
CHAPTER 5

Applications to PDEs

35. Fundamental solutions

35.1. Linear problem for a differential operator. Recall a basic problem
in a linear algebra. If A is a matrix that defines a linear transformation
of RN to RM , find a solution to the linear system

Ax = b

where b is a given vector. If A is invertible, then the solution is unique,
x = A−1b. If A is not invertible, then by the Fredholm alternative a
solution exists only if b is orthogonal to any vector annihilated by the
adjoint matrix

(y, b) = 0 , A∗y = 0

and, in this case, any solution can be written in the form

x = Gb+ xh ,

where xh is a general solution to the associated homogeneous equation
Axh = 0, and a matrix G defines a particular solution:

AGb = b .

The matrix G is generally not unique because its action on b can al-
ways be amended by adding a solution to the associated homogeneous
equation, but it acts like the inverse of A on the subspace of vectors
orthogonal to the null set of the adjoint matrix A∗. In particular, if
Axh = 0 has only a trivial solution, then A is invertible and, in this
case, G is unique and G = A−1 so that AG = I where I is the identity
matrix (Ix = x for any vector x). So, the problem of solving a linear
problem is equivalent to finding a matrix G for a given matrix A.

Let L(D) be a linear differential operator. Then a linear problem
for the operator L(D) is to find a function u(x) such that

L(D)u(x) = f(x)

for a given function f . Suppose that a solution exists. Then it has the
form

u(x) = (Gf)(x) + h(x)

447
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where h(x) is a general solution to the associate homogeneous equation

L(D)h(x) = 0

and the action of the operator G on f produces a particular solution

L(D)(Gf)(x) = f(x) .

So, G resembles the inverse of the differential operator L(D). Just like
in the case of linear algebra, solving a linear problem for a differential
operator (or solving a non-homogeneous linear differential equation in
partial derivatives) is equivalent to finding the operator G for a given
differential operator. It turns out that this operator can be constructed
out of the so called fundamental solution for a differential operator and
the distributional convolution.

35.2. Fundamental solution for a differential operator. A distributional
solution E to a linear differential equation

L(D)E(x) = δ(x) , x ∈ R
N

L(D) = aβ(x)D
β + aβ−1(x)D

β−1 + · · · + a(x)D + a0(x)

is called a fundamental solution for the differential operator L, where
the coefficients are smooth functions (from C∞). For example, the
regular distribution

E(x) = − 1

4π

1

|x| , x ∈ R
3

is a fundamental solution for the Laplace operator L = ∆ in R3 (see
(21.13)).

A fundamental solution is not unique if it exists. If E is a funda-
mental solution for an operator L, then E + E0 is also a fundamental
solution where E0 is a solution to the associated homogeneous equation:

LE = δ
LE0 = 0

⇒ L(E + E0) = δ

by linearity of L. In particular, a regular distribution

E(x) = − 1

4π

1

|x| +H(x) , ∆H(x) = 0

is also a fundamental solution for the Laplace operator for any harmonic
function H(x) in R3.

The operator L∗

L∗ϕ =

β
∑

α=0

(−1)αDα(aαϕ)
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is called the adjoint of L. In particular, a test function is a regular
distribution, so that for any two test functions

(Lϕ, ψ) = (ϕ, L∗ψ) , ϕ, ψ ∈ D ,

by the definition of multiplication of a distribution by a smooth func-
tion and by the definition of distributional derivatives (which are equal
to the classical one in this case). Note thatD∗ = −D. If the coefficients
in L are constant, aα(x) = const, then

L∗(D) = L(−D) .

If
(Lϕ, ψ) = (ϕ, Lψ)

then the operator L is called Hermitian or symmetric on the space of
test functions. For example, the Laplace operator is symmetric on D.

Let E be a fundamental solution for L, then for any test function

ϕ(0) = (δ, ϕ) = (LE, ϕ) = (E, L∗ϕ) .

35.3. Linear differential equations with constant coefficients. Let L(D) be
a linear differential operator with constant coefficients, aβ(x) = aβ =
const. Consider a linear problem in the space of distributions

L(D)u(x) = f(x)

where f ∈ D′(RN ) is a given distribution. Then the distribution

u(x) = (Gρ)(x) = (E ∗ ρ)(x)
is a solution to this problem, where E(x) is a fundamental solution for
the operator L, provided the convolution E ∗ f exists in D′. Indeed, if
the convolution E ∗ f exists, then using the rule for differentiation of
the convolution of two distributions

L(D)(E ∗ f) =
∑

β

aβD
β(E ∗ f) =

∑

β

aβ(D
βE ∗ f)

=
(

∑

β

aβD
βE

)

∗ f = δ ∗ f = f .

Thus, a general solution to a linear differential equation with constant
coefficients and a distributional inhomogeneity is given by

u(x) = (E ∗ ρ)(x) + h(x) , L(D)h(x) = 0 ,

provided the convolution of a fundamental solution E and the inhomo-
geneity distribution f exists in D′. In particular, if f has a bounded
support, then the convolution always exists for any choice of a funda-
mental solution.
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For example, for any compactly supported distribution f(x), x ∈
R3, the Poisson equation is solved by the distribution

∆u(x) = f(x) ⇒ u(x) = − 1

4π

1

|x| ∗ ρ(x) +H(x)

where H(x) is any harmonic function in R3. If, in addition, f(x) is a
regular distribution, then the convolution is given by a potential-like
integral

u(x) = − 1

4π

1

|x| ∗ f(x) = − 1

4π

∫

f(y)

|x− y| d
3y .

As shown earlier, if f is smooth enough, then u(x) is a classical solution
from class C2.

35.4. Green’s functions of differential operators. A fundamental solution
for a differential operator is not unique. However, it is possible to
impose additional conditions on a fundamental solution to make it
unique. Fundamental solutions subject to additional conditions are
often called Green’s functions for a differential operator. First, note
that if Ω is any open set that does not contain x = 0 (the support of
the delta-function), then in the distributional sense

L(D)E(x) = 0 , x ∈ Ω

and, hence, E(x) is a smooth function in Ω. This implies that one can
impose additional conditions on the solution in the complement of any
neighborhood of x = 0.

For example, one can demand that a fundamental solution vanishes
at spatial infinity,

E(x) → 0 as |x| → ∞ .

This condition leads to a unique fundamental solution for the Laplace
operator. The conclusion is based on the property of harmonic func-
tions: if H(x) is a harmonic function in the whole R3 and H(x) van-
ishes at infinity, then H(x) = 0.

In physics, a fundamental solution for the Laplace operator is a
Newton or Coulomb potential created by a point-like source (a point
charge or mass). An observable quantity is the field that is the gradient
of a potential. Since the field should vanish far away from the source, a
fundamental solution is required to have the vanishing gradient in the
asymptotic region:

|∇E(x)| → 0 as |x| → ∞ .

In this case, the fundamental solution (or the corresponding Green’s
function) for the Laplace operator is unique up to an additive constant.
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35.5. Uniqueness of distributional solutions to differential equations. Let
L(D) be a linear differential operator with constant coefficients and E
be a fundamental solution for L(D):

L(D)E(x) = δ(x) .

In the space of distributions, consider a subspace that consists of all
distributions for which the convolution with E exists:

D′
E =

{

u ∈ D′
∣

∣

∣ E ∗ u ∈ D′
}

⊂ D′ .

For any u ∈ D′
E , the following identity holds

u = (L(D)u) ∗ E .
Indeed, let u be any such solution. By the hypothesis, the convolution
u∗E exists, and the assertion follows from the differentiation properties
of the convolution:

(L(D)u) ∗ E = L(D)(u ∗ E) = u ∗ (L(D)E) = u ∗ δ = u .

Let NL be the null space of the operator L(D) which is a linear
space of all solutions to the homogeneous equation:

NL = {u0 |L(D)u0 = 0} .
Then the null space NL and D′

E have no common elements but the zero
distribution, or, in other words, the homogeneous equation L(D)u = 0
has only the trivial solution in the subspace D′

E :

L(D)u = 0
u ∈ D′

E

}

⇔ u = 0 .

Indeed, by the hypothesis u ∗ E exists and L(D)u = 0. Therefore

u = u ∗ δ = u ∗ (L(D)E) = L(D)(u ∗ E) = L(D)u ∗ E = 0 ∗ E = 0 .

Now consider a non-homogeneous equation

L(D)u = f ,

where f ∈ D′. Let E be a fundamental solution for L(D). Suppose
that f ∈ D′

E , that is, the convolution E ∗f exists in D′. Then u = E ∗f
is a solution. However, this solution is not unique. A general solution
reads

u = E ∗ f + u0 , u0 ∈ NL

If, in addition, one demands that any two solutions u1 and u2 can differ
only by an element from D′

E , then the solution is unique:

L(D)u1 = f
L(D)u2 = f
u1 − u2 ∈ D′

E







⇒ u1 = u2 = E ∗ f .
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In other words, the solution is unique in the class of distributions for
which there exists the convolution with a (selected) fundamental so-
lution. Note that the convolution E ∗ f is required to exist but the
existence does not imply that the convolution belongs to D′

E (see Prob-
lem 7 in Exercises). So, the uniqueness is defined in the sense that the
associated homogeneous equation has only the trivial solution in the
subspace D′

E . The following theorem has been established.

Theorem 35.1. Let E be a fundamental solution for a linear dif-
ferential operator L(D) with constant coefficients. Suppose that the
convolution E ∗ f exists in D′ for a distribution f ∈ D′. Then the
distribution u = E ∗ f is a solution to L(D)u = f and this solution is
unique in the subspace D′

E , meaning that, the associated homogeneous
equation L(D)u = 0 has only the trivial solution in D′

E .

Any two fundamental solutions differ by a solution of the associ-
ated homogeneous equation. By fixing the choice of the solution to
the homogeneous equation, a particular fundamental solution (Green’s
function) is selected. Then the solution to the non-homogeneous equa-
tion is unique in the class of distributions for which the convolution
with the selected Green’s function exists. One can say that the opera-
tor L(D) is invertible in the specified subspace of distributions and the
convolution with the corresponding Green’s function defines the inverse
of L(D). Clearly, the uniqueness of the convolution solution implies
that the solution will satisfy some additional conditions induced by the
choice of Green’s function. The choice of Green’s function is dictated
by additional physical conditions (e.g., boundary conditions).

35.6. Regularization of distributional sources. Consider a linear differ-
ential equation with constant coefficients

L(D)u = f

where f is the source term that is a distribution with a bounded sup-
port. If G is a Green’s function for the operator L(D), then

u = G ∗ f
is a solution to the equation that is unique in the class of distributions
which have a convolution with G. However this solution is not a clas-
sical solution (it is not generally smooth enough) because the source
term is a distribution. For example, if L = ∆, then u is a potential-
like integral if f is Lebesgue integrable. The solution is not smooth
enough in the support of f to be a classical solution to the Poisson
equation. Source terms in applications are often not smooth enough
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for a classical solution to exist. However, they can be regularized to
make the solution smooth. The question is: what is the difference of
the distributional and regularized solutions?

Let f be compactly supported distribution. Then it was shown
that its regularization by the convolution with a hat function is a test
function:

fa = f ∗ ωa , supp f ⊂ BR ⇒ fa ∈ D
Therefore the convolution G ∗ fa exists (owing to the boundedness of
the support of fa) and, by Sec. 19.5, it is a smooth function:

ua = G ∗ fa ∈ C∞ , Dβua = G ∗Dβfa

So it is a classical solution to the equation L(D)ua = fa. Now the
distributional solution u = G ∗ f and the smooth solution ua can be
compared.

Proposition 35.1. Let E be a Green’s function for a linear differ-
ential operator L(D) with constant coefficients. Let f be a distribution
with a bounded support and fa = f ∗ ωa be its regularization. Put
u = G ∗ f and ua = G ∗ fa. Then for any ε > 0 and any test function
ϕ, there exists a0 such that

|(ua − u, ϕ)| ≤ ε , a < a0 .

The support of fa is shrinking with decreasing a because fa → f
in D′. Since fa have a bounded support for any a > 0, the support of
fa lie in the same ball for all sufficiently small a. By Theorem 31.1 the
convolutionG∗fa is continuous with respect to fa so that G∗fa → G∗f
in D′ as a → 0. This means that for any test function ϕ

lim
a→0

(ua, ϕ) = (u, ϕ)

and the assertion follows the definition of the limit.

35.7. Exercises.

1. Consider the equation L(D)u = f in D′(R) where L = d2

dx2 . Inves-
tigate whether or not u = E ∗ f is in D′

E , where E is a fundamental
solution.
(i) Show that the regular distributions

E1 = xθ(x) , E2 =
1

2
|x| .

are fundamental solutions.
(ii) Let f = δ. Then E1,2 ∗ f = E1,2. Show that the convolution E2 ∗ E2
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does not exist and, hence, u = E2 ∗ δ is not in D′
E2

, where as

(E1 ∗ E1)(x) =
1

6
θ(x)x3

so that u = E1 ∗ δ ∈ D′
E1

.
(iii) Find the null space of L. Let f have a bounded support. Show
that u1,2 = E1,2 ∗ f are two different solutions to Lu = f and each of
the solutions is unique in the corresponding class of distributions, that
is, none of the convolutions E1,2 ∗ u0 exists if u0 is a non-zero element
from the null space of L. Finally, put f(x) = θ(1 − |x|) and find a
function u0 from the null space of L such that

E1 ∗ f(x) = E2 ∗ f(x) + u0(x) .

(iv) Show that if, in addition, the solution is required to vanish when
x → −∞, then the only solution that satisfies this condition is E2 ∗ f .
Show that E2 is a unique Green’s function of L that satisfies an asymp-
totic boundary condition E(x) → 0 as x→ −∞.
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36. Harmonic functions

The following properties of harmonic functions to be discussed:
(1) Green’s (distributional) identity for harmonic functions
(2) Representation of harmonic functions as the sum of Newton-type
potentials
(3) The mean value property
(4) The maximum principle
(5) Asymptotic behavior of harmonics functions.
(6) Harmonic functions as distributions
(7) The analog of the Liouville theorem for harmonic functions: If
u ∈ S ′ and ∆u = 0 in RN , then u is a harmonic polynomial (instead
of discussing this in the next section)
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37. The Poisson equation in RN

37.1. Fundamental solutions for the Laplace operator. One of the basic
techniques for finding a fundamental solution for a linear differential
operator with constant coefficients is based on the Fourier transform.
Here the method is illustrated with the example of the Laplace op-
erator. Its fundamental solutions were found earlier. The Fourier
transform exists for temperate distributions. Therefore a fundamen-
tal solution is sought in this class of distributions. If it exists in S ′,
then it also a solution in D′.

By taking the Fourier transform of both sides of the equation

∆G
N
(x) = δ(x) , G ∈ S ′(RN)

one infers that

F [∆G
N
](k) = −(k, k)F [G

N
](k) = 1

Therefore, the problem is reduced to an algebraic equation. Its particu-
lar solution is given by a distributional regularization of |k|−2 if N ≤ 2,
and for N > 2, a particular solution is given by a locally integrable
function.

37.1.1. Case N = 1. A general solution the distributional algebraic
equation

−k2F [G1](k) = 1 , k ∈ R

was found earlier:

F [G1](k) = −P 1

k2
+ c0δ(k) + c1δ

′(k)

Therefore any fundamental solution to the second derivative operator
has the form

G1(x) = − 1

2π
F

[

P 1

k2

]

(x) +
c0
2π

F [δ(−k)](x)+
c1
2π

F [δ′(−k)](x)

=
|x|
2

+ a0 + a1x

where a0,1 are arbitrary constants. The linear function a0 + a1x is
nothing but a general solution to the associated homogeneous equation
g′′(x) = 0.

37.1.2. Case N = 2. The function |k|−2 is not locally integrable and,
hence, does not define a distributional solution. One has to find a
distributional extension of this function to the singular point k = 0.
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So, a particular solution reads

F [G2](k) = −Reg
1

|k|2 , k ∈ R
2 .

Define the principal value distribution from S ′(R2) by the rule

(

P 1

|x|2 , ϕ
)

=

∫

|x|<1

ϕ(x) − ϕ(0)

|x|2 d2x+

∫

|x|>1

ϕ(x)

|x|2 d2x

It is not difficult to see that for any test function whose support does
not contain x = 0,

(

P 1

|x|2 , ϕ
)

=

∫

ϕ(x)

|x|2 d2x

which means that this distribution is an extension of the singular func-
tion 1/|x|2 to the singular point x = 0. The Fourier transform of this
distribution reads

F
[

P 1

|x|2
]

(k) = −2π ln |k| + 2πC ,

C =

∫ ∞

1

J0(z)

z
dz +

∫ 1

0

J0(z) − 1

z
dz .

where Jν(z) is the Bessel function of order ν. Therefore by taking a
particular solution in the form

F [G2](k) = −P 1

|k|2

it is concluded that

G2(x) = − 1

(2π)2
F

[

P 1

|k|2
]

(x) =
1

2π
ln |x| − C

2π
, x ∈ R

2 .

The constant term is a solution to the homogeneous equation ∆g =
0. So, the first term can be taken as a fundamental solution for the
2D Laplace operator. This solution satisfies the asymptotic boundary
condition

|∇G2(x)| → 0 , |x| → ∞ .

A general solution is obtained by adding any harmonic function in a
plane. Recall that all such functions are real (or imaginary) parts of
holomorphic functions of a complex variable z = x1 + ix2 or of its
complex conjugate variable z̄.



458 5. APPLICATIONS TO PDES

37.1.3. Case N ≥ 3. If N ≥ 3, then a particular solution is given by a
regular distribution

F [G
N
](k) = − 1

|k|2 , N > 2 .

Therefore G
N
(x) is obtained by taking the inverse Fourier transform of

this distribution. For any test function ϕ, one has

(G
N
, ϕ) = (F−1[F [G

N
]], ϕ) = (F [G

N
],F−1[ϕ])

= − 1

(2π)N

∫

1

|k|2
∫

e−i(k,x)ϕ(x) dNx dNk

= − 1

(2π)N
lim

R→∞

∫

|k|<R

1

|k|2
∫

e−i(k,x)ϕ(x) dNx dNk

= − 1

(2π)N
lim

R→∞

∫

ϕ(x)

∫

|k|<R

e−i(k,x)d
Nk

|k|2 d
Nx

where the order of integration was changed by Fubini’s theorem because
the integrand is an integrable function on RN ×{|k| < R}. The integral
over the ball of radius R is computed in the spherical coordinates such
that (x, k) = |x|r cos(φ) where r = |k| and

dNk = rN−1 sinN−2(φ) dSN−2dφ dr

here dSN−2 is the surface area element on the unit N − 2 dimensional
sphere. If σ

N
is the surface area of a unit sphere |x| = 1 in RN , then,

after the scaling transformation y = |x|r
∫

|k|<R

e−i(k,x)d
Nk

|k|2 =
σ

N−1

|x|N−2

∫ |x|R

0

∫ π

0

eiy cos(φ) sinN−2(φ) dφ yN−3 dy

The simplest case is N = 3 when σ2 = 2π and using the substitution
s = cos(φ), one infers that

∫

|k|<R

e−i(k,x)d
3k

|k|2 =
2π

|x|

∫ |x|R

0

∫ 1

−1

e−iysdsdy =
4π

|x|

∫ R|x|

0

sin(y)

y
dy

The improper integral converges to π/2 as R → ∞ for any x 6= 0 and,
hence, is a bounded

∣

∣

∣

∫ R|x|

0

sin(y)

y
dy

∣

∣

∣
≤M

for all R > 0. The function

Mϕ(x)

|x| ∈ L(R3)
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is integrable. Therefore the limit in (G3, ϕ) can be computed by the
Lebesgue dominated convergence theorem

(G3, ϕ) = − 4π

(2π)3
lim

R→∞

∫

ϕ(x)

|x|

∫ |x|R

0

sin(y)

y
dy d3x = − 1

4π

∫

ϕ(x)

|x| d3x

G3(x) = − 1

4π|x| , x ∈ R
3 .

A similar line of arguments can be used for any N > 3 to show that

G
N
(x) = − 1

(N − 2)σN

1

|x|N−2
, x ∈ R

N , N ≥ 3 .

The integral over the zenith angle can be reduced to one of integrals
that can be found in tables of definite integrals. However, an easier ap-
proach is based on the observation that after the scaling transformation
y = |x|r, G

N
is shown to be proportional to |x|2−N . The proportion-

ality coefficient is given by the said improper iterated integral. Then
the proportionality coefficient can be computed by a direct evaluation
of ∆|x|2−N ∼ δ(x).

37.2. Uniqueness of the fundamental solution for the Laplace operator. A
general temperate distribution that is the Fourier transform of a fun-
damental solution for the Laplace operator is the sum of a particular
solution and a general temperate distribution g(k) that satisfies the
equation

(k, k)g(k) = 0

This distribution has a point support {k = 0}. Indeed, if support of a
test function ϕ(k) does not contain k = 0. Then ψ(k) = ϕ(k)/|k|2 is
also a test function. Therefore

0 = (0, ψ) =
(

|k|2g(k), ϕ(k)

|k|2
)

= (g, ϕ)

which means that g(k) = 0 in {|k| > 0}. Thus, one has to determine
a structure of temperate distributions with point support. For a single
variable, any distribution with point support was shown to be a linear
combination of the delta function and its derivatives. It turns out the
same assertion holds in higher dimensions for temperate distributions.

Theorem 37.1. If support of a temperate distribution f is a point
{x = 0}, then there exists a unique collection of coefficients cα and an
integer p ≥ 0 such that

f(x) =

p
∑

α=0

cαD
αδ(x) .
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It follows from this theorem that any fundamental solution for the
Laplace operator is unique up to an additive harmonic polynomial in
the space S ′:

G
N
(x) → G

N
(x) + Ph(x) , Ph(x) =

p
∑

α=0

cαx
α , ∆Ph(x) = 0

It is worth noting that in the space D′, a fundamental solution for
the Laplace operator is unique up to an additive harmonic function,
not just a harmonic polynomial. A general harmonic function of two
or more variables grows too fast in some directions to be a regular
temperate distribution. For example, any harmonic polynomial of two
variables is a linear combination of monomials Re zm and Im zm, with
m = 0, 1, ..., where z = x1 + ix2, whereas the real or imaginary parts
of any holomorphic function of z is a harmonic function of x1 and x2.
For example, h(x1, x2) = Re ez = ex1 cos(x2) or h(x1, x2) = Re ez2

=
ex2

1−x2
2 cos(2x1x2) which are not regular temperate distributions.

Thus, the set of all fundamental solutions for a differential operator
that can be obtained by the Fourier transform is smaller than the set of
all fundamental solutions for this operator. Only fundamental solutions
that are also temperate distributions can be obtained.

A fundamental solution G
N
(x) is a harmonic function in the asymp-

totic region |x| > R > 0. Therefore it is possible to impose asymptotic
boundary conditions on G to make the solution unique. For example,
the condition

G
N
(x) → 0 , |x| → ∞ ,

yields a unique solution if N ≥ 3 because Ph = 0. The condition

|∇G
N
(x)| → 0 , |x| → ∞ ,

makes the solution unique up to an additive constant if N ≥ 2.

37.3. Solving the Poisson equation by the Fourier transform method. Put

G1(x) =
|x|
2
, x ∈ R ,

G2(x) =
1

2π
ln(|x|) , x ∈ R

2 ,

GN (x) = − 1

(N − 2)σN

1

|x|N−2
, x ∈ R

N , N ≥ 3

Suppose that ρ is a compactly supported distribution. Then ρ ∈ S ′.
Consider the problem of finding a temperate distribution u that satisfies
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the Poisson equation

∆u(x) = ρ(x) , u ∈ S ′ .

By taking the Fourier transform of this equation one infers that

|k|2F [u](k) = F [ρ](k)

Therefore a particular solution reads

F [u](k) = F [GN ](k)F [ρ](k) = F [GN ∗ ρ](k)

It defines a temperate distribution because F [ρ] is a smooth function
of slow growth (from class OM). Therefore, a general solution in S ′ is

u(x) = (GN ∗ ρ)(x) + Ph(x)

where Ph is a harmonic polynomial. Suppose ρ is a bounded function.
Then

u(x) =

∫

Ω

GN (x− y)ρ(y) dNy + Ph(x)

where Ω is a bounded set that contains the support of ρ. If N ≥ 3, then
the first term is from class C∞ in the complement of Ω and vanishes
in the asymptotic region |x| → ∞. If, in addition, it is demanded that
u(x) → 0 as |x| → ∞, then the solution is unique because Ph(x) = 0.
Another asymptotic condition used in application is to demand that
the solution is bounded or its gradient vanishes in the limit |x| → ∞.
In ether of these cases, the solution is unique up to an additive constant.

If N = 2, then the convolution

(G2 ∗ ρ)(x) =
1

2π

∫

Ω

ln(|x− y|)ρ(y) d2y

does not vanish in the asymptotic region. However it is a smooth
function in the complement of Ω̄ and

Dα(G2 ∗ ρ)(x)
1

2π

∫

Ω

Dα
x ln(|x− y|)ρ(y) d2y

by the theorem about differentiation of a function defined by the inte-
gral. It follows from this relation that the gradient of the convolution
vanishes in the asymptotic region. Indeed, let Ω ⊂ BR. Then

1 − |y|
|x| ≥

1

2
, y ∈ Ω , |x| ≥ 2R
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for any such x,

|∇(G2 ∗ ρ)(x)| ≤
1

2π

∣

∣

∣

∫

Ω

xρ(y)

|x− y|2 d
2y

∣

∣

∣
≤ |x|

2π

∫

Ω

|ρ(y)|
(|x| − |y|)2

d2x

≤ M

|x| → 0 , M =
1

π

∫

Ω

|ρ(y)| d2y <∞

Therefore, if one demands that the gradient of a solution vanishes in
the asymptotic region, then the solution is unique up to an additive
constant.

37.4. Examples of distributional solutions to the Poisson equation. Here
some examples of distributional solutions to the Poisson equation in
R3 are obtained that are commonly used in physics.

37.4.1. Dipole potentials. The electric charge density of a point-like
electric dipole with moment p and positioned at x = 0 is given by
the distribution

ρ(x) = (p,∇)δ(x) , x ∈ R
3 .

The magnitude |p| is the dipole strength. So, the Coulomb potential
generated by a point-like dipole is required to have the vanishing gra-
dient in the asymptotic region, |x| → ∞, and hence is given by the
convolution

u(x) = G3 ∗ (p,∇)δ(x) = (p,∇)(G3 ∗ δ) = − 1

4π
(p,∇)

1

|x| =
(p, x)

4π|x|3 .

A shift of the fundamental solution by a constant does not change u(x)
because 1 ∗ (p,∇)δ(x) = (p,∇)1 = 0.

37.4.2. Potentials of single and double layers. Suppose that electric charges
are distributed over a smooth bounded surface S in R3 with a surface
density µ that is continuous on S. Then the electric charge density is
given by a simple layer distribution

ρ(x) = (µδS)(x) .

This distribution has a bounded support (which is the surface S) and,
hence, the convolution G3 ∗ ρ exists. It is an electric potential created
by a simple layer of charges. Let η

S
be a test (bump) function that is

equal to 1 in a neighborhood of S. Then using the theorem about the
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convolution of a distribution with bounded support

(G3 ∗ ρ, ϕ) =
(

ρ(y), η
S
(y)

(

G3(z), ϕ(z + y)
))

=

∫

S

µ(y)η
S
(y)

∫

ϕ(z + y)

4π|z| d3z dSy

=

∫

S

µ(y)

∫

ϕ(x)

4π|x− y| d
3x dSy

=

∫ ∫

S

µ(y)

4π|x− y| dSy ϕ(x) d3x ,

where the latter equality follows from the Fubini theorem (the inte-
grand is integrable on S × BR where suppϕ ⊂ BR). Therefore

u(x) =
1

4π

∫

S

µ(y)

|x− y| dSy

is a potential of a single layer with density µ that satisfies the distri-
butional Poisson equation

∆u = µδS .

Note that the above analysis also shows that u(x) is locally integrable.
Recall the analysis of functions defined by potential-like integrals in
the previous chapter. By this analysis the potential of a single layer
is a smooth function in the complement of any neighborhood of the
surface S, and

Dαu(x) =
1

4π

∫

S

µ(y)Dα
x

1

|x− y| dSy , x ∈ R
3 \ S .

As noted a fundamental solution with the vanishing gradient in the
asymptotic region is unique up an additive constant. If G3 is shifted
by a constant, then u is also changed by an additive constant because

1 ∗ µδS =

∫

S

µ(y) dS

This integral is equal to the total electric charge of the surface S.
Similarly, a distributional solution to the Poisson equation

∆u = − ∂

∂n

(

νδS

)

whose gradient vanishes as |x| → ∞, is an electric potential created
by electric dipoles with moments parallel to the unit normal n̂ to the
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surface S and distributed with a surface density ν which is assumed to
be continuous on S,

u(x) =
1

4π

∫

S

ν(y)
∂

∂ny

1

|x− y| dSy =
1

4π

∫

S

ν(y)
(n̂y, (x− y))

|x− y|3 dSy .

Indeed, for any test function ϕ and a bump function ηS for a bounded
smooth surface S

(u, ϕ) =
(

G3 ∗ ρ, ϕ
)

=
(

ρ ∗G3, ϕ
)

=
(

ρ(y) ·G3(z), ηS
(y)ϕ(y + z)

)

= −
(

(n̂y,∇y)ν(y), ηS
(y)

∫

ϕ(y + z)

|z| d3z
)

=

∫

S

ν(y)(n̂y,∇y)

∫

ϕ(x)

|x− y| d
3x dSy

=

∫

S

ν(y)

∫

ϕ(x)(n̂y,∇y)
1

|x− y| d
3x dSy

=

∫

ϕ(x)

∫

S

ν(y)(n̂y,∇y)
1

|x− y| dSy d
3x

The second equality from the bottom is justified by the theorem about
differentiation of potential-like integrals studied earlier (in this case
the density ϕ(x) has a bounded support and smooth and, hence, is
bounded, which is sufficient for the integral to be from class C1 in
R3). The last equality follows from the Fubini theorem. Note that
the integrand is an integrable function on S × BR where suppϕ ⊂ BR

because
∣

∣

∣
ϕ(x)ν(y)(n̂y,∇y)

1

|x− y|
∣

∣

∣
≤ M

|x− y|2 ∈ L(S × BR)

where

M = sup |ϕ| sup
S

|ν| <∞

since S is bounded and ν is continuous on S.
The equations for the potentials of single and double layers can be

obtained from the superposition principle in physics. For example, the
dipole moment of an infinitesimal part of the surface of area dSy at a
point y is given by dpy = ν(y)dΣy, where dΣy = n̂ydSy. The potential is
nothing but a superposition of potentials created by point-like dipoles
distributed over S at a point x. Indeed a single dipole at a point y
creates a potential at a point x that is given by

du(x) =
(x− y, dpy)

4π|x− y|3 .
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A summation of partition of the surface means taking the superposition
of all potential

u(x) =

∫

S

du(x) =

∫

S

(x− y, dpy)

4π|x− y|3 .

