
CHAPTER 2

Distributions

13. The concept of distributions

In theories describing physical phenomena, it is always assumed
that the spacetime is a continuum, and measurable quantities are func-
tions that have pointwise values on the continuum. Calculus with clas-
sical functions, that is, differentiation and integration is a main tool
to model physical phenomena by equations in partial derivatives. For
example, electromagnetic waves, their generation and interactions with
matter are described by electric and magnetic vector fields satisfying
Maxwell’s equations. However, no measurement of the field strength,
or electric current and charge densities can be made at a point in space
and at a precise moment of time. In reality, any measurement gives
us some smeared or averaged values of physical quantities in space and
time. The very notion of ”instant” and ”point-like” is a mathematical
idealization of the situation in which any measurement of time or po-
sition in space is assumed to have no uncertainty at all. The latter is,
of course, not true. Anything that happens ”instantly” has a duration
in time that is not possible to resolve in measurements. Anything that
is said to be at a ”point”, in reality, occupy a portion of space that
is determined by uncertainties in position measurements. Thus, only
mean values of physical quantities make sense.

From this perspective, the concepts of classical calculus, like deriva-
tives, make no sense as their values require, first, knowledge of physi-
cal quantities as functions having pointwise values and, second, taking
limits. The former are not available due to the very nature of measure-
ments, and the latter is not possible to do in practice because arbitrary
small distances between any two points or any two moments of time
cannot be reached.

A distribution (or a generalized function) is an extension of the
concept of a classical function. Distributions are not required to have
pointwise values but they are defined by smeared or averaged values
in any neighborhood of any point. So, any locally integrable (classi-
cal) function is a distribution because it has an integral mean value
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166 2. DISTRIBUTIONS

(possibly with some weight) on any neighborhood of any point. How-
ever, mathematical modeling of reality often requires other distribu-
tions than those defined by classical functions.

Consider a process in which a force applied to a particle creates a
finite momentum change of the particle during an arbitrary small in-
terval of time. This force can be viewed as the limit of a force whose
amplitude rises from zero and then decreases back to zero in an ar-
bitrary small interval of time while the integral of the force (the net
momentum change) is finite. The precise details of the increase and
decrease of the force as a function of time are irrelevant for the process
because the time interval during which this happens is too short to
be even measured. The limit force cannot be described by a classical
function because the latter would be zero everywhere except the time
moment when the momentum transfer occurs. The integral of such a
function is equal to zero and the limit force cannot create any finite
change of the momentum. In contrast, the limit process can well be
described by distributions. If the limit force is a distribution then it
is defined not by its pointwise values but rather by smeared or aver-
aged values in any (arbitrary small) neighborhood of any time moment.
This value can be set to be a given constant for any neighborhood of
the time moment at which an instant momentum transfer occurs. This
constant may depends on details of smearing or averaging (representing
experimental observations), but it does not vanish in the limit when
the size of a neighborhood tends to zero.

Similarly, the concept of a point particle is a mathematical idealiza-
tion of a situation in which the “inner” structure of the particle, such
as distributions of mass or electric charge within the particle, either
cannot be measured or irrelevant for the process studied. However,
such particles create gravitational or electric fields extended through-
out space. Moving point-like electric charges create extended magnetic
fields. Finding these fields from equations for the fields (e.g., Maxwell’s
equations) requires mass and electric charge densities. The mass or
electric charge density of a point particle can again be viewed as a
limit of a density defined in successively smaller volumes occupied by
a “real” particle. This limit cannot be described by a classical func-
tion as any such function would have zero value everywhere except the
point at which the particle is located. Distributions must be used to
describe such densities because the value of a distributional mass den-
sity is set by its averaged value in any neighborhood of the position of
the particle, that is, by the total mass of the particle, regardless how
small this neighborhood is.
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Algebra, calculus, and solving differential equations with distribu-
tions are quite different from their classical analogue but coincide with
the latter whenever physical quantities are assumed to be classical func-
tions. For example, every distribution is infinitely many times differ-
entiable (in the sense of distributions) so that many complicated issues
of classical analysis about smoothness of solutions to differential equa-
tions becomes obsolete. But the price is more complicated techniques
in calculations with distributions. The main objective throughout next
few chapters is to give a precise meaning to distributions and develop
basic calculus with them as well as to extend other technical tools from
the classical analysis to distributions, e.g., summations of series, taking
Fourier transforms, etc.

13.1. Dirac delta-function. P. Dirac introduced1 the first distribution
into physics as a “function” δ(x) that is zero everywhere except one
point, say, x = 0, but its integral with any smooth function ϕ(x) gives
the value of ϕ at x = 0:

“
∫

δ(x)ϕ(x) dx” = ϕ(0) .

Since then δ(x) is called the Dirac delta-function. The quotation marks
around the integral stand for a mathematical fact that there exists no
locally integrable function with such a property. This was the rea-
son that the concept for such a ”function” was not appreciated by the
mathematical community of the time. However, despite not being well
mathematically defined, the Dirac delta-function became a wonderful
technical tool in quantum mechanics that allowed to physicists to calcu-
late physically observable quantities. The stunning predictive power of
quantum mechanics and, later, quantum field theory whose mathemat-
ical techniques were based on objects similar to the Dirac delta function
(e.g., Feynman’s propagators) changed perception of these objects by
mathematicians, which eventually led to the theory of distributions.

As it stands, the Dirac delta-function resembles the physical con-
cept of a force that can instantly make a finite momentum change or
that of the mass or electric charge density of a point particle. Let us
investigate this in detail.

13.1.1. A force making an instant momentum change. Suppose that a
particle of unit mass that can only move along a line is subject to a
force fτ(t) ≥ 0 that has a finite duration 0 ≤ t ≤ τ and is continuous

1P.A.M. Dirac, Principles of Quantum Mechanics
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for all t. Then, according to Newton’s second law, the net momentum
change of the particle is

∆p =

∫

fτ (t) dt =

∫ τ

0

fτ (t) dt .

The force has an integral mean value ∆p/τ that can be measured by
measuring its duration τ and the particle velocity before t = 0 and
after t = τ . When τ → 0+, then τ eventually becomes smaller than a
time interval that can possibly be measured, and the very concept of
describing the force by a function of time becomes meaningless, whereas
the net momentum change is still perfectly measurable. What is the
limit force that can create such an instant change of the momentum?

Let us set ∆p = 1, just to have the net momentum change to be 1
(not zero) in momentum units for any τ > 0, and investigate the limit
τ → 0+. To mimic the fact that any measurement of the force only
provides a mean or smeared value of the force, consider the limit of the
integral

(fτ , ϕ)
def
=

∫

fτ(t)ϕ(t) dt ,

where ϕ(t) is a smooth function with a bounded support that represents
the averaging process. It will be called a test function. The symbol
(f, ϕ) stands for a ”smeared or averaged” value of a distribution f
on a test function ϕ. A support of any continuous non-zero function
always has non-zero measure because, if this function is not zero at
a point, then by continuity it is not zero in a neighborhood of this
point. So, the choice of a smooth (vs arbitrary) function as a test
function represents that any measurement can be done only during a
finite interval of time, although this interval can be arbitrary small but,
most importantly, never zero.

Let us show that

lim
τ→0+

∫

fτ (t)ϕ(t) dt = ϕ(0) ,

for any test function ϕ, that is, the limit force has the characteristic
property of the Dirac delta-function if the order of taking the limit and
integration can formally be interchanged. Since ϕ is smooth, by the
mean value theorem there exists t∗ between t and 0 such that

ϕ(t)− ϕ(0) = ϕ′(t∗)t .

The derivative ϕ′(t) of a smooth function is a continuous function and
also has a bounded support. Therefore it is bounded:

sup |ϕ′(t)| = M <∞ ,
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This implies that for any t ≥ 0

|ϕ(t)− ϕ(0)| ≤Mt .

Since the integral of fτ is normalized to 1 and fτ is non-negative, the
following chain of inequalities holds:

∣

∣

∣

∫
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∣
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∫

fτ (t) |t| dt =
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fτ (t) t dt

≤ τM

∫ τ

0

fτ (t) dt = Mτ → 0 ,

as τ → 0+, as required.
Thus,

lim
τ→0+

fτ (t) = δ(t) .

Note well that this limit cannot be interpreted as a pointwise limit
because for any t, fτ(t) → f(t) = 0 as τ → 0+. Indeed, since fτ (t) = 0
for any t ≤ 0, fτ(t) → 0 for any t ≤ 0 as τ → 0+. Furthermore,
fτ(t) = 0 if t ≥ τ . Therefore for any t > 0, fτ(t) = 0 for all small
enough τ . Thus, the pointwise limit of fτ(t) is zero. The integral of the
zero function f(t)ϕ(t) = 0 is zero for any test function ϕ. There is no
contradiction with the above result. It merely refers to the well known
fact that the order of integration and taking the limit with respect
to a parameter cannot always be interchanged. For this reason, the
limit force δ(t) cannot be defined by an integral of some function with
pointwise values, but rather it should be defined by its averaged or
smeared values for any test function, that is,

(13.1) (δ, ϕ)
def
= ϕ(0) .

This rule makes a perfect sense for any smooth ϕ but cannot be written
as an integral average of some locally integrable function δ(t). Conse-
quently, the limit fτ(t) → δ(t) must be understood in the sense that
the numerical limit

lim
τ→0+

(fτ , ϕ) = (δ, ϕ)

holds for any test function ϕ.
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13.1.2. Mass density of a point particle. In the simplest case, a particle
of mass m can be modeled by a ball of radius a > 0 in which the mass
is homogeneously distributed. Then the mass density is

ρa(x) =

{

m/Va , |x| < a
0 , |x| > a

where x ∈ R3 and Va = 4
3
πa3 is the volume of the ball. A point

particle corresponds to the limit a→ 0+. The pointwise limit produces
a density that vanishes almost everywhere

lim
a→0+

ρa(x) =

{

0 , x 6= 0
∞ , x = 0

and, hence, its integral over any set is zero but it is supposed to be
equal to the total mass m.

As in the case of an instant force, this contradiction can be resolved
by interpreting the limit in the distributional sense. Only average val-
ues of ρa(x) with some smooth test function ϕ can be an outcome of
any measurement. A test function is assumed to be a smooth function
in R3 with bounded support. The boundedness of support represents
that any measurement is always curried out in a bounded region of
space. If test function is not zero at a point, then it is not zero in a
neighborhood of this point by the continuity argument, although this
neighborhood can be arbitrary small.

By the integral mean value theorem, there exists a point xa in a
ball |x| < a such that

∫

|x|<a

ϕ(x) d3x = Vaϕ(xa)

for any test function ϕ. Therefore

lim
a→0+

∫

ρa(x)ϕ(x) d3x = m lim
a→0+

ϕ(xa) = mϕ(0)

by continuity of ϕ. So, if the Dirac delta function of x ∈ R3 is defined
by (13.1) for any test function on R3, then the limit density is the mass
of the particle multiplied by the Dirac delta function in R3:

(13.2) lim
a→0+

(ρa, ϕ) = (mδ, ϕ) .

The next striking observation is that the property (13.2) of the limit
mass density does not depend on peculiarities of the mass distribution
within the ball and holds for any non-negative ρa(x) supported in the
ball |x| ≤ a and whose integral is equal to the mass m. This assertion
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follows from the mean value theorem for functions of several variables
(1.5). Indeed, using the normalization property of the mass density

m =

∫

ρa(x) d
3x =

∫

|x|<a

ρa(x) d
3x , a > 0 ,

and non-negativity ρa(x) ≥ 0, one infers that
∣

∣

∣

∣

∫
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∣
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ρa(x)
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d3x

≤ M

∫

|x|<a

ρa(x) |x| d3x

≤ Ma

∫

|x|<a

ρa(x) d
3x

= Mma→ 0 ,

when a → 0, as required. Thus, the characteristic property (13.2) is
universal and does not depend on details of the mass distribution within
the ball. In particular, one can take ρa to be any integrable function
such that ρa(0) = 0 for all a > 0. Then the pointwise limit of ρa(x) is
the zero function as a → 0+. In fact, ρa can be altered on any set of
measure and the conclusion still holds.

13.2. Functionals. Let D denote a collection of functions of N real vari-
ables. Let us define a real-valued function on D:

f : D → R

that is, f is a rule that assigns a unique real number, denoted by (f, ϕ)
for every function ϕ ∈ D. A function defined on a set of functions is
called a functional. For example, for any locally integrable function
f ∈ Lloc one can define a functional f by the rule

(f, ϕ) =

∫

f(x)ϕ(x) dNx , ϕ ∈ D ,

if D consists of smooth functions with bounded support. If support of ϕ
lies in a ball |x| < R, then the integration region can be limited to this
ball. Since any compactly supported continuous function is bounded,
the integral exists by the comparison test

|f(x)ϕ(x)| ≤M |f(x)| , M = sup |ϕ(x)| <∞ .

because the integral of |f(x)| is finite over any ball by local integrability.
So, the rule makes sense for any function from D.

Another example of a functional is given by the Dirac delta-function
that is defined by the rule (13.1). Physical examples studied above



172 2. DISTRIBUTIONS

suggest that distributions can be identified with functionals on space
of smooth functions with bounded support.

In classical analysis, two functions are said to be equal if they have
equal values at any point. Similarly, two functional f and g are equal
if they have equal values on all test functions:

f = g ⇔ (f, ϕ) = (g, ϕ) , ϕ ∈ D .

This reflects our general idea that two physical quantities, represented
by distributions, are identical if they have the same average values in
any measurements or testing.

13.2.1. Differentiation of distributions. As already noted, physical quan-
tities are governed by equations in partial derivatives. Therefore one
needs a differentiation rule for distributions. The guidance is provided
by distributions defined by locally integrable functions. Let f be locally
integrable in R. The classical derivative is defined by the limit

f ′(x) = lim
h→0

f(x + h) − f(x)

h
,

provided it exists. However the pointwise values of f cannot be used
to investigate the limit because for a generic distribution they either
do not exist or are not known. Only the averaged values (f, ϕ) exist
for any test function ϕ.

The locally integrable function fh(x) = f(x + h) is also a distri-
bution or a functional on D whose values on a test function can be
expressed via the values of the functional f :

(fh, ϕ) =

∫

f(x+ h)ϕ(x) dx =

∫

f(x)ϕ(x− h) dx .

The function ϕh(x) = ϕ(x−h) is smooth and has bounded support for
any test function ϕ and any real h. Therefore ϕh ∈ D and, hence, the
functional fh can be defined by the rule

(fh, ϕ) = (f, ϕh) , ϕh(x) = ϕ(x− h) ,

for any functional f on D and any real h. The derivative f ′ must also
be a functional on D, that is, it must have a value on any test function.
So, the best one can do to define the derivative of a distribution f is
to put

(13.3) (f ′, ϕ)
def
= lim

h→0

(fh, ϕ) − (f, ϕ)

h
.

Let us investigate the limit. Again, the guidance is provided by
distributions defined by locally integrable functions. Note that a lo-
cally integrable function is not differentiable in general. So, the rule
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(13.3) already extends beyond the concept of a classical derivative. By
linearity of the integral, one has

(f ′, ϕ) = − lim
h→0

∫

f(x)ψh(x) dx , ψh(x) =
ϕ(x) − ϕ(x− h)

h
.

There are two facts about the function ψh to be noted. First, for any
h 6= 0, ψh is a test function for any ϕ ∈ D, that is, ψh is a smooth
function with bounded support. Second, ψh(x) → ϕ′(x) as h → 0
for any x ∈ R. Therefore, the limit can be found by the Lebesgue
dominated convergence theorem. Indeed, for all small enough h, the
support of ψh lies in [−R,R] (with R being independent of such h). By
(1.5)

|ψh(x)| ≤M <∞ , M = sup |ϕ′(x)| ,
and therefore the integrand has an integrable bound independent of
the parameter h

|f(x)ψh(x)| ≤ M |f(x)| ∈ L(−R,R) .

Hence, by the Lebesgue dominated convergence theorem, the order of
integration and taking the limit can be interchanged, giving

(13.4) (f ′, ϕ) = −
∫

f(x)ϕ′(x) dx = −(f, ϕ′) .

Even for a locally integrable f that is not differentiable in the classi-
cal sense, the derivative f ′ exists as a functional or as a distribution.
The rule (13.4) looks like an integration by parts, but this is a false
impression because f must be from class C1 in order to integrate by
parts.

Two things can be deduced from this observation. First if f is
from class C1, then its classical and distributional derivatives are equal.
Indeed, let {f ′(x)} denote the classical derivative of f ∈ C1. Then
{f ′(x)} is continuous and defines a functional by the rule

({f ′}, ϕ) =

∫

{f ′(x)}ϕ(x) dx .

By integrating by parts in this integral one infers that

({f ′}, ϕ) = −
∫

f(x)ϕ′(x) dx = (f ′, ϕ)

for any test functions. This means that f ′ = {f ′} as functionals on
D. Second, if f is not differentiable, its distributional derivative still
exist! In fact, the functional f ′ may not even be defined by a locally
integrable function as illustrated by the following example.
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13.2.2. The distributional derivative of the step function. The Heaviside
step function is defined as

θ(x) =

{

1 , x ≥ 0
0 , x < 0

It is bounded and, hence, is locally integrable. Let {θ′(x)} denote the
classical derivative wherever it exists. The step function has a jump
discontinuity at x = 0. So the classical derivative does not exist at
x = 0 and vanishes everywhere else, or it vanishes almost everywhere.
Therefore it is a functional that has zero value on any test function:

{θ′(x)} = 0 a.e. ⇒ ({θ′}, ϕ) =

∫

{θ′(x)}ϕ(x) dx = 0 .

Let us calculate its distributional derivative:

(θ′, ϕ)
(1)
= −(θ, ϕ′)

(2)
= −

∫ ∞

0

ϕ′(x) dx
(3)
= ϕ(0)

(4)
= (δ, ϕ) .

Here (1) is by the rule (13.4), (2) is the value of the distribution θ on
a test function, (3) is by evaluating the integral using the fundamental
theorem of calculus and by that a test function has a bounded support
(ϕ(x) = 0 if |x| > R for some R > 0), and (4) follows from the definition
(13.1) of the Dirac delta function. Since the equalities hold for all test
functions, it is concluded that the distributional derivative of the step
function is the Dirac delta function:

θ′(x) = δ(x) .

13.2.3. Distributions as linear functionals. Can the rule (13.4) be ex-
tended to all functionals (or distributions) that are not necessarily de-
fined by locally integrable functions? This question must be answered
affirmatively if one wants to develop calculus for general distributions
and formulate equations for physical phenomena as equations in partial
derivatives.

Let us reexamine the procedure for derivation of (13.4) with the
purpose to identify steps in which the assumption that a distribution
is defined by a locally integrable function was crucial. The goal is
to find additional (sufficient) conditions on a general functional f to
validate the derivation of (13.4).

As already noted ϕh(x) = ϕ(x− h) is a test function if ϕ is such.
So, the rule (fh, ϕ) = (f, ϕh) can be extended to any functional on D.
To evaluate the limit in (13.3), the linearity of the integral has been
used to conclude that

(f, ϕ)− (f, ϕh)

h
= (f, ψh) .
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This is not true for a general functional on D, unless this functional is
linear. So, any distribution describing a physical quantity must be a
linear functional on D.

The space of test functions D is linear, that is, a linear combination
of smooth functions with bounded supports is a smooth function with
bounded support. A functional f is called linear if for any two numbers
c1,2 and any two functions ϕ1,2 from D

(f, c1ϕ1 + c2ϕ2) = c1(f, ϕ1) + c2(f, ϕ2)

in other words, the value of a linear functional on a linear combination
of functions is the corresponding linear combination of values of the
functional on each of these functions.

For example, the functional defined by the rule

(f, ϕ) = ϕ(0) + 1

is not linear. Indeed,

(f, c1ϕ1 + c2ϕ2) = c1ϕ1(0) + c2ϕ2(0) + 1

c1(f, ϕ1) + c2(f, ϕ2) = c1ϕ1(0) + 1 + c2ϕ2(0) + 1 6= (f, c1ϕ1 + c2ϕ2)

The Dirac delta-function provides an example of a linear functional:

(δ, c1ϕ1 + c2ϕ2) = c1ϕ1(0) + c2ϕ2(0)

= c1(δ, ϕ1) + c2(δ, ϕ2) .

The zero function ϕ(x) = 0 is a test function. For any linear func-
tional f on D

(f, 0) = 0

because (f, cϕ) = c(f, ϕ), for any number c, and the property follows
if c = 0.

13.2.4. The space of test functions. The right-hand side of (13.4) makes
sense for an arbitrary linear functional f only if the derivative ϕ′ is a
test function. This is not true if D consists of functions from class Cp

with p < ∞ because ϕ′ ∈ Cp−1 and Cp is a subspace of Cp−1. So, the
differentiation should not throw elements of D from D for consistency
of (13.4). Thus, the space of test functions must consist of function
from class C∞ with bounded support.

This naturally leads to the conclusion that any distribution can be
differentiated any number of times because the rule (13.4) can be used
to calculate derivatives of derivatives:

(f (n), ϕ) = (−1)n(f, ϕ(n)) .
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In particular, the Dirac delta function can be differentiated any number
of times in the distributional sense:

(13.5) (δ(n), ϕ) = (−1)n(δ, ϕ(n)) = (−1)nϕ(n)(0) .

13.2.5. Distributions as continuous functionals. The next step in deriva-
tion of (13.4) requires that

lim
h→0

(f, ψh) = (f, lim
h→0

ψh) = (f, ϕ′)

A change of the order of taking the limit h → 0 and calculating the
value of f was established by means of the Lebesgue dominated con-
vergence theorem which is not possible to apply for general linear
functional on D that is not defined by a locally integrable function.
Functionals for which the said order can be interchanged are called
continuous.

