a ball of radius R if the support of ϕ lies in a ball
of radius R, |x|2 + |y|2 < R2. Since any polynomial is a linear combi-
nation of monomials of the form xαyβ, the terms of this sequence are
linear combinations of products of test functions of a single variables
for which the commutativity and associativity holds. The functionals
f ·g and g ·f are continuous as any adjoint transformation of a continu-
ous transformation of a space of test functions. Therefore by taking the
limit n → ∞, the commutativity of the direct product is established
for all test functions of two variables:

(f · g, ϕ) = lim
n→∞

(f · g, ϕn) = lim
n→∞

(g · f, ϕn) = (g · f, ϕ)

and similarly for the associativity.
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29.4.3. Differentiation of the direct product. The following rule for dif-
ferentiation of the direct product of distributions holds:

Dα
x

(

f(x) · g(y)
)

= Dαf(x) · g(y)

just like in the case of the product of two smooth functions of different
variables. Indeed, for any test function ϕ(x, y), one has

(

Dα
x (f(x) · g(y)), ϕ(x, y)

)

= (−1)α
(

(f(x) · g(y)), Dα
xϕ(x, y)

)

= (−1)α
(

(f(x),
(

g(y)), Dα
xϕ(x, y)

))

= (−1)α
(

(f(x), Dα
(

g(y)), ϕ(x, y)
))

=
(

Dα(f(x),
(

g(y)), ϕ(x, y)
))

=
(

(Dαf(x) · g(y)), ϕ(x, y)
)

where the first equality holds by the definition of a distributional de-
rivative, the second is by definition of the direct product, the third is
by Proposition 19.2, the forth and fifth are valid again by definitions
of distributional derivatives and direct product, respectively.

29.4.4. Multiplication by a smooth function. Let a(x) be from C∞. Then

a(x)
(

f(x) · g(y)
)

=
(

a(x)f(x)
)

· g(y)

for any two distributions f(x) and g(y). A proof of this property is left
to the reader as an exercise.

29.5. Change of variables in the direct product of distributions. The di-
rect product of distributions is a distribution of two or more variables.
By changing variables in the product, new distributions of several vari-
ables can be obtained. For example, let

f(x, y) = θ(x) · δ(y) .
Then

g(x, y) = θ(x+ 2y) · δ(x+ y)

is a distribution because it is obtained from the distribution f by a
non-singular linear change of variables defined by the matrix

A =

(

1 2
1 1

)

⇒ A−1 =

(

−1 2
1 −1

)
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and detA = 1. Using the rule of changing variables in a distribution,
the action of g on a test function can be computed via the action of f
on the associated transform of the test function:

(g(x, y), ϕ(x, y)
)

=
1

| detA|
(

f(x, y), ϕ(2y − x, x− y)
)

=

∫ ∞

0

ϕ(−x, x) dx .

The sign of the direct product is often omitted, which may lead to
the question of how to interpret products of single-variable distributions
in which the arguments are replaced by a function of several variables.
There should exist a change of variables such that such a product be-
comes the direct product of distributions of independent variables. For
example, consider a singular function of two real variables (x2 − y2)−1.
The singularity on the line y = x is not locally integrable in R

2. This
function admits a distributional regularization that can be constructed
as follows. Using the partial fraction decomposition,

1

x2 − y2
=

1

2y

( 1

x− y
− 1

x+ y

)

.

Consider the direct product of the principal value and Sokhotsky dis-
tributions, P 1

y
· 1

x+i0
. Then a distributional regularization of the above

singular function can be obtained by a linear change of variables in
each term of this product:

Reg
1

x2 − y2
=

1

2
P 1

y
·
( 1

x− y + i0
− 1

x+ y + i0

)

.

29.6. Exercises.

1. Prove the commutativity and associativity of the direct product
of regular distributions. Hint: Use Fubini’s theorem.

2. Prove the rule for multiplication of the direct product of distri-
butions by a smooth function.

3. Let x and y be real variables and ϕ(x, y) be a test function of
two variables. Put

ψ(x) =
(

P 1

y
, ϕ(x, y)

)

= P.v.

∫

ϕ(x, y)

y
dy
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(i) Show that ψ(x) is a test function and

Dαψ(x) =
(

P 1

y
,Dα

xϕ(x, y)
)

by a direct use of the theorem about differentiation of an integral with
respect to parameters x.
(ii) Suppose that ϕn(x, y) is a null sequence in D(R2). Show that

ψn(x) =
(

P 1

y
, ϕn(x, y)

)

is a null sequence in D(R), by a direct verification of uniform conver-
gence of the sequences of all partial derivatives to zero.

4 Let x and y be real variables and a(x) and b(y) be smooth func-
tions. If a(0) = a0, a

′(0) = a1, and b(0) = b0, find

(a(x) + b(y))Dx

(

δ(x) · δ(y)
)

in terms of constants a0, b0, and a1 and direct products of delta-
functions and their derivatives.

5. If t ∈ R and x ∈ R
3, find

∂

∂t
∆x

(

θ(t) · 1

|x|
)

6. Let g and f be a distribution of a real variable. Show that f(x) ·
g(x− y) is a distribution of two real variables x and y. In particular,
show that

δ(x) · g(y − x) = δ(x) · g(y)
for any distribution g(y). Next show that

Dx[f(x) · g(y − x)] = f ′(x) · g(y − x)− f(x) · g′(y − x) .

7. Let x and t be real and c be a constant. Use the definition of
distributional derivatives to show that

Dt[θ(t)θ(x+ ct)] = δ(t) · θ(x) + cθ(t) · δ(x+ ct)

Dx[θ(t)θ(x+ ct)] = θ(t) · δ(x+ ct)

Compare the result with the last equation in the previous problem by
showing that f(x)g(x− y) = f(x) · g(x− y) for regular distributions f
and g. Use the result to show that

(

D2
t − c2D2

x

)

θ(ct− |x|) = 2cδ(t) · δ(x)

Hint: Express θ(ct− |x|) in terms of products of θ(t) and θ(x± ct).



384 4. CONVOLUTION AND FOURIER TRANSFORM

30. Convolution of distributions.

30.1. Convolution of regular distributions. Suppose that f and g are
locally integrable functions of x ∈ R

N such that

∫

|f(y)g(x− y)| dNy ∈ Lloc

is also a locally integrable function. Then the convolution

h(x) = (f ∗ g)(x) =

∫

f(y)g(x− y) dNy

exists and is a locally integrable function, and the convolution is com-
mutative:

f ∗ g = g ∗ f

The assertion follows from Part 2 of Fubini’s theorem. By the hypoth-
esis

∫

BR

∫

|f(y)g(x− y)| dNy dNx <∞

for any ball BR. This implies that the function

u(x, y) = f(y)g(x− y) ∈ L(BR × R
N)

is Lebesgue integrable on BR × R
N . By Fubini’s theorem the func-

tion h(x) =
∫

u(x, y) dNy exists and is Lebesgue integrable on any ball
BR. The commutativity is established by changing integration vari-
ables y → x− y.

It should be noted that the (classical) convolution does not exist
for any two locally integrable functions. For example, take f(x) =
g(x) = 1, then the convolution integral diverges. If f(x) has a bounded
support, then the classical convolution always exist. In particular, the
convolution of two test functions always exists.

Since f and g can also be viewed as regular distributions, one can
define the convolution of regular distributions and attempt to extend
the definition to all distributions just like it was done for the direct
product. Suppose that f ∗ g exists (e.g. under the above sufficient
conditions on f and g). Then for any test function ϕ(x), one infers
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that

(f ∗ g, ϕ) =

∫

(f ∗ g)(z)ϕ(z) dNz =

∫ ∫

g(y)f(z − y) dNyϕ(z) dNz

=

∫

g(y)

∫

f(z − y)ϕ(z) dNz dNy

=

∫

g(y)

∫

f(x)ϕ(x+ y) dNx dNy

=
(

f(x) · g(y), ϕ(x+ y)
)

where Fubini’s theorem was used to change the order of integration, and
x = z−y so that dNz = dNx for any y. This shows that the convolution
can be interpreted as the direct product of the distributions of different
variables acting on a smooth function of two variables

ψ(x, y) = ϕ(x+ y) .

The problem with this interpretation is such that ψ(x, y) is not a test
function of two variables! Since the support of ϕ is bounded and lies in
a ball of radius R, the support of ψ(x, y) lies in an unbounded cylinder
|x+ y| < R because the function ψ(x, y) takes a constant value on any
hyper-plane x + y = k in R

2N . Therefore it is not possible to use the
right side of the last equality as a definition of the convolution even for
any two regular distributions.

30.2. Unit sequences in the space of test functions. Let ηn(x) be a se-
quence of test functions with the following properties:

(i) For any closed and bounded region Ω ⊂ R
N , there exist an

integer m such that

ηn(x) = 1 , x ∈ Ω , n ≥ m

(ii) All partial derivatives of ηn are bounded uniformly for all n:

sup |Dαηn(x)| ≤ Cα

where the constant Cα is independent of n.

Any sequence of test functions with the stated properties is called
a unit sequence in D(RN ), and one writes

ηn(x) → 1 in R
N as n→ ∞ .

Let us show that such a sequence exists. Recall that one can always
construct a test function that has unit value in any ball. For example,
let

η ∈ D , η(x) = 1 , |x| < 1 .
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Put

ηn(x) = η
(x

n

)

.

Then ηn is a test function for any n. If the support of η lies in a ball of
radius R, then the support of ηn lies in the ball of radius nR. Evidently,
for any bounded region one can an integer m such that the region lies
in any ball of radius n ≥ m so that ηn = 1 in this region for all n ≥ m.
Furthermore,

|Dαηn(x)| =
1

nα
|Dαη(x)| ≤ |Dαη(x)| ≤ sup |Dαη| = Cα

Thus, all derivatives of ηn are uniformly bounded, and ηn is a unit
sequence.

Let f(x) and g(x) be regular distributions. Suppose that the inte-
gral

(

f(x) · g(y), ϕ(x+ y)
)

=

∫

f(x)

∫

g(y)ϕ(x+ y) dNydNx

exists for any test function ϕ(x), that is, the classical convolution
(f ∗ g)(x) exists. Then for any unit sequence ηn(x, y) in R

2N

lim
n→∞

(

f(x) · g(y), ηn(x, y)ϕ(x+ y)
)

=
(

f(x) · g(y), ϕ(x+ y)
)

The assertion follows from the Lebesgue dominated convergence theo-
rem. Indeed the integrand has a Lebesgue integrable bound indepen-
dent of n:

|f(x)g(y)ηn(x, y)ϕ(x+ y)| ≤ C0|f(x)g(y)ϕ(x+ y)| ∈ L(R2N )

by the hypothesis and that |ηn(x, y)| ≤ C0 for all n. Therefore the
order of integration and taking the limit can be interchanged and the
conclusion follows because ηn(x, y) → 1 in R

2N .
Note that ηn(x, y)ϕ(x+y) is a test function of two variables. So, the

value of the direct product of any two distributions at it exists for any n.
All these values form a numerical sequence. If the sequence converges,
then it can be used to define the convolution of the corresponding
distributions, just like in the case of regular distributions. If it does
not converge, then the convolution of the corresponding distributions
does not exist. In this approach, whenever the classical convolution of
two locally integrable functions is locally integrable, the distributional
convolution also exists and is equal to the classical one.
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30.3. Definition of the convolution of distributions. Let f and g be dis-
tributions from D′(RN ). If the limit

lim
n→∞

(

f(x) · g(y), ηn(x, y)ϕ(x+ y)
)

exists for any test function ϕ and any unit sequence ηn(x, y) of two
variables and is independent of the choice of ηn, then it defines a dis-
tribution f ∗ g ∈ D′(RN ), called the convolution of distributions f and
g, that acts on a test function by the rule

(f ∗ g, ϕ) = lim
n→∞

(

f(x) · g(y), ηn(x, y)ϕ(x+ y)
)

.

A consistency of this definition requires proving that f ∗ g is a linear
continuous functional on D(RN ). Consider a sequence of linear func-
tionals on D(R2) defined by the rule

(hn, ϕ) =
(

f(x) · g(y), ηn(x, y)ϕ(x+ y)
)

, n = 1, 2, ...

By the completeness theorem for distributions, if hn is a sequence of
distributions (linear continuous functionals) that converges in D′, then
its limit is a distribution. Thus, it is sufficient to show continuity of
functionals hn.

Let ϕm → 0 in D(RN ) as m→ ∞. Then

ψm(x, y) = ηn(x, y)ϕm(x+ y) → 0 in D(R2N )

as m → ∞ for every n. This follows from the binomial expansion of
derivatives of the product and from the estimate:

sup |Dαηn(x, y)Dβϕm(x+ y)| ≤ Cα sup |Dβϕm| → 0 as m → ∞ .

By continuity of the direct product (hn, ϕm) → 0 as m → ∞ for
every n. Thus, hn is a continuous functional on D(RN ) and, hence,
hn → h = f ∗ g ∈ D′ by the completeness theorem.

30.3.1. Convolution with a test function. Any test function ω defines
regular regular distribution. In Sec.19.3 the convolution ω ∗ f was
defined for any distribution f . Let us show that this convolution is
consistent with the above general definition. One has to show that

(ω ∗ f, ϕ) = lim
n→∞

(

f(x),
(

ω(y), ηn(x, y)ϕ(x+ y)
))

= (f, ω− ∗ ϕ)

The function ω(y)ϕ(x + y) vanishes if |y| > R and |x + y| > R for
some large enough R and, hence, it is a test function of two variables
because. For any test function of two variables ψ(x, y) and any unit
sequence ηn(x, y), the sequence of test functions ηnψ converges to ψ
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in D(R2N ) because Dα(ηnψ) = Dαψ for all large enough n (such that
ηn = 1 in a neighborhood of suppψ). Then

(

ω(y), ηn(x, y)ϕ(x+ y)
)

=

∫

ηn(x, y)ω(y)ϕ(x+ y) dNy

→
∫

ω(y)ϕ(x+ y) dNy = (ω− ∗ ϕ)(x)

in D(RN ) as n → ∞ because the transformation of reduction of the
number of variables in test functions defined in Sec.?? is continuous.
The conclusion follows from continuity of the functional f .

30.4. Convolution with a delta-function. The convolution of any distri-
bution with the delta-function is equal to that distribution:

f ∗ δ = δ ∗ f = f , f ∈ D′

Let ηn(x, y) be a unit sequence in R
2N and ϕ(x) be a test function from

D(RN ). By the definition of convolution

(f ∗ δ, ϕ) = lim
n→∞

(

f(x) · δ(y), ηn(x, y)ϕ(x+ y)
)

= lim
n→∞

(

f(x),
(

δ(y), ηn(x, y)ϕ(x+ y)
))

= lim
n→∞

(

f(x), ηn(x, 0)ϕ(x)
)

= (f, ϕ)

by continuity of f . Note that the sequence of test functions ϕn(x) =
ηn(x, 0)ϕ(x) converges to ϕ(x) in the topology of D. Indeed, since the
support of ϕ is bounded, for all sufficiently large n, ϕn = ϕ, by the
properties of a unit sequence so that Dαϕn = Dαϕ. Similarly, one can
show that (δ ∗ f, ϕ) = (f, ϕ).

30.5. Properties of the convolution. The convolution defines a product
on the space of distributions. As noted, this product does exist for dis-
tributions from D′. Let us investigate basic properties of this product.

