
CHAPTER 3

Calculus with distributions

20. Change of variables in distributions

20.1. A general change of variables in a distribution. Let us try to extend
a linear charge of variables in a distribution to a general change of
variables. Let x = F (y) be a change of variables in a Lebesgue integral
(as defined in Sec.6.14):

F : Ω ⊆ R
N → R

N , ΩF = F (Ω) ,

for some open set Ω. The usual strategy is employed to define a distri-
bution f(F (y)) ∈ D′(Ω) from a distribution f(x) ∈ D′(ΩF ) by a change
of variables. First, the associated transformation of test functions

T
F

: D(Ω) → D(ΩF )

is obtained by changing variables in regular distributions. Then condi-
tions under which TF is linear and continuous are established. Finally,
the adjoint transformation defines a change of variables in any distri-
bution:

T ∗
F

: f(x) ∈ D′(ΩF ) → f(F (y)) = T ∗
F (f)(y) ∈ D′(Ω) .

Let f(x) be locally integrable on ΩF . Then f defines a regular
distribution from D′(ΩF ). For brevity of notations, put

f
F
(y) = f(F (y)) .

The function f
F

is locally integrable on Ω and defines a regular distri-
bution from D′(Ω) by the rule

(f
F
, ϕ) =

∫

Ω

f(F (y))ϕ(y) dNy , ϕ ∈ D(Ω) .

Let us change the integration variable y = F−1(x),

dNx = J(y) dNy , J(y) =
∣

∣

∣ det
(∂Fj

∂yk

)∣

∣

∣ 6= 0 ,

where the Jacobian J(y) is continuous and does not vanish anywhere
in Ω (see Sec.6.14). Therefore

(f
F
, ϕ) =

∫

ΩF

f(x)ϕ
F
(x) dNx = (f, ϕ

F
) ,
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254 3. CALCULUS WITH DISTRIBUTIONS

where

(20.1) ϕ
F
(x) =

1

J(F−1(x))
ϕ(F−1(x)) .

If F (y) = Ay + b, then this equation is reduced to (17.4).
Define a transformation on the space of test functions

T
F

: ϕ(x) → T
F
(ϕ)(x) = ϕ

F
(x) .

If ϕ
F

is a test function from D(ΩF ) and T
F

is linear and continuous,
then the adjoint transformation T ∗

F
of any distribution f

(20.2) (T ∗
F
(f), ϕ) = (f, T

F
(ϕ)) , f ∈ D′(ΩF ) , ϕ ∈ D(Ω) .

defines a distribution f(F (y)) = T ∗
F
(f)(y) obtained from f by a change

of variables.
It is noted first that the function ϕ

F
, defined in (20.1), is not smooth

enough to be a test function because F−1 is from class C1. So the
change of variables must be from class C∞. The following fact1 from
mathematical analysis is invoked to find sufficient conditions for the
outlined strategy to work.

Proposition 20.4. Let Ω be open in RN and F : Ω → RN be a one-
to-one transformation from class C∞ whose Jacobian does not vanish
anywhere on Ω. Then the inverse transformation F−1 : F (Ω) → Ω is
from class C∞ that is one-to-one and whose Jacobian does not vanish
anywhere in F (Ω). The converse is also true.

A transformation F satisfying the hypotheses in Proposition 20.4
is called a diffeomorphism of Ω onto F (Ω). The inverse of a diffeomor-
phism is also a diffeomorphism.

Corollary 20.1. Let F be a diffeomorphism of an open set Ω ⊆
RN onto ΩF = F (Ω). Then the transformation T

F
defined by the rule

(20.1) maps D(Ω) to D(ΩF ), and is linear and continuous. The ad-
joint transformation of any distribution f ∈ D′(ΩF ) defined by the rule
(20.2) is a distribution from D′(Ω).

To prove the assertion, it is sufficient to show that T
F

exists and
is linear and continuous. The conclusion follows from properties of
the adjoint T ∗

F
(see Sec.17.1). The existence is established by showing

that the function ϕ
F

defined by (20.1) is a test function from D(ΩF )
for any ϕ ∈ D(Ω). By Proposition 20.4, ϕ

F
is from class C∞ for any

ϕ ∈ C∞ because F−1 is from class C∞ and the Jacobian does not vanish

1R.E. Kass and P.W. Vos, Geometrical foundations of asymptotic interference,
John Willey & Sons, 1997, Appendix A
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anywhere. Now recall a basic fact from mathematical analysis2 that a
continuous transformation of RN maps a compact set into a compact
set. A test function ϕ is compactly supported and so is ϕ

F
:

suppϕ
F

= F (suppϕ) ⊂ ΩF .

Thus, ϕ
F
∈ D(ΩF ).

The map T
F

is obviously linear. Let ϕn → 0 in D(Ω) as n → ∞.
Then supports of all ϕn lie in one compact K ⊂ Ω. Therefore the
supports of T

F
(ϕn) are in the compact F (K). It remains to show that

supΩ |Dαϕn| → 0 for any α implies that supΩF
|DαT

F
(ϕn)| → 0 for all

α. The reciprocal of J(F−1(x)) is from class C∞ and multiplication by a
smooth function is a linear and continuous transformation of the space
of test functions (see Sec.18), it is then sufficient to establish uniform
convergence of derivatives of ϕn(F−1(x)) to zero. By the chain rule

sup
F (K)

|Dxϕn(F−1(x))| ≤ M1 sup
K

|Dyϕn(y)| , M1 =
N
∑

i,j=1

sup
F (K)

∣

∣

∣

∂yi

∂xj

∣

∣

∣

because all partial derivatives of y = F−1(x) are bounded on any com-
pact subset of ΩF as F−1 ∈ C∞(ΩF ). This shows thatDxϕn(F−1(x)) →
0 uniformly if Dyϕn(y) → 0 uniformly. Similarly, for higher-order par-
tial derivatives. Technical details are left to the reader as an exercise.

20.1.1. Change of variables in delta functions. Let x ∈ R and F be a
diffeomorphism such that

F : R → F (R) = R .

Since the derivative F ′ does not vanish anywhere, it is either strictly
positive or strictly negative everywhere. Therefore the function F is
strictly monotonic (either increasing or decreasing monotonically) and,
hence, one-to-one. So, x = F (y) is a change of variables. In this case

ϕ
F
(x) =

ϕ(y)

|F ′(y)|
∣

∣

∣

y=F−1(x)
.

Note that if suppϕ ⊂ [−R,R], then the support of ϕ
F

lies in [A−, A+]
where F (A±) = ±R or F± = F−1(±R). Owing to the monotonicity of
F , the numbers A± are unique. The absolute value does not produce
any problems with differentiability because F ′ never changes its sign
so that ϕ

F
∈ C∞ if F−1 ∈ C∞.

2See, e.g., W. Rudin, Principles of mathematical analysis, Chapter 4.
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Let δa(x) = δ(x− a) be a shifted delta-function. Then

(

δa(F (y)), ϕ(y)
)

= (δa, ϕF
) = ϕ

F
(a) =

ϕ(b)

|F ′(b)| =
1

|F ′(b)|
(

δb(y), ϕ(y)
)

where b is the root of the equation F (b) = a or b = F−1(a). Owing
to the monotonicity of F , there is only one such root for any a ∈ R =
F (R). Thus,

δ
(

F (y)− a
)

=
1

|F ′(b)| δ(y − b) , b = T−1(a) .

For example, put F (y) = sinh(y), then

y = F−1(x) = ln
(

x+
√
x2 + 1

)

∈ C∞ , x ∈ R ,

ϕ
F
(x) =

1√
1 + x2

ϕ
(

ln
(

x+
√
x2 + 1

))

∈ D(R) ,

δ(sinh(y) − a) =
1√

1 + a2
δ(y − b) , b = ln(a +

√
a2 + 1) .

Let F be a diffeomorphism of RN onto RN . Then for any test
function ϕ ∈ D,
(

δ(F (y)− a)), ϕ(y)
)

= (δ(x− a), ϕ
F
(x)) = ϕ

F
(a) =

ϕ(F−1(a))

|J(F−1(a))| .

Therefore

δ
(

F (y)− a
)

=
1

|J(F−1(a))| δ
(

y − F−1(a)
)

.

20.2. Transformations with a reduced range. Consider a diffeomorphism
of RN whose range is a subset of RN :

F : R
N → ΩF ⊂ R

N .

A peculiarity of this case is that T
F

maps D into its subspace D(ΩF ).
Therefore the adjoint transformation

(

f(F (y)), ϕ(y)
)

=
(

f(x), ϕ
F
(x)
)

, ϕ
F
∈ D(ΩF ) ,

applies only to distributions f ∈ D′(ΩF ) ⊂ D′, not to every distribution
in D′. If one formally extends the above relation to any f ∈ D′, then
the right-hand side vanishes if f = 0 in ΩF . This implies that if the
support of f ∈ D′ does not overlap with ΩT , then f(T (y)) = 0:

f ∈ D′ , supp f ∩ F (RN) = ∅ ⇒ f(F (y)) = 0 .
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This observation naturally agrees with a change of variable for regular
distributions

(f(F (y)), ϕ(y)) =

∫

f(F (y))ϕ(y) dNy =

∫

ΩF

f(x)ϕ
F
(x) dNx ,

The integral vanishes if f(x) = 0 a.e. in ΩF even though f(x) 6= 0 in
RN .

20.2.1. Example: Shifted delta functions. Let x = F (y) be diffeomor-
phism of R as in Sec.20.1.1 but its range is not the whole R. Then the
equation F (b) = a has no root if a does not belong to the range of F .
In this case,

δ(F (y)− a) = 0 , a /∈ F (R) .

For example,

x = F (y) = arctan(y) , F ′(y) =
1

1 + y2
> 0 , y ∈ R ,

y = F−1(x) = tan(x) , x ∈ ΩF = F (R) = (π
2
, π

2
) ,

ϕ
F
(x) =

1

cos2(x)
ϕ
(

tan(x)
)

∈ D(π
2
, π

2
) .

The test function ϕ
F

and all its derivatives vanish in a neighborhood
of the points x = ±π

2
because ϕ has a bounded support and, hence,

vanishes for all | tan(x)| > R and some R > 0 (see Sec.14.1.1). In this
case,

δ(arctan(y) − a) = 0 , |a| ≥ π

2
,

δ(arctan(y) − a) =
1

1 + a2
δ(y − tan(a)) , |a| < π

2
.

The same holds for a multi-variable delta function, δ(F (y)−a) = 0
if a is not in the range of a diffeomorphism F of RN into itself.

20.3. A general smooth transformation of the argument of a distribution.

Let x = F (y) be a general transformation of RN from class C∞. What
can go wrong with the rule (20.2)? Can the distribution f(F (y)) be
defined in some sense? It turns out that if a smooth transformation is
not a diffeomorphism, then the change of arguments can still be done
for some distributions.

20.3.1. Zeros of the Jacobian. The Jacobian of a smooth one-to-one
transformation, x = F (y), can have zeros. For example, put x =
F (y) = y3 so that dx = 3y2dy and the inverse is x = y1/3. Note
that the inverse transformation is not smooth at y = 0. The Jacobian
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J = 3y2 also vanishes at y = 0. Then the rule (20.2) does not make
any sense for the delta-function because

(

δ(y3), ϕ(y)
)

=
(

δ(x), ϕ
F
(x)
)

=
ϕ(x1/3)

3x2/3

∣

∣

∣

x=0
does not exist

for any test function ϕ(y) that does not vanish at y = 0.
Clearly, the reason for the failure of (20.2) is that the transformation

F does not induce a map of D(ΩF ) to D(Ω). The rule (20.1) fails to
produce a test function. However, if one takes any open subset of Ω
where the Jacobian has no zeros, then the transformation restricted
to this subset satisfies the hypotheses of Proposition 20.4. Therefore
the change of variables (20.2) in any distribution whose support lies in
the largest open set that does not contain zeros of the Jacobian should
work just fine.

Let us formalize this observation. Suppose that the support of a
distribution f(x) lies in an open set that does not contain zeros of the
Jacobian. This means that the distance between supp f and the set
of zeros of the Jacobian is not zero. Therefore there exists a function
η(x) from class C∞ such that η(x) = 1 in a neighborhood of support
of a distribution f , η vanishes in a neighborhood of the set of zeros of
the Jacobian (see Sec.18.3), and f(x) = η(x)f(x). Then the rule (20.2)
yields

(

f(F (y)), ϕ(y)
)

=
(

η(x)f(x), ϕ
F
(x)
)

=
(

f(x), η(x)ϕ
F
(x)
)

.

The function η(x)ϕ
F
(x) is a test function and the rule makes sense and

defines a linear continuous functional.
For example, let x = F (y) = y3 where x and y are real. Take a

shifted Dirac delta function, f(x) = δ(x − a), a 6= 0. The support of
this distribution is x = a. Let η(x) be a bump function for the point
set {x = a} that vanishes for |x− a| > δ and some δ < |a|. Then

η(x)δ(x− a) = η(a)δ(x− a) = δ(x− a) ,

ϕ
F
(x) =

η(x)

2x2/3
ϕ(x1/3) ∈ D

because the singular point of the transformation x = 0 lies outside the
support of ϕ

F
. Therefore

(

δ(y3 − a), ϕ(y)
)

=
(

δ(x− a), ϕ
T
(x)
)

= ϕ
F
(a) =

1

2a2/3
ϕ(a1/3)

for any test function ϕ(y). Thus,

δ(y3 − a) =
1

2a2/3
δ(y − a1/3) , a 6= 0 .
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20.3.2. Smooth transformations that are not one-to-one. Let F be a C∞

transformation of RN into itself. Let ΩJ ⊂ F (RN) be the largest open
subset where the Jacobian is not zero. The construction from the
previous section needs additional amendments because F is not one-
to-one. The idea is to identify all largest open sets in the domain of
F such that when F is restricted on any of them, say Ωn, it becomes
a diffeomorphism of Ωn onto ΩJ so that a change of variables can be
carried out for any distribution supported in Ωn.

For example, consider F : R → R defined by a smooth function:

x = F (y) = sin(y) .

Then ΩJ = (−1, 1) and

Ωn =
(

− π

2
+ πn,

π

2
+ πn

)

, F (Ωn) = ΩJ ,

where n is any integer. Then the rule (20.2) can be used for any
distribution supported in ΩJ if one figures out how to deal with the
fact that F−1 has now many branches, like arcsin(x), in the rule (20.1).
Let us investigate this.

The following assumptions are made about properties of a transfor-
mation F :

(i) There are at most countably many open sets Ωn that are not
intersecting and F is a diffeomorphism of Ωn onto ΩJ which
is an open set in F (RN).

(ii) Any ball intersects only finitely many sets Ωn.

Put

F−1
n : ΩJ → Ωn .

So, the functions y = F−1
n (x) are different branches of the inverse, like

the branches of the arcsine function. They are solutions to the equation

(20.3) F (y) = x ∈ ΩJ ⇒ y = F−1
n (x) ∈ Ωn .

Let f(x) be a regular distribution with support in ΩJ and η is a
bump function for a neighborhood of supp f so that η(x)f(x) = f(x)
and η vanishes in a neighborhood of all zeros of the Jacobian. Then
η(F (y)) vanishes in a neighborhood of the complement of the union of
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Ωn, and the following equalities hold for any test function ϕ ∈ D:
(

f(F (y)), ϕ(y)
)

=
(

η(F (y))f(F (y)), ϕ(y)
)

(20.4)

=
∑

n

∫

Ωn

η(F (y))f(F (y))ϕ(y) dNy

=
∑

n

∫

ΩJ

f(x)η(x)
ϕ(F−1

n (x))

J(F−1
n (x))

dNx

=

∫

ΩJ

f(x)ϕ
F
(x) dNx = (f, ϕ

F
) ,

ϕ
F
(x) = η(x)

∑

n

ϕ(F−1
n (x))

J(F−1
n (x))

∈ D(ΩF ) .(20.5)

The support of any test function ϕ lies in a ball, and any such ball
overlaps with finitely many Ωn. Therefore, the sum in (20.5) has finitely
many terms and, hence, exists for any test function. Every term in the
sum is a test function and therefore ϕ

F
is a test function.

Moreover, the transformation T
F

: D → D(ΩJ ), defined by (20.5),
is linear and continuous. Indeed, if {ϕm} is a null sequence in D, then
the sequence {T

F
(ϕm)} obtained from {ϕm} by the rule (20.5) is a null

sequence in D(ΩJ ). Supports of all ϕm lie in one ball BR. Then the
series (20.5) for each ϕ = ϕm has finitely many terms, defined by the
condition |F−1

n (x)| < R that is independent of m. Since each term
in the sum is a null sequence in D(ΩJ ) (see Sec.20.1), {T

F
(ϕm)} is

also a null sequence in D(ΩJ ). Therefore the adjoint transformation
T ∗

F
: D′(ΩJ) → D′ defines a distribution by the rule

(20.6)
(

f(F (y)), ϕ(y)
)

=
(

f(x), ϕ
F
(x)
)

.

20.3.3. An alternative derivation. Consider a regularization fa of a dis-
tribution f ∈ D′(ΩJ ) by test functions, fa → f in D′(ΩJ ) as a → 0.
Then all the equalities in (20.4) and (20.5) hold if f is replaced by test
functions fa. Since fa → f in D(ΩJ ) as a → 0, by continuity of the
adjoint transformation fa(F (y)) converges to f(F (y)) in D′. Therefore
taking the limit a → 0 in (fa(F (y)), ϕ(y)) = (fa, ϕF

) the rule (20.6) is
obtained.

20.3.4. Example. Let F (y) = sin(y) and y = arcsin(x) ∈ (−π
2
, π

2
) de-

note the main branch of F−1. Then for any ϕ ∈ D by (20.5),

(20.7) ϕ
F
(x) =

η(x)√
1 − x2

∑

n

ϕ
(

πn+ (−1)n arcsin(x)
)

∈ D(−1, 1) ,
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for any smooth function η(x) with support in (−1, 1). The series has
only finitely many non-zero terms defined by the condition
|πn+ (−1)n arcsin(x)| < R if the support of ϕ(x) lies in [−R,R].