A continuous functional is defined similarly to a continuous func-
tion. A real-valued functional

f : D → R

is continuous at ϕ ∈ D if for any sequence {ϕn} converging to ϕ in D,
the numerical sequence {(f, ϕn)} converges to the number (f, ϕ):

{ϕn} : ϕn → ϕ in D ⇒ lim
n→∞

(f, ϕn) = (f, ϕ)

and f is continuous on D, if it is continuous at every element of D.
Since now “points” in the domain are functions, one has to give

a meaning (definition) to “a sequence {ϕn} converges to ϕ in D”. In
mathematical terms, this means that the functional space D must be
equipped with topology.

If D were equipped with a metric or a distance function like spaces
Cp (see Sec. 12.6), then one can give a precise meaning to the con-
vergence by requiring that d(ϕn, ϕ) → 0 as n → ∞, where d(φ, ϕ) is
the distance function on D. It is possible to define a distance on the
space of functions from C∞ with bounded support. However, it is also
possible to prove that there exists no metric on D with respect to which
D is a complete space. For example, the space Cp has a metric with
respect to which it is complete. The completeness of a functional space
guarantees that the limit function of a convergent functional sequence
belongs to the space. So, completeness of D is essential for continuity
of functionals on D.

Fortunately, the metric is not the only way to introduce topology
into a functional space. It will be done in the next section.
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13.3. Distributions as linear continuous functionals. The analysis of basic
calculus with distributions leads to the following concept of distribu-
tions as a generalization of classical functions. A linear continuous
function on a set of functions D is called a distribution. Thus, among
all functionals, a particular class is selected whose elements have two
characteristic properties:

• linearity
• continuity

These two properties must be verified in order to find out if a given
functional (f, ϕ) is a distribution or not. It is worth noting that a linear
functional is continuous if and only if it maps every null sequence in
D to a numerical null sequence:

ϕn → 0 in D ⇒ lim
n→∞

(f, ϕn) = 0 .

In other words, a linear functional is continuous if and only if it is
continuous at the zero function. For any {ϕn} converging to ϕ in D,
the sequence ψn = ϕn−ϕ is a null sequence in D and so is the numerical
sequence (f, ψn) by linearity of f .

In the next two sections, the concept of a distribution as a linear
continuous functional will be rigorously formulated, and the properties
of distributions will be analyzed.

13.4. Exercises.

1. Give an example of a continuous mass density ρε(x) with support
|x| ≤ a for which property (13.2) holds but
(i) lima→0 ρa(0) = 0 ;
(ii) lima→0 ρa(0) does not exist.

2. The electric charge density can be positive and negative. Prove
(13.2) if ρa is Lebesgue integrable and has a support in |x| ≤ a.
Hint: Consider the densities of positive and negative charges. Are these
densities integrable? If so, can the line of arguments given in Sec. 13.1.2

be applied to them to extend (13.2) to all integrable functions?

3. Define a mass density of a infinitely thin wire occupying a line
segment of length L in R3 and having mass m that is distributed uni-
formly in the segment, as a linear functional on a suitable functional
space D.



178 2. DISTRIBUTIONS

4. Define a mass density of a infinitely thin plate occupying a rec-
tangle of dimensions a× b in R3 and having mass m that is distributed
uniformly in the plate, as a linear functional on a suitable functional
space D.

5. Define a mass density of a infinitely thin sphere of radius R in
R3 that has mass m which is distributed uniformly over the sphere, as
a linear functional on a suitable functional space D.

6. Define an electric charge density of a infinitely thin dielectric sphere
of radius R in R3 whose one hemisphere has a positive charge Q+

uniformly distributed and other hemisphere has a negative charge Q−

uniformly distributed, as a linear functional on a suitable functional
space D.

7. (i) Define the mass density of n particles of masses mj, j = 1, 2, ..., n,
moving in R3 along smooth trajectories x = xj(t), where t is time, as
a family of linear functionals on a suitable functional space D that are
labeled by parameter t. In other words, for each time moment t, the
mass density is a linear functional on D.
(ii) Is it possible to define the momentum density of this system as a
family of vector-valued distributions labeled by time t? In other words,
every component of the momentum density is a linear functional on D
for each fixed moment of time t.
(iii) If particles interacts repulsively in accord with the Coulomb law,
each particle having a charge qj, find the energy density of the system
as a linear functional on D for each fixed moment of time t.
(iv) The same as (iii), but change the repulsive force by the same at-
tractive force.
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14. The space of test functions

The objective is to give a precise description of tests functions and
show that this class of functions is rich enough to approximate practi-
cally any type of functions used in applications. The latter is known
as approximation theorems for test functions.

14.1. Definition of D. A function ϕ on an open set Ω ⊂ RN is called a
test function if

(i) ϕ is from class C∞(Ω);
(ii) ϕ has a bounded support, suppϕ ⊂ BR ∩ Ω

for some ball BR. A collection of all test functions on Ω is denoted
by D(Ω) and called the space of test functions on Ω. If Ω = RN or
Ω = (a, b), then D(RN ) = D or D((a, b)) = D(a, b) for brevity. Clearly,
D(Ω) is a linear space:

ϕ1,2 ∈ D(Ω) ⇒ c1ϕ1 + c1ϕ2 ∈ D(Ω)

for any numbers c1,2. A second observation is that all partial derivatives
of a test function are test functions:

ϕ ∈ D(Ω) ⇒ Dαϕ ∈ D(Ω) .

for any |α| ≥ 0.

14.1.1. Analytic functions vs test functions. For any ϕ ∈ D(Ω), its sup-
port K = suppϕ is a closed bounded subset (a compact) in Ω (see Sec.
1.1.10). Since Ω is open, the distance between K and the boundary ∂Ω
is not zero, and therefore there exists a neighborhood of the boundary
∂Ω that does not overlap with K. This implies that ϕ and all its partial
derivatives Dαϕ vanish in a neighborhood of any point of ∂Ω:

Dαϕ(x) = 0 , d(x, ∂Ω) < δ , α ≥ 0 ,

for some δ > 0 (δ depends on ϕ). In particular, all Dαϕ can be
continuously extended by zeros to the boundary ∂Ω. For example,
if Ω = (a, b), then there exists a sufficiently small δ > 0 such that
suppϕ ⊆ [a + δ, b− δ], and all derivatives Dαϕ(x) vanish for a < x <
a + δ and b > x > b − δ. Therefore ϕ and all its derivatives can be
continuously extended to [a, b] so that Dαϕ(a) = Dαϕ(b) = 0.

Furthermore despite being from class C∞, the test function are not
analytic in Ω. Suppose first that ϕ is from D(R) and suppϕ = [a, b].
Then ϕ(x) = 0 if x ≤ a and ϕ(x) 6= 0 if a < x < a+ ε for some ε > 0.
If ϕ were analytic at x = a, then its values near x = a would be given
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by a power series about a:

ϕ(x) = c0 +

∞
∑

n=1

cn(x− a)n

for all |x − a| < R where R > 0 is the radius of convergence. By the
Taylor theorem, the coefficients in the power series representation of ϕ
are proportional to the derivatives

cn =
ϕ(n)(a)

n!
.

However, by continuity

ϕ(n)(a) = lim
x→a−

ϕ(n)(x) = 0 .

because the derivatives vanish ϕ(n)(x) = 0 for x < a. It follows from
the power series representation that ϕ(x) = 0 for all |x − a| < R for
some R > 0, which cannot be true because ϕ(x) 6= 0 for x > a. Thus,
the only analytic function in D is the zero function!

The conclusion can readily be extended to test functions of several
variables from D(Ω). If K = suppϕ, then the boundary ∂K lies in Ω
as shown above. The test function is not analytic at any point of ∂K.
The support of any non-zero test function is not empty, and, hence any
non-zero test function is not analytic in Ω.

14.1.2. Topology in D. A sequence {ϕn} is said to converge to ϕ in
D(Ω) if

(i) There exists a compact K ⊂ Ω that contains supports of all
elements of the sequence,

suppϕn ⊂ K ;

(ii) Sequences of all partial derivatives, Dαϕn, converge uniformly
to the corresponding partial derivatives of the limit function,

lim
n→∞

sup |Dαϕ(x) −Dαϕn(x)| = 0 , |α| ≥ 0 .

and in this case one writes

ϕn → ϕ in D .

Clearly, the limit of a convergent sequence is unique because there
is only one test function with the property sup |Dαϕ(x)| = 0 for any α;
it is the zero function ϕ(x) = 0. A consistency of this definition follows
from Theorems 1.6.4 and 1.6.5. The uniform convergence of sequences
{Dαϕn} for any α guarantees that the limit function is from the class
C∞. Since supports of all terms in the sequence {ϕn} lie in K that is
a proper subset of Ω, the support of the limit function must also be in
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K ⊂ Ω (be a proper subset in Ω). So, conditions (i) and (ii) guarantee
that the limit function belongs to D(Ω).

The condition (i) might seem unnecessary. However if it is lifted,
then there are sequences in D(Ω) that satisfy (ii) but the limit func-
tion is not in D(Ω). For example, let φ ∈ D(−a, 2a), a > 0, and
supp φ = [0, a]. Put ϕn(x) = φ(x − a + a

n
) which is a test function

with support [a − a
n
, 2a − a

n
] that is a proper subset of (−a, 2a) for

any n = 1, 2, .... Then ϕn and all its derivatives converge uniformly
on (−a, 2a) to ϕ(x) = φ(x − a) ∈ C∞(−a, 2a) and the corresponding
derivatives of ϕ. However the support of the limit function is [a, 2a]
that is not a subset of (−a, 2a) and, hence, the limit function is not
in D(−a, 2a). The condition (i) is ensures that the limit function is
supported in Ω.

14.1.3. Subspaces of the space of test functions. Let Ω′ be an open subset
in Ω. Then D(Ω′) is a subspace of D(Ω) because suppϕ ⊂ Ω′ ⊂ Ω if
ϕ ∈ D(Ω′) and, hence, ϕ ∈ D(Ω). Moreover, if ϕn → ϕ in D(Ω′),
then the sequence ϕn also converges to ϕ in topology of the larger
space D(Ω) because any ϕ from D(Ω′) vanishes outside Ω′ and hence
supΩ |Dαϕ| = supΩ′ |Dαϕ| for any α.

14.2. How many elements are in D, anyway? It was shown in Sec.14.1.1

that analytic functions are not in D despite being from class C∞. So,
the condition of having a bounded support for a smooth functions looks
rather restrictive. It seems natural to ask:

(i) Do there exist C∞ functions with bounded support?
(ii) If affirmative, how big is the set of such functions?

14.2.1. The hat function. Put

ω(x) =

{

e−
1

x , x > 0
0 , x ≤ 0

Evidently, the function ω belongs to class C∞ for x < 0 and x > 0.
It is continuous at x = 0 because e−

1

x → 0 = ω(0) as x → 0+. The
derivative at x = 0 exists and is equal to zero

ω′(0) = lim
x→0

ω(x) − ω(0)

x
= 0

because the fraction is identically zero for x < 0 and for x > 0 it is
equal to ye−y → 0 where y = 1

x
→ ∞ as x → 0+. On the other

hand, ω′(x) = 0 for x < 0 so that ω′(x) → 0 as x → 0−, and for

x > 0 ω′(x) = 1
x2e

− 1
x = y2e−y → 0 where y = 1

x
→ ∞ when x → 0+.

Therefore ω′(x) → ω′(0) = 0 as x → 0, which means that the derivative
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is continuous at x = 0. This argument can recursively be extended to
show that ω(n)(0) = 0 for any n > 0 and ω(n)(x) → 0 = ω(n)(0) as
x→ 0. First note that

ω(n)(x) =

{

pn( 1
x
)e−

1
x , x > 0

0 , x < 0

where pn is a polynomial or degree 2n. It follows from

lim
x→0+

x−me−
1

x = lim
y→∞

yme−y = 0 , m = 0, 1, 2, ... ,

that

lim
x→0

ω(m)(x) = 0 .

Then the relation

ω(n)(0) = lim
x→0

ω(n−1)(x) − ω(n−1)(0)

x
= 0 , n = 1, 2, ...,

is proved by mathematical induction (it is true for n = 1 as shown
above). Therefore ω ∈ C∞(R) but it is not analytic at x = 0 because
it has no power series representation near x = 0 (all derivatives vanish
at x = 0).

Using the function ω, it is now not difficult to construct a test
function with support being the interval [a, b]:

(14.1) ϕa,b(x) = ω(x− a)ω(b− x) .

Furthermore, if this function is multiplied by any function from class
C∞, the resulting function is also a test function: ϕ(x) = a(x)ϕa,b(x) ∈
D for any a ∈ C∞. This shows that D is roughly as big as C∞.

If x ∈ R
N , then |x| does not have continuous partials at x = 0.

So, the function ω(|x| − a)ω(b− |x|) is not smooth enough to be from

D(RN ). However when b = −a, the product is equal to e
− 2a

a2−|x|2 for
|x| < a and vanishes otherwise. This function is smooth for |x| < a
because it is a smooth function of the polynomial |x|2. Therefore put

(14.2) ωa(x) =

{

ca exp
(

− a2

a2−|x|2

)

, |x| < a

0 , |x| > a

where ca is a normalization constant to be defined later. The function
ωa is called a hat function because its graph resembles a hat for x ∈ R2.
It is supported in the ball |x| ≤ a.

If x ∈ R, then near x = ±a, the function ωa has a behavior similar
to that of the function ω considered above near the point x = 0. For
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example, put y = x− a. Then

ωa(x) = ca exp

(

− a2

y(y + 2a)

)

≈ ca exp

(

− a

2y

)

for small y, and similarly for x = −a. Therefore ωa is from C∞ but it
is not analytic at x = ±a.

When x ∈ RN , ωa depends only the radial variable r = |x| and
exhibits the same behavior in it near r = a as in the one-variable case.
Therefore ωa is continuous across the sphere |x| = a. Continuity of
partial derivatives is verified similarly to the one-variable case. Since
for |x| 6= a, ωa is from class C∞, its partials are easy to find. If |x| > a,
then Djωa(x) = 0. If |x| < a, then by the chain rule

Djωa(x) =
xj

r
Drωa(x) .

Therefore Djωa(x) → 0 as x → y for any |y| = a because |Djωa(x)| ≤
|Drωa(x)| → 0 as r → a−. When |x| = a, the partials Djωa are defined
by the limit

Djωa(x) = lim
h→0

ωa(x+ hej) − ωa(x)

h
,

where |x| = a and ej is the standard basis vector parallel to the jth

coordinate axis. The partials are continuous at the sphere |x| = a if
this limit vanishes for any |x| = a. If h > 0, then the point x + hej

lies outside the ball |x| ≤ a for any |x| = a. Therefore the right
limit h → 0+ vanishes because the numerator is identically zero for
any h > 0. If h → 0−, then the above limit becomes 1

h
ec/h → 0

where c = a
2 cos(θj)

> 0 and θj is the angle between x and ej. Thus,

Djωa(x) = 0 for any |x| = a and, hence, Djωa is continuous across
the sphere |x| = a. Continuity of Dαωa is established by mathematical
induction by repeating the above reasonings for DjD

αωa assuming that
Dαωa is continuous across the sphere |x| = a. Note that for |x| < a,

Dαωa(x) = r−|α|P (x)D
|α|
r ωa(x), where P (x) is a polynomial of degree

|α|, and Dαωa(x) = 0 for |x| > a. Therefore DjD
αωa(x) → 0 as x → y

for any |y| = a. The partials DjD
αωa(x) for |x| = a are defined by

the above limit where ωa is replaced by Dαωa and is shown to vanish if
Dαωa(x) = 0 for |x| = a (by the hypothesis of mathematical induction).

So, the hat function ωa is a test function. It is not analytic on
the sphere |x| = a. Furthermore, for any φ ∈ C∞(RN ), the product
φωa ∈ D is also a test function.
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The normalization constant ca is chosen so that integral of ωa is
equal to one:

∫

ωa(x) d
Nx = 1 .

If σ
N

denotes the surface area of a unit sphere in RN , then using spher-
ical coordinates, where |x| = r,

∫

ωa(x) d
Nx = σ

N

∫ a

0

e
− a2

a2−r2 rN−1dr = aNσ
N

∫ 1

0

e
− 1

1−u2 uN−1 du .

Therefore

ca =
1

aNσ
N
c

N

, c
N

=

∫ 1

0

e
− 1

1−u2 uN−1 du .

14.2.2. Properties of the hat function. The hat function has the follow-
ing scaling property:

ωa(x) =
1

aN
ω1

(x

a

)

, x ∈ R
N .

When a → 0+, the support of the hat function is shrinking but its
integral remains 1 for any a > 0. In this limit the behavior of the
hat function resembles a limiting process for the mass density of a
point particle of unit mass. Therefore by the Lebesgue dominated
convergence theorem and the scaling and normalization properties

lim
a→0+

(ωa, ϕ) = lim
a→0+

∫

ωa(x)ϕ(x) dNx = lim
a→0+

∫

|y|≤1

ω1(y)ϕ(ay) dNy

= ϕ(0)

∫

|y|≤1

ω1(y) d
Ny = ϕ(0) = (δ, ϕ) ,(14.3)

for any test function ϕ, where x = ay. Note that integrand has an
integrable bound independent of a: |ω1(y)ϕ(ay)| ≤ Mω1(y) where
M = sup |ϕ|. The hat function defines a family of tests functions such
that, when a → 0+, it converges to the Dirac delta function in the
sense of distributions.

14.2.3. Bump functions. Let x ∈ R. Consider the function

ηδ(x) =

∫ x

−∞

ωδ(y) dy .

By construction, it has the following properties. First, ηδ ∈ C∞. Sec-
ond, ηδ(x) = 0 if x < −δ and ηδ(x) = 1 if x > δ. Since the hat function
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is non-negative, 0 ≤ ηδ(x) ≤ 1 if |x| ≤ δ and ηδ is increasing mono-
tonically. It is a smooth regularization of the step function. In fact,
ηδ(x) → θ(x) as δ → 0+ for any x 6= 0 and ηδ(0) = 1

2
. For any a < b

ϕ(x) = ηδ(x− a)− ηδ(x− b) ∈ D
is a test function with support [a− δ, b+ δ]. It takes unit value in the
interval [a+ δ, b− δ], assuming that b− a > 2δ.

This shows that for any bounded interval one can construct a test
function that takes unit value in a neighborhood of the interval. Its
graph looks like a bump (a flat top with smooth transitions at the
edges). A smooth function that takes unit value in a neighborhood of
a set Ω ⊂ R is called a bump function for the set Ω. If Ω is bounded,
then its bump function is a test function.

Let us construct multidimensional bump functions. For any set
Ω ⊂ RN , a neighborhood Ωδ of Ω of radius δ is the union of all open
balls of radius δ centered at every point of Ω:

Ωδ =
⋃

x∈Ω

Bδ(x) .

so that the distance between Ω and the boundary of Ωδ is δ > 0.

Theorem 14.1. Let Ω be a subset in RN and Ωδ be a neighborhood
of Ω of radius δ > 0. Then for any positive a > 0 there exists a function
ηa with the following properties:

(i) ηa ∈ C∞ ;

(ii) 0 ≤ ηa(x) ≤ 1 ;

(iii) ηa(x) = 1 , x ∈ Ωa ;

(iv) ηa(x) = 0 , x /∈ Ω3a ;

(v) |Dβηa(x)| ≤Mβa
−β

for some constant Mβ independent of a.

Theorem 14.1 is proved by verifying properties (i)-(v) for the con-
volution of a hat function with the characteristic function of a neigh-
borhood of Ω of radius 2a:

ηa(x) =

∫

χ
Ω2a

(y)ωa(x− y) dNy =

∫

Ω2a

ωa(x− y) dNy .

By Theorem 7.2, all partial derivatives of the convolution are continu-
ous everywhere. So, ηa ∈ C∞. The second property follows from that
values of the characteristic function are either 0 or 1 and that the hat
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function is non-negative:

0 ≤ ηa(x) ≤
∫

ωa(x− y) dNy =

∫

ωa(z) d
Nz = 1 .

To verify the remaining properties, consider three neighborhoods of Ω:

Ω ⊂ Ωa ⊂ Ω2a ⊂ Ω3a .

Let x ∈ Ωa. One has

ηa(x)
(1)
=

∫

Ba(x)

χ
Ω2a

(y)ωa(x− y) dNy

(2)
=

∫

Ba(x)

ωa(x− y) dNy
(3)
=

∫

Ba

ωa(z) d
Nz

(4)
= 1 .

Here the equality (1) follows from the property

ωa(x− y) = 0 , |x− y| > a ,

so that the integration region in the convolution integral can be reduced
to a ball of radius a and centered at x, (2) is valid because, if x ∈ Ωa,
then the ball Ba(x) lies in Ω2a and therefore χ

Ω2a
(y) = 1 if y ∈ Ba(x),

(3) is obtained by the shift of the integration variable z = x − y, and
(4) is by the normalization property of the hat function.

Finally, if x does not belong to the closure Ω3a, the open ball Ba(x)
has no overlap with Ω2a. This implies that the hat function ωa(x− y)
vanishes for any y ∈ Ω2a so that

ηa(x) =

∫

Ω2a

ωa(x− y) dNy = 0 , x /∈ Ω3a

By Theorem 7.2 one can show that

|Dβηa(x)| ≤
∫

|Dβωa(z)| dNz .

Then the property (v) follows from from the scaling property of the hat
function, Dβωa(z) = a−N−βDβω1(z/a). The proof is complete.

There is a useful consequence of this theorem.

Corollary 14.1. Let K be a compact subset of an open set Ω ⊆
RN . Then there exists a test function η

K
∈ D(Ω) that takes values in

[0, 1] and is equal to 1 in a neighborhood of K.