37.5. The multipole expansion of the Coulomb potential of an extended

source. The examples given above shows that in many cases an ex-
plicit form of distributional solutions is easier to find, especially when
the source term is a combination of the delta function and its deriva-
tives. The corresponding distributional solution is close to a classical
solution when dimensions of the support of sources can be neglected
(see Proposition 35.1). In practical applications, they, in fact, cannot
even be distinguished. For example, a fundamental solution is a so-
lution with a source being a delta function. But any measurement of
coordinates (or position in general) has an uncertainty. The length
can be measured with the smallest uncertainty of 10−18 cm (the limit
reached in the hadron collider in CERN). So, it is pointless to discuss
how an electric charge is distributed in a ball of radius 10−18 cm be-
cause it cannot be measured anyway. A fundamental solution to the
Poisson equation gives an excellent approximation.

Let ωa(x) be a smooth regularization of δ(x) with support in a ball
of radius a (the radius is about the uncertainty of distance measure-
ments). The convolution

u(x) = −
∫

ωa(y)

4π|x− y| d
3y = −

∫

Ba

ωa(y)

4π|x− y| d
3y

is a classical solution to the Poisson equation. Consider the solution
in the region where |x| is much larger than a so that a/|x| is a small
number. For example, a size of a hydrogen atom is about 10−8 cm,
which is roughly a radius of the orbit of an electron moving in the
Coulomb potential created by a proton whose dimension is about a ∼
10−12 cm. In this case, a/|x| ∼ 10−4. Let us expand the fundamental
solution into a power series

1

|x− y| =
1

|x| − yj
∂

∂xj

1

|x| +
1

2
yiyj

∂

∂xi

∂

∂xj

1

|x| + · · ·

=
∞

∑

n=0

(−1)n

n!

(

yi
∂

∂xi

)n 1

|x|

where the summation over repeated indices is assumed (the Einstein
summation rule). The Taylor series converges if |y| ≤ a and a/|x| is
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sufficiently small. A convergent power series can be integrated term-
by-term over a ball |y| < a and the result is a convergent series such
that

u(x) = −
∞

∑

n=0

(−1)n

4πn!

∫

Ba

ωa(y)
(

yi
∂

∂xi

)n 1

|x| d
3y

Put

Q
(n)
j1···jn

=
1

n!

∫

Ba

ωa(y)yj1 · · · yjn d
3y

These quantities are called the moments of the density ωa. In particular,
for n = 0, Q(0) = 1 is the total charge (recall that ωa is a regularization

of δ(x)), thenQ
(1)
j is known as the dipole moment, Q

(2)
ij as the quadrupole

moment, etc. Then

u(x) = − 1

4π|x| −
∞

∑

n=1

(−1)nQ
(n)
j1···jn

∂n

∂xj1 · · · ∂xjn

1

4π|x|

= − 1

4π|x| −
Q

(1)
j xj

4π|x|3 −Q
(2)
ij

3xixj − δij|x|2
|x|5 − · · ·

The second term is a dipole correction to the Coulomb potential of a
point-like source and the third one is a quadrupole correction. This
expansion is known as a multipole expansion of the Coulomb potential
of an extended source.

So, with every classical (smooth) compactly supported source ρ,
one can associate the distributional source

ρm(x) = Q(0)δ(x) +
m

∑

n=1

(−1)nQ
(n)
j1···jn

∂n

∂xj1 · · · ∂xjn

δ(x)

where Q(0) =
∫

ρ(x) d3x (a total charge) and Q(n) are moments of ρ.
Then the distributional solution

um(x) = − 1

4π|x| ∗ ρm(x)

matches the first m+1 terms of the multipole expansion of the classical
solution by the differentiation properties of the convolution.

If the classical source has support in a ball of radius a, then

|Q(n)
j1···jn

| ≤ 1

n!

∫

Ba

∫

Ba

|ρ(y)||yj1 · · · yjn | d3y ≤ M0
an

n!
, M0 =

∫

|ρ(y)| d3y .

Define a constant Cn as the smallest constant for which the following
inequality holds:

∣

∣

∣

∂n

∂xj1 · · · ∂xjn

1

|x|
∣

∣

∣ ≤ Cn

|x|n+1
.
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Then

|u(x)− um−1(x)| ≤
1

4π|x|

(

Cm

m!

( a

|x|
)m

+O
(( a

|x|
)m+1)

)

If a is roughly an absolute uncertainty of length measurement, then
even u0 is an accurate solution because a relative uncertainty of the
distributional solution is about the same as the length relative uncer-
tainty:

|u(x)− u0(x)|
u0(x)

∼ a

|x| .
Even in the case when a is greater than an absolute uncertainty of
length measurements but a solution is studied for |x| much larger than
a (the size of sources), the distributional solution um is accurate for
large enough m (because the amplitude u(x) is also measured with
some uncertainty).

37.6. Exercises.

1. Let ρ be a bounded function with support in an interval [−R,R].
Show that that u(x) = (G1 ∗ ρ)(x) is a unique solution to u′′(x) = ρ(x)
up to an additive constant if |u′(x)| ≤M for all x.

2. Use the Fourier transform method to find a solution to the problem

(∇, A∇)G(x) = δ(x) , G ∈ S ′(RN )

where A is a strictly positive symmetric N ×N matrix.
Hint: Find a linear change of variables to reduce the problem to finding
a fundamental solution for the Laplace operator.

3. Let ρ(x) be a bounded function with bounded support. Use the
Fourier transform method to find an integral representation of the most
general distributional solution from to the problem

(∇, A∇)u(x) = ρ(x) , |u(x)| ≤ M , x ∈ R
3

where A is a strictly positive symmetric 3× 3 matrix. Find a direction
in which the solution is decreasing most rapidly with increasing |x| in
the asymptotic region |x| → ∞.

4. Show that

G2(x) = − 1

2π
ln(|x|)− C

2π
by the direct evaluation of the Fourier transform as suggested above in
this section.
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5. Consider the single and double layer distributions µδS and − ∂
∂n

(νδS)
in RN , N > 3. Assume that the N −1 dimensional surface S is smooth
and bounded, and the densities µ and ν are continuous on S. Find an
integral representation to the solution to the Poisson equation

∆u(x) = ρ(x) , |∇u(x)| → 0 as |x| → ∞
where ρ is either the single or double layer distribution in RN .
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38. The Helmholtz equation

Consider a wave equation with a special inhomogeneity

(D2
t − c2∆x)u(x, t) = e−iωt · ρ(x) , t ∈ R , x ∈ R

N

where ρ(x) is a distribution (the density of sources). A related physical
problem is formulated as follows. If u(x, t) represents a deviation of
air pressure from its equilibrium (e.g., an atmospheric pressure), then
the equation describes a generation of sound waves by monochromatic
sources of frequency ω distributed with a density ρ(x). A solution is
sought in the form of the direct product

u(x, t) = e−iωt · v(x)
where the distribution v(x) satisfies the Helmholtz equation

(∆ + k2)v(x) = c−2ρ(x) , k2 =
ω2

c2

The differential operator in the left-hand side of the equation is called
the Helmholtz operator in RN . A solution to this equation can be
found as a convolution of its fundamental solution with a distributional
density ρ. In particular, the convolution always exists if the distribution
ρ has a bounded support.

38.1. Fundamental solutions in R3. Let us show that the regular distri-
butions

E±(x) = − 1

4π

e±ik|x|

|x| , x ∈ R
3 ,

are fundamental solutions for the 3D Helmholtz operator

(∆ + k2)E±(x) = δ(x) .

One way of doing this is to show that for any test function
(

(∆ + k2)E±, ϕ
)

=
(

E±, (∆ + k2)ϕ
)

= − 1

4π

∫

e±ik|x|

|x| (∆ + k2)ϕ(x) d3x

= ϕ(0) = (δ, ϕ)

by means of the Green’s identity and that
(

∆ + k2
)

E±(x) = 0 , |x| ≥ a > 0

similarly to the proof of (21.13).
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The result can also be obtained by the Leibniz rule. Note that the
imaginary part of the fundamental solution is from C∞(R3)

sin(k|x|)
|x| = k − k3

6
|x|2 +O(|x|4)

The function is represented by a power series in three rectangular coor-
dinates that has infinite radius of convergence. In spherical coordinates,
the function depends only on the radial variable r = |x| so that

∆
sin(k|x|

|x| =
1

r2

∂

∂r
r2 ∂

∂r

sin(kr)

r
= −k2 sin(kr)

r

where the Laplace operator was written in spherical coordinates. So,
the imaginary part is a smooth solution to the Helmholtz equation:

(

∆ + k2
) sin(k|x|)

|x| = 0 , x ∈ R
3

The real part contains a C∞ function

cos(k|x|) = 1 − k

2
|x|2 +O(|x|4)

because it is given by a power series in three variables with infinite
radius of convergence. So, the real part is the product of a C∞ function
and a distribution, and, hence, the Leibniz rule applies to calculate the
action of the Laplace operator on it:

∆
cos(k|x|)

|x| =
∆ cos(k|x|)

|x| + 2
(

∇ 1

|x| ,∇ cos(k|x|)
)

+ cos(k|x|)∆
1

|x|

The distributional and classical gradients of |x|−1 are equal

∇ 1

|x| = − x

|x|3 =

{

∇ 1

|x|

}

because the gradient is locally integrable in R3. Indeed, let ∂j denotes
the partial derivative with respect to xj. For any test function ϕ with
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support in a ball BR,
(

∂j
1

|x| , ϕ
)

= −
( 1

|x| , ∂jϕ
)

= −
∫

BR

∂jϕ(x)

|x| d3x

= − lim
a→0+

∫

BR\Ba

∂jϕ(x)

|x| d3x

= − lim
a→0

(

∮

|x|=a

+

∮

|x|=R

)njϕ(x)

|x| dS

− lim
a→0

∫

BR\Ba

xj

|x|3 ϕ(x) d3x

= −
∫

BR

xj

|x|3 ϕ(x) d3x =
({

∂j
1

|x|
}

, ϕ
)

where the integration by parts was carried out, nj is the jth components
of the outward unit normal, and the integral over the boundary sphere
|x| = R vanished because ϕ(x) = 0 on the sphere. The integral over
the boundary sphere |x| = a vanishes in the limit a → 0. Indeed, let
M = sup |ϕ|. Using |nj | ≤ 1,

∣

∣

∣

∣

∮

|x|=a

njϕ

|x| dS
∣

∣

∣

∣

≤ 1

a

∮

|x|=a

|ϕ| dS ≤ M

a

∮

|x|=a

dS = 4πaM

which tends to 0 as a→ 0. Calculating

∇ cos(k|x|) = −kx sin(k|x|
|x|2 ,

∆ cos(k|x|) = (∇,∇ cos(k|x|)) = −k2 cos(k|x|) + 2k
sin(k|x|

|x|
it is deduced that

(∆ + k2)
cos(k|x|)

|x| = cos(k|x|)∆ 1

|x| = −4π cos(k|x|) δ(x) = −4πδ(x)

as required. The analysis also shows that the fundamental solutions
differs by a solution to the homogeneous Helmholtz equation

E+(x)− E−(x) =
i sin(k|x|)

2π|x| .

38.1.1. Physical significance of E±. Let us analyze a physical signifi-
cance of these fundamental solutions. For |x| > 0, E±(x) are smooth
and represent classical solutions to the wave equation

u+(x, t) = −e
−iωt+ik|x|

4π|x| , u−(x, t) = −e
−iωt−ik|x|

4π|x| , |x| > 0 .
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The phase of u+ is constant on the sphere |x| = ct for any moment
of time t. So, with increasing t > 0, the sphere of the constant phase
is expanding, hence, u+ describes a spherical wave outgoing with the
speed c to spatial infinity (recall that k = ω/c). The solution u−(x, t)
can be interpreted as a spherical wave that is expanding with the speed
−c, or collapsing with the speed c. One can think of a spherical wave
that comes from infinity and collapses to the origin. The fundamental
solution u+ describes a sound wave coming from a point-like source
producing a single sound note corresponding to the wavelength λ =
2π/k, like a tuning fork.

Suppose that ρ(x) is a bounded function with a bounded support.
Then the convolutions E± ∗ ρ exist so that the original wave equation
has two solutions

u±(x, t) = −e
−iωt

4πc2

∫

e±ik|x−y|

|x− y| ρ(y) d
3y

The solution u+ can be viewed as a ”superposition” of outgoing waves

du+(x, t) = −e
−iωt+ik|x−y|

4πc2|x− y| ρ(y)d
3y

each of which is the outgoing spherical wave from a point-source at a
point y of strength ρ(y)d3y. The support of ρ is partitioned into small
volumes, each volumes acts as a point source of a spherical wave. The
sum over partition is a superposition of these waves that becomes an
integral over the support of ρ as the partition is refined. In contrast,
the solution u− can be viewed as a superposition of incoming waves.

38.2. Sommerfeld radiation condition. If a solution is required to de-
scribe a physical process of emitting waves by a given source, then a
solution cannot contain any incoming waves. It is not difficult to see
that the fundamental E+ satisfies the Sommerfeld radiation condition
in R3:

r
( ∂

∂r
− ik

)

E+(x) → 0 as r = |x| → ∞
while E− does not. The reader is asked to show that the solution
u+(x, t) satisfies the Sommerfeld radiation condition

r
( ∂

∂r
− ik

)

u+(x) → 0 as r = |x| → ∞
and, hence, describes the process of emitting waves by the source. This
shows that the choice of a fundamental solution and its use to construct
solutions to the associated non-homogeneous equation with a distribu-
tional source depends on additional (physical) conditions imposed on
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the solution. Recall that a particular fundamental solution satisfying
additional conditions is called a Green’s function for a differential op-
erator. In this sense, E+ is the Green’s function of the 3D Helmholtz
operator for outgoing waves (or satisfying the Sommerfeld radiation
condition).

38.3. Homogeneous Helmholtz equation. Make an analogy with har-
monic functions:
(1) any distributional solution is from class C∞;
(2) representation of a solution in a bounded region Ω via its values
and values of its normal derivatives on ∂Ω, like Green’s identities for
harmonic functions;
(3) Proof that if u solves the homogeneous equation and satisfies Som-
merfeld radiation condition, then u(x) = 0;

38.4. The non-homogeneous equation. The following topics to be dis-
cussed:
(1) Analysis of smoothness of potentials (convolutions);
(2) The attenuation principle and the Fourier method for solving

38.5. Radiation of a dipole-like source. Suppose that the source is given
by

ρ(x) = (p,∇)δ(x)

where p is a constant vector in R3. In this case,

u±(x, t) =
e−iωt

c2
(E± ∗ (p,∇)δ)(x) =

e−iωt

c2
(p,∇)E±(x)

= −e
−iωt±ik|x|

4πc2|x|
(p, x)

|x|
(

± ik − 1

|x|
)

are solutions to the wave equation. One can see that in the limit
|x| → ∞, the leading term of the solution is

v±(x) ∼ e−iωt±ik|x|

|x|
because |(p, x)| ≤ |p||x|. So, the outgoing waves produced by the dipole
source are described by u+ that satisfies the Sommerfeld radiation con-
dition, while u− does not satisfy it.

38.6. Exercises.

1. An alternative proof that the distributions E± are fundamental
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solutions for the Helmholtz operator. Let x ∈ R3. Show first that

(∆ + k2)
eik|x|

|x| = 0 , x 6= 0 .

If ϕ is a test function with support in a ball BR of radius R, justify the
following chain of equalities

(

∆
eik|x|

|x| , ϕ
)

=

∫

BR

eik|x|

|x| ∆ϕ(x) d3x = lim
a→0

∫

BR\Ba

eik|x|

|x| ∆ϕ(x) d3x

Use Green’s formula to show that
(

(∆ + k2)
eik|x|

|x| , ϕ
)

= − lim
a→0

∮

|x|=a

(

ϕ(x)
∂

∂n

eik|x|

|x| − eik|x|

|x|
∂ϕ

∂n

)

dS

where n = −x/a is the unit normal on the sphere |x| = a. Show that
the second surface integral vanishes in the limit a → 0 and use the
integral mean value theorem to show that

lim
a→0

∮

|x|=a

ϕ(x)
∂

∂n

eik|x|

|x| dS = 4πϕ(0) = 4π(δ, ϕ)

Conclude that in the sense of distributions

(∆ + k2)
eik|x|

|x| = −4πδ(x)

Show that the above line of arguments remains valid if k changed to −k.

2. (i) Find a distributional solution to the Helmholtz equation for
|x| ≥ a > 0 with a “quadrupole” point-like source:

(∆ + k2)v(x) =
3

∑

i,j=1

pij
∂2

∂xi∂xj
δ(x) = (∇, p∇)δ(x) , x ∈ R

3 ,

that satisfies the Sommerfeld radiation condition.
(ii) Show that the solution found for x 6= 0 is not locally integrable in
the whole R3. So, a distributional solution in R3 is an extension of the
classical solution to the singular point x = 0. Find this extension.

3. Let ρ(x) be bounded and have a bounded support in R3. Use
the theory of functions defined by potential-like integrals to prove that
the solution u+(x, t) = c−2e−iωt(E+ ∗ ρ)(x) to the 4D wave equation
satisfies the Sommerfeld radiation condition.

4. Let ωa be a regularization of δ(x) with support in a ball |x| ≤ a.
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Find the multipole expansion of the solution u+(x) = E+ ∗ ωa to the
Helmholtz equation in R3 in a region where a/|x| is small. Estimate a
relative uncertainty of the fundamental solution E+(x) relative to the
classical solution u+(x) in terms of a/|x|.
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39. General linear PDEs in S ′

Let L(D) =
∑

α<p aαD
α be a general linear differential operator

with constant coefficients aα. Let us find a fundamental solution for it
in the space of temperate distributions:

L(D)G(x) = δ(x) , G ∈ S ′(RN) .

Suppose that G is a temperate distribution that satisfies this equation.
Then by taking the Fourier transform of both sides,

F [L(D)G](k) =
∑

α<p

aαF [DαG](k) =
∑

α<p

aα(−ik)αF [G](k)

= L(−ik)F [G](k)

one infers that its Fourier transform satisfies the algebraic equation:

L(−ik)F [G](k) = 1

Conversely, suppose the Fourier transform of G is a temperate dis-
tribution that satisfies this algebraic equation. Then by taking the
inverse Fourier transform of both sides of the algebraic equation, it is
concluded that G is a fundamental solution for L in S ′. Thus, the
following proposition holds.

Proposition 39.1. In order for a temperate distribution G to be a
fundamental solution for a linear differential operator L(D) with con-
stant coefficients, it is necessary and sufficient that its Fourier trans-
form satisfies the algebraic equation L(−ik)F [G](k) = 1.

If the polynomial L(−ik) has no real roots, then a particular solu-
tion to this distributional equation is a regular temperate distribution

F [G](k) =
1

L(−ik) , L(−ik) 6= 0 , k ∈ R
N

If the polynomial L(−ik) vanishes at some k ∈ RN , then the reciprocal
of L(−ik) is generally a singular function (not locally integrable) and,
hence, a solution, if it exists in S ′, must be given by a distributional
extension of the reciprocal to the set of real zeros of L(−ik). Any such
extension will be denoted as

F [G](k) = R 1

L(−ik) ∈ S ′ .

Its characteristic property is that in the distributional sense

L(−ik)R 1

L(−ik) = 1
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This implies that

R 1

L(−ik) =
1

L(−ik) , k ∈ R
N \ NL ,

where NL is the set of all real zeros of L(−ik):
NL = {k ∈ R

N |L(−ik) = 0}
The following theorem give an answer to a natural question about the
existence of such an extension.

Theorem 39.1. (L. Hörmander)
Let P (k) be a complex polynomial of k ∈ RN . Then the equation

P (k)f(k) = 1

always has a solution f in the space of temperate distributions.

By this theorem, a fundamental solution always exists in the space
of temperate distributions and is given by

G(x) = F−1
[

R 1

L(−ik)
]

(x)

39.1. The inhomogeneous problem. Recall that a general non-homogeneous
problem

L(D)u(x) = f(x) , f ∈ D′

has a solution in D′, given by u = G∗f , provided the convolution G∗f
exists in D′. A solution is unique in the class of distributions for which
the convolution with G exists in D′.

Suppose that the inhomogeneity f is a temperate distribution. Then
a particular solution to the problem is also a temperate distribution u
whose Fourier transform is obtained by dividing a temperate distribu-
tion F [f ] by a polynomial:

F [u](k) = R 1

L(−ik)F [f ](k) .

If the polynomial L(−ik) has no real zeros, then its reciprocal is a
smooth temperate function and its product with a temperate distri-
bution F [f ] is a temperate distribution. If NL is not empty, then its
reciprocal must be extended to NL so that the extension is a temperate
distribution. Then the inverse Fourier transform of the product gives
a particular solution:

u(x) = F−1
[

R 1

L(−ik)F [f ]
]

(x) .
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39.2. Basic methods to construct a distributional extension. There is no
universal method for constructing a distributional extension of the re-
ciprocal of a polynomial. However, there are two basic approaches that
can be used to solve this problem.

39.2.1. Partial fraction decomposition. Suppose k ∈ R. Then the roots
of L(−ik) are isolated points, and the reciprocal of L(−ik) can be
decomposed into a sum of partial fractions. Each term of the sum is
singular at one root and, hence, can be extended by using a suitable
principal value distribution. Suppose k = a is a real root of multiplicity
n + 1, n ≥ 0. Then the partial fraction expansion has the following
terms

1

L(−ik) =
An(k)

(k − a)n+1
+
An−1(k)

(k − a)n
+ · · · + A0

k − a
+ · · ·

where Am(k) is a polynomial of degree m = n, n− 1, ..., 1, 0. For k 6= a

dn

dkn

1

k − a
= (−1)n n!

(x− a)n+1

A multiplication of a temperate distribution by a polynomial produces
a temperate distribution. So, put

R 1

(k − a)n+1
=

(−1)n

n!

dn

dkn
P 1

k − a

Since the principal value distribution P 1
k

is a temperate distribution,
a shift of its argument also defines a temperate distribution, and any
derivative of it is a temperate distribution. Since distributional deriva-
tives coincide with the corresponding classical ones wherever the latter
exist, the above rule defines a distributional extension of the singular
function (k − a)−n−1 to the singular point k = a so that for any test
function

(

R 1

(k − a)n+1
, ϕ

)

=
1

n!

(

P 1

k − a
, ϕ(n)

)

=
1

n!
v.p.

∫

ϕ(n)(k + a)

k
dk

=
1

n!
lim

a→0+

∫

|k|>a

ϕ(n)(k + a)

k
dk , ϕ ∈ S

Sokhotsky’s distributions can also be used to obtain a similar extension:

R 1

(k − a)n+1
=

(−1)n

n!

dn

dkn

1

k − a± i0

It differs from the principal value extension only by a linear combina-
tion of δ(k − a) and its derivatives.
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A disadvantage of this method is that it does not have a univer-
sal extension to higher dimensions. Roots of L(−ik) may no longer
be isolated. They can form hyper-surfaces of various dimensions not
exceeding N in RN .

39.2.2. The iε prescription method. The idea of this method is to find
the distributional limit

R 1

L(−ik) = lim
ε→0+

1

L(−ik)± iε

if it exists. It can be applied in any dimensions. A necessary condition
for this method to work is that L(−ik)±iε has no real roots if 0 < ε < a
for some a > 0. In this case, its reciprocal is a regular temperate
distribution and its limit can be investigated. This condition is always
fulfilled in one particularly important case when L(−ik) is real

L(−ik) = L(−ik)

This is true for the Laplace, Helmholtz, or wave operators in any di-
mensions. For any temperate test function ϕ, the integral

( 1

L(−ik)± iε
, ϕ

)

=

∫

ϕ(k)

L(−ik)± iε
dNk =

∫

L(−ik) ∓ iε

|L(−ik)|2 + ε2
ϕ(k) dNk

exists for ε > 0, and its limit can be investigated. If the limit exists,
then owing to the continuity of the Fourier transform, the following
limit exists and vice versa:

G±(x) = lim
ε→0

F−1
[ 1

L(−ik) ± iε

]

(x)

So, the above equation defines a fundamental solution if the limit exists.
The procedure will be illustrated with examples below.

39.3. Simple examples. Consider the problem

G′′(x) − ω2G(x) = δ(x) , x ∈ R

where ω > 0. Then

F [G](k) = −R 1

k2 + ω2
= − 1

k2 + ω2
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because the denominator has no real zeros. The Fourier transform of
a fundamental solution is integrable on R. Therefore

G(x) = −F−1
[ 1

k2 + ω2

]

(x) = − 1

2π
F

[ 1

(−k)2 + ω2

]

(x)

= − 1

2π

∫

eikx

k2 + ω2
dk = − 1

2π
lim

R→∞

∫ R

−R

eikx

k2 + ω2
dk

= −2πi

2π

(

θ(x) res
z=iω

eizx

z2 + ω2
− θ(−x) res

z=−iω

eizx

z2 + ω2

)

= −e
−ω|x|

2ω

where the integral was evaluated by the residue theorem. So, G(x)
is integrable on R. Note that G is unique solution in S ′. A general
solution to the homogeneous equation reads

G0(x) = Ae−ωx +Beωx

This function is not a regular temperate distribution, unless A = B =
0, and hence cannot be added to G to get another fundamental solution
in S ′. The Fourier transform of G0 does not exist and the homogeneous
equation (k2 + ω2)F [G0] = 0 has only the trivial solution. However,
G(x)+G0(x) is a fundamental solution in D′ for any choice of constants
A and B. In particular, a fundamental solution found earlier by a
different method reads

E(x) = θ(x)
sinh(ωx)

ω
= G(x) +

1

2ω
eωx ∈ D′

39.3.1. Harmonic oscillator. Consider the problem

G′′(x) + ω2G(x) = δ(x) , x ∈ R

where ω > 0. Then

F [G](k) = R 1

ω2 − k2

which is a distributional extension of the singular function (ω2 − k2)−1

to singular points k = ±ω. The roots k = ±ω are simple, and the
partial fraction decomposition method gives the following extension

F [G](k) = − 1

2ω

(

P 1

k − ω
− P 1

k + ω

)

By taking the inverse Fourier transform and using the property of the
Fourier transform under a shift of the argument, a fundamental solution
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is obtained:

G(x) = F−1[F [G](k)](x) =
1

2π
F [F [G](−k)](x)

=
1

4πω

(

F
[

P 1

k + ω

]

(x) − F
[

P 1

k − ω

]

(x)

)

=
1

4πω

(

e−iωx − eiωx
)

F
[

P 1

k

]

(x)

=
sin(ωx)

2ω
sign (x) =

sin(ω|x|)
2ω

=
sin(ωx)

2ωx
|x|

A general solution of the homogeneous equation reads

G0(x) = A sin(ωx) +B cos(ωx)

which is a regular temperate distribution for any constants A and B.
So, any fundamental solution in S ′ has the form

G(x) =
sin(ωx)

2ω
sign (x) + A sin(ωx) +B cos(ωx)

In particular, setting A = 1
2ω

and B = 0, the fundamental solution
from the algebra D′

+ is obtained:

G(x) =
sin(ωx)

ω
θ(x)

Let us illustrate the iε prescription method. For example, put

F [G+](k) = R 1

ω2 − k2
= − lim

ε→0+

1

k2 − ω2 + iε

For 0 < ε < a, the new roots are complex:

k± = ±
√
ω2 − iε = ±ω

√

1 − iε/ω2 = ±(ω − iξ) +O(ξ2) , ξ =
ε

2ω

Therefore using the partial fraction decomposition, the limit can be
expressed via shifted Sokhotsky’s distributions:

F [G+](k) = − lim
ξ→0+

1

k+ − k−

(

1

k − k+

− 1

k − k−

)

=
1

2ω

(

1

k + ω − i0
− 1

k − ω + i0

)

Using the Fourier transform of the step function, it is not difficult to
infer that

F−1
[ 1

k ± i0

]

(x) = ∓iθ(±x)
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It follows from the shift-of-argument property of the Fourier transform
that

G+(x) =
i

2ω

(

eiωxθ(−x) + e−iωxθ(x)
)

=
i

2ω
e−iω|x|

It is not difficult to see that this fundamental solution differ from the
others obtained above only by an additive solution to the homogeneous
equation. This can also be concluded from the Sokhotsky’s equation.
The Fourier transforms differ by a linear combination of shifted delta-
functions, δ(k ± ω), whose inverse Fourier transforms are solutions to
the homogeneous equation, e±iωx.