Let f(x) = δ(x). Then η(x) is a test function with support in
(−1, 1) and η(x) = 1 near x = 0. It follows from the rule (20.6) that
(

δ(sin(y)), ϕ(y)
)

= ϕ
F
(0) =

∑

n

ϕ(πn) =
(

∑

n

δ(y − πn), ϕ(y)
)

.

Therefore

(20.8) δ(sin(y)) =
∑

n

δ(y − πn) .

Note that the series of shifted delta-functions converges in the distri-
butional sense because

lim
n→∞

(

∑

|k|<n

δ(y − πk), ϕ(y)
)

=
∑

|k|<R/π

ϕ(πk) .

if the support of ϕ lies in [−R,R].
Let ωa(x) be a hat function and a < 1. Then ωa → δ in D′(−1, 1)

as a → 0+. It follows from the continuity of the adjoint transformation
that

lim
a→0+

ωa(sin(y)) =
∑

n

δ(y − πn) .

20.3.5. Remark. It is possible that ΩJ is the union of two or more
disjoint open sets. Let ΩJ = ΩJ1 ∪ ΩJ2 and ΩJ1,2 do not overlap.
The stated rule for changing variables holds only for distributions with
supports in ΩJ . This implies that the support of any such distribution
f contains (disjoint) closed sets that lie in non-overlapping open sets
so that f is uniquely defined by its reductions to ΩJk, k = 1, 2. Let

f(x) = fk(x) , x ∈ ΩJk .

Then the change of variables can be carried out for each fk(x) by the
rules (20.6) and (20.5) so that

f(F (y)) = fk(F (y)) , y ∈ F−1(ΩJk) .

In this case, Eq. (20.3) should be solved in each ΩJk. Moreover, the
number of solution (branches of the inverse) may be different for each
ΩJk. The procedure is readily extended to ΩJ being the countable union
of non-overlapping open sets such that any ball intersects finitely many
of them.

For example, let F : R → R defined by

(20.9) x = F (y) = y(y − a)(y − b) , 0 < a < b .
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The largest open set that contains no zeros of the Jacobian has three
disjoint open intervals

ΩJ = (−∞, xa) ∪ (xa, xb) ∪ (xb,∞) = ΩJ1 ∪ ΩJ2 ∪ ΩJ3 ,

where xa = F (ya) and xb = F (yb) and ya,b are roots of the equation
F ′(y) = 0. Equation (20.3) has just one solution for x ∈ ΩJ1 or x ∈ ΩJ3,
but three solutions for x ∈ ΩJ2. The stated change of variables can
be carried out for any distribution whose support does not contain the
singular points x = xa,b. For example, if f(x) = δ(x− c), then

δ(F (y)− c) =
∑

n

1

|F ′(yn)|δ(y − yn) .

where yn are the roots of the equation F (y) = c. This equation has
three roots if c lies between the singular points xa and xb and just one
root otherwise. The change of variables cannot be defined if c = xa or
c = xb. Technical details are left to the reader as an exercise.

20.4. Transformations from class C1. If a change of variables is not from
class C∞ or the support of a distribution includes zeros of the Jaco-
bian, the above construction does not work. However, the alternative
approach based on the continuity of the adjoint transformation intro-
duced in Sec.20.3.3 in combination with the completeness theorem can
still work. Let fa be a family of regular distributions such that fa → f
in D′ as a→ 0. For example, fa is a regularization of f . Suppose a C1

transformation F of RN has the following properties.

(i) There exist at most countably many open sets Ωn with piece-
wise smooth boundaries that are not intersecting but the union
of the closures Ωn coincides with RN .

(ii) Any ball intersects only finitely many Ωn.
(iii) F : Ωn → ΩJ is a change of variables in the Lebesgue integral.

Under these assumptions

(

fa(F (y)), ϕ(y)
)

=

∫

fa(F (y))ϕ(y) dNy =
∑

n

∫

Ωn

fa(F (y))ϕ(y) dNy

=

∫

ΩJ

fa(x)ϕF
(x) dNx ,

where ϕ
F

is given by (20.5) (with η(x) = 1) but it is not a test function
because ϕ

T
is not smooth enough. It can now have integrable singular-

ities at zeros of the Jacobian. Since the integral exists for any a 6= 0,
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put, by definition,

(20.10)
(

f(F (y)), ϕ(y)
)

def
= lim

a→0+

(

fa(F (y)), ϕ(y)
)

,

provided the limit exists for any test function ϕ. If F is a diffeomor-
phism of RN into ΩJ , then ϕ

F
is a test function and the limit is (f, ϕ

F
),

where f ∈ D′(ΩJ) (see Sec.20.2). For a general change of variables, the
argument fails because ϕ

F
is not a test function, and the limit must

be investigated by other means. However, if it exists, then by the com-
pleteness theorem f(F (y)) is a distribution from D′.

20.4.1. General change of variables in a delta function. Let x = F (y) ∈
C1(RN ) such that the equation F (y) = 0 have at most countably many
roots y = yn, the sequence {yn} has no limit points (in other words,
any ball contains only finitely many roots), and the Jacobian does not
vanish at the roots, J(yn) 6= 0. Then

(20.11) δ(F (y)) =
∑

n

1

J(yn)
δ(y − yn) , J(y) =

∣

∣

∣
det
(∂Fj(y)

∂yk

)∣

∣

∣
.

In particular, for any C1 function F (y), y ∈ R, with simple isolated
zeros yn,

δ(F (y)) =
∑

n

1

|F ′(yn)| δ(y − yn) .

Note that the convergence of the series of shifted delta-functions follows
from that only finitely many zeros yn lie in support of any test function:

(

δ(F (y)), ϕ(y)
)

=
∑

|yn|<R

ϕ(yn)

J(yn)
, suppϕ ⊂ BR .

To prove the assertion (20.11), consider a regularization of the delta
function by a hat function ωa(x), ωa → δ in D′ as a → 0+. The support
of ωa is the ball |x| ≤ a. By hypothesis, the Jacobian does not vanish
in a neighborhood of each root yn of the equation F (y) = 0. Therefore
the transformation is invertible in this neighborhood by the implicit
function theorem. For a small enough a0, there exists δn > 0 such that
y = F−1

n (x) for |y − yn| < δn and F (F−1
n (x)) = x for all |x| < a0. The

local inverse transformations F−1
n are from class C1 (by the implicit

function theorem). For all a < a0, the images F−1
n (Ba) are bounded

and not overlapping sets, and the support of the function ωa(F (y)) lies
in their union. The chain of equalities given (20.4) and (20.5) holds
in this case because ωa(F (y)) has properties similar to η(F (y)) where
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Ωn = F−1
n (Ba) and ΩJ = Ba. Therefore

(

δ(F (y)), ϕ(y)
)

def
= lim

a→0+

∫

|x|<a

ωa(x)ϕF
(x) dNx ,

ϕ
F
(x) =

∑

n

1

J(F−1
n (x))

ϕ(F−1
n (x)) , |x| < a .

The series converges because it has only finitely many terms owing to
boundedness of the support of ϕ, ϕ(F−1

n (x)) = 0 for all large enough n.
By the assumption any ball BR contains only finitely roots yn. There-
fore the support of ϕ overlaps only with finitely many neighborhoods
F−1

n (Ba).
Let us find the limit of the integral (ωa, ϕF

) (it does not follow
from ωa → δ because ϕ

F
is merely a continuous function). To this end,

using the normalization properties of the hat function the integral can
be transformed as follows

∫

ωa(x)ϕF
(x) dNx = ϕ

F
(0) +

∫

ωa(x)
(

ϕ
F
(x)− ϕ

F
(0)
)

dNx

The integral in the right-hand side vanishes in the limit a → 0+. In-
deed, |ϕ

F
(x)− ϕ

F
(0)| is continuous on the closed ball |x| ≤ a which is

the support of ωa. Therefore it attains its maximal value on it. Put

Ma = max
|x|≤a

∣

∣

∣ϕF
(x) − ϕ

F
(0)
∣

∣

∣ .

Then by the normalization property of the hat function
∣

∣

∣

∫

ωa(x)
(

ϕ
F
(x) − ϕ

F
(0)
)

dNx
∣

∣

∣ ≤Ma

∫

|x|<a

ωa(x) d
Nx = Ma .

But Ma → 0 as a→ 0+ by continuity of ϕ
F
. Therefore

(

δ(F (y)), ϕ(y)
)

= ϕ
F
(0) =

∑

n

1

J(yn)
ϕ(yn) ,

which proves (20.11).

20.4.2. Change of variables in the principal value distribution. Consider
a transformation F : R → R defined in (20.9) as a change of variables
in P 1

x
. The support of P 1

x
is R and, hence, contains the singular points

of F . Let us attempt to make such a change of variables using the limit
method (20.10). It is not difficult to verify that

fε(x) =
θ(|x| − ε)

x
→ f(x) = P 1

x
in D′
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as ε→ 0+. Therefore by (20.10)

(

P 1

F (y)
, ϕ
)

= lim
ε→0+

∫

|F (y)|>ε

ϕ(y)

F (y)
dy ,

provided the limit exists. Using the partial fraction decomposition

1

F (y)
=

1

ab
· 1

y
+

1

a(a− b)
· 1

y − a
+

1

b(b− a)
· 1

y − b
,

one can guess that

P 1

F (y)
=

1

ab
P 1

y
+

1

a(a− b)
P 1

y − a
+

1

b(b− a)
P 1

y − b
.

This is indeed so, provided the integral over the set |F (y)| > ε is
equivalent to the Cauchy principal value regularization of the three
integrals in the partial fraction decomposition when ε→ 0+.

All roots of F (y) are simple. Suppose y0 is a root of F (y). Support
of ϕ is bounded and, hence, lies in an interval |y − y0| < R for some
R > 0. By linearity of the integral, it is sufficient to show that

lim
ε→0+

∫

|F (y)|>ε

ϕ(y)

y − y0

=
(

P 1

y − y0

, ϕ(y)
)

=

∫

|y−y0 |<R

ϕ(y) − ϕ(y0)

y − y0

dy .

The equation F (y) = ±ε has the roots y = y± = y0 ± ε/g(y0) +O(ε2)
where F (y) = g(y)(y − y0). Therefore

lim
ε→0+

∫

|F (y)|>ε

ϕ(y)

y − y0
=

∫

|y−y0|<R

ϕ(y)− ϕ(y0)

y − y0
dy

+ϕ(y0) lim
ε→0+

(

∫ y−

y0−R

+

∫ y0+R

y+

) dy

y − y0
,

where it is assumed that y− < y0 < y+ (or g(y0) > 0). The limit in the
right-hand vanishes. Indeed, by a direct evaluation of the integral

lim
ε→0+

ln
∣

∣

∣

y− − y0

y+ − y0

∣

∣

∣ = lim
ε→0+

ln |1 +O(ε)| = 0

as required. The analysis can be extended to any smooth F (y) with at
most countably many simple roots if the sequence of the roots has no
limit points.

20.5. Exercises.
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1. Express each of the following distributions in terms of shifted delta-
functions

(i) δ(3x− 4) , x ∈ R

(ii) δ(y(x)) , y ∈ R
2 , y1 = 2x1 + 3x2 − 3 , y2 = x1 − x2 + 2

(iii) sin(x)δ(2x+ 5π) , x ∈ R

2. Complete the proof of Corollary 20.1.

3. Find the distributional limit of the following sequence of functions

fn(x) =
sin(n tanh(x))

πx
,

where n = 1, 2, ....

4. Express δ(x2 − a2) in terms of shifted delta functions if a > 0.

5. For the example of x = F (y) given in Sec.20.3.5,
(i) justify the expression given for δ(F (y)− c),
(ii) give the explicit form of δ(F (y)) as a linear combination of (shifted)
delta functions.

6. Let

fa(x) =
θ(|x| − a)

x
, x ∈ R .

(i) Show that fa(x) → P 1
x

in D′ as a → 0+.
(ii) Use the rule (20.10) to find P 1

sin(y)
. Give an explicit rule to find the

value of P 1
sin(y)

on a test function.

7. Use the rule (20.10) and the limit

1

x± iε
→ 1

x± i0+

for ε → 0+ to change variables in the Sokhotsky distributions:
(i) x = y(y − a)(y − b);
(ii) x = sin(y).
Express the answer in terms of Sokhotsky distributions and delta func-
tions (if necessary).

8. Put fk(x) = a(x)δ(k)(sin(x)), k = 0, 1, 2, ..., where a ∈ C∞. Ex-
press fk in terms of shifted delta functions and its derivatives or show
that fk is not a distribution.
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21. Differentiation of distributions

21.1. Derivatives of a distribution. The rule (13.4) can be extended to
partial derivatives of any order for any distribution f :

(21.1) (Dβf, ϕ) = (−1)β(f,Dβϕ) .

Of course, one has to show that Dβf is a linear and continuous func-
tional on the space of test functions. This follows from the linearity
and continuity of f . If ϕn → 0 in D, then Dβϕn → 0 in D for any β
because the sequence of any partials Dαϕn converges to zero uniformly.
So, the functional Dβf is continuous for any continuous f . Thus, all
distributions are infinitely many times differentiable. If a distribution
is defined by a smooth function, the classical and distributional deriva-
tives are equal

(21.2) {Dβf(x)} = Dβf(x) , β ≤ p , f ∈ Cp .

This follows from the integration by parts and the du Bois-Raymond
lemma:

(Dβf, ϕ) = (−1)β(f,Dβϕ) = (−1)β

∫

f(x)Dβϕ(x) dNx

=

∫

{Dβf(x)}, ϕ(x) dNx = ({Dβf}, ϕ) ,

for any test function ϕ. Owing to the boundedness of support of ϕ, the
integration by parts does not produce any boundary terms.

Definition (21.1) implies that derivatives of a singular distribution
are singular distributions. In particular, the Dirac delta-function can
be differentiated any number of times so that

(21.3) (Dβδ, ϕ) = (−1)βDβϕ(0) .

The rule (21.1) also implies that any locally integrable function can
be differentiated any number of times if derivatives are viewed in the
distributional sense!

21.1.1. Distributional derivatives of the absolute value. Let f(x) = |x|.
It is continuous on R but not differentiable at x = 0. The distributional
derivatives are

|x|′ = ε(x) , |x|′′ = 2δ(x) , |x|(n) = 2δ(n−2)(x) , n ≥ 2 .

where ε(x) is the sign function. Indeed, the third relation follows from
(21.3) if the second one holds. The first and second relations are proved
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by the following chain of equalities for any test function ϕ:

(|x|′, ϕ) = −(|x|, ϕ′) =

∫ 0

−∞

xϕ′(x) dx−
∫ ∞

0

xϕ′(x) dx

= −
∫ 0

−∞

ϕ(x) dx+

∫ ∞

0

ϕ(x) dx = (ε, ϕ) ,

(|x|′′, ϕ) = −(ε, ϕ′) =

∫ 0

−∞

ϕ′(x) dx−
∫ ∞

0

ϕ′(x) dx

= ϕ(0) + ϕ(0) = (2δ, ϕ) .

21.1.2. Distributional derivatives of the log function. The function f(x) =
ln(|x|) is locally integrable on R. It defines a regular distribution. Its
classical derivative {f ′(x)} = 1

x
, x 6= 0, is not locally integrable and,

hence, does not define a distribution. However, the distributional de-
rivative f exists:

d

dx
ln(|x|) = P 1

x
.

For any test function ϕ, one has

(f ′, ϕ) = −(f, ϕ′) = −
∫

ln(|x|)ϕ(x) dx

(1)
= − lim

a→0+

∫

|x|>a

ln(|x|)ϕ′(x) dx = lim
a→0+

∫

|x|>a

ϕ(x)

x
dx

(2)
=
(

P 1

x
, ϕ
)

,

where (1) and (2) hold by continuity of the Lebesgue integral and
by integration by parts, respectively. The higher-order derivatives are
obtained from the relation

(21.4)
d

dx
P 1

xn
= −nP 1

xn+1
, n = 1, 2, ...

It is proved in a similar fashion. Let Tn and T̃n be Taylor polynomials
of order n for a test function ϕ and its derivative ϕ′ about x = 0,
respectively. Then T̃n−2(x) = T ′

n−1(x), and one infers that

( d

dx
P 1

xn
, ϕ
)

= −
(

P 1

xn
, ϕ′
)

= − lim
a→0+

∫

|x|>a

ϕ′(x)− T̃n−2(x)

xn
dx

(1)
= lim

a→0+

(ϕ(x) − Tn−1(x)

xn

∣

∣

∣

a

−a
− n

∫

|x|>a

ϕ(x) − Tn−1(x)

xn+1
dx
)

(2)
= −n

(

P 1

xn+1
, ϕ
)

,
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where (1) is obtained by integration by parts and (2) holds because the
boundary term vanishes in the limit by property (15.5).

It follows from (21.4) that

dn

dxn
P 1

x
= (−1)nn! P 1

xn+1
.(21.5)

21.2. Properties of distributional derivatives. Here basic properties of
classical derivatives are extended to distributions and applied to calcu-
late distributional derivatives of some commonly used distributions. A
continuous function is not generally differentiable in the classical sense,
but it defines a regular distribution and, hence, can be differentiated
infinitely many times in the distributional sense. It turns out that
any distribution can be viewed as a linear combination of distributional
derivatives of some continuous functions.

21.2.1. Clairaut’s theorem for distributions. The order of classical par-
tial derivatives does not matter if they are continuous (Clairaut’s the-
orem). Distributional derivatives can be taken in any order, and the
result is the same:

Dα(Dβf) = Dβ(Dαf) = Dα+βf

for any distribution f . This follows from Clairaut’s theorem for test
functions

Dα(Dβϕ) = Dβ(Dαϕ) = Dα+βϕ , ϕ ∈ D
because partial derivatives of any order of a test function are continu-
ous. Indeed,

(Dα(Dβf), ϕ) = (−1)α(Dβf,Dαϕ) = (−1)α+β(f,Dβ(Dαϕ))

= (−1)α+β(f,Dα(Dβϕ)) = (Dβ(Dαf), ϕ)

(Dα(Dβf), ϕ) = (−1)α+β(f,Dα+βϕ) = (Dα+βf, ϕ) .