30.5.1. Commutativity and distributivity. The convolution is a commu-
tative product of two distributions

f ∗ g = g ∗ f
if it exists. It follows from the commutativity of the direct product of
distributions. Put ψ(x, y) = ϕ(x+ y) for a test function ϕ for brevity.
Then

(f ∗ g, ϕ) = lim
n→∞

(f · g, ηnψ) = lim
n→∞

(g · f, ηnψ) = (g ∗ f, ϕ) .
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The space of distributions is linear and the convolution defines a
distributive product

f ∗ (g + h) = f ∗ g + f ∗ h

provided the convolutions f ∗ g and f ∗ h exists. This follows from the
limit laws and distributivity of the direct product:

(f ∗ (g + h), ϕ) = lim
n→∞

(f · (g + h), ηnψ)

= lim
n→∞

[

(f · g, ηnψ) + (f · h, ηnψ)
]

= lim
n→∞

(f · g, ηnψ) + lim
n→∞

(f · h, ηnψ)

= (f ∗ g, ϕ) + (f ∗ h, ϕ) .

Note well that the existence of f ∗ (g + h) alone does not imply the
distributive law because f ∗ g and f ∗ h may not exist.

30.5.2. Differentiation of the convolution. Suppose that f ∗ g exists.
Then

Dα(f ∗ g) = Dαf ∗ g = f ∗Dαg

It is sufficient to show that the rule holds for a first-order partial de-
rivative. For any unit sequence, the sequence

η̃n(x, y) = ηn(x, y) +Dx ηn(x, y)

is also a unit sequence because ηn is constant in any bounded region
for all sufficiently large n, and all derivatives are uniformly bounded:

sup |Dαη̃n| ≤ Cα + Cα+1

Since f ∗ g exists,

(f ∗ g, ϕ) = lim
n→∞

(

f(x) · g(y), ηn(x, y)ϕ(x+ y)
)

= lim
n→∞

(

f(x) · g(y), η̃n(x, y)ϕ(x+ y)
)

It follows from this equality that

lim
n→∞

(

f(x) · g(y), Dxηn(x, y)ϕ(x+ y)
)

= 0
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for any test function ϕ.
(

D(f ∗ g), ϕ
)

= −
(

f ∗ g,Dϕ
)

= − lim
n→∞

(

f(x) · g(y), ηn(x, y)Dxϕ(x+ y)
)

= − lim
n→∞

[(

f(x) · g(y), Dx[ηn(x, y)ϕ(x+ y)]
)

−
(

f(x) · g(y), Dxηn(x, y)ϕ(x+ y)
)]

= lim
n→∞

(

Dx(f(x) · g(y)), ηn(x, y)ϕ(x+ y)
)

= lim
n→∞

(

Df(x) · g(y), ηn(x, y)ϕ(x+ y)
)

= (Df ∗ g, ϕ) .

Since Dxϕ(x + y) = Dyϕ(x + y), the derivative Dx in the above lines
of equations can be changed to Dy so that

(

D(f ∗ g), ϕ
)

=
(

f ∗Dg, ϕ
)

.

It is important to stress that the rule of differentiation of the con-
volution holds under the assumption that the convolution exist. If the
convolution f∗g does not exist, but convolutions with derivatives, Df∗g
and f ∗Dg, exist, then in general

Df ∗ g 6= f ∗Dg

For example,

1 = δ ∗ 1 = θ′ ∗ 1

but

0 = θ ∗ 0 = θ ∗ 1′

Note that in this case the convolution θ ∗ 1 does not exist. Indeed, the
step and unit functions are regular distributions. So, their convolution
should be the classical convolution if it exists, but the convolution
integral diverges

∫

θ(y)1(x− y) dy =

∫ ∞

0

dy = ∞

Thus, the existence of f ∗ g implies the existence of Df ∗ g and f ∗Dg.
But the converse is false.
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30.5.3. Associativity. The convolution is not generally an associative
multiplication of distributions. Here is an example. Take a unit distri-
bution:

1 = δ ∗ 1 = θ′ ∗ 1 = (θ′ ∗ δ) ∗ 1 = (θ ∗ δ′) ∗ 1

Take the zero distribution:

0 = θ ∗ 0 = θ ∗ (δ ∗ 0) = θ ∗ (δ ∗ 1′) = θ ∗ (δ′ ∗ 1)

Since 0 6= 1,

(θ ∗ δ′) ∗ 1 6= θ ∗ (δ′ ∗ 1)

However, there are subspaces in the space of distributions for which
the convolution exists and is commutative and associative. Let f , g,
and h be distributions from D′. Define the double convolution by the
rule

(

f ∗ g ∗ h, ϕ
)

= lim
n→∞

(

f(x) · g(y) · h(z), ηn(x, y, z)ϕ(x+ y + z)
)

where ηn is a unit sequence in R
3N , provided the limit exists and is

independent of the choice of a unit sequence. In fact, one can define
a multiple convolution of any number of distributions in this way. By
commutativity and associativity of the direct product of distributions,
the multiple convolution does not depend on the order f ∗g∗h = h∗g∗f
etc.

Proposition 30.1. Suppose that the convolutions f ∗g and f ∗g∗h
exists in D′. Then the convolution (f ∗ g) ∗ h exists and

(f ∗ g) ∗ h = f ∗ g ∗ h

so that for a class of distributions for which the convolution and double
convolution exist, the convolution is commutative and associative.

Let ηn and ξn be unit sequences in R
2N , then the double sequence

ψkn(x, y, z) = ηk(x, y)ξn(x+ y, z)

is a unit sequence in R
3N . Since the double convolution exists, the

following double limit exists

lim
n,k→∞

(

f(x) · g(y) · h(z), ψkn(x, y, z)ϕ(x+ y + z)
)

= (f ∗ g ∗ h, ϕ)
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for any test function ϕ. This means that the repeated limits also exist.
Put s = x+ y

(f ∗ g ∗ h, ϕ) = lim
n→∞

lim
k→∞

(

f(x) · g(y) · h(z), ηk(x, y)ξn(s, z)ϕ(s+ z)
)

= lim
n→∞

lim
k→∞

(

f(x) · g(y), ηk(x, y)
(

h(z), ξn(s, z)ϕ(s+ z)
))

= lim
n→∞

(

(f ∗ g)(s),
(

h(z), ξn(s, z)ϕ(s+ z)
))

= lim
n→∞

(

(f ∗ g)(s) · h(z), ξn(s, z)ϕ(s+ z)
)

=
(

(f ∗ g) ∗ h, ϕ
)

as required.

30.5.4. Shift of the argument. Let fh(x) = f(x + h) be the shifted dis-
tribution f . If f ∗ g exists, then the convolution fh ∗ g exists and

(fh ∗ g)(x) = (f ∗ gh)(x) = (f ∗ g)(x+ h)

A proof of this assertion is left to the reader as an exercise. For example,

f(x) ∗ δ(x+ h) = f(x+ h)

for any distribution f .

30.5.5. Non-continuity. For every g ∈ D′, the convolution g ∗ f can be
viewed a transformation of D′ into itself. Note that this transformation
is not defined on the whole D′ but on its subset that consists of distri-
butions for which their convolution with g exists. This transformation
is not continuous in general. This means the following.

Suppose fn is a sequence of distributions that converges to a distri-
bution f in the sense of distributions,

lim
n→∞

(fn, ϕ) = (f, ϕ) , ϕ ∈ D

Suppose that the convolutions g ∗ f and g ∗ fn exist for all n and some
distribution g. Then the sequence g ∗ fn does not generally converge to
g ∗f in D′. So, in practical terms, the order of taking the limit and the
convolution is not generally interchangeable.

Here is an example. Put fn(x) = δ(x− n) so that

lim
n→∞

(fn, ϕ) = lim
n→∞

ϕ(n) = 0

because the support of ϕ is bounded. Therefore fn → 0 in the sense of
distributions. On the other hand, take g(x) = 1 so that

(g ∗ fn)(x) = g(x) ∗ δ(x− n) = g(x− n) = 1
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and hence g ∗ fn converges to the unit distribution.

30.6. Exercises.

1. Show that the convolution

f ∗Dαδ

exists for any integer α ≥ 0 and any distribution f , and find the con-
volution in terms of distributional derivatives of f .

2. Prove the shift property of the convolution.

3. Consider a space of locally integrable functions with support in
a half-line, x ≥ 0.
(i) Show that the convolution exists in this space of regular distribu-
tions and

(f ∗ g)(x) =

∫ x

0

g(y)f(x− y) dy

Hint: Sketch the support of f(x)g(y)ϕ(x+ y) in the plane where ϕ is
a test function.
(ii) Show that the convolution is associative. Hint: Investigate the dou-
ble convolution.

4. Let g(x) =
∑

k ckδ(x− k).
(i) Show that the series converges in the sense of distributions for any
choice of the sequence ck. If gn(x) is a partial sum of the series (the
summation is taken over |k| < n), then gn → g in the distributional
sense. Let f be a distribution with unbounded support.
(ii) Show that f ∗ gn exists for any n. Does the limit of the distribu-
tional sequence f ∗ gn always exist?
(iii) Does the convolution f ∗ g always exist?
Hint: Use the definition of the convolution. Take f(x) = θ(x) as an
example. Investigate the limit in the definition of the convolution for
a particular test function, e.g., the hat function ϕ = ωa(x) with a = 1

2
.

5. Find the double convolution θ ∗ δ′ ∗ 1 or show that it does not
exist.
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31. Existence of convolution

The convolution does not exist for all distributions. Here some
classes of distributions for which the convolution exists and is contin-
uous are described. They are important in applications.

31.1. Convolution of a distribution with bounded support.

Theorem 31.1. Let f and g be distributions from D′(RN) and the
support of g is bounded. Then the convolution f ∗ g exists, and

(31.1) (f ∗ g, ϕ) =
(

f(x) · g(y), ηg(y)ϕ(x+ y)
)

where ηg is a test function that has unit value in a neighborhood of the
support of g. The convolution is also continuous in both variables, that
is, for any sequence fn that converges to f in D′,

fn ∗ g → f ∗ g in D′

and for any sequence of distributions whose supports lies in a ball with
radius independent of n, supp gn ⊂ BR, that converges to a distribution
g

f ∗ gn → f ∗ g in D′

As the support of g is bounded, there exists a test function ηg that
has unit value in a neighborhood of the support of g. Then for any test
function ϕ

(g, ϕ) = (g, ηgϕ)

Therefore for any unit sequence ηn(x, y) in R
2N ,

(f ∗ g, ϕ) = lim
n→∞

(

f(x),
(

g(y), ηn(x, y)ϕ(x+ y)
))

= lim
n→∞

(

f(x),
(

g(y), ηg(y)ηn(x, y)ϕ(x+ y)
))

Note that ψ(x, y) = ηg(y)ϕ(x + y) is a test function of two variables
because its support lies in a region defined by |y| < R1 and |x+y| < R2

by boundedness of supports of ϕ and ηg. Since ηnψ → ψ in D(R2N ),
by continuity of g,

(

g(y), ηn(x, y)ψ(x, y)
)

→
(

g(x), ψ(x, y)
)

∈ D(RN )

by the consistency theorem for the direct product. This shows that the
convolution exists and can be computed by the rule (31.1).

Since fn → f in D′, for any test function φ

lim
n→∞

(fn, φ) = (f, φ)
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By the consistency theorem for the direct product the function

φ(x) =
(

g(y), ηg(y)ϕ(x+ y)
)

is a test function for any test function ϕ. Therefore

lim
n→∞

(

fn(x),
(

g(y), ηg(y)ϕ(x+ y)
))

=
(

f(x),
(

g(y), ηg(y)ϕ(x+ y)
))

or, by the first part of theorem,

lim
n→∞

(fn ∗ g, ϕ) = (f ∗ g, ϕ)

for any test function ϕ, which means that fn ∗ g → f ∗ g in D′.
Let ηg be a test function such that ηg(x) = 1 if |x| < R and the ball

BR contains support of any gn. Then

(gn, ϕ) = (gn, ηgϕ)

for any test function. Let φn → φ in D. By continuity of f ,

lim
n→∞

(f, φn) = (f, φ)

Consider the test function of two variables

ψ(x, y) = ηg(y)ϕ(x+ y)

Put

φn(x) =
(

gn(y), ψ(x, y)
)

If the support of ϕ lies in a ball of radius R0, then ψ(x, y) = 0 for all
|x| > R + R0 and, hence, the support of all terms in the sequence of
test functions φn lies in a ball BR+R0

. Then it also follows that

lim
n→∞

φn(x) = φ(x) =
(

g(y), ψ(x, y)
)

for any x. By the consistency theorem for the direct product

lim
n→∞

Dαφn(x) = lim
n→∞

(

gn(y), Dα
xψ(x, y)

)

=
(

g(y), Dα
xψ(x, y)

)

= Dαφ(x)

The stated properties of the sequence φn imply that φn → φ in D.
Therefore

lim
n→∞

(

f(x),
(

gn(y), ψ(x, y)
))

=
(

f(x),
(

g(y), ψ(x, y)
))

or, for any test function ϕ,

lim
n→∞

(f ∗ gn, ϕ) = (f ∗ g, ϕ)

as required.
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31.2. Convolution algebra D′
+. Consider a subspace of the space of dis-

tributions of one real variable x that consists of all distributions with
support in the positive half-line x ≥ 0. It is denoted by D′

+:

f ∈ D′
+ ⇒ supp f ⊂ [0,∞)

or

(f, ϕ) = 0 , suppϕ ⊂ (−∞,−δ]

for some δ > 0. For example,

δ ∈ D′
+ , θ ∈ D′

+

It appears that the convolution defines a commutative and associative
product on D′

+. For this reason D′
+ is also called a convolution algebra.

Theorem 31.2. Let f and g be distributions from D′
+. Then their

convolution exists and belongs to D′
+. It can be computed by the rule

(31.2) (f ∗ g, ϕ) =
(

f(x) · g(y), η1(x)η2(y)ϕ(x+ y)
))

where η1,2 ∈ C∞ and η1,2(x) = 1 if x > −δ for some δ > 0 and
η1,2(x) = 0 if x < −a for some a > δ. The convolution is continuous:

fn → f in D′
+ ⇒ fn ∗ g → f ∗ g in D′

+ .

The convolution is associative on D′
+:

(f ∗ g) ∗ h = f ∗ (g ∗ h) , f, g, h ∈ D′
+

A proof of this theorem is analogous to the previous case of con-
volutions with a distribution with bounded support. So, it will be
sketched leaving some of technical details to the reader as an exercise.
Let us first show that smooth functions η1,2(x) exist. Take a shifted
step function θ(x + δ) for some δ > 0, then its convolution with the
hat function

η(x) =

∫

ωa(y)θ(x− y + δ) dy =

∫ ∞

x+δ

ωa(y) dy

is a C∞ function such that η(x) = 1 if x > −δ and η(x) = 0 if x < a+δ.
For any distribution f from D′

+

(f, ϕ) = (f, ηϕ)
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Therefore

(f ∗ g, ϕ) = lim
n→∞

(

f(x),
(

g(y), ηn(x, y)ϕ(x+ y)
))

= lim
n→∞

(

f(x), η1(x)
(

g(y), η2(y)ηn(x, y)ϕ(x+ y)
))

= lim
n→∞

(

f(x),
(

g(y), ηn(x, y)η1(x)η2(y)ϕ(x+ y)
))

=
(

f(x),
(

g(y), η1(x)η2(y)ϕ(x+ y)
))

=
(

f(x) · g(y), η1(x)η2(y)ϕ(x+ y)
))

.

for any choice of smooth functions η1,2 with properties stated above.
Note that the product ψ(x, y) = η1(x)η2(y)ϕ(x+y) is a test function of
two variables. If the support of ϕ lies in the interval [−R,R], then the
support of ψ(x, y) lies in the triangle |x+ y| ≤ R, x ≥ 0, and y ≥ 0.
Associativity of the convolution follows from the associativity of the
direct product and the rule (31.2).

31.3. Convolution equations. A convolution equation has the form

g ∗ u = f

where g and f are given distributions from D′(RN ), and the problem
is to find a distribution u. In particular, all linear partial differential
equations with constant coefficients can be formulated as the convolu-
tion equation. Put

g(x) =
m

∑

β=0

aβD
βδ(x) = L(D)δ(x) .