39.4. Helmholtz operator. Consider the problem

(∆ + ω2)G(x) = δ(x) , G ∈ S ′(RN )

By taking the Fourier transform

(ω2 − |k|2)F [G](k) = 1

Real zeros of the polynomial ω2 − |k|2 form a sphere |k| = ω in RN .
Let us use the iε prescription to solve this equation

F [G](k) = R 1

ω2 − |k|2 = − lim
ε→0+

1

|k|2 − ω2 + iε

and investigate if the limit exists in S ′.
The technical details are given for the case N = 3. Other dimen-

sions can be studied similarly. For any temperate test function ϕ(x),
one has

(

F−1
[ 1

|k|2 − ω2 + iε

]

, ϕ
)

=
1

(2π)3

( 1

|k|2 − ω2 + iε
,F [ϕ](k)

)

=
1

(2π)3

∫

1

|k|2 − ω2 + iε

∫

ei(k,x)ϕ(x) d3xd3k

=
1

(2π)3
lim

R→∞

∫

|k|<R

1

|k|2 − ω2 + iε

∫

ei(k,x)ϕ(x) d3xd3k

=
1

(2π)3
lim

R→∞

∫

ϕ(x)

∫

|k|<R

ei(k,x)

|k|2 − ω2 + iε
d3k d3x

where the order of integration has been changed by Fubini’s theorem
as the integrand is integrable on BR × R3 for any ε > 0. The integral
over the Fourier variable k is evaluated in spherical coordinates such
that the zenith angle φ is counted from the vector x ∈ R3 so that
(k, x) = |x|r cos(φ) where r = |k| and d3k = r2 sin(φ)drdφdθ with θ
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being the polar angle in the plane perpendicular to x:
∫

|k|<R

ei(k,x)

|k|2 − ω2 + iε
d3k = 2π

∫ R

0

∫ π

0

ei|x|r cos(φ)

r2 − ω2 + iε
r2 sin(φ) dφ dr

=
4π

|x|

∫ R

0

r sin(|x|r)
r2 − ω2 + iε

dr

=
2π

|x|

∫ R

−R

r sin(|x|r)
r2 − ω2 + iε

dr

=
2π

|x|Im
∫ R

−R

rei|x|r

r2 − ω2 + iε
dr

=
2π

|x| Im I(ε, R, x)

The function

f(z) =
zei|x|z

z2 − ω2 + iε
, z ∈ C ,

has two simple poles

z = z± = ±
√
ω2 − iε = ±(ω − iξ) +O(ξ2) , ξ =

ε

2ω
and is analytic otherwise. Since ω > 0 and ε > 0 can be taken arbitrary
small, the pole z+ = ω − iξ +O(ξ2) lies below the real axis, while the
pole z− = −ω+iξ+O(ξ2) lies above it for all 0 < ε < a and some a > 0.
Take a closed contour C that consists of the line segment |Re z| ≤ R
and the circular arc |z| = R, Im z ≥ 0, denoted by CR. The contour is
positively oriented. Then by the residue theorem

∮

C

f(z) dz = 2πi res
z=z−

f(z) =
2πiz−
z− − z+

ei|x|z− = πi ei|x|z−

Therefore

I(ε, R, x) = −
∫

CR

f(z)dz + πi ei|x|z−

Let us show that the integral over the arc CR vanishes in the limit
R→ ∞. The integrand has the following estimate. If z = Reit on CR,
then dz = Rieitdt and

|f(Reit)Rieit| =
R2e−R|x| sin(t)

|R2e2it − ω2 + iε| ≤
R2

R2 − |ω2 − iε| ≤ 2

for all R2 > 2|ω2 − iε|. A constant function is integrable on (0, π) and
therefore by the Lebesgue dominated convergence theorem

lim
R→∞

∫ π

0

f(Reit)Rieitdt =

∫ π

0

lim
R→∞

f(Reit)Rieitdt = 0 , x 6= 0
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because e−R|x| sin(t) → 0 as R→ ∞ for 0 < t < π and x 6= 0. Thus,

lim
ε→0+

lim
R→∞

I(ε, R, x) = πi e−i|x|ω , x 6= 0 ,

that is, almost everywhere in R3. Let us find an upper bound for
|I(ε, R, x)| that is independent of R and ε. If the product of the bound
and |ϕ(x)|/|x| is integrable on R3, then the limits and the integration
over x can be swapped by the Lebesgue dominated convergence the-
orem. Using the above estimate of the integrand in the integral over
CR

|I(ε, R, x)| ≤ 2π + π|ei|x|z−| ≤ 3π

because the pole z− lies above the real axis and, hence, |ei|x|z−| ≤ 1.
By the Lebesgue dominated convergence theorem

(

G(x), ϕ(x)
)

= − 1

(2π)3
lim

ε→0+
lim

R→∞

∫

ϕ(x)
2π

|x| Im I(ε, R, x) d3x

= − 1

4π

∫

ϕ(x)
cos(ω|x|)

|x| d3x

Thus, a fundamental solution is given by

G(x) = −cos(ω|x|)
4π|x| =

1

2

(

E+(x) + E−(x)
)

, E±(x) = −e
±iω|x|

4π|x|
where E± are fundamental solutions satisfying the outgoing or incoming
radiation conditions. It is not difficult to verify that the −iε prescrip-
tion leads to the same answer, that is, G+ = G− = G for the Helmholtz
operator in R3.

39.5. Wave operators. Let us find a fundamental solution for the wave
operator:

L(D) =
1

c2
∂2

∂t2
− ∆x , t ∈ R , x ∈ R

N

Put x0 = ct and let k0 ∈ R be the Fourier variable for x0. Then a
fundamental solution is given by

G(x) = F−1[F [G]](x) = −F−1
[

R 1

k2
0 − |k|2

]

(x)

There are four iε prescriptions used to construct a distributional exten-
sion of (k2

0 − |k|2)−1 to singular points which form an N−dimensional
double cone in RN+1. For a given k 6= 0, the function

1

k2
0 − |k|2 =

1

(k0 − |k|)(k0 + |k|)
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has two poles k0 = ±|k| and is analytic otherwise in the complex
k0 plane of k0. Each of the poles can be shifted up or down using
the iε prescription, thus producing four possibly different fundamental
solutions whose Fourier transform are distributional limits

F [G](k) = − lim
ε→0+

1

(k0 − |k| ± iε)(k0 + |k| ± iε)

These four possibilities corresponds to the following Green’s functions
for the wave operator:

k0 = ±|k| − iε , G = G
(N)
R (causal retarded)

k0 = ±|k| + iε , G = G
(N)
A (causal advanced)

k0 = ±(|k| − iε) , G = G
(N)
F (Feynman propagator)

k0 = ±(|k| + iε) , G = G
(N)
T (anti − time ordered)

The latter two are used in quantum field theory for calculating Feyn-
man diagrams. They can also be obtained by the standard iε prescrip-
tion

F [G](k) = − lim
ε→0+

1

k2
0 − |k|2 ± iε

where −iε corresponds to the Feynman propagator. The Causal re-
tarded Green’s function is used for solving the Cauchy problem for the
wave equation.

Let us find G
(3)
R (x0, x). Put z1 = |k| − iε and z2 = −|k| − iε

39.6. Ordinary linear differential operator with constant coefficients. For
ordinary differential operators, there exists a simpler method of finding
a fundamental solution. This method will also be used to find causal
Green’s functions for partial differential operators that are used to solve
a Cauchy problem.

Let x ∈ R and

L =
dn

dxn
+ a1

dn−1

dxn−1
+ · · · + an−1

d

dx
+ an

where ak are constants, k = 0, 1, ..., n. A general solution to the homo-
geneous equation

LZ(x) = 0 , Z ∈ C∞

is a smooth function. It can be found by the method of undermined
coefficients. Let Z(x) = eλx, then λ is a root of the characteristic
equation

λn + a1λ
n−1 + · · · + an−1λ + a0 = 0

For each root λ (real or complex) of multiplicitym, the equation has m
linearly independent (smooth) solutions xkeλx, k = 0, 1, ..., m. Since a
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general solution is a linear combination of all linearly independent so-
lutions, it is concluded that any solution to the homogeneous equation
is from C∞. There are exactly n linearly independent solutions and,
hence, the initial value problem

LZ(x) = 0 , Z(k)(0) = ck , k = 0, 1, ..., n− 1

has a unique solution. The coefficients in the linear combination of n
linearly independent solutions are uniquely determined by the initial
conditions.

Proposition 39.2. Let Z(x) be the solution to the initial value
problem

LZ(x) = 0 , Z(0) = Z ′(0) = · · · = Z(n−2)(0) = 0 , Z(n−1)(0) = 1

Then

E(x) = θ(x)Z(x) ,

where θ is the step function, is a fundamental solution for the operator
L, that is,

LE(x) = δ(x) .

Proof. The assertion is proved by the Leibniz rule for distributions

(θ(x)Z(x))′ = Z(x)δ(x) + θ(x)Z ′(x) = Z(0)δ(x) + θ(x)Z ′(x)

= θ(x)Z ′(x)

because Z(0) = 0. Similarly,

(θ(x)Z(x))′′ = (θ(x)Z ′(x))′ = θ(x)Z ′′(x)

because Z ′(0) = 0. So that

(θ(x)Z(x))(k) = θ(x)Z(k)(x) , k = 0, 1, ..., n− 1

and

(θ(x)Z(x))(n) = δ(x)Z(n−1)(x) + θ(x)Z(n)(x) = δ(x) + θ(x)Z(n)(x)

because Z(n−1)(0) = 1. Therefore

L(θZ) = θLZ + δ = δ

as required. �
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39.6.1. Pendulum and electric circuits. Vibrations of a small amplitude
of a mass on a spring, or small oscillations of a pendulum under an
external force g(t) are described by the equation

f ′′(t) + ω2f(t) = g(t)

where the constant ω is called a frequency. If g(t) = 0, the amplitude
of oscillations a function of time t is

f(t) = A cos(ωt) + B sin(ωt)

so that the period is T = 2π/ω and the frequency is equal to 2π/T = ω.
If vibrations are also suppressed by a friction force, then the vibrations
are described by the equation

f ′′(t) + 2γf ′(t) + ω2f(t) = g(t)

where γ is a damping coefficients. In the so-called under-damped
regime when ν2 = ω2 − γ2 > 0, free oscillations (g(t) = 0) decay
exponentially

f(t) = e−γt
(

A cos(νt) +B sin(νt)
)

Recall from mechanics that the integral of a force acting on a system
is the net change of the momentum

p(t2) − p(t1) =

∫ t2

t1

g(t) dt

Here units are such that the system has a unit mass. Let t1 = 0 and
t2 → 0+, while g(t) is such that the integral is equal to 1, that is,
the system gets a finite push (momentum) in an infinitesimally small
time. This situation can be modeled by g(t) = δ(t). So, a fundamental
solution for a mechanical oscillator is a special solution that describes
vibrations of the oscillator that gets a finite push in an arbitrary small
time.

Similarly, consider a circuit that consists of a capacitor, induc-
tor, and resistor connected consecutively to an external electric power
source with voltage U(t). If I(t) is the electric current in the circuit,
then by Ohm’s law

L
dI

dt
+RI +

Q(t)

C
= U(t)

where L, R, and C are the inductance, resistance, and capacitance,
respectively, and Q(t) is the electric charge of the capacitor at a time t.
Since I(t) = Q′(t), it follows from differentiation of the above equation
that

I ′′(t) + 2γI ′(t) + ω2I(t) = g(t)
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where g(t) = U ′(t)/L, ω = 1/
√
LC, and γ = 1

2
(R/L). If the voltage

U(t) was constant for t < 0, then at t = 0 it is suddenly changed to a
different constant value, then its derivative is proportional to a delta-
function (so is g(t)). So, a fundamental solution in this case describes
an electric current in a basic electric circuit caused by a sudden jump
in the external voltage.

39.6.2. The initial value problem. Let D = d/dt and t is a physical
time. Suppose that the external force g(t) is a distribution g(t) with
support in [0,∞). Then the convolution of the fundamental solution
E(t) = θ(t)Z(t) and g(t) always exists in the algebra D′

+:

L(D)u(t) = g(t) ⇒ u(t) = (E ∗ g)(t) ∈ D′
+ .

According to the previous section, this distributional solution is unique
in the subspace of all distributions that have the convolution with E.
Indeed, any solution to the homogeneous equation is a linear combina-
tion of eλt, for some complex λ, but the convolution of E with eλt does
not exist because the integral

∫

E(t− τ )eλτdτ =

∫ t

−∞
Z(t− τ )eλτdτ

does not exist for any complex λ. Therefore, any non-trivial solution
to the homogeneous equation does not belong to the class D′

E , and,
hence, the convolution E ∗ g is the unique distributional solution in the
class D′

E .
Its physical significance can be understood if the external force is a

regular function. In particular, if g(t) is a locally integrable, then

(E ∗ g)(t) = θ(t)

∫ t

0

Z(t− τ )g(τ ) dτ

If in addition g(t) is bounded, then the convolution is a continuous
function for t > 0, and

lim
t→0+

(E ∗ g)(t) = 0 .

In other words, the solution satisfies the zero initial condition at t = 0.
If g(t) is continuous in [0,∞), then the convolution is continuously
differentiable function for t > 0 so that

d

dt
(E ∗ g)(t) =

∫ t

0

Z ′(t− τ )g(τ ) dτ , t > 0 ,
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from which it follows, by induction, that

dk

dtk
(E ∗ g)(t) =

∫ t

0

Z(k)(t− τ )g(τ ) dτ , t > 0 , k = 1, 2, ..., n− 1

Therefore,

lim
t→0+

dk

dtk
(E ∗ g)(t) = 0 , k = 0, 1, ..., n− 1

Thus, the convolution u = E ? g for a continuous g is the classical
solution to the initial value problem

L(D)u(t) = g(t) , t > 0 , u(k)(0) = 0 , k = 0, 1, ..., n− 1 .

which is unique. A general solution is obtained by adding a general
solution to the homogeneous equation to the constructed convolution.
The freedom in choosing a solution to the homogeneous equation can
be used to satisfy general (non-zero) initial conditions.

39.7. Exercises.

1. Find a fundamental solution for each of the following differential
operators in one real variable x:

(i) L =
d2

dx2

(ii) L =
d2

dx2
+ ω2

(iii) L =
d2

dx2
− ω2

(iv) L =
d2

dx2
+ 2γ

d

dx

(v) L =
d2

dx2
+ 2γ

d

dx
+ ω2

2. Use the fundamental solution from D′
+ to find an integral represen-

tation of the solution to the initial value problem

u′′(t) + 2γu′(t) + ν2u(t) = ω′
a(t− a) , u(0) = u′(0) = 0

where ωa is the hat function and ν2 > γ2. Use the properties of the hat
function and the distributional convolution to find the distributional
limit of the solution as a → 0+.

3. Let ωa be a regularization of δ(x) with support in a ball |x| ≤ a.
Find the multipole expansion of the solution u+(x) = E+ ∗ ωa to the
Helmholtz equation in R3 in a region where a/|x| is small by analogy
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with the multipole expansion of a solution to the Poisson equation.
Estimate a relative uncertainty of the fundamental solution E+(x) rel-
ative to the classical solution u+(x) in terms of a/|x|.

4. Calculate the retarded and advanced Green’s function for the 4D
wave operator.

5. Calculate the Feynman propagator for the 4D wave operator.
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40. The Cauchy problem

40.1. The initial value problem for ODE. Consider the initial value prob-
lem for a pendulum

Lu(t) = u′′(t) + ω2u(t) = f(t) , t > 0 ,

u
∣

∣

∣

t=0
= lim

t→0+
u(t) = u0 , u′

∣

∣

∣

t=0
= lim

t→0+
u′(t) = u1 ,

Clearly a classical solution to this problem must be from class u ∈
C2(t > 0) ∩ C1(t ≥ 0), and the function f should be at least contin-
uous for t ≥ 0. Suppose u(t) is a classical solution. Consider regular
distributions from D′

+

v(t) = θ(t)u(t) , g(t) = θ(t)f(t)

One can say continuous functions u(t) and f(t) has been extended to
t < 0 by zero. Let us calculate the second derivative of v. For any test
function

(v′′, ϕ) = (v, ϕ′′) =

∫ ∞

0

u(t)ϕ′′(t) dt = lim
a→0+

∫ ∞

a

u(t)ϕ(t) dt

= lim
a→0+

(

u(t)ϕ′(t)
∣

∣

∣

∞

a
− u′(t)ϕ(t)

∣

∣

∣

∞

a
+

∫ ∞

a

u′′(t)ϕ(t) dt

)

= −u0ϕ
′(0) + u1ϕ(0) + lim

a→0+

∫ ∞

a

[f(t)− ω2u(t)]ϕ(t) dt

=
(

u1δ(t) + u0δ
′(t), ϕ

)

+
(

g(t) − ω2v(t), ϕ
)

This shows that the distribution v(t) ∈ D′
+ satisfies the equation

Lv(t) = v′′(t) + ω2v(t) = g(t) + u1δ(t) + u0δ
′(t)

On the other hand, the equation

v′′(t) + ω2v(t) = h(t)

has a unique solution in the algebra D′
+ for any distribution h ∈ D′

+.
The solution is given by the convolution

v(t) = (E ∗ h)(t) , E(t) = θ(t)
sin(ωt)

ω
∈ D′

+

Since any classical solution to the initial value problem is also a distri-
butional solution, it is concluded that the classical initial value problem
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has a unique solution. It can be obtained from the distributional solu-
tion if f ∈ C0(t ≥ 0):

v(t) = (E ∗ g)(t) + u1E(t) + u0E ′(t)

=
θ(t)

ω

(
∫ t

0

sin(ω(t− τ ))f(τ ) dτ + u1 sin(ωt) + ωu0 cos(ωt)

)

Therefore

u(t) =

∫ t

0

sin(ω(t− τ ))f(τ ) dτ + u1
sin(ωt)

ω
+ u0 cos(ωt) , t > 0 .

This method for solving the initial value problem can be extended to
any linear ordinary differential equation with constant coefficients:

Lu(t) = u(n)(t) + a1u
(n−1)(t) + · · · + anu(t) = f(t) , t > 0

u(k)
∣

∣

∣

t=0
= lim

t→0+
u(k)(t) = uk , k = 0, 1, ..., n− 1 .

Consider the associated distributional differential equation in the alge-
bra D′

+

Lv(t) = θ(t)f(t) +
n−1
∑

k=0

ckδ
(k)(t)

where the coefficients ck are given by

cn−1 = u0

cn−2 = a1u0 + u1

cn−3 = a2u0 + a1u1 + u2

· · ·
c0 = an−1u0 + · · · + a1un−2 + un−1

Let Z(t) be the solution to the initial value problem

LZ(t) = 0 , Z(k)(0) = 0 , k = 0, 1, ..., n− 2 , Z(n−1)(0) = 1 .

Then E(t) = θ(t)Z(t) is a fundamental solution for L in D′
+, and the

distributional solution is unique in D′
+ and given by

v(t) = E(t) ∗
(

θ(t)f(t) +
n−1
∑

k=0

ckδ
(k)(t)

)

= θ(t)u(t)

u(t) =

∫ t

0

Z(t− τ )f(τ ) dτ +
n−1
∑

k=0

ckZ
(k)(t)
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40.2. The Cauchy problem for PDEs. Let x ∈ RN and t be a real vari-
able. Suppose that a function u(x, t) describes an evolution of some
quantity distributed in space RN . The variable t is an evolution pa-
rameter, like a physical time. The evolution is governed by a partial
differential equation, and a classical initial value problem is to find a
solution u(x, t) for t > 0 under some conditions at the initial moment
of time t = 0. So, the initial data are formulated on a hyperplane t = 0
in space-time RN+1. A problem like this is known as a Cauchy problem
in the theory of PDEs.

The first-order Cauchy problem. Let L(D) be a linear differential op-
erator in the variable x. Consider the following initial value (Cauchy)
problem

∂u

∂t
+ L(D)u = f(x, t) , t > 0 , x ∈ R

N

u
∣

∣

∣

t=0
= lim

t→0+
u(x, t) = u0(x) , x ∈ R

N .

One has to find u(x, t) that solves the equation in the open half-space
t > 0 and satisfies the said initial condition at the hyperplane t = 0.
The function u In both problems u must have sufficiently many con-
tinuous partial derivatives in x in order for L(D)u to be continuous. It
also must be continuously differentiable for t > 0 and have a continuous
extension to t = 0:

u ∈ C1(t > 0) ∩ C0t ≥ 0

This is a classical solution to the Cauchy problem. Of course, its exis-
tence depends on the smoothness of the inhomogeneity f . It is neces-
sary that f ∈ C0(t > 0) in order for the problem to make sense. Finally,
one has to show that the solution is unique if it exists. Clearly, the
uniqueness is essential in mathematical modeling of physical processes.

Suppose that u0 and f are such that a classical solution exists. Let
u(x, t) be a solution. Consider distributions from D′(RN+1) defined by

v(x, t) = θ(t)u(x) , g(x, t) =

{

f(x, t) , t > 0
0 , t < 0

The function g(x, t) is an extension of a continuous function f(x, t) to
the half-space t < 0 by zero. The extension is assumed to be locally
integrable in RN+1 so that g is a regular distribution. Note that in
general, f is not required to have a continuous extension to the hyper-
plane t = 0 or be bounded near it. The distribution v(x) is a smooth
function for t > 0 that has a jump discontinuity at t = 0. Using the
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relation between the distributional and classical derivatives, one infers
that

∂v

∂t
= u0(x) · δ(t) +

{∂v(x, t)

∂t

}

= u0(x) · δ(t) + θ(t)
∂u

∂t
L(D)v = θ(t)L(D)u(x, t)

It follows from these relations that v a solution to the distributional
problem

∂v

∂t
+ L(D)v = g(x, t) + u0(x) · δ(t) , v(x, t) = 0 , t < 0 .

It should be pointed out that, if L(D) is a differential operator of
order p, then the above equation is an identity holding for any function
v(x, t) ∈ Cp(t > 0)∩C0(t ≥ 0) that vanishes for t < 0 and for which the
combination f = ∂v

∂t
+ L(D)v, t > 0, is locally integrable (for example,

f ∈ C0(t ≥ 0)). This follows from that for any test function ϕ
(∂v

∂t
+ L(D)v, ϕ

)

=
(

v,−∂ϕ
∂t

+ L∗(D)ϕ
)

=

∫ ∞

0

v(x, t)
(

− ∂ϕ

∂t
+ L∗(D)ϕ

)

dNx dt

= lim
a→0+

∫ ∞

a

∫

v(x, t)
(

− ∂ϕ

∂t
+ L∗(D)ϕ

)

dNx dt

= lim
a→0+





∞
∫

a

∫

(∂v

∂t
+ L(D)v

)

ϕ(x, t) dNx dt−
∫

v(x, a)ϕ(x, a) dNx





Here L∗ is the Hermitian conjugation of L, and the last equality follows
from integration by parts. Note that v(x, t) is smooth enough for this
in the half-space t ≥ a > 0. This shows that the limit exists (and the
stated identity holds if

∂v

∂t
+ L(D)v ∈ Lloc(t > 0)

This is the reason for that the inhomogeneity f(x, t) was required to be
such that its extension g(x, t) is locally integrable (e.g., f ∈ C0(t ≥ 0)).

Let E(x, t) be a fundamental solution for the operator ∂/∂t+L(D)
that vanishes in the open half-space t < 0 in the distributional sense:

∂E
∂t

+ L(D)E = δ(x) · δ(t) , E(x, t) = 0 , t < 0 .

Then

v(x, t) = (E ∗ h)(x, t) , h(x, t) = g(x, t) + u0(x) · δ(t)
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provided the convolution exist. Indeed, let us show that the distribu-
tional solution vanishes if t < 0. Let ηn(x, y, t, τ ) be a unit sequence in
R2N+2 and η(s) = 1 if s > −a, η(s) = 0 if s < −b for some 0 < a < b,
and η ∈ C∞. Then by the definition of the convolution

(v, ϕ) = lim
n→∞

(

E(x, t) · h(y, τ ), η(τ )η(t)ηn(x, y, t, τ )ϕ(x+ y, t+ τ )
)

because supports of E and h are in the half-space t ≥ 0. If support of
ϕ(x, t) lies in the half-space t < −ε for some ε > 0, then the product
η(τ )η(t)ϕ(x+ y, t+ τ ) vanishes for small enough ε. This means that
the distributional solution vanishes in the open half-space

v(x, t) = (E ∗ h)(x, t) = 0 , t < 0 ,

because ε is arbitrary.
Thus, every solution to the classical Cauchy problem is a solution

to the generalized Cauchy problem which is to find a distribution v(x, t)
that satisfies the given equation and vanishes for t < 0:

∂v

∂t
+ L(D)v = h(x, t) , v(x, t) = 0 , t < 0

for a given distribution h(x, t) supported in the closed half-space t ≥ 0.
As shown earlier, the distributional solution E ∗ h is unique in the
class of distributions for which the convolution with E exists. In what
follows, a fundamental solution that is supported in the half-space t ≥ 0
will also be called a causal Green’s function. The analysis shows that
the following approach can be adopted for solving the classical Cauchy
problem:

(i) Find the associated generalized Cauchy problem;
(ii) Find the causal Green’s function for the differential operator

in the problem;
(iii) Investigate conditions under which the generalized Cauchy

problem has a solution, meaning that, find conditions on a
distributional inhomogeneity under which its convolution with
the causal Green’s function exists;

(iv) Calculate the convolution if the distributional inhomogeneity
has a special form for given inhomogeneity and initial data
in the classical Cauchy problem, that is, find an integral rep-
resentation of the convolution that is a regular distributional
solution;

(v) Find conditions on the inhomogeneity and initial data so that
the regular distributional solution is smooth enough to be a
classical solution. Uniqueness of the classical solution follows
from the uniqueness of the distributional solution.
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40.3. Causal Green’s function. If L(D) is a linear operator with con-
stant coefficients, one can try to find the causal Green’s function by
the Fourier method. In what follows, the causal Green’s function will
be denoted by G to distinguish it from a general fundamental solu-
tion. Consider the Fourier transform Fx[G](k, t) of the Green’s function
G(x, t) in the variable x. It is a distribution defined by the rule

(

Fx[G](k, t), ϕ(k, t)
)

=
(

G(x, t),Fk[ϕ](x, t)
)

where

Fk[ϕ](x, t) =

∫

ei(x,k)ϕ(k, t) dNk .

Of course, the Fourier transform exists only for temperate distributions,
and this means that the Green’s function is sought in a subspace S ′ of
the space of all distributions D′. So, it should be kept in mind that
such a Green’s function may not always exist in the space of temperate
distributions. It follows from the rules of differentiation of the Fourier
transforms of distributions that Fx[G](k, t) satisfies that the following
generalized initial value problem for the first-order ordinary differential
equation:

( d

dt
+ L(ik)

)

Fx[G](k, t) = δ(t) , Fx[G](k, t) = 0 , t < 0 .

Its solution is found by the standard method introduced earlier

Fx[G](k, t) = θ(t)e−tL(ik)

Therefore,

G(x, t) = θ(t)F−1
k [e−tL(ik)](x, t) .

The Fourier transform Fx[G](k, t) is a C∞ function for t > 0 because
L(ik) is a polynomial. So, it must be a regular temperate distribution,
which is true only if the real part of L(ik) is non-negative because
otherwise the solution would have exponential grows as |k| → ∞ for
t > 0 and, hence, cannot be a temperate distribution. In the latter case,
the causal Green’s function either does not exist or cannot be found
by the Fourier transform in the variable x. Other methods should be
invoked. For example, L(D) = −∆ so that e−tL(ik) = et|k|2, and the

inverse Fourier transform of et|k|2 does not exist.

40.4. The Cauchy problem for a transfer equation. Let us apply the de-
veloped approach to solve the Cauchy problem for the transfer or flow
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equation

1

c

∂u(x, t)

∂t
+ (s,∇x)u(x, t) + αu(x, t) = f(x, t) , t > 0 , x ∈ R

N

u
∣

∣

∣

t=0
= u0(x)

where s ∈ RN , |s| = 1, c > 0, and α > 0. A classical solution must be
from class u ∈ C1(t > 0)∩C0(t ≥ 0) if it exists (under some smoothness
conditions on the inhomogeneity f and the initial data u0).

Generalized Cauchy problem. Suppose that the problem has a solution.
Let u be a classical solution. Consider the distributions from D′(RN+1):

v(x, t) = θ(t)u(x, t) , g(x, t) = θ(t)f(x, t)

The distribution v(x, t) satisfies the equation

Lv
def
=

[1

c
∂t + (s,∇x) + α

]

v(x, t) = g(x, t) +
1

c
u0(x) · δ(t) .

Thus, every classical solution is a distributional solution to the gener-
alized Cauchy problem which is to find a distribution from D′(RN+1)
that vanishes in the open half-space t < 0 and satisfies the equation

Lv(x, t) = h(x, t) , v(x, t) = 0 , t < 0 , v(x, t) ∈ D′(RN+1)

for a given distribution h(x, t) that with support in the half-space t ≥ 0.

Fourier transform with respect to a selected variable. The Fourier trans-
form of a temperate distribution of two variables f(x, y) with respect
to the variable x is defined by the rule

(

Fx[f ](k, y), ϕ(k, y)
)

=
(

f(x, y),Fk[ϕ](x, y)
)

where ϕ(k, y) is a temperate test function and its Fourier transform
with respect to k reads

Fk[ϕ](x, y) =

∫

ei(k,x)ϕ(k, y) dNk , y ∈ R
M .

It is not difficult to verify that the Fourier transform of a test function
of two variables with respect to any of the variables is a temperate test
function from S(RN+M).
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Causal Green’s function for the transfer operator. Let G be a fundamen-
tal solution for the transfer operator L that vanishes for t < 0:

LG(x, t) = δN(x) · δ(t) , G(x, t) = 0 , t < 0 , G ∈ D′(RN+1) ,

Let us try to find the Green’s function of L in the space of temperate
distributions. If it exists, then it can be found by the Fourier method.
By taking the Fourier transform of both sides of the equation with
respect to the variable x, it is concluded that the Fourier transform
F [G](k, t) satisfies the ordinary differential equation

[1

c

d

dt
− i(s, k) + α

]

Fx[G](k, t) = δ(t) , Fx[G](k, t) = 0 , t < 0

Its solution is found by solving the associated initial value problem for
the homogeneous equation:

Fx[G](k, t) = cθ(t)e−αct+ic(s,k)t ∈ S ′(RN+1)

Since α > 0, the solution is a smooth function in t > 0 that is bounded

|Fx[G](k, t)| ≤ c

and, hence, it is a regular temperate distribution. To find the inverse
Fourier transform, recall that

F [δ(x− x0)](k) = ei(k,x0) , F−1[ei(k,x0)] = δ(x− x0) .

Therefore for any test function ϕ(x, t) ∈ S,

(G,ϕ) =
(

Fx[Gc],F−1
x [ϕ]

)

= c

∫ ∞

0

∫

e−αteic(s,k)tF−1
x [ϕ](k, t) dNkdt

= c

∫ ∞

0

e−αt
(

eic(s,k)t,F−1
x [ϕ](k, t)

)

dt

= c

∫ ∞

0

e−αt
(

F−1
k [eic(s,k)t](x), ϕ(x, t)

)

dt

= c

∫ ∞

0

e−αt
(

δ(x− cst), ϕ(x, t)
)

dt

= c

∫ ∞

0

e−αctϕ(cst, t) dt

So, G is a line-delta function supported on the half-line in RN+1 with
parametric equations x = cst, t = t, t > 0. Since S ′ ⊂ D′, the causal
Green’s function exists in D′(RN+1). For brevity, it can be written via
the delta function on the line:

G(x, t) = cθ(t)e−αctδ(x− cts) ∈ D′(RN+1) .
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The convention is that the delta function acts first on the variable x of
the test function, the result is a test function in the variable t on which
the regular distribution θ(t)e−αt acts in the standard way:

(G,ϕ) =
(

cθ(t)e−αt,
(

δ(x− cst), ϕ(x, t)
))

= c

∫ ∞

0

e−αctϕ(cst, t) dt .