Since Ω is open, K is a proper subset in Ω, and the distance be-
tween the boundary ∂Ω and K is not zero. In Theorem 14.1, take
a = 1

4
d(∂K, ∂Ω). Then η

K
= ηa ∈ D(Ω) is a test function with re-

quired properties.
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For any set Ω, a function η with properties stated in Theorem 14.1
will be called a bump function for a set Ω. In particular, a bump
function for any bounded set in RN is a test function from D. Fur-
thermore, for any function u from class C∞, one can always find a test
function that is equal to u in a neighborhood of any open bounded set
Ω. Indeed, the test function with required properties is

ϕ(x) = u(x)η
Ω
(x) ∈ D ,

where η
Ω

is a bump function for Ω.

14.2.4. Regularization of a locally integrable function. Let f be a locally
integrable function in RN . Then the convolution of f and a test func-
tion ω,

(14.4) (ω ∗ f)(x) =

∫

ω(x− y)f(y) dNy ,

exists because the integral converges absolutely thanks to local inte-
grability of f and to that the support of ω lies in a ball |x| ≤ R:

∫

|ω(x− y)f(y)| dNy ≤M0

∫

|x−y|<R

|f(y)| dNy <∞ ,

where M0 = sup |ω(x)| <∞.
By Theorem 7.2 the convolution (ω ∗ f) is from class C∞. Indeed,

for all x in a ball |x| < R1, the integrand ω(x− y)f(y) vanishes for all
|y| > R+R1 if the support of ω lies in a ball of radius R. Then for any
α ≥ 0, any partial derivative of the integrand has an integrable bound
independent of x:

|Dβ
xω(x− y)f(y)| ≤Mβ |f(y)| ∈ L(BR+R1

)

for all x ∈ Ω, where Mβ = sup |Dβω(x)| < ∞, because f is locally
integrable. By Theorem 7.2, ω ∗ f has continuous partial derivatives of
any order in any ball |x| < R1. Since R1 is arbitrary, the convolution
ω ∗ f is from class C∞ and

(14.5) Dβ(ω ∗ f)(x) =

∫

Dβ
xω(x− y)f(y) dNy .

Furthermore, if the support of f is bounded, then the support of ω ∗ f
is also bounded. The convolution vanishes for all |x| > R + Rf if the
supports of ω and f lie in balls of radii R and Rf , respectively. In this
case, the convolution is a test function.

Thus, with any locally integrable function f that has a bounded
support one can associate a test function fω = ω ∗ f . This shows that
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the space of test functions is roughly as ”big” as the space of integrable
functions with bonded supports.

For any non-negative test function φ whose integral is normalized
to 1,

∫

φ(x) dNx = 1 ,

and any a > 0, put

φa(x) =
1

aN
φ
(x

a

)

.

Then φa is a test function. If the support of φ lies in a ball of radius
R, then the support of φ is in a ball of radius aR. The convolution

(14.6) fa(x) = (φa ∗ f)(x) =

∫

φa(x− y)f(y) dNy

is called a regularization of a locally integrable function f . In particular,
one can take φa = ωa (a hat function). A regularizing test function φa

has the same characteristic property (14.3) as the hat function. A proof
is similar to the line of reasoning in (14.3).

The regularization of a locally integrable function with bounded sup-
port is a test function. It is a smooth function that vanishes outside a
neighborhood of support of f . If K = supp f and supp φ ⊂ BR, then

(14.7) (φa ∗ f)(x) = 0 , d(x,K) ≥ aR .

This follows from (14.4) for ω(x−y) = φa(x−y) because φa(x−y) = 0
if |x− y| ≥ aR whereas y ∈ K so that whenever the distance between
x and K exceeds aR, the convolution integral vanishes.

14.2.5. Regularization of continuous functions. The term ”regularization”
implies that the function being regularized is close to its regularization
in some sense. This is indeed so. Let us show that a regularization
φa ∗ f of a continuous function f on RN converges to f pointwise in
the limit a → 0+:

lim
a→0+

(φa ∗ f)(x) = f(x) , x ∈ R
N .

Recall from Sec.1.2.6 that f is uniformly continuous on any compact
K ⊂ RN . This means that for any K and any ε > 0 there exists δ
(that generally depends on K and ε) such that

|f(x) − f(y)| < ε whenever |x− y| < δ ,

for all x and y in K. Take K that contains a neighborhood of x, fix
ε > 0, and find the corresponding δ. Using the normalization and
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scaling properties of φa(x) in the regularization (14.6)

|(φa ∗ f)(x) − f(x)| =
∣

∣

∣

∫

φa(y)
(

f(x− y)− f(x)
)

dNy
∣

∣

∣

=

∫

|z|<R

φ(z)
∣

∣

∣f(x− az)− f(x)
∣

∣

∣ dNz

< ε

∫

|z|<R

φ(z) dNz = ε , a < δ/R .(14.8)

Since ε is arbitrary, this implies that (φa ∗ f)(x) converges to f(x) as
a→ 0+ for any x. So, φa ∗f is an approximation to f at every point by
a smooth function. If f is continuous and has bounded support, then
the approximation is a test function.

14.3. Approximation theorems. A regularization of any continuous func-
tion converges to the function pointwise in the limit a → 0+. Can a
regularization be used to approximate functions from various metric
functional spaces by test functions? The answer is provided by the so
called approximation theorems for test functions.

A typical approximation theorem asserts the following. Let F be a
linear functional normed space so that the distance between any two
elements f, g ∈ F is given by d(f, g) = ‖f − g‖

F
where ‖ · ‖

F
is a norm

on F . Let the space of test functions be a subset in F . Then for any
ε > 0 and any f ∈ F there exists a test function ϕ such that

d(ϕ, f) = ‖ϕ− f‖
F
< ε .

In other words, any function from F can be approximated with any
desired accuracy by a test function.

In what follows, it will be shown that for any open Ω ⊂ RN this is
true for F = Cp

0(Ω), p ≥ 0, and F = Lp(Ω), p ≥ 1, where Cp
0(Ω) is a

subset of compactly supported functions from Cp(Ω). This means that
D(Ω) is dense in these spaces and test functions in them are much like
rational numbers in reals. Furthermore, a test function ϕ is obtained
by a regularization of f as discussed above. The reader not interested
in mathematical details may skip the rest of this section.

14.3.1. D as a dense subset of C0
0 . The space of test functions is a sub-

space in the space of continuous bounded functions in which the dis-
tance is defined by the supremum norm. Clearly, D cannot be dense
in this space. For example, a unit function on RN is continuous and
bounded, but the distance between it and any test function cannot be
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arbitrary small because

‖1 − ϕ‖∞ = sup |1 − ϕ(x)| ≥ sup
|x|>R

|1 − ϕ(x)| = 1

if the support of ϕ lies in BR.
Let C0

0 ⊂ C0 denote a subspace of continuous functions on RN with
bounded support. Then D ⊂ C0

0 . The first approximation theorem
states that D is dense in C0

0 with respect to the supremum norm. This
means that for any f ∈ C0

0 there exists a test function ϕ ∈ D such
that the distance ‖f −ϕ‖∞ can be made arbitrary small with a suitable
choice of ϕ.

To prove this assertion, note that f and its regularization fa ∈ D
have bounded supports, that is, they both vanish outside a ball of large
enough radius, fa(x) = f(x) = 0 for |x| > Rf . This implies that the
inequality (14.8) holds for all x ∈ RN because one can take K to be the
ball |x| ≤ Rf . Therefore one can take the supremum in the left-hand
side of (14.8):

‖fa − f‖∞ = sup |fa(x) − f(x)| ≤ ε .

This shows that a regularization fa of a continuous function f with
bounded support converges to f uniformly as a→ 0+ and, hence, D is
dense in C0

0 .

14.3.2. D as a dense subset of Cp
0 . Let Cp

0 , p ≥ 0, be the subspace of
all function from class Cp that have bounded support. Let us show
that a regularization fa of any f ∈ Cp

0 and all partial derivatives Dβfa

up order p converge uniformly to f and Dβf , respectively, as a → 0+.
This comprises a generalization of the approximation theorem proved
above.

Theorem 14.2. D is dense in Cp
0 . In particular, for any f ∈ Cp

0 ,
a regularization fa of f is a test function from D and

lim
a→0+

‖f − fa‖Cp = lim
a→0+

max
|β|≤p

sup
x

|Dβf(x) −Dβfa(x)| = 0 .

A proof is analogous to the case of C0
0 . Owing to the boundedness

of support of f , its partials Dβf , |β| ≤ p, are uniformly continuous on
RN , that is, for any ε > 0 and every |β| ≤ p one can find δβ such that

∣

∣

∣Dβ
xf(x) −Dβ

y f(y)
∣

∣

∣ < ε whenever |x− y| < δβ .

In the integral representation (14.5) of the convolution with a test func-
tion, the integration by parts is permitted up to p times if f ∈ Cp

0 so
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that

Dβ(φa ∗ f)(x) =

∫

Dβ
xφa(x− y)f(y) dNy =

∫

φa(x− y)Dβ
y f(y) dNy

= (φa ∗Dβf)(x) , 0 ≤ β ≤ p ,

because Dxφa(x − y) = −Dyφa(x − y). Then replacing f by Dβf in
(14.8), it is concluded that

|Dβfa(x)−Dβf(x)| < ε , a < δ/R ,

for all x ∈ RN and all |β| ≤ p if δ = minβ{δβ}. This implies that Dβfa

converges to Dβf uniformly and that D is dense in Cp
0 with respect to

the Cp norm:

‖fa − f‖
Cp ≤ ε , a < δ/R .

14.3.3. D(Ω) as a dense subset of Cp
0(Ω). A function f is said to belong

to Cp
0(Ω) ⊂ Cp(Ω), where Ω is an open set in RN , if the support of f

is a bounded subset of Ω. Since supp f is a closed subset in an open set
Ω, the distance between it and the boundary ∂Ω is not zero, similarly
to test functions from D(Ω). This implies that any function f from
class Cp

0(Ω) and all partial derivatives Dαf up to order p vanish in
a neighborhood of the boundary ∂Ω. So, D(Ω) ⊂ Cp

0(Ω). The same
reasonings as in the proof of Theorem 14.2 lead to a consequence that
D(Ω) is dense in Cp

0(Ω) relative to the Cp norm.

Corollary 14.2. For any open set Ω ⊂ RN , the space of test
functions D(Ω) is dense in Cp

0 (Ω). In particular, a regularization fa of
f ∈ Cp

0(Ω) and its partials Dβfa, |β| ≤ p, converge uniformly to f and
the corresponding partials Dβf on Ω as a→ 0+.

It should be noted that the support of a regularization fa of f ∈
Cp

0(Ω) is not in Ω for any a > 0. However, fa ∈ D(Ω) for all small
enough a as follows from Corollary 14.1. If δ > 0 is the distance
between the boundary ∂Ω and the support of f , then the support of
fa lies in Ω if Ra < 1

4
δ (support of φa lies in a ball of radius aR).

14.3.4. D(Ω) as a dense subset of Lp(Ω). Another family of functional
spaces that are often used in applications is Lp spaces, p ≥ 1. They
are complete metric spaces and test functions form a subset in them.
It turns out that the space of test functions is a dense subset in any Lp

space. This assertion comprises another approximation theorem.

Theorem 14.3. For any open Ω ⊂ RN , the space of test functions
D(Ω) is dense in Lp(Ω), that is, for any ε > 0 and any f ∈ Lp(Ω),
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there exists a test function ϕ ∈ D(Ω) such that

‖f − ϕ‖p < ε .

Let ΩR be the largest subset of Ω such that the distance between
it and the boundary is equal to 1

R
, d(ΩR, ∂Ω) = 1

R
and, in addition, if

Ω is not bounded, it is required that |x| ≤ R for all points of ΩR. So,
ΩR is a proper subset of Ω. If f ∈ Lp(Ω), then by continuity of the
Lebesgue integral,

lim
R→∞

∫

ΩR

|f(x)|p dNx =

∫

Ω

|f(x)|p dNx .

Put f
R

= χ
R
f , where χR is the characteristic function of ΩR. For

any ε > 0 and all large enough R, ‖f − f
R
‖p <

ε
2
. If there is a test

function ϕ ∈ D(Ω) that is arbitrary close to fR, e.g., ‖f
R
− ϕ‖p <

ε
2
,

the conclusion of the theorem follows from the triangle inequality

‖f − ϕ‖p ≤ ‖f − f
R
‖p + ‖f

R
− ϕ‖p < ε .

Let us show that ϕ can be obtained by a regularization of fR. There
is a technical fact to be established first.

Proposition 14.1. Let f ∈ Lp(Ω), p ≥ 1, and f be extended to
the whole RN by setting it to zero outside Ω. If fa is a regularization
of f , then

‖fa‖p ≤ ‖f‖p .

A proof is based on Hölder’s inequality (12.2). One has

‖fa‖p
p =

∫

Ω

|fa(x)|p dNx
(1)

≤
∫

Ω

(

∫

|f(y)|φa(x− y) dNy
)p

dNx

(2)

≤
∫

Ω

∫

Ω

|f(y)|pφa(x− y) dNy
(

∫

φa(x− z) dNz
)p−1

dNx

(3)
=

∫

Ω

∫

Ω

|f(y)|pφa(x− y) dNy dNx

(4)
=

∫

Ω

|f(y)|p dNy = ‖f‖p
p .

Here (1) is obtained by definition 14.6, (2) holds by Hölder’s inequality

and the identity φa = φ
1/p
a φ

1/q
a where 1

q
= p−1

p
, (3) follows from the nor-

malization property of φa, and (4) is established changing the order of
integration by Fubini’s theorem and using the normalization property
of φa again.
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Proposition 14.2. Let f be from Lp(Ω) and the support of f is a
proper subset of Ω. Then a regularization fa of f belongs to D(Ω) for
all small enough a and converges to f in Lp(Ω) as a→ 0+,

lim
a→0+

‖f − fa‖p = 0 .

The support K = supp f is a bounded and closed subset in an open
Ω so that the distance between K and the boundary ∂Ω is not zero,
d(K, ∂Ω) = a0 > 0. Then fa ∈ D(Ω) if a < a0. In Sec.12.5.3 it is shown
that C0

0(Ω) is dense in Lp(Ω). This means that for any ε > 0, there
exists a continuous function g with bounded support in Ω such that

‖f − g‖p < ε .

On the other hand, D(Ω) is dense in C0
0(Ω) and there exists a1 > 0

such that
‖g − ga‖∞ < ε , a < a1

where ga is a regularization of g. This implies that

‖g − ga‖p =
(

∫

K1

|g(x) − ga(x)|p dNx
)

1

p

≤ sup |g − ga|
(

∫

K1

dNx
)

1

p

= M‖g − ga‖∞ < Mε

where Mp is the Lebesgue measure (volume) of any compact K1 in Ω
that contains supports of g and ga for a < a1.

Let (f−g)a be a regularization of f−g. It follows from the triangle
inequality and Proposition 14.2 that

‖f − fa‖p ≤ ‖f − g‖p + ‖g − ga‖p + ‖(f − g)a‖
≤ 2‖f − g‖p + ‖g − ga‖p < (2 +M)ε

This shows that the Lp distance between f and its regularization can
be made arbitrary small for all sufficiently small a. This proves the
assertion.

14.4. Conclusion. It has been shown that the space of test functions
is sufficiently rich. Practically, all functions that are used to describe
physical phenomena can be approximated with any desired accuracy
(in some topology) by test functions.

14.5. Exercises.

1. Let ϕ and ψ be test functions. Is the product ϕ(x)ψ(x) a test
function? Express the support of the product in terms of supports of
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ϕ and ψ.

2. Let η be a test function of a real variable that is equal to one
in a neighborhood of x = 0. If ϕ(x) is a test function, show that ψ(x)
defined by the equality

ϕ(x) = ϕ(0)η(x) + xψ(x)

is a test function. Hint: Put

ψ(x) =
ϕ(x) − ϕ(0)η(x)

x
, x 6= 0

By definition ψ has continuous derivatives of any order for all x 6= 0.
Show that ψ(n)(x) can be extended continuously to x = 0 for all n =
0, 1, 2, ... so that ψ is from class C∞ (e.g., by using l’Hospital’s rule).
In particular, prove that

ψ(n)(0) = lim
x→0

ψ(n)(x) = ϕ(n+1)(0) , n = 0, 1, 2, ...

Show that ψ has a bounded support.

3. Let η be a test function of a real variable that is equal to one
in a neighborhood of x = 0. If ϕ(x) is a test function and

pm−1(x) = ϕ(0) + ϕ′(0)x+ · · · + xm−1

(m− 1)!
ϕ(m−1)(0)

is a Taylor polynomial of ϕ about x = 0, show that ψ(x) defined by
the equality

ϕ(x) = pm−1(x)η(x) + xmψ(x)

is a test function. Hint: Prove that

ψ(n)(0) = lim
x→0

ψ(n)(x) =
ϕ(n+m)(0)

m!
, n = 0, 1, 2, ...

4. Let ωa(x) denote the hat function of a real variable x. Is the product

|x2 − a2|νωa(x)

a test function for any real ν?

5. Put ϕh(x) = 1
h
(ϕ(x + h) − ϕ) where h 6= 0 is real and ϕ ∈ D.

Show that ϕh → ϕ′ in D for h→ 0.

6. Let φa be a test function used in the regularization integral (14.6).
Show that lima→0+(φa, ϕ) = ϕ(0) for any test function ϕ ∈ D. This
means φa converges to the Dirac delta function as a → 0+, just like the
hat function ωa does (see (14.3)).
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15. The space of distributions

15.1. The space D′. A linear continuous functional

f : D(Ω) → R

is called a distribution. The value of f on a test function ϕ is denoted
by (f, ϕ). The collection of all distributions is denoted by D′(Ω). If
Ω = RN , then, for brevity, the set of all distributions is denoted by D′.
If Ω = (a, b) ⊂ R, then D′((a, b)) = D′(a, b).

To show that a functional defined by some rule is a distribution one
has to verify three things:

(i) Existence: the rule makes sense for all test functions.
(ii) Linearity: the rule defines a linear functional.
(iii) Continuity: the rule defines a continuous functional.

Two distributions f and g from D′(Ω) are said to be equal if they
have the same values for all test functions in D(Ω):

f = g in D′(Ω) ⇔ (f, ϕ) = (g, ϕ) , ϕ ∈ D(Ω)

15.1.1. D′(Ω) as a liner space. Let f and g be distributions. A linear
combination h = af + bg, where a and b are real numbers, is defined
by the rule

(h, ϕ)
def
= a(f, ϕ) + b(g, ϕ) .

Let us show that a linear combination of distributions is a distribution
and, hence, D′(Ω) is a liner space.

Clearly, h is defined on any test function. Linearity follows from
the linearity of f and g. For any test functions ϕ1,2 and any reals c1,2

(h, c1ϕ1 + c2ϕ2) = a(f, c1ϕ1 + c2ϕ2) + b(g, c1ϕ1 + c2ϕ2)

= a
(

c1(f, ϕ1) + c2(f, ϕ2)
)

+ b
(

c1(g, ϕ1) + c2(g, ϕ2)
)

= c1
(

a(f, ϕ1) + b(g, ϕ1)
)

+ c2
(

a(f, ϕ2) + b(g, ϕ2)
)

= c1(h, ϕ1) + c2(h, ϕ2) .

The first equality is by definition of h, the second by linearity of f and
g, the third is obtained by regrouping the term, and the final equality
is again by definition of h.

Let ϕn → ϕ in D(Ω). By the limit laws and continuity of f and g

lim
n→∞

(h, ϕn) = lim
n→∞

(

a(f, ϕn) + b(g, ϕn)
)

= a lim
n→∞

(f, ϕn) + b lim
n→∞

(g, ϕn)

= a(f, ϕ) + b(g, ϕ) = (h, ϕ) .
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The first equality is by definition of h, the second by limit laws, the
third by continuity of f and g, and the final equality is again by defi-
nition of h. The continuity is proved. Thus, a space of distributions is
a linear space.

15.1.2. Remark. In general, linear functionals are not necessarily con-
tinuous. However, no explicit form of a linear non-continuous func-
tional on the space of test functions has ever been constructed. It is
only possible to prove the existence of such functionals by using the
axiom of choice. So, practically all linear functionals on D(Ω) defined
explicitly are turned out to be continuous (or distributions).

15.2. Regular distributions. Let f be a locally integrable function. Then
the rule

(15.1) (f, ϕ) =

∫

f(x)ϕ(x) dNx , ϕ ∈ D ,

defines a distribution from D′. It is called a regular distribution.
The existence and linearity of this functional has already been es-

tablished in Sec.13.2. Let us investigate its continuity. Let ϕn → 0 in
D. One has to show that the numerical sequence (f, ϕn) converges to
zero. The convergence in D implies that the functional sequence ϕn

converges uniformly to the zero function and support of all elements of
the sequence lies in one ball BR. Therefore

|(f, ϕn)| =

∣

∣

∣

∣

∫

f(x)ϕn(x) d
Nx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

BR

f(x)ϕn(x) dNx

∣

∣

∣

∣

≤
∫

BR

|f(x)| |ϕn(x)| dNx ≤ sup |ϕn|
∫

BR

|f(x)| dNx

= M sup |ϕn| → 0 as n→ ∞
because by local integrability of f , M <∞ and sup |ϕn| → 0 as n→ ∞
by uniform convergence of ϕn to zero. Thus, with any locally integrable
function one can associate a distribution by the rule (15.1).

15.3. Isomorphism of locally integrable functions and regular distributions.

Let f and g be two locally integrable functions. Each of them defines
a distribution by the rule (15.1). Suppose that

(f, ϕ) = (g, ϕ) , ϕ ∈ D(Ω) .