By the properties of convolution

g ∗ u =
m

∑

β=0

aβD
βu = L(D)u

Therefore

L(D)u = f ⇔ g ∗ u = f .

If g is locally integrable, then the convolution equation is called an
integral equation of the first kind:

g ∗ u(x) =

∫

u(y)g(x− y) dNy = f(x)
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and if g(x) = δ(x)+h(x) where h is locally integrable, the convolution
equation is called an integral equation of the second kind:

g ∗ u(x) = u(x) +

∫

u(y)h(x− y) dNy = f(x) .

Linear finite-difference equations with constant coefficients
∑

β

aβu(x− xβ) = f(x)

can also be viewed as convolution equations

g(x) =
∑

β

aβδ(x− xβ) ⇒ g ∗ u(x) =
∑

β

aβu(x− xβ) .

So, techniques for solving convolution equations are important in ap-
plication.

31.3.1. Solving a convolution equation. The inverse (or reciprocal) g−1

of a distribution g relative the convolution multiplication is called a
fundamental solution for the convolution operator g∗. So, by definition,

g−1 ∗ g = g ∗ g−1 = δ

because the delta function plays the role of a unit element in the con-
volution multiplication (δ ∗ f = f ∗ δ = f for any distribution f). The
significance of a fundamental solution is that the convolution u = g−1∗f
is a solution to the convolution equation with any right-hand side:

g ∗ u = g ∗ (g−1 ∗ f) = (g ∗ g−1) ∗ f = δ ∗ f = f .

This conclusion is based on several assumptions that need be verified.
First, note that g−1 is not unique even if it exists. For example, if
g = δ′, then a general solution to g ∗ u = δ or u′ = δ is g−1 = θ + C
where C is a constant distribution. Second, suppose that g−1 and
u = g−1 ∗ f exist in D′. However, the distribution u cannot always be
a solution to the convolution equation because the convolution is not
associative in general:

g ∗ u = g ∗ (g−1 ∗ f) 6= (g ∗ g−1) ∗ f = δ ∗ f = f

For example, let g = θ. Then g−1 = δ′. Indeed,

θ ∗ δ′ = (θ ∗ δ)′ = θ′ = δ

Let f = 1. The convolution u = g−1∗f = δ′∗1 = (δ∗1)′ = 1′ = 0 exists,
but it is not a solution to g ∗ u = f or θ ∗ u = 1 because θ ∗ 0 = 0 6= 1.
The origin of this problem is in the non-associativity of the convolution
of the distributions θ, δ′, and 1 noted earlier.
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Suppose that g−1 exists. Define a subset D′
g ⊂ D′ that consists of

distributions for which the convolution g−1 ∗ f and the double convo-
lution g ∗ g−1 ∗ f exist

(31.3) f ∈ D′
g ⊂ D′ : g−1 ∗ f ∈ D′ , g ∗ g−1 ∗ f ∈ D′ .

The existence of the double convolution guarantees (see Proposition
30.1) that the distribution u = g−1 ∗ f satisfies the equation g ∗ u =
f because the convolution is associative in this case. Furthermore,
the associated homogeneous equation has only trivial solution in the
subspace D′

g:

g ∗ u = 0
u ∈ D′

g

}

⇔ u = 0

Indeed, let u be from D′
g and also a solution to the homogeneous equa-

tion, then

u = u ∗ δ = u ∗ (g ∗ g−1) = u ∗ g ∗ g−1 = (u ∗ g) ∗ g−1 = (g ∗ u) ∗ g−1

= 0 ∗ g−1 = 0

The associativity of convolution is crucial for the conclusion. The fol-
lowing theorem has been proved.

Theorem 31.3. Let f ∈ D′
g where D′

g is defined in (31.3). Then
the equation g ∗ u = f has a solution that is given by

u = g−1 ∗ f
and the solution is unique in D′

g.

31.3.2. Equations in the convolution algebra D′
+. The space of distribu-

tions D′
+ is closed relative to the multiplication defined by the convolu-

tion and the convolution is associative. By Theorem 31.3 the following
assertion holds.

Corollary 31.5. If the reciprocal g−1 exists in D′
+, then the equa-

tion g ∗ u = f has a unique solution given by u = g−1 ∗ f for any
f ∈ D′

+.

The inverse of any distribution in D′
+ has the same properties as

the inverse in reals. In particular,

(g1 ∗ g2)
−1 = g−1

1 ∗ g−1
2

A proof is based on a direct verification of the equality

(g1 ∗ g2)
−1 ∗ (g−1

1 ∗ g−1
2 ) = δ

using the associativity and commutativity of the convolution in D′
+ and

is left to the reader as an exercise.
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31.3.3. Example. Forced vibrations of a harmonic oscillator. Consider a
differential equation for a harmonic oscillator

u′′(t) + ω2u(t) = f(t) , f(t) = 0 , t < 0 .

where ω > 0 is a numerical parameter (the frequency of the oscillator),
and f(t) is an external force that starts acting on the oscillator at t = 0.
This equation can be cast as a convolution equation in D′

+:

(δ′′ + ω2δ) ∗ u = f , u ∈ D′
+ .

This implies that the oscillator was at rest for t < 0 (because u(t) = 0
if u ∈ D′

+) and then makes forced vibrations under the action of the
external force. This problem is known to have a unique solution in
mechanics.

Let us show that the reciprocal of the distribution g(t) = δ′′ + ω2δ
is given by

g−1(t) = θ(t)
sin(ωt)

ω
= θ(t)Z(t)

where Z ′′(t) + ω2Z(t) = 0. Indeed, recall that θ′(t) = δ(t) and, since
sin(ωt) is from class C∞, one infers that

(δ′′ + ω2δ) ∗ (θZ) = (θZ)′′ + ω2θZ = δ + θ
(

Z ′′ + ω2Z
)

= δ

because by the Leibniz rule

(θZ)′ = Z(0)δ(t) + θ(t)Z ′(t) = θ(t)Z ′(t) ,

(θZ)′′ = (θZ ′)′ = Z ′(0)δ(t) + θZ ′′(t) = δ(t) + θ(t)Z ′′(t) .

If f(t) is a regular distribution, then the problem has a unique solution
that is given by

u(t) = (g−1 ∗ f)(t) =

∫ ∞

0

g−1(t− τ )f(τ ) dτ

=
1

ω

∫ t

0

sin(ω(t− τ )) f(τ ) dτ

If f is continuous on [0,∞), then u is from class C2(t > 0) and satisfies
the equation for all t > 0. The function u and its derivative u′ have
continuous extensions to t = 0 such that u(0) = 0 and u′(0) = 0. These
facts are readily established by the theorem about differentiation of
the integral with respect to parameters. In mechanics, the said initial
conditions mean that the oscillator was at rest at t = 0 (and it would
remain so if f(t) = 0).
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31.4. Exercises.

1. Show each of the convolutions exists and find its value

(i) |x| ∗ δ′′(x)
(ii) θ ∗ θ
(iii) (| sin(x)|θ(x)) ∗

∑

k≥0

δ′(x− πk)

2. Let f and g be distributions from D′
+. Show that

(eaxf(x)) ∗ (eaxg(x)) = eax(f ∗ g)(x)
3. Let x ∈ R

3. Find
1

|x| ∗ ∆δ(x)

4. Let fa(x) ∈ D′
+ be defined by

fa(x) =
θ(x)

Γ(a)
xa−1 if a > 0, fa(x) = f ′

a+1(x) if a ≤ 0

where the latter relation is understood recursively (e.g., if a = −3/2,
then f−3/2 = f ′

−1/2 = f ′′
1/2).

(i) Prove that

fa ∗ fb = fa+b

(ii) and, in particular, for an integer n,

f−n ∗ u(x) = Dnu(x)

so that for a positive n, the convolution operator f−n∗ is equal to the
nth order derivative, and for negative n, f−n∗ is the nth order anti-
derivative. For non-integer a, the operator fa∗ is called an operator of
fractional differentiation, if a < 0, and fractional integration if a > 0.
(iii) Show that

D1/2u = D(f1/2 ∗ u) =
1√
π

d

dx

∫ x

0

u(y)dy√
x− y

(iv) Show that the function

u(x) =
sin(πα)

π

∫ x

0

f ′(y)

(x− y)1−α
dy

is a solution to Abel’s integral equation:
∫ x

0

u(y)

(x− y)α
dy = f(x) , f(0) = 0 , f ∈ C1(x ≥ 0) , 0 < α < 1
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Hint: To find fa ∗ fb, recall
∫ 1

0

ta−1(1 − t)b−1dt = B(a, b) =
Γ(a)Γ(b)

Γ(a + b)

Show next that f0 = δ and therefore f−a ∗fa = δ. Take a = −n, n > 0,

then f−n = f
(n)
0 = δ(n). Next show that (fn ∗ u)(n) = u, n > 0. In Part

(iv) restate Abel’s integral equation as a convolution equation and use
properties of the convolution operator fa∗.

5. Solve the system of equations in D′
+:

δ′′ ∗ f1 + δ′ ∗ f2 = δ
δ′ ∗ f1 + δ′′ ∗ f2 = 0

6. Let f(x, t) be locally integrable function, (x, t) ∈ R
2. Show that the

following convolution exists and find its integral representation:

θ(ct− |x|) ∗
(

θ(t)f(x, t)
)

where c > 0.

7. Let f(x, t) be locally integrable function, x ∈ R
3 and t is real.

Show that the following convolution exists and find its integral repre-
sentation:

δ(ct− |x|) ∗
(

θ(t)f(x, t)
)

where c > 0 and
(

δ(ct− |x|), ϕ(x, t)
)

=

∫ ∞

0

∫

|x|=ct

ϕ(x, t) dSx dt

8. Show that
(g1 ∗ g2)

−1 = g−1
1 ∗ g−1

2

for any distributions g1,2 from D′
+ that have the inverse in D′

+.



32. TEMPERATE DISTRIBUTIONS 403

32. Temperate distributions

32.1. Extension of the space of test functions. The following notation for
a power function of several variables will be used in what follows:

xα = xα1

1 x
α2

2 · · ·xαN

N , α1 + α2 + · · · + αN = α , x ∈ R
N .

Consider a space of functions that are smooth and all their derivatives
decrease to zero at infinity (|x| → ∞) faster than any reciprocal power
function. This space is called the Schwartz space and will be denoted
as S(RN) or simply S:

ϕ ∈ S : ϕ ∈ C∞ , sup |xαDβϕ| <∞ , α, β ≥ 0 .

It is clear that any test function from D belongs to S because of bound-
edness of the support:

D ⊂ S .
Any smooth function that is exponentially decreasing with increasing
|x| belongs to S. For example, the Gaussian function e−|x|2 belongs to
S but it does not belong to D. For any function from S and any p > 0
there is a positive constant Mβ such that

|Dβϕ(x)| ≤ Mβ

1 + |x|p , ϕ ∈ S .

32.1.1. Topology on the Schwartz space. A sequence {ϕn} ⊂ S is said to
converge to ϕ ∈ S if for any α and β, the sequences xαDβϕn converge
uniformly to xαDβϕ:

ϕn → ϕ in S : lim
n→∞

sup
∣

∣

∣
xαDβϕn − xαDβϕ

∣

∣

∣
= 0 .

If ϕn → ϕ in D, then ϕn → ϕ in S by boundedness of the support of
functions from D.

Proposition 32.1. The space D of test functions with bounded
supports is a dense subset in S.

To prove this assertion, let us show that for any ϕ ∈ S there exists
a sequence in D that converges to ϕ in the topology of S. Let η ∈ D
be a bump function for the ball |x| < 1. Then for any ϕ ∈ S the terms
of the sequence ϕn(x) = ϕ(x)η(x/n) belong to D, and ϕn(x) = ϕ(x)
if |x| < n. Since Dη(x/n) = 0 if |x| < n so that D(ϕn − ϕ) = 0 if
|x| < n, |Dγη(x/n)| ≤ Mγn

−γ (cf. Theorem 14.1, Property (v)), and
Dγϕ tends to zero faster than any power function as |x| → ∞, it is
concluded that

lim
n→∞

sup |xαDβ(ϕn − ϕ)| = 0

for any α and β. Therefore ϕn → ϕ in S.
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Proposition 32.1 implies, in particular, that any function from S can
be uniformly approximated by a test function with bounded support
with any desired accuracy: for any ε > 0 and any ϕ ∈ S one can find
φ ∈ D such that

sup |ϕ− φ| < ε

32.1.2. Space of slowly increasing smooth functions. Recall that the prod-
uct of a test function with bounded support with a smooth function is
a test function with bounded support. This property does not hold for
the space S. For example, ϕ(x) = e−x2 ∈ S(R) and a(x) = e2x2 ∈ C∞,

but the product a(x)ϕ(x) = ex2

is not in S. Let us describe a subset of
smooth functions whose product with a test function from S is a func-
tion from S. Since any function from S cannot grow faster than any
reciprocal power function with increasing |x|, the growth of a smooth
function in the product must be restricted by the growth of a power
function. Define a subset OM ⊂ C∞ as a collection of functions whose
derivatives cannot grow faster than a power function with |x| → ∞:

a ∈ OM : a ∈ C∞ , |Dβa(x)| ≤ Cβ

(

1 + |x|
)mβ

for some constant Cβ and mβ ≥ 0. Here x ∈ R
N . Then

a(x)ϕ(x) ∈ S , a ∈ OM , ϕ ∈ S
The linear space OM will be called a space of slowly increasing smooth
functions.

32.2. Linear and continuous transformations of S . A linear transforma-
tion T of S(RN ) into S(RM) is continuous if it maps a null sequence in
S(RN) to a null sequence in S(RM). The results of Sec.?? are readily
extended to the space of temperate test functions.

32.2.1. Differentiation in S . Differentiation is a linear and continuous
transformation of S into itself:

T : ϕ ∈ S → Dαϕ ∈ S .
If ϕ is a test function from S, then any its partial derivative is also a
test function, Dαϕ ∈ S. Linearity of this transformation is obvious. If
ϕn is a null sequence in S, then Dαϕn is also a null sequence because

lim
n→∞

sup |xpDα+qϕn(x)| = 0

for any non-negative p and q.
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32.2.2. Multiplication by a slowly increasing smooth function. Let

T : ϕ ∈ S → T (ϕ) = aϕ ∈ S

where a ∈ OM . Then T is linear and continuous. The assertion follows
from the binomial expansion of the derivatives of a product and the
characteristic properties of functions from OM , similarly to the case of
multiplication of test functions from D by a smooth function discussed
earlier. Linearity is obvious. Let ϕn be a null sequence in S. Then
|xpDγ(aϕn)| does not exceed a linear combinations of terms

|xpDβaDαϕn| ≤ Cβ(1 + |x|)mβ |xpDαϕn(x)|

where α+ β = γ. Each such term converges uniformly to zero because
sup |xqDαϕn| → 0 for any α and q.

32.2.3. Affine transformations of the argument. Let

T : ϕ(x) ∈ S → T (ϕ)(x) = ϕ(Ax+ b) ∈ S

where detA 6= 0. Then T is linear and continuous. The assertion
follows from the chain rule and its proof is left to the reader as an
exercise.