Solution to the generalized Cauchy problem. A solution to the general-
ized Cauchy problem is given by the convolution

v(x, t) = (G ∗ h)(x, t)
provided the convolution exists. The solution is unique in the class
of distributions for which the convolution with G exists. Recall that
v(x, t) = 0 for t < 0. Let us investigate the existence of the convolution
v = G∗h. Both distributions G and h are supported in the upper half-
space, t ≥ 0. It follows from the definition of the convolution and the
explicit form of G that

(v, ϕ) = lim
n→∞

(

h(y, τ ) ·G(y, τ ), η(τ )η(t)ηn(x, y, t, τ )ϕ(x+ y, t+ τ ) dt
)

= lim
n→∞

(

h(y, τ ), η(τ )

∫ ∞

0

e−αctηn(cst, y, t, τ )ϕ(y+ cst, t+ τ ) dt
)

The function ψ(t, τ, y) = η(τ )ϕ(y + cst, t+ τ ) is smooth and not zero
only in a bounded range of t and τ because t > 0 and τ > 0, and the
support of ϕ is bounded in the time variable |t+ τ | < R. If the range
of t is bounded, then the range of y is also bounded because ϕ(y +
cst, t+ τ ) = 0 if |y+ cst| > R for some R. This means that ψ(t, τ, y) is
a test function of three variables. The action of a regular distribution
θ(t)e−αct on ψ(t, τ, y) defines a test function in two variables τ and
y by the consistency theorem for the direct product of distributions.
Since ηnψ = ψ for all large enough n, the limit always exists for any
distribution h supported in t ≥ 0.

Thus, the solution to the generalized Cauchy problem always exists
in D′(RN+1) and is given by the rule

(v, ϕ) =
(

h(y, τ ), η(τ )

∫ ∞

0

e−αctϕ(y + cst, t+ τ ) dt
)

=

∫ ∞

0

e−αct
(

h(y, τ ), η(τ )ϕ(y+ cst, t+ τ )
)

dt

where the latter equality holds by commutativity of the direct product
h(y, τ ) · θ(t)e−αct = θ(t)e−αct · h(y, τ ). The solution is unique in the
class of distributions that vanish in the open half-space t < 0.
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Limit properties of the Green’s function. For every t > 0, G(x, t) can be
viewed as a distribution in the variable x. Its action on a test function
ϕ(x) is given by the rule

(

G(x, t), ϕ(x)
)

= ce−αctϕ(cst) , t > 0 .

Therefore one can investigate the distributional limit of G(x, t) as t→
0+ in D′(RN ). Owing to the continuity of test functions

lim
t→0+

(

G(x, t), ϕ(x)
)

= cϕ(0) = c(δ(x), ϕ(x))

This means that

lim
t→0+

Gc(x, t) = cδ(x) in D′(RN)

Homogeneous Cauchy problem with distributional initial data. Consider a
solution to the generalized Cauchy problem with h(x, t) = c−1u0(x)·δ(t)
where u0 ∈ D′(RN). Then the convolution Gc ∗ h is given by the rule

(Gc ∗ h, ϕ) =

∫ ∞

0

e−αct
(

u0(y), ϕ(y + cst, t)
)

dt

=

∫ ∞

0

e−αct
(

u0(y − cst), ϕ(y, t)
)

dt

(G ∗ h)(x, t) = θ(t)e−αct · u0(x− cst) ∈ D′(RN+1)

where the definition of a shifted distribution was used for u0(x). Note
that for any t > 0 the convolution defines a distribution in the variable
x just like G(x, t).

For any distribution g(x), define the convolution G(x, t) ∗ g(x) in
the variable x by the rule
(

G(x, t)∗g(x), φ(x)
)

= lim
n→∞

(

G(x, t) ·g(y), ηn(x, y)φ(x+y)
)

, t > 0 ,

where ηn is a unit sequence in R2N and φ ∈ D(RN ). Then the con-
volution G ∗ h in two variables x and t can also be interpreted as the
convolution of c−1G(x, t) ∗ u0(x) in the variable x because

c−1
(

G(x, t) ∗ u0(x), φ(x)
)

=
1

c
lim

n→∞

(

G(x, t) · u0(y), ηn(x, y)φ(x+ y)
)

= θ(t)e−αct
(

u0(y), φ(y + cst)
)

for any unit sequence ηn in R2N and any test function φ. So,

G ∗
(

u0(x) · δ(t)
)

= G(x, t) ∗ u0(x) = θ(t)e−αct · u0(x− cst) .
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By continuity of the functional u0,

lim
t→0+

(

G(x, t) ∗ u0(x), φ(x)
)

= c lim
t→0+

e−αct
(

u0(y), φ(y + cst)
)

= c
(

u0(y), φ(y)
)

for any test function φ ∈ D(RN ). This means that

lim
t→0+

G(x, t) ∗ u0(x) = cu0(x) in D′(RN )

The analysis shows that the distribution v(x, t) = 1
c
G(x, t) ∗ u0(x)

solves a homogeneous Cauchy problem with distributional initial data:

Lv(x, t) = 0 , v(x, t) = 0 , t < 0 ,

lim
t→0+

v(x, t) = u0(x) in D′(RN)

Regular distributional and classical solutions. Let u0(x) be a regular dis-
tribution. Put h(x, t) = u0(x) · δ(t). Then the solution to the general-
ized Cauchy problem is a regular distribution v(x, t):

v(x, t) = θ(t)e−αctu0(x− cst) .

The initial condition holds pointwise

lim
t→0+

v(x, t) = u0(x) , x ∈ R
N

if u0 is a continuous function. Furthermore this solution is a classical
one (continuously differentiable for t > 0) if u0 ∈ C1, that is, the initial
data must be continuously differentiable function.

Let h(x, t) = f(x, t) be a regular distribution that vanishes for
t < 0. Then the solution to the generalized Cauchy problem has the
following integral representation

(v, ϕ) =

∫ ∞

0

∫

f(y, τ )

∫ ∞

0

e−αctϕ(y + cst, t+ τ ) dt dNy dτ

=

∫ ∞

0

∫ ∞

τ

e−αc(t−τ )

∫

f(x− cs(t− τ ), τ )ϕ(x, t) dNx dt dτ

where x = y + cst and the integration variable t was shifted by τ . Let
us reverse the order of integration with respect to t and τ :

(v, ϕ) =

∫ ∞

0

∫ ∫ t

0

e−αc(t−τ )f(x− cs(t− τ ), τ )ϕ(x, t) dτ dNx dt

v(x, t) =

∫ t

0

e−αc(t−τ )f
(

x− cs(t− τ ), τ
)

dτ , t > 0 .
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It is clear that the initial condition holds pointwise

lim
t→0+

v(x, t) = 0 , x ∈ R
N ,

if f is continuous for t ≥ 0. Furthermore v(x, t) is a classical solution
with the zero initial condition if f(x, t) is from class C1(t ≥ 0) (in
order for the partial derivatives to be continuous). Thus, the classical
solution is unique and given by the integral representation

u(x, t) = e−αctu0(x− cst) +

∫ t

0

e−αc(t−τ )f
(

x− cs(t− τ ), τ
)

dτ .

if u0 ∈ C1 and f ∈ C1(t ≥ 0).

Well-posedness of the Cauchy problem. A PDE problem is said to be
well-posed if the following three conditions are fulfilled:

(i) The problem has a solution
(ii) The solution is unique
(iii) The solution changes continuously with initial data

Let us investigate if the Cauchy problem for the transfer equation is
well-posed. It has been shown that a solution exists and is unique. Let
u(x, t) and ũ(x, t) be two classical solutions for initial data u0 and ũ0

and inhomogeneities f and f̃ , respectively. Suppose that

|u0(x) − ũ0(x)| ≤ ε0 ,

|f(x, t)− f̃(x, t)| ≤ ε1

for all x and t. Then for 0 ≤ t ≤ T and any x

|u(x, t)− ũ(x, t)| ≤ e−αctε0 + ε1

∫ t

0

e−αc(t−τ ) dτ

≤ ε0 + Tε1

This shows that small variations of the initial data and inhomogeneity
produce small variations of the solution. Therefore the Cauchy problem
for the transfer equation is well posed.

40.5. Smoothness of a distribution in a particular variable. When ana-
lyzing the homogeneous Cauchy problem with general distributional
initial data, it was noted that a distribution of several variables can
also be viewed as a distribution of fewer variables, while the other vari-
ables are regarded as parameters. Let f(x, y) be a distribution in two
variables x ∈ RN and y ∈ RM . By definition, a distribution f(x, y)
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is said to be from class Cp in the variable y in a set Ω ⊂ RM if the
function

g(y) =
(

f(x, y), ϕ(x)
)

∈ Cp(Ω)

is from class Cp(Ω) for any test function ϕ ∈ D(RN ). In this case,

Dαg(y) =
(

Dα
y f(x, y), ϕ(x)

)

, α ≤ p .

Indeed, g(y) is a regular distribution. Since g ∈ Cp, its classical and
distributional derivatives are equal, and for any test function φ(y),

(Dαg, φ) = (−1)α(g,Dαφ) = (−1)α
(

f(x, y), ϕ(x)Dαφ(y)
)

=
(

Dα
y f(x, y), ϕ(x)φ(y)

)

=
((

Dα
y f(x, y), ϕ(x)

)

, φ(y)
)

because the product ϕ(x)φ(y) is a test function of two variables.
For example, the Green’s function of the transfer operator is a dis-

tribution of two variables x ∈ RN and t ∈ R. For any test function
ϕ(x),

g(t) =
(

G(x, t), ϕ(x)) = θ(t)e−αctϕ(cst) ∈ C∞(0,∞)

So, G(x, t) is from class C∞(0,∞) in the variable t. Furthermore, the
function g(t) has a continuous extension to t = 0 because

lim
t→0+

g(t) = ϕ(0)

This means that g ∈ C0([0,∞)) and accordingly G ∈ C0([0,∞)) in the
variable t. For any t > 0,

g′(t) = −cαg(t) + ce−αct(s,∇x)ϕ(x)
∣

∣

∣

x=cst

so that

lim
t→0+

g′(t) = −cαϕ(0) + (s,∇x)ϕ(x)
∣

∣

∣

x=0

It is clear that g ∈ C∞([0,∞)) because ϕ ∈ C∞ and, hence, the Green’s
function G(x, t) is from class C∞([0,∞)) in the variable t.

Homogeneous Cauchy problem with distributional initial data. Using the
concept of smoothness of a distribution in a particular variable, the
homogeneous Cauchy problem with distributional initial data is to find
a distribution v(x, t) from class C1(0,∞) ∩ C0([0,∞)) in the variable
t such that

∂v(x, t)

∂t
+ L(Dx)v(x, t) = 0 , t > 0 , v

∣

∣

∣

t=0
= u0(x) ∈ D′(RN )
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In particular, this problem has a unique solution for the transfer equa-
tion given by the distribution

v(x, t) = G(x, t) ∗ u0(x) = θ(t)e−αctu0(x− cst) .

The solution is from class C∞([0,∞)) in the variable t because because
for any test function ϕ(x) and t > 0

g(t) =
(

v(x, t), ϕ(x)
)

= e−αct
(

u0(x), ϕ(x+ cst)
)

,

g′(t) = −αcg(t) + ce−αct
(

u0(x), (s,∇x)ϕ(x+ cst)
)

,

so that

g(0) = lim
t→0+

g(t) = (u0, ϕ) ,

g′(0) = lim
t→0+

g(t) = −αcg(0) + c(u0, (s,∇)ϕ)

The existence of g(p)(0) for p > 1 is established similarly.
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41. The heat equation

Consider the Cauchy problem for a heat equation:

∂u(x, t)

∂t
= a2∆xu(x, t) + f(x, t) , t > 0 , x ∈ R

N

u
∣

∣

∣

t=0
= u0(x)

If u(x, t) is a temperature at a point x ∈ RN and time t > 0, then
a solution to this problem describes a time evolution of the temper-
ature field in space with an external heat energy source t(x, t) if the
initial temperature field was given by u0(x). The coefficient a2 > 0 is
proportional to a heat conductance. A solution is required to be from
class C2(t > 0) ∩ C0(t ≥ 0) (under some smoothness condition on the
inhomogeneity f and the initial data u0).

41.1. Generalized Cauchy problem. Let u(x, t) be a solution. Then the
regular distribution v(x, t) = θ(t)u(x, t) satisfies the equation

Lv(x, t)
def
=
∂v

∂t
− a2∆xv(x, t) = δ(t) · u0(x) + g(x, t)

where g(x, t) is an extension of f(x, t) to the open half-space t < 0 by
zero. It is assumed to be a regular distribution. So, the associated gen-
eralized Cauchy problem is to find a distribution v(x, t) that vanishes
for t < 0 and satisfies the equation

Lv(x, t) = h(x, t) , v(x, t) = 0 , t < 0 ,

where a distribution h ∈ D′(RN+1) is supported in the half-space t ≥ 0.

41.2. Causal Green’s function. A fundamental solution for L that van-
ishes in the half-space t < 0,

LG(x, t) = δ(t) · δ(x) , G(x, t) = 0 , t < 0 ,

is sought as a temperate distribution. If such a temperate distribution
exists, then its Fourier transform in the variable x satisfy the ordinary
differential equation

( d

dt
+ a2|k|2

)

Fx[G](k, t) = δ(t) , Fx[G](k, t) = 0 , t < 0 .

Its solution reads

Fx[G](k, t) = θ(t)e−a2|k|2t

It is bounded |Fx[G](k, t)| ≤ 1 and, hence, define a regular temperate
distribution.
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The inverse Fourier transform is given by the Fourier transform of
a Gaussian distribution:

(G,ϕ) =
(

Fx[G](k, t),F−1
x [ϕ](k, t)

)

=

∫ ∞

0

∫

e−a2|k|2tF−1
x [ϕ](k, t) dNk dt

= lim
ε→0+

∫ ∞

ε

∫

e−a2|k|2tF−1
x [ϕ](k, t) dNk dt

= lim
ε→0+

∫ ∞

ε

(

e−a2|k|2t,F−1
x [ϕ](k, t)

)

dt

= lim
ε→0+

∫ ∞

ε

(

F−1
k [e−a2|k|2t](x, t), ϕ(x, t)

)

dt

= lim
ε→0+

∫ ∞

ε

(

F−1
k [e−a2|k|2t](x, t), ϕ(x, t)

)

dt

= (2π)−N lim
ε→0+

∫ ∞

ε

(

Fk[e
−a2|k|2t](x, t), ϕ(x, t)

)

dt

= lim
ε→0+

∫ ∞

ε

∫

e−
|x|2

4a2t

(2a
√
πt)N

ϕ(x, t) dNx dt

The limit exists by the properties of the Fourier transform even though
the singularity t−N/2 is not locally integrable ifN ≥ 2. It is also possible
to investigate the limit directly. Put x = 2a

√
ty in the integral with

respect to x, then

∣

∣

∣

∫

e−
|x|2

4a2t

(2a
√
πt)N

ϕ(x, t) dNx
∣

∣

∣ ≤ π−N/2

∫

e−|y|2|ϕ(2a
√
ty, t)| dNy

≤ Mπ−N/2

∫

e−|y|2dNy = M

because |ϕ(x, t)| ≤ M . A constant function is integrable with respect
to t on any bounded interval. Since the support of ϕ is bounded (so
that the integration with respect t is taken over a bounded interval),
the limit ε → 0+ exists. Thus,

G(x, t) =
θ(t)

(2a
√
πt)N

e−
|x|2

4a2t ∈ D′(RN+1)

41.3. Solution to the generalized Cauchy problem. A solution to the gen-
eralized Cauchy problem V = G ∗ h will be called a heat potential (if
the convolution exists). Suppose that the support of h(x, t) lies in a
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half-cylinder,

supp h ⊂ BR × [0,∞) ,

then the convolution V = G∗h exists. This follows from the definition
of the convolution. Let ηh(x, t) be a smooth function that takes unit
value in a neighborhood of support of h. Then for any unit sequence
ηn in R2N+2

(G ∗ h, ϕ) = lim
n→∞

(

G(x, t) · h(y, τ ), ηn(x, y, t, τ )ψ(x, y, t, τ )
)

ψ(x, y, t, τ ) = η(t)ηh(y, τ )ϕ(x+ y, t+ τ )

Let us show that the function ψ is compactly supported in R2N+2.
Since t ≥ 0 and τ ≥ 0 (owing to supports of G and h), ψ is not zero
only a bounded region of spanned by t and τ because the test function
ϕ is compactly supported and, hence, vanishes for |t+ τ | > R for some
R. Since h(y, τ ) = 0 for |y| > R and ϕ vanishes if |x + y| > R for
some R, the function ψ has a bounded support and therefore is a test
function of four variables. This implies that ηnψ = 0 for all sufficiently
large n, and the limit exists and is given by

(G ∗ h, ϕ) =

∫ ∞

0

∫

e−
|x|2

4a2t

(2a
√
πt)N

(

h(y, τ ), ψ(y, x, t, τ )
)

dNx dt

=
(

h(y, τ ),

∫ ∞

0

∫

e−
|x|2

4a2t

(2a
√
πt)N

ϕ(x+ y, t+ τ ) dNx dt
)

The latter equality follows from commutativity of the direct product.
The action of h on ψ is a test function of two variables x and t.

It has a bounded support. However, the latter is not necessary for
integrals with respect x and t to converge because the Green’s function
falls off as a Gaussian distribution as |x| → ∞. This suggests that
the convolution can exist even if the support of h is not bounded in
the space variable if (h, ψ) does not grow too fast as |x| → ∞. This
possibility will be further explored for regular distributions h below.

41.4. Limit properties of the Green’s function. For any t > 0, the Green’s
function is a Gaussian distribution which is a regular distribution in
the variable x. Since G(x, t) > 0 and

∫

G(x, t) dNx = 1 , t > 0 .
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The distributional limit of any such regular distribution is proved to
be a delta function

lim
t→0+

G(x, t) = δ(x) in D′(RN) .

This property shows that the causal Green’s for the heat operator is
from class C∞(0,∞)∩C0([0,∞)) in the time variable t. Note that the
time derivative of G(x, t) cannot be continuously extended to t = 0.

41.5. Surface heat potential. Let h(x, t) = δ(t) · u0(x) where a distri-
bution u0 ∈ D′(RN ) is compactly supported. Then the heat potential
reads

V0(x, t) = G ∗
(

δ(t) · u0(x)
)

= G(x, t) ∗ u0(x)

where the convolution is taken in the variable x (a proof of this assertion
goes along a similar line of arguments as in the case of the transfer
equation). Since the support of h(x, t) lies in the hyperplane t = 0,
this special heat potential will be as a surface heat potential.

For every t > 0, the distribution V0(x, t) can also be viewed as
a distribution in the variable x. By continuity of the convolution of
distributions one of which has a bounded support,

lim
t→0+

V0(x, t) = δ(x) ∗ u0(x) = u0(x) in D′(RN ) .

For any test function ϕ(x), the function

g(t) =
(

V0(x, t), ϕ(x)
)

=
(

G(x, t),
(

u0(y), ϕ(x+ y)
))

is smooth for t > 0 and has a continuous extension at t = 0 because
the Green’s function G(x, t) is from class C∞(0,∞) ∩ C0[0,∞) in the
variable t. Note that (u0(y), ϕ(x+ y)) is a test function in the variable
x for any distribution u0 with bounded support. Therefore the distri-
bution v is a solution to the Cauchy problem for a homogeneous heat
equation with distributional initial data:

∂V0(x, t)

∂t
− a2∆xV0(x, t) = 0 , t > 0 ,

V0

∣

∣

∣

t=0
= u0(x) ∈ D′(RN ) .

41.6. Regular surface heat potential. Supposed that u0 is a regular dis-
tribution defined by a bounded function

M = sup |u0(x)| <∞ .
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In this case, the classical convolution

G(x, t) ∗ u0(x) =

∫

G(x− y)u0(y) d
Ny

exists for t > 0 because G(x, t) > 0 and
∫

|G(x− y, t)||u0(y)| dNy ≤M

∫

G(x− y, t) dNy = M <∞

Since G(x − y, t) = 0 for t < 0, the classical convolution is locally
integrable in RN+1 by Fubini’s theorem (as it is bounded almost every-
where). The distributional convolution coincides with the classical one
whenever the latter exists and is given by a locally integrable function.
Therefore the surface heat potential reads

V0(x, t) =
θ(t)

(2a
√
πt)N

∫

e−
|x−y|2

4a2t u0(y) d
Ny

It is known as the Poisson integral.
Let us investigate smoothness properties of V0. First, note that V0

is bounded

|V0(x, t)| ≤
∫

G(x − y, t)|u0(y)| dNy ≤M , t > 0 .

Next, let us show that

V0(x, t) ∈ C∞(t > 0) .

It is sufficient to show that
dp

dtp

∫

e−
|x−y|2

4a2t u0(y) d
Ny =

∫

∂p

∂tp
e−

|x−y|2

4a2t u0(y) d
Ny

for any p > 0. For p = 1, the integrand in the right-hand side has an
integrable upper bound

∣

∣

∣

∂

∂t
e−

|x−y|2

4a2t u0(y)
∣

∣

∣
≤ M |x− y|2

4a2ε2
e−

|x−y|2

4a2ε , t ≥ ε > 0

By the theorem about differentiation of a function defined by an inte-
gral, the relation holds for p = 1. For p > 1, note that higher derivatives
of the exponential with respect to t are polynomials in |x − y|2 with
coefficients proportional reciprocal powers of t multiplied by the expo-
nential. Therefore a similar integrable bound exists for any derivative.

In order for V0 to be a classical solution to the homogeneous Cauchy
problem, it must have a continuous extension to the hyperplane t =
0. Let us show that this is the case if the initial data is given by a
continuous and bounded function:

u0 ∈ C0 , M = sup |u0(x)| <∞ .
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One has to show that

lim
t→0+

V0(x, t) = u0(x) , x ∈ R
N .

One has for t > 0

V0(x, t)− u0(x) =

∫

G(x − y, t)u0(y) d
Ny − u0(x)

=

∫

G(y, t)
(

u0(x+ y)− u0(x)
)

dNy

= π−N/2

∫

e−|z|2
(

u0(x− 2a
√
tz) − u0(x)

)

dNz

where, first, the integration variable was shifted by x, then the property
that the integral of G(y, t) is equal to one for t > 0 was used, and
finally the integration variable was scaled y = 2a

√
tz. When t → 0+

the integrand vanishes for any z and x by continuity of u0. On the
other hand, the integrand has an integrable upper bound independent
of x and t because

|u0(x− 2a
√
tz)− u0(x)| ≤ 2M

Therefore by the Lebesgue dominated convergence theorem

lim
t→0+

(

V0(x, t)− u0(x)
)

= 0 .

and the surface heat potential is a classical solution

V0 ∈ C∞(t > 0) ∩ C0(t ≥ 0)

to the homogeneous Cauchy problem for the heat equation.

41.7. Regular heat potential. Let h(x, t) = f(x, t) where the function
f(x, t) vanishes when t < 0 and is bounded on ΩT = R

N × [0, T ]:

f(x, t) = 0 , t < 0 ; sup
ΩT

|f(x, t)| = M0(T ) <∞

The conditions imply that f(x, t) is locally integrable in RN+1 and,
hence, defines a regular distribution. The classical convolution of G
and f exists by Fubini’s theorem because G(x, t) ≥ 0 and

∞
∫

0

∫

G(x − y, t− τ )|f(y, τ )| dNy dτ ≤ M0(t)

t
∫

0

∫

G(x− y, t− τ ) dNy dτ

= M0(t)t
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if t > 0 and vanishes if t < 0, and it is locally integrable (as it is
bounded thanks to the above inequality). Therefore the heat potential
is given by

V (x, t) =

∫ t

0

∫

f(y, τ )

(2a
√

π(t− τ ))N
e
− |x−y|2

4a2(t−τ) dNy dτ

It follows that the heat potential is bounded because

|V (x, t)| ≤ tM0(t) , t > 0 .

This bounds also shows that the heat potential fulfills the initial con-
dition

lim
t→0+

V (x, t) = 0 .

In order for the heat potential to be a classical solution to the
Cauchy problem with the zero initial condition, it should be from twice
continuously differentiable for t > 0. Let us show that if f is twice
continuously differentiable and all its partial derivatives are bounded
in ΩT ,

f(x, t) ∈ C2(t ≥ 0) , sup
ΩT

|Dαf(x, t)| = Mα(T ) <∞ , α = 0, 1, 2 .

for any T > 0, then

V (x, t) ∈ C2(t > 0) ∩ C1(t ≥ 0) .

In the integral representation of V , the integration variables are changed

y = x− 2a
√
s z , τ = t− s ,

so that

V (x, t) = π−N/2

∫ t

0

∫

f(x− 2a
√
sz, t− s) e−|z|2 dNz ds

Partial derivatives of the integrand up to the second order are bounded
by an integrable function independent of x and t

∣

∣

∣Dαf(x− 2a
√
sz, t− s) e−|z|2

∣

∣

∣ ≤ Mα(T )e−|z|2 ,

for all (x, t) ∈ ΩT . Therefore by the theorem about differentiation of
functions defined by an integral

∂V (x, t)

∂t
= π−N/2

∫

f(x− 2a
√
tz, 0+) e−|z|2 dNz

+π−N/2

∫ t

0

∫

∂

∂t
f(x− 2a

√
sz, t− s) e−|z|2 dNz ds

∂V (x, t)

∂xj
= π−N/2

∫ t

0

∫

∂

∂xj
f(x− 2a

√
sz, t− s) e−|z|2 dNz ds
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It follows from this representation that V ∈ C1(t ≥ 0) owing to the
continuity of the first partials of f for t ≥ 0. The second partials
are computed similarly for t > 0 and they are continuous for t > 0
by continuity of f and its partials. Note that ∂2V

∂t2
contains a singular

factor t−1/2 stemming from the differentiation of the first integral in
∂V/∂t. For this reason ∂2V

∂t2
does not have a continuous extension to

the hyperplane t = 0, whereas the other second partials ∂2V
∂xj∂xi

and ∂2V
∂t∂xj

have continuous extensions to t = 0. Thus, V ∈ C2(t > 0).
It has been shown that the Cauchy problem for the heat equation

has a unique classical solution given by the sum of the heat potentials

u(x, t) = V0(x, t) + V (x, t)

if the initial data u0 is a continuous bounded function and the inho-
mogeneity f is twice continuously differentiable function the half-space
t ≥ 0 with bounded partial derivatives in ΩT = RN × [0, T ] for any
T > 0.

41.8. Well-posedness of the Cauchy problem for the heat equation. Con-
sider a class of distributions h(x, t) = u0(x) · δ(t) + f(x, t) where u0 is
a bounded function and f is bounded on ΩT . It was shown that the
convolution G ∗ h exists in this class and the regular distribution

u(x, t) = (G ∗ h)(x, t) = V0(x, t) + V (x, t)

=
θ(t)

(2a
√
πt)N

∫

e−
|x−y|2

4a2t u0(y) d
Ny

+

∫ t

0

∫

f(y, τ )

(2a
√

π(t− τ ))N
e
− |x−y|2

4a2(t−τ) dNy dτ

is a solution to the generalized Cauchy problem. The solution is unique
in the said class of distributions. Let us show that the solution changes
continuously with initial data and inhomogeneity and, hence, the Cauchy
problem is well posed in this class of initial data and inhomogeneity.
Let u and ũ be two solutions with the initial data u0 and ũ0 and inho-
mogeneities f and f̃ , respectively. Suppose that

|u0(x) − ũ0(x)| ≤ ε0 , |f(x, t) − f̃ (x, t)| ≤ ε1 .

Then using the estimates of the heat potentials

|u(x, t)− ũ(x, t)| ≤ |V0(x, t)− Ṽ0(x, t)|+ |V (x, t)− Ṽ (x, t)|
≤ ε0 + Tε1

for all (x, t) ∈ ΩT . So, small variations of initial data and inhomogene-
ity yield a small change in the solution. The problem is well-posed.
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42. The Schrödinder equation

Consider the following Cauchy problem

i
∂ψ(x, t)

∂t
= −∆xψ(x, t) + f(x, t) , t > 0 , x ∈ R

N

ψ
∣

∣

∣

t=0
= ψ0(x)

where ψ(x, t) is a complex-value function that is assumed to be smooth
enough so that the problem is meaningful in the classical sense. It
is necessary that ψ is from class C2(t > 0) ∩ C0(t ≥ 0), and the
inhomogeneity f must be continuous for t ≥ 0. In quantum mechanics,
a solution ψ(x, t) is a probability amplitude for a particle in time t > 0 if
the probability amplitude was ψ0(x) at time t = 0. The inhomogeneity
f(x, t) model effects of an environment in which the particle moves.

The problem is similar to the Cauchy problem for the heat equation
and can be solved in the same way. However, there is an additional
condition on solutions as well as on the initial data. In quantum me-
chanics, a solution is called a wave function of a quantum system (a
free particle in this case). Its physical significance is that the squared
absolute value |ψ(x, t)|2 defines a probability density, meaning that,
the probability P (t) to find a particle in a spatial region Ω at time t is
equal to

P (t) =

∫

Ω

|ψ(x, t)|2 dNx

Clearly, if Ω = RN , then P (t) = 1 if the particle has no interaction
with environment, f = 0, and P (t) ≤ 1 for any Ω even if f 6= 0.
This physical interpretation implies that any physical solution must be
square integrable

∫

|ψ(x, t)|2 dNx <∞

so that ψ(x, t) can be normalized to have a unit L2 norm. So, in
contrast to the heat equation, solutions that are not from the space L2

are rejected on the physical grounds. For this reason, here a different
and simpler approach is adopted, which is based on the Fourier method
and commonly used in quantum theory. It leads to the same result as
a general method discussed earlier.