This means that the corresponding distributions are equal. Does this
imply that the functions f and g are equal in Ω? In other words, do
there exist more than one locally integrable function that correspond
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to the same distribution? Clearly, if the functions are equal almost
everywhere, f(x) = g(x) a.e., then they define the same regular distri-
bution. Is this condition also necessary? The answer is given by the
Du Bois-Reymond lemma.

15.3.1. The du Bois-Reymond Lemma. In order for a locally integrable
f to vanish in a region Ω in the sense of distributions, it is necessary
and sufficient that f(x) = 0 a.e. in Ω:

(f, ϕ) =

∫

f(x)ϕ(x) dNx = 0 , ϕ ∈ D(Ω) ⇔ f(x) = 0 a.e.

It follows from the du Bois-Reymond lemma that every regular distri-
bution is defined by a unique locally integrable function (modulo adding
a function that is equal to zero almost everywhere).

In what follows, no distinction will be made between regular distri-
butions and locally integrable functions.

15.3.2. Proof of the du Bois-Reymond lemma. A proof is based on the
following assertion from the Fourier analysis2.

Proposition 15.1. If the Fourier transform of a Lebesgue inte-
grable function vanishes, then the function is zero almost everywhere:

∫

ei(k,x)f(x) dNx = 0 ⇒ f(x) = 0 a.e.

Take a point x0 in an open set Ω. Then there exists an open ball
Ba(x0) that lies in Ω together with its boundary, Ba(x0) ⊂ Ω. By the
hypothesis

(f, ϕ) = 0 , ϕ ∈ D(Ba(x0))

Fix k ∈ RN and put

φk(x) = ei(k,x)ωa(x− x0) ∈ D(Ω)

where ωa is the hat function. Then

0 = (f, φk) =

∫

f(x)ωa(x− x0)e
i(k,x) dNx

By Proposition 15.1

f(x)ωa(x− x0) = 0 a.e. ⇒ f(x) = 0 a.e.

as required.

2A.N. Kolmogorov and S.V. Fomin, Elements of the theory of functions and

functional analysis, Chapter VIII, Sec. 3
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15.4. Singular distributions. All distributions that are not regular are
called singular distributions, that is, a singular distribution cannot be
defined by an integral of a test function with some locally integrable
function.

15.4.1. Dirac delta-function as a distribution. The Dirac delta function
is defined by the rule

(δ, ϕ) = ϕ(0) , ϕ ∈ D(RN ) .

It is a linear continuous functional on D. The linearity is obvious. Take
a null sequence

ϕn → 0 in D .

Then one has to check that the functional δ maps it to a numerical
sequence that converges to zero. This is indeed true

lim
n→∞

(δ, ϕn) = lim
n→∞

ϕn(0) = 0

because by topology in D, the functional sequence ϕn(x) converges
to the zero function uniformly, which implies in particular that the
sequence of values ϕn(0) converges to zero:

|ϕn(0)| ≤ sup |ϕn(x)| → 0 as n→ ∞ .

Thus, the Dirac delta-function is a linear continuous functional on D
and, hence, it is a distribution.

Let us show that the Dirac delta function is a singular distribution.
Suppose conversely that there exists a locally integrable function δ(x)
such that

∫

δ(x)ϕ(x) dNx = ϕ(0) , ϕ ∈ D .

By Theorem 14.1 there exists a test function 0 ≤ ηa(x) ≤ 1 supported
in a ball Ba for any choice of a > 0, and ηa(x) = 1 in a smaller ball
|x| < a/3 (a neighborhood of x = 0). Then the product ϕηa is also a
test function and

ϕ(0) = ϕ(0)ηa(0) = (δ, ϕηa) =

∫

δ(x)ϕ(x)ηa(x) d
Nx

=

∫

Ba

δ(x)ϕ(x)ηa(x) d
Nx .

It follows from this representation and 0 ≤ ηa(x) ≤ 1 that

|ϕ(0)| ≤
∫

Ba

|δ(x)ϕ(x)ηa(x)| dNx ≤ sup |ϕ|
∫

Ba

|δ(x)| dNx .

Since the measure (volume) of the integration domain Ba can be made
arbitrary small (by taking the radius a small enough), the integral
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can also be arbitrary small for any locally integrable function δ by
Theorem 6.2. But the value |ϕ(0)| is not zero for all test functions,
hence, a contradiction. Thus, the Dirac delta-function is not a regular
distribution and its action on a test function cannot be written in the
integral form.

15.4.2. Derivatives of the delta function. Let us show that all deriva-
tives of the delta function, defined by the rule (13.5), are distributions.
Since ϕ ∈ C∞, the rule makes sense for any test function. Linearity
follows from the linearity of differentiation on the space of test func-
tions. Finally, let ϕm → 0 in D as m → ∞. Then the functional δ(n)

is continuous because

|(δ(n), ϕm)| = |ϕ(n)
m (0)| ≤ sup |ϕ(n)

m | → 0 as m → ∞

by definition of that ϕn → 0 in D.

15.4.3. Shifted delta functions. Consider a functional on the space of
test function defined by the rule

(

δ(x− x0), ϕ(x)
)

= ϕ(x0) ,

for any x0 ∈ RN . The rule makes sense for any test function ϕ. The
functional is linear. If ϕm → 0 in D, then the numerical sequence
ϕm(x0) converges to 0 for any point x0 because |ϕm(x0)| ≤ sup |ϕm| →
0 asm → ∞. Thus, the functional is a distribution. It is called a shifted
delta function. It is singular distribution. A proof of this assertion is
similar to the proof of singularity of the Dirac delta function and left
to the reader as an exercise.

15.4.4. The principal value distribution. Define a functional P 1
x

on the
space of test function of a real variable x by the rule

(15.2)
(

P 1

x
, ϕ

)

def
= p.v.

∫

ϕ(x)

x
dx

def
= lim

a→0+

∫

|x|>a

ϕ(x)

x
dx ,

where p.v. indicates that the improper integral is understood as the
Cauchy principal value (defined by the subsequent equality). Note
that the function 1/x is not locally integrable (its integral does not
exist over any bounded interval that contains x = 0). Let us show that
P 1

x
defines a (singular) distribution. It is called the the principal value

distribution.
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Existence. Since the support of ϕ is bounded, suppϕ ⊂ [−R,R] and

p.v.

∫

|x|<R

dx

x
= lim

a→0+

(
∫ −a

−R

+

∫ R

a

)

dx

x
= 0 ,

one infers that
(

P 1

x
, ϕ

)

= lim
a→0+

∫

|x|>a

ϕ(x)

x
dx = lim

a→0+

∫

a<|x|<R

ϕ(x)

x
dx

= lim
a→0+

∫

a<|x|<R

ϕ(x) − ϕ(0)

x
dx =

∫

|x|<R

ϕ(x) − ϕ(0)

x
dx .

The latter integral exists because the integrand can be continuously
extended to x = 0:

lim
x→0

ϕ(x) − ϕ(0)

x
= ϕ′(0)

so that it is continuous on the interval [−R,R] and, hence, integrable
on it.

Linearity. One has

(

P 1

x
, c1ϕ1 + c2ϕ2

)

= lim
a→0

∫

a<|x|

c1ϕ1(x) + c2ϕ2(x)

x
dx

(1)
= c1 lim

a→0

∫

a<|x|

ϕ1(x)

x
dx+ c2 lim

a→0

∫

a<|x|

ϕ2(x)

x
dx

= c1
(

P 1

x
, ϕ1

)

+ c2
(

P 1

x
, ϕ2

)

;

here (1) follows from linearity of the Lebesgue integral and the limit
laws.

Continuity. Let ϕn → 0 in D. This implies that the sequence of deriva-
tives ϕ′

n(x) converges uniformly to the zero function:

lim
n→∞

sup |ϕ′
n(x)| = 0 .

By the mean value theorem there exists a point x∗ between 0 and x
such that

∣

∣

∣

∣

ϕn(x) − ϕn(0)

x

∣

∣

∣

∣

= |ϕ′
n(x∗)| ≤ sup |ϕ′

n| .
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Then the following chain of inequalities holds:
∣

∣

∣

(

P 1

x
, ϕn

)∣

∣

∣
=

∣

∣

∣

∣

p.v.

∫

ϕn(x)

x
dx

∣

∣

∣

∣

(1)
=

∣

∣

∣

∣

p.v.

∫

|x|<R

ϕn(x)

x
dx

∣

∣

∣

∣

(2)
=

∣

∣

∣

∣

p.v.

∫

|x|<R

ϕn(x) − ϕn(0)

x
dx

∣

∣

∣

∣

≤ p.v.

∫

|x|<R

∣

∣

∣

∣

ϕn(x) − ϕn(0)

x

∣

∣

∣

∣

dx

(3)

≤ sup |ϕ′
n|

∫

|x|<R

dx = 2R sup |ϕ′
n| → 0

as n → ∞. Here (1) holds because supports of all terms ϕn are in an
interval [−R,R] for some R; (2) is true because the Cauchy principal
value integral of 1

x
over the interval (−R,R) vanishes; (3) follows from

the inequality derived from the mean value theorem.

15.4.5. General principal value distributions. For any integer n ≥ 1, the
function x−n is not locally integrable. But it is possible to associate a
distribution with it by the rule similar to (15.2):

(15.3)
(

P 1

xn
, ϕ

)

def
= p.v.

∫

ϕ(x) − Tn−2(x)

xn
dx , n = 2, 3, ... ,

where

Tn−2(x) =

n−2
∑

k=0

ϕ(k)(0)

k!
xk

is the Taylor polynomial of ϕ about x = 0 of order n−2 (see Sec.1.4.1).
The existence of this functional follows from the relation
(

P 1

xn
, ϕ

)

= lim
a→0+

∫

|x|<a

ϕ(x) − Tn−2(x)

xn
dx

= lim
a→0+

∫

a<|x|<R

ϕ(x)− Tn−2(x)

xn
dx+

∫

|x|>R

Tn−2(x)

xn
dx(15.4)

that holds for any test function ϕ with support in the interval [−R,R].
The last integral exists because Tn−2/x

n ∼ 1/x2 as |x| → ∞. In the first
integral the Taylor polynomial Tn−2 can be replaced by Tn−1 because
the integral of 1/x over the symmetric interval a < |x| < R vanishes.
Therefore the first integral converges in the limit a → 0+ because the
integrand has a continuous extension to x = 0 by Taylor’s theorem:

(15.5) lim
x→0

ϕ(x)− Tn−1(x)

xn
=
ϕ(n)(0)

n!
.
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Linearity of the functional follows from linearity of the integral and
that a Taylor polynomial of a linear combination of two functions ϕ1

and ϕ2 is the corresponding linear combination of the Taylor polyno-
mials for ϕ1 and ϕ2.

Let us show continuity. Let ϕm → 0 in D as m → ∞. Supports
of all ϕm lie in an interval [−R,R]. Replacing ϕ by ϕm in (15.4), one
can see that the integral over the interval |x| > R vanishes in the limit
m→ ∞

∫

|x|>R

Tn−2(x)

xn
dx =

n−2
∑

k=0

ϕ
(k)
m (0)

k!

∫

|x|>R

xk

xn
dx

because |ϕ(k)
m (0)| ≤ sup |ϕ(k)

m | → 0. As already noted, pn−2 can be
replaced by Tn−1 in the first integral. By Taylor’s theorem, there exists
a point x∗ between x and 0 such that

ϕm(x) − Tn−1(x)

xn
=
ϕ

(n)
m (x∗)

n!

so that
∣

∣

∣

∫

|x|<R

ϕ(x) − Tn−1(x)

xn
dx

∣

∣

∣
≤ sup |ϕ(n)

m |
n!

2R→ 0

as m→ ∞.

15.5. Spherical delta-function. Consider a distribution of N real vari-
ables defined by the surface integral of a test function over the sphere
|x| = a

(δSa , ϕ) =

∫

|x|=a

ϕ(x) dS .

The integral is reduced to an iterated integral using parametric equa-
tion of the sphere as shown in Sec. 8.3.1. For example, for N = 2, the
integral is evaluated in polar coordinates. If θ is the polar angle, then
dS = adθ is the arclength on a circle of radius a so that

∫

|x|=a

ϕ(x) dS = a

∫ 2π

0

ϕ
(

a cos(θ), a sin(θ)
)

dθ .

In three-dimensional space, the surface integral is evaluated in spherical
coordinates

∫

|x|=a

ϕ(x) dS = a2

∫ 2π

0

∫ π

0

ϕ(x(φ, θ)) sin(φ) dφ dθ ,

where φ and θ are, respectively, the zenith and polar angles in the
spherical coordinates.
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The existence and linearity follows from the existence and linearity
of the surface integral of a smooth function. To establish continuity
let ϕn → 0 in D. Then ϕn converges to the zero function uniformly
limn→∞ sup |ϕn| = 0. Hence,

|(δSa , ϕn)| ≤
∫

|x|=a

|ϕn(x)| dS ≤ sup |ϕn|
∫

|x|=a

dS

= aN−1σN sup |ϕn| → 0

as n→ ∞. Here σN is the surface are of the unit sphere |x| = 1 in RN .
So, δSa(x) is a distribution of N real variables.

15.5.1. The distribution δSa is singular. By Theorem 14.1, there exists
a bump function ηε for the sphere |x| = a which is a test function with
support in a spherical layer a − ε ≤ |x| ≤ a + ε (denoted by Ba±ε

for brevity), and ηε has unit value in a neighborhood of the sphere.
Suppose there exists a locally integrable function δSa(x) such that

(δSa , ϕ) =

∫

δSa(x)ϕ(x) dNx

for any test function ϕ. Then ηεϕ is also a test function and therefore
∫

|x|=a

ϕ(x) dS =

∫

|x|=a

ηε(x)ϕ(x) dS =
(

δSa , ηεϕ
)

=

∫

δSa(x)ηε(x)ϕ(x) dNx =

∫

Ba±ε

δSa(x)ηε(x)ϕ(x) dNx

This relation implies that
∣

∣

∣

∣

∫

|x|=a

ϕ(x) dS

∣

∣

∣

∣

≤ sup |ϕ|
∫

Ba±ε

|δSa(x)| dNx .

because 0 ≤ ηε(x) ≤ 1. The measure (volume) µ(Ba±ε) = O(ε) tends
to 0 as ε → 0+ and, hence, the right-hand side of this inequality can
be made arbitrary small for any locally integrable function δSa(x) by
Theorem 6.2, but the left-hand side is finite. This contradiction im-
plies that no such locally integrable function δSa(x) exists, and δSa is a
singular distribution.

15.5.2. Physical significance of δSa . In R2, the distribution δSa(x) can
describe a mass density of a thin circular uniform wire occupying the
circle |x| = a. If m is the total mass of the wire, then its mass density
is

ρ(x) =
m

2πa
δSa(x) , x ∈ R

2 .
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In R3, this distribution can be used to describe the mass density of a
thin uniform spherical shell, |x| = a. If the total mass is m, then the
mass density is

ρ(x) =
m

4πa2
δSa(x) , x ∈ R

3 .

Similarly, in RN , the mass density of a thin spherical shell can be
modeled as the distribution

ρ(x) =
m

aN−1σN
δSa(x) , x ∈ R

N .

15.6. Delta-functions on smooth M -surfaces in RN . The concept of a
spherical delta-function can be extended to general smooth surfaces of
dimension M in RN . It is assumed that a smooth M-surface S has a
finite area in any ball |x| < R. Let ν(x) be a function that is continuous
on S. Define a functional by the rule

(15.6) (νδS, ϕ) =

∫

S

ν(x)ϕ(x) dS , ϕ ∈ D .

The surface integral is calculated by means of a parameterization of S
(see Sec.8.3). Since the support of ϕ lies in a ball BR, the integration
is reduced to SR = S ∩ BR, the part of S that lies in BR. Owing to
continuity of ν on S, |ν(x)ϕ(x)| ≤ M on SR, and therefore, the integral
exists because SR has a finite area by assumption. Linearity and conti-
nuity νδS are verified in a similar fashion as in the case of the spherical
delta-function. The distribution νδS is singular, which is again estab-
lished by the same line of arguments as for the spherical delta-function.
The technical details are left to the reader as an exercise.

The distribution νδS can describe a density of some quantity dis-
tributed over an M-surface in RN with a surface density ν(x) (amount
per unit surface area at a point x of the surface). For example, a dielec-
tric wire in space can have a non-uniformly distributed electric charge.
In this case, ν(x) is an electric charge per unit length of a smooth curve
(modeling the wire) at a point x of the curve.

15.6.1. Mass density of moving objects. Consider a collection of M par-
ticles moving in space along trajectories x = xp(t), p = 1, 2, ...,M . The
mass density of the system can be viewed as a distribution in space
and time variables, ρ(x, t). It acts on a test function by the rule

(ρ, ϕ) =
M

∑

p=1

mp

∫ ∞

−∞

ϕ(xp(t), t)) dt ,
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where ma are masses of the particles. Thanks to the boundedness of
support of ϕ, the integration interval can be reduced to a bounded
interval so that the integrals always exist. For a fixed t, the rule re-
sembles the definition of a shifted delta-function. For this reason this
distribution is often formally written as

ρ(x, t) =
M

∑

p=1

mpδ(x− xp(t)) .

Consider a one-dimensional object of a finite length L moving in
a space, like a string. Then it sweeps a two dimensional surface in
spacetime, x = u(ξ, t). This function defines the shape of the object at
each moment of time t and 0 ≤ ξ ≤ L is the natural parameter along
the string. If ν(ξ) is the linear mass density of the object (ν(ξ) dξ is
the mass of a portion of the string of length dξ at a point ξ), then the
mass density ρ(x, t) is the 2-surface delta-function, defined by the rule

(ρ, ϕ) =

∫ L

0

∫ ∞

−∞

ν(ξ)ϕ(u(ξ, t), t) dt dξ .

A verification of that these mass density functionals are distributions
is left to the reader as an exercise.

15.7. Complex-valued distributions. A complex-valued function is a test
function from D(Ω) if its real and imaginary parts are from D(Ω). A lin-
ear continuous functional f can take complex values on the space of test
functions, that is, (f, ϕ) ∈ C. In this case, f is said to be a complex-
valued distribution. For example, a locally integrable complex-valued
function f(x) = eitx of a real variable x defines a complex-valued dis-
tribution

(f, ϕ) =

∫

eitxϕ(x) dx

for any real or complex parameter t.
A complex-conjugated distribution f̄ is defined by the rule

(f̄ , ϕ) = (f, ϕ̄)

for any complex-valued distribution f . The linear combinations

Re f =
1

2

(

f + f̄
)

, Im f =
1

2i

(

f − f̄
)

are called the real and imaginary parts of the distribution f , respec-
tively. A distribution is said to be real if its imaginary part is the zero
distribution.
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For example, the delta-function is a real distribution:

(δ̄, ϕ) = (δ, ϕ̄) = ϕ̄(0) = ϕ(0) = (δ, ϕ) .

15.8. Topology in the space of distributions. In the process of modeling
a mass density of a point particle, or more generally, a density of some
quantity distributed over a set of measure (volume) zero, a limiting
process was designed in which a sequence of smooth functions converges
to a distribution. Since every smooth function can be viewed as a
distribution, this limiting process can be defined as convergence in the
sense of distributions or weak convergence. It will be shown later that
any distribution can always be viewed as a weak limit of a sequence of
smooth functions.

A sequence of distributions {fn} ⊂ D ′(Ω) is said to converge to
a distribution f if for any test function the sequence of values of fn

converges to the value of f :

lim
n→∞

(fn, ϕ) = (f, ϕ) , ϕ ∈ D(Ω) .

In this case, one writes

fn → f in D ′(Ω) .

This is somewhat similar to pointwise convergence of a sequence of
ordinary functions, with just one difference that ”points” at which a
sequence of values is computed are now test functions.

Convergence of series of distributions is defined via convergence of
a sequence of partial sums. The series

∑

n fn converges in D′ if the
limit of

∑

|n|<k(fn, ϕ) as k → ∞ exists for any test function, and the
equality

∑

n

fn(x) = f(x) ∈ D′

means that

lim
k→∞

∑

|n|<k

(fn, ϕ) = (f, ϕ) , ϕ ∈ D .

15.8.1. Example. Let us find the limit of smooth integrable functions

fa(x) =
a

x2 + a2
, x ∈ R ,

as a→ 0 in the distributional sense. It is not difficult to see that
∫ ∞

−∞

fa(x) dx =

∫ ∞

−∞

dy

y2 + 1
= π .
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The objective is to calculate the limit

lim
a→0

(fa, ϕ) = lim
a→0

∫ ∞

−∞

aϕ(x)

a2 + x2
dx = lim

a→0

∫ ∞

−∞

ϕ(ay)

y2 + 1
dy .

The Lebesgue dominated convergence theorem is a main technical tool
to calculate distributional limits of sequences of classical functions.

In this case, note first that

lim
a→0

ϕ(ay)

y2 + 1
=

ϕ(0)

y2 + 1

for any y. To interchange the order of integration and taking the limit,
one has to find an integrable bound for the integrand that is indepen-
dent of the parameter a:

|ϕ(ay)|
y2 + 1

≤ M

y2 + 1
∈ L , M = sup |ϕ| .

Therefore by the Lebesgue dominated convergence theorem,

lim
a→0

(fa, ϕ) =

∫ ∞

−∞

lim
a→0

ϕ(ay)

y2 + 1
dy = ϕ(0)

∫ ∞

−∞

dy

y2 + 1
= πϕ(0)

= π(δ, ϕ) .

This means that, in the sense of distributions,

fa(x) → πδ(x) in D ′

as a→ 0.

15.8.2. Sequences of regular distributions. Let fn be a sequence of locally
integrable functions that converges to a function f uniformly on any
compact set K:

lim
n→∞

sup
K

|f(x) − fn(x)| = 0 .