32.2.4. Convolution transformations. Let

T : ϕ ∈ S → T (ϕ) = ω ∗ ϕ ∈ S

where ω ∈ S is a temperate test function. Then T is linear and contin-
uous. The function ω(y)ϕ(x − y) is Lebesgue integrable with respect
to y because it falls off faster than any reciprocal power as |y| → ∞
and it is from class C∞ in the variable x. So the convolution

(ω ∗ ϕ)(x) =

∫

ω(y)ϕ(x− y) dNy

exists and is from class C∞ because the derivatives of the integrand
have an integrable bound independent of x:

|ω(y)Dα
xϕ(x− y)| ≤ Mα|ω(y)| ∈ L , Mα = sup |Dαϕ|

Next, one has to show that |x|α|(ω ∗ ϕ)(x)| → 0 as |x| → ∞. This
would mean that ω ∗ ϕ ∈ S. To this end, note that for any y, ϕ(x− y)
is a temperate test function so that |x|αDβϕ(x− y)| → 0 as |x| → ∞.
To interchange the order of the limit |x| → ∞ and the integration with
respect to y, it is sufficient show that the integrand has a Lebesgue in-
tegrable bound independent of x and the conclusion would follow from
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the Lebesgue dominated convergence theorem. Using the binomial ex-
pansion, the required bound is obtained

|x|α|ω(y)ϕ(x− y)| ≤
(

|y|+ |x− y|
)α

|ω(y)ϕ(x− y)|

≤
α

∑

β=0

Cα
βMβ |y|α−β|ω(y)| ∈ L ,

where Mβ = sup |z|β|ϕ(z)|, and Cα
β are the binomial coefficients.

The linearity of T follows from the linearity of the integral. Let ϕn

is a null sequence in S, then its image is also a null sequence:

|xαDγT (ϕn)| ≤
α

∑

β=0

Cα
β

∫

|y|α−β|ω(y)| dNy sup |zβDγϕn|

where the identity xα = (y + (x − y))α = (y + z)α and its binomial
expansion were used again. This inequality holds for all x and by
taking the supremum in the left-hand side, it is concluded that the
convergence ϕn → 0 in S implies the convergence T (ϕn) → 0 in S.

32.2.5. Transformation of S into D. Consider a transformation of S
defined by the rule

T : ϕ ∈ S → T (ϕ)(x) = ω(x)ϕ(x) ∈ D

where ω ∈ D. This transformation is linear and continuous. Let ϕn be
a null sequence in S, then supports of all T (ϕn) lies in one ball that
contains the support of ω. By the binomial expansion, the derivatives
DγT (ϕn) are bounded by a linear combination of terms

|Dαω(x)Dβϕn(x)| ≤ sup |Dαω| sup |Dβϕn|

where α+ β = γ. Therefore if ϕn → 0 in S, then T (ϕn) → 0 in D.

32.2.6. Injection of D into S . Consider a linear transformation of D
into S defined by the injection

T : ϕ ∈ D → T (ϕ) = ϕ ∈ S

Then T is continuous because the convergence ϕn → 0 in D implies
the convergence T (ϕn) = ϕn → 0 in the topology of S (see Sec.32.1.1).
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32.3. Temperate distributions. A linear continuous functional on the
Schwartz space is called a temperate distribution. A space of all tem-
perate distributions is denoted by S ′:

f : S → R

(f, c1ϕ1 + c2f2) = c1(f, ϕ1) + c2(f, ϕ2)

ϕn → ϕ in S ⇒ lim
n→∞

(f, ϕn) = (f, ϕ) .

Note that the space S is larger than the space D and, hence, not
every distribution from D′ can be extended from D to S, just like for
ordinary functions, a rule to find the value of the function in an interval
cannot always be extended to the whole real axis. For example, f(x) =
ex is a regular distribution from D′ and its action on a test function ϕ
is defined by the integral of the product exϕ(x) which exists thanks to
the boundedness of the support of ϕ. If ϕ ∈ S, then the product exϕ(x)
is not integrable in general because ϕ(x) can, for example, decrease as
e−x/2 as x → ∞. Therefore f(x) = ex is not a temperate distribution,
f /∈ S ′. The term “temperate” refers to regular distributions with
somewhat moderate growth.

On the other hand, every temperate distribution can be reduced to
the domain D ⊂ S. Thus,

S ′ ⊂ D′ .

The reduction of f ∈ S ′ on D can be viewed as the adjoint transfor-
mation T ∗ : S ′ → D′ of the injection T : D → S defined by T (ϕ) = ϕ
(see Sec.32.2.6):

(T ∗(f), ϕ) = (f, T (ϕ)) = (f, ϕ) , ϕ ∈ D

By linearity and continuity of T , T ∗(f) is a linear and continuous func-
tional on D, i.e., T ∗(f) ∈ D′. Furthermore, If fn → f in S ′, then
this distributional sequence also converges in the topology of the larger
space D′ because T ∗(fn) → T ∗(f) in D′ by continuity of the adjoint
transformation.

32.3.1. Support of a temperate distribution. Since any temperate dis-
tribution f ∈ S ′ can always be reduced on D(Ω) for any open Ω, the
support of f is defined in the same way as the support of distributions
from D′. A temperate distribution f is said to vanish in an open set Ω
if (f, ϕ) = 0 for any ϕ ∈ D(Ω). The support of f is the complement of
the largest open set on which f(x) = 0.
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32.3.2. Delta function as a temperate distribution. The delta-function is
a linear functional on S:

(δ, ϕ) = ϕ(0) , ϕ ∈ S
It is also continuous. Indeed, the convergence ϕn → 0 in S implies
that ϕn converges to 0 uniformly and, hence, ϕn(0) → 0 as n → ∞.
Therefore δ ∈ S ′.

32.3.3. The principal value distribution. Let us show that the principal
value distribution is a temperate distribution. For any test function
ϕ ∈ S, put

ψ(x) =
ϕ(x) − ϕ(0)

x
Then ψ(x) ∈ C∞. It follows that
(

P 1

x
, ϕ

)

= lim
a→0+

∫

|x|>a

ϕ(x)

x
dx = lim

a→0+

(
∫

a<|x|<R

+

∫

|x|>R

)

ϕ(x)

x
dx

= lim
a→0+

(
∫

a<|x|<R

ϕ(x)− ϕ(0)

x
dx+

∫

|x|>R

ϕ(x)

x
dx

)

=

∫

|x|<R

ψ(x) dx+

∫

|x|>R

ϕ(x)

x
dx

This shows that P 1
x

is a linear functional on S. Let ϕn is a null sequence
in S. This implies, in particular, that

Mn = sup |x||ϕn(x)| → 0 , M ′
n = sup |ϕ′

n| → 0

as n→ ∞ The former, in turn, implies that

|ϕn(x)| ≤ Mn

|x| , |x| > R > 1

Therefore
∣

∣

∣

∫

|x|>R

ϕn(x)

x
dx

∣

∣

∣
≤ 2Mn

∫ ∞

R

dx

x2
=

2Mn

R
→ 0

as n → ∞. Next, ψn(x) = (ϕn(x) − ϕn(0))/x = ϕ′
n(xn) for some xn

between 0 and x. Hence, |ψn(x)| ≤ sup |ϕ′
n| for all |x| < R. Therefore

∣

∣

∣

(

P 1

x
, ϕn

)
∣

∣

∣
≤

∣

∣

∣

∫

|x|<R

ψ(x) dx
∣

∣

∣
+

∣

∣

∣

∫

|x|>R

ϕ(x)

x
dx

∣

∣

∣

≤ 2RM ′
n +

2Mn

R
→ 0

as n→ ∞. Thus, the principal value functional is continuous on S.
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32.3.4. Extension of distributions with bounded support to S .

Proposition 32.2. Any distribution from D′ that have a bounded
support can be uniquely extended to S and, hence, defines a temperate
distribution, by the rule

(f, ϕ) = (f, ηfϕ) , ϕ ∈ S
where ηf is any test function from D such that ηf (x) = 1 in a neigh-
borhood of the support of f .

This assertion follows from that the extension rule is nothing but the
adjoint transformation T ∗ : D′ → S ′ of the transformation T : S → D
defined in Sec.32.2.5 where ω = ηf . Indeed, by the definition of the
adjoint transformation

(T ∗(f), ϕ) = (f, T (ϕ)) = (f, ηfϕ) .

By linearity and continuity of T , the adjoint is also linear and con-
tinuous and, hence, defines a temperate distribution. The distribution
T ∗(f) does not depend on the choice of ηf because (f, (ηf − η′f)ϕ) = 0
for any two test functions ηf and η′f that take unit value in a neigh-
borhood of the support of f .

32.3.5. On an extension of a distribution to S . Not every distribution
from D′ has a continuous extension to the larger set of test functions
S. Since the space D is dense in S (see Proposition 32.1), a continuous
extension of a functional f can be obtained by

(f, ϕ) = lim
n→∞

(f, φn) , {φn} ⊂ D , φn → ϕ in S ,

provided the limit exists for any ϕ ∈ S and is independent of the
choice of the sequence {φn}. If f has a bounded support, then this
limit process reproduces the extension rule stated in Proposition 32.2.
If the limit does not exist for a particular choice of the sequence or it
exists for any two sequences but has different values, then f cannot be
extended to S because it does not define a continuous functional on S.

To illustrate this assertion, let f(x) = ex. As noted earlier, f is
a regular distribution in D′ but not in S ′. Let η(x) ≥ 0 be a test
function of one real variable x with support in |x| < 1. Consider a
sequence φn(x) = Mnη(x− n). Then

|Dβη(x− n)| ≤ sup |Dβη(x)| = Cβ

for all n and x, and therefore

|x|α|Dβφn(x)| ≤Mn(n+ 1)α|Dβη(x− n)| ≤ CβMn(n+ 1)α
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for all x, where the first inequality follows from that the support of
η(x− n) lies in |x− n| < 1. Therefore if Mnn

α → 0 for any α ≥ 0 as
n→ ∞, then φn → 0 in S, and for any such φn

(f, φn) =

∫

exφn(x) dx = Mn

∫

exη(x− n) dx

= Mne
n

∫

exη(x) dx = CMne
n .

If f had a continuous extension to S, then the sequence (f, φn) should
converge to zero for any Mn that decreases faster than any reciprocal
power of n with increasing n. This is not so. The limit depends on the
choice of the sequence. For example, if Mn = e−2n, then Mne

n → 0,
but if Mn = e−n, then Mne

n → 1 or, if Mn = e−
√

n, then Mne
n → ∞.

Thus, f cannot be extended to S.

32.4. Differentiation of temperate distributions. Differentiation is a lin-
ear continuous transformation of S onto itself as shown in Sec.32.2.1.
Therefore the adjoint transformation of any f ∈ S ′, denoted by Dαf ,
is a temperate distribution defined by the rule

(Dαf, ϕ) = (−1)α(f,Dαϕ)

It is called the derivative of f . Clearly, all properties of differentiation
on D′ are readily extended to S ′. In particular, if f ∈ D′ has an exten-
sion to S, then Dαf also have extensions to S and the derivatives of
the extension are equal to extensions of the corresponding derivatives,
that is, if (Dαf)s ∈ S ′, α ≥ 0, is an extension of Dαf ∈ D′, then

Dα(f)s = (Dαf)s .

For example, 1
|x| defines a regular temperate distribution in R

3, that is,

( 1
|x|)s = 1

|x| , so that Eq. (21.13) holds in S ′, too.

32.5. Multiplication by a slowly increasing smooth function. Multiplica-
tion of tests functions by a slowly increasing smooth function is a linear
continuous transformation (see Sec. 32.2.2). Therefore its adjoint is a
linear continuous transformation on the space of tempered distribution.
If f ∈ S ′ and a ∈ OM , then the product af is a tempered distribution
defined by the adjoint rule

(af, ϕ) = (f, aϕ) , ϕ ∈ S
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Since Dαa ∈ OM , the Leibniz rule for differentiation also holds for
tempered distributions:

Dα(af) =
∑

β≤α

(

α

β

)

Dα−βaDβf , f ∈ S ′ , a ∈ OM .

Any bump function η for a set Ω is from class OM (a C∞ function
whose values are between 0 and 1 and η(x) = 1 in a neighborhood of
Ω). If ηf is a bump function for the support of a temperate distribution
f , then

f(x) = ηf(x)f(x) .

32.6. Regular temperate distributions and their derivatives. Any bounded
function |f(x)| ≤ M defines a regular temperate distribution

(f, ϕ) =

∫

f(x)ϕ(x) dNx

because |f(x)ϕ(x)| ≤ M |ϕ(x)| is Lebesgue integrable. Continuity of
this functional follows from the inequality

|ϕn(x)| ≤
Mn

1 + |x|α , Mn = sup |(1 + |x|α)ϕn(x)|

Indeed, if ϕn → 0 in S, then Mn → 0 as n → ∞ for any α > 0. By
taking α > N + 1, it is concluded that

|(f, ϕn)| ≤ M

∫

|ϕn(x)| dNx ≤ MMn

∫

dNx

1 + |x|α = CMMn → 0

as n→ ∞, where C is the value of the integral for α > N + 1.
Furthermore, any locally integrable function f defines a regular

temperate distribution if it grows no faster than a power function

|f(x)| ≤ M(1 + |x|p) , |x| > R .

In this case, for any temperate test function ϕ, the integral
∫

|x|>R

|f(x)||ϕ(x)| ≤M

∫

|x|>R

(1 + |x|p)|ϕ(x)| dNx <∞

exists because ϕ(x) decreases faster than any power function as |x| →
∞. Therefore the integral

(f, ϕ) =

∫

f(x)ϕ(x) dNx

converges absolutely and defines a linear continuous functional on S.
However one should not get an impression that locally integrable

functions that grow faster than any power function cannot define a
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tempered distribution. Note that any such function defines a regu-
lar distribution from D′ and some of such distributions can have an
extension to S. As an example, put f(x) = ex cos(ex). Then |f(x)|
grows exponentially as x → ∞. Nonetheless this regular distribution
in D′ can be extended to S. Let φn be a sequence of test functions
from D that converges to ϕ ∈ S in the topology of S. Differentiation
is continuous on S so that φ′

n → ϕ′ in S. Since f(x) = g′(x) where
g(x) = sin(ex), using integration by parts

(f, φn) =

∫ R

−R

f(x)φn(x) dx = −
∫ R

−R

g(x)φ′
n(x) dx = −(g, φ′

n)

because the support of any φn is bounded (R can depend on n). Since
g(x) is bounded, it defines a regular tempered distribution. Therefore
by continuity of the functional g on S

(f, ϕ) = lim
n→∞

(f, φn) = − lim
n→∞

(g, φ′
n) = −(g, ϕ′)

= −
∫ ∞

−∞
sin(ex)ϕ′(x) dx

and the limit exists for any ϕ ∈ S and does not depend on the choice
of {φn} ⊂ D. It defines a linear continuous functional on S and its
reduction on D coincides with f(x). Note that the integration by parts
is not permitted in the last integral if ϕ ∈ S but permitted if ϕ ∈ D.

32.7. General structure of temperate distributions. The analysis given
at the very end of the previous section can be extended to define a
large class of distributions from D′ that can be extended to S. A
temperate continuous function is a continuous function which grows no
faster than a power function:

g ∈ C0 , |g(x)| ≤M(1 + |x|p) , x ∈ R
N

for some constants M and p > 0. Then any temperate continuous
function defines a regular temperate distribution:

(g, ϕ) =

∫

g(x)ϕ(x) dNx , ϕ ∈ S .

Any such function is also a regular distribution from D′ and, hence,
the distributional derivatives Dαg are also from D′. The derivatives
can be extended to S. Let ϕ ∈ S. Put

(Dαg, ϕ)
def
= (−1)α(g,Dαϕ) = (−1)α

∫

g(x)Dαϕ(x) dNx .
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By linearity and continuity of differentiation on S, this rule defines a
linear continuous functional on S. This is an extension of Dαg ∈ D′ to
S. If g is from C∞, the integration by parts is not permitted if ϕ ∈ S
because the derivativesDαg are not temperate functions, in general, as
shown in the previous section. However, if ϕ ∈ D, then the integration
by parts is permitted and the distributional and classical derivatives of
g coincide in D′.

The analysis shows any distribution from D′ that is a sum of deriva-
tives of temperate continuous functions can be extended to S and de-
fines a tempered distribution. It turns out that the converse is also
true. In other words, any tempered distribution can be written in this
form.