42.1. Generalized Cauchy problem. Any square integrable function de-
fines a regular temperate distribution by the rule

(ψ, ϕ) =

∫

ψ(x)ϕ(x) dNx
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The integral exists because any test function ϕ ∈ S is square integrable,
and the product of two square integrable function was shown to be
integrable (see the section about the space L2). A solution to the
Cauchy problem, if it exists, must be among distributional solutions to
the Schrödinger equation

ψ(x, t) ∈ S ′(RN+1) ,

that are continuous in the variable t ≥ 0. The latter is needed for the
initial condition that must hold in the distributional sense:

lim
t→0+

(

ψ(x, t), ϕ(x)
)

= (ψ0, ϕ) , ψ0 ∈ S ′(RN) ,

for any test function ϕ ∈ S(RN ). If the solution to this generalized
Cauchy problem exists and is unique, then a solution to the classical
problem exists and is unique.

For a consistency of the problem it is required that f ∈ S ′(RN+1).
By taking the Fourier transform of both sides of the Schrödinger equa-
tion in the variable x, one infers that

(

i
d

dt
− |k|2

)

Fx[ψ](k, t) = Fx[f ](k, t)

which is a first-order linear differential equation in the space of temper-
ate distributions. Its general solution can be found by the substitution

Fx[ψ](k, t) = e−i|k|2tφ(k, t) , φ(k, t) ∈ S ′(RN+1)

so that φ satisfies the equation

i
d

dt
φ(k, t) = ei|k|2tFx[f ](k, t)

)

.

It is worth noting that the exponential factor is a smooth temperate
function from CS. This method would not be justified for the heat
equation because e|k|

2t is not from CS. Thus, a general solution reads

ψ(k, t) = −ie−i|k|2t
(

φ0(k) +D−1
t ei|k|2tFx[f ](k, t)

)

,

where φ0 ∈ S ′(RN) and D−1
t denotes a distributional antiderivative

with respect to t. Recall that a distributional antiderivative is unique
up to an additive constant distribution. In the case considered, an
additive constant is a distribution φ0 independent of t.

Let a distribution h(x, t) ∈ S ′(RN+1) be continuous in t. Then its
antiderivative H(x, t) = D−1

t h(x, t) is continuously differentiable in t.
Let us select a particular antiderivative that vanishes at t = 0,

lim
t→0+

(

H(x, t), ϕ(x)
)

= 0 , ϕ ∈ S(RN ) .
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This particular antiderivative will be denoted by a definite integral
similarly to the classical antiderivative of a continuous function that
vanishes at t = 0,

H(x, t) =

∫ t

0

h(x, τ ) dτ .

With this choice of the antiderivative, Fx[ψ](k, t) is continuous in t
and the initial condition Fx[ψ](x, t) → F [ψ0](k) in S ′(RN) as t → 0+

implies that φ0 = iF [ψ0] so that

Fx[ψ](k, t) = e−i|k|2tF [ψ0](k) − ie−i|k|2t

∫ t

0

ei|k|2τFx[f ](k, τ ) dτ .

Thus, the stated generalized Cauchy problem has a unique solution in
S ′(RN+1) if the inhomogeneity f(x, t) a temperate distribution that is
continuous in the variable t ≥ 0. The solution is given by the inverse
Fourier transform of the above distribution with respect to k.

To compute the inverse Fourier transform, define a distribution

UN (x, t) = F−1
k [e−i|k|2t](x, t) ∈ S ′(RN+1) .

It follows from the Lebesgue dominated convergence theorem that
(

Fx[UN ], ϕ
)

= lim
ε→0+

∫ ∫

e−i|k|2(t−iε)ϕ(k, t) dNk dt

for any test function ϕ. So, in the distributional sense

Fx[UN ](k, t) = lim
ε→0+

e−i|k|2(t−iε) def
= e−i|k|2(t−i0+)

Owing to the continuity of the Fourier transform and using the Gauss-
ian integral computed earlier

UN (x, t) = lim
ε→0+

F−1
k

[

e−i|k|2(t−iε)
]

(x, t)

= lim
ε→0+

(2π)−N

∫

e−i|k|2(t−iε)−i(k,x) dNk

= lim
ε→0+

1

[4π(ε+ it)]
N
2

exp
(

− |x|2
4(ε+ it)

)

=
e

i|x|2

4(t−i0+)

[4πi(t− i0+)]
N
2

Note that the singularity |UN (x, t)| ∼ t−N/2 is not locally integrable
if N 6= 1. Therefore a distributional extension (or regularization) is
needed at t = 0 if N ≥ 2. The regularization is achieved by the
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above limiting process for the Fourier transform of UN . For N = 1, no
regularization is needed, and

U1(x, t) =
e

ix2

4t

(4πit)1/2

is a regular distribution.

Limit properties of UN . Let k ∈ R and t > 0. Consider a temperate
distribution gt(x) in the variable x ∈ R whose Fourier transform is
given by

F [gt(x)](k) = e−ik2t

Then by the Lebesgue dominated convergence theorem its distribu-
tional limit as t → 0+ reads

lim
t→0+

(F [gt(x)], ϕ) = lim
t→0+

∫

e−ik2tϕ(k) dk =

∫

ϕ(k) dk = (1, ϕ)

Owing to the continuity of the Fourier transform

lim
t→0+

gt(x) = δ(x) in D′

Recall that convergence in S ′ implies convergence in D′. Consider
Fx[UN ](k, t) as a temperate distribution from S ′(RN) for any t > 0.
Its action on a test function is given by the rule

(

Fx[UN ](k, t), ϕ(k)
)

=

∫

e−i|k|2tϕ(k) dNk

Since e−i|k|2t can be viewed as the direct product e−ik2
1t · · · e−ik2

N
t, it is

concluded that

lim
t→0+

UN (x, t) = δ(x1) · · · δ(xN) = δ(x) in D′(RN) .

Solution to the generalized Cauchy problem. Let f(x, t) be a temperate
distribution. Then the product Fx[UN ](k, t)Fx[f ](k, t) is also a tem-
perate distribution and its inverse Fourier transform in the variable
k exists in S ′(RN+1). By analogy with the Fourier transform of the
convolution of two distribution one of which has a bounded support,
define a convolution in the variable x

UN (x, t) ∗ f(x, t) = F−1
k

[

Fx[UN ](k, t)Fx[f ](k, t)
]

(x, t)

= F−1
k

[

e−i|k|2tFx[f ](k, t)
]

(x, t) ∈ S ′(RN+1) .

This definition of the convolution of two distributions with respect
to one variable makes sense only if the Fourier transform of one of
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the distributions in that variable is a smooth temperate function of
two variables so that the product of Fourier transforms is a temperate
distribution of two variables.

Suppose that f is a regular temperate distribution such that the
function f(x, t) is Lebesgue integrable in x for any t. Then the convo-
lution is a regular distribution and has the following integral represen-
tation:

UN (x, t) ∗ f(x, t) = F−1
k

[

e−i|k|2tFx[f ](k, t)
]

=

∫

e−i|k|2(t−i0+)−i(k,x)

∫

ei(k,y)f(y, t) dNy
dNk

(2π)N

=

∫ ∫

e−i|k|2(t−i0+)−i(k,x−y) d
Nk

(2π)N
f(y, t) dNy

=

∫

UN (x− y, t)f(y, t) dNy

where the order of integration was reversed by Fubini’s theorem (owing
to the regularization of the integral with respect to k).

Define the conjugate distribution

U †
N (x, t) = UN(x,−t) = UN (x, t)

Then

Fx[U
†
N ](k, t) = ei|k|2(t+i0+)

The conjugate distribution U †
N has a convolution with any temperate

distribution in the variable x, just like UN :

U †
N (x, t) ∗ f(x, t) = F−1

k

[

Fx[U
†
N ](k, t)Fx[f ](k, t)

]

(x, t)

= F−1
k

[

ei|k|2tFx[f ](k, t)
]

(x, t) ∈ S ′(RN+1) .

Using the distribution UN and its conjugate U †
N , the solution to the

generalized Cauchy problem can be written as a convolution

ψ(x, t) = UN (x, t) ∗ ψ0(x)− iUN (x, t) ∗
∫ t

0

U †
N(x, τ ) ∗ f(x, τ ) dτ ,

where all convolutions are taken with respect to x. It satisfies the the
initial condition is the distributional sense in S ′(RN) thanks to the
limit properties of UN and by the definition of the antiderivative with
respect to t denoted by the definite integral.
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42.2. Evolution operator. The distributions UN and U †
N can be viewed

as temperate distributions in the variable x for any given real t. Then

F [UN ](k, t1)F [UN ](k, t2) = e−i|k|2(t1+t2) = F [UN ](k, t1 + t2)

Since the convolution of UN with any temperate distribution exists in
the variable x, it is concluded that

UN(x, t1) ∗ UN (x, t2) = UN (x, t1 + t2)

and similarly

UN (x, t1) ∗ U †
N (x, t2) = UN (x, t1 − t2) = U †

N(x, t2 − t1)

In particular

UN (x, t) ∗ U †
N (x, t) = δ(x)

Consider an operator on the space of temperate distributions

ÛN(t) : S ′(RN) → S ′(RN)

defined by the rule

ÛN (t)ψ(x) = UN (x, t) ∗ ψ(x) , ψ ∈ S ′(RN )

It is called the evolution operator for a quantum free particle. It has
the property that

ÛN (t1)ÛN(t2) = ÛN (t1 + t2)

The evolution operator is invertible. The inverse is given by

Û−1
N (t)ψ(x) = U †

N (x, t) ∗ ψ(x)

The evolution operator is continuous in parameter t, that is,

lim
t→t0

ÛN (t) ∗ ψ(x) = ÛN (t0) ∗ ψ(x) , ψ ∈ S ′(RN )

where the limit is understood in the distributional sense. If ψ is inte-
grable, then

ÛN (t)ψ(x) =

∫

UN(x− y, t)ψ(y) dNy

and the distribution UN (x− y, t) is called the evolution operator kernel
in quantum mechanics (by analogy with kernels of integral operators).
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42.3. Causal Green’s function. Consider the causal Green’s function for
the Schrödinger operator:

(

i
∂

∂t
+ ∆x

)

GN (x, t) = δ(t) · δ(x) , GN (x, t) = 0 , t < 0

Then it follows from the Fourier method that

GN (x, t) = −iθ(t)UN(x, t) = − iθ(t)

[4πi(t− i0+)]
N
2

e
i|x|2

4(t−i0+) ∈ D′(RN+1)

So, the method used for solving the transfer and heat equation would
lead to the same answer as the above Fourier method (under a sim-
plifying condition that a solution must be a temperate distribution
which in turn was a consequence of the physical condition that any
classical solution must have a finite L2 norm). The convolution of GN

exists with any distribution h(x, t) such that h(x, t) = 0 for t < 0
and supp h ⊂ BR × [0,∞). Its calculation is similar to the case of
the heat equation. The Fourier method reveals a special feature of the
Schrödinger problem. The convolution exists for any temperate distri-
bution h(x, t) that vanishes in the half-space t < 0. It is essential for
quantum theory in which the space L2 plays a central role.

42.4. Regular solutions. Let ψ0(x) ∈ L and f(x, t) is also integrable in
x and f ∈ C0(t ≥ 0). By the established properties of the convolution
of UN with regular distribution in the variable x, the solution to the
generalized Cauchy problem has the following integral representation

ψ(x, t) =

∫

UN (x− y, t)ψ0(y) d
Ny

−i
∫ t

0

∫

UN (x− y, t− τ )f(y, τ ) dNy dτ

where it was used that the antiderivative D−1
t commutes with taking

the convolution with respect to x and ÛN (t)Û †
N(τ ) = ÛN (t − τ ). For

any t > 0

ψ(x, t) =
1

(4πit)
N
2

∫

e
i|x−y|2

4t ψ0(y) d
Ny

−i
t

∫

0

∫

e
i|x−y|2

4(t−τ−i0+)

[4πi(t− τ − i0+)]
N
2

f(y, τ ) dNy dτ

Using this integral representation, one can find sufficient conditions on
smoothness of the initial data and inhomogeneity under which ψ(x, t) is
a classical solution. For example, if ψ0 ∈ S then ψ(x, t) ∈ S for all t > 0
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and ψ(x, t) converges to ψ0(x) uniformly as t → 0+ (see Exercises).
However, for quantum mechanical applications, it is sufficient to show
that the problem has a square integrable solution if the initial data
and inhomogeneity are square integrable, and the solution is unique.
To show this, some additional properties of the Fourier transform are
needed.

Plancherel’s theorem. The classical Fourier transform exists for any
Lebesgue integrable function. However, not every Lebesgue integrable
function is square integrable. For example, if f(x) ∼ x−1/2 near x = 0,
then f is integrable if it has a bounded support, but |f(x)|2 ∼ |x|−1

which is not an integrable singularity. So, f is not square integrable.
Conversely, not every square integrable function is integrable. For ex-
ample, if f is continuous and |f(x)|2 ∼ |x|−2 as |x| → ∞, then f is
square integrable, but |f(x)| ∼ |x|−1 and f is not integrable. So, a
classical solution to the Schrödinger equation must be from class

ψ(x, t) ∈ L ∩ L2

for any t in order to have the probabilistic interpretation as required
by physics. The following theorem holds

Theorem 42.1. (Plancherel)
If ψ ∈ L ∩ L2, then its Fourier transform is square integrable, and

F [ψ] ∈ L2,

∫

|F [ψ](k)|2 dNk = (2π)−N

∫

|ψ(x)|2 dNx

It is worth noting that the factor (2π)−N can be eliminated if the
Fourier transform is defined with an extra factor (2π)−N/2. With this
definition, the relation between F and its inverse F−1 does not contain
the factor (2π)−N , and the Fourier transform of ψ has the same L2

norm, ‖ψ‖2 = ‖F [ψ]‖2.

Remark. Since the subspace L∩L2 is dense in L2 (recall that a smaller
subspace D is dense in L2), one can show that there exists a unique
extension of the Fourier transform from L ∩ L2 to the whole L2 that
preserve the L2 norm. If {ψn} is a sequence in L ∩ L2 that converges
to ψ ∈ L2, that is, ‖ψ − ψn‖2 → 0 as n → ∞, then F [ψ] is defined
as the limit of the sequence F [ψn]. One can show that the limit exists
and is unique in L2 and has the same norm as ψ. This extension, often
called Plancherel’s transform, will be discussed later in the framework
of the operator theory.

Let us now show that the solution to the Schrödinger equation is
square integrable in x for any t > 0.
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Probability conservation. Let f = 0 in the Schrödinger equation. For
any ψ(x, t), the symbol ‖ψ(t)‖2 denotes the L2 norm with respect to
x for any t. Then the time evolution of a quantum particle is unitary,
meaning that, it preserve probability:

‖ψ(t)‖2
2 =

∫

|ψ(x, t)|2 dNx = (2π)N

∫

|Fx[ψ](k, t)|2 dNk

= (2π)N

∫

|e−i|k|2tF [ψ0](k)|2 dNk = (2π)N

∫

|F [ψ0](k)|2 dNk

=

∫

|ψ0(x)|2 dNx = ‖ψ0‖2
2 .

Note that one can always normalize the initial data so that ‖ψ0‖2 = 1.
Then the above relation means that a free particle cannot disappear
in due course of evolution (the probability to find the particle in the
whole space is always equal to 1).

Initial condition. Let us show that the initial condition is fulfilled in
the L2 norm, that is,

lim
t→0+

‖ψ(t)− ψ0‖2 = 0

Indeed, by Plancherel’s theorem

‖ψ(t)− ψ0‖2 = (2π)N‖Fx[ψ(t)− ψ0]‖2 = (2π)N‖(e−i|k|2t − 1)F [ψ0]‖2

Since for any ψ0 ∈ L2
∣

∣

∣(e−i|k|2t − 1)F [ψ0](k)
∣

∣

∣

2

≤ 4|F [ψ0](k)|2 ∈ L
the assertion follows from the Lebesgue dominated convergence theo-
rem. The initial condition is fulfilled almost everywhere,

lim
t→0+

ψ(x, t) = ψ0(x) a.e. ,

which is consistent with the physical interpretation of the theory (al-
terations of a wave function on sets of measure zero do not change the
probability to find a particle in a particular region of space).

Including an inhomogeneity. Put ψ0 = 0 and let f(x, t) ∈ C0(t ≥ 0)
and f(x, t) be square integrable in x for any t ≥ 0. Let us show that
the corresponding solution to the Cauchy problem ψ(x, t) is square
integrable in x for ant t ≥ 0 and satisfies the zero initial condition
almost everywhere. Recall the Schwartz inequality in L2

∣

∣

∣

∫

ψ(x)φ(x) dNx
∣

∣

∣ ≤ ‖ψ‖2‖φ‖2
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which holds for any complex square integrable functions φ and ψ. It
follows from this inequality for any continuous complex h(x, t) which
is square integrable in x for any t ≥ 0, that

∥

∥

∥

∫ t

0

h(x, τ ) dτ
∥

∥

∥

2

2
=

∫ ∫ t

0

∫ t

0

h(x, τ )h(x, τ ′) dτ dτ ′ dNx

=

∫ t

0

∫ t

0

∫

h(x, τ )h(x, τ ′) dNx dτ dτ ′

≤
∫ t

0

∫ t

0

‖h(τ )‖2‖h(τ ′)‖2dτ dτ
′

=
(

∫ t

0

‖h(τ )‖2 dτ
)2

.

The order of integration is changed by Fubini’s theorem because

|h(x, τ )h(x, τ ′)| ≤ 1

2
|h(x, τ )|2 +

1

2
|h(x, τ ′)|2 .

This inequality shows that the product is a Lebesgue integrable func-
tion of x, τ , and τ ′ in RN × (0, T )× (0, T ) for any T > 0 owing to the
continuity and square integrability of h. Then by Plancherel’s theorem

‖ψ(t)‖2
2 = (2π)N‖Fx[ψ(t)]‖2

2 = (2π)N
∥

∥

∥

∫ t

0

ei|k|2τFx[f(τ )]dτ
∥

∥

∥

2

2

≤ (2π)N
(

∫ t

0

‖Fx[f(τ )]‖2dτ
)2

=
(

∫ t

0

‖f(τ )‖2dτ
)2

<∞

because f ∈ C0(t ≥ 0) and ‖f(t)‖2 < ∞ for all t ≥ 0. Furthermore,
this equation also implies that ‖ψ(t)‖2 → 0 as t→ 0+ or

lim
t→0+

ψ(x, t) = 0 a.e.

Since the sum of two square integrable functions is square integrable
(recall that L2 is a a linear space), the solution to the Cauchy problem
is square integrable for any t ≥ 0 and satisfies the initial condition
almost everywhere if ψ0 ∈ L2 and f(x, t) ∈ C0(t ≥ 0) and is square
integrable in x for any t ≥ 0. It remains to check if the Cauchy problem
is well posed.

Well-posedness of the Cauchy problem. In quantum physics, two wave
functions are different only if the L2 distance between them is not
zero. So, the well-posedness of the Cauchy problem will be verified in
the same sense. Consider two initial data and inhomogeneities such
that

‖ψ0 − ψ̃0‖2 ≤ ε0 , ‖f(t) − f̃(t)‖2 ≤ ε1 , t ≥ 0 .
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Let ψ(x, t) and ψ̃(x, t) be the classical solutions corresponding to the

initial data ψ0 and ψ̃0, respectively, and f = f̃ = 0. Then by unitarity
of the time evolution

‖ψ(t)− ψ̃(t)‖2 = ‖ÛN (t)(ψ0 − ψ̃0)‖2 = ‖ψ0 − ψ̃0‖2 ≤ ε0

Let ψ(x, t) and ψ̃(x, t) be the solutions corresponding to the inhomo-
geneities f(x, t) and f̃(x, t), respectively, and ψ0 = ψ̃0 = 0. Replacing

f by f − f̃ in the equations for ‖ψ(t)‖2 in the previous section, one
infers that

‖ψ(t)− ψ̃(t)‖2 =

∫ t

0

‖f(τ ) − f̃ (τ )‖2dτ ≤ ε1t

Since the solution is the sum of the considered two solutions, by the
triangle inequality in L2,

‖ψ(t)− ψ̃(t)‖2 ≤ ε0 + ε1t

Thus, the Cauchy problem for the Schrödinger equation is well posed
in the sense required by a probabilistic physical interpretation.

42.5. Exercises.

1. The function eia|y|2 where a 6= 0 and Ima ≤ 0 is a regular tem-
perate distribution of y ∈ RN . For any test function ϕ, put

φ(x) =
(

eia|y|2, ϕ(x+ y)
)

=

∫

eia|y|2ϕ(x+ y) dNy

(i) Show that φ ∈ C∞ and

Dαφ(x) =

∫

eia|y−x|2Dαϕ(y) dNy

(ii) Use the identity

xeia|y−x|2 =
(

y − 1

2ia
∇y

)

eia|y−x|2

and integration by parts to show that

xβDαφ(x) =

∫

eia|y−x|2
(

y +
1

2ia
∇

)β

Dαϕ(y) dNy

and that
|xβDαφ(x)| ≤M <∞

holds for any β > 0 and any x ∈ RN .
(iii) Show that φ is a test function

φ ∈ S(RN )
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(iv) Show that for any temperate distribution ψ0(x), the convolution
ψ(x, t) = iGN (x, t) ∗ (δ(t) · ψ0(x)) exists in D(RN+1) and

(

ψ(x, t), ϕ(x, t)
)

= i
(

GN (x, t),
(

ψ0(y), ϕ(x+ y, t)
))

for any test function ϕ(x, t) ∈ D.
(v) If ψ0 ∈ L1, show that

ψ(x, t) =
1

(4πit)
N
2

∫

e
i|x−y|2

4t ψ0(y) d
Ny , t > 0

and if ψ0 ∈ S, then ψ(x, t) ∈ S and ψ(x, t) → ψ0(x) in S as t → 0+.
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43. Cauchy problem for a wave equation

Consider the Cauchy problem for an equation that is second-order
in the evoloution variable t:

∂2u

∂t2
+ 2γ

∂u

∂t
+ L(D)u = f(x, t) , t > 0 , x ∈ R

N

u
∣

∣

∣

t=0
= lim

t→0+
u(x, t) = u0(x) , x ∈ R

N ,

∂u

∂t

∣

∣

∣

t=0
= lim

t→0+

∂u(x, t)

∂t
= u1(x) , x ∈ R

N ,

u ∈ C2(t > 0) ∩ C1t ≥ 0 ,

Let u(x, t) be a solution. Define regular distributions from D′(RN+1)
by

v(x, t) = θ(t)u(x, t) , g(x, t) = θ(t)f(x, t)

The distribution v(x) is a smooth function that has a jump disconti-
nuity in the variable t. Using the relation between the distributional
and classical derivatives, one infers that

∂v

∂t
= u0(x) · δ(t) + θ(t)

∂u

∂t
∂2v

∂t2
= u0(x) · δ′(t) + u1(x) · δ(t) + θ(t)

∂2u

∂t2

Similarly, any solution to the second problem is a distributional
solution in D′(t > 0):

∂2v

∂t2
+ 2γ

∂v

∂t
+L(D)v = g(x, t)+ (u1(x) + 2γu0(x)) · δ(t)+u0(x) · δ′(t) .

If E(x, t) ∈ D′(t > 0) is a fundamental solution for the operator in the
problem, then a solution to the distributional problem is given by

v(x, t) = (E ∗ g)(x, t) + E(x, t) ∗ (u1(x) + 2γu0(x)) +
∂E
∂t

∗ u0(x)

where the two latter convolutions are taken in the variable x.
Suppose that the distributions in the right-hand side of the dis-

tributional equation are from the subset of distributions in D(t > 0)
whose elements have the convolution with E. Then the distributional
solution exists and is unique in this class. This implies that the cor-
responding classical Cauchy problem also has a unique solution if the
initial data u0 and u1 and the inhomogeneity f are sufficiently smooth.
One the convolutions are calculated, one has to verify that the obtained
regular distribution v(x, t) is has sufficiently many continuous partial
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derivatives. This task depends on L(D) and, hence, should be studied
for each specific L(D).

43.1. Generalized Cauchy problem. A generalized Cauchy problem is to
find a distribution u(x, t) ∈ D′ that satisfies the corresponding classical
equation,

∂u

∂t
+ L(D)u(x, t) = h(x, t)

or
∂2u

∂t2
+ 2γ

∂u

∂t
+ L(D)u(x, t) = h(x, t)

such that

u(x, t) = 0 , t < 0 , x ∈ R
N

where the inhomogeneity h(x, t) ∈ D′ is a distribution that also van-
ishes in the half-space

h(x, t) = 0 , t < 0 , x ∈ R
N .

If G(x, t) is a fundamental solution for the operator in question such
that

G(x, t) = 0 , t < 0 , x ∈ R
N

and the convolution G ∗ h exists, then

u(x, t) = (G ∗ h)(x, t)
Indeed, for any test function ϕ(x, t) whose support lies in the negative
half-space, t < 0, and ηn(x, y, t, τ ) is a unit sequence in R2N+2, then

ψn(x, y, t, τ ) = η(t)η(τ )ηn(x, y, t, τ )ϕ(x+ y, t+ τ ) = 0

where η(t) ∈ C∞, η(t) = 1 if t ≥ −a for some a > 0 and η(t) = 0 if
t ≤ 2a. This implies, by the definition of convolution, that

(u, ϕ) = (G ∗ h, ϕ) = lim
n→∞

(

G(x, t) · h(y, τ ), ψn(x, y, t, τ )
)

= 0

or that the distribution u vanishes in the negative half-space t < 0.
It follows from the differentiation properties of the convolution that
u is a solution to the generalized Cauchy problem. This solution is
unique in the class of distributions D′

G for which the convolution with
G exists. Using this fact one can investigate conditions on h(x, t) under
which a solution to the classical Cauchy problem exists and is unique.
Moreover, by calculating the convolution G ∗ h an explicit form of the
classical Cauchy problem can be found.

A fundamental solution that vanishes in the negative half-space will
be called a causal Green’s function.
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43.2. Causal Green’s function for a wave operator. Let us try to find
a causal Green function, denoted by GN , for a wave operator in the
space of temperate distributions. Let us take the Fourier transform
with respect to x of both sides of the equation

∂2GN

∂t2
− c2∆xGN (x, t) = δ(x) · δ(t)

One infers that

( d2

dt2
+ c2|k|2

)

Fx[GN ](k, t) = δ(t) , Fx[GN ](k, t) = 0 , t < 0

A solution to this problem exists in the algebra D′
+ for every k ∈ RN

and has the form

Fx[GN ](k, t) = θ(t)
sin(c|k|t)
c|k|

This is a smooth temperate function in k for any t > 0 and, hence, it is
a regular temperate distribution. Therefore, the causal Green function
for a wave operator is also a temperate distribution that is given by

GN (x, t) =
θ(t)

c
F−1

k

[sin(c|k|t)
|k|

]

(x, t) =
θ(t)

(2π)Nc
Fk

[sin(c|k|t)
|k|

]

(x, t)

Case N = 3. Recall the Fourier transform of the spherical delta func-
tion in R3:

F [δSa(x)](k) = 4πa
sin(a|k|)

|k| ⇒ F−1
[sin(a|k|)

|k|
]

(x) =
1

4πa
δSa(x)

Therefore

G3(x, t) =
θ(t)

4πc2t
δSct(x) =

θ(t)

4πc
δ(c2t2 − |x|2)

Its value on any test function is given by

(G3, ϕ) =
1

4πc2

∫ ∞

0

1

t

∫

|x|=ct

ϕ(x, t) dSx dt

Note that a test function is bounded, and hence the integral over the
sphere is proportional to t2 (the sphere radius) so that the integrand is
not singular at t = 0.
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Cases N = 1 and N = 2. If one recalls the Fourier transform of a
window function θ(a− |x|) where x ∈ R and a > 0, then it is easy to
infer that

G1(x, t) =
1

2c
θ(ct− |x|)

The case N = 2 requires the actual computation of the distributional
Fourier transform. It leads to

G2(x, t) =
1

2πc

θ(ct− |x|)
√

c2t2 − |x|2

43.3. Convolution of distributions with support in a light cone. There
exists a higher dimensional generalization of Theorem 31.2 which is
essential for solving wave equations.

Let x ∈ RN and t ∈ R. The open set in RN+1

Γ+ : ct− |x| > 0

where c > 0 is called the future light cone. Supports of fundamental
solutions to the wave operator lie in the closure Γ+ of the future light
cone.

Theorem 43.1. Let f and g be distributions from D′(RN+1) such
that

f(x, t) = 0 , t < 0 , supp g ⊂ Γ+

Then their convolution exists and can be computed by the rule

(43.1) (f∗g, ϕ) =
(

f(x, t)·g(y, τ ), η(t)η(τ )η(c2τ 2−|y|2)ϕ(x+y, t+τ )
)

where η is a C∞ function such that η(t) = 1 if t > −δ for some δ > 0
and η(t) = 0 if t < −a for some a > δ. The convolution has the
following properties:

(f ∗ g)(x, t) = 0 , t < 0 ;

f ∗ g is continuous with respect to f and g, that is, for any sequence
fn → f in D′ such that fn(x, t) = 0 in t < 0,

fn ∗ g → f ∗ g in D′ , supp g ⊂ Γ+

and for any sequence gn → g in D′ such that supp gn ⊂ Γ+,

f ∗ gn → f ∗ g in D′ , f(x, t) = 0 , t < 0 .

Let us first prove the rule (43.1). Let η(t) be a C∞ function such
that η(t) = 1 if t > −a and η(t) = 0 if t < −b for some b > a > 0. For
any test function ϕ(t, x), the function of four variables

ψ(x, y, t, τ ) = η(t)η(τ )η(c2τ 2 − y2)ϕ(t+ τ, x+ y)
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is a test function. Indeed, it is smooth because it is the product of
smooth functions. If the support of ϕ lies in a ball of radius R, then

ϕ(t+ τ, x+ y) = 0 , |t+ τ | > R

Since the support of ψ lies in t ≥ −b and τ ≥ −b,
ψ(t, τ, x, y) = 0 , (t, τ ) /∈ [−b, R] × [−b, R]

for all x and y. If the range of τ is bounded, the range of y is also
bounded in the support of ψ because η(c2τ 2−y2) = 0 if c2τ 2−y2 < −b,
that is, ψ(t, τ, x, y) = 0 if |y| > A > 0 for all for any values of the other
variables. Finally, note that

ϕ(t+ τ, x+ y) = 0 , |x+ y| > R

This implies that ψ vanishes for all |x| > R +A. Thus, the support of
ψ is bounded, and it is a test function in R2N+2.