21.2.2. Leibniz rule. If a is a smooth function and f is a distribution,
then the product af is a distribution and its derivative can be found
by the Leibniz rule (known also as the product rule for classically dif-
ferentiable functions):

D
(

a(x)f(x)
)

= Da(x) f(x) + a(x)Df(x) .

Note that Da(x) ∈ C∞ if a ∈ C∞ so that the right-hand side makes
sense as a distribution. A proof of this rule is elementary and follows
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from the product rule for smooth functions:
(

D(af), ϕ
)

= −
(

af,Dϕ
)

= −(f, aDϕ)

= −
(

f,D(aϕ)
)

+
(

f, ϕDa
)

=
(

Df, aϕ) +
(

Daf, ϕ
)

=
(

aDf +Daf, ϕ
)

for any test function ϕ.
It is also clear that the Leibniz rule can be used any number of

times by means of the binomial expansion:

Dα(af) =
α
∑

β=0

(

α

β

)

Dα−βaDβf ,

where notations from Sec.1.3 are used

21.2.3. Simple examples. It has been shown that the derivative of a step
function is the delta function, θ′ = δ. Consider a continuous function
f(x) = xθ(x). By the Leibniz rule

f ′(x) = θ(x) + xδ(x) = θ(x) ,

f ′′(x) = δ(x) .

By differentiating the identity a(x)δ(x) = a(0)δ(x), one infers that

a(x)δ′(x) = a(0)δ′(x) − a′(0)δ(x) .

A similar identity for the second derivative of the delta function is
obtained by taking the second derivative of the said identity:

a(x)δ′′(x) = a(0)δ′′(x) − 2a′(x)δ′(x) − a′′(0)δ(x)

= a(0)δ′′(x) − 2a′(0)δ′(x) + a′′(0)δ(x) .

This is an alternative method to obtain the identity (18.5).

21.2.4. Continuity of differentiation on the space of distributions. Differ-
entiation of distributions can be viewed as the adjoint of differentiation
on the space of test functions:

T : ϕ→ T (ϕ) = (−1)βDβϕ .

As shown in the beginning of this section, differentiation is a linear
and continuous transformation of the space of test functions into itself.
Therefore the adjoint transformation T ∗(f) = Dβf , f ∈ D′, is a linear
and continuous transformation of the space of distributions into itself:

fn → f in D′ ⇒ Dβfn → Dβf in D′(21.6)
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In particular, this implies that any converging series of distributions
can be differentiated term-by-term infinitely many times and the series
of the derivatives converges to the corresponding derivative of the sum
of the series:

f =
∑

n

fn ⇒ Dβf =
∑

n

Dβfn , {fn} ⊂ D′ , f ∈ D′ .

This is quite an improvement of the classical analysis where the uniform
convergence of the series of derivatives is usually required!

21.2.5. Differentiation and regularization of distributions. Let fa = φa∗f
be a regularization of a distribution f by a smooth function such that
fa → f in D′ as a→ 0 where the convolution is defined in (19.1). Then
by continuity of differentiationDβfa → Dβf in D′ as a → 0. Moreover,
the following relations hold

(21.7) Dβfa = Dβφa ∗ f = φa ∗Dβf .

They follows from property (19.2) for the convolution of test functions.
Indeed, for any test function ϕ one infers that

(Dβfa, ϕ) = (−1)β(fa, D
βϕ) = (−1)β(f, φ−

a ∗Dβϕ)

= (−1)β(f,Dβφ−
a ∗ ϕ) = (f, (Dβφa)

− ∗ ϕ)

= (Dβφa ∗ f, ϕ)

and

(Dβfa, ϕ) = (−1)β(f, φ−
a ∗Dβϕ) = (−1)β(f,Dβ(φ−

a ∗ ϕ))

= (Dβf, φ−
a ∗ ϕ) = (φa ∗Dβf, ϕ) .

For example, a hat function ωa = ωa ∗ δ converges to the delta function
as a→ 0+. By continuity of differentiation in D′,

Dβωa(x) → Dβδ(x) in D′(RN ) ,

as a→ 0+.
The significance of (21.7) is that a regularization and differentiation

are commutative operations on the space of distributions. This property
will be useful for physical interpretation of distributional solutions to
partial differential equations.

21.3. Classical vs distributional derivatives. For smooth functions classi-
cal and distributional derivatives coincide. If a locally integrable func-
tion is not differentiable at some points, then this relation does not
generally holds near these points. Suppose that a function f that is
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locally integrable on RN has continuous partials in some open Ω ⊂ RN ,
then the distributional and classical partials of f coincide in Ω:

f ∈ Lloc ∩ C1(Ω) ⇒ Df(x) = {Df(x)} , x ∈ Ω ⊂ R
N .

A proof is elementary. The classical derivative {Df(x)} is locally inte-
grable on Ω and, hence, defines a regular distribution from D′(Ω). By
integration by parts in the integral ({Df}, ϕ) the later is shown to be
equal to −(f,Dϕ) = (Df, ϕ) for any ϕ ∈ D(Ω), which means that the
distribution Df is equal to {Df} in Ω.

Suppose {Df} does not exist at a point x = x0. Then near x0, a
relation between classical and distributional derivatives becomes more
complicated. If the classical derivative {Df} remains locally integrable,
then Df and {Df} can be equal in the distributional sense or differ by
a distribution supported at the single point x = x0. If {Df} is singular
at x0, then the distributional derivative must be some distributional
regularization of it:

(21.8) Df = Reg {Df} ,
because Df and {Df} are equal in any open set that does not contain
x0. Clearly, this relation also holds if the classical derivative {Df} has
more than one singular points.

21.3.1. One-variable case. Relation (21.8) is first investigated in the
case of one real variable. Suppose f is locally integrable and the de-
rivative {f ′} does not exist at x = 0 and is continuous otherwise. Let
us find the distributional derivative. For any test function ϕ, using
continuity of the Lebesgue integral and integration by parts, one has

(f ′, ϕ) = −(f, ϕ′) = −
∫

f(x)ϕ′(x) dx = lim
a→0+

∫

|x|>a

f(x)ϕ′(x) dx

= lim
a→0+

(

f(a)ϕ(a)− f(−a)ϕ(−a) +

∫

|x|>a

{f ′(x)}ϕ(x) dx

)

.(21.9)

The limit exists by the existence of f ′ ∈ D′. However, its calculation
depends on the behavior of f and {f ′} near x = 0.

Suppose that f has a jump discontinuity at x = 0 so that f(±a) →
f± as a → 0+. Then the boundary term converges to (f+ − f−)ϕ(0)
and, hence, the integral must also converge and defines a principal
value regularization of {f ′} so that

(21.10) f ′(x) = (f+ − f−)δ(x) + P{f ′(x)} .
It should be noted that even if f is continuous at x = 0, f+ = f−, the
existence of the limit of the integral does not imply that {f ′} is locally
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integrable and defines a regular distribution. The integral can also
converge conditionally ! For example, the derivative of a continuous
function f(x) = x sin( 1

x
) is not locally integrable (see Exercises). How-

ever, if f is absolutely continuous, then the boundary term vanishes,
the classical derivative {f ′} exists almost everywhere and is locally
integrable so that by the du Bois-Raymond lemma:

f ′(x) = {f ′(x)} , f ∈ AC0 .

21.3.2. Multi-variable case. Let us extend the analysis to the multi-
variable case. Suppose that classical derivatives {Df} of a locally inte-
grable function f are singular on a set Sf ⊂ RN and otherwise smooth
enough so that the integration by parts is permitted on any compact
that does not intersect Sf . Let Na be a neighborhood of Sf of radius
a and n̂x be the outward unit normal on ∂Na. Then

(Df, ϕ) = −(f,Dϕ) = −
∫

f(x)Dϕ(x) dNx

= − lim
a→0+

∫

RN\Na

f(x)Dϕ(x) dNx

= lim
a→0+

(∫

∂Na

f(x)ϕ(x)n̂x dS +

∫

RN\Na

{Df(x)}ϕ(x) dNx

)

.(21.11)

The limit exists because Df exists as a distribution. Calculation of the
limit depends on the behavior of f and {Df} near Sf and is illustrated
with examples in the next section. If f is continuous at Sf and {Df} is
locally integrable, then Df = {Df}. The same approach can be used
to calculate high-order distributional derivatives of functions that are
not smooth everywhere.

21.4. Distributional derivatives. Examples. Here the technique for cal-
culating distributional derivatives based on (21.11) is illustrated with
examples.

21.4.1. Distributional derivatives vs singular classical derivatives. Sup-
pose that a locally integrable function f is smooth everywhere on R

but x = 0, and the classical derivative {f ′(x)} is singular at x = 0.
Then the relation (21.9) still applies and, as argued, the distributional
derivative is a distributional regularization of {f ′(x)}. As an example,
let x ∈ R and f(x) = |x|−q where 0 < q < 1. Then f ∈ Lloc but
its classical derivative has a non-integrable singularity at x = 0 and is
continuous otherwise:

{f ′(x)} = −q x

|x|2+q
, x 6= 0 .
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Then for any test function ϕ with support in [−R,R]

(f ′, ϕ) = −(f, ϕ′) = − lim
a→0+

∫

a<|x|<R

f(x)ϕ′(x) dx

= lim
a→0+

(

− f(x)ϕ(x)
∣

∣

∣

−a

−R
− f(x)ϕ(x)

∣

∣

∣

R

a
+

∫

a<|x|<R

{f ′(x)}ϕ(x) dx
)

The boundary term vanishes in the limit because

ϕ(a)− ϕ(−a)
aq

= O(a1−q) .

Since the integral of x/|x|q+2 over the symmetric interval a < |x| < 1
vanishes, one has

(f ′, ϕ) = −q lim
a→0+

∫

a<|x|<1

xϕ(x)− xϕ(0)

|x|q+2
dx− q

∫

|x|>1

xϕ(x)

|x|q+2
dx

The integrand in the first integral is locally integrable and the regular-
ization can be removed. It follows from (16.2) that

f ′(x) = −qxPr
1

|x|2+q
= Pr{f ′(x)} ,

which is a distributional regularization of the classical derivative.
Let

f(x) =

{

1
xq , x > 0
0 , x < 0

⇒ {f ′(x)} =

{

− q
xq+1 , x > 0

0 , x < 0
,

where 0 < q < 1. Then f ∈ Lloc but {f ′} is singular at x = 0. Then
the relation (21.9) leads to

(f ′, ϕ) = lim
a→0+

(ϕ(a)

aq
+

∫

|x|>a

{f ′(x)}ϕ(x) dx
)

= lim
a→0+

(ϕ(a)− ϕ(0)

aq
+ ϕ(0) +

∫

a<|x|<1

{f ′(x)}[ϕ(x)− ϕ(0)] dx

+

∫

|x|>1

{f ′(x)}ϕ(x) dx
)

.

By taking the limit, it is concluded that

f ′(x) = δ(x) + Pr{f ′(x)} ,
which is again a distributional regularization of the singular classical
derivative.
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21.4.2. The distributionPr
1
|x|

. The function f(x) = |x| ln(|x|) (extended

so that f(0) = 0) is continuous everywhere and its classical first deriv-
ative is locally integrable. Therefore

d

dx
|x| ln(|x|) =

{ d

dx
|x| ln(|x|)

}

= ε(x) ln(|x|) + 1 ,

where ε(x) is the sign function. The second derivative is found as
follows. For any test function ϕ:
(

(|x| ln(|x|))′′, ϕ
)

= −
(

(ε(x) ln(|x|))′, ϕ′
)

= lim
a→0+

[

∫ −a

−∞

ln(|x|)ϕ′(x) dx −
∫ ∞

a

ln(|x|)ϕ′(x) dx
]

= lim
a→0+

[

ln(a)
(

ϕ(−a) + ϕ(a)− 2ϕ(0)
)

+

∫

a<|x|<1

ϕ(x) − ϕ(0)

|x| dx +

∫

|x|>1

ϕ(x)

|x| dx
]

,

where the second equality is by continuity of the integral and the third
one is obtained by integration by parts and by evaluation of the integral
of 1

|x|
over a < |x| < 1. Therefore

d2

dx2
|x| ln(|x|) = Pr

1

|x| .

Since Pr
1
|x|

= 1
|x|

in any open interval that does not contain x =

0 and 1
|x|

is smooth in it, the classical and distributional derivatives

must be equal in any such interval. Let us calculate the distributional
derivative. For any test function ϕ,
(

(Pr
1

|x|)
′, ϕ(x)

)

= −
∫

|x|<1

ϕ′(x) − ϕ′(0)

|x| dx−
∫

|x|>1

ϕ′(x)

|x| dx

= − lim
a→0+

∫

a<|x|<1

ϕ′(x)− ϕ′(0)

|x| dx −
∫

|x|>1

ϕ′(x)

|x| dx

= lim
a→0+







ϕ(a)− ϕ(−a)
a

−
∫

a<|x|<1

xϕ(x)− x2ϕ′(0)

|x|3 dx







−
∫

|x|>1

xϕ(x)

|x|3 dx .

The first term in the right-hand side of the last equality converges to
2ϕ(0). The numerator in the first integral can be replaced by ψ(x) −
T2(x) where T2 is the Taylor polynomial of order 2 about x = 0 for
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the function ψ(x) = xϕ(x). Note that ψ(0) = 0, ψ′(0) = ϕ(0), but the
integral of x/|x|3 over the symmetric interval a < |x| < 1 vanishes, and
only the term with ψ′′(0) = 2ϕ′(0) contributes. It follows from (16.2)
that

d3

dx3
|x| ln(|x|) =

d

dx
Pr

1

|x| = 2δ(x)− xPr
1

|x|3 .

This is a distributional regularization of a singular classical derivative.

21.4.3. Coulomb and Newton potentials. The locally integrable function

f(x) =
1

|x| , x ∈ R
3 .

is, up to a constant factor, the Newton gravitational potential of a
point particle at the origin, or the Coulomb electric potential of a
point charge. By the Gauss law for gravity and electromagnetism, the
Laplacian of the potential is proportional to the mass or charge density,
but such a density was shown to be proportional to the delta-function.
Let us verify that the Gauss law holds in the distributional sense.

The potential f is smooth for x 6= 0 and its classical gradient is
locally integrable in R3. The limit of the surface integral in (21.11)
vanishes:

∣

∣

∣

∫

|x|=a

n̂xϕ(x)

|x| dS
∣

∣

∣ ≤ sup |ϕ|
a

∫

|x|=a

dS = 4πa sup |ϕ| → 0

as a → 0+. Therefore the classical and distributional gradients of f
are equal

(21.12) ∂j
1

|x| =
{

∂j
1

|x|
}

= − xj

|x|3 .

The classical second derivatives of the Coulomb potential in R3 are
singular at x = 0 and smooth otherwise:

{

∂j∂k
1

|x|
}

=
|x|2δjk − 3xjxk

|x|5 , x 6= 0 .

So, the corresponding distributional derivatives must be a distribu-
tional regularization of them near x = 0 and coincide with them on
any open set that does not contain x = 0. For any test function ϕ with
support in a ball |x| < R, one infers by continuity of the integral and
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by integrating by parts twice that

(∂j∂kf, ϕ) = (f, ∂j∂kϕ) = lim
a→0+

∫

a<|x|<R

1

|x| ∂j∂kϕ(x) d3x

= lim
a→0+

(

∮

|x|=a

nj

|x|∂kϕ(x) dS −
∮

|x|=a

nk∂j
1

|x|ϕ(x) dS

+

∫

a<|x|<R

{∂j∂kf(x)}ϕ(x) d3x
)

,

where nj = −xj/a is the unit normal on the sphere |x| = a, and the
surface integral over the sphere |x| = R vanishes because ϕ is zero
for |x| = R together with all its partials. Evaluating the necessary
derivatives and substituting nj, one obtains

(∂j∂kf, ϕ) = lim
a→0+

(

− 1

a2

∮

|x|=a

xj∂kϕ(x) dS − 1

a4

∮

|x|=a

xjxkϕ(x) dS

+

∫

a<|x|<R

{∂j∂kf(x)}ϕ(x) d3x
)

.

The limit of the first surface integral vanishes. Indeed, since |xj| ≤
|x| = a and the gradient of a test function is bounded byM = sup |∇ϕ|,
the integral can be estimated as

1

a2

∣

∣

∣

∫

|x|=a

xj∂kϕ(x) dS
∣

∣

∣
≤ M

a

∫

|x|=a

dS = 4πMa→ 0 .

The limit of the second surface integral is evaluated by changing vari-
ables x = ay so that dSx = a2dSy and the integration is reduced to the
unit sphere |y| = 1 so that

1

a4

∫

|x|=a

xjxkϕ(x) dS =

∫

|y|=1

yjykϕ(ay) dS .

The integrand has an integrable bound that is independent of a because
|ϕ(ay)| ≤ sup |ϕ| and by the Lebesgue dominated convergence theorem
the order of taking the limit and integration can be interchanged. Since
ϕ(ay) → ϕ(0) for any |y| = 1, it remains to calculate the average of
yjyk over the unit sphere.

In spherical coordinates y = (sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)).
Therefore if j 6= k the average vanishes because the integral over the
polar angle is zero. If j = k, then the average should be same for any
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k because the result should not depend on the choice of the coordinate
system. Taking k = 3, one has

∫

|y|=1

y2
3 dS =

∫ 2π

0

∫ π

0

cos2(φ) sin(φ) dθ dφ =
4π

3
,

∫

|y|=1

yjyk dS =
4π

3
δjk .(21.13)

Therefore

lim
a→0+

1

a4

∫

|x|=a

xjxkϕ(x) dS =
4π

3
δjkϕ(0) .

The last integral in (∂j∂kf, ϕ) can be transformed using the principal
value regularization (16.2)

∫

a<|x|

{∂j∂kf(x)}ϕ(x) d3x =

∫

a<|x|<1

{∂j∂kf(x)}[ϕ(x) − ϕ(0)] d3x

+ ϕ(0)

∫

a<|x|<1

{∂j∂kf(x)} d3x+

∫

|x|>1

{∂j∂kf(x)}ϕ(x) d3x .