It follows from this limit that there exists an integer m such that
supK |f(x) − fm(x)| ≤ 1 so that for all x ∈ K

|f(x)| ≤ |f(x) − fm(x)| + |fm(x)| ≤ 1 + |fm(x)| ∈ L(K) ,

because fm ∈ Lloc. This implies that f is integrable on any compact,
or f is locally integrable and, hence, defines a regular distribution.

Let us show that fn → f in D′, that is, classical and distributional
limits coincide in this case. For any test function ϕ with support K

|(f − fn, ϕ)| =
∣

∣

∣

∫

K

(f − fn)ϕdNx
∣

∣

∣
≤ sup

K
|f − fn|

∫

K

|ϕ| dNx → 0

as n→ ∞.
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15.8.3. Distributional limit of rapidly oscillating functions. The function
ft(x) = eitx is locally integrable and defines a regular distribution for
any t:

(ft, ϕ) =

∫ ∞

−∞

eitxϕ(x) dx .

Its action on a test function gives the Fourier transform of the test
function. The function ft(x) rapidly oscillates with increasing t and
has no pointwise limit anywhere expect x = 0 as t → ∞. However, the
limit exists in the distributional sense. Indeed, using the integration
by parts and boundedness of the support of ϕ,

(ft, ϕ) =
1

it

∫ R

−R

ϕ(x) d eitx = − 1

it

∫ R

−R

eitxϕ′(x) dx ,

where the boundary term vanishes as ϕ(±R) = 0. Since the absolute
value of the derivative |ϕ′(x)| is integrable, it follows that

|(ft, ϕ)| ≤ 1

t

∫ R

−R

|ϕ′(x)| dx =
M

t
→ 0

as t→ ∞. Thus, in the distributional sense

lim
t→∞

eitx = 0 in D′ .

This conclusion looks rather odd. Does this limit make any sense
in a physical reality? In general, the answer is affirmative. Think of
a dielectric rod in which electric charge is distributed by periodically
arranged layers carrying opposite charges so that a negatively charged
layer is followed by a positively charged layer an so on. All layers have
the same total charge (either positive or negative) that is distributed
uniformly so that the charge density is periodic along the rod (it re-
sembles a cosine function).

Next, imagine that the thickness of each layer is getting smaller. For
example, each layer is cut in half and some of the neighboring layers
with opposite charges are swapped so that a positively charged layer
is followed by a negatively charged one. The process can be repeated.
With every step of the process, the period of oscillations is reduced by
factor of 2, while the amplitude remains the same. The charge density
begins to rapidly oscillate along the rod and does not converge to any
function. However, from the practical point of view, the density at a
point is defined by a measured charge of a portion of the rod that has
unit length and contains the point. When the period of oscillations
becomes much less than the smallest length that can be measured, the
rod would appear electrically neutral, that is, the measured electrical
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charge density is zero. Indeed, the total charge of any interval being
exactly an integer multiple of the period is zero. Therefore the total
charge over any interval oscillates between zero and the total charge
of a single layer. This implies that the charge density at any point is
decreasing to zero with increasing the number of oscillations per the
minimal length. The argument can be made rigorous if the limit charge
density is understood in the sense of distributions (see Problem 8 in
Exercises).

So, the distributional interpretation of the charge density is more
adequate for mathematical modeling than the picture based on classi-
cal functions and their limits because the former takes into account a
general concept inherent to our perception and understanding of the
physical reality that all quantities distributed in space and time cannot
be measured at a point of space or at an exact moment of time but
rather their measurements include some averaging procedure of small
regions of space or intervals of time.

15.9. Completeness of the space of distributions. If fn → f in D′, then
the sequence {fn} is a Cauchy sequence in the distributional sense,
meaning that the numerical sequence (fn, ϕ) is a Cauchy sequence for
any test function. Suppose {fn} is a Cauchy sequence in the distri-
butional sense. Then by the Cauchy criterion for numerical sequences
every sequence (fn, ϕ) has a limit and, hence, this limit defines a func-
tional on D. Is this functional a distribution? Or, in other words, is
the space D′ complete? The answer is affirmative.

Theorem 15.1. Let {fn} be a sequence of distributions such that
the numerical sequence (fn, ϕ) converges for any test function ϕ. Then
the functional f defined by

(f, ϕ) = lim
n→∞

(fn, ϕ) , ϕ ∈ D

is linear and continuous, that is, f is a distribution.

A proof requires to verify linearity and continuity of f . Linearity
follows from the limit laws. A verification of continuity is a bit technical
and omitted here3.

The completeness theorem also implies that the enlargement of the
set of classical functions (or regular distributions) by adding all limits of
weakly convergent sequences of classical functions cannot give anything
larger than D′. The completeness property of the set of distributions is

3A proof can be found, e.g., in: G. Grubb, Distributions and operators, Theo-

rem 3.9
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shown to drastically simplify differential calculus for classical functions
and their sequences and series if they are treated as distributions. In
particular, any functional series or sequence converging in a distribu-
tional sense can be differentiated term-by-term infinitely many times
to get the corresponding derivatives of the limit distribution!

15.9.1. Example. Let fn(x) = 3
2
n3x if |x| ≤ 1

n
and fn(x) = 0 otherwise.

For every n, fn defines a regular distribution

(fn, ϕ) =
3n3

2

∫ 1

n

− 1
n

xϕ(x) dx , ϕ ∈ D .

Let us investigate the convergence of this numerical sequence. Making
the substitution y = nx and integrating by parts, one infers that

(fn, ϕ) =
3n

2

∫ 1

−1

yϕ(y/n) dy

=
3

4
n
(

ϕ(1/n) − ϕ(−1/n)
)

− 3

4

∫ 1

−1

y2ϕ′(y/n) dy .

The limit of the first term is not difficult to compute:

n
(

ϕ(1/n) − ϕ(−1/n)
)

= n

(

2ϕ′(0)
1

n
+O

( 1

n2

)

)

= 2ϕ′(0) +O
(1

n

)

.

The limit of the second term can be found by means of the Lebesgue
dominated convergence theorem. Let gn(y) = y2ϕ′(y/n). Then gn(y) →
y2ϕ′(0) as n→ ∞ for any y. To justify interchanging the order of tak-
ing the limit and the integral by means of the Lebesgue dominated
convergence theorem, one has to find an integrable bound for gn(y)
that is independent of n. Since |ϕ′(x)| ≤ M for all x (as any contin-
uous function with a bounded support), |gn(y)| ≤ My2 ∈ L(−1, 1).
Therefore

lim
n→∞

∫ 1

−1

y2ϕ′(y/n) dy =

∫ 1

−1

lim
n→∞

y2ϕ′(y/n) dy

= ϕ′(0)

∫ 1

−1

y2dy =
2

3
ϕ′(0) ,

and

lim
n→∞

(fn, ϕ) =
3

2
ϕ′(0) − 1

2
ϕ′(0) = ϕ′(0) .

By the completeness theorem, the functional

(f, ϕ) = ϕ′(0) , ϕ ∈ D ,
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is a distribution, that is, it is a linear continuous functional on D. In
Sec.15.4.2 it was also shown that f(x) = −δ′(x).

15.10. Exercises.

1. Show that the rule (f, ϕ) = ϕ(n)(x0) where ϕ ∈ D defines a dis-
tribution.

2. Show that δa → δ in D ′ as a → 0+ for each of the following
families of smooth functions:

(i) δa(x) =
1√
2πa

e−
x2

2a

(ii) δa(x) =
1

πx
sin

(x

a

)

(iii) δa(x) =
a

πx2
sin2

(x

a

)

3. Let x be a real variable. Consider the sequence of functions fn(x) =
n− n2|x| if |x| < 1/n and fn(x) = 0 if |x| > 1/n. Find the limit of the
sequence in the sense of distributions using only the definition of such
a limit.

4. Let fn(x) = n2ε(x) if |x| < 1
n

and fn(x) = 0 otherwise, where
ε(x) is the sign function; it is equal to 1 if x > 0 and to −1 if x < 0.
Show that the sequence {fn} converges in the sense of distributions
and find the limit distribution.

5. (i) Find a sequence of locally integrable function fn(x) in R3 that
converges to the spherical delta-function:

fn → δSa in D ′ , (δSa , ϕ) =

∮

|x|=a

ϕ(x) dS

(ii) Find a sequence of test functions ϕn ∈ D(R3) that converges to the
spherical delta function in the distributional sense.
Hint: Use a suitable regularization of a sequence from Part (i).

6. Show that the functional defined in Sec.15.6 is a singular distri-
bution, that is, show that it is a linear continuous functional on the
space of test function D, and there exists no locally integrable function
such that the value of this functional on a test function is given by the
integral of the product of the locally integrable function and the test
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function.

7. Let n be a positive integer and θ(x) is the step function. Find
the following limits in the distributional sense or show that the limit
does not exist:

(i) lim
t→∞

tneitx ,

(ii) lim
t→∞

xneitx ,

(iii) lim
t→∞

sinn(tx) ,

(iv) lim
t→∞

eitxθ(x) ,

(v) lim
t→∞

tneitxθ(x) .

that is, if the limit exists, then give an explicit rule how to compute
the value of the limit distribution for a test function.

8. Let f be a periodic continuous function such that

f(x+ T ) = f(x) ,

∫ T

0

f(x) dx = 0 .

Put fn(x) = f(nx), n = 1, 2, .... Show that fn → 0 in D′. Does the
conclusion hold if continuity of f is replaced by local integrability?
Hint: Show first that for any interval [a, b]

∣

∣

∣

∫ b

a

f(x) dx
∣

∣

∣ ≤
∫ T

0

|f(x)| dx = M

Find the function Fn such that (fn, ϕ) = −(Fn, ϕ
′) and show that

sup |Fn| ≤ M/n. Proceed.

9. (i) Let {an} be any sequence or real numbers, and {xn} be a se-
quence that has no limit points. Show the series

∑

n

anδ(x− xn)

converges in D′.
(ii) In part (i), assume that xn → x0. Does the series converge in
the sense of distributions? If not, construct an explicit example of the
sequence {an} for which the series does not converge.
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16. Singular functions as distributions

There are functions that are not locally integrable. Can such func-
tion be “turned” into distributions? For example, the function f(x) =
1
x

is not locally integrable because of non-integrable singularity at
x = 0. Although the product f(x)ϕ(x) is not integrable, it is pos-
sible to regularize the integral by means of the Cauchy principal value.
This turns the singular function f(x) into a singular distribution P 1

x
.

The function f(x) is from class C∞ outside any neighborhood of x = 0.
The values of P 1

x
at a test function ϕ whose support lies in |x| > 0

is the same as the value of the integral of ϕ(x)/x. So, P 1
x

and 1
x

only
differ near x = 0. In this sense, P 1

x
is said to be a distributional reg-

ularization of a singular function 1
x
. Let us try to extend this idea to

other singular functions. To do so, it is necessary to make the above
concept of distributions “equal near a point” precise.

16.1. Distributions equal in an open set. A singular distribution cannot
be associated with a locally integrable function and, hence, can have no
value at some points. In contrast to classical functions, distributions
cannot be compared pointwise. However, they can be compared in open
sets (or in a neighborhood of any point) by comparing their values on
test functions supported in such sets.

16.1.1. Distribution vanishing in an open set. A distribution f is said to
vanish in an open set Ω if its value on any test function with support
in Ω is equal to zero, and in this case one writes

f(x) = 0 , x ∈ Ω ⇔ (f, ϕ) = 0 , ϕ ∈ D(Ω) .

For example, the Dirac delta function vanishes in any open set that
does not include the origin:

δ(x) = 0 , x ∈ Ω ⊂ (−∞, 0) ∪ (0,∞) .

Indeed, for any test function ϕ from D(Ω)

(δ, ϕ) = ϕ(0) = 0

because suppϕ ⊂ Ω.
If the difference of two distributions is equal to zero in some open

set, then they are equal in this set, that is, two distributions f and g
are said to be equal in an open set Ω if their values on any test function
with support in Ω are equal, and in this case one writes

f(x) = g(x) , x ∈ Ω ⇔ (f, ϕ) = (g, ϕ) , ϕ ∈ D(Ω) .
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For example,

P 1

x
=

1

x
, x 6= 0 .

16.1.2. Support of a distribution. Let Of be the largest open set in which
a distribution f vanishes. Then its complement in called the support of
the distribution f :

supp f = R
N \Of .

By construction, the support of a distribution is a closed set.
The support of the Dirac delta-function is the origin:

supp δ = {x = 0}
The step-function θ(x), x ∈ R, is continuous for x 6= 0. Therefore the
largest open set on which θ(x) = 0 is the interval (−∞, 0), and

supp θ = [0,∞) .

The support of the principal value distribution is the whole real axis:

suppP 1

x
= R .

16.1.3. Classical and distributional supports of regular distributions. Let
us compare distributional and classical supports (see Sec.1.2.2) for reg-
ular distributions. The assertion is that distributional and classical
supports do not generally coincide, but they are the same for regular
distributions defined by continuous functions.

Suppose first that a distribution is defined by a continuous function
f . Let Af be a collection of all points where f(x) 6= 0. The classical
support is the closure of Af . If x0 ∈ Af , then f(x) 6= 0 near x0

by continuity of f so that the integral (f, ϕ) cannot vanish for all test
functions ϕ supported near x0. Therefore x0 is not in Of , which implies
that Af and Of do not intersect. Let x0 be a limit point of Af that is
not in Af . Then there exists a sequence xn ∈ Af such that xn → x0

and any ball Ba(x0) contains elements of the sequence {xn} ⊂ Af . The
latter implies that x0 cannot be in Of because Of is open and there
exists a ball centered at x0 that lies in Of and, hence, cannot contain
any points from Af . Thus, the complement of Of contains the classical
support of f .

Conversely, let x0 be in the distributional support of f . If f(x0) 6= 0,
then x0 ∈ Af . Let f(x0) = 0. Since x0 /∈ Of , f(x) cannot vanish ev-
erywhere in any neighborhood of x0. This implies that one can find a
sequence xn such that f(xn) 6= 0 and xn → x0. Therefore x0 must be
in the closure of Af , which implies that the distributional support of f
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is contained in its classical support. Thus, the distributional and clas-
sical supports coincide for continuous functions. In particular, every
test function defines a regular distribution, and its distributional and
classical supports are the same.

If f is defined by a generic locally integrable function, then the dis-
tributional and classical supports can be quite different. For example,
let a distribution f be defined by the Dirichlet function. Then f is the
zero distribution and the distributional support is empty. On the other
hand, Af is the set of all rational numbers and its closure is the whole
R. One can add the Dirichlet function to any locally integrable func-
tion so that the classical support can always be made R for any regular
distribution. However, the distribution and, hence, its support cannot
be changed by adding the zero distribution defined by any function
that vanishes almost everywhere.

It follows from the definition that if supports of a distribution f and
a test function ϕ have no common points, then f vanishes on ϕ:

(16.1) supp f ∩ suppϕ = ∅ ⇒ (f, ϕ) = 0 .

16.2. Extensions of a distribution. Let Ω1 be an open subset of an open
set Ω2 and f be a distribution from D′(Ω1). A distribution g ∈ D′(Ω2)
is called an extension of f to Ω2 if

g(x) = f(x) , x ∈ Ω1 ⊂ Ω2 .

An extension, if it exists, is not unique because one can always add to
it any distribution h with support in the difference Ω2\Ω1.

For example, put Ω1 = (−∞, 0)∪(0,∞) and Ω2 = R and let f(x) =
1
x

which is a regular distribution from D′(Ω1). Then the distribution

g(x) = P 1

x
+ h(x) , supp h = {x = 0} ,

is an extension of f for any distribution h with support consisting of
the single point x = 0. For example, a linear combination of the delta-
function and its derivatives has the point support x = 0:

h(x) = c0δ(x) +
m

∑

k=1

ckδ
(k)(x) .

It will be proved in Sec.21.7.1 that any distribution with a point sup-
port has this form. Therefore any distributional extension of 1

x
to R

coincides with the sum of P 1
x

and a linear combination of the delta-
functions and its derivatives.
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16.3. Distributional regularization of a singular function. A function f
is said to have a non-integrable singularity at a point x0 if it is not
integrable in any neighborhood of x0:

∫

Ba(x0)

|f(x)| dNx = ∞ .

So, f does not define a regular distribution in any open set containing
x0. Let Sf be the set of all non-integrable singularities of a function
f(x). Then f is a regular distribution on RN \ Sf . Note that Sf is a
closed set in R

N . If this distribution can be extended to the whole R
N ,

then this extension is also called a distributional regularization of the
function f and denoted by Regf(x):

Reg f(x) ∈ D′ : Reg f(x) = f(x) , x ∈ R
N \ Sf .

Clearly, a regularization, if it exists, is a singular distribution that is
not unique because it is defined up to an additive distribution with
support in Sf .

For example, the function f(x) = 1
xn , x ∈ R, is singular at x = 0

if n is a positive integer. The principal value distribution (15.3 ) is its
distributional regularization because

P 1

xn
=

1

xn
, x 6= 0 .

Indeed, if support of a test function ϕ does not contain x = 0, then ϕ
and all its derivatives vanish at x = 0. It follows from (15.3) that

(

P 1

xn
, ϕ

)

=

∫

ϕ(x)

xn
dx , 0 /∈ suppϕ .

The existence of the integral is guaranteed by vanishing ϕ in a neigh-
borhood of x = 0. As noted in the previous section, any distributional
regularization of 1

xn can be written in the form

Reg
1

xn
= P 1

xn
+

m
∑

k=0

ckδ
(k)(x) ,

for some integer m and constants ck.
There are two basic techniques that are commonly employed to find

a distributional regularization of a singular function:

(i) Principal value regularizations ,
(ii) Shifting singularities into a complex plane .

Later, in Sec.21.7, it will be shown that all distributions can be ob-
tained as linear combinations of distributional derivatives of continu-
ous functions. Therefore if a singular function coincides with a linear
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combination classical derivatives of some continuous functions wher-
ever the derivatives exist, then its distributional regularization is the
linear combination of the corresponding distributional derivatives of
those continuous functions. In practice, however, this general approach
is not easy to use for finding a distributional regularization of a given
singular function, whereas the above two techniques often lead quickly
to a desired result. There are singular functions that cannot be writ-
ten as a linear combination of derivatives of continuous functions. Such
functions do not have a distributional regularization. An example is
given below in Sec.16.5.

16.4. Principal value regularizations. Suppose a function f has a non-
integrable singularity at a single point. Without loss of generality, it is
set to be at the origin. Suppose further that

f(x) =
g(x)

|x|s , x ∈ R
N , s > 0 , g ∈ Lloc .

Consider the functional on D defined by the rule

(16.2) (Prf, ϕ) =

∫

|x|<1

f(x)
(

ϕ(x)− Tm(x)
)

dNx+

∫

|x|>1

f(x)ϕ(x) dNx

where Tm is the Taylor polynomial of order m for ϕ about the singular
point x0 = 0 (see (1.6)). The choice of the unit ball, |x| < 1, to isolate
the singular point in the rule (16.2) is a convention. One can choose a
ball of any suitable radius.

Let us show that the rule (16.2) makes sense for any test function
for some large enough m. By Taylor’s theorem (see (1.7)), there is a
constant M such that

|ϕ(x)− Tm(x)| ≤ M |x|m+1 ,

in a neighborhood of x = 0. Therefore the integral over the unit ball
exists if m is such that

g(x)|x|m+1−s ∈ L(|x| < 1) .

For definitiveness, let m be the smallest positive integer for which this
condition holds. In particular, if g is bounded in a neighborhood of
x = 0, then the condition holds if m > s −N − 1 (see Sec.4.5.3). For
example,

(16.3)
(

Pr
1

|x|N , ϕ
)

=

∫

|x|<1

ϕ(x) − ϕ(0)

|x|N dNx+

∫

|x|>1

ϕ(x)

|x|N dNx .
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Linearity of the functional (16.2) is obvious. It remains to show
continuity. Take a null sequence in D, ϕn → 0 as n → ∞. One has
to show that the numerical sequence defined by (16.2) where ϕ = ϕn

converges to zero. Since supports of all ϕn are in one ball |x| ≤ R, the
second integral converges to zero because

∣

∣

∣

∫

|x|>1

f(x)ϕn(x) d
Nx

∣

∣

∣
=

∣

∣

∣

∫

1<|x|<R

f(x)ϕn(x) dNx
∣

∣

∣

≤ sup |ϕn|
∫

1<|x|<R

|f(x)| dNx → 0

as n→ ∞ because f is integrable on any compact that does not contain
x = 0. To estimate the first term, the inequality (1.7) is used. Let
Tmn(x) is a Tyalor polynomial for ϕn about x0 = 0. Then by (1.7)

|ϕn(x) − Tmn(0)| ≤Mn|x|m+1 , Mn ∼ max
|α|=m

sup |Dαϕn| → 0 ,

as n→ ∞. Therefore
∣

∣

∣

∫

|x|<1

f(x)[ϕn(x)− Tmn(x)] d
Nx

∣

∣

∣
≤ Mn

∫

|x|<1

|g(x)||x|m+1−s dNx→ 0 .

Thus, Prf(x) is a distribution.
It remains to show that Prf(x) is a distributional extension of f(x)

to RN . If suppϕ does not contain the singular point of f in (16.2),
then ϕ and all its derivatives vanish near x = 0 so that Tm(x) = 0 for
any m and

(Prf, ϕ) =

∫

f(x)ϕ(x) dNx ,

which means that

Prf(x) = f(x) , x 6= 0 ,

as required.
By invoking the result of Sec.21.7.1, any distributional regulariza-

tion (or extension) of f can always be written in the form

(16.4) Reg f(x) = Prf(x) +
∑

|α|≤k

CαD
αδ(x)

for some integer k ≥ 0 and constants Cα.
It is also worth noting that the rule (16.2) defines a distribution for

all large enough m. All these distributions differ from Prf by terms
containing the delta function and its derivatives. For example, let
s = N , and g(x) be bounded near x = 0. Then m = 0 in (16.2) as in
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(16.3). However, if T0 = ϕ(0) is replaced by T1(x) = T0 + (x,∇ϕ(0))
in (16.2), the new distributional regularization has an extra term

−
∫

|x|<1

g(x)
(x,∇ϕ(0))

|x|N dNx = −(c,∇ϕ(0)) =
(

(c,∇)δ, ϕ
)

,

where components of the vector c are given by the integrals

cj =

∫

|x|<1

g(x)
xj

|x|N dNx .