By the hypothesis about supports of distributions f and g,

f(t, x) = η(t)f(t, x) , g(τ, y) = η(τ )η(c2τ 2 − y2)g(η, y) .

Fix a unit sequence ηn(t, τ, x, y). Then
(

g ∗ f, ϕ
)

= lim
n→∞

(

f(x, t),
(

g(τ, y), ηn(t, τ, x, y)ϕ(t+ τ, x+ y)
))

= lim
n→∞

(

f(x, t),
(

g(τ, y), ηn(t, τ, x, y)ψ(t, τ, x, y)
))

=
(

f(x, t),
(

g(τ, y), ψ(t, τ, x, y)
))

.

The limit exists because ψ has a bounded support and ηn = 1 in the
support of ψ for all large enough n. The rule (43.1) is established. A
proof of continuity of the convolution is the same as for Theorem 31.1.

43.3.1. d’Alembert’s formula for a solution to a 2D wave equation. A dis-
tributional solution to a 2D wave equation can be obtained by the rule
(43.1) where g = E. Using the explicit form of E, one infers from the
rule (43.1) that

φ(y, τ ) =
(

E(t, x), ψ(τ, t, y, x)
)

=
η(τ )

2c

∫ ∞

0

ct
∫

−ct

ϕ(t+ τ, x+ y) dx dt

=
η(τ )

2c

∞
∫

τ

y−c(τ−t)
∫

y+c(τ−t)

ϕ(t, x) dx dt
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Suppose that f is a regular distribution defined by a locally integrable
function f(t, x), f(t, x) = 0 if t < 0. Then

(E ∗ f, ϕ) = (f, φ) =
1

2c

∞
∫

0

∞
∫

−∞

∞
∫

τ

y−c(τ−t)
∫

y+c(τ−t)

f(τ, y)ϕ(t, x) dx dt dy dτ

The iterated integral converges absolutely. Therefore by Fubini’s theo-
rem the order of integrations can be interchanged. To find an explicit
form of u = E ∗ f , the integrations with respect to x and t should be
carried out after the integrations with respect to y and τ . First the
order of integrals with respect to y and t is swapped, then with respect
to τ and t, followed by swapping the y and x integrations, and finally
by the x and τ integrations. Put ξ = c(τ − t). Then the new integra-
tion limits are obtained from the shape of the integration region in the
corresponding plane spanned by the two variables:

∞
∫

0

∞
∫

−∞

∞
∫

τ

y−ξ
∫

y+ξ

· · · dx dt dy dτ =

∞
∫

0

∞
∫

τ

∞
∫

−∞

y−ξ
∫

y+ξ

· · · dx dy dt dτ

=

∞
∫

0

t
∫

0

∞
∫

−∞

y−ξ
∫

y+ξ

· · · dx dy dτ dt =

∞
∫

0

t
∫

0

∞
∫

−∞

x−ξ
∫

x+ξ

· · · dy dx dτ dt

=

∞
∫

0

∞
∫

−∞

t
∫

0

x−ξ
∫

x+ξ

· · · dy dτ dx dt

Thus, the function

u(t, x) = (E ∗ f)(t, x) = θ(t)

∫ t

0

∫ x+c(t−τ )

x−c(t−τ )

f(y, τ ) dy dτ

is a distributional solution to the wave equation

�cu(t, x) = f(t, x) , t > 0 .

If f is from class C1(t > 0)∩C0(t ≥ 0), then u(t, x) is twice continuously
differentiable for t > 0 and satisfies the initial conditions

u
∣

∣

∣

t=0
= lim

t→0+
u(t, x) = 0 ,

Dtu
∣

∣

∣

t=0
= lim

t→0+
Dtu(t, x) = 0 .
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Thus, it is a classical solution to the wave equation and its integral
form is known as d’Alembert’s formula. A verification of these initial
conditions is left to the reader as an exercise.

A physical significance of this solution is that an elastic string was
at rest at t < 0. Then a force f(t, x) is applied at t ≥ 0. The solution
represents forced vibrations of the string under the force f . If the force
acts only during a finite interval of time f(t, x) = 0, 0 ≤ t ≤ T , then
for t > T , the integration in time in d’Alembert’s formula is limited to
a fixed interval [0, T ] so that u(t, x) becomes a superposition of waves
propagating in the opposite directions with speed c.

It will be shown in the next chapter that the initial conditions can
also be distributions, and the Cauchy problem for the wave equation
in any number of dimensions can be solved in the distributional sense.

43.4. Wave potentials. As one can see, the causal Green function of a

wave operator has support in the future light cone Γ
+

where ct ≥ |x| ≥
0. By evaluating the inverse Fourier transform of Fx[Gn] one can show
that this holds in any dimension N . Therefore the generalized Cauchy
problem has a solution

u(x, t) = (GN ∗ h)(x, t)

for any distribution h(x, t) with support in the positive half-space, t ≥
0, and the solution is unique (the homogeneous equation has only the
trivial solution in the set of distributions vanishing in the negative
half-space, t < 0).

Let g(x, t) ∈ D′(RN+1) be a distribution with support in Γ+ and
u(x) ∈ D′(RN). Then it follows from the theorem about the convo-
lution of distribution with supports in Γ+ and in t ≥ 0 and from the
commutativity and associativity of the direct product that

g ∗ (u(x) · δ(t)) = g(x, t) ∗ u(x) ∈ D′(RN+1

where the distribution in the right-hand side is defined by the rule

(

g(x, t) ∗ u(x), ϕ(x, t)
)

=
(

g(x, t) · u(y), η(c2t2 − |x|2)ϕ(x+ y, t)
)

.
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Indeed, for any test function ϕ(x, t) ∈ D one has by associativity of
the direct product

(

g ∗ (u(x) · δ(t)), ϕ(x, t)
)

=
(

g(x, t) · (u(y) · δ(τ )), η(τ )η(t)η(c2t2 − |x|2)ϕ(x+ y, t+ τ ))
)

=
(

(g(x, t) · u(y)) · δ(τ ), η(τ )η(t)η(c2t2 − |x|2)ϕ(x+ y, t+ τ ))
)

=
(

g(x, t) · u(y), η(t)η(c2t2 − |x|2)ϕ(x+ y, t))
)

=
(

g(x, t) · u(y), η(c2t2 − |x|2)ϕ(x+ y, t))
)

because η(t)g(x, t) = g(x, t) as η(t) = 1 in the support of g. By
differentiating the convolution p times with respect to t , one also infers
that

g ∗ (u(x) · δ(p)(t)) =
∂pg(x, t)

∂tp
∗ u(x)

A solution to the generalized Cauchy problem for a wave equation
can written as

u(x, t) = VN (x, t) + V
(0)

N (x, t) + V
(1)
N (x, t)

where the distributions

VN (x, t) = (GN ∗ f)(x, t) , f(x, t) = 0 , t < 0 ,

V
(0)

N (x, t) = GN ∗ (u1(x) · δ(t)) = GN (x, t) ∗ u1(x) ,

V
(1)

N (x, t) = GN ∗ (u0(x) · δ′(t)) =
∂GN(x, t)

∂t
∗ u1(x)

=
∂

∂t
[GN (x, t) ∗ u0(x)] ,

are called the wave potential and surface wave potentials with densities
f , u1, and u0, respectively.

Properties of the wave potential. Suppose that f(x, t) and u0,1(x) are
regular distributions. Then an integral representation for the wave
potential in the dimensions N ≤ 3 can be deduced by calculating the
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convolution:

V1(x, t) =
θ(t)

2c

∫ t

0

∫

|y−x|<c(t−τ )

f(y, τ ) dy dτ ,

V2(x, t) =
θ(t)

2πc

∫ t

0

∫

|y−x|<c(t−τ )

f(y, τ ) d2y dτ
√

c2(t− τ )2 − |x− y|2
,

V3(x, t) =
θ(t)

4πc2

∫

|y−x|<ct

f(y, t− |x−y|
c

)

|x− y| d3y

In all integrals, the integration region is a part of the past light cone
with vertex at (x, t):

Γ−
0(x, t) = {(y, τ ) ∈ R

N+1|c2(t− τ )2 − |y − x|2 ≥ 0 , 0 ≤ τ ≤ t}
In particular, the wave potential V3(x, t) is determined by the source
values f(y, τ ) at all points y in the ball |y−x| ≤ ct and taken at retarded
time moments τ = t− |y − x|/c where |y − x|/c is the time needed for
any perturbation at a point y to reach point x. In other words, V3(x, t)
depends only on the values of f(y, τ ) on the conic boundary C−

0 (x, t) of
Γ−

0(x, t). For this reason, the wave potential V3 is also called a retarded
wave potential, and the Green’s function G3 is also called a retarded
Green’s function.

Let us prove the integral representation for V3. By the theorem
about a convolution of distributions with supports in Γ+ and in the
half-space t ≥ 0, one has for any test function ϕ ∈ D

(V3, ϕ) = (G3 ∗ f, ϕ)

=
(

G3(z, τ ) · f(x, t), η(t)η(τ )η(c2τ 2 − |z|2)ϕ(x+ z), t+ τ )
)

=
1

4πc2

∞
∫

0

1

τ

∫

|z|=cτ

∞
∫

0

∫

f(x, t)ϕ(x+ z, t+ τ ) d3xdtdSzdτ

where η(s) is a C∞ function such that η(s) = 1 if s ≥ −a and η(s) = 0
if s < −b for some 0 < a < b. First, note that owing to a bounded
support of a test function, integrand is not zero only if |t+ τ | < R for
some R. Since t and τ are non-negative, the integrand is not zero only
for a finite range [0, R] of both t and τ . This implies that the range of
y is bounded in R3, |y| ≤ cR. Owing to a bounded support of ϕ, the
integrand is not zero only if |x + y| < R, which implies that x must
range of a bounded region when the integrand is not zero. Therefore,
the integrand is an integrable function of four variables x, y, t, and τ ,
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and Fubini’s theorem applies to change the order of integration in any
variables. Let us first shift the variable x by z and t by τ (at given z
and τ ) and then change the order of integration:

(V3, ϕ) =
1

4πc2

∞
∫

0

1

τ

∫

|z|=cτ

∞
∫

τ

∫

f(x− y, t− τ )ϕ(x, t) d3xdtdSzdτ

=
1

4πc2

∞
∫

0

∫

ϕ(x, t)

t
∫

0

∫

|z|=ct

f(x− z, t− τ )

τ
dSzdτ d

3x dt

Define a variable y ∈ R3 such that in spherical coordinates d3y =
r2dSdr where dS is the measure on the unit sphere |y| = 1. Setting
r = cτ , so that

dSydτ = (cτ )2dSdτ =
1

c
r2dSdr =

1

c
d3y , r = |y| < ct

the integrals over τ and the sphere are converted into the integral over
a ball:

(V3, ϕ) =
1

4πc2

∞
∫

0

∫

ϕ(x, t)

∫

|y|<ct

f(x− y, t− |y|
c
)

|y| d3y d3x dt

=
1

4πc2

∞
∫

0

∫

ϕ(x, t)

∫

|y|<ct

f(y, t− |x−y|
c

)

|x− y| d3y d3x dt

which completes the proof.
As note before, the wave potentials are unique classical solutions

to the corresponding wave equations with zero initial conditions if the
inhomogeneity f is sufficiently smooth. The following theorem can be
established

Theorem 43.2. (Classical wave potential)
If f ∈ C2(t ≥ 0) when N = 2, 3 and f ∈ C1(t ≥ 0) when N = 1,
then the wave potential VN is from class C2(t ≥ 0) and satisfies the
following conditions

|VN (x, t)| ≤ t2

2
max

Γ−
0 (x,t)

|f(y, τ )| , N = 1, 2

|V3(x, t)| ≤
t2

2
max

C−
0 (x,t)

|f(y, τ )| ,
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and the initial conditions

VN

∣

∣

∣

t=0
=
∂VN

∂t

∣

∣

∣

t=0
= 0 .

The proof is limited to the case N = 3. The cases N = 1, 2 can be
proved in a similar manner. Put y = x+ ctz. Then

V3(x, y) =
t2

4π

∫

|z|<1

f(x+ ctz, t(1− |z|))
|z| d3z

Since f ∈ C2(t ≥ 0), f and its partial derivatives up to order 2 are
bounded on any bounded region. The singularity of the integrand at
z = 0 is integrable. Therefore V3 ∈ C2(t ≥ 0) by the theorem about
differentiation of functions defined by an integral. Put

M = max
|z|≤1

|f(x+ ctz, t(1− |z|))| = max
C−

0 (x,t)
|f(y, τ )|

The upper bound also follows from the above representation:

|V3(x, t) ≤
t2M

4π

∫

|z|<1

d3z

|z| =
t2M

2
.

Properties of the surface potentials. For every t > 0, GN (x, t) is a dis-
tribution from D′(RN ). Let us investigate the limit properties of GN

in D′(RN ) and its partial derivatives with respect to t as t→ 0+. The
following relations can be established

lim
t→0+

GN (x, t) = 0 , lim
t→0+

∂GN(x, t)

∂t
= δ(x) , lim

t→0+

∂2GN (x, t)

∂t2
= 0

where the limits are understood in the distributional sense in D′(RN ).
Consider the case N = 3. The other dimensions can be treated in

a similar way. For any ϕ(x) ∈ D′(R3), one has
(

G3(x, t), ϕ(x)
)

=
θ(t)

4πc2t

∫

|x|=ct

ϕ(x) dSx =
θ(t)t

4π

∫

|z|=1

ϕ(ctz) dSz

=
θ(t)t

4π
h(t) ,

where the function

h(t) =

∫

|z|=1

ϕ(ctz) dSz

is from class C∞. Indeed, | dp

dtp
ϕ(ctz)| = c|(z,∇)pϕ)| ≤ c|Dpϕ| on the

sphere |z| = 1. Since all partials Dpϕ are bounded, h(t) ∈ C∞ by
the theorem about differentiation of a function defined by an integral.
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Since h is even, h(−t) = h(t), all its odd derivatives vanish at t = 0,
that is, h′(0) = h′′′(0) = 0, etc. It is concluded that

lim
t→0+

(

G3(x, t), ϕ(x)
)

= 0

for any test function. Similarly, for t > 0

lim
t→0+

(∂G3(x, t)

∂t
, ϕ(x)

)

= lim
t→0+

d

dt

th(t)

4π
=
h(0)

4π
= ϕ(0) = (δ, ϕ)

Finally,

lim
t→0+

(∂2G3(x, t)

∂t2
, ϕ(x)

)

= lim
t→0+

d2

dt2
th(t)

4π
= lim

t→0+

(h′(t)

2π
+
th′′(t)

4π

)

= 0 .

For every t > 0, the support of GN (x, t) (as a distribution in
D′(RN )) is in the ball |x| ≤ ct. Therefore for all 0 < t ≤ T , the
supports of GN (x, t) are in one ball |x| ≤ cT . Owing to the theorem
about continuity of the convolution of distributions one of which has a
bounded support, it is concluded that

lim
t→0+

V
(0)
N (x, t) = lim

t→0+
GN (x, t) ∗ u1(x) = 0 ,

lim
t→0+

∂V
(0)
N (x, t)

∂t
= lim

t→0+

∂GN(x, t)

∂t
∗ u1(x) = (δ ∗ u1)(x) = u1(x) ,

lim
t→0+

V
(1)
N (x, t) = lim

t→0+

∂GN(x, t)

∂t
∗ u0(x) = (δ ∗ u0)(x) = u0(x) ,

lim
t→0+

∂V
(1)
N (x, t)

∂t
= lim

t→0+

∂2GN (x, t)

∂t2
∗ u0(x) = 0 .

Thus, the surface wave potentials are distributional solutions in the
spatial variable x to the homogeneous wave equation

(

�cV
(0,1)(x, t), ϕ(x)

)

= 0 , ϕ ∈ D(RN )

that satisfy distributional initial conditions for any choice of u0,1 ∈
D′(RN ).

For example, consider the generalized initial value problem

�cu(x, t) = 0 , u(x, t) = 0 , t < 0

u
∣

∣

∣

t=0
= 0 ,

∂u

∂t

∣

∣

∣

t=0
= δ(x)

Its solution is unique and given by the surface potential

u(x, t) = V
(0)
N = GN (x, t) ∗ δ(x) = GN (x, t)
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Let N = 3. Then the wave equation can be used to describe sound
waves where u(x, t) is a deviation of the pressure from a constant back-
ground pressure (e.g., atmospheric pressure) at a point x and time
t > 0. An explosion at x = 0 creates an instant change of the pres-
sure at x = 0 with respect to time, modeled here by δ(x). The sound
wave created by a point explosion is a spherical wave propagating out-
ward from x = 0 with the speed c and whose amplitude is decreasing
inversely proportional to the distance traveled:

u(x, t) =
1

4πc2t
δSct(x) .

In reality, an explosion cannot occur in a point. So, a classical (smooth)
solution can be obtained by a regularization of δ(x), e.g., by a hat
function ωa(x). In this case, the solution

ua(x, t) =
1

4πc2t

∫

|x−y|=ct

ωa(y) dSy

has a support in a spherical layer of width 2a with the central sphere
of radius ct. The solution is from C∞(t > 0). Clearly, ua(x, t) →
u(x, t) in D′(RN) as a → 0+. So, characteristic physical properties of
the distributional and physical solutions are similar, even though the
former does not have values (it is a singular distribution).

Let u0 and u1 be regular distributions defined by locally integrable
functions. By evaluating the convolution, one infers that

V
(0)
1 (x, t) =

θ(t)

2c

∫

|y−x|<ct

u1(y) dy

V
(0)
2 (x, t) =

θ(t)

2πc

∫

|y−x|<ct

u1(y) d
2y

√

c2t2 − |y − x|2
,

V
(0)
3 (x, t) =

θ(t)

4πc2t

∫

|y−x|=ct

u1(y) dSy .

The surface potential V
(0)

N is obtained by replacing u1(y) by u0(y) with
the subsequent differentiation of the right-hand sides with respect to
t in the distributional sense. The following theorem establishes condi-
tions on u0,1 under which the surface potentials are classical solutions.

Theorem 43.3. (Classical surface wave potentials)
If u0 ∈ C3 and u1 ∈ C2 when N = 2, 3, and u0 ∈ C2 and u1 ∈ C1 when
N = 1, the surface wave potentials are from class C2(t ≥ 0), satisfy
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the homogeneous wave equation in t > 0 and the initial conditions

lim
t→0+

V
(0)
N (x, t) = 0 , lim

t→0+

∂V
(0)
N (x, t)

∂t
= u1(x) ,

lim
t→0+

V
(1)
N (x, t) = u0(x) , lim

t→0+

∂V
(1)
N (x, t)

∂t
= 0 .

Let us prove the result for V
(0)
3 . It is convenient to rewrite it in the

following form by shifting and scaling the integration variable so that
for t > 0

V
(0)
3 (x, t) =

1

4πc2t

∫

|y−x|=ct

u1(y) dSy =
1

4πc2t

∫

|y|=ct

u1(x+ y) dSy

=
t

4π

∫

|z|=1

u1(x+ ctz) dSz

If u1 ∈ C2, then it is bounded on any bounded set, and by the Lebesgue

dominated convergence theorem, V
(0)
3 (x, t) → 0 as t → 0+. Further-

more, its partial derivatives Du1 and D2u1 are also bounded on any
bounded set. Therefore by the theorem about differentiation of a func-
tion defined by an integral, u ∈ C2(t > 0) and

Dα
xV

(0)
3 =

t

4π

∫

|z|=1

Dαu1(x+ ctz) dSz , α = 1, 2 ,

∂V
(0)
3

∂t
=

1

4π

∫

|z|=1

u1(x+ ctz) dSz +
ct

4π

∫

|z|=1

(z,∇x)u1(x+ ctz) dSz ,

∂2V
(0)

3

∂t2
=

c

2π

∫

|z|=1

(z,∇x)u1(x+ ctz) dSz

+
c2t2

4π

∫

|z|=1

(z,∇x)
2u1(x+ ctz) dSz

By the Lebesgue dominated convergence theorem, the integrals of u1(x+
ctz), (z,∇x)u1(x+ctz), and (z,∇x)

2u1(x+ctz) are continuous in t ≥ 0
because u ∈ C2 and the integration region is compact. Therefore
∂V

(0)
3

∂t
→ u1(x) as t → 0+. Furthermore, the integral of (z,∇x)u1(x)

over the sphere |z| = 1 vanishes by symmetry (the sphere is symmet-
ric under z → −z, while the integrand is skew-symmetric). There-

fore
∂2V

(0)
3

∂t2
→ 0 as t → 0+ as required. The latter also shows that

V
(0)
3 ∈ C2(t ≥ 0).
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43.5. Solution to the classical Cauchy problem for a wave equation. Owing
to the properties of the wave and surface wave potentials, a solution
to the classical Cauchy problem is obtained by taking the sum of wave
potentials for t > 0. For N = 1, the solution is given by the d’Alembert
formula

u(x, t) =
1

2c

t
∫

0

x+c(t−τ )
∫

x−c(t−τ )

f(y, τ ) dy dτ +
1

2c

x+ct
∫

x−ct

u1(y) dy

+
1

2

(

u0(x+ ct) + u0(x− ct)
)

by the Poisson formula for N = 2

u(x, t) =
1

2πc

∫ t

0

∫

|y−x|<c(t−τ )

f(y, τ ) d2y dτ
√

c2(t− τ )2 − |x− y|2

+
1

2πc

∫

|y−x|<ct

u1(y) d
2y

√

c2t2 − |x− y|2

+
1

2πc

∂

∂t

∫

|y−x|<ct

u0(y) d
2y

√

c2t2 − |x− y|2

and for N = 3 by the Kirchhoff formula

u(x, t) =
1

4πc2

∫

|y−x|<ct

f(y, t− |x−y|
c

)

|x− y| d3y +
1

4πc2t

∫

|y−x|=ct

u1(y) dSy

+
1

4πc2
∂

∂t

1

t

∫

|y−x|=ct

u0(y) dSy

If u0 ∈ C2, u1 ∈ C1, and f ∈ C1(t ≥ 0), then u(x, t) for N = 1 is twice
continuously differentiable as one infers from the fundamental theorem
of calculus. It solves the wave equation by construction (as a solution
of the generalized Cauchy problem) and satisfies the initial conditions
by the limit properties of the wave potentials.

43.6. Hyugens principle. Suppose a wave process was initiated by an
external source f(t, x) and the source was terminated after some time,
f(t, x) = 0, t > t0. If the source is localized in space (that is, the
support of f(t, x)) is bounded, then the solution given by Kirchhoff’s
formula also has a bounded support in space:

suppV3(t, x) ⊂ BR
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for any finite t. The wave propagation for t > t0 can be described by a
homogeneous wave equation

�cu(t, x) = 0 , t > t0 ,

with the initial data

u
∣

∣

∣

t=t0
= V3(t0, x) = u0(x) , u′t

∣

∣

∣

t=t0
= V ′

3t(t0, x) = u1(x)

The boundary of the support of u(t, x) for a given t is called the wave
front. The question arises, given the wave front at a time t, can one
infer the shape of the wave front a later time?

In what follows the time is counted from t0 so that the wave prop-
agates freely (no sources) for t > 0 and has the initial data specified
above at t = 0. A free wave propagation is described by the surface
potentials. Fix a point x in space that is not in the support of the

initial data u1. Then the surface integral in V
(0)

3 vanish if the sphere
of radius ct centered at x is not intersecting the support of u1:

∫

|x−y|=ct

u1(y) dSy = 0 if supp u1 ∩ Sct(x) = ∅

In turn, this implies that the support of V
(0)
3 for a given moment of

time t is given by the union of spheres of radius ct with centers being
points of the support of u1 at a time t > 0:

supp V
(0)
3 =

⋃

y∈suppu1

Sct(y)

This shows that every point reached by the wave by t = 0 becomes
a source of a spherical wave expanding with speed c, and the region
occupied by the wave process in time t > 0 is a ”superposition” of such
waves. A similar conclusion holds for the other surface potential (by
the same reasons).

Thus, if a wave process was occupying a region Ω in space at a time
t = 0, then at a time t > 0, the process will occupy the region

Ωt =
⋃

y∈Ω

Sct(y)

being the union of all spheres of radius ct that are centered at all points
of Ω as if each point of Ω emits a spherical wave that expands with the
speed c. This is known as the Hyugens principle for wave propagation.
It allows to reconstruct the wave front at any later time if it was known
at some initial time.
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43.7. Exercises.

1. Define a contour delta function by the rule

(δC, ϕ) =

∫

C

ϕ(x) ds , ϕ ∈ D(RN )

where C is a smooth curve in RN . Consider the generalized Cauchy
problem

�cu(x, t) = 0 , u(x, t) = 0 , t < 0 , x ∈ R
3 ,

u
∣

∣

∣

t=0
= 0 ,

∂u

∂t

∣

∣

∣

t=0
= δC(x)

(i) Let C be a straight line segment connecting points A and B of
length l. Sketch and/or describe the support of the distribution u(x, t)
for some 0 < t < l/(2c), l/(2c) < t < l/c, and t much greater than l/c.
(ii) Let C be a circle of radius R. Sketch and/or describe the support
of the distribution u(x, t) for some 0 < t < R/c, R/c < t < 2R/c, and
t much greater than 2R/c.

2. Fourier method for the wave equation. In acoustics, a solution u(x, t)
to a wave equation defines the acoustic pressure (the local deviation
from the ambient pressure) p(x, t) and the velocity vector field v(x, t)
(a velocity of a particle in the medium at a point x and time t) by the
relations

p = −ρ∂u
∂t

, v = ∇xu

where ρ is the mass density. The energy of an acoustic disturbance in
a spatial region Ω is defined as the sum of the potential (compression)
and kinetic energy densities integrated over that region, respectively,

EΩ(t) =

∫

Ω

p2

2ρ0c2
d3x+

1

2

∫

Ω

ρ v2 d3x

where ρ0 is the ambient mass density (without any acoustic distur-
bance). A total energy of any acoustic disturbance should be finite.
This implies that partial derivatives of the solution u(x, t) must be
square integrable (possibly with some weight). So, if a solution to the
classical Cauchy problem exists, that is physically acceptable, then it
should be a temperate distribution. This distribution can be found by
the Fourier method similarly to the Cauchy problem for the Schrödinger
equation.
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In the Cauchy problem for the wave equation, assume that the
inhomogeneity and the initial data are temperate distribution:

f(x, t) ∈ S ′(t > 0) , u0,1(x) ∈ S ′(R3)

Suppose that the distribution f(x, t) is continuous in the variable t ≥ 0,
that is, for any test function ϕ(x), the distribution

g(t) =
(

f(x, t), ϕ(x)
)

∈ C0(t ≥ 0)

is a continuous function in [0,∞). A solution to the generalized Cauchy
problem is sought as a temperate distribution that is continuously dif-
ferentiable in the time variable t > 0,

u(x, t) ∈ S ′(t > 0) ,
(

u(x, t), ϕ(x)
)

∈ C1(t ≥ 0) , ϕ ∈ S(R3)

that satisfies the wave equation and initial conditions in the distribu-
tional sense:

u′′tt(x, t)− c2∆xu(x, t) = f(x, t) , t > 0 ,

lim
t→0+

u(x, t) = u0(x) , lim
t→0+

u′t(x, t) = u1(x) in S ′(R3)

(i) Use the Fourier transform in the variable x to show that if such a
solution exists, then it satisfies the initial value problem

( d2

dt2
+ c2|k|2

)

Fx[u](k, t) = Fx[f ](k, t) , t > 0 ,

Fx[u]
∣

∣

∣

t=0
= F [u0](k) ,

d

dt
Fx[u]

∣

∣

∣

t=0
= F [u1](k) in S ′(R3)

(ii) Show that under the said assumptions about the distribution f(x, t),
the problem has a unique solution given by

Fx[u](k, t) =

∫ t

0

sin[c|k|(t− τ )]

c|k| F [f ](k, τ ) dτ

+cos(c|k|t)F [u0](k) +
sin(c|k|t)
c|k| F [u1](k) , t > 0 .

where the integral denotes a particular distributional antiderivative
with respect to the variable t that vanishes as t → 0+ in the distri-
butional sense. Show that u(x, t) ∈ S ′(t > 0) and it is continuously
differentiable in the variable t ≥ 0 and satisfies the initial conditions in
the distributional sense.
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(iii) Use the Fourier transform of convolution to show that the solution
can also be written in as the sum wave and surface wave potentials

u(x, t) = V3(x, t) + V
(0)
3 (x, t) + V

(1)
3 (x, t)

=
1

4πc2

∫ t

0

δSc(t−τ)
(x) ∗ f(x, τ )

dτ

t− τ

+
1

4πc2t
δSct(x) ∗ u1(x) +

∂

∂t

1

4πc2
δSct(x) ∗ u0(x)

where all the convolutions are taken in the variable x, and the integral
denotes a particular distributional antiderivative with respect to t that
vanishes as t → 0+ in the distributional sense.

(iv) Show that if f , u0, and u1 are regular temperate distributions,
then the solution is given by the Kirchhoff formula.

3. Cauchy problem for the telegraph equation. Consider the following
Cauchy problem:

u′′tt(x, t) + 2γu′t(x, t)− c2u′′xx(x, t) = f(x, t) , t > 0 ,

u
∣

∣

∣

t=0
= u0(x) , u′t

∣

∣

∣

t=0
= u1(x) , x ∈ R

where γ is a positive constant. It describes a propagation of an electric
signal in a conducting wire. A position along the wire is defined by the
variable x. The term with a parameter γ models Ohmic losses in the
wire. For this reason, this equation is often called a telegraph equation.
(i). Find the generalized Cauchy problem in D′(R2).
(ii). Use the Fourier method to find the causal Green’s function for the
telegraph operator

( ∂2

∂t2
+ 2γ

∂t

∂t
− c2

∂2

∂x2

)

G(x, t) = δ(t) · δ(x) , G(x, t) = 0 , t < 0 .

(iii). Show that the solution to the generalized Cauchy problem exists
and is unique. Express the solution as the sum of wave and surface
wave potentials (by analogy with the solution to the wave equation).
Show that the necessary convolutions exist in D′(R2).
(iv). Find integral representation of the wave and surface wave poten-
tials if f , u0, and u1 are regular distributions.
(v). Find smoothness conditions on the functions u0,1(x) and f(x, t)
under which the solution is from class C2(t > 0) ∩ C1(t ≥ 0).