Theorem 32.1. (L. Schwartz)
For any temperate distribution f , there exist temperate continuous func-
tions gα that vanish outside a neighborhood of the support of f of arbi-
trary small radius, and

f(x) =
∑

α≤p

Dαgα(x)

for some integer p ≥ 0.

Thus, for any f ∈ S ′ one can find a finite collection of temperate
continuous functions such that

(f, ϕ) =
∑

α≤p

(−1)α

∫

gα(x)Dαϕ(x) dNx

The Schwartz theorem 32.1 is also known as the structure for temper-
ate distributions. Note that singular distributions like delta functions,
principal value distributions, and Sokhotsky type singular distributions
are tempered distributions and, hence, can be written as a linear com-
binations of distributional derivatives of continuous functions. Practi-
cally, all distributions used quantum field theory and Green’s functions
for linear differential operators are of this type! A proof of Theorem
32.1 is based on another theorem due to L. Schwartz

Theorem 32.2. In order for a linear functional f on S to be con-
tinuous (to be a temperate distribution) it is necessary and sufficient
that for any test function ϕ ∈ S there exists an number C > 0 and an
integer p such that

|(f, ϕ)| ≤ C sup
α≤p, x

[

(1 + |x|)p|Dαϕ(x)|
]

.
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32.7.1. Completeness of the space of tempered distributions. Using the
Schwartz theorem one can show that the space S ′ is complete. Let {fn}
be a sequence of temperate distributions such that (fn, ϕ) converges for
any test function ϕ ∈ S. Then the functional f defined by the rule

(f, ϕ) = lim
n→∞

(fn, ϕ)

is linear and continuous on S, that is, f is a temperate distribution.

32.8. Topology in S ′. A sequence of temperate distributions is said to
converge to a temperate distribution if for any test function from S the
numerical sequence of values of terms of the sequence converges to the
value of the limit distribution on the test function:

fn → f in S ′ : lim
n→∞

(fn, ϕ) = (f, ϕ) , ∀ϕ ∈ S

It follows from this definition that the convergence in S ′ implies con-
vergence in D′:

fn → f in S ′ ⇒ fn → f in D′ .

Indeed, recall that the injection of D into S is linear and continuous
(see Sec.32.2.6). Therefore its adjoint T ∗ : S ′ → D′ is reduction of any
temperate distribution on D, and T ∗ must also be linear and continu-
ous. For any test function ϕ ∈ D (so that T (ϕ) ∈ S)

lim
n→∞

(T ∗(fn), ϕ) = lim
n→∞

(fn, T (ϕ)) = (f, T (ϕ)) = (T ∗(f), ϕ)

which means that the convergence fn → f in S ′ implies that conver-
gence of the reduction of fn on D to the reduction of f on D, that is,
T ∗(fn) → T ∗(f).

32.8.1. Example. Let us show that

sin(nx)

x
→ πδ(x) in S ′(R) as n→ ∞ .

Put fn(x) = sin(nx)/x. Then |fn(x)| ≤ n is bounded for any n and,
hence, defines a regular temperate distribution. Consider the sequence

Fn(x) =

∫ x

0

fn(y) dy =

∫ nx

0

sin(z)

z
dz .

For every n, Fn ∈ C1 is continuously differentiable function and F ′
n(x) =

fn(x). Its pointwise limit reads

lim
n→∞

Fn(x) =
π

2
sign (x) , Fn(0) = 0
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Therefore Fn(x) is a bounded sequence |Fn(x)| ≤ M and M is inde-
pendent of n (recall also Abel’s theorem about conditionally convergent
integrals in this regard). By integrating by parts one infers that

(fn, ϕ) =

∫

fn(x)ϕ(x) dx =

∫

ϕ(x) dFn(x) = −
∫

Fn(x)ϕ
′(x) dx

the boundary terms vanish because ϕn vanishes at infinity and Fn is
bounded. Since the integrand is bounded by an integrable function

|Fn(x)ϕ
′(x)| ≤ M |ϕ′(x)| ∈ L

that is independent of n, by the Lebesgue dominated convergence the-
orem

lim
n→∞

(fn, ϕ) = −π
2

∫

sign (x)ϕ′(x) dx

=
π

2

∫ 0

−∞
ϕ′(x) dx− π

2

∫ ∞

0

ϕ′(x) dx

= πϕ(0) = π(δ, ϕ)

Thus, fn → δ in S ′.

32.9. Direct product of temperate distributions. The direct product of
temperate distributions is defined in the same way as the direct product
of distributions from D′. First, one has to construct a linear continuous
transformation of temperate test functions of two variables to the space
of temperate test functions of one variable induced by a temperate
distribution. Then its adjoint defines the direct product of temperate
distributions.

32.9.1. Reduction of variables in temperate test functions. Let g(y) ∈
S ′(RM ). Consider the transformation

(32.1) Tg : ϕ(x, y) ∈ S(RN+M ) → Tg(ϕ)(x) =
(

g(y), ϕ(x, y)
)

.

Proposition 32.3. The transformation (32.1) is a linear and con-
tinuous transformation of S(RN+M) into S(RN ) and

(32.2) DαTg(ϕ)(x) =
(

g(y), Dα
xϕ(x, y)

)

Using the same line of arguments as in the proof of Proposition 19.2,
one shows that Tg(ϕ) ∈ C∞ and (32.2) holds. Next, one has to show
that Tg(ϕ) is a temperate test function, that is, DαTg(ϕ) decreases to
zero faster than any reciprocal power function as |x| → ∞ for all α ≥ 0.
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By Theorem 32.2 applied to g, there exist numbers p ≥ 0 and C > 0
such that

|xγDαTg(ϕ)| =
∣

∣

∣
xγ

(

g(y), Dα
xϕ(x, y)

)
∣

∣

∣

≤ C sup
y,β≤p

(1 + |y|)p|xγDβ
yD

α
xϕ(x, y)|

Since Dβ
yD

α
xϕ(x, y) decreases to zero faster than any reciprocal power

function of two variables x and y, the limit of the left-hand side is zero
when |x| → ∞. Thus, Tg(ϕ) ∈ S.

Let us prove continuity of Tg. Let ϕn be a null sequence in S(RN+M ).
One has to show that its image Tg(ϕn) is a null sequence in S(RN ).
By replacing in the above inequality Tg(ϕ) by Tg(ϕn) and taking the
supremum over x in the right-hand side, it is concluded that

|xγDαTg(ϕn)| ≤ Mn = C sup
x,y,β≤p

(1 + |y|)p|xγDβ
yD

α
xϕn(x, y)| → 0

as n → ∞ for any non-negative α and γ by the definition of conver-
gence ϕn → 0 in S(RN+M ). This implies that xγDαTg(ϕn) converges
uniformly to zero as n→ ∞ for any γ and α, or Tg(ϕn) → 0 in S(RN ).

Consider the adjoint transformation T ∗
g . It is a linear continuous

transformation of S ′(RN ) into S(RN+M) defined by the rule

(T ∗
g (f), ϕ) = (f, Tg(ϕ)) =

(

f(x),
(

g(y), ϕ(x, y)
))

.

The tempered distribution of two variables defined by this rule is called
the direct product of tempered distributions f(x) and g(x):

T ∗
g (f)(x, y) = f(x) · g(y) .

By construction, it is a linear and continuous functional on S(RN+M ).

Proposition 32.4. (Properties of the direct product in S ′)
The direct product is commutative and associative in S ′:

f(x) · g(y) = g(y) · f(x)

(f(x) · g(y)) · h(z) = f(x) · (g(y) · h(z))
for any tempered distributions f , g, and h of independent variables x,
y, and z spanning Euclidean spaces.

A proof of this assertion follows from the commutativity and as-
sociativity of the direct product in D′. Since D is dense in S for any
ϕ(x, y) ∈ S there exists a sequence ϕn(x, y) ∈ D that converges to
ϕ(x, y) in S. Therefore for any ϕ ∈ S,

(f · g, ϕ) = lim
n→∞

(f · g, ϕn) = lim
n→∞

(g · f, ϕn) = (g · f, ϕ)
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and similarly for the associativity.
In particular, f(x) · 1(y) = 1(y) · f(x) implies that

(32.3)
(

f(x),

∫

ϕ(x, y) dMy
)

=

∫

(

f(x), ϕ(x, y)
)

dMy

for any test function of two variables ϕ.
Owing to the commutativity and associativity, in what follows, the

dot indicating the direct product is often omitted. For example

δ(x) = δ(x1) · δ(x2) · · · δ(xn) = δ(x1)δ(x2) · · · δ(xn) , x ∈ R
N

θ(x) · δ(y) = θ(x)δ(y) , x, y ∈ R .

32.10. Convolution of temperate distributions. Suppose that f and g are
temperate distributions so they can always be reduced to the subspace
D ⊂ S. Suppose that their convolution f ∗ g exists in D′. Then their
convolution in S ′ can be defined as an extension of f ∗ g to S. As
was shown, not every distribution from D′ can be extended. So, the
question is: Under what conditions f ∗ g ∈ S ′ and the convolution
transformation f ∈ S ′ → f ∗ g ∈ S ′ is continuous? This is a difficult
question in general. It turns out that for all three important cases in
which the convolution exists in D′ covered by Theorems 31.1, 31.2, and
43.1 the answer to this question is affirmative.

32.10.1. Convolution with distributions with bounded support. By Propo-
sition 32.2 any distribution g ∈ D′ with bounded support has an exten-
sion to S, and the convolution any two distributions one of which has a
bounded support always exists in D′. It turns out that this convolution
is also a tempered distribution.

Theorem 32.3. Let f and g be temperate distribution and the sup-
port of g be bounded. Then the convolution f ∗ g is a temperate distri-
bution defined by the rule

(f ∗ g, ϕ) =
(

f(x) · g(y), η(y)ϕ(x+ y)
)

, ϕ ∈ S ,
where η is any test function from D that has unit value in a neighbor-
hood of supp g. Furthermore, the convolution is continuous with respect
to both arguments, that is,

fn → f in S ′ ⇒ fn ∗ g → f ∗ g in S ′

gn → g in D′ ⇒ f ∗ gn → f ∗ g in S ′

By Theorem 31.1 the convolution f ∗ g exists in D′ and is defined
by the same rule where ϕ ∈ D. One has to show that the rule can
be extended to S and defines a linear continuous functional on S. Let
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ϕ ∈ S. Then η(y)ϕ(x+y) ∈ S(R2N) is a temperate test function of two
variables. Indeed, for any given x, this function vanishes for all large
enough y (by the properties of η(y)), and for any given y, it and all
its derivatives are decreasing faster than any reciprocal power function
(by the properties of ϕ(x+ y)). So, by linearity of the direct product,
the convolution is a linear functional on S(RN ). To show continuity,
let ϕn → 0 in S(RN ). Then η(y)ϕn(x+y) → 0 in S(R2N). Indeed, one
has

sup |zαyβDγη(y)Dδϕn(z)| ≤ Mβγ sup |zαDδϕn(z)| → 0

whereMβγ = sup |yβDγη(y)|, because ϕn → 0 in S. Using the binomial
expansion of xα = (z − y)α and of the derivative Dγ of the product,
one infers that that above uniform convergence implies that

lim
n→∞

sup |xαyβDγ(η(y)ϕn(x+ y))| = 0

for any α, β, and γ, as required. Thus, f ∗ g ∈ S ′. The direct prod-
uct of two temperate distributions is the adjoint transformation for
(32.1). So, the convolution is continuous by continuity of the adjoint
transformation.

32.10.2. Convolution algebra S ′
+. Put S ′

+ = D′
+∩S ′, that is, S ′

+ consists
of all temperate distributions of one variable whose reduction on D is a
distribution from D′

+. Theorem 31.2 describes the convolution in D′
+.

Then the convolution of any two distributions f and g from S ′
+ can be

extended to S by

(32.4) (f ∗ g, ϕ) =
(

f(t) · g(τ ), η1(t)η2(τ )ϕ(t+ τ )
)

, ϕ ∈ S ,

where η1,2 are any bump functions for the half-line [0,∞), and the
convolution is continuous, that is,

fn → f in S ′ ⇒ fn ∗ g → f ∗ g in S ′

where the sequence fn, its limit f , and g are from S ′
+. In other words,

Theorem 31.2 holds for all tempered distributions whose support lies
in a half-line. In this sense, S ′

+ is the convolution subalgebra of D′
+.

A proof of this assertion goes along the same lines as the proof
of Theorem 32.3. For any temperate test function ϕ(t) of one vari-
able, the function η1(t)η2(τ )ϕ(t + τ ) is a temperate test function of
two variables so that the convolution is a linear functional on S be-
cause so is the direct product. The convergence ϕn → 0 in S, that is,
sup |tαDβϕ(t)| → 0 as n→ ∞, implies that

lim
n→∞

sup |tατβDγ(η1(t)η2(τ )ϕn(t+ τ ))| = 0 .
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So, f ∗ g ∈ S ′. Finally, (f ∗ g, ϕ) = 0 for any ϕ ∈ D whose support lies
in (−∞, 0). This means that (f ∗ g)(x) = 0 in (−∞, 0) or f ∗ g ∈ S ′

+.
The continuity of the convolution follows from the continuity of the
direct product.

32.10.3. Convolution of tempered distributions with support in a light cone.

Let f(x, t) and g(x, t), x ∈ R
N and t ∈ R be temperate distributions

such that

f(x, t) = 0 , t < 0 , supp g ⊆ Γ+

where Γ+ is the positive light cone, ct > |x| and t > 0 for some c > 0.
Then the convolution of their reductions on D exists in D′ by Theorem
43.1. Then the convolution can be extended to S by the rule (43.1)
where ϕ ∈ S(RN+1), and f ∗ g = g ∗ f is continuous with respect to
both arguments:

fn → f in S ′ ⇒ fn ∗ g → f ∗ g in S ′

gn → f in S ′ ⇒ f ∗ gn → f ∗ g in S ′

where supp gn ⊆ Γ+ and fn(x, t) = 0, t < 0, for all n. A proof of this
assertion is similar to the previous case in Sec.32.10.2. Put

T (ϕ)(x, t) = η(t)η(τ )η(c2τ 2 − |y|2)ϕ(x+ y, t+ τ )

where η is defined in Theorem 43.1. One has to show that T is a linear
continuous transformation of S into S, that is

ϕ ∈ S ⇒ T (ϕ) ∈ S
ϕn → 0 in S ⇒ T (ϕn) → 0 in S

while the linearity of T is evident. The technical details are left to
the reader as an exercise. Once these properties of T are established,
that is, f ∗ g ∈ S ′, the continuity of the convolution follows from the
continuity of the direct product in S ′.

32.10.4. Convolution with a test function. Let ω ∈ S and f ∈ S ′. Then
ω and f can be viewed as distributions from D′. Their convolution in
D′ can be found by the limit process defined in Sec.30.3, provided the
limit exists. Then one can try to extend the convolution ω ∗ f to S.

Proposition 32.5. If ω ∈ S and f ∈ S ′, then the convolution ω∗f
exists in S ′ and is defined by the rule

(ω ∗ f, ϕ) = (f, ψ) , ψ(x) =

∫

ω(y)ϕ(x+ y) dNy .
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The convolution is continuous

fn → f in S ′ ⇒ ω ∗ fn → ω ∗ f in S ′

ωn → ω in S ⇒ ωn ∗ f → ω ∗ f in S ′

Furthermore the convolution is a regular tempered distribution defined
by a function from OM

(ω ∗ f)(y) = (f(x), ω(y − x)) , Dβ(ω ∗ f)(y) = (f(x), Dβ
yω(y − x))

for all β > 0.

First, note that ψ(y) = T (ϕ)(y) where T is the convolution trans-
formation of S into S induced by a test function ω(−x). In Sec.32.2.4,
this transformation is proved to be linear and continuous. Therefore
the adjoint T ∗(f) is a temperate distribution for any f ∈ S ′ that is
defined by the rule

(T ∗(f), ϕ) = (f, T (ϕ)) = (f, ψ) ⇒ T ∗(f) = ω ∗ f .