So, the distribution Prf(x) is changed by adding the term (c,∇)δ(x)
in full accord with (16.4).

16.4.1. Relation to the Cauchy principal value regularization. For singu-
lar functions of one real variable, the Cauchy principal value regulariza-
tion does not generally coincide with the distribution (16.2). According
to (16.4), they can differ at most by a linear combination of the delta-
function and its derivatives. For example,

P 1

x
= Pr

1

x
, P 1

x2
= Pr

1

x2
− 2δ(x) .

The last relation is established by the following calculations:

(

Pr
1

x2
, ϕ

)

=

∫ 1

−1

ϕ(x) − ϕ(0) − ϕ′(0)x

x2
dx+

∫

|x|>1

ϕ(x)

x2
dx

= p.v.

∫ 1

−1

ϕ(x) − ϕ(0)

x2
dx +

∫

|x|>1

ϕ(x)

x2
dx

= p.v.

∫

ϕ(x) − ϕ(0)

x2
dx + ϕ(0)

∫

|x|>1

dx

x2

=
(

P 1

x2
, ϕ

)

+ 2(δ, ϕ) .

16.4.2. Functions with many singular points. As a final remark on prin-
cipal value regularizations, let us define a distributional regularization
of a function with countably many singular points {xn}. It is assumed
that any ball contains at most finitely points from {xn}. Suppose that

f(x) =
gn(x)

|x− xn|νn
, |x− xn| < a ,

where gn(x) is locally integrable. Let Ωa be the complement of the
union of balls |x− xn| ≤ a in RN and f(x) be locally integrable in Ωa.
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Then the principal value regularization of f is defined by the rule

(Prf, ϕ) =
∑

n

∫

|x−xn|<a

f(x)
(

ϕ(x) − Tm(x; xn)
)

dNx+

∫

Ωa

f(x)ϕ(x) dNx ,

where Tm(x; xn) is a Taylor polynomial of ϕ about x = xn of a minimal
order m defined by that f(ϕ−Tm) is integrable on a ball |x−xn| < a.
The series converges because there are finitely many points xn is a ball
that contains support of a test function ϕ (the sum has only finitely
many terms for any test function). Continuity of Prf is proved in the
same way as for the principal value regularization of a function with
one singular point. If support of ϕ contains no singular point, then
ϕ = 0 near any xn and Tm(x; xn) = 0 for any m ≥ 0 so that

(Prf, ϕ) =

∫

f(x)ϕ(x) dNx ⇒ Prf(x) = f(x) , x 6= xn .

In other words, Prf is a distributional regularization of a singular func-
tion f .

It should be noted that for singular functions of one real variable,
there exists an alternative distributional regularization near xn if gn is
a smooth function and νn is an integer:

Reg f(x) = gn(x)P 1

(x− xn)νn
, |x− xn| < a .

As noted earlier, different distributional regularizations differ only by
distributions supported at x = xn (by a linear combination of δ(x−xn)
and its derivatives).

For example, let f(x) = 1
sin(x)

. This function has non-integrable

singularities at x = xn = πn where n is any integer, and

f(x) =
gn(x)

x− πn
, gn(x) =

x− πn

sin(x)
, x ∈ Ia

n = (πn− a, πn+ a) ,

where 0 < a ≤ π
2
. Let Ia be the complement of the union of all Ia

n.
Note that Ia is a set of measure zero if a = π

2
. Then the principal value

regularization reads

(

Pr
1

sin(x)
, ϕ(x)

)

=
∑

n

∫

Ia
n

ϕ(x) − ϕ(πn)

sin(x)
dx+

∫

Ia

ϕ(x)

sin(x)
dx

=
∑

n

∫

In

ϕ(x) − ϕ(πn)

sin(x)
dx ,
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where In = Ia
n for a = π

2
. The regularization does not depend on a in

this case because
∫

In\Ia
n

dx

sin(x)
= 0

by the skew-symmetry of the integrand under the reflection of the ar-
gument about x = πn. Since gn ∈ C∞(In) and νn = 1, an alternative
regularization based on the Cauchy principal value distribution is

(

P 1

sin(x)
, ϕ(x)

)

=
∑

n

p.v.

∫

Ia
n

ϕ(x)

sin(x)
dx +

∫

Ia

ϕ(x)

sin(x)
dx .

For this function, both the regularizations produce the same distribu-
tion because

p.v.

∫

Ia
n

dx

sin(x)
= 0 ⇒ Pr

1

sin(x)
= P 1

sin(x)
.

16.5. On the existence of a distributional regularization. There are sin-
gular functions that do not admit any distributional regularization near
their singular points. A singular function can “blow up” too fast at a
singular point so that the trick with subtracting a Taylor polynomial
about the singular point will not work. Furthermore, no other reg-
ularization trick will work either. The assertion is illustrated by the
following example.

Let

f(x) = exp
(1

x

)

, x 6= 0 .

Clearly, x = 0 is the only singular point because f is smooth everywhere
but x = 0, and f(x) tends to zero faster then any power function when
x→ 0−, and f(x) blows up to infinity faster than any reciprocal power
function when x → 0+:

lim
x→0−

|x|−pe
1
x = 0 , lim

x→0+
|x|pe 1

x = ∞ , p > 0 .

Suppose that there exists a distributional extension g of f to R. Then
g must be a linear continuous functional on D(R). Let us show that
the latter is false and, hence, by contradiction, a distribution g does
not exist.

Let ϕ be a non-negative test function with support in (1, b). It can
always be normalized so that

∫

ϕ(x) dx =

∫ b

1

ϕ(x) dx = 1 .
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If g is an extension of f , then

(g, ϕ) = (f, ϕ) =

∫ b

1

e
1

xϕ(x) dx .

Consider a sequence of test functions in D
ϕn(x) = e−

n
b nϕ(nx) , n = 1, 2, ...

Then the sequence is a null sequence ϕn → 0 in D as n→ ∞. Indeed,
the supports of all ϕn lie in [1, b] and

|Dαϕn(x)| ≤ Mαe
−n

b nα+1 , Mα = sup |Dαϕ(x)|
so that ϕn and Dαϕn converge uniformly to 0 for any α. If g is a
distribution, then

(g, ϕn) → 0 , n→ ∞
because g must be a continuous functional on D. On the other hand,
the numerical sequence (g, ϕn) is bounded from below by 1 and, hence,
cannot converge to 0. Indeed,

(g, ϕn)
(1)
=

∫

e
1

xϕn(x) dx
(2)
=

∫

e
n
y
−n

bϕ(y) dy

(3)
=

∫ b

1

en( 1
y
− 1

b
)ϕ(y)

(4)

≥
∫ b

1

ϕ(x) dx = 1 > 0 .

Here (1) holds because supports of ϕn do not contain x = 0; (2) is ob-
tained by changing variables y = nx; (3) holds because the support of ϕ

lies in (1, b); (4) follows from en( 1

y
− 1

b
) > 1 if 1 < y < b and the hypoth-

esis ϕ(x) ≥ 0. Thus, no distributional extension (or regularization) of
f exists.

16.6. Sokhotsky’s distributions. A distributional regularization of a sin-
gular function, if it exists, can also be obtained by moving singular
points into a complex plane. The idea is first illustrated with an ex-
ample of Sokhotsky’s distributions.

The function 1
x

is singular. Consider locally integrable complex-

valued functions of a real variable obtained from 1
x

by shifting the
singularity at x = 0 to the complex plane:

f±a(x) =
1

x± ia
, a > 0 .

They define regular complex-valued distributions by the rule

(f±a, ϕ) =

∫

ϕ(x)

x± ia
dx
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for every a > 0. If the limit of (f±a, ϕ) exists for any test function as
a → 0+, then by the completeness theorem it defines a distribution,
denoted f±. By construction, it is a distributional regularization of 1

x
.

Indeed, suppose that the support of a test function ϕ lies in 0 < δ ≤ |x|.
It follows from the inequality

∣

∣

∣

ϕ(x)

x± ia

∣

∣

∣
≤ |ϕ(x)|

δ
, |x| ≥ δ ,

that the order of taking the limit and integration can be interchanged
by the Lebesgue dominated convergence theorem so that

(f±, ϕ) = lim
a→0+

∫

ϕ(x)

x± ia
dx =

∫

|x|>δ

ϕ(x)

x
dx ,

which means that

f±(x) =
1

x
, x 6= 0 ,

because δ > 0 is arbitrary.
Let us show that the limit exists for any test function. Since the

support of ϕ lies in some interval [−R,R], the following chain of equal-
ities holds

(f±a, ϕ) =

∫ R

−R

ϕ(x)

x± ia
dx =

∫ R

−R

ϕ(0)

x± ia
dx+

∫ R

−R

ϕ(x)− ϕ(0)

x± ia
dx

= ϕ(0)

∫ R

−R

x∓ ia

x2 + a2
dx+

∫ R

−R

ϕ(x)− ϕ(0)

x± ia
dx

The first integral is easy to evaluate
∫ R

−R

x∓ ia

x2 + a2
dx = 0 ∓ i

∫ R/a

−R/a

dy

y2 + 1
= ∓2i arctan

(R

a

)

→ ∓iπ

as a → 0+. To find the limit of the second integral, let us use the
Lebesgue dominated convergence theorem. Put

g(x, a) =
ϕ(x)− ϕ(0)

x± ia

Then the limit of g(x, a) as a→ 0+ exists for almost every x because

lim
a→0+

g(x, a) =
ϕ(x) − ϕ(0)

x
, x 6= 0

and |g(x, a)| has a Lebesgue integrable bound

|g(x, a)| =
|ϕ(x)− ϕ(0)|

|x± ia| ≤ |ϕ(x)− ϕ(0)|
|x| ≤M ,
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where M = sup |ϕ′| by the mean value theorem and a constant func-
tion is integrable on (−R,R). Therefore by the Lebesgue dominated
convergence theorem

(16.5) lim
a→0+

(f±a, ϕ) = ∓iπϕ(0) +

∫ R

−R

ϕ(x) − ϕ(0)

x
dx = (f±, ϕ) .

The limit distributions f± are called Sokhotsky’s distributions and are
denoted as

f±(x) =
1

x± i0+
.

16.6.1. Sokhotsky’s equations. Sokhotsky’s distributions and the princi-
pal value distribution are distributional regularizations of 1

x
. Therefore

there should exists a relation between them and the delta function and
its derivatives. Let us find this relation. It is known as Sokhotsky’s
equations.

The integral in (16.5) can be transformed as follows:
∫ R

−R

ϕ(x)− ϕ(0)

x
dx

(1)
= lim

a→0+

(∫ −a

−R

+

∫ R

a

)

ϕ(x) − ϕ(0)

x
dx

(2)
= lim

a→0+

(
∫ −a

−R

+

∫ R

a

)

ϕ(x)

x
dx

(3)
= P.v.

∫

ϕ(x)

x
dx =

(

P 1

x
, ϕ

)

.

Here (1) is by continuity of the integral; (2) holds because the integral
of 1/x over the symmetric region a < |x| < R vanishes; (3) is the
definition of the principal value integral and by that ϕ(x) = 0 for all
|x| > R. Therefore

(f±, ϕ) = ∓iπ(δ, ϕ) +
(

P 1

x
, ϕ

)

for any test function ϕ, or

(16.6)
1

x± i0+
= ∓iπ δ(x) + P 1

x
,

which are Sokhotsky’s equations.

16.7. A higher dimensional example. The function f(x) = (|x|2−m2)−1

is not locally integrable in RN because it has non-integrable singu-
larities on the sphere |x| = m > 0. One can find a distributional
regularization of f by means of shifting singular points into a complex
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plane. Let us show that

Reg
1

|x|2 −m2
=

1

|x|2 −m2 + i0
, x ∈ R

N ,

where
( 1

|x|2 −m2 + i0
, ϕ

)

def
= lim

a→0+

∫

ϕ(x)

|x|2 −m2 + ia
dNx , ϕ ∈ D ,

is a distributional regularization of f in the whole R
N . The integral

exists for any a 6= 0. Therefore, if the limit is proved to exist for any test
function, then by the completeness theorem it defines a distribution.

Suppose that the support of a test function ϕ does not overlap
with the sphere |x| = m. Therefore there is a non-zero distance δ > 0
between the sphere and suppϕ. It follows from the inequality

∣

∣

∣

ϕ(x)

|x|2 −m2 + ia

∣

∣

∣ ≤ |ϕ(x)|
δ2

, δ2 ≤ ||x|2 −m2| ,

that the order of taking the limit and integration can be interchanged
by the Lebesgue dominated convergence theorem so that

( 1

|x|2 −m2 + i0
, ϕ

)

=

∫

ϕ(x)

|x|2 −m2
dNx ,

which means that
1

|x|2 −m2 + i0
=

1

|x|2 −m2
, |x| 6= m.

So, the distribution is indeed a distributional regularization of the sin-
gular function (|x|2 − m2)−1. This regularization is unique up an ad-
ditive distribution supported on the sphere |x| = m. For example, the
distribution

Reg
1

|x|2 −m2
=

1

|x|2 −m2 + i0
+ ν(x)δSm(x)

is also a regularization where νδSm is a delta function on the sphere Sm

with density ν(x) (see Sec.15.6).
It remains to show that the limit exists for any test function. First,

for any test function ϕ ∈ D(RN ), the function

ψ(r) =

∫

|y|=1

ϕ(ry) dSy ∈ D(R) ,

is a test function of one real variable r. Indeed, if the support of ϕ
lies in a ball of radius R, then the support of ψ lies in the interval
[−R,R]. The function is even ψ(−r) = ψ(r) because the measure dSy

is invariant under the parity transformation y → −y. Any partial
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derivative of the integrand with respect to r has a bound independent
of r that is integrable on the unit sphere:

∣

∣

∣
Dα

r ϕ(ry)
∣

∣

∣
=

∣

∣

∣
Dj1 · · ·Djαϕ(x)

∣

∣

∣

x=ry
yj1 · · · yjα

∣

∣

∣
≤ sup |Dαϕ|

where |yj| ≤ |y| = 1 was used. Any constant function is integrable on
a unit sphere. Therefore by Theorem 7.2, ψ is a smooth function and,
hence, ψ ∈ D(R).

By the partial fraction decomposition,

1

|x|2 − z2
=

1

2z

( 1

|x| − z
− 1

|x|+ z

)

where z = m(1 − ia
m

)1/2 = m− iξ +O(ξ2), ξ = 2a/m, one infers that

( 1

|x|2 −m2 + i0
, ϕ

)

=
1

2m
lim

ξ→0+

∫

BR

ϕ(x) dNx

|x| −m+ iξ
+

1

2m

∫

BR

ϕ(x) dNx

|x|+m

if the support of ϕ lies in a ball BR. Converting the first integral into
spherical coordinates,

∫

BR

ϕ(x) dNx

|x| −m+ iξ
=

∫ R

0

ψ(r)rN−1dr

r −m+ iξ
.

To evaluate the limit ξ → 0+, put φ(r) = ψ(r)rN−1 which is a smooth
function near r = m > 0. Therefore

∫ R

0

φ(r) dr

r −m+ iξ
=

∫ R

0

φ(r) − φ(m)

r −m+ iξ
dr + φ(m)

∫ R

0

dr

r −m+ iξ
.

The limit of the first integral exists because

φ(r) − φ(m) = φ′(m)(r −m) + O((r −m)2)

so that the integrand has no singularity at ξ = 0. The limit of the
second integral is evaluated directly:

∫ R

0

dr

r −m+ iξ
=

∫ R−m

−m

sds

s2 + ξ2
− iξ

∫ R−m

−m

ds

s2 + ξ2

=
1

2
ln(s2 + ξ2)

∣

∣

∣

R−m

−m
− i arctan

(s

ξ

)∣

∣

∣

R−m

−m

→ ln
(R −m

m

)

− iπ as ξ → 0+ ,(16.7)

where it was assumed that R > m (otherwise the original integral exists
without regularization).
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16.8. Exercises.

1. Use the du Bois-Reymond lemma to show that any distribution
whose support has measure zero is a singular distribution.

2. Find the support of a regular distribution defined by the func-
tion f(x) = sin(x).

3. Find the support of a regular distribution defined by a locally inte-
grable function that vanishes only on a set measure zero.

4. Show that the support of δ(x) and all partials Dβδ(x), x ∈ R
N ,

is the point x = 0.

5. Find the support of the spherical delta function in R3

(δSa , ϕ) =

∫

|x|=a

ϕ(x) dS

6. Let θ(y) be the step function. Then the locally integrable function

f(t, x) = θ(c2t2 − |x|2) , t ∈ R , x ∈ R
3

defines a distribution in R4, where c > 0 is a constant. Find its support.

7. Let t ∈ R and x ∈ R2. Find the support of the distribution defined
by the rule

(f, ϕ) =

∫ ∞

0

∫

|x|=ct

ϕ(x, t) dS dt

where dS stands for the line integral over the circle |x| = ct, and c > 0
is a constant.

8. Put
(

Reg
1

x
, ϕ

)

=

∫

ϕ(x)− ϕ(−x)
2x

dx

for any test function ϕ ∈ D(R).
(i) Show that this rule defines a distribution and
(ii) this distribution is an extension of a singular function 1

x
to x = 0,

that is,

Reg
1

x
=

1

x
, x 6= 0 ,

in the distributional sense in any open interval that does not contain
x = 0;
(iii) Find a relation between this distribution and the principal value
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distribution P 1
x
.

9. Show that the functional defined by the rule (16.2) is a distribution
(a linear continuous functional on D) if
(i) x ∈ R

(ii) x ∈ RN .
Hints: Let ϕn → 0 in D. Let pnm be the Taylor polynomial for ϕn of
order m about x = 0. Use Taylor’s theorem to show that

|ϕn(x) − pnm(x)| ≤ Mn|x|m+1 , |x| < a .

for some a ≤ 1 and Mn → 0 as n → ∞. Use the above inequality to
show that (Prf, ϕn) → 0 as n→ ∞.

10. Let

fa(x) =
1

2a

(

δSR+a
(x)− δSR−a

(x)
)

where R > a > 0 and δSR
is a spherical delta-function in RN . Find the

distributional limit of fa as a → 0+. Give an explicit rule for the value
of the limit distribution on a test function.

11. Let f(x) = cot(x). It is integrable on any interval [a, b] that
does not contain points xn = πn, n = 0,±1,±2, ....
(i) Show that f(x) does not define a regular distribution from D′(−π

2
, π

2
)

but it has a distributional regularization in (−π
2
, π

2
), that is, there exists

a distribution g ∈ D′(−π
2
, π

2
) such that in the sense of distributions

g(x) = cot(x) , x ∈ (−π
2
, 0) ∪ (0, π

2
)

Hint: Consider the principal value integral

p.v.

∫ R

−R

cot(x)ϕ(x) dx , 0 < R < π
2
, ϕ ∈ D(−π

2
, π

2
) .

(ii) Use the periodicity of cot(x) to show that it has a distributional
regularization in the whole R, and find it.

12. Let f(x) = | cot(x)|.
(i) Use the rule (16.2) to obtain a distributional regularization Prf in
D′(−π

2
, π

2
).

(ii) Use periodicity of f to extend Prf to the whole R.

13. Show that the functional

f(x0, x) =
1

x2
0 − |x|2 −m2 + i0+
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defined by the rule

(f, ϕ) = lim
a→0+

∫ ∫ ∞

−∞

ϕ(x0, x)

x2
0 − |x|2 −m2 + ia

dx0 d
Nx ,

for any test function ϕ, where x ∈ RN , is a distribution on N + 1
variables.
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17. Transformations of distributions

Classical functions are included into a space of distributions. There
are transformations that allows us to make new functions out of the
existing ones. For example, one can multiply two functions, or make
a composition of two functions, or take a derivative or antiderivative,
etc. In this regard, two basic questions arise. First, can standard trans-
formations of classical functions be extended to distributions? Second,
what is a general principle for constructing transformations of a space
of distributions to another space of distributions?

17.1. Adjoint transformations of distributions. Suppose a transforma-
tion T ∗ maps a locally integrable function f on RN to a locally inte-
grable function T ∗(f) on RM . The objective is to investigate whether
or not it is possible to extend T ∗ to singular distributions:

T ∗ : f ∈ D′
1 ⊆ D′(RN) → T ∗(f) ∈ D′

2 ⊆ D′(RM) .

Distributions from the space D′
1 are defined on a space of test functions

D1 ⊆ D(RN ) and, similarly, distributions from the space D′
2 are defined

on a space of test functions D2 ⊆ D(RM ). For brevity, put T ∗(f)(y) =
f

T
(y).
Let f(x), x ∈ RN , and its transformation f

T
(y), y ∈ RM , be locally

integrable. For any test function ϕ ∈ D2

(

T ∗(f), ϕ
)

=

∫

f
T
(y)ϕ(y) dMy .

Suppose that one can manipulate this integral in some way to reduce
it to the form

(17.1)

∫

f
T
(y)ϕ(y) dMy =

∫

f(x)ϕ
T
(x) dNx = (f, T (ϕ)) ,

where the function ϕ
T

= T (ϕ) is a transformation T of a test function.
Thus, for any regular distribution one has the rule

(17.2) (T ∗(f), ϕ) = (f, T (ϕ)) .