544 5. APPLICATIONS TO PDES

44. Cauchy problem for Maxwell’s equations

In this section, vectors in R3 will be denoted by boldface letters,
unless stated otherwise. For example, a vector field that depends on
space-time variables is denoted by F(x, t), the spatial gradient of a
function f(x) is ∇f(x), the dot and cross products of two vectors are
denoted by (a,b) and a × b, respectively, the divergence of a vector
field is div F = (∇,F), and the curl of a vector field is curlF = ∇×F.

Let E(x, t) and B(x, t) be electric and magnetic fields, respectively,
J(x, t) be the electric current density, and ρ(x, t) be the electric charge
density. The total electric charge in a spatial region Ω is given by

Q(t) =

∫

Ω

ρ(x, t) d3x

The rate of change of the total charge is determined by the outward
flux of the electric current field

dQ

dt
=

∫

∂Ω

(J, dΣ) =

∫

∂Ω

(J,n) dS

where n is the unit outward normal on the boundary of Ω. If ρ and J

are from the class C1, then it follows from the divergence theorem that
the charge conservation law can also be written in the local form

∂ρ

∂t
+ (∇,J) = 0 .

Maxwell’s equations define the electromagnetic fields in the pres-
ence of external electric charges whose motion obeys the charge con-
servation law. In Gaussian units convention, they read

∂E

∂t
− c∇ × B = −4πJ ,

∂B

∂t
+ c∇ × E = 0 ,

(∇,E) = 4πρ ,

(∇,B) = 0

where c is the speed of light in the vacuum. Note that the divergence
of the electric field is determined by the density of electric charges.
Electric charges are sources of the electric field as its outward flux across
the boundary of a spatial region is determined by the total electric
charge in that region (by the divergence theorem). This is known
as the Gauss law. The magnetic field has no sources, meaning that,
there are no magnetic charges (magnetic monopoles) in nature. The
last two equations are constraints on the electromagnetic fields that
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must be satisfied at any moment of time t. This implies that the time
derivatives of the constraints must vanish for any solution. This is
indeed the case. For example,

∂

∂t
(∇,E) =

(

∇, (c∇ × B − 4πJ)
)

= −4π(∇,J) = 4π
∂ρ

∂t

where the first equality is obtained from the first Maxwell’s equation
and the second follows from the charge conservation law. Thus, the
charge conservation is necessary for the consistency of Maxwell’s equa-
tions.

Energy conservation. Consider electromagnetic fields occupying a bounded
spatial region Ω that has no sources. The integral

EΩ(t) =
1

8π

∫

Ω

(

|E|2 + |B|2
)

d3x

is called the energy of electromagnetic fields. It changes with time. Let
us find the rate of change. Assuming that the field are from class C1

and using Maxwell’s equations, one has

d

dt
EΩ(t) =

1

4π

∫

Ω

[(

E,
∂E

∂t

)

+
(

B,
∂B

∂t

)]

d3x

=
c

4π

∫

Ω

[(

E,∇× B
)

+
(

B,∇× E
)]

d3x

= − c

4π

∫

Ω

(

∇,E × B
)

d3x

= − c

4π

∫

∂Ω

(

E ×B, dΣ
)

The vector field S = c
4π

E×B is called the Poynting vector. Its outward
flux across the boundary ∂Ω defines the rate at which the electromag-
netic energy is decreasing in Ω.

If sources have bounded support and ∂Ω is a sphere enclosing the
sources and its radius is much larger than a diameter of the support
of sources, then the field should fall off inversely proportional to the
distance from the sources in order to create a constant flow of electro-
magnetic energy. Such fields are called radiation or far fields generated
by the sources. The fields whose strength falls off faster are called near
fields. The near fields do not create any energy flow across a sphere of
an arbitrary large radius.
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44.1. The Cauchy problem for Maxwell’s equations. The Cauchy prob-
lem for Maxwell’s equations is to find the electromagnetic fields that
satisfy Maxwell’s equations for t > 0 and the initial conditions

E

∣

∣

∣

t=0
= E0(x) , B

∣

∣

∣

t=0
= B0(x) ,

for given a given external sources J and ρ that satisfy the charge con-
servation law and are smooth enough in order for a classical solution
to exist in the class C1(t > 0) ∩C0(t ≥ 0). The Cauchy problem must
also be well-posed, that is, it should have a unique solution and depend
continuously on the initial data and sources.

44.2. Vector-valued distributions. A vector-valued distribution is a lin-
ear continuous functional of the space of test function whose values
are vectors. Any vector field F in RN whose components Fj(y) are lo-
cally integrable functions in RM and are defines a regular vector-valued
distribution by the rule

(Fj, ϕ) =

∫

Fj(y)ϕ(y) dMy , ϕ ∈ D(RM ) , j = 1, 2, ..., N .

Partial derivatives of a vector-valued distribution are defined in the
same way as for scalar-valued distributions:

(∂Fj

∂yn
, ϕ

)

= −
(

Fj,
∂ϕ

∂yn

)

.

Other operations like the direct product or the Fourier transform or
convolution are defined in the same component-wise fashion.

44.3. The generalized Cauchy problem. Let E and B be solutions to the
classical Cauchy problem. Define regular distributions from D′(R4) by
extending the solutions to the half-space t < 0 by zeros:

E(x, t) = 0 , B(x, t) = 0 , t < 0 , x ∈ R
3

Similarly, the electric current density and the charge density are also
extended by zeros for t < 0 thus becoming regular distributions too

J(x, t) = 0 , ρ(x, t) = 0 , t < 0

The distributional densities satisfy the distributional charge conserva-
tion law that follows from classical one

∂ρ

∂t
+ (∇,J) = δ(t) · ρ0(x) +

{∂ρ

∂t
+ (∇,J)

}

=
1

4π
δ(t) · (∇,E0) .(44.1)
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It follows from the relation between the distributional and classical
derivatives that

∂E

∂t
= E0(x) · δ(t) +

{∂E

∂t

}

,

∂B

∂t
= B0(x) · δ(t) +

{∂B

∂t

}

,

The spatial partial distributional derivatives are equal to the corre-
sponding classical ones. Therefore any classical solution is also a solu-
tion to the distributional problem:

∂E

∂t
− c∇ ×B = −4πJ + δ(t) · E0(x) ,

∂B

∂t
+ c∇ × E = δ(t) · B0(x) ,

(∇,E) = 4πρ , (∇,B) = 0 ,

E(x, t) = B(x, t) = 0 , t < 0 .

where E0 and B0 are vector-valued distributions from D′(R3) such that
(∇,B0) = 0, the distributions J(x, t) and ρ(x, t) are from D′(R4). They
vanish in the open half-space t < 0 and satisfy the distributional charge
conservation law (44.1) The problem can be further generalized.

A generalized Cauchy problem for Maxwell’s equations is to find
vector-valued distributions E and B that vanish in the half-space t < 0
and satisfy the equations:

∂E

∂t
− c∇ × B = −4πJe ,

∂B

∂t
+ c∇ × E = −Jm ,

(∇,E) = 4πρe , (∇,B) = ρm, ,

for any vector-valued distributions Je and Jm and any scalar distri-
butions ρe and ρm that vanish in the half-space t < 0 and satisfy the
electric and magnetic charge conservation laws:

∂ρe

∂t
+ (∇,Je) = 0 ,

∂ρm

∂t
+ (∇,Jm) = 0

The conservation laws are needed for the consistency of the problem.
The last pair of equations in the generalized Cauchy problem should
hold for any t so they are distributional constraints, and hence the
time derivatives of their left- and right-hand sides must be equal for
any distributional solution, which is guaranteed by the conservation
laws.

It should be emphasized that in the generalized Cauchy problem,
the distributions ρe,m are uniquely determined by the conservation laws
because ρe,m(x, t) = 0 for t < 0. A general solution to the conservation
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law is given by ρe,m = −D−1
t (∇,Je,m). A distributional antiderivative

is unique up to an additive constant in t which is a distribution of x.
This constant distribution must be chosen so that the corresponding
particular time antiderivative vanishes for t < 0. Let us denote this
particular time antiderivative by using definite integral notations:

ρe,m(x, t) = −
∫ t

0

(∇,Je,m(x, τ )) dτ

So, the electric and magnetic currents, Je,m, are the only indepen-
dent inhomogeneities in the generalized Cauchy problem for Maxwell’s
equations.

A classical solution is contained among solutions when the electric
and magnetic currents are

Je = J(x, t)− 1

4π
δ(t) · E0(x) , ρe = ρ ,(44.2)

Jm = −δ(t) · B0(x) , ρm = 0(44.3)

with distributions J, E0, and B0 being smooth enough. In this case,

ρ(x, t) = −
∫ t

0

(∇,J(x, τ )) dτ +
1

4π
θ(t) · (∇,E0(x)) .

The last term describes a possibility that the initial electric field has
sources that are unrelated to external electric current J that was turn
on at t = 0.

44.4. Solving the generalized Cauchy problem. Distributions can be dif-
ferentiated any number of times and partial derivatives obey Clairaut’s
theorem. Let us differentiate the first pair of equations with respect to
time and combine them to get the second-order equations separately
for E and B. For example,

∂2E

∂t2
= c∇ × ∂B

∂t
− 4π

∂Je

∂t

∇ × ∂B

∂t
= −∇ ×

(

c∇× E + Jm

)

= c∆E − c∇(∇,E) − c∇ × Jm

= c∆E − 4πc∇ρe − c∇ × Jm

and similarly for the second time derivative of B. In doing so, it is
concluded that the distribution E and B are solutions to the generalized
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Cauchy problem for the wave equations:

( ∂2

∂t2
− c2∆

)

E = −4πc2∇ρe − c∇ × Jm − 4π
∂Je

∂t
≡ He ,

( ∂2

∂t2
− c2∆

)

B = −c2∇ρm + 4πc∇× Je −
∂Jm

∂t
≡ Hm .

Note that the vector-valued distributions He and Hm vanish for t < 0.
Furthermore, the distributional wave equation holds for each compo-
nent independently. So, these are equations are nothing but six scalar
generalized Cauchy problems for the wave equation. Its solution exists
and is unique and given by the convolution

E(x, t) = (G3 ∗ He)(x, t) , B(x, t) = (G3 ∗ Hm)(x, t) ,

G3(x, t) =
θ(t)

4πc2t
δSct(x) .

A substitution of He,m with the electric and magnetic currents given
in (44.2) and (44.2) yields the following distributional solutions

E = −∇Φ − 1

c

∂A

∂t
− 1

c

∂Ae

∂t
− ∇ ×Ab ,(44.4)

B = ∇ ×A + ∇ × Ae −
1

c

∂Ab

∂t
(44.5)

where the distributions Φ, A, Ae, and Ab are called the scalar poten-
tial, vector potential, surface (electric and magnetic) vector potentials,
respectively. They are given by the convolutions

Φ(x, t) = 4πc2(G3 ∗ ρ)(x, t) ,(44.6)

A(x, t) = 4πc(G3 ∗ J)(x, t) ,(44.7)

Af (x, t) = −cG3(x, t) ∗ F0(x)(44.8)

where f is either e or b when F0 is either E0 or B0, respectively. Before
studying classical solutions, let us investigate properties of some special
distributional solutions that are often used in applications of Maxwell’s
equations.

44.5. Waves generated by initial distributions of electromagnetic fields.

Suppose that

J(x, t) = 0

Then the electric charge conservation (44.1) requires that

ρ(x, t) =
1

4π
θ(t) · (∇,E0(x))
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Note that this is the only distributional solution to (44.1) that vanishes
for t < 0. In this case, the electromagnetic fields are uniquely deter-
mined by their initial configurations. Let us evaluate the convolution
G3 ∗ (θ(t) · h(x)) for any h ∈ D′(R3). Using the theorem about the
convolution of a distribution with supports in the future light cone,

(

G3 ∗ (θ(t) · h(x)), ϕ(x, t)
)

=

∫ ∞

0

1

4πc2t

∫

|x|=ct

∫ ∞

0

(

h(y), ϕ(x + y, t+ τ )
)

dτ dSx dt

=

∫ ∞

0

1

4πc2t

∫ ∞

t

∫

|x|=ct

(

h(y), ϕ(x + y, s)
)

dSx ds dt

=

∫ ∞

0

∫ s

0

1

4πc2t

∫

|x|=ct

(

h(y), ϕ(x + y, s)
)

dSx dt ds

=

∫ ∞

0

∫ sc

0

1

4πc2r

∫

|x|=r

(

h(y), ϕ(x + y, s)
)

dSx dr ds

=

∫ ∞

0

∫

|x|<tc

(

h(y), ϕ(x + y, t)
) d3x

4πc2|x| dt

=
(θ(ct− |x|)

4πc2|x| · h(y), ϕ(x + y, t)
)

The second equality follows from a change of the integration variable
s = t + τ . The third equality is obtained by reversing the order of
integration. The fourth one is deduced by setting r = ct. The fifth
equality follows from that dSxdr = r2dSdr = d3x where dS is the
measure on the unit sphere. The final equality is by definition of the
direct product of distributions. It also shows that

G3 ∗ (θ(t) · h(x)) = g3(x, t) ∗ h(x) , g3(x, t) =
θ(ct− |x|)

4πc2|x|
where the convolution in the right-hand side is taken with respect to
x. It is interesting to note that the third equality shows that the
distribution g3 is the time antiderivative of G3 that vanishes for t < 0:

∂

∂t
g3(x, t) = G3(x, t) , g3(x, t) = 0 , t < 0 .

so that using the integral notation, the only solution to this equation
reads

g3(x, t) =

∫ t

0

G3(x, τ ) dτ =
θ(ct− |x|)

4πc2|x|
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By construction g3 is continuous in t (because G3 is continuous in t as
was shown earlier), and

lim
t→0+

g3(x, t) = 0 in D′(R3) .

Thus, the solution to the generalized Cauchy problem has the form

E(x, t) = −c2∇g3(x, t) ∗ (∇,E0(x)) +
∂

∂t
G3(x, t) ∗ E0(x)

+c∇ × (G3(x, t) ∗ B0(x))

B(x, t) =
∂

∂t
G3(x, t) ∗ B0(x)− c∇ × (G3(x, t) ∗ E0(x))

Owing to the continuity of g3 and G3 in the variable t, the distributional
solutions are also continuous in t. The initial condition holds in the
distributional sense in D′(R3)

lim
t→0+

E(x, t) = E0(x) , lim
t→0+

B(x, t) = B0(x) ,

thanks to the limit properties G3 → 0, ∂
∂t
G3 → δ, and g3 → 0 in D′

as t → 0+ (that were established in the previous section), and to the
continuity of the convolution of distributions of this type.

A decay of an electric string. Define a line delta function δC that is
supported on a smooth curve C of length L which connects points x1

and x2 by the rule
(

δC(x;x1,x2), ϕ(x)
)

=

∫

C

ϕ(x) ds

Let e be a unit tangent vector to the curve C . Put

B0(x) = 0 , E0(x) = eδC(x;x1,x2)

If x = x(s) is a natural parameterization, then e = x′(s), and

(

E0(x), ϕ(x)
)

=

∫ L

0

x′(s)ϕ(x(s)) ds , ϕ ∈ D ,

For example, if C is a line segment from x1 to x2, then

x(s) =
s

L
x1 +

L − s

L
x2 , 0 ≤ s ≤ L , e = x′(s) =

x2 − x1

L

So, at the initial moment of time there is no magnetic field and the
electric field is confined into a smooth curve, it is tangent to the curve
and has a unit magnitude. A single flow line of the initial vector field
originates from the point x1 = x(0) and terminates at x2 = x(L).
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Therefore this field should have sources (charges). To find their density,
let us compute the distributional divergence of E0:

(

(∇,E0), ϕ
)

= −
(

E0,∇ϕ
)

= −
∫ L

0

(x′(s),∇)ϕ(x(s)) ds

= −
∫ L

0

d

ds
ϕ(x(s)) ds = ϕ(x1) − ϕ(x2)

This means that

(∇,E0) = δ(x− x1) − δ(x− x2)

So, the sources are two point-like opposite charges located at the end-
point of the electric string. Define the surface scalar potential by

Φ0(x, t) = c2g3(x, t) ∗ (∇,E0(x))

=
θ(ct− |x − x1|)

4π|x− x1|
− θ(t− |x− x2|)

4π|x− x2|
Then it follows from (44.4) and (44.5) that the electric string decays
according to the distributional solution

E(x, t) = −∇Φ0(x, t)−
1

c

∂

∂t
Ae(x, t) , B(x, t) = ∇ × Ae(x, t) .

Recall the properties of surface wave potentials discussed in the
previous section (the Huygens-Fresnel principle). The support of the
terms containing the distribution Ae is the union of spheres of radius ct
and centered at all points of support of E0. If C is a line segment, then
the union of the spheres form a solid without any cavity for ct < L/2.
For L/2 < ct < L, a cavity appears. It is symmetric under rotations
about the line C and has the largest radius in the plane perpendicular
to the line C and passing through its midpoint. It is the intersection of
two balls of radius ct that are centered at x1,2. For ct > L, the cavity
contains the whole line segment C . Eventually, the cavity expands to
the whole space for ct � L. The cavity is never empty. It contains
the Coulomb field of two opposite charges at x1 and x2. Note that Φ
is a Coulomb potential of two such point charges, but the support of
Φ is the union of two balls of radius ct centered at x1 and x2. So, the
Coulomb field occupies only these balls. As ct becomes larger than L/2,
the balls have a common region that is exactly the cavity in the support
of the other terms in the solution. So, the cavity is always filled with
the Coulomb field of two opposite charges. As the cavity expands,
the Coulomb field fills out the whole space, which is the asymptotic
stationary state of the electromagnetic fields as t → ∞.
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44.6. Wave generated by external electric currents. Let E0 = B0 = 0. In
this case, the surface vector potentials vanish and the electromagnetic
fields are determined only by the scalar and vector potentials and given
in (44.4) and (44.5) with Ae = Ab = 0. This solution describes an
electromagnetic radiation generated by external electric currents. As
an example, let us solve the radiation problem for an electric dipole
that is often used to model the electromagnetic radiation by simplest
antennas.

An electric dipole radiation. Let p(t) be a vector-valued distribution of
the time variable that vanishes for t < 0. Put

J(x, t) = −ṗ(t)δ(x) , ρ(x, t) = (p(t),∇)δ(x) , p(t) = 0 , t < 0 .

Here a common convention to use a dot to denote the time derivative is
used for distributions that depends only on time, that is, ṗ(t) = d

dt
p(t).

The product of distributions is understood as the direct product (the
dot notation is omitted for brevity). The charge conservation law is
satisfied for any p(t).

Let us calculate the potentials. For any test function ϕ(x, t)

(A, ϕ) = −4πc

∫ ∞

0

1

4πc2τ

∫

|x|=cτ

(

ṗ(t), ϕ(x, t+ τ )
)

dSx dτ

= −1

c

∫

1

|x|
(

ṗ(t), ϕ(x, t+ |x|
c

)
)

d3x

def
= −1

c

( ṗ(t− |x|
c

)

|x| , ϕ(x, t)
)

The first equality readily follows from the theorem about the convolu-
tion of distributions supported in the future light cone and the explicit
form of Green’s function G3. The second equality is obtained by setting
r = cτ and using the volume measure dSxdr = r2dSdr = d3x where
dS is the area measure on a unit sphere. The last equality serves as a
definition. Recall the definition of a shifted distribution. Here p(t) is a
distribution of a single real variable t, whereas a ”shifted” distribution
p(t− |x|

c
) becomes a distribution of four variables and, hence, its action

on a test function of four variables should be defined. If p(t) is a reg-

ular distribution, then the function p(t − |x|
c

) is a regular distribution
of four variables. So, the last equality is a definition only if p(t) is a
singular distribution. The scalar potential Φ is calculated in a similar
fashion. Since the convolution exists, the gradient operator ∇ can be
applied after calculating the convolution of G3 with p(t)δ(x), leading
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to

Φ(x, t) =
(

∇,
p(t− |x|

c
)

|x|
)

, A(x, t) = − ṗ(t− |x|
c

)

c|x|
To find an explicit form of Φ and the electromagnetic fields, one has to
express spatial derivatives of the shifted distribution p in terms of its
time derivatives, and for that a few properties of the shifted distribution
p need to be established.

Additional properties of p(t− |x|
c

). Let us investigate smoothness prop-
erties of the function

P (x) =
(

p(t), ϕ(x, t+ |x|)
)

, p ∈ D′
+(R) , ϕ ∈ D(RN+1)

that is, the distribution p(t) vanishes for t < 0. One can see that
P (x) = g(x, |x|) where

g(x, s) =
(

p(t), ϕ(x, t+ s)
)

=
(

p(t), η(t)ϕ(x, t+ s)
)

and η(t) = 1 for t > −a, η(t) = 0 for t < −b for any 0 < a < b,
and η ∈ C∞. By the consistency theorem, g(x, s) is a test function in
the variable x for any real s. It is also continuous in s because p is a
continuous functional. If sn → s as n → ∞, then the sequence of test
functions converges in D: ϕn(x, t) = ϕ(x, t + sn) → ϕ(x, t + s) and,
hence, g(x, sn) → g(x, s). Similarly, g is differentiable in s:

∂g(x, s)

∂s
= lim

ε→0

(

p(t),
ϕ(x, t+ s+ ε) − ϕ(x, t+ s)

ε

)

=
(

p(t),
∂

∂s
ϕ(x, t+ s)

)

The partial derivative is continuous by the continuity of the functional
p because all derivatives of a test function are tests functions. This
argument holds for partial derivatives of any order. Thus, g(x, s) is
from class C∞(RN+1 with bounded support in the variable x and

Dα
xD

β
s g(x, s) =

(

p(t), Dα
xD

β
t ϕ(x, t+ s)

)

=
(

Dβ
t p(t), D

α
xϕ(x, t+ s)

)

.

Therefore

P (x) = g(x, |x|) ∈ C∞(x 6= 0) ∩ C0 , P (x) = 0 , |x| > R
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for some R > 0. The derivatives of P (x) are calculated by the chain
rule for x 6= 0

∂P

∂xj
=
∂g(x, s)

∂xj

∣

∣

∣

s=|x|
+
∂g(x, s)

∂s

∣

∣

∣

s=|x|

xj

|x|

=
(

p(t),
∂ϕ(x, s)

∂xj

∣

∣

∣

s=t+|x|
+
xj

|x|
∂ϕ(x, s)

∂s

∣

∣

∣

s=t+|x|

)

=
(

p(t),
∂ϕ(x, s)

∂xj

∣

∣

∣

s=t+|x|

)

−
(

ṗ(t), ϕ(x, t+ |x|)
) xj

|x|
where the latter equality follows from the definition of the derivative
ṗ(t). So, P (x) and its first partial are bounded functions. Classical
higher order derivatives are obtained similarly. But it should be noted
that they are not bounded in a neighborhood of x = 0 and, hence, not
locally integrable in general.

For small |x|, P has the following asymptotic behavior

P (x) = g(0, 0) + xj
∂g

∂xj

∣

∣

∣

x=0,s=0
+ |x|∂g

∂s

∣

∣

∣

x=0,s=0
+O(|x|2)

It follows from this consideration that the vector fields

Pα(x) =
(

Dα
t p(t), ϕ(x, t+ |x|

c
)
)

are continuous and have bounded supports for any test function ϕ.
Their asymptotic behavior near the origin has the form

Pα(x) = Pα(0) +Mαx + bα|x|+O(|x|2)
for some 3 × 3 matrices Mα and constants bα and for any α ≥ 0.

Let us calculate first partial derivatives of Pα. Put ∂j = ∂
∂xj

for

brevity, and for any test function ϕ(x, t)

ϕ′
j(x, t+

|x|
c

)
def
= ∂jϕ(x, τ )

∣

∣

∣

τ=t+
|x|
c

,

that is, first the partial derivative is computed and then the time vari-
able is shifted. Define

Pαj(x) =
(

Dα
t p(t), ϕ′

j(x, t+
|x|
c

)
)

These vector fields have the same smoothness properties as Pα. The
following identity follows from the chain rule:

∂jϕ(x, t+ |x|
c

) = ϕ′
j(x, t+

|x|
c

) + ϕ′
t(x, t+

|x|
c

)
xj

c|x|
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where ϕ′
t denotes the derivative of ϕ with respect to t. Using this

identity to express ϕ′
j in the definition of Pαj and the chain rule for

derivatives of Pα established above, one infers that

∂jPαx = Pαj(x) − xj

c|x| Pα+1(x)

This identity is helpful for calculating the distributional electromag-
netic fields.

Calculation of the electromagnetic fields. Then

(

∂j

p(t− |x|
c

)

|x| , ϕ(x, t)
)

= −
(p(t− |x|

c
)

|x| , ∂jϕ(x, t)
)

= −
∫

1

|x|
(

p(t), ϕ′
j(x, t+

|x|
c

)
)

d3x = −
∫

P0j(x)

|x| d3x

= − lim
a→0+

∫

|x|>a

( 1

|x| ∂jP0(x) +
xj

c|x|2 P1(x)
)

d3x

= −
∫

( xj

|x|3P0(x) +
xj

c|x|2 P1(x)
)

d3x

The first equality is by the definition of a distributional derivative. The
second one is by the definition of the shifted distribution p. Then the
field Pαj was used to obtain the third equality. The fourth equality
follows from the continuity of the Lebesgue integral and the equation
for derivatives ∂jPα. The last equality is obtained by integration by
parts. Since the functions Pα were shown to have a bounded support,
the integration region is limited to a ball of a sufficiently large radius.
The integrand is from class C∞(|x| > a) for any a > 0. However it has
a singularity at x = 0 so that the divergence theorem does not apply
in the whole integration region. The singularity is locally integrable.
So, it was necessary to use the continuity of the Lebesgue integral by
removing a ball Ba from the integration region and then taking the
limit a → 0+ after integrating by parts. One can show that the surface
integral over the sphere |x| = a is proportional to a and, hence, vanishes
in the said limit. This technical detail is left to the reader to verify.
The integrand is locally integrable after integration by parts because its
absolute value behaves as |x|−2 near the origin due to the asymptotic
properties of Pα. Therefore the regularization can be removed, thus
leading to the final result:

∂j

p(t− |x|
c

)

|x| = −xjp(t− |x|
c

)

|x|3 − xjṗ(t− |x|
c

)

c|x|2 .
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If p(t) is a smooth function, then this relation is nothing but the chain
rule. It follows that

Φ(x, t) = −(x,p(tr))

|x|3 − (x, ṗ(tr))

c|x|2

B(x, t) = ∇ × A(x, t) =
x× ṗ(tr)

c|x|3 +
x× p̈(tr)

c2|x|2 ,

where

tr = t− |x|
c

is called the retarded time.
To compute E, note that the scalar potential Φ has an integrable

singularity |Φ| ∼ |x|−2 if p(t) is a bounded function. Therefore its
distributional gradient is no longer a locally integrable function and,
hence, it is a singular distribution. This can already be anticipated
because the electric field satisfies the Gauss law:

(∇,E) = 4πρ = 4π(p(t),∇)δ(x) .

The gradient of the first term in Φ produces a singular distribution.
Using the vectors Pα, the distributional gradient of Φ can be written

as follows
(

∂jΦ, ϕ
)

= −
(

Φ, ∂jϕ
)

= lim
a→0+

∫

|x|>a

((x,P0j)

|x|3 +
(x,P1j)

c|x|2
)

d3x

= lim
a→0+

∫

|x|>a

((x, ∂jP0)

|x|3 +
(x, ∂jP1)

c|x|2 +
xj(x,P1)

c|x|4 +
xj(x,P2)

c2|x|3
)

d3x

One has to express this integral only in terms of Pα in order to find
the distributional derivative via the shifted p and its time derivatives.
Therefore the first two terms are transformed by integration by parts.
The surface integral arising from integration by parts in the second is
proportional to a and vanishes in the limit. This technical detail is left
to the reader to verify. The surface integral arising from integration by
parts in the first integral has the form (after the scaling transformation
x = ay where |y| = 1)

∫

|y|=1

nj(y,P0(ay)) dS = −
∫

|y|=1

yj(y,b) dS −
∫

|y|=1

yj(y,P0(ay)− b) dS

where b = P0(0) is a constant vector and nj = −yj is the outward
normal on the unit sphere. The second integral is proportional to a in
the leading order for small a thanks to the asymptotic properties of P0
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and, hence, vanishes in the limit. Using a parameterization of the unit
unit sphere by spherical angles, it is not difficult to infer that

∫

|y|=1

yjyn dS =
4π

3
δjn

Therefore

lim
a→0+

∫

|y|=1

yj(y,P0(ay)) dS =
4π

3
bj =

4π

3

(

pj(t) · δ(x), ϕ(x, t)
)

Finally, one should see if the limit exist for the all four volume integrals
after integration by parts. Owing to the asymptotic properties of Pα,
the integrands in the last three volume integrals are locally integrable
and their limits exist. Let (P0)n stands for the nth component of P0.
Then the first integral reads

lim
a→0+

∫

a<|x|<R

3|x|2δjn − xjxn

|x|5 (P0)n(x) d3x

where a ball of radius R contains support of P0. If one adds and
subtract bn, then the integrand with the factor (P0)n − bn is locally
integrable owing to the asymptotic properties of P0 and, hence, the
regularization can be removed for it. It turns out that the most singular
part vanishes for any a > 0. One has in spherical coordinates

∫

a<|x|<R

3|x|2δjn − xjxn

|x|5 d3x =

∫ R

a

dr

r

∫

|y|=1

(3δjn − yjyn) dS = 0

because the surface integral vanishes. Thus, the limit exists for all
four volume integrals. The limit offers a distributional extension of the
most singular term to x = 0. This extension will be denoted by P (the
spherical principal value).

Collecting all terms, one infers that

E(x, t) = −∇Φ(x, t)− 1

c

∂

∂t
A(x, t)

=
4π

3
p(t)δ(x)− P 3x(x,p(tr)) − |x|2p(tr)

|x|5

−3x(x, ṗ(tr)) − |x|2ṗ(tr)

c|x|4 − x(x, p̈(tr)) − |x|2p̈(tr)

c2|x|3
where tr is the retarded time introduced earlier. Since p(t) = 0 for
t < 0, the electromagnetic fields are supported in a ball |x| ≤ ct, and
its boundary is expanded with the speed of light c. Any perturbation
of the source p at a time t can be observed with the delay of |x|/c at
a point x which is the time needed for the wave to travel the distance
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from the point source to the point x. This explains the name ”retarded
time”.