Furthermore, T ∗ is a linear continuous transformation so that T ∗(fn) →
T ∗(f) in S ′ if fn → f in S ′. If ωn(x) → ω(x) in S, then ωn(−x)
converges to ω(−x) because non-singular linear transformations of the
argument are linear and continuous transformations on S. So, ψn(x) =
ωn(−x) ∗ ϕ(x) → ω(−x) ∗ ϕ(x) = ψ(x) in S by continuity of the
convolution transformation induced by a test function ϕ. By continuity
of the functional f , (f, ψn) → (f, ψ) and, hence, ωn ∗ f → ω ∗ f in S ′.

Second, note that ω(y)ϕ(x+ y) ∈ S(R2N) is a test function of two
variables. It is obtained from ω(y)ϕ(x) ∈ S(R2N) by a non-singular
linear transformation of the argument, y → y and x→ x+y. Therefore
by (32.3)

(ω ∗ f, ϕ) =
(

f(x),

∫

ω(z − x)ϕ(z) dNz
)

=

∫

(

f(x), ω(z − x)
)

ϕ(z) dNz ,

where the change of variables y = z−x has been done. This shows that
(ω ∗ f)(z) = (f(x), ω(z − x)) is a regular distribution. By Proposition
32.3 the integrand in the last integral is a test function. Therefore the
convolution is a smooth function. Let us calculate its derivatives. One
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has

(D(ω ∗ f), ϕ) = −(ω ∗ f,Dϕ) = −
(

f(x),

∫

ω(z − x)Dzϕ(z) dNz
)

=
(

f(x),

∫

Dzω(z − x)ϕ(z) dNz
)

=

∫

(

f(x), Dzω(z − x)
)

ϕ(z) dNz .

Therefore

Dα(ω ∗ f)(x) =
(

f(x), Dα
z ω(z − x)

)

.

Finally, let us show that ω ∗ f ∈ OM . By Theorem 32.2

|Dα(ω ∗ f)(x)| = |(f(y), Dα
xω(y − x))|

≤ C sup
β≤p,y

(1 + |y|)p|Dα
xD

β
yω(x− y)|

= C sup
β≤p,z

(1 + |x− z|)p|Dα+βω(z)|

≤ 2pC(1 + |x|)p sup
β≤p,z

(1 + |z|)p|Dα+βω(z)|

where the inequality (a+b)p ≤ 2papbp, a ≥ 1 and b ≥ 1, has been used to
obtain the last inequality. Therefore all derivatives of the convolution
are bounded by a power function, which means that the convolution is
a smooth slowly increasing function.

32.10.5. Example. Let ω(x) = e−|x|2 where x ∈ R
2 and f(x) = δC(x) is

a surface delta function with support on a circle |x| = a. Let us calcu-
late the convolution ω ∗ δC. Since ω is a test function, by Proposition
32.5

(ω ∗ δC)(x) =
(

δC(y), ω(x− y)
)

=

∫

|y|=a

ω(x− y) dsy

= ae−|x|2−a2

∫ π

−π

e−2a|x| cos(θ)dθ = 2πae−|x|2−a2

I0(2a|x|)

where the line integral is evaluated using a parameterization in which
(x, y) = |x||y| cos(θ) = a|x| cos(θ), dsy = adθ, and I0(z) is the modified
Bessel function. Note that I0 is analytic and its power series repre-
sentation contains only even powers. Therefore the convolution is an
analytic function of |x|2 and, hence, from C∞(R2). For large values of
the argument I0(z) = (2πz)−1/2ez(1+O(1

z
)). Therefore the convolution

is from S ⊂ OM .
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32.11. Regularization of temperate distributions. Suppose that ωn is a
sequence of test functions from D such that their supports are in a ball
BR for all n and ωn → δ in D′. Then ωn are regular distributions that
can be extended to S because they have a bounded support. Then by
Theorem 32.3

ωn ∗ f → δ ∗ f = f in S ′

for any temperate distribution f . By Proposition 32.5

fn(x) = (ωn ∗ f)(x) = (f(y), ωn(x− y)) ∈ OM .

So, any temperate distribution can be viewed as a distributional limit
of a sequence of smooth slowly increasing functions. This also means
that OM is dense in the space of temperate distributions. Furthermore,
for any η ∈ OM ,

e−ε|x|2η(x) → η(x) in S ′

as ε → 0+. This implies that the subspace of regular temperate dis-
tributions defined by test functions is dense in OM ⊂ S ′, and, hence,
S is dense in S ′. So, for any temperate distribution f one can find a
sequence of test functions that converges to f in S ′. For example, one
can take fε(x) = e−ε|x|2(ωε ∗ f)(x) where ωε is the hat function. Then
fε ∈ S and fε → f in S ′ as ε → 0+.

32.12. Exercises.

1. Let {an} be a numerical sequence. Consider the series

∞
∑

n=1

anδ(x− n)

(i) Show that the series converges in D′ but not necessarily in S ′. Give
an example of an such that the series does not converge in S ′.

(ii) Show that the series converges in S ′ if

|an| ≤ Mnp

for some p > 0.

2. Show that the distribution P 1
|x| ∈ D′(R),

(

P 1

|x| , ϕ
)

=

∫

|x|<1

ϕ(x) − ϕ(0)

|x| dx+

∫

|x|>1

ϕ(x)

|x| dx
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has an extension to S defined by the same rule with ϕ ∈ S.

3. Show that the distribution P 1
|x|2 ∈ D′(R2),

(

P 1

|x|2 , ϕ
)

=

∫

|x|<1

ϕ(x) − ϕ(0)

|x|2 d2x+

∫

|x|>1

ϕ(x)

|x|2 d2x

has an extension to S(R2) defined by the same rule with ϕ ∈ S.

4. Let C be a smooth curve in R
N and µ(x) be a continuous func-

tion. Suppose that C is not bounded but any ball contains a part of C
that has a finite length.
(i) Show that the linear functional µδC defined by the rule

(µδC, ϕ) =

∫

C

µ(x)ϕ(x) ds

is a distribution from D′(RN).
(ii) Show that the functional µδC does not generally have an extension
to S for arbitrary µ and C . Give an example of the density µ and a
smooth curve C for which µδC is not a temperate distribution. Show
that if there exists some k > 0 and p > 0 such that

∫

C

ds

1 + |x|k <∞ , |µ(x)| ≤M(1 + |x|p) ,

then µδC ∈ S ′.

5. Write the following distributions as a linear combination of dis-
tributional derivatives of continuous functions:
(i) δ(x), P 1

x
, P 1

|x| , where x ∈ R

(ii) ν(x)δSa(x) (the spherical delta function in R
N with density ν)

(iii) (|x|2 −m2 ± i0)−1 where x ∈ R
3.

6. Find the following convolutions in S ′ or show that they do not
exist:

(i) P 1

x
∗ δ′′(x) , x ∈ R

(ii) P 1

|x| ∗ δ
′(x) , x ∈ R

(iii) P 1

|x| ∗ [θ(x− a) − θ(x− b)] , x ∈ R , a < b

(iv) P 1

xn
∗ [θ(x− a)− θ(x− b)] , x ∈ R , a < b
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33. Fourier transform of distributions

33.1. Preliminaries. Let f be an integrable function on R
N :

∫

|f(x)| dNx <∞ .

Then its Fourier transform

F [f ](k) =

∫

ei(k,x)f(x) dNx

is a continuous function for all k ∈ R
N . Therefore f and F [f ] are

regular distributions in D′, and for any test function ϕ ∈ D

(F [f ], ϕ) =

∫

F [f ](k)ϕ(k) dNk =

∫ ∫

ei(k,x)f(x)ϕ(k) dNx dNk

=

∫ ∫

ei(k,x)f(x)ϕ(k) dNk dNx =

∫

f(x)F [ϕ](x) dNx

= (f,F [ϕ])

where the order of integration can be changed by Fubini’s theorem
because

∫ ∫

∣

∣

∣
ei(k,x)f(x)ϕ(k)

∣

∣

∣
dNx dNk =

∫

|f(x)| dNx

∫

|ϕ(k)| dNk <∞ .

The obtained relation defines the value of the regular distribution F [f ]
on a test function via the value of the original distribution f on the
Fourier transform of the test function.

If one wants to extend the Fourier transform of ordinary functions
(or regular distributions) to any distribution, then this rule looks ap-
propriate. However, the Fourier transform of a test function from D
does not belong to D

ϕ ∈ D ⇒ F [ϕ] /∈ D ,

because the function F [ϕ](k) does not vanish for all |k| > R and some
R. Therefore, the value (f,F [ϕ]) is not defined for all f ∈ D′. To make
the definition consistent, one has to expand the domain of distributions
so that the Fourier transform of any test function would also be a test
function. It turns out that the space of temperate test functions has
the required properties.

33.2. Fourier transform on S .

Proposition 33.1. The Fourier transform

F : ϕ ∈ S → F [ϕ] ∈ S
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is a linear and continuous transformation of S onto itself, and

DαF [ϕ](k) = F [(iD)βϕ](k)(33.1)

kβF [ϕ](k) = F [(iD)βϕ](k) .(33.2)

Let us first prove that F [ϕ] ∈ S. The function ei(k,x)ϕ(x) is from
C∞ in the variable k for any x and its derivatives have integrable
bounds independent of k:

|Dα
k e

i(k,x)ϕ(x)| ≤ |x|α|ϕ(x)| ∈ L

Therefore F [ϕ] ∈ C∞ and the order of differentiation and integration
can be interchanged:

DαF [ϕ](k) =

∫

Dα
k e

i(k,x)ϕ(x) dNx = F [(ix)αϕ](k) .

Using the integration by parts

kβF [ϕ](k) =

∫

(−iDx)
βei(k,x)ϕ(x) dNx =

∫

ei(k,x)(iD)βϕ(x) dNx

= F [(iD)βϕ](k) .

It follows from the established properties of the Fourier transform
that for any non-negative α and β

∣

∣

∣
kβDαF [ϕ](k)

∣

∣

∣
=

∣

∣

∣
F

[

(iD)β
(

(ix)αϕ
)]

(k)
∣

∣

∣

≤
∫

|Dβ(xαϕ)| dNx = M <∞

for all k ∈ R
N . This inequality implies that F [ϕ] and all its partial

derivatives are decreasing to zero faster than any reciprocal power |k|−β

as |k| → ∞. Thus, F [ϕ] ∈ S.
Next let us prove that the Fourier transform is linear and continuous

transformation. The linearity follows from the linearity of the integral

F [c1ϕ1 + c2ϕ2] = c1F [ϕ1] + c2F [ϕ2] , ϕ1,2 ∈ S , c1,2 ∈ R

Therefore it is sufficient to show that any null sequence in S is mapped
to a null sequence by F .
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Let ϕn → 0 in S. Using (33.1) and (33.2) one infers that

|kαDβF [ϕn](k)| = |F [(iD)α(ix)βϕn](k)|

≤
∫

|Dα(xβϕn(x))| dNx

=

∫

|Dα(xβϕn(x))|
1 + |x|p
1 + |x|p d

Nx

≤ Mp sup
{

|Dα(xβϕn(x))|(1 + |x|p)
}

Mp =

∫

dNx

1 + |x|p <∞ , p > N .

Since xpDqϕn converges uniformly to zero for any non-negative p and
q, it is concluded that

lim
n→∞

sup |kαDβF [ϕn](k)| = 0

for any non-negative α and β. So, F is continuous.

33.2.1. The inverse Fourier transform on S . Let us show that the inverse
Fourier transform exists and is defined by the rule

F−1[ϕ(k)](x) =
1

(2π)N

∫

e−i(k,x)ϕ(k) dNk =
1

(2π)N

∫

ei(k,x)ϕ(−k) dNk

= (2π)−NF [ϕ(−k)](x)

One has to show that

F−1[F [ϕ]] = ϕ

for any test function ϕ ∈ S. Consider the one-dimensional case first,
N = 1. One has

F−1[F [ϕ]](x) =
1

2π

∫

e−ikx

∫

eikyϕ(y) dy dk

=
1

2π
lim

n→∞

∫ n

−n

∫

eik(y−x)ϕ(y) dy dk

=
1

2π
lim

n→∞

∫

ϕ(y)

∫ n

−n

eik(y−x)ϕ(y) dk dy

=
1

π
lim

n→∞

∫

ϕ(y)
sin(n(y − x))

y − x
dy

=
1

π
lim

n→∞

(sin(ny)

y
, ϕ(x+ y)

)

= ϕ(x)
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where the order of integration has been changed by Fubini’s theorem
because

|eik(y−x)ϕ(y)| = |ϕ(y)| ∈ L
(

(−n, n) × R

)

and the last equality follows from that the sequence sin(ny)/y converges
to πδ(y) in S ′ (see Sec.32.8.1). A generalization to the N dimensional
case is simple. The above line of arguments is applied to integrations
over each variable, dydk = dyjdkj , j = 1, 2, ..., N .

33.3. Fourier transform of temperate distributions. The adjoint T ∗ of the
Fourier transform T = F of S onto S is a linear continuous transfor-
mation of the space temperate distributions S ′ onto itself. The Fourier
transform of a temperate distribution f ∈ S ′ is defined as the adjoint
transformation:

(F [f ], ϕ) = (f,F [ϕ]) , ϕ ∈ S .
By linearity and continuity of T = F , F [f ] is a linear continuous func-
tional on S for any temperate distribution f . Furthermore, if fn → f
in S ′, then F [fn] → F [f ] in S ′ by continuity of the adjoint transfor-
mation:

lim
n→∞

(F [fn], ϕ) = lim
n→∞

(fn,F [ϕ]) = (f,F [ϕ)] = (F [f ], ϕ) .

33.3.1. The inverse Fourier transform of a temperate distribution. The
inverse Fourier transform T = F−1 is also a linear and continuous
transformation of S onto itself. Therefore its adjoint is a linear contin-
uous transformation of S ′ onto itself:

F−1[f(k)] = (2π)−NF [f(−k)] , f ∈ S ′ .

It follows from this definition that

F−1[F [f ]] = F [F−1[f ]] = f

for any temperate distribution f . Indeed,

(F−1[F [f ](k)], ϕ) = (2π)−N (F [F [f ](−k)], ϕ)

= (2π)−N (F [f ](−k),F [ϕ](k))

= (2π)−N (F [f ](k),F [ϕ](−k)) = (F [f ],F−1[ϕ])

= (f,F [F−1[ϕ]]) = (f, ϕ) .

The other relation is proved by repeating the above equalities backward
after using F [F−1[ϕ]] = F−1[F [ϕ]].

The inverse Fourier transform is linear and continuous on S ′:

fn → f in S ′ ⇒ F−1[fn] → F−1[f ] in S ′ .
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33.4. Examples of distributional Fourier transforms. Here a few exam-
ples of calculating the Fourier transforms of basic distributions are
considered.

33.4.1. The shifted delta function. Let us show that

F [δ(x− x0)](k) = ei(k,x0) ,

F [e−i(k,x0)](x) = (2π)Nδ(x− x0) .