The integrand in the first integral in the r.h.s. has an integrable singu-
larity at x = 0 because |ϕ(x)−ϕ(0)| ≤M |x| and, hence, the limit exists
by continuity of the Lebesgue integral. The second integral vanishes
for any a > 0:

∫

a<|x|<1

{∂j∂kf(x)} d3x =

∫ 1

a

dr

r

∫

|y|=1

(δjk − 3yjyk) dSy = 0

by (21.13), where r = |x|. Therefore

(21.14) ∂j∂k
1

|x| = −4π

3
δjkδ(x) + Pr

{

∂j∂k
1

|x|
}

.

It was shown earlier that f is a harmonic function for any x 6= 0:
{

∆
1

|x|
}

= 0 a.e.

This agrees that with the laws of physics that a potential of static
gravitational or electric fields is a harmonic function in any region
where no sources (masses or charges) are present. By contracting the
indices in (21.14), ∂j∂j = ∆, one infers that

(21.15) ∆
1

|x| = −4πδ(x) , x ∈ R
3 .

Thus, the Gauss law holds for a point source in the distributional sense.
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21.5. Distributional derivatives of a piecewise smooth function. A func-
tion is said to be piecewise from class Cp if all its partials, Dβf , β ≤ p,
up to order p are piecewise continuous. Clearly, the classical deriva-
tives {Dβf} exist almost everywhere and are locally integrable. Let us
investigate distributional derivatives of such functions.

Consider first the case of a single real variable. Let f ′(x) be con-
tinuous for x 6= a and f(x) have a jump discontinuity at x = a. For
brevity, put

disc
a

[f ] = lim
x→a+

f(x) − lim
x→a−

f(x) .

It follows from (21.10) that

f ′(x) = disc
a

[f ] δ(x− a) + {f ′(x)} .

Since the classical derivative is piecewise continuous and, hence, lo-
cally integrable, the principal value regularization is not needed. The
analysis is readily extended to any a piecewise C1 function f ,

(21.16) f ′(x) =
∑

n

disc
an

[f ] δ(x− an) + {f ′(x)} .

The series of shifted delta-functions converges in the sense of distribu-
tions. Indeed, if suppϕ ⊂ [−R,R], then the summation in (f ′, ϕ) has
only finitely many terms for which |an| < R and therefore exists for
any ϕ.

Higher-order derivatives of piecewise smooth functions are obtained
by applying (21.16) to piecewise continuous classical derivatives of f .
For example,

f ′′(x) =
∑

n

disc
an

[f ] δ′(x− an) +
∑

n

disc
bn

[{f ′}] δ(x− bn) + {f ′′(x)} .

The set of discontinuities of {f ′} can be larger than that of {f}. For
example, if f(x) = ε(x)x2 + 2θ(x) + |x − 1|, where ε(x) is the sign
function. Then

f ′(x) = disc
x=0

[f ]δ(x) + {f ′(x)} = 2δ(x) + 2|x| + ε(x− 1) ,

f ′′(x) = 2δ′(x) + disc
x=1

[{f ′}]δ(x− 1) + {f ′′(x)}
= 2δ′(x) + 2δ(x− 1) + 2ε(x) .

21.5.1. Simple and double layer distributions. Let S be an N −1 dimen-
sional (piecewise) smooth and bounded surface in RN oriented by a
unit normal vector n. Let ν(x) and µ(x) be continuous functions on S.
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Define the distributions
(

(µδS), ϕ
)

=

∫

S

µ(x)ϕ(x) dS ,

( ∂

∂n
(νδS), ϕ

)

= −
∫

S

ν(x)
∂ϕ(x)

∂n
dS = −

∫

S

ν(x)(∇ϕ, dΣ) .

They are called a simple layer with density µ and a double layer with
density ν. In physics, the simple layer distribution describes the den-
sity of electric charges distributed over a surface S with the surface
density µ. The double layer distribution describes the density of elec-
tric charges created by point-like electric dipoles distributed over the
surface S and dipole moments directed along the normal n̂, and ν is
the surface density of dipoles. The dipole moment created by surface
area dS at a point x ∈ S is equal to ν(x)dΣ(x) where dΣ(x) = n̂(x)dS
is the oriented surface area element. If S is not bounded, then it is
demanded that a part of S that lies in any ball has a finite surface
area (see Sec.15.6) or, from the physics point of view, the total electric
charge or total dipole moment in any ball must be finite.

21.5.2. The gradient of a piecewise smooth function. Let Ω be an open
set Ω ⊂ RN with a smooth boundary ∂Ω oriented outward by a unit
normal n̂. Suppose that f ∈ C1(Ω̄) and f is does not vanish at the
boundary ∂Ω. Let f be extended to the whole RN by zeros, f(x) = 0
for all x /∈ Ω̄ so so that f is piecewise C1. The classical gradient {∇f}
exists everywhere but the boundary ∂Ω and is locally integrable. Let
us find the distributional gradient of f .

A support of any test function ϕ lies in an open ball BR. Then the
functions f and ϕ are from class C1(Ω̄∩ B̄R) and by Theorem 8.1, the
integration by parts is permitted

(∇f, ϕ) = −(f,∇ϕ) = −
∫

Ω∩BR

f(x)∇ϕ(x) dNx

= −
∮

∂ΩR

n̂(x)f(x)ϕ(x) dS +

∫

Ω∩BR

{∇f}ϕ(x) dNx ,

where ∂ΩR is the part of ∂Ω that lies in the ball BR. The surface
integral over the sphere |x| = R vanishes because ϕ and its partials are
equal to zero on it. Therefore

(21.17) ∇f(x) =
{

∇f(x)
}

− µ(x)δ∂Ω(x) ,

where the surface density µ(x) is defined by

µ(x) = n̂(x)f(x) , x ∈ ∂Ω .
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There is a simple generalization of (21.17). Let a smooth surface
S separate RN into two non-connected sets Ω1 and Ω2 and be oriented
by a unit normal n̂. Suppose that f is piecewise C1 such that f and
Df are continuous everywhere but S and have jump discontinuities on
S. Put

[f ]S(x) = lim
a→0+

f(x+ an̂) − lim
a→0+

f(x− an̂) , x ∈ S .

This function defines the jump discontinuity of f at any x ∈ S relative
to the orientation of S by n̂. Then

(21.18) ∇f(x) =
{

∇f(x)
}

+ n̂(x)[f ]S(x)δS(x) .

This is a multi-variable generalization of (21.16). A proof of (21.18) is
left to the reader as an exercise.

21.5.3. Distributional Green’s formula. Suppose that f ∈ C2(Ω̄) where
Ω is an open set in RN . Let us extend f to RN by setting f(x) = 0 for
all x /∈ Ω̄. Then f and its first partial derivatives generally have jump
discontinuities at ∂Ω. Let us compute the distributional Laplacian ∆f
and compare it with the classical one {∆f}. Since f is from class C2

in RN \∂Ω, the classical and distributional Laplacians are equal in this
open set:

∆f(x) = {∆f(x)} , x ∈ R
N \ ∂Ω .

A test function ϕ has support in a ball BR. Let ΩR = Ω ∩ BR. Then

(∆f, ϕ) = (f,∆ϕ) =

∫

ΩR

f(x)∆ϕ(x) dNx .

The function f is from class C2(Ω̄R) so that the classical Green’s iden-
tity holds
∫

ΩR

(

{∆f}ϕ− f∆ϕ
)

dNx =

∮

∂ΩR

(

∂f(x)

∂n
ϕ(x) − f(x)

∂ϕ(x)

∂n

)

dS ,

where n is the unit outward normal on ∂ΩR. The boundary ∂ΩR con-
tains a part of the boundary ∂Ω that lies in BR and a portion of the
sphere |x| = R that lies in Ω. Since ϕ and all its partials vanish for
all |x| ≥ R and all classical partials {Dβf}, β ≤ 2, are locally inte-
grable, the integration region can be extended to the whole space in the
left-hand side and to the whole boundary ∂Ω in the right-hand side:

∫

(

{∆f}ϕ− f∆ϕ
)

dNx =

∮

∂Ω

(∂f

∂n
ϕ(x) − f(x)

∂ϕ(x)

∂n

)

dS ,
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and, hence, in the distributional sense

(21.19) ∆f = {∆f} − ∂f

∂n
δ∂Ω − ∂

∂n

(

fδ∂Ω

)

.

This is the distributional Green’s formula.
A relation between second distributional and classical partials of

a piecewise smooth function are obtained by differentiation of (21.18)
and using the latter to find distributional derivatives of {∂jf}:

∂2f

∂xi∂xj
=

∂

∂xi

{ ∂f

∂xj

}

+
∂

∂xi

(

n̂j(x)[f ]S(x)δS(x)
)

=
{ ∂2f

∂xi∂xj

}

+ n̂i

[ ∂f

∂xj

]

S
δS(x) +

∂

∂xi

(

n̂j[f ]SδS(x)
)

,(21.20)

where n̂i = (êi, n̂) is the cosine of the angle between the unit normal
n̂ at a point x ∈ S and the standard basis vector êi. Formula (21.19)
can also be obtained from (21.20) by setting i = j and taking the sum
over i. Technical details are left to the reader as an exercise.

21.6. Chain rule for distributions. Suppose a distribution f(x) is defined
by a C1 function and x = F (y) is a change of variables. Then the
composition f(F (y)) is also a C1 function and ist partial derivatives
are obtained by the chain rule

(21.21)
∂

∂yj
f(F (y)) =

∂xk

∂yj

∂

∂xk
f(x)

∣

∣

∣

x=F (y)
,

where the summation over repeated indices is assumed. In Sec.20 a
change of variables in distributions has been defined. Can the chain
rule be extended to distributions?

Let x = F (y) be a change of variables such that there exists a linear
and continuous transformation T

F
: D(Ω) → D(ΩF ), where ΩF =

F (Ω), as defined in Sec.20. Then its adjoint T ∗ is a linear continuous
transformation of D′(ΩF ) to D′(Ω) that defines a change of variables
in a distribution f(F (y)) = T ∗

F
(f)(y). If f(x) is a regular distribution

defined by a C1 function, then T ∗
F
(f)(y) is just the composition of two

functions and the chain rule (21.21) holds. Put Jjk = ∂Fk/∂yj which
is the Jacobian matrix. The chain rule for regular distributions can be
cast in the form suitable for an extension to all distributions:

(21.22)
∂

∂yj
T ∗

F
(f)(y) = Jjk(y)T

∗
F

( ∂f

∂xk

)

(y) .

It says that the gradient of a distribution obtained by a change of vari-
ables is the Jacobian matrix multiplied by the distribution obtained by
a change of variables in the gradient of the distribution. It is necessary
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that the Jacobian matrix elements are function from class C∞ because
otherwise the product is not defined. Thus, F must be a smooth change
of variables.

To prove (21.22), recall that the space of test functions is dense
in the space of distributions. Therefore for any distribution f(x) ∈
D′(ΩF ) one can find a sequence of test functions fn(x) ∈ D(ΩF ) that
converges to f(x) inD′(ΩF ). By continuity of differentiation on D′(ΩF ),

fn → f ⇒ Dfn → Df in D′(ΩF ) .

By continuity of the adjoint transformation T ∗
F
:

T ∗
F
(fn) → T ∗

F
(f) and T ∗

F
(Dfn) → T ∗

F
(Df) in D′(Ω) .

Therefore by continuity of differentiation on D′(Ω)

DT ∗
F
(fn) → DT ∗

F
(f) in D′(Ω) .

On the other hand, the chain rule holds for distributions defined by
smooth functions so that

∂

∂yj

T ∗
F
(fn)(y) =

∂

∂yj

fn(F (y)) =
∂xk

∂yj

∂

∂xk

fn(x)
∣

∣

∣

x=F (y)
= JjkT

∗
F

(∂fn

∂xk

)

.

The left-hand side of this equality converges to the left-hand side of
(21.22). By construction, F (y) is from class C∞ and multiplication by
a smooth function is a linear and continuous transformation of D′(Ω).
Therefore the right-hand side of this equality converges to the right-
hand side of (21.22).

In particular, for shifted distributions

(21.23) Df(x + a) = (Df)(x + a) .

So, shifting the argument of a distribution and differentiation commute.
In what follows, the chain rule for distributions will often be written

in the form (21.21) for brevity.

21.6.1. Example. Consider a one-dimensional example from Sec. 20.3.4.
In this case, x = F (y) = sin(y), f(x) = δ(x), and f ′(x) = δ′(x) so that
T ∗

F
(f)(y) = δ(sin(y)) and T ∗

F
(f ′)(y) = δ′(sin(y)). Let us verify the

chain rule (21.22). In this case, it states that

d

dy
δ(sin(y)) = cos(y)δ′(sin(y)) .

To compare both sides of this relation, let us express them in terms
of shifted delta functions and their derivatives. By (20.8) and (21.23),
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the left-hand side is transformed as

d

dy
δ(sin(y)) =

d

dy

∑

n

δ(y − πn) =
∑

n

δ′(y − πn) .

Note that the order of summation and differentiation can be inter-
changed by continuity of differentiation on D′. Let us express δ′(sin(y))
in terms of derivatives of shifted delta functions. By (20.7) and defini-
tion of the adjoint

(T ∗
F
(δ′), ϕ) = (δ′, T

F
(ϕ)) = −

(

δ, (T
F
(ϕ))′

)

= −(T
F
(ϕ))′(0)

= −
∑

n

(−1)nϕ′(πn) = −
∑

n

(−1)n
(

δ(y − πn), ϕ′(y)
)

,

where it was used that η(0) = 1 and η′(0) = 0 in (20.7). This shows
that

T ∗
F
(δ′)(y) = δ′(sin(y)) =

∑

n

(−1)nδ′(y − πn) .

By differentiating the identity cos(y)δ(y − πn) = (−1)nδ(y − πn) one
infers that

sin(y)δ(y − πn) + cos(y)δ′(y − πn) = (−1)nδ′(y − πn)

Since sin(y)δ(y − πn) = 0, the chain rule holds indeed because

cos(y)δ′(sin(y)) = cos(y)
∑

n

(−1)nδ′(y − πn) =
∑

n

δ′(y − πn) .

21.6.2. Example. Let f(x) = θ(x) and x = F (y) = sin(y). In this case,
θ(sin(y)) is a piecewise constant function that has jump discontinuities
at x = πn, where n is any integer (it vanishes in (π(2n− 1), 2πn) and
is equal to 1 in (2nπ, π(2n− 1)). The derivative of this distribution is
easy to find by means of (21.16):

d

dy
θ(sin(y)) =

∑

n

(−1)nδ(y − πn) .

Since f ′(x) = δ(x) and F ′(y) = cos(y), the chain rule (21.22) yields

d

dy
θ(sin(y)) = cos(y)δ(sin(y)) = cos(y)

∑

n

δ(y − πn)

=
∑

n

(−1)nδ(y − πn) ,

as required, where the properties of the delta function stated in Secs.
20.3.4 and 18.1 are used for reducing the result to its final form.
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21.6.3. General distributional solution to a 2D wave equation. Let f and
g be distributions from D′(R). Then the distribution of two variables

(21.24) u(x, t) = f(x+ ct) + g(x− ct)

satisfies the 2D wave equation in the distributional sense

�2u(x, t)
def
=

∂2

∂t2
u(x, t)− c2

∂2

∂x2
u(x, t) = 0 .

Consider the distribution of two real variables x±

v(x+, x−) = f(x+) + g(x−) ∈ D′(R2) .

Here f and g are distributions from D′(R2) that are independent of one
of the variables (see Sec.17.3). Then

u(x, t) = v(x+ ct, x− ct) .

The transformation x± = x ± ct is a change of variables in R2 from
class C∞ whose Jacobian does not vanish anywhere. Therefore the dis-
tributional chain rule applies for computing distributional derivatives:

∂

∂t
u(x, t) =

∂x+

∂t
f ′ +

∂x−
∂t

g′ = cf ′(x+ ct) − cg′(x− ct) ,

∂2

∂t2
u(x, t) =

∂

∂t

( ∂

∂t
u(x, t)

)

= c2f ′′(x+ ct) + c2g′′(x− ct) ,

∂2

∂x2
u(x, t) =

∂

∂x

( ∂

∂x
u(x, t)

)

= f ′′(x+ ct) + g′′(x− ct) ,

and the assertion follows. The converse is also true, that is, any dis-
tributional solution to the 2D wave equation can written in the form
(21.24). A proof of this assertion is postponed until antiderivatives
(indefinite integrals) of distributions are introduced in Sec.27.

21.7. The structure of distributions. Examples from Sec.21.4 suggest
many distributions can be obtained by differentiating continuous func-
tions in the distributional sense. Even singular distributions are deriva-
tives of continuous functions. For example, |x|′′ = δ(x) if x ∈ R or
∆2|x| = −8πδ(x) if x ∈ R3. So, it is natural to ask if any distribution
can be obtained in this way? It turns out that all compactly supported
distributions can be written as linear combinations of distributional
derivatives of some continuous functions, and any distribution has this
structure locally, that is, on any bounded open set. This assertion is
known as the structure theorem for distributions 3.

3G.Grubb, Distributions and operators, Chapter 3;
A.E. Kinani and M. Oudadess, Distribution theory and applications, Chapter 7
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Theorem 21.1. For any f ∈ D′ and any compact K ⊂ RN , there
exists a finite collection of continuous functions gα supported in a neigh-
borhood of K such that

(f, ϕ) =
∑

α≤n

(gα, D
αϕ) , ϕ ∈ D , suppϕ ⊆ K ,

for some integer n ≥ 0 (that depends on K). If, in addition, f is
compactly supported, supp f = K, then the above relation holds for all
test functions in D.

This theorem is not so much about practical importance, but of
some theoretical interest. It states that there is a limit to how bad the
singularities of distributions can be, they are not worse than repeated
derivatives of continuous functions. In the next section, this assertion
will be proved for periodic distributions by an explicit construction of
a continuous function g for a given periodic distribution f .