If this rule is to be extended to any f ∈ D′
1, then it is necessary that

T maps a space of test functions to another space of test functions:

(17.3) T : ϕ ∈ D2 ⊂ D(RM ) → T (ϕ) = ϕ
T
∈ D1 ⊆ D(RN ) .

However, not any such transformation is suitable. The functional T ∗(f)
must be linear and continuous on D2. Since f is linear and continu-
ous on D1, T

∗(f) is linear and continuous, provided T is a linear and



17. TRANSFORMATIONS OF DISTRIBUTIONS 231

continuous transformation:

linearity : T (c1ϕ1 + c2ϕ2) = c1T (ϕ1) + c2T (ϕ2)

continuity : ϕn → ϕ in D2 ⇒ T (ϕn) → T (ϕ) in D1

for any numbers c1,2 and any test functions ϕ1,2 ∈ D2.
Let us summarize our findings. For any linear and continuous trans-

formation (17.3) on a space of test functions, one can define a transfor-
mation of distributions by the rule (17.2). In this case, the transforma-
tion T ∗ is called the adjoint of T . Conversely, any transformation that
maps a locally integrable function to a locally integrable function can
be extended to all distributions, provided this transformation can be
interpreted as the adjoint transformation of some linear and continuous
transformation on the space of test functions (17.3).

17.1.1. Continuity of the adjoint transformation. Let us show that the
adjoint transformation T ∗ of a space of distributions is continuous,
that is, if a sequence of distributions {fn} converges to f in D′

1, then
the image of the sequence {T ∗(fn)} converges to the image of the limit
distribution T ∗(f) in D′

2:

fn → f in D′
1 ⇒ T ∗(fn) → T ∗(f) in D′

2 .

For any test function ϕ ∈ D2 one has

lim
n→∞

(T ∗(fn), ϕ) = lim
n→∞

(fn, T (ϕ)) = (f, T (ϕ)) = (T ∗(f), ϕ) .

because, the hypotheses, the numerical sequence (fn, ψ) converges to
(f, ψ) for any test function ψ = T (ϕ) ∈ D1.

17.2. Linear change of variables. Consider a general linear change of
variables in RN :

x = Ay + b , detA 6= 0 ,

where b is a constant vector. The Jacobian reads

dNx = | detA| dNy .

Let f(x) be a locally integrable function. Then fA,b(y) = f(Ay + b) is
also locally integrable function and, hence, defines a regular distribu-
tion by the rule

(fA,b, ϕ) =

∫

fA,b(y)ϕ(y) dNy =

∫

f(Ay + b)ϕ(y) dNy

=
1

| detA|

∫

f(x)ϕ
(

A−1(x− b)
)

dNx

= (f, ϕA,b) , ϕA,b(x) =
1

| detA| ϕ
(

A−1(x− b)
)

(17.4)



232 2. DISTRIBUTIONS

The latter equality establishes a relation between the action of fA,b on
a test function and the action of f on a test function.

Can a linear change of variables be done in any distribution? To
answer this question, let us try to interpret this change of variables as
the adjoint transformation of some linear and continuous transforma-
tion on the space of test functions. Consider a transformation T of D
into itself defined by

T : ϕ(x) → T (ϕ)(x) = ϕA,b(x) .

The transformation is obviously linear. Let ϕn → 0 in D. To prove
continuity, one has to show that T (ϕn) → 0 in D. It is not difficult to
see that

|T (ϕn)(x)| ≤
1

| detA| sup |ϕn| ,

from which it follows that T (ϕn) → 0 uniformly. Let aj be the jth

column of A−1T . Then by the chain rule and the Schwartz inequality
for the dot product

|DjT (ϕn)(x)| =
|aj|

| detA| sup |∇ϕn| .

Therefore DT (ϕn) → 0 uniformly. Using a similar idea, one can show
that there exists a constant Cα(A) such that (see Exercises)

(17.5) |DαT (ϕn)(x)| ≤
Cα(A)

| detA| max
|β|=|α|

sup |Dβϕn| .

This implies that sup |DαT (ϕn)| → 0 as n→ ∞ for any α, and, hence,
T is continuous.

Therefore the rule (17.4) can be interpreted as the adjoint transfor-
mation of any f ∈ D′ to D′, that is,

(17.6)
(

f(Ax+ b), ϕ(x)
)

= (T ∗(f), ϕ) = (f, T (ϕ)) = (f, ϕA,b) .

By continuity of the adjoint, if fn(x) → f(x) in D′, then fn(Ax+ b) →
f(Ax+ b) in D′.

17.2.1. Linear change of variables in a delta function. For a general linear
change of variables in the delta-function, one infers from (17.6) that

(

δ(Ax+ b), ϕ(x)
)

=
1

| detA|
(

δ(x), ϕ(A−1(x− b)
)

=
ϕ(−A−1b)

| detA| .

Comparing this relation with the action of the shifted delta-function
on a test function it is concluded that

δ(Ax− b) =
1

| detA| δ(x+ A−1b) .



17. TRANSFORMATIONS OF DISTRIBUTIONS 233

17.2.2. Distributions invariant under linear transformations. In applica-
tions one often deals with functions that are invariant under rotations
of the arguments, or periodic functions, or similar. This concept can
be extended to distributions. A distribution f is said to be invariant
under linear transformation x→ Ax if f(Ax) = f(x).

Recall that orthogonal transformations in RN preserve the qua-
dratic form |x|2 = |Ax|2. Any such transformation is uniquely defined
by an orthogonal matrix A, A−1 = AT . For example, the principal
value distribution Pr

1
|x|s

is invariant under rotations in RN . The delta

function is also invariant under orthogonal transformations

δ(Ax) = | detA|−1δ(x) = δ(x)

because detA = ±1 for any orthogonal transformation.
Lorenz transformations preserve the quadratic form x2

0−|x|2, where
x0 ∈ R and x ∈ R

N . In special relativity, x0 = ct where c is the speed
of light in the vacuum and t is time, whereas x is a position in space.
A distribution is said to be Lorenz invariant if it is invariant under
Lorenz transformations of the argument. For example the distribution

f(x0, x) =
1

x2
0 − |x|2 −m2 + i0+

is Lorenz invariant for any parameter m2 ≥ 0 (see Exercises in the
previous section). It will be shown later that this distribution defines
the Feynman propagator in the scalar quantum field theory.

17.2.3. Periodic distributions. Let b be a vector in RN . A distribution
f(x) is said to be periodic in the direction of b if f(x+ b) = f(x), that
is

(

f(x), ϕ(x− b)
)

=
(

f(x), ϕ(x)
)

, ϕ ∈ D .

For example, put

f(x) =
∞

∑

n=−∞

δ(x− n) , x ∈ R .

The series converges in the distributional sense because for any test
function ϕ supported in [−R,R], the series

(f, ϕ) = lim
m→∞

∑

|n|≤m

ϕ(n) =
∑

|n|<R

ϕ(n)

is a finite sum and, hence, converges. The distribution f is periodic
because f(x+ 1) = f(x). Indeed,

(f(x+ 1), ϕ(x)) =
∑

n

ϕ(n− 1) =
∑

m

ϕ(m) = (f(x), ϕ(x)) ,
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where the shift of summation index has been made, m = n− 1.

17.2.4. Parity transformations of distributions. A distribution f is said
to be even if

f(−x) = f(x)

and f is called odd if

f(−x) = −f(x) .

For example, δ(x) is even, but δ′(x) is odd. The latter assertion is
proved by

(δ′(−x), ϕ(x)) = (δ′(x), ϕ(−x)) = −(δ(x), Dxϕ(−x))
= (δ(x), ϕ′(−x)) = ϕ′(0) = −(δ′(x), ϕ(x))

that holds for any test function ϕ. Similarly, the distributions P 1
x

and

Pr
1
|x|

are odd and even, respectively.

Any distribution can written as the sum of even and odd distribu-
tions:

f(x) = f+(x) + f−(x) , f±(x) =
1

2

(

f(x) ± f(−x)
)

,

where f+ and f− are even and odd distributions, respectively. For ex-
ample, if f is a Sokhotsky distribution, then, by Sokhotsky’s equation,
its odd part is P 1

x
, while the even part is proportional to the delta

function.

17.3. Distributions independent of some of the variables. Let f(x, y) be a
regular distribution of two variables x ∈ RN and y ∈ RM . If f(x, y) =
g(x), that is, f is independent of y, then for any test function ϕ(x, y),

(f, ϕ) =

∫

g(x)

∫

ϕ(x, y) dMy dNy = (g, ψ) , ψ(x) =

∫

ϕ(x, y) dMy .

Can this rule be extended to all singular distributions? In other words,
a distribution f(x, y) is said to be independent of the variable y if there
exists a distribution g(x) such that

(17.7) (f(x, y), ϕ(x, y)) =
(

g(x),

∫

ϕ(x, y) dNy
)

.

The answer is affirmative because the rule (17.7) can be interpreted
as the adjoint of some linear and continuous transformation on the
space of test functions. Consider a transformation of D(RM+N ) defined
by the rule

T (ϕ)(x) =

∫

ϕ(x, y) dMy .
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One has to show that

T : D(RM+N ) → D(RN )

and T is linear and continuous. Then the adjoint

T ∗ : D′(RN) → D′(RN+M)

defines the distribution g = T ∗(f) in Eq. (17.7).
Let us show first that T (ϕ) is a test function. The support of ϕ is

bounded and, hence, it lies in a ball |x|2 + |y|2 < R2. Therefore the
support of T (ϕ) also lies in a ball |x| < R. The integration range in
T (ϕ) can be reduced to the ball |y| < R and any constant function is
integrable on this ball. Therefore partial derivatives of the integrand
with respect to parameters x have integrable bounds independent of x,

|Dα
xϕ(x, y)| ≤ sup |Dα

xϕ(x, y)| = Mα ∈ L(|y| < R)

and, by Theorem 7.2,

DαT (ϕ)(x) =

∫

Dα
xϕ(x, y) dMy .

for any α. So, T (ϕ) ∈ D(RN ).
Let us show that the transformation

T : D(RN+M ) → D(RN )

is linear and continuous. The linearity follows from the linearity of the
integral. Let ϕn(x, y) → 0 in D(RN+M ). Then supports of all ϕn lie in
a ball |x|2 + |y|2 < R2 so that

|DαT (ϕn)(x)| ≤
∫

|y|<R

|Dα
xϕn(x, y)| dMy ≤ sup |Dα

xϕn(x, y)|
∫

|y|<R

dMy

for all x. Therefore

sup |DαT (ϕn)(x)| ≤ VM (R) sup |Dα
xϕn(x, y)| ,

where VM(R) is the volume of the integration ball. This inequality
shows that the convergence ϕn → 0 in D(RN+M ) implies that T (ϕn) →
0 in D(RN ). The proof is complete

For example, let f(x, y) = δ(x). The distribution f does not depend
on y. In this case

(

δ(x), ϕ(x, y)
)

=
(

δ(x),

∫

ϕ(x, y) dMy
)

=

∫

ϕ(0, y) dMy .
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Let 1(y) be the unit function (it has unit value everywhere). It
defines a regular distribution in the variable y so that

T (ϕ)(x) =
(

1(y), ϕ(x, y)
)

∈ D(RN ) .

Any distribution g(x) can be viewed as a distribution of two variables
f(x, y) = g(x) · 1(y) where the product of two distributions of different
variables is defined by the rule

(

g(x) · 1(y), ϕ(x, y)
)

=
(

g(x),
(

1(y), ϕ(x, y)
))

.

This product is known as the direct or tensor product of distributions
(see Sec.29.1)

17.4. Exercises.

1. Prove the inequality (17.5) and use to show the transformation
ϕ → ϕA,b is continuous. Hint: Show first that if Dα = Ds

j for fixed

j and an integer s ≥ 0, then Cα(A) = (
∑

i |aji|)s where aji is the ith

component of the vector aj.
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18. Multiplication by a smooth function

Let f be a regular distribution. Let a(x) be a function such that
the product a(x)f(x) is still locally integrable and, hence, defines a
regular distribution af . Then

(af, ϕ) =

∫

a(x)f(x)ϕ(x) dNx = (f, aϕ) , ϕ ∈ D(Ω) .

Let us extend this rule for multiplication of a regular distribution by a
function to all distributions. According to our general principle given
in Sec.17.1, this operation should be interpreted as the adjoint trans-
formation of some linear and continuous transformation on the space
of test functions.

Consider the transformation of D(Ω)

T : ϕ(x) → T (ϕ)(x) = a(x)ϕ(x) .

The product aϕ must be a test function for any ϕ ∈ D(Ω). Therefore
a must necessarily be from class C∞. Next, one should verify that
T is linear and continuous. The linearity is obvious. Let ϕn → 0 in
D(Ω). One has to show that T (ϕn) → 0 in D(Ω). The supports of
T (ϕn)(x) = a(x)ϕn(x) lie in a compact set K ⊂ Ω if suppϕn ⊂ K.
Since a and all its derivatives are bounded on any compact, put

max
|β|=s

sup
K

|Dβa| = Ms <∞ .

By the product rule
∣

∣

∣
D

(

a(x)ϕn(x)
)∣

∣

∣
≤ M1 sup |ϕn| +M0 sup |Dϕn| .

Since the inequality holds for all x in the left-hand side, one can take
the supremum in it:

sup
K

∣

∣

∣D
(

a(x)ϕn(x)
)∣

∣

∣ ≤ M1 sup |ϕn| +M0 sup |Dϕn| .

Therefore DT (ϕn) → 0 uniformly on Ω. Using the binomial expansion
of high-order partials of the product (see Sec.1.3), one infers that

sup |Dβ(aϕn)| ≤
∑

α≤β

(

β

α

)

M|β|−|α| sup |Dαϕn| .

Therefore DβT (ϕn) → 0 uniformly for any β because Dαϕn → 0 uni-
formly for any α.

Thus, for any distribution f and any C∞ function a, the product
af is a distribution defined by the rule

(18.1) (af, ϕ) = (f, aϕ) , ϕ ∈ D(Ω) , a ∈ C∞ .
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18.0.1. Properties of multiplication by a smooth function. It follows from
Definition 18.1 that the multiplication of a distribution by a smooth
function is linear,

(18.2) a(c1f1 + c2f1) = c1af1 + c2af2 , f1,2 ∈ D′ , a ∈ C∞ ,

where constants c1,2 are constants, and it is also distributive and com-
mutative,

(18.3) (ab)f = a(bf) = b(af) , f ∈ D′ , a, b ∈ C∞ .

18.1. Multiplication of the delta-function and its derivatives. Let us find
a distribution obtained by multiplication of the delta-function by a
smooth function:

(aδ, ϕ) = (δ, aϕ) = a(0)ϕ(0) = a(0)(δ, ϕ) =
(

a(0)δ, ϕ
)

.

Since this relation holds for any test function,

a(x)δ(x) = a(0)δ(x) , x ∈ R
N .

In particular,
xδ(x) = 0 , x ∈ R .

Similarly, one can calculate the product of a smooth function with
the derivative of the delta function defined by the rule (13.5). For any
test function ϕ

(aDδ, ϕ) = (Dδ, aϕ) = −(δ,D(aϕ)) = −a(0)Dϕ(0) −Da(0)ϕ(0) .

Since Dϕ(0) = −(Dδ, ϕ), it is concluded that

(18.4) a(x)Dδ(x) = a(0)Dδ(x) −Da(0)δ(x) , x ∈ R
N .

Using the binomial expansion of Dα(aϕ), it is not difficult to show that

(18.5) a(x)Dαδ(x) =
∑

β≤α

(−1)|β|
(

α

β

)

Dβa(0)Dα−βδ(x)

In particular,
xδ′(x) = −δ(x) , x ∈ R .

and

xnδ(k) =
k

∑

m=0

(−1)m

(

k

m

)

Dm(xn)
∣

∣

∣

x=0
δ(k−m)(x) .

The derivatives Dm(xn) vanish at x = 0 if m ≤ k < n. When k ≤ n,
only the term m = n contributes. Therefore

xnδ(k)(x) = 0 , n > k , xnδ(k)(x) =
(−1)nk!

(k − n)!
δ(k−n)(x) , n ≤ k .
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18.2. Multiplication of the principal value distribution. Let us show that

xP 1

x
= 1 .

For any test function ϕ,
(

xP 1

x
, ϕ

)

=
(

P 1

x
, xϕ

)

= lim
a→0

∫

|x|>a

ϕ(x) dx = (1, ϕ)

by continuity of the Lebesgue integral. It also follows from Sokhotsky’s
equations (16.6) and linearity of multiplication (18.2) that

x
1

x± i0+
= 1

because xδ(x) = 0. Furthermore, by the distributive law (18.3)

xnP 1

x
= xn−1

(

xP 1

x

)

= xn−1 ,

xn 1

x± i0+
= xn−1

(

x
1

x± i0+

)

= xn−1 .

Let a be a C∞ function. Define the function b by relation a(x) =
a(0) + b(x)x. Then b is also a C∞ function by the Taylor theorem.
Therefore

a(x)P 1

x
= a(0)P 1

x
+ b(x)xP 1

x
= a(0)P 1

x
+
a(x)− a(0)

x
.

18.3. Multiplication by a bump function. It follows from (16.1) that if
smooth functions a(x) and b(x) are equal in a neighborhood of support
of a distribution f , then

(18.6) a(x)f(x) = b(x)f(x) .

Indeed, for any test function ϕ, the supports of f and (a− b)ϕ have no
common points and, hence, by (16.1)

(af − bf, ϕ) = ((a− b)f, ϕ) = (f, (a− b)ϕ) = 0 .

It should be pointed out that the assertion may be false if a = b only
on supp f . Let us illustrate this with an example.

Let f = δ(n) (see Sec. 15.4.2). The support of f consists of the
single point x = 0 for any n. Let smooth functions a and b be non-
vanishing and equal on the support of δ′, that is, a(0) = b(0). Then it
follows from (18.4) that

a(x)δ′(x) − b(x)δ′(x) = −(a′(0) − b′(0))δ(x) 6= 0 .
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unless a′(0) = b′(0). Furthermore, by Eq. (18.5)

a(x)δ(n)(x) − b(x)δ(n) =
n

∑

k=0

(−1)k

(

n

k

)

[a(k)(0) − b(k)(0)]δ(n−k)(x) ,

for any integer n > 0. This shows that in order for the equality (18.6)
to hold for any derivative of the delta function, the derivatives of a
and b of any order must be equal at x = 0. This is guaranteed if
a(x) = b(x) in a neighborhood of x = 0, not just at x = 0. However,
it is not necessary because the difference a(x) − b(x) can be a smooth
function that vanishes at x = 0 and is not analytic at x = 0. For
example, ωε(x − ε)δ(n)(x) = 0 for any integer n ≥ 0, where ωε is the
hat function.

Let ηf be a function from class C∞ that has unit value in a neighbor-
hood of the support of a distribution f . By Theorem 14.1, a function
ηf with the said properties exists and can be constructed by means of
the convolution of the hat function ωa and the characteristic function
of supp f (ηf is a bump function for supp f). Then by setting a = ηf

and b = 1 in (18.6), one infers that

(18.7) ηf (x)f(x) = f(x) .

This rule for multiplication of a distribution by a bump function for its
support will often be used later.

18.4. General solution to xnf(x) = 0. Let us find all solutions to the
following distributional equation:

(18.8) xnf(x) = 0 , f ∈ D′(R) .

It follows from the result of Sec.18.1 that the equation has a non-trivial
solution of the form

(18.9) f(x) =

n−1
∑

k=0

ckδ
(k)(x) ,

for any choice of constants ck. If the support of a test function ϕ does
not contain x = 0, then ψ(x) = ϕ(x)/xn is also a test function so that
for any solution to (18.8) (xnf, ψ) = (f, xnψ) = (f, ϕ) = 0 which means
that f(x) = 0, x 6= 0. So, the support of f consists of one point x = 0.
Let us show that any solution has the form (18.9).

To prove the assertion, the following fact is useful. For any test
function ϕ, the function

ψ(x) =
ϕ(x)− η(x)Tn−1(x)

xn
∈ D ,
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is also a test function, where Tn−1(x) is the Taylor polynomial of order
n− 1 for ϕ about x = 0 and η is a test function that has unit value in
a neighborhood of x = 0. Indeed, this function is from C∞ near any
point except possibly x = 0. By Taylor’s theorem ϕ(x)−η(x)Tn−1(x) =
O(xn) as x → 0 because η(x) = 1 near x = 0. Therefore ψ is from
class C∞ near x = 0. It also has a bounded support because η and ϕ
have bounded supports. Thus, ψ ∈ D.

Let f(x) be a solution to (18.8). Then

(f, ϕ) = (f, ηTn−1) + (f, xnψ) = (f, ηTn−1) + (xnf, ψ) = (f, ηTn−1)

=

n−1
∑

k=0

(f, xkη)

k!
ϕ(k)(0) =

n−1
∑

k=0

(f, xkη)

k!
(−1)k(δ(k), ϕ)

This shows that

ck =
(−1)k(f, xkη)

k!
.

Note that ck do not depend on the choice of η because the support of
any distributional solution f is x = 0. So, the action of f on a test
function from D(R) is determined by properties of the test function
in a neighborhood of x = 0 where η(x) = 1. The coefficients ck are
determined by the action of f on a test function that looks like xk near
x = 0.

18.5. Limits of rapidly oscillating functions multiplied by a distribution.

In Sec.15.8.3 it was shown that a smooth periodic function with period
tending to zero converges to the zero distribution. Consider a similar
problem when a smooth periodic function is multiplied by a distribu-
tion. Here it is proved that

(18.10) lim
t→∞

eitxP 1

x
= iπδ(x) .

and as a consequence of Sokhotsky’s equations

(18.11) lim
t→+∞

eitx

x− i0+
= 2πiδ(x) , lim

t→+∞

eitx

x+ i0+
= 0 .