The first equality follows from
(

F [δ(x− x0)], ϕ
)

=
(

δ(x− x0),F [ϕ](x)
)

= F [ϕ](x0)

=

∫

ei(k,x0)ϕ(k) dNk =
(

ei(k,x0), ϕ(k)
)

The second is proved by applying the inverse Fourier transform to the
first equation:

δ(x− x0) = F−1[ei(k,x0)](x) = (2π)−NF [e−i(k,x0)](x)

In particular, setting x0 = 0, one infers that

F [1](x) = (2π)Nδ(x)

33.4.2. Poisson summation formula. The series
∑

n

δ(x− 2πn) and
∑

n

einx

converge in S ′. Indeed, Terms of the sequences of partial sums for these
series are are temperate distributions. So, for any test function ϕ ∈ S,

(

∑

|n|<m

δ(x− 2πn), ϕ(x)
)

=
∑

|n|<m

ϕ(2πn) →
∑

n

ϕ(2πn)

because a test function is decreasing to zero faster than any reciprocal
power function with increasing the argument and, in particular,

|ϕ(2πn)| ≤ M

1 + n2
,

∑

n

M

1 + n2
<∞

For the other series, one has
(

∑

|n|<m

einx, ϕ(x)
)

=
∑

|n|<m

∫

einxϕ(x) dx =
∑

|n|<m

F [ϕ](n)

→
∑

n

F [ϕ](n)
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where the series converges because F [ϕ] is a test function. The conver-
gence in S ′ implies the convergence in D′. Thus, the Poisson summation
formula holds in S ′:

∑

n

δ(x− 2πn) =
1

2π

∑

n

einx =
1

2π

∑

n

F [δ(k− n)](x)

so that for any test function ϕ,

2π
∑

n

ϕ(2πn) =
∑

n

F [ϕ](n)

This relation is known as the classical Poisson summation formula.

33.4.3. Gaussian distributions. Let a > 0. Then f(x) = e−ax2

is a
regular temperate distribution. Its Fourier transform is obtained from
the Gaussian integrals discussed earlier

F [e−ax2

](k) =

∫

e−ax2+ikx dx =

√

π

a
exp

(

− k2

4a

)

Let A be an N × N symmetric positive matrix. Then e−(x,Ax) is a
temperate distribution of N real variables, and its Fourier transform is
given by the Gaussian integral:

F [e−(x,Ax)](k) =

∫

e−(x,Ax)+i(k,x) dNx =
πN/2

√
detA

exp
(

− 1

4
(k, A−1k)

)

.

33.4.4. Complex Gaussian distributions. The function f(x) = eix2

is
bounded and, hence, defines a regular temperate distribution. Con-
sider a family of regular temperate distribution fa(x) = eix2−ax2

where
a > 0. Let us show that fa → f in S ′ as a→ 0+. For any test function
ϕ ∈ S, one has by the Lebesgue dominated convergence theorem

lim
a→0+

(fa, ϕ) = lim
a→0+

∫

eix2−ax2

ϕ(x) dx =

∫

lim
a→0+

eix2−ax2

ϕ(x) dx

=

∫

eix2

ϕ(x) dx = (f, ϕ)

because the integrand has an integrable bound independent of param-
eter a:

|eix2−ax2

ϕ(x)| ≤ |ϕ(x)| ∈ L
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By continuity of the Fourier transform on S ′

F [eix2

](k) = lim
a→0+

F [eix2−ax2

](k) =

∫

e−(a−i)x2+ikx dx

= lim
a→0+

( π

a− i

)1/2

exp
(

− k2

4(a− i)

)

=
√
iπ exp

(

− ik2

4

)

where the Gaussian integral was used. Similarly, for any positive sym-
metric matrix A

F [ei(x,Ax)](k) = lim
a→0+

F [ei(x,Ax)−a(x,x)] =
(πi)N/2

√
detA

exp
(

− i

4
(k, A−1k)

)

.

33.4.5. Step function. Consider a family of regular temperate distribu-
tion fa(x) = θ(x)e−ax where a > 0. Then fa → θ in S ′ as a → 0+

because

lim
a→0+

(fa, ϕ) = lim
a→0+

∫ ∞

0

e−axϕ(x) dx =

∫ ∞

0

ϕ(x) dx = (θ, ϕ)

where the Lebesgue dominated convergence theorem was used:

|e−axϕ(x)| ≤ |ϕ(x)| ∈ L(0,∞)

By continuity of the Fourier transform in S ′

F [θ](k) = lim
a→0+

F [fa](k) = lim
a→0+

∫ ∞

0

e−ax+ikxdx

= lim
a→0+

i

k + ia
=

i

k + i0+

= πδ(k) + iP 1

k
.

So, the Fourier transform of the step function is proportional to the
Sokhotsky’s distribution. It follows also from the above relation that

F [θ(−x)](k) = πδ(k)− iP 1

k
.

33.4.6. The principal value distribution. The sign function ε(x) = θ(x)−
θ(−x) is a regular temperate distribution. Then using the Fourier
transform of the step function one infers that

F [ε(x)](k) = 2iP 1

k
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Applying the inverse Fourier transform to this relation

ε(x) = 2iF−1
[

P 1

k

]

(x) =
i

π
F

[

P 1

(−k)
]

(x) = − i

π
F

[

P 1

k

]

(x)

Therefore

F
[

P 1

x

]

(k) = iπε(k)

33.4.7. Spherical delta function. Let us find the Fourier transform of
the spherical delta function δSa in R

3. For any test function, one has

(F [δSa ], ϕ) = (δSa ,F [ϕ]) =

∮

|x|=a

F [ϕ](x) dS

=

∮

|x|=a

∫

ei(k,x)ϕ(k) d3k dSx

=

∫

ϕ(k)

∮

|x|=a

ei(k,x) dSx d
3k

=

∫

ϕ(k)

∫ 2π

0

∫ π

0

ei|k|a cos(φ)a2 sin(φ)dφ dθ d3k

= 4πa

∫

ϕ(k)
sin(a|k|)

|k| d3k

The order of integration can be changed by Fubini’s theorem because
∫ ∮

|x|=a

∣

∣

∣
ei(k,x)ϕ(k)

∣

∣

∣
d3k dSx ≤ 4πa2

∫

|ϕ(k)| d3k <∞ .

This shows that

F [δSa](k) = 4πa
sin(a|k|)

|k|
Note that the Fourier transform is a smooth function. It will be shown
below that this is true for the Fourier transform of any distribution
with compact support.

33.4.8. Retarded propagator. Let us find the Fourier transform of the
fundamental solution to the 2D wave operator (see Sec.??):

GR(x0, x) =
1

2
θ(x0)θ(x

2
0 − x2) , x0 ∈ R , x ∈ R .

Up to the factor of 1
2
, this regular distribution coincides with the char-

actericic function of the positive cone Γ+ : x0 > |x| > 0. To do so, let
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us show first that the distribution fa(x0, x) = e−x0aGR(x0, x) converges
to GR in S ′ as a→ 0+. For any test function ϕ ∈ S

lim
a→0+

(fa, ϕ) =
1

2
lim

a→0+

∫∫

Γ+

e−ax0ϕ(x0, x) dx dx0

=
1

2

∫∫

Γ+

ϕ(x0, x) dx dx0 = (GR, ϕ) .

The order of taking the limit and the integral can be interchanged
by the Lebesgue dominated convergence theorem because the inte-
grand has an integrable bound independent of the parameter a > 0,
|e−ax0ϕ(x0, x)| ≤ |ϕ(x0, x)| ∈ L(Γ+).

The continuity of the Fourier transform on S ′ is used to find F [GR]:

F [fa] → F [GR] in S ′

as a→ 0+. Since fa ∈ L(R2), its Fourier transform is given by

F [fa](k0, k) =

∫∫

fa(x0, x)e
ik0x0+ikx dx dx0

=
1

2

∫∫

Γ+

e−ax0eik0x0+ikxdx dx0

=
1

2

∫ ∞

0

e−ax0+ik0x0

∫ x0

−x0

eikxdx dx0

=
1

2ik

( 1

i(k0 + ia+ k)
− 1

i(k0 + ia− k)

)

=
1

k2 − (k0 + ia)2
.

In the limit a→ 0+, this distribution becomes a distributional regular-
ization of the singular function (k2

0 − k2)−1 that is obtained by shifting
the poles k0 = ±|k| in the complex k0 plane down into the half-plane
Imk0 < 0 similarly to Sokhotsky distributions. For brevity,

F [GR](k0, k) =
1

k2 − (k0 + i0)2
.

The Green function GR of the wave operator is called a retarded propa-
gator. As shown earlier, it describes a causal wave propagation. If the
poles are shifted up, k2

0 → (k0 − i0)2, then the corresponding Green
function is called an advanced propagator. It is proportional to the
characteristic function of the cone Γ− : −k0 > |k| where k0 < 0. These
and other Green functions of wave operators will be discussed in detail
in the next chapter devoted to applications.
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33.5. Properties of the Fourier transform of distributions. Let f be a
temperate distribution. Then

DαF [f ] = F [(ix)αf ] ,(33.3)

F [Dαf ] = (−ik)αF [f ](33.4)

These properties follow from the corresponding properties of the Fourier
transform of test functions (33.1) and (33.2). For example,

(DαF [f ], ϕ) = (−1)α(F [f ], Dαϕ) = (−1)α
(

f(x),F [Dαϕ](x)
)

= (−1)α
(

f(x), (−ix)αF [ϕ](x)
)

=
(

(ix)αf(x),F [ϕ](x)
)

=
(

F [(ix)αf ], ϕ
)

.

33.5.1. Linear transformations of the argument. The Fourier transform
of a distribution with a shifted argument is given by

(33.5) F [f(x− x0)](k) = ei(k,x0)F [f ](k) .

Indeed, for any test function ϕ,
(

F [f(x− x0)], ϕ
)

=
(

f(x− x0),F [ϕ](x)
)

=
(

f(x),F [ϕ](x+ x0)
)

=
(

f(x),F [ei(k,x0)ϕ](x)
)

=
(

F [f ](k), ei(k,x0)ϕ
)

=
(

ei(k,x0)F [f ](k), ϕ
)

.

A shift of the argument of the Fourier transform is given by

(33.6) F [f ](k + k0) = F [ei(k0,x)f(x)](k) .

which can be proved in a similar fashion.
There are generalizations of these relations to a general linear trans-

formation of the argument, x→ Ax− b where A is non-singular square
matrix:

(33.7) F [f(Ax− b)](k) =
ei(Ak,b)

| detA| F [f(x)](A−1Tk)

where AT denotes the transposed matrix A. Let ϕ be a test function.
Then

F [ϕ](Ax+ b) =

∫

ei(ξ,Ax)+i(ξ,b)ϕ(ξ) dN ξ

=
1

| detA|

∫

ei(k,x)+i(k,A−1T b)ϕ(A−1Tk) dNk

=
1

| detA|F
[

ei(k,A−1T b)ϕ(A−1Tk)
]

(x)
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where k = AT ξ. It follows from this relation that

(F [f(Ax− b)], ϕ) =
(

f(Ax− b),F [ϕ](x)
)

= | detA|−1
(

f(x),F [ϕ(k)](A−1(x+ b))
)

=
(

f(x),F [ei(k,AT b)ϕ(ATk)](x)
)

=
(

F [f ](k), ei(k,AT b)ϕ(ATk)
)

=
ei(Ak,b)

| detA|
(

F [f ](A−1Tk), ϕ(k)
)

In particular, for a scaling transformation of the argument, x → sx
where s 6= 0

F [f(sx)](k) =
1

|s|N F [f(x)](k
s
) .

33.5.2. Distributions invariant under linear transformations. Suppose that
a temperate distribution f(x) is invariant under transformations x →
Ax, that is,

f(Ax) = f(x) .

Then it follows from (33.7) that

F [f ](A−1Tk) = | det(A)|F [f ](k)

In particular, if A is an orthogonal matrix, AT = A−1 and detA = ±1,
then the Fourier transform is also invariant under this transformation.
For example, the Fourier transform of any distribution invariant under
rotations or Lorenz transformations is invariant under these transfor-
mations too.

33.6. The Fourier transform of distributions with compact support. Let
f be a distribution with compact support. Then its Fourier transform
is from OM and

(33.8) F [f ](k) =
(

f(x), ηf(x)e
i(k,x)

)

,

where η is any test function from D such that η(x) = 1 in a neighbor-
hood of the support of f .
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Let us show first F [f ] is a smooth function. For any test function
ϕ, one has

(F [f ], ϕ)
(1)
= (f,F [ϕ])

(2)
= (f, ηfF [ϕ])

(3)
=

(

f(x),

∫

ei(k,x)ηf (x)ϕ(k) dNk
)

(4)
=

∫

(

f(x), ei(k,x)ηf (x)ϕ(k)
)

dNk

(5)
=

∫

(

f(x), ei(k,x)ηf (x)
)

ϕ(k) dNk .

Here (1) is by definition of the Fourier transform of a distribution, (2)
by Proposition 32.2, (3) by definition of the Fourier transform of a
test function, (4) follows from (32.3) applied to the test function of two
variables φ(x, k) = ei(k,x)ηf (x)ϕ(k) ∈ S(R2N), (5) follows from linearity
of f . This proves (33.8) and that F [f ] is a smooth function because
the integrand in the last integral is a test function. By property (33.3)

DαF [f ](k) =
(

(ix)αf(x), ei(k,x)ηf (x)
)

=
(

f(x), ei(k,x)(ix)αηf (x)
)

.

To show that F [f ] is a smooth slowly increasing function, Theorem
32.2 is applied to the above relation:

|DαF [f ](k)| ≤ C sup
β≤p,x

(1 + |x|)β|Dβ
x(ei(k,x)xαηf(x))|

≤ Cα(1 + |k|)p

for some constants Cα because the derivatives Dx produce powers of
k up order p and sup(1 + |x|)β|Dγψ| < ∞ for any test function and,
in particular, for ψ = xαηf . Thus, the Fourier transform and all its
derivatives cannot increase faster than a power function and, hence,
F [f ] ∈ OM .

33.6.1. Fourier transforms of simple and double layer distributions. Let
us use the above equation for the Fourier transform of a distribution
with compact support to find integral representation for the Fourier
transforms of the single and double layer distributions. Let S be a
bounded smooth surface oriented by the unit vector n̂, µ and ν be
continuous functions on S, and ηS be a test function from D that takes
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unit value in a neighborhood of S. Then

F [µδS](k) =
(

µδS, ηSe
i(k,x)

)

=

∫

S

µ(x)ei(k,x) dSx ,

F
[

− ∂

∂n
(νδS)

]

(k) =
(

− ∂

∂n
(νδS), ηSe

i(k,x)
)

=

∫

S

ν(x)
∂

∂n
ei(k,x) dSx

= i

∫

S

ν(x) (n̂, x) ei(k,x) dSx

33.7. Fourier transform of the convolution. Suppose that φ and ϕ are
test functions. Then their convolution is also a test function. Let us
find the Fourier transform of the convolution

F [ϕ ∗ φ](k) =

∫

ei(k,x)

∫

ϕ(y)φ(x− y) dNydNx

=

∫

ei(k,y)ϕ(y)

∫

ei(k,x−y)φ(x− y) dNx dNy

= F [ϕ](k)F [φ](k)

where the order of integration has been changed by Fubini’s theorem
(because ϕ(y)φ(x− y) is integrable on R

2N). Can the relation

(33.9) F [f ∗ g] = F [f ]F [g] , f, g ∈ S ′ ,

be extended to distributions? First note that the right-hand side is not
defined as a distribution, unless the Fourier transform of one of the
distributions is from OM so that the product of Fourier transforms is
well defined in S ′. The latter is not generally true even if the convo-
lution exists. Therefore, the relation (33.9) cannot be extended to any
temperate distributions. However, if the convolution exists in S ′, its
Fourier transform can be used to defined the product of distributions.
Let us analyze the Fourier transform of the convolution for four cases
in which the convolution exists.

Proposition 33.2. Let ω ∈ S and f ∈ S ′. Then the relation (33.9)
holds.