21.7.1. Distributions with a point support. Distributions with a point
support have a remarkable structure.

Theorem 21.2. If support of a distribution f consists of a single
point x = 0, then f is given by a unique linear combination of the delta
function and its derivatives:

(21.25) f(x) =
m
∑

β=0

cβD
βδ(x) .

The assertion is a corollary of the following property of compactly
supported distributions. For any compactly supported distribution f ∈
D′, there exist a constant M and an integer m such that

|(f, ϕ)| ≤ M‖ϕ‖
Cm , ‖ϕ‖

Cm = max
β≤m

sup |Dβϕ(x)| ,(21.26)

for all test functions ϕ ∈ D. It is established by contradiction. If no
such M and m exist, then one can find a sequence of test functions
{ϕn}∞1 such that

|(f, ϕn)| ≥ n‖ϕn‖Cn .

Let η be a bump function for the support of f . Then η ∈ D because
f is compactly supported, and (f, ϕn) = (f, ηϕn). The sequence ψn =
ηϕn/(

√
n‖ϕ‖

Cn ) is a null sequence in D. Indeed, supports of all ψn

lie in supp η. Since sup |Dαη| ≤ Cα < ∞ for any α ≥ 0, using the
binomial expansion of repeated derivatives of the product, one infers
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that

sup |Dβψn| ≤
β
∑

α=0

(

β

α

)

Cα
sup |Dαϕn|√
n‖ϕn‖Cn

≤ C√
n
→ 0

as n → ∞ because sup |Dαϕn| ≤ ‖ϕn‖Cn for all n ≥ α. By continuity
of f , (f, ψn) → 0 as n→ ∞. However, by linearity of f

|(f, ψn)| =
|(f, ϕn)|√
n‖ϕn‖Cn

≥ √
n ,

and, hence, a contradiction.
Let us show first that if a distribution f supported at x = 0 has a

representation (21.25), then the coefficients cβ are unique. Let η be a
bump function for {x = 0} = supp f such that η(x) = 0 when |x| > 1.
Suppose that there exists a different set of coefficients c′β for which
(21.25) holds. Then for a test function ϕ = xαη

0 = (f − f, ϕ) =

m
∑

β

(cβ − c′β)(Dβδ, ϕ) =

m
∑

β

(−1)β(cβ − c′β)(δ, ηDβxα)

= (−1)αα!(cα − c′α)

because Dαη(0) = 0 for any α > 0. Therefore c′β = cβ.
Next, for any test function ϕ, there exist a constant M and an

integer m such that (21.26) holds. The constant M and the integer
m are specific for f but independent of ϕ. Consider a sequence of
test functions ψn(x) = η(nx)[ϕ(x)− Tm(x)] where Tm(x) is the Taylor
polynomial of order m for ϕ about x = 0. One has

(f, ϕ) = (ηf, ϕ) = (f, ηϕ) = (f, ψ1 + ηTm)

= (f, ψ1) +
m
∑

β=0

Dβϕ(0)

β!
(f, xβη)

The conclusion of the theorem follows with cβ = (−1)β(f, xβη)/β! if
one can show that (f, ψ1) = 0. To prove the latter, note that (f, ψ1) =
(f, ψn) for any n ≥ 1. Therefore

(f, ψ1) = lim
n→∞

(f, ψn) .

It remains to show that the above limit vanishes. This is indeed so.
One has

Dα[ϕ(x)− Tm(x)] = O(|x|m+1−|α|) , |x| → 0 ,

sup |Dγη(nx)| = nγ sup |Dγη| , n→ ∞ .
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Since η(nx) is supported in the ball |x| ≤ 1
n
, it follows from the above

estimates and (21.26) that

|(f, ψn)| ≤ M max
|β|≤m

sup
|x|≤ 1

n

|Dβ(η(nx)[ϕ(x)− Tm(x)])|

≤ M max
|β|≤m

sup
|x|≤ 1

n

β
∑

α=0

(

β

α

)

|Dβ−αη(nx)||Dα[ϕ(x) − Tm(x)]|

(1)

≤ max
|β|≤m

Mβn
β−m−1 =

Mm

n
→ 0 ,

as n → ∞, as required. Here to obtain (1), note that |α| ≤ |β| ≤ m
so that |α| < m + 1 and the supremum of the asymptotic form of
Dα(ϕ − Tm) is reached at |x| = 1

n
as n → ∞ so that the asymptotic

behavior of the product in the binomial expansion does not depend
on α because nβ−α−m−1+α = nβ−m−1 and summation over α produces
a constant that depends on β. As n → ∞, the maximum over β is
reached for |β| = m.

21.8. Exercises.

1. Find the distributional derivative of

f(x) =
x

|x| + x sin
(1

x

)

, x 6= 0 ,

and compare it with the classical derivative. Is {f ′} locally integrable?

2. Prove that

d

dx

1

x± i0+
= ∓iπδ′(x) − P 1

x2

3. Express each of the following distributions in terms of linear com-
binations (or series) of the delta-function and its derivatives:

(i) sin(x)δ′(x)

(ii) x2δ′′(x)

4. Use properties of the principal value distribution to find a distribu-
tional solution to each of the following distributional equations

(i) xf ′(x) = 1

(ii) xf ′(x) = P 1

x
(iii) x2f ′(x) = 1
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5. Let δSa(x) be the spherical delta-function. If r = |x|, show that
the partial derivative of δSa(x) with respect to r is a distribution and
express

(|x|2 − a2)
∂

∂r
δSa(x)

in terms of δSa .

6. If χBa(x) is the characteristic function of the ball of radius a centered
at the origin show that its distributional gradient is given by

∇χ
Ba

(x) = −x
a
δSa(x) .

7. Let f(x) = ln(|x|) where x ∈ R2.
(i) Show that f(x) is a harmonic function wherever it is twice contin-
uously differentiable (that is, outside of any neighborhood of x = 0):

{

∆ ln(|x|)
}

= 0

(ii) Use the same method as for the Laplacian of the Coulomb potential
in R

3 to find ∆ ln(|x|) in R
2 in the distributional sense.

8. (i) Show that that the following classical Laplacian vanishes
{

∆
1

|x|N−2

}

= 0 a.e.

in RN .
(ii) Show that

∆
1

|x|N−2
= C δ(x) in D′

and find the constant C .

(iii) Find continuous functions gα(x) such that
∑

α≤n

Dαgα(x) = δ(x) , x ∈ R
N .

9. Prove (21.18).

10. Prove (21.20).

11. Let Ω be a disk in R2, |x| < a. Consider a transformation
x = F (y) from class C∞ defined by x1 = r cos(φ), x2 = r sin(φ) where
y = (r, φ) ∈ R2.
(i) If θΩ(x) is the characteristic function of Ω, find partial derivatives
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of θΩ(F (y)) with respect to r and φ.
(ii) Find partial derivatives of δ(F (y)−x0), where x0 6= 0, with respect
to r and φ. Express the answer in terms shifted delta functions in the
variables r and φ.
12. Show that δ(n)(−x) = (−1)nδ(n)(x), n = 0, 1, ....

13. Let f be from class C1(R). Find the distributional gradient of
the function g(x) = f(|x|)θ(R − |x|), x ∈ RN .

14. Let x0 ∈ R and x ∈ RN . Find the first partials of the distri-
butions:
(i) f(x0, x) = θ(x0)θ(x

2
0 − |x|2)

(ii) g(x0, x) = h(x0, x)θ(x
2
0 − |x|2) where h is a smooth function.
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22. Series with distributions

22.1. Distributional derivatives of a functional series. In applications,
one often deals with functional series whose terms are locally inte-
grable function (or regular distributions). Differentiability of the sum
of such series is difficult to verify. Typically, uniform convergence of
the series of derivatives of terms is to be verified which is sufficient for
differentiability. Distributional derivatives exist under much weaker
conditions. All it really takes is just to show that the series converges
in the distribution sense because differentiation is continuous on D′ and
any convergent series can be differentiated term-by-term to obtain the
derivative of the sum (see Sec.21.2.4). The following theorem is quite
useful for this task.

Theorem 22.1. Let {un} be a sequence of locally integrable func-
tions, and the series

∞
∑

n=1

un(x) = f(x)

converges uniformly on any compact K ⊂ RN , that is,

lim
m→∞

sup
K

∣

∣

∣

m
∑

n=1

un(x) − f(x)
∣

∣

∣
= 0 .

Then the sum f(x) is a distribution and its distributional derivatives
are given by

Dβf(x) =

∞
∑

n=1

Dβun(x) .

To prove the assertion, put

fm(x) =
m
∑

n=1

un(x) ∈ Lloc .

Each term of the sequence of partial sums is a locally integrable func-
tion as a finite sum of locally integrable functions. Hence, fm(x) is a
regular distribution and for any test function supported in a ball BR

(fm, ϕ) =

m
∑

n=1

∫

BR

un(x)ϕ(x) dNx .

Let us show that this numerical sequence converges and, by the com-
pleteness theorem, the sum f(x) is a distribution defined by the rule

(f, ϕ) = lim
m→∞

(fm, ϕ) =

∞
∑

n=1

∫

un(x)ϕ(x) dNx .
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The sequence (fm, ϕ) is a Cauchy sequence. Indeed, one has

|(fm, ϕ) − (fk, ϕ)| ≤ sup
BR

|fm(x)− fk(x)|
∫

BR

|ϕ(x)| dNx .

By the hypothesis of uniform convergence of the series and by the
Cauchy criterion for uniform convergence (Theorem 1.6.2), the factor
at the integral can be made arbitrary small for large enough k and m
and stays arbitrary small for all large enough k and m:

sup
BR

|fm(x) − fk(x)| → 0 as m, k → ∞ .

Therefore, (fm, ϕ) is a Cauchy sequence for any test function and,
hence, converges.

Since differentiation Dβ is linear and continuous on the space of
distributions:

Dβf = Dβ lim
m→∞

m
∑

n=1

un(x) = lim
m→∞

m
∑

n=1

Dβun(x) =

∞
∑

n=1

Dβun(x)

where Dβun is the distributional derivative of a locally integrable func-
tion.

In contrast to the classical theorems of differentiation of a functional
series discussed in Sec.1.6.5, the uniform convergence of the series of
derivatives of terms is not required to change the order of summation
and differentiation. In fact, classical derivatives {Dβun} may not even
exist.

Corollary 22.2. Let {uk(x)} be a sequence of functions that are
bounded on an open set Ω ⊆ RN almost everywhere and the series of
bounds converges,

|uk(x)| ≤Mk a.e. ,
∑

k

Mk <∞ .

Then the series
∑

k u(x) converges to a regular distribution f(x) in
D′(Ω) such that

(f, ϕ) =

∫

f(x)ϕ(x) dNx =
∞
∑

k=1

∫

uk(x)ϕ(x) dNx , ϕ ∈ D(Ω)

and

Dαf(x) =
∑

k

Dαuk(x) in D′(Ω) .
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Under the hypothesis, the series converges uniformly because

∣

∣

∣

m
∑

n=1

un(x)− f(x)
∣

∣

∣ ≤
∞
∑

n=m+1

|un(x)| ≤
∞
∑

n=m+1

Mn → 0

as m → ∞ for all x, and the conclusion follows from Theorem 22.1.
Corollary 22.2 is often easier to apply than Theorem 22.1.

22.1.1. Example. Put

un(x) =
einx

np
.

The series
∑

n un(x) converges uniformly on R for any p > 1 because
the series of upper bounds of terms converges:

Mn = sup |un(x)| =
1

np
,

∞
∑

n=1

Mn <∞ , p > 1 .

Since un(x) are continuous, there exists a continuous f(x) such that

f(x) =
∞
∑

n=1

einx

np
.

It is locally integrable on R and defines a distribution by the rule

(f, ϕ) =

∞
∑

n=1

1

np

∫

einxϕ(x) dx , ϕ ∈ D(R) .

Its distributional derivative exists for any order β and is given by the
series

f (β)(x) =

∞
∑

n=1

nβ−piβeinx

Note that for β ≥ p, the terms of the series are not decreasing with
increasing n:

∣

∣

∣nβ−piβeinx
∣

∣

∣ = nβ−p .

The series does not converge in the classical sense, but it converges in
the distributional sense and its sum is the distributional derivative of
f(x).

22.2. Distributional Fourier series. Here the classical and distributional
convergence of trigonometric Fourier series is compared. First, some
basic classical results are reviewed4.

4see, e.g., G.H. Hardy and W.W. Rogosinski, Fourier series, Cambridge Univ.
Press, 1950 (2nd Edition).
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22.2.1. Classical Fourier series. Recall the classical theorem about trigono-
metric Fourier series. Let f(x) be a periodic function

f(x+ 2π) = f(x)

that is integrable on (0, 2π). Then the series

f(x) ∼
∞
∑

n=−∞

ane
inx , an =

1

2π

∫ 2π

0

f(x)e−inx dx

is called the Fourier trigonometric series of f . The sign ∼ is to in-
dicate that the series is formal because nothing is known about its
convergence. If the series converges, then an → 0 as |n| → ∞.

22.2.2. Convergence of a Fourier series. Suppose that for a given x, there
are constants δ > 0 and M <∞ such that

(22.1) |f(x+ y)− f(x)| ≤ M |y|
for all |y| < δ. Then its trigonometric Fourier series converges to f(x):

lim
m→∞

∑

|n|≤m

ane
inx = f(x) .

If f has a bounded derivative, then the sufficient condition (22.1) for
pointwise convergence of the series is satisfied by the mean value theo-
rem. Not every continuous function satisfies (22.1). In fact, continuous
functions whose Fourier series diverges at a particular point form a
dense subset in periodic function from class C0. However, the Fourier
series of any periodic continuous function f is proved to converge to f
almost everywhere (Carleson’s theorem).

If f is continuous and the derivative f ′ is locally integrable on R (or
f is absolutely continuous), then the Fourier series converges uniformly
to f . If f is piecewise continuous and f ′ ∈ Lloc, then the Fourier series
of f converges to f uniformly on any closed interval of continuity of f ,
and for any x

(22.2) lim
m→∞

∑

|n|≤m

ane
inx =

1

2

(

lim
y→x+

f(y) + lim
y→x−

f(y)
)

.

22.2.3. Convergence in the mean. Let f ∈ L2(0, 2π). Then it is proved
that the Fourier series of f converges to f in the L2 norm:

lim
m→∞

∫ 2π

0

|f(x) − Sm(x)|2dx = 0 , Sm(x) =
∑

|n|≤m

ane
inx ,
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so that

‖f‖2
2 =

∫ 2π

0

|f(x)|2 dx =
∑

n

|an|2

Conversely, if a complex sequence {an} is square summable
∞
∑

n=−∞

|an|2 <∞

then by Bessel’s theorem there exists a function f(x) that is square
integrable on (0, 2π) such that

f(x) =
∞
∑

n=−∞

ane
inx a.e.

and an are the Fourier coefficients of f .

22.2.4. Differentiation of trigonometric Fourier series. For any conver-
gent Fourier series an → 0 as |n| → ∞. The smoother is the function,
the faster its Fourier coefficients vanish with increasing |n|.

Suppose that f is a periodic function from class Cp. Then by inte-
gration by parts

an =
1

2π(in)p

∫ 2π

0

f (p)(x) e−inx dx

It follows from this relation that

|an| ≤
M

np
, M =

1

2π

∫ 2π

0

|f (p)(x)| dx .

Let a
(p)
n be the Fourier coefficients of f (p). Then a

(p)
n = (in)pan. The

Fourier series of f cannot be differentiated p times term-by-term to
obtain f (p) because the series of derivatives

∑

n

anD
peinx =

∑

n

a(p)
n einx , D =

d

dx
,

may not even converge everywhere (it converges to f (p) almost every-
where). To ensure the validity of the term-by-term differentiation, one
can demand, in addition, that f (p+1) is locally integrable. Then the
above series of derivatives converges uniformly to f (p) and the order of
summation and differentiation can be interchanged:

Dp
∑

n

ane
inx =

∑

n

anD
peinx =

∑

n

(in)pane
inx = f (p)(x) .

In particular, this relation holds for any p > 0 if f is from C∞ and
periodic.
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22.2.5. Distributional convergence of Fourier series. In contrast to the
classical case, the distributional convergence of Fourier series does not
even require any decay of an for large |n| but imposes a restriction on
the growth of the coefficients with increasing |n|.

Theorem 22.2. (Fourier series as a distribution)
In order for a trigonometric Fourier series to converge in D′,

(22.3)
∑

n

ane
inx = f(x) ∈ D′(R) ,

it is necessary and sufficient that

|an| ≤ A|n|k +B

for some constants A, B, and k. In this case,

Dβf(x) =
∑

n

(in)βane
inx

for any β.

Suppose that an grows at most by a power law with increasing |n|,
then a trigonometric Fourier series with coefficients an/|n|p would con-
verge uniformly for large enough p. Hence, its sum is a regular distribu-
tion defined by a continuous function. By continuity of differentiation,
the series can be differentiated p times to obtain a distribution defined
by the Fourier series with coefficients an. Thus, given k, consider the
function

(22.4) g(x) =
a0x

k+2

(k + 2)!
+
∑

n6=0

an

(in)k+2
einx .

The series converges uniformly because the series of upper bounds of
terms converges

∑

n6=0

∣

∣

∣

∣

an

(in)k+2
einx

∣

∣

∣

∣

=
∑

n6=0

|an|
|n|k+2

≤
∑

n6=0

( A

n2
+

B

|n|k+2

)

<∞ .

By Corollary 22.2, g is a regular distribution defined by a continuous
function, and its distributional derivative Dk+2g reads

(22.5)
dk+2

dxk+2
g(x) =

∑

n

ane
inx = f(x) .

By continuity of differentiation on the space of distributions

Dβf(x) =
∑

n

(in)βane
inx .



22. SERIES WITH DISTRIBUTIONS 297

To show that the converse is true, let us construct a test function for
which the series

∑

n an(e
inx, ϕ) does not converge if an grow faster than

a power law. Since |n|k|an| → ∞ for any k > 0 as |n| → ∞, there exists
a subsequence of integers {nk}∞1 such that |ank

| > |nk|k. Consider the
function defined by the Fourier series

h(x) =

∞
∑

k=1

e−inkx

nk
k

.