For any test function ϕ with support in [−R,R]
(

eitxP 1

x
, ϕ

)

=
(

P 1

x
, eitxϕ

)

= lim
a→0

∫

a<|x|<R

eitxϕ(x)

x
dx

= lim
a→0







∫

a<|x|<R

eitx[ϕ(x) − ϕ(0)]

x
dx + ϕ(0)

∫

a<|x|<R

eitx

x
dx
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The function

ψ(x) =
ϕ(x) − ϕ(0)

x
is from class C1 because it is smooth for x 6= 0 and ψ(x) = ϕ′(0) +
1
2
ϕ′′(0)x+O(x2) near x = 0. This implies that a can be set to 0 in the

first integral and by integration by parts
∫ R

−R

eitxψ(x) dx =
eitx

it
ψ(x)

∣

∣

∣

R

−R
− 1

it

∫ R

−R

ψ′(x)eitx dx .

Put

M0 = sup
[−R,R]

|ψ(x)| , M1 = sup
[−R,R]

|ψ′(x)| .

The integral can be estimated as
∣

∣

∣

∣

∫ R

−R

eitxψ(x) dx

∣

∣

∣

∣

≤ 2M0

t
+

2M1R

t
.

This shows that the integral vanishes in the limit t → ∞.
The second integral can be evaluated by means of the Cauchy theo-

rem. If Ca and CR denote semi-circles in the upper part of the complex
plane of radii a and R, respectively, and oriented positively, then by the
Cauchy theorem applied to the function eitz/z that is analytic in the
upper part of the complex plane bounded by the semi-circles it follows
that

∫

a<|x|<R

eitx

x
dx =

∫

Ca

eitz

z
dz −

∫

CR

eitz

z
dz

= i

∫ π

0

eitaeiθ

dθ − i

∫ π

0

eitReiθ

dθ .

Let us evaluate the limits of these integrals as a → 0+ and t → ∞.
Clearly, eitaeiθ → 1 as a→ 0 for any t and θ, and |eitReiθ | = e−tR sin(θ) →
0 as t → ∞ for any 0 < θ < π (or almost everywhere in [0, π]).
Therefore one should justify interchanging the order of integration and
taking the limit. The integrand in the first integral has a Lebesgue
integrable bound independent of parameters a and t

∣

∣

∣
eitaeiθ

∣

∣

∣
≤ e−ta sin(θ) ≤ 1 ∈ L(0, π)

for all t > 0 and a > 0. By the Lebesgue dominated convergence
theorem

lim
a→0+

∫ π

0

eitaeiθ

dθ =

∫ π

0

lim
a→0

eiateiθ

dθ =

∫ π

0

dθ = π .
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Similarly, the integrand in the integral over CR has the same Lebesgue
integrable bound for all t > 0 and converges to zero almost everywhere
so that

lim
t→+∞

∫ π

0

eitReiθ

dθ =

∫ π

0

lim
t→+∞

eitReiθ

dθ =

∫ π

0

0dθ = 0 .

Thus,

lim
t→+∞

lim
a→0+

∫

a<|x|<R

eitx

x
dx = iπ

and

lim
t→+∞

(

eitxP 1

x
, ϕ

)

= πiϕ(0) = πi(δ, ϕ)

for all test functions and (18.10) follows.

18.6. Exercises.

1. Show that

(i) xP 1

xn
= P 1

xn−1
,

(ii) a(x)P 1

xn
=
a(x)− pn−1(x)

xn
+

n−1
∑

k=0

a(k)(0)P 1

xn−k
,

where a ∈ C∞ and pn−1 is the Taylor polynomial of order n − 1 for a
about x = 0.

1. Show that

xPr
1

|x| = ε(x) , x2Pr
1

|x| = |x|

where ε(x) is the sign function.

2. Prove each of the following distributional limits

(i) lim
t→+∞

e−itx

x− i0+
= 0

(ii) lim
t→+∞

e−itx

x+ i0+
= −2πiδ(x)

(iii) lim
t→+∞

cos(tx)P 1

x
= 0

3. Find all distributions f such that

(i) xnf(x) = 1 ,

(ii) xnf(x) = a(x) , a ∈ C∞ ,
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where n is a positive integer. Hint: Any of equations is linear. What
is the structure of its general solution? Can a particular solution to (i)
be used to construct a particular solution to (ii)?

4. Show that

(|x|2 −m2)
1

|x|2 −m2 + i0+
= 1 , x ∈ R

N .
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19. Regularization of distributions

It was shown earlier that there are sequences of smooth functions
that converge to singular distributions. Can any distribution be ob-
tained as the weak limit of a sequence of smooth functions? It turns
out that the answer is affirmative.

Theorem 19.1. (Regularization of a distribution)
For any distribution f , there exists a family of test functions fa, a > 0,
such that fa → f in D′ as a → 0+. In other words, the space of test
functions D is dense in the space of distributions D′.

This theorem has a paramount significance in physics. Many cal-
culations in physics are carried out formally, that is, a little attention,
if not at all, is paid to questions like smoothness of functions that are
to be differentiated, interchanging the order of summations and dif-
ferentiation or integration in a series, etc. Nonetheless, such formal
calculations lead to correct answers supported by experimental evi-
dence. Why? The regularization theorem for distributions provides a
justification for many formal calculations in physics.

First, physical quantities are distributions, not classical functions
by the very nature of measuring them. Second, most calculus opera-
tions are linear and continuous on the space of distributions as is shown
in the next chapter. Therefore any such operation can be carried out
for regularizations of distributions (that is, on tests functions) and, by
continuity, the result will also be valid after removing the regulariza-
tion.

19.1. The strategy for constructing a regularization of a distribution. Let
us first verify that Theorem 19.1 holds for regular distributions. Recall
that the regularization fa, defined in (14.6), for a locally integrable
function f is a smooth function. The functions fa and f are also
regular distributions and for any test function ϕ it follows from Fubini’s
theorem that

(φa ∗ f, ϕ) =

∫ ∫

φa(x− y)f(y)ϕ(x) dNydNx

=

∫

f(y)

∫

φa(x− y)ϕ(x) dNxdNy = (f, φ−
a ∗ ϕ)

where φ−
a (x) = φa(−x) is the parity transformation of φa. Recall also

that the characteristic property of φa is that φa → δ in D′. By continu-
ity of the parity transformation on D′ (see Sec.17.1.1 where T (or T ∗)
is a parity transformation on D (or D′)), φ−

a is also a delta sequence,
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φa(−x) → δ(−x) = δ(x) in D′. It turns out that the convolution of
test functions with such delta sequences has the following property.

Proposition 19.1. Let ωa be a sequence of test functions that con-
verges to the delta function as a → 0 in the distributional sense, then
the sequence of test functions ωa ∗ ϕ converges to ϕ in D as a → 0 for
any test function ϕ.

A proof will be given shortly. Let us first observe its simple conse-
quence: φa ∗ f → f in D′ for any regular distribution f . Indeed, by
continuity of the functional f

lim
a→0

(φa ∗ f, ϕ) = lim
a→0

(f, φ−
a ∗ ϕ) = (f, ϕ) , ϕ ∈ D .

Furthermore, let η(x) be a bump function for the unit ball |x| < 1.
Then ηa(x) = η(ax) is a bump function for the ball |x| < 1

a
. Therefore

ηa(x)fa(x) is a test function and

ηafa → f in D′

as a → 0+. Indeed, for all small enough a and any test function ϕ,
ηa(x)ϕ(x) = ϕ(x) because the support of ϕ is bounded, and, hence

lim
a→0+

(ηafa, ϕ) = lim
a→0+

(fa, ηaϕ) = lim
a→0+

(fa, ϕ) = (f, ϕ) .

This construction proves Theorem 19.1 for regular distributions.
The next step is to extend the above construction to any distribu-

tion f . This implies that one has to show:

(i) for any test function φ and any distribution f , the functional
φ ∗ f defined by the rule

(19.1) (φ ∗ f, ϕ) = (f, φ− ∗ ϕ) , ϕ ∈ D ,

is a distribution (a linear and continuous functional)
(ii) φ ∗ f is a regular distribution defined by a smooth function.

These two assertions will be proved below. It follows from them that
the sequence of test functions fa = ηa(φa ∗ f) → f in D′ as a → 0+

for any sequence of test functions φa → δ in D′ as a→ 0+. Indeed, by
continuity of the functional f and Proposition 19.1, one infers that

lim
a→0+

(fa, ϕ) = lim
a→0+

(φa ∗ f, ηaϕ) = lim
a→0+

(φa ∗ f, ϕ)

= lim
a→0+

(f, φ−
a ∗ ϕ) = (f, ϕ) .

For example, one can always take φa = ωa (a hat function) construct
an approximation of any distribution by a test function.

Let us turn to establishing the aforementioned facts to fill out the
gaps in the proof of Theorem 19.1.
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19.2. Proof of Proposition 19.1. By hypotheses

lim
a→0

(ωa, ψ) = lim
a→0

∫

ωa(x)ψ(x) dNx = ψ(0) , ψ ∈ D .

By Fubini’s theorem (which applies as supports of all functions are
bounded)

(ωa ∗ ϕ, ψ) =

∫ ∫

ωa(x− y)ϕ(y) dNy ψ(x) dNx

=

∫

ωa(z)

∫

ϕ(−y)ψ(z − y) dNy dNx = (ωa, ϕ
− ∗ ψ) .

Here two changes of variables have been used y → −y and then z =
x + y. By Sec.14.2.4, the convolution of two test functions is a test
function, ϕ− ∗ ψ ∈ D. Therefore

lim
a→0

(ωa ∗ ϕ, ψ) = (ϕ− ∗ ψ)(0) =

∫

ϕ(−y)ψ(−y) dNy = (ϕ, ψ) ,

where the change of variables y → −y is used again. This means that
ωa ∗ ϕ→ ϕ in D′ as a → 0.

19.3. Convolution of a distribution and a test function. Fix ω ∈ D and
consider the transformation of D into itself defined by the rule

T : ϕ→ T (ϕ) = ω− ∗ ϕ .
If T is linear and continuous, then for any distribution f , the rule (19.1)
defines the adjoint transformation, T ∗(f) = ω ∗ f , of D′ to itself.

Linearity of T follows from linearity of the convolution. By the
analysis in Sec.14.2.4,

(19.2) Dα(ω ∗ ϕ) = Dα−βω ∗Dβϕ , 0 ≤ β ≤ α .

Let ϕn → 0 in D. Then by the above property

|Dα(ω− ∗ ϕn)(x)| ≤
∫

|ω−(x− y)||Dα
yϕn(y)| dNy

≤ M sup |Dαϕn| , M =

∫

|ω(y)| dNy ,

Since the inequality holds for any x, sup |DαT (ϕn)| ≤M sup |Dαϕn| →
0 as n → ∞ for any α. This means that T (ϕn) → 0 in D. Continuity
of T is established. Thus, the rule (19.1) defines a distribution ω ∗ f .

Let us investigate if ω ∗ f is a regular distribution defined by a
smooth function for any f ∈ D′. This is far from obvious because for
singular distributions basic theorems about smoothness of functions
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defined by integrals like (14.6) cannot be used. Let us first check if the
assertion holds for some examples of singular distributions.

19.3.1. Convolutions with delta functions. Let is calculate ω∗δ. For any
test function, one infers that

(ω ∗ δ, ϕ) = (δ, ω− ∗ ϕ) = (ω− ∗ ϕ)(0)

=

∫

ω(x)ϕ(x) dNx = (ω, ϕ)

Therefore
ω ∗ δ = ω .

The convolution is a test function.
Let f = νδS be a surface delta function with density ν and sup-

ported on a smooth M-surface S in RN . It is defined in (15.6). Let us
calculate its convolution with a test function:

(ω ∗ (νδS), ϕ) = (νδS , ω− ∗ ϕ) =

∫

S

ν(x)

∫

ω(y − x)ϕ(y) dNy dSx

=

∫

ϕ(y)

∫

S

ν(x)ω(y − x) dSx d
Ny

where the order of integration is changed by Fubini’s theorem which
applies because the integrand is an integrable function on RN × S.
Indeed, if ϕ is supported in a ball |y| < R and ω is supported in a ball
|y − x| < Rω. Then

∫ ∫

S

|ν(x)ω(y − x)ϕ(y)| dSx d
Ny ≤ M

∫

SR

|ν(x)|dSx <∞ ,

where M = sup |ϕ| sup |ω|V (R), V (R) is the volume of a ball of radius
R, SR is the part of S that lies in a ball of radius R+Rω, and the surface
integral is finite because the density ν is continuous on S and SR has
a finite area (see Sec.15.6). Therefore, the convolution in question is
given by the surface integral

ω ∗ (νδS)(y) =

∫

S

ν(x)ω(y − x) dSx .

This function is smooth in any ball |y| < R, hence, from class C∞.
Indeed, if support of ω is in a ball of radius Rω, then the integrand van-
ishes for any |x| > R+Rω if |y| < R so that the partials are bounded:
|ν(x)Dβ

yω(y − x)| ≤ sup |Dβω||ν(x)|, the bound is independent of y
and is integrable on the part of S in the ball |x| < R + Rω as noted
above. By Theorem 7.2, the surface integral has continuous partials of
any order in any ball |y| < R. So, the convolution ω∗ (νδS) is a smooth
function.
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In what follows, the assertion will be deduced from a more fact
proved in the next section. This fact is also essential for several other
concepts in the theory of distributions such as, e.g., convolution.

19.4. Test functions generated by distributions. Let ϕ(x, y) be a test
function of two variables x ∈ RN and y ∈ RM . For every fixed y,
ϕ(x, y) is a test function in the variable x. Therefore one can define a
function

(19.3) ψ(y) =
(

f(x), ϕ(x, y)
)

,

where the value of the distribution f is calculated for every (fixed) y.
For example, if f is a regular distribution, then

ψ(y) =

∫

f(x)ϕ(x, y) dNx .

If f(x) = Dδ(x), then

ψ(y) = (Dδ(x), ϕ(x, y)) = −(δ(x), Dxϕ(y, x)) = −Dxϕ(y, 0) .

The function (19.3) has remarkable properties.

Proposition 19.2. For any distribution f ∈ D′(RN) and any test
function of two variables, x ∈ RN and y ∈ RM , the function defined by
Eq. (19.3) is a test function, and

∫

(

f(x), ϕ(x, y)
)

dMy =
(

f(x),

∫

ϕ(x, y) dMy
)

(19.4)

Dα
y

(

f(x), ϕ(x, y)
)

=
(

f(x), Dα
yϕ(x, y)

)

(19.5)

Support of ψ. Let support of ϕ be in a ball |x|2 + |y|2 < R2, then
ψ(y) = 0 if |y| > R because ϕ(x, y) = 0 for all x if |y| > R. Thus, the
support of ψ is bounded.

Continuity of ψ. Take a sequence yn → y. Then the sequence of test
functions ϕn(x) = ϕ(x, yn) converges to ϕ(x, y) in D(RN ) for every
y. Indeed, supports of Dα

xϕn lie in a ball |x| ≤ R. By Sec.1.2.6, ϕ is
uniformly continuous and, hence, for any ε > 0 one can find δ > 0 such
that

|Dα
xϕn(x) −Dα

xϕ(x, y)| < ε whenever |yn − y| < δ

which holds for all x. Therefore

sup
x

|Dα
xϕn(x) −Dα

xϕ(x, y)| ≤ ε
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for any y. Since yn → y, for all large enough n the distance between
yn and y can be made smaller than δ. This implies that Dα

xϕn → Dα
xϕ

uniformly in the variable x. This means that ϕn → ϕ in D(RN ).
Continuity of ψ follows from the continuity of the functional f :

lim
n→∞

ψ(yn) = lim
n→∞

(

f(x), ϕn(x)
)

=
(

f(x), ϕ(x, y)
)

= ψ(y) .

ψ is a test function. Let ej denote the jth unit vector in the standard
basis in RM . Then by definition

∂ψ(y)

∂yj
= lim

δ→0

ψ(y + δej) − ψ(y)

δ

Then for every (fixed) y, the test functions

φδ(x) =
ϕ(x, y + δej) − ϕ(x, y)

δ
→ ∂ϕ(x, y)

∂yj
in D(RN )

as δ → 0. A proof of this assertion is analogous to the proof of conti-
nuity of ψ and left to the reader as an exercise. Then the existence of
partial derivatives of ψ follows from the continuity of the functional f :

∂ψ(y)

∂yj
= lim

δ→0

(

f(x), φδ(x)
)

=
(

f(x),
∂ϕ(x, y)

∂yj

)

Next continuity of partial derivatives Dψ is established in the same
way as the continuity of ψ. Thus, ψ is from class C1. Repeating the
argument for partial derivatives of partial derivatives, D2ψ = D(Dψ),
and so on for Dβψ, it is concluded that ψ is from class C∞ and Eq.
(19.5) holds for computing any partial derivative of ψ.

Integration of ψ. Consider a sequence of Riemann sums for the integral
of ϕ with respect to y

φn(x) =
∑

p∈Pn

ϕ(x, yp)∆Vp

where it is assumed that each partition box Rp lies in a ball of radius
1/n, n = 1, 2, .... Let us show that

φn(x) → φ(x) =

∫

ϕ(x, y) dMy in D(RN ) .

The idea is again based on the uniform continuity of test functions.
Fix ε > 0 and find δ such that

|Dα
xϕ(x, y)−Dα

xϕ(x, yp)| < ε whenever |y = yp| < δ .
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By the integral mean value theorem

Dαφ(x) =
∑

p∈Pn

∫

Rp

Dα
xϕ(x, y) dMy =

∑

p∈Pn

Dα
xϕ(x, y∗p)∆Vp

for some points y∗p ∈ Rp that generally depend on α and x. Note that ϕ
vanishes outside some large enough box and the sum has finitely many
terms. Therefore for all n such that 1

n
< δ,

|Dαφn(x)−Dαφ(x)| ≤
∑

p∈Pn

|Dα
xϕ(x, y∗p) −Dα

xϕ(x, yp)|∆Vp < εVR

where VR is the volume of a rectangular box that contains the ball
|y| < R if the support of ϕ is in a ball of radius R. The inequality
holds for all x and, hence,

sup |Dαφn(x) −Dαφ(x)| ≤ ε

which means that all partial derivatives of φn converge uniformly to
the corresponding partial derivatives of φ, or φn → φ in D.

Equation (19.4) follows from continuity and linearity of the func-
tional f and integrability of ψ:

(

f(x), φ(x)
)

= lim
n→∞

(

f(x), φn(x)
)

= lim
n→∞

∑

p∈Pn

(

f(x), ϕ(x, yp)
)

∆Vp

= lim
n→∞

∑

p∈Pn

ψ(yp)∆Vp =

∫

ψ(y) dMy .

19.5. Smoothness of the convolution. If f is regular distribution, then
the convolution (ω ∗ f)(y) = (f(x), ω(x− y)) where ω(x− y) is a test
function in the variable x for each y. It turns out that this represen-
tation can be extended to singular distributions and, with the help of
Proposition 19.2, this function is proved to be smooth.

Proposition 19.3. The convolution of a test function and a dis-
tribution is a smooth function:

f ∈ D′ , ω ∈ D ⇒ ω ∗ f ∈ C∞

that can be computed by the rule

(19.6) (ω ∗ f)(y) =
(

f(x), ω(y − x)
)

and its derivatives are

(19.7) Dβ(ω ∗ f)(y) =
(

f(x), Dβ
yω(y − x)

)
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If, in addition, the support of f is bounded, then the convolution is a
test function:

f ∈ D′ , supp f ⊂ BR , ω ∈ D ⇒ ω ∗ f ∈ D .

Let φ be a test function. Then

(ω ∗ f, φ)
(1)
= (f, ω− ∗ φ)

(2)
=

(

f(x),

∫

ω(y − x)φ(y) dNy
)

(3)
=

∫

(

f(x), ω(y − x)φ(y)
)

dNy

(4)
=

∫

(

f(x), ω(y − x)
)

φ(y) dNy

Here (1) and (2) are by definition of the convolutions, (3) follows from
(19.4) where

ϕ(x, y) = ω(y − x)φ(y) ∈ D(R2N )

for any test functions ω and φ, and (4) by linearity of the functional
f . The rule (19.6) follows from the last equality. By Proposition 19.2,
(f(x), ϕ(x, y)) = φ(y)(ω ∗ f)(y) is a test function. This implies that
ω ∗ f is from class C∞, and partial derivatives Dβ(ω ∗ f) are given by
(19.7).

Suppose that the support of f is bounded. Let ηf be a bump
function for supp f . Then ηf is a test function and ηf (x)f(x) = f(x)
(see (18.7)). It follows from (19.6) that

(ω ∗ f)(y) =
(

ηf(x)f(x), ω(x− y)
)

=
(

f(x), ηf (x)ω(x− y)
)

The test function ηf(x)ω(x − y) = 0 vanishes for all |y| > Rf + Rω if
supports of f and ω are balls of radii Rf and Rω respectively. This
implies that the support of ω ∗ f lies in a ball of radius Rf + Rω so
that ω ∗f ∈ D. The proof of Proposition 19.6 is complete and so is the
proof of Theorem 19.1.

19.6. Summary. The proof of Theorem 19.1 offers an explicit method
for constructing an approximation of any distribution by a regular dis-
tribution defined by either a test function or a smooth function. For
example, for any distribution f , the convolution ωa ∗ f , where ωa is a
hat function, is a regular distribution defined by a C∞ function, and
ωa ∗ f → f in D′ as a → 0+. If the distribution f is compactly sup-
ported, then ωa ∗ f is a test function. If f is not compactly supported,
then fa = ηa(ωa ∗f) is a test function for any bump function ηa for the
ball |x| < 1

a
, and fa → f in D′ as a → 0+.