Note first that the convolution exists and is a function from class
OM . So it is a regular temperate distribution, and, hence its Fourier
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transform is a temperate distribution. For any ϕ ∈ S one has

(F [ω ∗ f ], ϕ)
(1)
= (ω ∗ f,F [ϕ])

(2)
=

(

f(x),

∫

ω(y)

∫

ei(k,x+y)ϕ(k) dNk dNy
)

(3)
=

(

f(x),

∫

ei(k,x)ϕ(k)

∫

ei(k,y)ω(y) dNy dNk
)

(4)
= (f,F [ϕF [ω]])

(5)
= (F [f ],F [ω]ϕ)

(6)
= (F [ω]F [f ], ϕ) ,

as required. Here (1) is by the definition of the Fourier transform on S ′,
(2) follows from Proposition 32.5, (3) holds by Fubini’s theorem because
|ω(y)ϕ(k)| ∈ L(R2N ), (4) and (5) are by the definition of the Fourier
transform on S and on S ′, respectively, and (6) follows from the rule of
multiplication of a distribution by a smooth function F [ω] ∈ S ⊂ OM .

Proposition 33.3. Let f ∈ S ′ and g be a distribution with bounded
support. Then the relation (33.9) holds.

Note that F [g] ∈ OM by by Theorem 32.3. Therefore the product
of Fourier transforms in the right-hand side is a temperate distribution.
For any test function ϕ, the following chain of equalities holds

(F [f ∗ g], ϕ)
(1)
= (f ∗ g,F [ϕ])

(2)
=

(

f(x),
(

g(y), ηg(y)

∫

ei(k,x+y)ϕ(k) dNk
))

(3)
=

(

f(x),

∫

(

g(y), ηg(y)e
i(k,x+y)

)

ϕ(k) dNk
)

(4)
=

(

f(x),

∫

F [g](k)ϕ(k) ei(k,x) dNk
)

(5)
= (f,F [F [g]ϕ]) = (F [f ],F [g]ϕ)
(6)
= (F [g]F [f ], ϕ) ,

as required. Here (1) is by the definition of the Fourier transform on S ′,
(2) is by Theorem 32.3, (3) follows from (32.3) because ηg(y)ϕ(k)ei(k,x+y)

is a test function of two variables for any x, (4) is by (33.8), and (5)
and (6) follow from the definition of the Fourier transform and that
F [g] ∈ OM and, hence, its product with any temperate distribution
exists in S ′.

33.7.1. Example. Let us find the Fourier transform of the convolution
θ(R − |x|) and P 1

x
, where x ∈ R. Since θ(R − |x|) has a bounded
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support

F [θ(R− |x|)](k) =

∫ R

−R

eikxdx =
2 sin(kR)

k

Therefore by Proposition 33.3

F
[

θ(R− |x|) ∗ P 1

x

]

(k) =
2 sin(kR)

k
πiε(k) = 2πi

sin(kR)

|k| .

33.7.2. Fourier transform of the convolution in the algebra S ′
+. If f ∈ S+,

then the relation (33.9) holds for any g ∈ S ′
+ by Proposition 33.2.

However, it can fails for convolutions of any two distributions from S ′
+.

Put

f(t) = θ(t) , g(t) = tf(t) = tθ(t) .

They are regular distributions from S ′
+ and their convolution reads

(f ∗ g)(t) =

∫

f(τ )g(t− τ ) dτ = θ(t)

∫ t

0

(t− τ ) dτ =
t2

2
θ(t)

Let find the Fourier transforms. Note that the Fourier transform maps
S ′

+ to S ′. In other words, the Fourier transform of any distribution
from S ′

+ does not generally belong to S ′
+. Using the Fourier transform

of the step function (see Sec.33.4.5) and the properties of the Fourier
transform, one infers that

F [f ](k) = πδ(k) + iP 1

k
=

i

k + i0
,

F [g](k) = −i d
dk

F [f ](k) = −iπδ′(k) − P 1

k2
= − 1

(k + i0)2
,

F [f ∗ g](k) = −1

2

d2

dk2
F [f ](k) = −π

2
δ′′(k) + iP 1

k3
= − i

(k + i0)3
.

The singular supports of F [f ] and F [g] consist of the single point k = 0.
Therefore their product cannot be defined in S ′ by the localization
method. Thus, the relation (33.9) fails in this case.

33.7.3. Distributions supported in a light cone. A higher dimensional
analog of the convolution in the algebra S ′

+ is the convolution of dis-
tributions supported in a light cone (see Sec.32.10.3). In this case, the
relation (33.9) can fail too. As an example, consider the convolution
GR ∗ GR, where GR is the retarded propagator for the 2D wave op-
erator whose support lies in the future light cone Γ+. Therefore the
convolution exists in S ′ and so does its Fourier transform. However
the Fourier transform F [GR], found in Sec.33.4.8, is a singular distri-
bution whose singular support is the double cone k2

0 = k2. Therefore
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the product F [GR]F [GR] cannot be defined by the localization method
and the relation (33.9) makes no sense.

33.8. Product of distributions via the Fourier transform. Let us try to
define a product of distributions in S if their singular supports have
common points. Clearly, the localization method would fail. However,
the examples studied above when the relation (33.9) fails have one
common feature. The convolution exists in S ′ and, hence, so does its
Fourier transform, but the product of the Fourier transforms does not
exist in S ′ only because the product of distributions with overlapping
singular supports is not defined. This suggests that the relation (33.9)
can be used as a definition of this product in this case.

Let f and g be tempered distributions. Suppose that the convolu-
tion F−1[f ] ∗ F−1[g] exists in S ′. Then put

f(x)g(x)
def
= F

[

F−1[f ] ∗ F−1[g]
]

(x) .

By construction, the product is a temperate distribution even if the
singular supports of f and g have common points. This definition can
also be written in terms of the Fourier transforms using the relation
between F and F−1:

(33.10) F [fg](k)
def
= (2π)−N

(

F [f ] ∗ F [g]
)

(k) .

Here the product fg is defined via its Fourier transform. So, the prod-
uct fg exists in S ′ whenever the convolution of the Fourier transforms
of f and g exists in S ′.

33.8.1. Example. Let us try to find the product fg using (33.10) if

f(x) =
1

x+ i0
, g(x) = −f ′(x) =

1

(x+ i0)2
.

The singular supports of these distributions coincide and contain the
single point x = 0. One has

F [f ](k) = F
[

− iπδ(x) + P 1

x

]

(k) = −2πiθ(−k) ,
F [g](k) = F [−f ′](k) = ikF [f ](k) = 2πkθ(−k) ,

(F [f ] ∗ F [g])(k) = −4π2i

∫

θ(−p)(k − p)θ(p− k) dp

= −4π2iθ(−k)
∫ 0

k

(k − p) dp = 2π2ik2θ(−k) .
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Since the convolution of the Fourier transforms exists in S ′, the product
fg also exists in S ′ and is given by

f(x)g(x) = πiF−1[k2θ(−k)](x) =
i

2
F [k2θ(k)]

= − i

2

d2

dx2
F [θ(k)](x) =

1

2

d2

dx2

1

x+ i0

=
1

2
f ′′(x) ∈ S ′

This example is to be compared with the discussion in Sec.33.7.2. The
definition (33.10) has been motivated by the example in Sec.33.7.2.

33.8.2. Extension of the product to D′. Not every distribution from D′

has a Fourier transform. A direct extension of (33.10) to D′ is not
possible. However the Fourier transform of η(x)f(x), η ∈ D, exists
because ηf has a bounded support. So, the product f(x)g(x) can be
defined in a neighborhood of a point x0, provided the convolution of
the Fourier transforms of ηf and ηg exists near x0 for some η that
is a bump function for a neighborhood U(x0). If this product can be
defined for any x0 ∈ Ω, then by the localization theorem the product
exists in D′(Ω). The Fourier transform of ηf is a smooth function from
OM (see Sec.33.6). Its growth is bounded by a polynomial. Therefore
F [ηf ] ∗ F [ηg] is the classical convolution of functions from OM which
may or may not exist. By Fubini’s theorem, it exists if the convolution
integral converges absolutely (see Sec.30.1). If, in addition, the inverse
Fourier transform of the convolution exists, then the relation (33.10)
can be used to define the product near x0.

Definition 33.1. A distribution h ∈ D′(Ω) is the product of distri-
butions f and g if for any point in Ω there exists a test function η ∈ D
such that it is equal to 1 near the point and

F [η2h](k) = (2π)−N
(

F [ηf ] ∗ F [ηg]
)

(k)

= (2π)−N

∫

F [ηf ](p)F [ηg](k − p) dNp

where the convolution integral converges absolutely for all k ∈ R
N .

It should be noted that the product does not exist for any distribu-
tions. For example, if f(x) = g(x) = δ(x), then F [δ](k) = 1, but the
convolution of two unit functions does not exist. So, δ(x)δ(x) is not
defined as a distribution.

A consistency of Definition 33.1 requires proving uniqueness of the
product if it exists.



33. FOURIER TRANSFORM OF DISTRIBUTIONS 441

Proposition 33.4. For any two distributions f and g, there exists
at most one distribution h that satisfy Definition 33.1

By the localization theorem, it is sufficient to show the uniqueness
in a neighborhood of any point. Let h1 and h2 be two distributions sat-
isfying Definition 33.1 with some test functions η1 and η2, respectively,
that have unit value near x0. One has to show that h1 = h2 near x0.
Since x0 is arbitrary, by the localization theorem h1 = h2.

Let ω be a test function. The assertion follows from the identity

(33.11) F [ωη2h] = (2π)−NF [ωηf ] ∗ F [ηg] = (2π)−NF [ηf ] ∗ F [ωηg]

Indeed, setting ω = η2
2 in F [ωη2

1h1] and ω = η2
1 in F [ωη2

2h2], it follows
from (33.11) that F [η2

1η
2
2h1] = F [η2

1η
2
2h2]. Therefore h1 = h2 near x0

as required.
Let us prove (33.11). Put G = (2π)NF [η2h] for brevity. For any

test function ϕ ∈ S the distribution in the left-hand side of (33.11) has
the following value

(

F
[

ωF−1[G]
]

, ϕ
)

=
(

G,F−1
[

ωF [ϕ]
])

(1)
=

(

G,F [ω−] ∗ ϕ
)

(2)
=

(

F [ω] ∗G,ϕ
)

where (1) is obtained using the explicit form of the Fourier transform
of a test function:

(2π)NF−1
[

ωF [ϕ]
]

(k) =

∫ ∫

e−i(x,k−p)ω(x)ϕ(p) dNp dNx

=

∫

ϕ(p)F [ω−](k − p) dNp =
(

F [ω−] ∗ ϕ
)

(k)

where ω−(x) = ω(−x), and the order of integration has been changed
by Fubini’s theorem (because the integrand is an integrable function
of two variables x and p for any k). The equality (2) follows from the
definition of the convolution of a distribution with a test function (see
Sec.19.3). Using the explicit form of G,

(

F [ω] ∗G
)

(k) =

∫

F [ω](q)

∫

F [ηf ](p)F [ηg](k − q − p) dNp dNq

=

∫

F [ηf ](p)

∫

F [ω](q)F [ηg](k− q − p) dN q dNp

(1)
=

(

F [ηf ] ∗ (F [ω] ∗ F [ηg])
)

(k)

=
(

F [ηf ] ∗ F
[

F−1
[

F [ω] ∗ F [ηg]
]])

(k)

(2)
=

1

(2π)N

(

F [ηf ] ∗ F [ωηg]
)

(k)
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as required. Here the order of integration in (1) has been changed by
Fubini’s theorem because the integral for the convolution G converges
absolutely by the hypothesis and, hence the integrand is an integrable
function of two variables, p and q, for any k. The equality (2) follows
from the definition of F−1 and the Fourier transform of the convolution
of a test function with a distribution. Finally, if the roles of f and g
are swapped in the above calculations, the second part of (33.11) is
established.

33.8.3. Properties of the product. The product of distributions given in
Definition 33.1 has the following properties

(i) The product is compatible with multiplication of a distribution
by a smooth function. If g = a ∈ C∞ in Definition 33.1, then
the product af exists for any f ∈ D′ and

(af, ϕ) = (f, aϕ) , ϕ ∈ D .

(ii) The product is commutative and associative

fg = gf , f(gh) = (fg)h

provided fg, gf , f(gh), and (fg)h exist.
(iii) If the singular supports of distributions f and g are disjoint,

then fg exists and coincides with the product fg defined by
the localization method.

33.8.4. Sufficient conditions for the existence of the product. Suppose
that f and g in Definition 33.1 have bounded supports. Then their
Fourier transforms are from class OM . In this case, Definition 33.1 is
reduced to (33.10). If the integral

(

F [f ] ∗ F [g]
)

(k) =

∫

F [f ](p)F [g](k − p) dNp

converges absolutely and it is a slowly increasing function
∣

∣

∣

(

F [f ] ∗ F [g]
)

(k)
∣

∣

∣
≤ M(1 + |k|)p

for some constants M > 0 and p ≥ 0, then the product fg exists in D.
By the absolute convergence of the integral G = F [f ] ∗ F [g] is locally
integrable and for any ϕ ∈ S

|(G,ϕ)| =

∫

|G(k)||ϕ(k)| dNk ≤ M

∫

(1 + |x|)p|ϕ(k)| dNk

≤ M sup
∣

∣

∣
(1 + |k|)p+N+1ϕ(k)

∣

∣

∣

∫

dNk

(1 + |k|)N+1
<∞
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By the Schwartz theorem 32.2,G ∈ S ′ and, hence, its Fourier transform
is also a temperate distribution, that is, fg = (2π)−NF−1[G] exists in
S ′.

The same reasonings in combination with the localization theorem
lead to the following assertion. If for every point x0 ∈ Ω there ex-
ists a test function η such that η(x0) 6= 0 and the convolution integral
in Definition 33.1 converges absolutely and defines a slowly increasing
function of k, then the product fg exists in D′(Ω).

33.9. Exercises.

1. Show that

F
[

P 1

x2

]

(k) = −π|k| , F [|x|] = −2P 1

k2

2. Find the Fourier transform of f(x) = θ(x)xn where n is a non-
negative integer.

3. Let |an| ≤ Mnp. Show that the series
∞

∑

n=1

anδ(x− n)

converges in S ′ and find its Fourier transform.

4. One can show that if the support of a distribution f is a point
x = 0, then this distribution is uniquely represented by linear combi-
nation of the delta function and its derivatives, that is, there exist a
unique collection of coefficients cα such that

f(x) =
∑

α≤p

cαD
αδ(x)

Use this fact, to prove that any distribution f with support {x = 0}
that is invariant under orthogonal transformations is uniquely repre-
sented by

f(x) = L(∆)δ(x)

where ∆ is the Laplace operator, and L is a polynomial.

5. In the fundamental solution E(x, t) = 1
2c
θ(ct− |x|) for the 2D wave

operator, put x0 = ct. Find the Fourier transform F [E](k, k0) where k0

is the Fourier variable for x0.

6. Find the Fourier transform of δSa(x) if x ∈ R
2.
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7. Find the Fourier transform of the double layer distribution if ν(x) =
(b, x)2 and S is a sphere |x| = R in R

3.

8. Let GR be the retarded propagator for the 2D wave operator (see
Sec.33.4.8).
(i) Show that

(GR ∗GR)(x0, x) =
1

8
θ(x0)θ(2x0 − |x|)g(x0, x) ,

g(x0, x) =















(2x0 − x)2 , x0 < x < 2x0 ,
2x0(x0 + x)− x2 , 0 < x < x0 ,
2x0(x0 + x) + x2 , −x0 < x < 0 ,
−x(2x0 + x) , −2x0 < x < −x0

(ii) Find the Fourier transform F [GR∗GR]. Hint: Use the continuity of
the Fourier transform for the distribution e−ax0GR∗GR → GR∗GR in S ′

as a→ 0+, and the properties of derivatives of the Fourier transform.
(iii) Use the product of distribution defined via the Fourier transform
to find the product in S ′

1

(x0 + i0)2 − x2
· 1

(x0 + i0)2 − x2
.

9. Does the Leibniz rule hold for differentiation of the product of
distributions defined by (33.10)?
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34. Laplace transform of distributions