This function is from class C∞ because the series of derivatives of terms
converges uniformly:

∑

k

∣

∣

∣

(−ink)
me−inkx

nk
k

∣

∣

∣
=
∑

k

1

|nk|k−m
<∞

for any m = 1, 2, .... If η(x) is a bump function for the interval [0, 2π]
supported in [−ε, 2π + ε], where ε > 0 can be arbitrary small, then
ϕ(x) = h(x)η(x) is a test function. Therefore

∑

|n|≤m

an(e
inx, ϕ) =

∑

|n|≤m

an

(

∫ 2π

0

+

∫ 0

−ε

+

∫ 2π+ε

2π

)

einxη(x)h(x) dx

=
∑

|n|≤m

an

(

∫ 2π

0

einxh(x) dx+O(ε)
)

=
∑

|n|≤m

an

(

∞
∑

k=1

2π

nk
k

δnnk
+O(ε)

)

= 2π
∑

|nk|≤m

(ank

nk
k

+ ank
O(ε)

)

.

The third equality is obtained by interchanging the order of summation
and integration, which is possible because the series for h(x) converges
uniformly. The limit m → ∞ does not exist because |ank

| > |nk|k, and
the series diverges. This completes the proof.

22.2.6. Poisson summation formula. Let us show that in the sense of
distributions

1

2π

∞
∑

n=−∞

einx =
∞
∑

n=−∞

δ(x− 2πn) .

This relation is known as the distributional Poisson summation for-
mula.
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To prove it, consider the function

f(x) =
1

2
− x

2π
, 0 < x < 2π ,

that is extended periodically

f(x+ 2π) = f(x)

to the whole real axis. The function f is continuous and has jump
discontinuities at x = 2πn where n is an integer. Since the integral of
f over (0, 2π) vanishes, the antiderivative of f

g(x) =

∫ x

0

f(y) dy =
x

2
− x2

4π
, 0 ≤ x ≤ 2π ,

is continuous and 2π periodic on R:

g(x+ 2π) = g(x) .

Its second distributional derivative can be found by relation (21.16):

g′(x) = {g′(x)} = f(x)

g′′(x) = {f ′(x)} +
∑

n

disc
2πn

[f ] δ(x− 2πn)

= − 1

2π
+
∑

n

δ(x− 2πn)

because the classical derivative of f is equal to − 1
2π

and does not exists
at x = 2πn where f has jump discontinuities such that disc [f ] = 1 at
x = 2πn.

On the other hand, g(x) is continuous and periodic, and g′(x) is lo-
cally integrable, therefore its Fourier series converges to g(x) uniformly:

g(x) =
π

6
− 1

2π

∑

n6=0

1

n2
einx

and its sum defines a regular distribution. Hence, g′′(x) can be found
by means of Theorem 22.2:

g′′(x) =
1

2π

∑

n6=0

einx

in the distributional sense. The Poisson summation formula is obtained
by equating the two expressions for g′′(x).
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22.3. Periodic extension of a compactly supported distribution. Any dis-
tribution defined by a convergent trigonometric Fourier series is peri-
odic. For example, the Fourier series in the Poisson summation formula
defines a 2π periodic extension of δ(x) ∈ D′(−π, π) to R.

Let us show that for any compactly supported distribution f ∈ D′

the series

(22.6) fτ (x) =
∑

n

f(x+ nτ ) ,

converges in D′ and defines a periodic distribution with period τ . For
any test function ϕ, put

φm(x) =
∑

|n|≤m

ϕ(x− nτ ) .

If support of ϕ lies in [−R,R], then ϕ(x− nτ ) = 0 for all n such that
|x− nτ | > R. Therefore the series converges for any x, φm(x) → φ(x)
as m → ∞. On any bounded interval, φ(x) is also defined by a finite
sum of test functions and hence φ is a C∞ function. Furthermore,
it follows from this observation that Dβφm → Dβφ uniformly on any
compact as m → ∞ for any β > 0. Therefore for any test function
η ∈ D, the sequence of test functions ηφm converges to a test function
ηφ in topology of D because DαηDβφm → DαηDβφ uniformly for any
α and β and supports of all ηφm lie in support of η.

Now the existence of the distribution fτ follows from continuity and
linearity of the functional f . Indeed, let ηf ∈ D and ηf (x) = 1 in a
neighborhood of supp f so that ηff = f . Then
∑

|n|≤m

(

f(x+nτ ), ϕ(x)
)

=
∑

|n|≤m

(

f(x), ϕ(x−nτ )
)

= (f, φm) = (f, ηfφm) .

Since ηfφm → ηfφ in D, the limit m → ∞ exists by continuity of f
and

(22.7) (fτ , ϕ) = (f, ηfφ) , φ(x) =
∑

n

ϕ(x− nτ ) , ϕ ∈ D .

By periodicity φ(x− τ ) = φ(x),

(fτ (x+ τ ), ϕ(x)) = (fτ(x), ϕ(x− τ )) = (f(x), ηf(x)φ(x− τ ))

= (f(x), ηf(x)φ(x)) = (fτ (x), ϕ(x)) ,

for any ϕ ∈ D, which means that fτ is a periodic distribution with
period τ . One should point out that the series (22.6) generally diverges
for distributions that are not compactly supported, e.g., f(x) = ex.
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Suppose that supp f ⊂ (0, τ ). In this case, the rule (22.7) defines
a periodic extension of f ∈ D′(0, τ ) to R. Indeed, if ϕ ∈ D(0, τ ) in
(22.7), then (fτ , ϕ) = (f, ϕ). This means that fτ is an extension of f :

supp f ⊂ (0, τ ) ⇒ fτ (x) = f(x) , x ∈ (0, τ ) .

Suppose f ∈ L(0, b) and f(x) = 0 for all x /∈ [0, b], then fτ defined
by the series (22.6) generally does not coincide with f in (0, b) if τ < b
even in the distributional sense. But fτ is a periodic extension of f
if τ > b. Even when τ = b, fτ is a periodic extension of f in the
distributional sense because two locally integrable functions that are
equal almost everywhere define the same distribution (the distribution
fτ does not depend on the values f(0) and f(τ )). However, singular
distributions can have point supports. For this reason, fτ may not be
an extension of f , unless supp f lies in an open interval of length τ . For
example, let f(x) = δ(x)− δ(x− τ ). Then fτ (x) =

∑

n f(x+ nτ ) = 0.

22.4. Expansion of a periodic distribution into a Fourier series. Any dis-
tribution defined by a convergent trigonometric Fourier series is pe-
riodic. How about the converse? Can a periodic distribution be ex-
panded into a convergent trigonometric Fourier series? The answer is
affirmative.

To simplify the discussion, any periodic distribution is assumed to
have period 2π. If a distribution has period τ , then one can always
make a scaling transformation of the argument to change the period to
2π. If f(x+ τ ) = f(x), then the distribution f( τx

2π
) is 2π periodic.

Theorem 22.3. Let f be a periodic distribution with period 2π.
Then

(22.8) f(x) =
∑

n

ane
inx , an =

1

2π

(

f(x), η(x)e−inx
)

,

where η is any test function with the characteristic property

(22.9)
∑

n

η(x+ 2πn) = 1 .

Conversely, if f is given by a convergent Fourier series (22.3), then
(f(x), η(x)e−inx) = 2πan for any test function η satisfying (22.9). So,
any periodic distribution is uniquely defined by its Fourier coefficients.

Let us first show that a test function η with the stated charac-
teristic property exists. Recall that if χ is a characteristic function
of an interval (a, b), then the regularization ωε ∗ χ, where ωε is a hat
function, is a test function that takes values between 0 and 1 so that
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ωε ∗ χ(x) = 1 if a− ε < x < b+ ε. In the limit a → −∞ and b → ∞,
ωε ∗ χ(x) → 1 for any x. Let χm(x) be a characteristic function for an
interval (c − 2πm, c + 2π(m + 1)) where c is any number and m is a
non-negative integer. Then ωε ∗ χm(x) → 1 as m → ∞ for any x. On
the other hand,

χm(x) =
∑

|n|≤m

χ0(x+ 2πn) a.e.

Therefore

1 = lim
m→∞

ωε ∗ χm(x) =
∑

n

ωε ∗ χ0(x+ 2πn) .

So, one can take η = ωε ∗ χ0. It is clear that η = φ ∗ χ0 would
also satisfy (22.9) for any normalized test function φ, meaning that
φ ∗ 1 =

∫

φ(x)dx = 1.
If f is locally integrable and 2π periodic. Then

an =
1

2π

∫

f(x)η(x)e−inxdx =
1

2π

∑

k

∫ 2π(k+1)

2πk

f(x)η(x)e−inxdx

=
1

2π

∑

k

∫ 2π

0

f(x)η(x+ 2πk)e−inxdx =
1

2π

∫ 2π

0

f(x)e−inxdx

by periodicity of f and (22.9). The order of integration and summation
can be interchanged by Theorem 3.2 because the series (22.9) converges
uniformly on [0, 2π]. So, the theory of classical trigonometric Fourier
series is included into the result (22.8).

Let f ∈ D′ be 2π periodic. From the analysis in the previous
section, it also follows that for any test function ϕ,

ϕ(x)
∑

|n|≤m

η(x+ 2πn) → ϕ(x) in D

as m → ∞. Therefore by continuity, linearity, and periodicity of the
functional f one infers that

(f, ϕ) = lim
m→∞

∑

|n|≤m

(

f(x), η(x+ 2πn)ϕ(x)
)

= lim
m→∞

∑

|n|≤m

(

f(x+ 2πn), η(x+ 2πn)ϕ(x)
)

= lim
m→∞

∑

|n|≤m

(

f(x), η(x)ϕ(x− 2πn)
)

= (f, ηφ) ,
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where φ(x) =
∑

n ϕ(x−2πn) is a periodic C∞ function with period 2π.
The last equality follows from continuity of f and the analysis from the
previous section (see the derivation of (22.7)).

Next, the function φ can be expanded into a Fourier series

φ(x) = lim
m→∞

φm(x) , φm(x) =
∑

|n|≤m

bne
−inx ,

where the Fourier coefficient bn can written in the form

bn =
1

2π

∫ 2π

0

φ(x) einx dx =
1

2π

∑

k

∫ 2π

0

ϕ(x− 2πk) einx dx

=
1

2π

∑

k

∫ 2π(k+1)

2πk

ϕ(x)einxdx =
1

2π

(

einx, ϕ(x)
)

.

The second equality is obtained by interchanging the order of integra-
tion and summation that is justified by Theorem 3.2 because the series
φ converges uniformly on [0, 2π].

Finally, the partial sums φm and its derivativesDβφm converge uni-
formly to φ andDβφ, respectively, on any compact for any β. Therefore
ηφm → ηφ in D as m → ∞ by the same reasoning as in the previous
section. The conclusion of the theorem follows from the linearity and
continuity of f :

(f, ϕ) = (f, ηφ) = lim
m→∞

(

f, ηφm

)

= lim
m→∞

∑

|n|≤m

bn
(

f(x), η(x)e−inx
)

= lim
m→∞

∑

|n|≤m

an

(

einx, ϕ(x)
)

for any test function ϕ. This means that any 2π periodic distribution
f can be expanded into the Fourier series (22.3).

It follows from (22.9) and Theorem 3.2 that

(einx, η(x)) =

∫

einxη(x) dx =
∑

k

∫ 2π(k+1)

2πk

einxη(x) dx

=
∑

k

∫ 2π

0

einxη(x+ 2πk) dx =

∫ 2π

0

einx dx = 2πδn0
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Now suppose that f is defined by a convergent series (22.3) for some
choice of {an}. Then

(

f(x), η(x)e−inx
)

= lim
m→∞

∑

|k|≤m

ak

(

eikx, η(x)e−inx
)

= lim
m→∞

∑

|k|≤m

ak

(

ei(k−n)x, η(x)
)

= 2πan .

The proof is complete.
For example, let f(x) =

∑

n δ(x− 2πn). Then choosing η so that
η(0) = 1, one gets an = 1

2π
, and the Poisson summation formula is

recovered.

22.4.1. The structure theorem for periodic distributions. There is a sim-
ple consequence of Theorems 22.2 and 22.3 which is a particular case
of the structure theorem in Sec.21.7.

Corollary 22.3. Any periodic distribution is a repetitive deriva-
tive of a continuous function.

Indeed, any periodic distribution with period τ can be reduced to
a distribution with period 2π by the aforementioned scaling transfor-
mation. Then the 2π periodic distribution can be expanded into the
Fourier series by Theorem 22.3. By Theorem 22.2, the Fourier coeffi-
cients of any periodic distribution an = O(|n|k) for some k as |n| → ∞
because the Fourier series converges in D′. Therefore a continuous
function (22.4) can be constructed and (22.4) holds for any periodic
distribution.

Let a distribution f be compactly supported in R and its support
lie in a bounded open interval Ω of length τ . Then by Sec.22.3 f has
a periodic extension fτ from Ω to R with period τ . By Corollary 22.3,
there exists a continuous function g such that fτ(x) = g(n)(x) for some
integer n ≥ 0. Since fτ is an extension of f from Ω to R

f(x) = fτ(x) = g(n)(x) , x ∈ Ω .

Let h(x) = g(x) if x ∈ Ω and h(x) = 0 otherwise. The function g must
be zero near any x ∈ Ω that is not in support of f and, hence, h is
continuous on R. Therefore f(x) = h(n)(x) or any compactly supported
distribution is a repetitive derivative of a continuous function.

Let f ∈ D′ and K is a compact in R. Let ηK ∈ D be a bump
function for K. Put fK = ηKf which is a distribution with bounded
support such that for any test function ϕ with support in K,

(fK , ϕ) = (f, ηKϕ) = (f, ϕ) .
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Then the distribution fK is a repetitive derivative of some continuous
function h, fK(x) = h(n)(x). Therefore (f, ϕ) = (−1)n(h, ϕ(n)) for some
n ≥ 0 and any test function ϕ supported in a compact K. This proves
the structure theorem in Sec.21.7 for distributions of one real variable.

22.4.2. Convolution of periodic distributions. Let f and g be periodic
distributions with period 2π. They are uniquely defined by their Fourier
coefficients

g(x) =
∑

n

ane
inx , f(x) =

∑

n

bne
inx .

A convolution of periodic distributions f and g is a distribution defined
by the Foureir series

f ∗ g(x) = 2π
∑

n

anbne
inx .

Note that the Fourier series converges in D′ because an = O(|n|k) and
bn = O(|n|m) so that anbn = O(|n|k+m). So, the convolution is a 2π
periodic distribution. If g and f are defined by functions integrable on
(0, 2π) such that

∫ 2π

0

∫ 2π

0

|f(x− y)g(y)| dxdy <∞ .

Then by Fubini’s theorem the convolution

f ∗ g(x) =

∫ 2π

0

f(x − y)g(y) dy .

exists and is integrable on (0, 2π). It is also 2π periodic by periodicity
of f and g. Therefore the Fourier coefficients of f ∗ g are

cn =
1

2π

2π
∫

0

2π
∫

0

f(x− y)g(y)e−inx dy dx = bn

2π
∫

0

e−inyg(y) dy = 2πanbn ,

as required.
The convolution is commutative and associative, like the product

of classical functions:

f ∗ g = g ∗ f , (f ∗ g) ∗ h = f ∗ (g ∗ h) .
The derivative of the convolution has the following property

D(f ∗ g) = Df ∗ g = f ∗Dg .
The convolution of periodic distributions defines a product of distri-
bution that is commutative and associative. So, the space of periodic
distributions can be viewed as an algebra.
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Put

δ2π(x) =
∑

n

δ(x+ 2πn) .

Then by the Poisson summation formula δ2π ∗ g = g for any periodic
g ∈ D′. The distribution δ2π is sometimes called a Dirac comb with
period 2π. It plays the role of the unit periodic distribution relative the
multiplication defined by the convolution for 2π periodic distributions.

By analogy with algebra of ordinary functions, one can try to define
division of a distribution f by a distribution g as the product g−1 ∗ f
where the reciprocal distribution g−1 is a solution the equation

g−1 ∗ g = δ2π .

If g−1 exists as a periodic distribution, then the convolution equation
has a unique solution:

g ∗ h = f ⇒ h = g−1 ∗ f .
Unfortunately, not every periodic distribution has the reciprocal. If
g−1 exists, then its Fourier coefficients must be reciprocals 1/an so
that an 6= 0 necessarily. For example, take g(x) =

∑

n e
−n2

einx. Then
g−1 does not exist because its Fourier coefficients do not satisfy the
hypotheses of Theorem 22.3. More generally, if g is defined by a C∞

periodic function. Then |n|kan → 0 as n → ∞ for any k. Therefore
the reciprocals 1/an grow faster than any power |n|k and the Fourier
series with coefficients 1/an does not converge in D′.

22.5. Exercises.

1. Let f(x) = 1 − |x| if |x| < 1 and f(x+ 2) = f(x). Show that

f ′′(x) = 2
∑

n

eiπ(2n+1)x

in the sense of distributions.

2. Poisson summation formula for smooth functions. Let ϕ be a test
function and

F [ϕ](k) =

∫ ∞

−∞

ϕ(x) eixk dx

be its Fourier transform. Show that
∑

n

ϕ(2πn) =
1

2π

∑

n

F [ϕ](n)



306 3. CALCULUS WITH DISTRIBUTIONS

3. Show that the Fourier series

f(x) =
∞
∑

n=1

n2 cos(nx)

converges in the sense of distributions and express its sum in terms
of shifted delta-functions and its derivatives. In particular, find an
explicit expression for (f, ϕ) where ϕ ∈ D in terms of point values of
ϕ and, possibly, point values of the derivatives of ϕ.
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23. Fourier method for differential equations

Let us find all 2π periodic distributions u that satisfy a differential
equation

L(D)u(x) = f(x)

where L(D) is a linear differential operator of order p with constant
coefficients, and f is a 2π periodic distribution. If a solution exists,
then it is uniquely defined by its Fourier series. Put

f(x) =
∑

n

ane
inx , u(x) =

∑

n

bne
inx .