Radiation far-fields. In the asymptotic region, |x| → ∞, the leading
contribution comes from

E(x, t) =
|x|2p̈(tr) − x(x, p̈(tr))

c2|x|3 +O
( 1

|x|2
)

B(x, t) =
x × p̈(tr)

c2|x|2 +O
( 1

|x|2
)

If p(t) is a smooth function, then the far-fields are smooth despite that
the sources are singular distributions in space. Note also that the far
fields at a point x are orthogonal to the position vector of the point
x relative to the source. Therefore, the leading contribution to the
Poynting vector is parallel to x and has the form

S =
|p̈(tr)|2 − (x̂, p̈(tr))

2

4πc3|x|2 x̂ +O
( 1

|x|3
)

, x̂ =
x

|x| .

Let us find the rate at which the dipole radiates electromagnetic energy
to th. Its outward flow across the sphere |x| = R so that dΣ = x̂R2dS,
where dS is the area measure on a unit sphere, reads
∫

∂Ω

(S, dΣ) =
1

4πc3

∫

|y|=1

(

|p̈(t− R
c
)|2 − (x̂, p̈(t− R

c
))2

)

dS +O
( 1

R

)

.

Using spherical angles to parameterize the unit sphere so that the
zenith angle φ is counted from p̈(tr), the integral is easy to evaluate:

∫

∂Ω

(S, dΣ) =
2π|p̈(t− R

c
)|2

4πc3

∫ π

0

sin3(φ) dφ =
2|p̈(t− R

c
)|2

3c3

The flow is positive so that the dipole generates a steady flow of
electromagnetic energy carried by electromagnetic waves. The rate
at which the dipole sends electromagnetic energy is positive but de-
pends on time. In applications, for a monochromatic source, p(t) =
θ(t)p0 cos(ωt), one is often interested in the average rate per one cycle
T = 2π/ω:

〈

∫

∂Ω

(S, dΣ)
〉

T
=

1

T

∫ T

0

∫

∂Ω

(S, dΣ) dt =
ω2

3c3
|p0|2

Remark. If ρ = 0, then the charge conservation law requires that the
electric current density is divergence free. The simplest system of this
type is a magnetic dipole:

ρ = 0 , J = ∇ × µ(t)δ(x)
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where µ(t) is a vector-valued distribution of time that vanishes for
t < 0. It is called a magnetic dipole moment.

44.7. Regular solutions. Let J, ρ, E0, and B0 be regular distributions.
Then their convolutions with the causal Green’s function G3 are com-
puted in the same as in the case of a scalar wave equation:

Φ = −4πc2(G3 ∗ ρ)(x, t) = −
∫

|y−x|<ct

ρ(y, t− |x−y|
c

)

|x− y| d3y ,

A = 4πc(G3 ∗ J)(x, t) = −1

c

∫

|y−x|<ct

J(y, t− |x−y|
c

)

|x− y| d3y ,

Af = −cG3(x, t) ∗ F0(x) = − 1

4πct

∫

|y−x|=ct

F0(y) dSy

where t > 0 and the index f is either e or b when F0 is equal to either
E0 or B0, respectively. If the sources and the initial data are smooth
enough so that the above convolution are from class C2(t > 0), then
the fields are from class C1(t > 0) and solve Maxwell’s equations:

E = −∇Φ − 1

c

∂A

∂t
− 1

c

∂Ae

∂t
− ∇ ×Ab ,

B = ∇ ×A + ∇ × Ae −
1

c

∂Ab

∂t
It follows from Theorem 43.3 that if the initial data E0 and B0 are
from class C2, then the surface vector potentials Ae,b are from class
C2(t ≥ 0) and

lim
t→0+

(

− 1

c

∂Ae

∂t
− ∇ ×Ab

)

= E0 ,

lim
t→0+

(

∇ × Ae −
1

c

∂Ab

∂t

)

= B0

It follows from Theorem (43.2) that, if J and ρ are from class C2(t ≥ 0),
then the scalar and vector potentials Φ and A are also from class
C2(t ≥ 0) and

lim
t→0+

(

−∇Φ − 1

c

∂A

∂t

)

= 0 ,

lim
t→0+

(

∇ × A
)

= 0

This analysis shows that the electromagnetic fields are from classC1(t ≥
0) and satisfy Maxwell’s equation and the initial conditions. They give
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a classical solution to the Cauchy problem. The problem is well-posed
because the solution is unique and Theorems (43.3) and (43.2) show
that the solution depends continuously on the sources and initial data.

44.8. Helmholtz decomposition of a vector field. A vector field that is
sufficiently smooth and falls off sufficiently fast in the asymptotic region
can be represented as a sum of divergence-free and curl-free vector fields
in R3. The curl-free part is also a conservative vector field (it is the
gradient of a scalar function called a potential):

F = −∇Φ + ∇ × A .

Proposition 44.1. Let Ω be open and bounded region and a vector
field F be from class C2(Ω̄). Then the Helmholtz decomposition holds
in Ω and

Φ(x) =
1

4π

∫

Ω

(∇,F(y))

|x − y| d3y − 1

4π

∫

∂Ω

(ny,F(y))

|x − y| dSy ,

A(x) =
1

4π

∫

Ω

∇ × F(y)

|x− y| d3y − 1

4π

∫

∂Ω

ny × F(y)

|x− y| dSy ,

where ny is the outward unit normal at a point y on the boundary ∂Ω.

To prove this proposition, consider an extension of F to the whole
R3 by zero. Then F is a vector-valued regular distribution with a
bounded support being Ω̄. Therefore its convolution with the regular
distribution 1

|x| exists in D′, and the following chain of equalities holds

in the distributional sense

F
(1)
= δ ∗ F

(2)
= − 1

4π

(

∆
1

|x|
)

∗ F
(3)
= − 1

4π
∆

( 1

|x| ∗ F
)

(4)
= − 1

4π

( 1

|x| ∗ ∆F
)

(5)
=

1

4π

1

|x| ∗
(

∇× (∇ × F) − ∇(∇,F)
)

(6)
=

1

4π
∇ ×

( 1

|x| ∗ (∇ × F)
)

− 1

4π
∇

( 1

|x| ∗ (∇,F)
)

Here (1) holds by the properties of the delta-function; (2) follows from
an explicit form of the fundamental solution of the Laplace operator;
(3), (4), and (6) hold because the convolution of any distribution with
a distribution having a bounded support exists; (5) follows from the
identity

∇ × (∇ × F) = −∆F + ∇(∇,F) .

that is valid for any vector-valued distribution (it is established by the
“bac-cab” rule for the double cross product). This calculation shows
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that the Helmholtz decomposition holds in the distributional sense with
the scalar and vector potential given by the following distributions

Φ(x) =
1

4π

1

|x| ∗ (∇,F) , A(x) =
1

4π

1

|x| ∗ (∇ × F) .

To find the classical Helmholtz decomposition in Ω, one should calcu-
late the distributional divergence and curl of F in terms of the classical
divergence and curl of F in Ω. Let Dj denote the partial derivative
with respect to xj, j = 1, 2, 3. It was shown in Section 21.5.1 that a
distributional derivative of a piecewise smooth function is given by

DjF = {DjF} − njF δ∂Ω ,

where nj is the jth component of the unit outward normal on the
boundary ∂Ω and νδ∂Ω is a simple layer distribution with density ν
which is a continuous function on ∂Ω. Therefore the distributional
divergence and curl of F are related to the classical ones as

(∇,F) = {(∇,F)} − ν δ∂Ω , ν = (n,F) ,

∇ × F = {∇ × F} − µ δ∂Ω , µ = n× F

Since the classical divergence and curl are continuous in Ω̄ and vanish
in the complement of Ω̄, and the densities ν and µ are continuous on
∂Ω (or piece-wise continuous for a piece-wise smooth ∂Ω), the needed
convolutions have the following integral representations

Φ(x) =
1

4π

1

|x| ∗
(

{(∇,F)} − ν δ∂Ω

)

=
1

4π

∫

Ω

(∇,F(y))

|x − y| d3y − 1

4π

∫

∂Ω

(ny,F(y))

|x − y| dSy ,

A(x) =
1

4π

1

|x| ∗
(

{∇ × F} − µ δ∂Ω

)

=
1

4π

∫

Ω

∇ × F(y)

|x− y| d3y − 1

4π

∫

∂Ω

ny × F(y)

|x− y| dSy .

Owing to the theorem about differentiation of potential-like integrals,
the integral representation of the vector and scalar potentials define
functions from class C1(Ω̄) and, hence, their distributional derivatives
in Ω are equal to the classical ones so that the Helmholtz decomposition
holds in the classical sense in Ω.

Extension to the whole space. Let Ω be a ball of radius R, then in the
limitR→ ∞, the surface terms vanish in the Helmholtz decomposition
in Ω if |F| tends to zero faster than 1

|x| as |x| → ∞. This observation
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leads to the conclusion that if F is from class C2 and falls off sufficiently
fast as |x| → ∞, then the Helmholtz decomposition holds in the whole
space and the potentials have the form

Φ(x) =
1

4π

∫

(∇,F(y))

|x− y| d3y , A(x) =
1

4π

∫

∇ ×F(y)

|x− y| d3y

A proof of this extension would be similar to the previous case if one
makes a simplifying assumption that the classical convolution

1

|x| ∗ F =

∫

F(y)

|x− y| d
3y

exists. Clearly this is true if F has a bounded support. This is also
true if the following limit exists

lim
R→∞

∫

|y|<R

|F(y)|
|x − y| d

3y <∞

A sufficient condition for the latter reads

|F(y)| ≤ M

1 + |y|p , p > 2

However, this condition is too restrictive. One might notice that it is
sufficient for the assertion to hold if the classical convolution of the
divergence and curl of F with 1

|x| exists. A sufficient condition for the

latter has a similar form but it is less restrictive: p > 1. However, the
proof used in the previous case is false if the convolution 1

|x| ∗ F does

not exist.
An alternative proof is based on the Fourier transform. Since F

is continuous and falls off to zero at infinity, it is a bounded vector
field and, hence, defines a regular temperate distribution whose Fourier
transform exists in the distributional sense. A vector F [F] has a unique
orthogonal decomposition into the sum of a vector parallel to k and a
vector perpendicular to k. Recall that k × a is perpendicular to k for
any choice of a. In particular, one can always chose a to be orthogonal
to k, that is, (k, a) = 0. So, by analogy with the vector algebra, put

F [F](k) = −ik g(k) + ik× G(k) , (k,G) = 0 .

If G and g exists in S ′, then the Helmholtz decomposition holds in the
space of temperate distributions with Φ = F−1[g] and A = F−1[G].
If the potentials are continuously differentiable, then the classical de-
composition holds as well.
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Taking the dot and cross products of the decomposition equation
with k, it is concluded that the problem is equivalent to finding condi-
tions on F under which the equations

|k|2g = i(k,F [F]) , k × (k × G) = −ik× F [F]

have solutions in the space of temperate distributions. The first equa-
tion is nothing but the Fourier transform of the Poisson equation in S ′

with the inhomogeneity being the divergence (∇,F). It has a unique
solution in the class of temperate distributions which have a convolu-
tion with the fundamental solution for the Laplace operator:

∆E3(x) = δ(x) ⇒ E3(x) = − 1

4π|x|
Therefore, if the convolution E3(x) ∗ (∇,F) exists, then g exists, and
the scalar potential is Φ = F−1[g] = −E3(x) ∗ (∇,F). The convolution
is a classical one if |F| ∼ |x|−p, p > 1, in the asymptotic region. It
defines a continuously differentiable function owing to that F ∈ C2 and
(∇,F) ∼ |x|−p−1 in the asymptotic region.

The second equation is also reduced to the vector Poisson equation
by expanding the double cross product and using the orthogonality of
G and k so that

|k|2G = ik× F [F] ⇒ A = F−1[G] = −E3 ∗ (∇ × F)

provided the convolution exists in S ′ which is the case under the stated
condition on the asymptotic behavior of F. The convolution defines a
continuously differentiable vector potential under the stated smooth-
ness and asymptotic conditions on F.

Helmholtz decomposition of a vector field with bounded support. Let F

be a vector field with bounded support D. Then its divergence and
curl, (∇,F) and ∇ × F, are also supported in D. However the scalar
and vector potential in the Helmholtz decomposition do not vanish in
the complement Ω = Dc of D as they are given by the convolution
integral. Since F vanishes in Ω, one has

(44.9) ∇ × A = ∇Φ , x ∈ Ω .

There is no contradiction in this equation. By taking the curl and
divergence of this equation and using that (∇,A) = 0, it is concluded
that the components of the vector potential and the scalar potential
are harmonic functions in Ω

∆A(x) = 0 , ∆Φ(x) = 0 , x ∈ Ω .
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A harmonic function in an open region Ω is uniquely determined by
its values on the boundary ∂Ω = ∂D. Clearly, the convolutions that
define A and Φ do not vanish on ∂D. Therefore the external Dirichlet
problem for the said harmonic functions has a non-trivial solution.

Note however that equation (44.9) has trivial solution if Ω = R3

(with suitable asymptotic conditions on A and Φ at infinity). In this
case, A and Φ are temperate distributions and the Fourier transform
of (44.9) leads to k×F [A] = kF [Φ] which is possible only if F [A] and
F [Φ] have a point support k = 0. By the theorem about distributions
with point supports, the distributions A and Φ are polynomials. If A

and Φ are required to vanish at infinity, then A = 0 and Φ = 0 are the
only solutions.

The scalar and vector potentials of electromagnetic fields. Since the mag-
netic field is divergence-free, it is the curl of a vector potential A. In
general, the vector potential can have an additive potential part (as the
gradient of some scalar function). The magnetic field is independent of
this part as only the divergence free part of A contributes to the curl
of A. Put

B = ∇× A , E = −∇Φ − 1

c

∂A

∂t
The Helmholtz decomposition for E was chosen so that the second
Maxwell’s equation is fulfilled identically:

∂B

∂t
+ c∇× E = ∇× ∂A

∂t
− ∇ × ∂A

∂t
= 0

So, the vector and scalar potentials are to be found by solving the
first Maxwell’s equation and the Gauss law. This representation allows
one to reduce twice the number of equations. However, the scalar and
vector electromagnetic potentials are not unique. The electromagnetic
field do not change under the so-called gauge transformations

Φ → Φω = Φ − 1

c

∂ω

∂t
, A → Aω = A + ∇ω

For example, one can chose ω so that the transformed vector potential
is divergence free. In other words, the gauge freedom can eliminated
by imposing a gauge condition on the potentials. For example, the
Coulomb gauge requires the vector potentials to be divergence free

(∇,A) = 0

In the relativity theory, one often uses the Lorenz gauge

1

c

∂Φ

∂t
+ (∇,A) = 0
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The electromagnetic field are independent of the choice of a gauge, they
are said to be gauge invariant.

44.9. Exercises.

1. Static solutions. Suppose that the sources ρ and J are static, that
is, they are independent of time.
(i) Use the Helmholtz representation of the electromagnetic fields to
solve Maxwell’s equations if ρ and J are distributions with bounded
support. Prove the uniqueness of the solution.
(ii) Assume that ρ and J are regular distributions. Find integral rep-
resentations for the static electric and magnetic fields. Find conditions
of the smoothness of the sources under which the solution is a classical
one.

2. Monochromatic solutions. Assume that the electric current density
is monochromatic

J(x, t) = eiωtJ0(x) .

and the distribution J0 has a bounded support.
(i) Find the charge density ρ(x, t) alternating in time for which the
charge is conserved.
(ii) Assume that the electromagnetic fields are monochromatic and de-
rive equations for the amplitudes of the fields.
(iii) Find a solution to Maxwell’s equations for the amplitudes if the lat-
ter satisfy the Sommerfeld radiation conditions using a suitable Green’s
function for the Helmholtz operator.

3. Radiation of a magnetic dipole. (i) Formulate the generalized Cauchy
problem for a point-like magnetic dipole (see Remark at the end of Sec-
tion 44.6).

(ii) Solve the Cauchy problem and calculate the explicit form of elec-
tromagnetic fields as vector-valued distributions in the same fashion as
in Section 44.6 for the electric dipole.

(iii) Find the far fields, calculate their Poynting vector, and find its
outward flux across a sphere of an arbitrary large radius. Put µ(t) =
θ(t)µ0 cos(ωt) (a monochromatic magnetic dipole) and caculate the
average rate per one cycle T = 2π/ω at which the dipole emits electro-
magnetic energy.
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4. Liénard-Wiechert potentials. A charged particle moving on a smooth
trajectory x = r(t) creates the following charge and current densities:

ρ(x, t) = qδ(x− r(t)) , J(x, t) = qṙ(t)δ(x− r(t))

where q is the electric charge of the particle. These distributions are
defined by the rule

(ρ, ϕ) = q

∫

ϕ(r(t), t) dt , (J, ϕ) = q

∫

ṙ(t)ϕ(r(t), t) dt .

(i). Show that the electric current is conserved. Formulate and solve
the generalized Cauchy problem with the zero initial initial conditions
E0 = B0 = 0. Find the far fields.
(ii) Find the corresponding scalar and vector potentials. They are
known as the Liénard-Wiechert potentials.
(iii) Suppose a particle moves with a constant speed on a circular tra-
jectory. Find the far fields. The electromagnetic radiation generated
by such a particle is called a synchrotron radiation (after the name of
a device (synchrotron) in which a charged particle can move with a
constant speed on a circular trajectory).

5. Solving Maxwell’s equation using electromagnetic potentials.

(i) Formulate the Cauchy problem for Maxwell’s equation using the
scalar and vector electromagnetic potentials in the Coulomb gauge.
(ii) Formulate the generalized Cauchy problem for the potentials and
solve it by Green’s function method.
(iii) Calculate the corresponding electromagnetic fields and compare
them with the solution of the Cauchy problem for Maxwell’s equations
in this section.
(iv) Repeat the analysis for the Lorenz gauge.

6. The Cauchy problem for the Klein-Gordon-Fock equation. Consider
the Cauchy problem

∂2u

∂x2
0

− ∆xu+m2u = 0 , x0 > 0 , x ∈ R
3 ,

u
∣

∣

∣

x0=0
= u0(x) ,

∂u

∂x0

∣

∣

∣

x0=0
= u1(x)

A solution to this equation is a wave function that describes a free
relativistic scalar particle of mass m.
(i) Formulate the generalized Cauchy problem.
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(ii) Let G(x0, x) be the retarded Green’s function for the Klein-Gordon-
Fock operator

( ∂2

∂x2
0

− ∆x +m2
)

G(x, x0) = δ(x0) · δ(x) , G(x, x0) = 0 , x0 < 0 ,

Show that if it exists as a temperate distribution, then for any ε > 0

Gε(x0, x) = e−εx0G(x0, x) ∈ S ′ and Gε → G in S ′

as ε→ 0+, and Gε satisfies the equation

[( ∂

∂x0
+ ε

)2

−∆x +m2
]

Gε(x, x0) = δ(x0) · δ(x) .

(iii) Show that F [Gε] → F [G] in S ′ as ε → 0+ and that

F [Gε(x0, x)](k0, k) =
1

|k|2 +m2 − (k0 + iε)2
∈ OM

that is, the Fourier transform of Gε is a regular temperate distribution
and for any test function ϕ(x0, x) from S

(Gε, ϕ) =
1

(2π)4
lim

R→∞

∫ ∫ ∫ R

−R

e−ik0x0

ν2 − (k0 + iε)2
dk0e

−i(k,x)ϕd3k d4x

where d4x = d3xdx
0 for brevity and ν = (|k|2 +m2)1/2.

(iv) Use the residue theorem to evaluate the integral over k0, calculate
the limit R → ∞ by justifying interchanging the order of integration
and taking the limit. Next convert the integral over k to spherical
coordinates so that (k, x) = |k||x| cos(φ) where φ is the zenith angle
and evaluate the integral over the spherical angles (justify changing the
order of integration). Finally, show that

(G,ϕ) =
θ(x0)

16π2
lim
a→∞

∫

1

r

∂

∂r

∫ a

−a

(

eipr − e−ipr
)(

eiνx0 − e−iνx0

) dp

ν
ϕ d4x

where r = |x|, p = |k|, and ν = (p2 +m2)1/2.
(v) Let s = x2

0 − r2. Justify the following parameterization of x0 and r

x0 =
√
s cosh(ξ0) , r =

√
s sinh(ξ0) , s > 0

x0 =
√
−s sinh(ξ0) , r =

√
−s cosh(ξ0) , s < 0

Reduce the integral over p to a standard form by means of the substi-
tution

p = m sinh(ξ) ,
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and evaluate the limit a → ∞ using the following integral representa-
tion of cylindrical functions

1

2πi
lim
b→∞

∫ b

−b

e±im
√

s cosh(ξ+ξ0)dξ =
1

2

(

J0(m
√
s) ± iN0(m

√
s)

)

i

2π
lim
b→∞

∫ b

−b

e±im
√
−s sinh(ξ+ξ0)dξ =

i

π
K0(m

√
−s)

where Jµ, Nµ, and Kµ are Bessel, Neumann, and Bessel functions of
the third kind of order µ, respectively. Note that integral converges
conditionally and, hence, a justification for interchanging the order of
integration with respect to x and taking the limit a → ∞ is required.
(vi) Use express the derivatives of cylindrical function of order µ = 0
via cylindrical functions of other orders and show that

G(x, x0) =
θ(x0)

2π
δ(x2

0 − |x|2) − m

4π
θ(x0 − |x|)J1(m

√

x2
0 − |x|2)

√

x2
0 − |x|2

.

(vii) Show that for any test function ϕ(x) ∈ D′(R3), the function

g(x0) =
(

G(x, x0), ϕ(x)
)

,

is from class C2(x0 > 0) and find the limits of g(x0), g
′(x0), and g′′(x0)

as x0 → 0+.
(viii) Show that the solution to the generalized Cauchy problem for
arbitrary distributional initial data, u0,1 ∈ D′(R3) is given by

u(x, x0) = G(x, x0) ∗ u1(x) +
∂

∂x0
G(x, x0) ∗ u0(x) .

Use the result of Part (vii) to show that the solution u(x, x0) is a
distribution from class C1(x0 > 0) in the variable x0, and u(x, x0) and
its partial derivative ∂u

∂x0
converge to the distributions u0(x) and u1(x),

respectively, in D′(R3) as x0 → 0+.
(ix) Show that if u0 and u1 have a bounded support, then the solution to
the generalized Cauchy problem has a bounded support in the variable
x for any x0 > 0.

7. The Cauchy problem for the Dirac equation. The Dirac equation de-
scribes a quantum relativistic free particle with spin 1

2
and mass m. Its

solution is a wave function ψ(x, x0) that has four complex components
(it is from C4):

(

iγµ ∂

∂xµ
−mI

)

ψ = 0
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where µ = 0, 1, 2, 3, I is the 4 × 4 unit matrix, Iij = δij, and γµ are
Dirac matrices defined via Pauli matrices:

γ0 =

(

σ0 0
0 −σ0

)

, γ1 =

(

0 σ1

−σ1 0

)

, γ2 =

(

0 σ2

−σ2 0

)

, γ3 =

(

0 σ3

−σ3 0

)

,

and the Pauli matrices are

σ0 =

(

1 0
0 1

)

, σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

(i) Formulate the generalized Cauchy problem for the Dirac equation
(

iγµ ∂

∂xµ
−mI

)

ψ = 0 , x0 > 0 , ψ
∣

∣

∣

x0=0
= ψ0(x)

(ii) Use the multiplication property of Pauli matrices

σaσb = iεabcσc , a, b, c = 1, 2, 3

where εabc is the Levi-Civita symbol, to show that
(

iγµ ∂

∂xµ
−mI

)(

iγµ ∂

∂xµ
+mI

)

= −I
( ∂2

∂x2
0

− ∆x +m2
)

(iii) Show that the matrix-valued distribution

GD(x, x0) = −
(

iγµ ∂

∂xµ
+mI

)

G(x, x0)

where G(x, x0) is the retarded Green’s function for the Klein-Gordon-
Fock operator, is the retarded (or causal) Green’s function for the Dirac
operator
(

iγµ ∂

∂xµ
−mI

)

GD(x, x0) = δ(x0) · δ(x) I , GD(x, x0) = 0 , x0 < 0 .

(iv) Show that for any test function ϕ(x) ∈ D′(R3), the matrix-valued
function

g(x0) =
(

GD(x, x0), ϕ(x)
)

,

is from class C0(x0 > 0) and find the limit of g(x0) as x0 → 0+.
(v) Show that the solution to the generalized Cauchy problem for ar-
bitrary distributional initial data, ψ0 ∈ D′(R3) is given by

ψ(x, t) = −iGD(x, x0) ∗ γ0ψ0(x) .

The convolution of matrix-valued and vector-valued distributions is
defined by the usual linear algebra rules in which the multiplication of
components is replaced by the convolution. Use the result of Part (iv)
to show that the solution ψ(x, x0) is a distribution from class C0(x0 >
0) in the variable x0, and ψ(x, x0) converges to ψ0(x) in D′(R3) as
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x0 → 0+.
(v) Show that if ψ0 has a bounded support, then the solution to the
generalized Cauchy problem has a bounded support in the variable x
for any x0 > 0.

8. The Cauchy problem in elastodynamics. Elastic waves in an isotropic
and homogeneous media are described by the Navier-Cauchy equation

∂2ua

∂t2
− c2s∆xua − (c2l − c2s)

∂2ub

∂xa∂xb
= fa(x, t) ,

where a, b = 1, 2, 3 enumerate components of the displacement vector
field ua(x, t), and c2s and c2l are wave speeds for the shear and compres-
sion modes. The vector field ua(x, t) defines a displacement vector of a
point x of the media when an elastic disturbance occurs at x and time
t.
(i) Consider the Cauchy problem in elastodynamics. One has to find
a solution to the Navier-Cauchy equation for t > 0 that satisfies the
initial conditions:

ua

∣

∣

∣

t=0
= va(x) ,

∂ua

∂t

∣

∣

∣

t=0
= wa(x) , x ∈ R

3

Formulate the generalized Cauchy problem.
(ii) The causal Green’s function for the Navier-Cauchy operator is a
matrix-valued distribution that solves the equation

(

δab
∂2

∂t2
− c2sδab∆x − (c2l − c2s)

∂2

∂xa∂xb

)

Gbc(x, t) = δacδ(t) · δ(x)

Gab(x, t) = 0 , t < 0 .

Show that the Fourier transform of the Green’s function in the variable
x has the form

Fx[Gab](k, t) = gs(k, t)P
⊥
ab(k) + gl(k, t)P

‖
ab(k)

where the matrices P⊥ and P ‖ are orthogonal projectors of any vec-
tor onto the plane orthogonal to the vector k and onto the vector k,
respectively:

P⊥
ab(k) = δab −

kakb

|k|2 , P
‖
ab =

kakb

|k|2
that is, they satisfy the relations P⊥P⊥ = P⊥, P ‖P ‖ = P ‖, and
P ‖P⊥ = 0, and gs,l are temperate distributions that satisfy the equa-
tions

( d2

dt2
+ c2β |k|2

)

gβ(k, t) = δ(t) , gβ(k, t) = 0 , t < 0 , β = s, l
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(iii). Let ha(x) be a vector-valued temperate distribution. Then by
the Helmholtz theorem it can uniquely be expanded into the sum of a
divergence-free distribution h⊥a and a conservative vector distribution

h
‖
a so that ha = h⊥a + h

‖
a. Show that

F [h⊥a ] = P⊥
abF [hb] , F [h‖a] = P

‖
abF [hb] ,

and

h‖a = P̂ ‖ha = ∂a∂b E3∗hb , h⊥a = P̂⊥ha = ha−∂a∂b E3∗hb , ∂ah
⊥
a = 0 ,

where ∂/∂xa = ∂a for brevity, and E3(x) is the fundamental solution
for the Laplace operator in R3 that vanishes in the asymptotic region
|x| → ∞. In other words, the operators P̂⊥ and P̂ ‖ project any vector
field ha (that vanishes fast enough as |x| → ∞ to ensure the existence
of the convolution E3 ∗ ha) onto its rotational and conservative parts.
Use these relations to show that the following problem

(

δab
∂2

∂t2
− c2sδab∆x − (c2l − c2s)

∂2

∂xa∂xb

)

ub(x, t) = ha(t, x)

ua(x, t) = 0 , t < 0 ,

where ha(t, x) is a vector-valued temperate distribution that vanishes
for t < 0, has a unique solution given by

ua(t, x) = Gs(t, x) ∗ h⊥a (t, x) +Gl(t, x) ∗ h‖a(t, x)
where Gs,l are causal Green’s functions of the 4D wave operator with
wave speeds cs,l, respectively,

Gβ(x, t) =
θ(t)

4πc2βt
δScβt(x) .

(iv) For brevity, put ∂t = ∂/∂t. Assume that the initial data va and
wa and the inhomogeneity fa are decreasing fast enough at infinity to
ensure the existence of their convolution with E3. Show that the solu-
tion to the generalized Cauchy problem is unique and can be written
in the form

ua(x, t) = Wa(x, t) + Va(x, t) + Ua(x, t) ,

Wa(x, t) = Gs(x, t) ∗ P̂⊥wa(x) +Gl(x, t) ∗ P̂ ‖wa(x) ,

Va(x, t) = ∂tGs(x, t) ∗ P̂⊥va(x) + ∂tGl(x, t) ∗ P̂ ‖va(x) ,

Ua(x, t) = Gs(x, t) ∗ P̂⊥fa(x, t) +Gl(x, t) ∗ P̂ ‖fa(x, t) ,

where the convolution in the surface potentials Wa and Va is taken with
respect to x (for fixed t).
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(iv) If va and wa are vector-valued distributions from D′ and their
convolution with E3 exists, show that the surface wave potentials Va

and Wa are from class C1(t > 0) in the variable t and satisfy the limit
properties in D′(R3):

lim
t→0+

Va(x, t) = va(x) , lim
t→0+

∂Va(x, t)

∂t
= 0 ,

lim
t→0+

Wa(x, t) = 0 , lim
t→0+

∂Wa(x, t)

∂t
= wa(x) .

(v) Suppose that va and wb have a bounded support. Show that the
surface wave potentials have a bounded support.

(vi) Use the Helmholtz decomposition theorem for the initial data va

and wa and for the inhomogeneity fa to find out the speed at which
elastic waves propagate if they are generated by divergence free fields
va, wa, and fa and by conservative fields va, wa, and fa. Formulate the
Huygens principle for elastic waves.