Derivatives of u are obtained by term-by-term differentiation of their
Fourier series. Therefore

L(in)bn = an .

If L(in) 6= 0 for any integer n, then the solution exists and is unique.
It can be written as the convolution of periodic distributions

u(x) = G ∗ f(x) =
∑

n

an

L(in)
einx ,(23.1)

G(x) =
1

2π

∑

n

einx

L(in)
.(23.2)

For differential operators of order p ≥ 2, the series (23.2) converges
uniformly and, hence, G(x) is continuous and 2π periodic. For p = 1,
G is piecewise continuous (shown below). So, if f is integrable on
(0, 2π), then by Fubini’s theorem the solution can be written as the
convolution integral

u(x) = G ∗ f(x) =

∫ 2π

0

G(x− y)f(y) dy ,

that defines a regular periodic distribution.

23.1. Differential equations as a convolution equation. The differential
equation studied above can also be cast as the convolution equation.
By the properties of the convolution

L(D)u = L(D)(δ2π ∗ u) = L(D)δ2π ∗ u = f ,

where δ2π is the Dirac comb. The reciprocal of L(D)δ2π exists if L(in) 6=
0 for any integer n and, in this case, the reciprocal is equal to the
Green’s function:

u = [L(D)δ2π]−1 ∗ f = G ∗ f .
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23.2. Regular periodic boundary value problem. Equation (23.1) solves
the posed problem. However a practical use of it is somewhat compli-
cated because of summation of the Fourier series. If the inhomogeneity
f is a regular distribution, then the integral representation of the con-
volution looks technically simpler to deal with than summation of the
Fourier series. Is it possible to find the sum (23.2)? Let us try to do
so.

By Theorem 22.2 and the Poisson summation formula, the distri-
bution G is a periodic solution to the equation

(23.3) L(D)G(x) =
∑

n

δ(x− 2πn) .

Note that the right-hand side is equal to δ(x) in (−π, π). As noted
above, the distribution G is defined by a (piecewise) continuous 2π
periodic function. Let G0(x) = G(x) in (−π, π) and G0(x) = 0 a.e.
otherwise. Then

G0(x) =
1

2π

∑

n

einx

L(in)
, x ∈ (−π, π) ,(23.4)

G(x) =
∑

n

G0(x+ 2πn) .(23.5)

The distribution G0 satisfies the equation

(23.6) L(D)G0(x) = δ(x) , x ∈ (−π, π) .

A solution to this equation is not unique as one can always add a
solution to the associate homogeneous equation G0 → G0 + h where
L(D)h = 0. Recall that a general solution h is a linear combination of
p linearly independent solutions. So, h has exactly p real parameters.
All linearly independent solutions can be written in the form xkeγx

where γ is a root (real or complex) of L(γ) = 0 of multiplicity m and
in this case k = 0, 1, ..., m − 1. So, h is a C∞ function in any open
interval.

Thus, not every solution to (23.6) would serve the purpose in (23.5)
as G is shown to be unique. Note that near x = π, the Dirac comb
vanishes, δ2π(x) = 0 for |x− π| < a for small enough a > 0. Therefore
G(x) must be a solution to the homogeneous equation near x = π.
On the other hand, by (23.5) G(x) = G0(x) + G0(x − 2π) near x =
π. In the intervals (−π, 0) and (0, π) the function G0 satisfies the
homogeneous equation and, hence, it is smooth. Therefore G(x) is
defined by a piecewise smooth function near x = π because the sum
G0(x)+G0(x−2π) and any of its derivatives have jump discontinuities



23. FOURIER METHOD FOR DIFFERENTIAL EQUATIONS 309

in general at x = π. Owing to the rule of distributional differentiation
of piecewise smooth functions

G(k)(x) = {G(k)} +
k−1
∑

m=0

cmδ
(m)(x− π) , |x− π| < a ,

where the coefficients cm = G
(k−1−m)
0 (−π) − G

(k−1−m)
0 (π) define the

magnitude of the jump discontinuities of classical derivatives {G(k−1−m)}
at x = π. This shows that G cannot satisfy (23.3) near x = π unless
the distribution G0 satisfies the periodic boundary conditions

(23.7) G
(k)
0 (−π) = G

(k)
0 (π) , k = 0, 1, ..., p− 1 .

In this case, cm = 0 for anym = 0, 1, ..., p−1, and L(D)G = {L(D)G} =
0 near x = π as well as near x = π+2πn for any integer n, as required.

Moreover, if such G0 exists, then it is unique. Any two solutions
differs by a solution to the homogeneous equation but now any such
solution is also required to obey periodic boundary conditions (23.7).
Such a non-trivial solution exists only if L(γ) = 0 has a root γ = in
for some integer n because e−γπ = eγπ only if γ = in. However, G
exists and is unique precisely under the condition that L(in) 6= 0 for
any integer n.

The operator L(D) for which L(in) 6= 0 is called a regular differen-
tial operator on a circle. Periodic functions can be viewed as functions
on a unit circle owing to the boundary conditions (23.7). So, the peri-
odic distribution G satisfying (23.3) exists and is unique if and only if
the distribution G0 solving the regular boundary value problem (23.6)
and (23.7) exists and is unique. It remains to solve the boundary value
problem.

23.2.1. Solving regular boundary value problems on a circle. Let

G0(x) = G0+(x) , x ∈ (0, π) , G0(x) = G0−(x) , x ∈ (−π, 0) .
As noted, the functions G0± are smooth and satisfy the homogeneous
equation L(D)G0± = 0. Each solution has p parameters. Consequently,
G0 is piecewise smooth and has 2p parameters. The boundary condi-
tions impose p conditions on these parameters:

G
(k)
0+(π) = G

(k)
0−(−π) , k = 0, 1, ..., p− 1 .

Then according to the distributional differentiation of a piecewise smooth
function, (23.6) is reduced to

L(D)G0 = {L(D)G0} +

p−1
∑

k=0

ckδ
(k) = δ .
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where ck are defined by magnitudes of jump discontinuities of classical
derivatives of G0 at x = 0. By construction {L(D)G0} = 0. Therefore
(23.6) is satisfied only if c0 = 1 and ck = 0 for k 6= 0, assuming that the
coefficient at the pth derivative in L(D) is equal to 1. To get rid off all
terms containing derivatives of the delta function, one must demand
that G0 and its derivatives up order p − 2 are continuous at x = 0.
Thus, another p conditions on G0 are

G
(k)
0−(0) = G

(k)
0+(0) , k = 0, 1, ..., p− 2 , G

(p−1)
0+ (0) −G

(p−1)
0− (0) = 1 .

It is interesting to note that Eq. (23.4) offers a summation for-
mula for trigonometric Fourier series with coefficients being reciprocals
of polynomials. The function G0 is called a Green’s function of the
operator L(D) on a circle.

23.2.2. Examples. Let L(D) = D + γ for some real γ. Then

G0±(x) = A±e
−γx

for some constants A±. The periodicity boundary condition requires
that A+ = A−e

2πγ. Therefore

G′
0(x) + γG0(x) = {G′

0(x)}+ γG0(x) + disc
x=0

[G0]δ(x)

= (A+ − A−)δ(x) .

The equation is satisfied if A+ −A− = 1 and

G0(x) =
1

e2πγ − 1

{

e−γx , x ∈ (−π, 0)
eγ(2π−x) , x ∈ (0, π)

It is straightforward to verify that
∫ π

−π

G0(x)e
−inxdx =

1

in+ γ
,

and therefore

G(x) =
∑

n

G0(x+ 2πn) =
1

2π

∑

n

einx

in+ γ
.

The Fourier series converges to G0(x) everywhere in (−π, π) but x = 0
(see (22.2)).

Let L(D) = −D2 + γ2 where γ > 0. To find the Green’s function,
one has to solve the following problem:

−G′′
0 + γ2G0 = δ , G0(−π) = G0(π) , G′

0(−π) = G′
0(π) .

The homogeneous equation has two linearly independent solutions,
e±γx. Therefore

G0±(x) = A±e
γx +B±e

−γx ,
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for some constants A± and B±. The boundary conditions and the
continuity conditions are satisfied only if A± and B± are such that

G0(x) =
1

2γ sinh(πγ)

{

cosh[γ(x+ π)] , x ∈ (−π, 0)
cosh[γ(x− π)] , x ∈ (0, π)

Technical details are left to the reader as an exercise. It is not difficult
to see that the periodicity conditions are fulfilled:

G0(±π) =
1

2γ sinh(πγ)
, G′

0(±π) = 0 .

The function G0 is continuous at x = 0 and its classical derivative has
a required jump discontinuity:

G0(0
±) =

cosh(πγ)

2γ sinh(πγ)
, {G′

0(0
±)} = ∓1

2
,

where the argument 0± denotes the left and right limits of the function
at x = 0. Therefore −G′′

0 = −{G′
0}′ = −{G′′

0}+δ. It is also not difficult
to show that

∫ π

−π

G0(x)e
−inxdx =

1

n2 + γ2
,

so that the periodic extension of G0 to the whole R reads

G(x) =
∑

n

G0(x+ 2πn) =
1

2π

∑

n

einx

n2 + γ2
.

It satisfies (23.3). The Fourier series converges uniformly. Therefore
the following summation formula holds:

∑

n

einx

n2 + γ2
= 2πG0(x) , |x| ≤ π .

23.3. Classical boundary value problem on a circle. Green’s function found
in the previous section can be used to construct an integral represen-
tation of classical solutions to regular boundary value problems on a
circle.

Proposition 23.5. Let f be a continuous function on [−π, π]. Put

u(x) =

∫ π

−π

G(x− y)f(y) dy , |x| < π ,

where G is given by (23.5) and G0 is a solution to the boundary value
problem (23.6) and (23.7). Then u ∈ Cp(−π, π) ∩ Cp−1[−π, π] and is
a unique solution to the boundary value problem:

L(D)u = f , u(k)(−π) = u(k)(π) , k = 0, 1, ..., p− 1 .
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To verify smoothness of u, the boundary conditions, and the equa-
tion, it is convenient to write u explicitly via the smooth functions
G0±:

u(x) =
(

∫ x−π

−π

G0+(x− y) +

∫ x

x−π

G0−(x− y − 2π)

+

∫ π

x

G0−(x− y)
)

f(y) dy , x ∈ [0, π] ,

u(x) =
(

∫ x

−π

G0+(x− y) +

∫ x+π

x

G0−(x− y)

+

∫ π

x+π

G0−(x− y + 2π)
)

f(y) dy , x ∈ [−π, 0] .

It follows from this representation that u(π) = u(−π). Since f is
continuous, the (classical) derivative u′ can be computed by the fun-
damental theorem of calculus. It has same integral representation as u
where G0± are replaced by the derivatives G′

0±. The boundary terms
arising from differentiation vanish thanks to boundary and continuity
conditions for G0±. The same holds for u′′ and other derivatives. The
equation is verified by taking a combination of derivatives to make
L(D)u and using that G0± are annihilated by L(D). The technical
details are left to the reader as an exercise.

The convolution with the Green’s function is an operator that is
inverse to the differential operator L(D). It is noteworthy to make an
analogy with the linear algebra problem Ax = b where A is a square
matrix and b is a given vector. The problem has a unique solution
if A is invertible and, in this case, x = A−1b. A matrix is invertible
if and only if the homogeneous equation Ax = 0 has only the trivial
solution x = 0. Here the differential operator L acts in a special class of
functions that satisfy boundary conditions. If L(D)h = 0 has only the
trivial solution subject to the boundary conditions, then L is invertible
and the solution to Lu = f is unique and given by u = L−1f = G ∗ f .

23.3.1. Well-posedness of the problem. A problem is well posed if its
solution exists, is unique, and depends continuously on parameters. In
other words, small variations of parameters produce small variations of
the solution. Let u and ũ be solutions to the boundary value problem
in Proposition 23.5 for inhomogeneities f and f̃ . Then

|u(x)− ũ(x)| ≤
∫ π

−π

|G(x− y)||f(y)− f̃(y)| dy

≤ 2πM sup |f(x) − f̃(x)| , M = sup |G(x)| ,
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where M <∞ because the Green’s function is bounded. This inequal-
ity holds for all x and, hence, for any ε > 0

sup |f(x) − f̃(x)| ≤ ε ⇒ sup |u(x)− ũ(x)| ≤ 2πMε .

This shows that the classical boundary value problem for a regular
differential operator on a circle is well posed.

23.4. Green’s functions for a singular differential operator on a circle. Sup-
pose that L(in) = 0 for some integers n ∈ ZL. By analogy with the
linear algebra problem, the operator L will be called singular. In this
case, the problem has no solution if an 6= 0 at least for one n ∈ ZL. If
an = 0 for all n ∈ ZL, then the problem has a solution but it is not
unique because bn, n ∈ ZL, are arbitrary so that

u(x) =
∑

n∈ZL

bne
inx +

∑

n/∈ZL

an

L(in)
einx =

∑

n∈ZL

bne
inx +Gs ∗ f(x) .

The distribution

Gs(x) =
1

2π

∑

n/∈ZL

einx

L(in)

will be called a Green’s function for a singular differential operator L
on a circle. The objective is to find an explicit form of Gs as a periodic
function of x and thereby to obtain an integral representation for the
solution when f is a regular distribution:

u(x) =
∑

n∈ZL

bne
inx +

∫ π

−π

Gs(x− y)f(y) dy ,

subject to the conditions that the Fourier coefficients of f vanish for
all n ∈ ZL. Note also that, if L is real, then −n ∈ ZL if n ∈ ZL.

To accomplish this task, the same strategy will be employed as
in the case of a regular L. But it requires modifications. First, the
function Gs does not satisfy (23.3). The new equation for the Green’s
function reads

L(D)Gs =
1

2π

∑

n/∈ZL

einx =
∑

n

δ(x− 2πn) − 1

2π

∑

n∈ZL

einx .

Therefore Gs can be written in the form (23.5) where G0 satisfies the
equation

(23.8) L(D)G0(x) = δ(x)− 1

2π

∑

n∈ZL

einx ,

and the boundary conditions (23.7). A solution can be found in the
exactly same way as in the regular case. The smooth functions G0±
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are general solutions to the above equation in the intervals (0,±π),
that is, when δ(x) is omitted in the right-hand side. So, G0 is again
a piecewise smooth with a jump discontinuity at x = 0. This implies
that G0± satisfy the same boundary conditions and the same continuity
conditions at x = 0 as in the regular case. The difference is that G0±

are general solutions to the non-homogeneous problem. A solution G0

constructed in this way is not unique because G0 can be changed by
adding a linear combination of einx with n ∈ ZL.

To eliminate this ambiguity, note that Gs is, by construction, a
periodic extension of an integrable function G0 by the Fourier series
from (−π, π) to R. Therefore, the Fourier coefficients of G0 must vanish
for all n ∈ ZL:

∫ π

−π

G0(x)e
−inx dx = 0 , n ∈ ZL .

The convolution Gs ∗f is not affected by these orthogonality conditions
because f must satisfy the same conditions. The orthogonality con-
ditions make G0 a unique solution to (23.8) that satisfies (23.7) such
that

Gs(x) =
∑

n

G0(x− 2πn) =
∑

n/∈ZL

1

L(in)
einx .

By construction, the Fourier series converges to G0(x) for all x ∈
[−π, π].

23.4.1. Example. Let L(D) = D2 + 1. Then ZL = {±1} so that

G′′
s +Gs = δ(x) − 1

π
cos(x) , Gs(π) = Gs(−π) , G′(−π) = G′

s(π) .

A general solution for x < 0 and x > 0 reads

Gs±(x) = A± cos(x) +B± sin(x)− x

2π
sin(x) .

The boundary conditions yield A+ = A− and B+ = B1 + 1. The
continuity conditions, discGs = 0 and disc {G′

s} = 1 at x = 0, do
not impose any further restrictions on the real parameters A± and B±.
Therefore a general solution reads

Gs(x) = A− cos(x) +B− sin(x) − x

2π
sin(x) + θ(x) sin(x) .

Finally, the orthogonality conditions, which are convenient to write in
the real form,

∫ π

−π

Gs(x) sin(x) dx = 0 ,

∫ π

−π

Gs(x) cos(x) dx = 0
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yield B− = −1
2

and A− = 1
4π

so that

Gs(x) =
1

4π
cos(x) − x

2π
sin(x) +

1

2
ε(x) sin(x) = 1 − 2

∞
∑

n=2

cos(nx)

n2 − 1
,

where ε(x) is the sign function, for any x ∈ [−π, π] because L(in) =
1 − n2.

23.5. Regularization of distributional solutions. Let fε = φε ∗ f be a
C∞ regularization of a periodic distribution f . By periodicity of f , its
regularization is also periodic. Let u be a solution to L(D)u = f . Then
by (21.7)

fε = φε ∗ f = φε ∗ L(D)u = L(D)(φε ∗ u) .
This shows that a smooth periodic function uε = φε ∗ u converges to
the distributional solution u as ε → 0+ and, hence,

uε(x) =

∫ 2π

0

G(x − y)fε(y) dy → u(x) in D′ ,

as ε → 0+. If L is singular, then G is to be replaced by Gs to obtain a
particular solution.

Thus, for every distributional solution there exists a smooth solu-
tion that is arbitrary close to the distributional one in the sense that
for any ε > 0 there exists δ > 0 such that

|(f, ϕ) − (fa, ϕ)| < ε , ϕ ∈ D
for all a < δ. So, from the perspective that measured physical quanti-
ties are distributions rather than classical functions, the above relation
shows that distributional solutions are just as good as smooth ones but
the former are much easier to find via formal Fourier series as one does
not dot need to worry about uniform convergence at all when studying
smoothness of the solution. Later it will be shown these ideas can also
be extended to linear partial differential equation and other orthogonal
bases in L2(Ω).

23.6. Exercises.

1. Dumped harmonic oscillator on a circle. (i) Find the Green’s function
for the operator L(D) = D2 − 2γD + ω2 on a circle.
(ii) Solve the periodic boundary value problem

L(D)u(x) = x , x ∈ (−π, π) , u(−π) = u(π) , u′(−π) = u′(π) .
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24. Taylor approximations of distributions

In applications, smooth functions are often approximated by Taylor
polynomials near a particular point or by some asymptotic expansions,
e.g., for large values of arguments. Can these concepts be extended to
distributions? The answer is affirmative but with some new peculiari-
ties characteristic to distributions. These techniques are used to study
asymptotic behavior and other approximations of distributional solu-
tions of partial differential equations, like Green’s functions for differ-
ential operators. Here basic mathematical foundations are formulated
to achieve the goal and illustrated by Taylor asymptotic expansions
of distributions. Applications to Green’s functions will be considered
later.

24.1. On the alternative definition of distributional derivatives. Equation
(13.3) gives an alternative definition of the distributional derivatives.
Let us show that it is equivalent to the distributional derivative defined
as the adjoint of differentiation on the space functions. In Sec.13.2.5 it
was argued that it is sufficient to show that

ϕ(x− a)− ϕ(x)

a
= ψa(x) → −ϕ′(x) in D as a → 0 .

Indeed, the support of ψa lies in |x| ≤ R+1 for all |a| ≤ 1 (the support
is independent of a) if the support of ϕ is in [−R,R]. By the Taylor
theorem, there exists a point xa between x− a and x such that

ϕ(x− a) = ϕ(x) − aϕ′(x) +
1

2
a2ϕ′′(xa) .

Since all derivatives of a test function are bounded,
∣

∣

∣
ψa(x) + ϕ′(x)

∣

∣

∣
≤ |a|

2
sup |ϕ′′| ,

which holds for any x. Therefore one can take the supremum in the
left-hand side:

sup |ψa + ϕ′| ≤ |a|
2

sup |ϕ′′| .
Hence, ψa converges to −ϕ′ uniformly:

lim
a→0

sup |ψa + ϕ′| = 0 .

Similarly
∣

∣

∣
Dβψa(x) +Dβϕ′(x)

∣

∣

∣
≤ |a|

2
sup |Dβϕ′′|

from which the uniform convergence of all derivatives of ψa to the
corresponding derivatives of −ϕ′ follows. Thus, ψa converges to −ϕ′
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in D and hence the distributional derivative can also be computed via
the distributional limit (13.3).

It is also clear that the same line of arguments can be applied to
the distribution f ′ to find the second distributional derivative f ′′ and
so on. This shows that the classical definition of the derivative via the
limit can be extended to all distributions and it agrees with the rule
(21.1).

Recall that a differentiable function has a good linear approxima-
tion. Equation (13.3) allows us to extend this concept to distributions.
Any distribution f admits the following asymptotic representation

f(x + a) = f(x) + af ′(x) +O′(a2) ,

where O′(a2) denotes a distribution with the characteristic property
that (O′(a2), ϕ) = O(a2) as a → 0 for any test function ϕ. Since
any distribution can be differentiated any number of times, one can
find asymptotic expansions of distributions that are similar to Taylor
polynomial approximations of smooth functions.

24.2. Asymptotic power series for distributions. Let f(x; a) be a distri-
bution from D′(RN) for every a ∈ RM . A distribution f(x; a) is said
to be from class Cp(Ω) in parameters a if for every test function ϕ(x),

u(a) =
(

f(x; a), ϕ(x)
)

∈ Cp(Ω) .

For the sake of simplicity, let a ∈ R. A generalization to any Euclidean
space is straightforward. Since the derivative u′(a) exist for any a, by
the completeness theorem, there exists a distribution f1(x; a) such that

u′(a) = lim
h→0

(f(x; a + h) − f(x; a)

h
, ϕ(x)

)

= (f1(x; a), ϕ(x)) ,

Owing to the definition of partial derivatives of classical functions, one
writes for brevity

f1(x; a) = lim
h→0

f(x; a+ h) − f(x; a)

h
def
=

∂

∂a
f(x; a) .

The distribution f1 will be called the derivative of f with respect to a
parameter a. If the distribution is from class Cp in parameter a, then

fk(x; a) =
∂

∂a
fk−1(x; a) , k ≤ p .
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Near a particular point, say, a = 0, the function u can be approxi-
mated by a Taylor polynomial

u(a) =
n−1
∑

k=0

u(k)(0)

k!
ak +O(an) , n ≤ p ,

where

u(k)(0) = (fk(x; 0), ϕ(x)) .

A Taylor polynomial approximation of f(x; a) in parameter a → 0 is
defined by

f(x; a) = Pn(x; a) +O′(an) , Pn(x; a) =
n−1
∑

k=0

fk(x)

k!
ak ,

where the symbol O′(an) stand for a distribution with the characteristic
property (O′(an), ϕ) = O(an) as a → 0.

Suppose that u ∈ C∞. Then in the formal limit n→ ∞ one has :

f(x; a) ∼
∞
∑

k=0

fk(x; 0)

k!
ak def

= lim
n→∞

Pn(x; a) .

This is a formal series because nothing is known about its convergence
in D′ for a 6= 0. In fact, as is shown in the next section, asymptotic
series often have no limit in D′. However the series does have the
characteristic property of the power series representation:

lim
a→0

1

an

(

f(x; a) − Pn(x; a)
)

=
fn(x; 0)

n!
,

where the limit is understood in the distributional sense. For this
reason is called an asymptotic power series expansion of the distribution
f in parameter a when a→ 0.

24.2.1. Distributions smooth in a particular variable. The same construc-
tion can be developed for particular variables in a distribution. Con-
sider a distribution f(x, y) of two variables x ∈ RN and y ∈ RM . For
every such distribution one can define a distribution

g(y) ∈
(

f(x, y), ϕ(x)
)

∈ D′(RM ) , ϕ ∈ D(RN ) ,

by the rule
(

g(y), ψ(y)
)

def
=
(

f(x, y), ϕ(x)ψ(y)
)

, ψ ∈ D(RM ) .

Note that the product ϕ(x)ψ(y) is a test function of two variables and
if ψn → 0 in D(RM ), then ϕψn → 0 in D(RN+M ) so that g is a linear
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and continuous functional on D(RM ). Let us find derivativesDβg. One
has

(Dβg, ψ) = (−1)β
(

g,Dβψ) = (−1)
(

f(x, y), ϕ(x)Dβψ(y)
)

=
(

Dβ
y f(x, y), ϕ(x)ψ(y)

)

This shows that

Dβg(y) = Dβ
(

f(x, y), ϕ(x)
)

=
(

Dβ
y f(x, y), ϕ(x)

)

.

If g is defined by a smooth function, then its distributional and classical
derivatives coincide. A distribution f(x, y) is said to be from class
Cp(Ω) in the variable y if g ∈ Cp(Ω).

Let M = 1 for simplicity. The distribution g and its derivative have
pointwise values. This implies that if y = 0 lies in Ω, then Dβ

y f(x, 0) ∈
D′(RN ). Then a Taylor polynomial approximation to f(x, y) in the
variable y about y = 0 can be defined by

f(x, y) =
n−1
∑

k=0

Dk
yf(x, 0)

k!
yk +O′(yn) ,

where the same convention is used that O′(yn) denotes a distribution in
the variable x with the characteristic property that (O′(yn), ϕ) = O(yn)
as y → 0.

If f(x, y) is from class C∞ in the variable y, then one can take the
formal limit n→ ∞ and obtain an asymptotic power series expansion
of f in the variable y. There is no guarantee that the power series
converges to f in D′(RN+M ) and, hence, cannot be used in calculations
in the place of f , unless the convergence is established. A generalization
to the case M > 1 is obtained just by replacing single variable Taylor
polynomials by the corresponding multi-variable Taylor polynomials in
the above Taylor polynomial approximations.

24.3. Asymptotic Taylor expansion of distributions. Let f ∈ D′(R). Con-
sider a shifted distribution f(x; a) = f(x+ a). Then the function

u(a) =
(

f(x+ a), ϕ(x)
)

=
(

f(x), ϕ(x− a)
)

= (ϕ− ∗ f)(a) .

is from class C∞ by Proposition 19.3 and

u(n)(0) =
(

f(x), Dn
aϕ(x− a)

)∣

∣

∣

a=0
= (−1)n(f, ϕ(n)) = (f (n), ϕ) .
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Therefore an asymptotic power series expansion in a reads

f(x+ a) ∼
∞
∑

n=0

f (n)(x)

n!
an def

= lim
n→∞

Pn(x; a) ,(24.1)

Pn(x; a) = f(x) + f ′(x)a+ · · · + f (n)(x)

(n− 1)!
an−1 .

It is similar to the Taylor expansion of smooth functions and will be
called an asymptotic Taylor expansion of a distribution f . In general,
the series does not converge in D′ for a 6= 0 but it has the characteristic
property of the Taylor series

(24.2)
1

an

(

f(x+ a) − Pn(x; a)
)

→ 1

n!
f (n)(x) in D′

as a→ 0.
It is not difficult to see that there are distributions for which the

equality in (24.1) is not possible for any a 6= 0. If support of f is not the
whole R, say, supp f = K is a closed and bounded interval. Then the
support of f(x+ a) is an interval Ka that is obtained by shifting K by
a distance a. Therefore Ka has a point xa that is at a non-zero distance
fromK, and there exists a test function ηa supported in a neighborhood
of xa and vanishing in a neighborhood of K. For example, one can
take a bump function for the point set x = xa whose support does
not intersect K. Then (Pn, ηa) = 0 for all n, while (f(x + a), ηa) 6= 0.
Recall also that if f has a bounded support, then u = ϕ− ∗ f is a
test function by Proposition 19.3 and, hence, cannot be a real analytic
function. There are points near which u cannot be given by a power
series.

For instance, consider the asymptotic Taylor expansion of the shifted
delta function:

δ(x+ a) ∼ δ(x) +
∞
∑

n=1

an

n!
δ(n)(x) .

The left and right-hand sides have non-intersecting supports if a 6=
0 and, hence, cannot be equal. Furthermore, if the series

∑

n cnδ
(n)

converges to a distribution f in D′, then the support of f consists of
the single point x = 0. By the structure theorem for distributions
with a point support, this is possible only if finitely many cn are not
equal to zero. Therefore the asymptotic Taylor expansion for a shifted
delta-function does not converge in D′ for any a 6= 0.

It is therefore interesting to find a class of distributions for which the
equality holds in (24.1). In order for the asymptotic Taylor expansion
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to converge in D′ it is sufficient that u = ϕ− ∗ f is a real analytic
function for any test function ϕ, that is, u is defined by a power series
near any point. Let us describe distributions for which the convolution
with any test function is a real analytic function.

Suppose that a distribution is defined by a real analytic function
f(x) so that its values near any point are given by a convergent Taylor
series about that point:

f(x+ a) =

∞
∑

n=0

f (n)(x)

n!
an , |a| < r ,

where the radius of convergence r > 0 can depend on x. Then

u(a) ∼
∞
∑

n=0

(f (n)(x), ϕ(x))

n!
an .

If the series converges for some a 6= 0, then its radius of convergence
depends on ϕ. A pointwise convergence of the series for f(x+ a) does
not yet guarantee its convergence in D′. One should make sure that
there is no test function for which the radius of convergence vanishes.
Let us further assume that a real analytic function f can be extended
analytically into a strip |Im z| < r in the complex plane so that

f(y) =
∞
∑

n=0

f (n)(x)

n!
(y − x)n , |x− y| < r ,

for any real x and y. By setting y = x + a, one can see that for any
|a| < r the Taylor series in (24.1) converges pointwise for all x.

Let us investigate the convergence of the series in D′. A real analytic
function f is known to have the following characteristic property5. For
any 0 < b < r and any bounded and closed interval [−R,R], there
exists a constant M such that

|f (n)(x)| ≤ Mb−nn! , |x| ≤ R ,

and all n. This shows that the series converges uniformly on any com-
pact, which is sufficient for the convergence of the series in the distri-
butional sense (recall Theorem 22.1). Indeed, fix |a| < r. Then there
exists |a| < b < r for which the above inequality holds. Therefore for
any test function ϕ supported in some interval [−R,R], there exists a
constant M such that

|(f (n), ϕ)| ≤
∫ R

−R

|f (n)(x)ϕ(x)| dx ≤ Mb−nn!

∫

|ϕ(x)| dx .

5S.G. Krantz and H.R. Parks, A Primer Of Real Analytic Functions (2nd
Edition)
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This inequality implies that the power series for u(a) converges abso-
lutely for any test function ϕ by the comparison test:

∑

n≥0

|a|n
n!

|(f (n), ϕ)| ≤ M

∫

|ϕ(x)| dx
∑

n≥0

( |a|
b

)n

<∞

because |a| < b. Thus, for a regular distribution defined by a real
analytical function that has a holomorphic extension into a strip in the
complex plane the asymptotic Taylor expansion is a convergent series
in D′. It turns out that the converse is also true, and the assertion can
also be extended to distributions of several variables6.

Theorem 24.1. Let f ∈ D′ and y ∈ RN be a vector with non-zero
components. The asymptotic Taylor expansion

f(x+ ay) ∼
∑

n≥0

an

n!
(y,Dx)

nf(x)

along the line ay, a ∈ R, is a convergent Taylor series in D′ if and
only if there exist rj > 0, j = 1, 2, ...., N such that f is a real analytic
function on RN which has a holomorphic extension f(z), z ∈ CN , into
a strip |Im zj| < rj.

So, the class of distributions for which the asymptotic Taylor ex-
pansion define a convergent series in D′ consists of regular distributions
defined by rather smooth (holomorphic) functions. Nonetheless they
are useful in applications for distributional solutions of partial differen-
tial equations. As an example, the multipole asymptotic expansion of
a potential of the electric or gravitational field created by a collection
of point particles is studied below in Sec. 24.5. Asymptotic expansions
of distributions are not limited to Taylor expansions7. An example is
given in the next section.

24.4. Pizzetti’s formula. Let ϕ be a smooth function on R3. Consider
its integral average over the sphere |x| = a in the limit a→ 0+:

1

4πa2

∮

|x|=a

ϕ(x) dS =
1

4π

∮

|y|=1

ϕ(ay) dS ∼
∞
∑

n=0

∆nϕ(0)

(2n + 1)!
a2n ,

where the asymptotic expansion is obtained by a formal expansion of
ϕ(ay) into a Taylor series with a subsequent evaluation of the integral
of products yj1 · · · yj2n

in each term of the series, which can be done in

6B. Stanković, J. Math. Anal. Appl. 203 (1996) 31-37
7For additional reading see, e.g., S. Pipilović, B. Stanković, and J. Vindas,

Asymptotic behavior of generalized functions, WSCP, 2012
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spherical coordinates (as shown below). This result was obtained by
Pizzetti in 1909. It has a generalization to RN :

1

σ
N

∮

|y|=1

ϕ(ay) dS ∼
∞
∑

n=0

∆nϕ(0)

2nn!N(N + 2) · · · (N + 2n− 2)
a2n .

Recall a spherical delta function δSa introduced in Sec.15.5. If ϕ is a
test function, then the left-hand side of Pizzetti’s equation is given by
(δSa , ϕ) divided by the surface area of the sphere. Since ∆nϕ(0) =
(∆nδ, ϕ), Pizzetti’s equation is nothing but an asymptotic expansion
of the spherical delta function in the limit of zero radius:

1

σ
N
aN−1

δSa(x) ∼
∞
∑

n=0

∆nδ(x)

2nn!N(N + 2) · · · (N + 2n − 2)
a2n .

Note that the series cannot converge to the spherical delta function in
D′ because each term in the series is supported at the origin x = 0
whereas δSa is supported on the sphere |x| = a > 0 so that all terms
of the series vanish on any test function whose support contains the
sphere |x| = a but does not contain x = 0. In fact, the series does
not converge in D′ at all by the structure theorem for distributions
supported at a single point.

So, the above relation is not an equality in D′ and must be viewed
only in the asymptotic sense. For example, the first and second terms
in the expansion are understood as the distributional limits:

lim
a→0+

1

σ
N
aN−1

δSa(x) = δ(x) ,

lim
a→0+

1

a2

( 1

σ
N
aN−1

δSa(x)− δ(x)
)

=
1

2N
∆δ(x) .

One can also write

1

σ
N
aN−1

δSa(x) = δ(x) +O′(a2) ,

1

σ
N
aN−1

δSa(x) = δ(x)− a2

2N
∆δ(x) +O′(a4) ,

where the symbol O′(an) is defined in the previous section. The terms
of higher order in a are interpreted similarly.

The first limit follows from the integral mean value theorem. The
second one means that the Laplacian of a smooth function ϕ at a point
can be found by using the mean values of ϕ on a sphere centered at
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the point and the value of ϕ at the center of the sphere:

lim
a→0+

1

a2

( 1

σ
N
aN−1

∫

|x|=a

ϕ(x) dS − ϕ(0)
)

=
1

2N
∆ϕ(0) .

If the limit is omitted, then, according to the asymptotic expansion,
the relation can be used to approximate ∆ϕ with accuracy of order
O(a2) as a → 0+. Let us prove this relation. The other terms in the
asymptotic expansion can be calculated in a similar way.

Using Einstein’s summation rule for repeated indices and changing
variables x = ay in the left-hand side, the latter is reduced to

1

σ
N
a2

∫

|y|=1

(

ϕ(ay)− ϕ(0)
)

dS

=
1

σ
N
a2

∫

|y|=1

(

a∂jϕ(0)ŷj +
a2

2
∂j∂kϕ(0)ŷj ŷk +O(a3)

)

dS

and the result follows because
∫

|y|=1

ŷj dS = 0 ,

∫

|y|=1

ŷj ŷk dS = δjk

∫

|y|=1

ŷ2
j dS =

σ
N

N
δjk .(24.3)

The integrals should be invariant under rotations about the origin.
Therefore the first integral vanishes whereas the second one must be
proportional to δjk because Uj′jUk′kδjk = (UUT )j′k′ = δj′k′ for any
orthogonal matrix U , and no other matrix djk 6= δjk with this prop-
erty exists. The last integral does not depend on j by the rotational
symmetry. It is therefore convenient to take the component that is
the projection of ŷ onto the axis of a spherical coordinate system (see
Sec.8.3.1). This component is equal to cos(φ). Then the integral over
the sphere is reduced to an iterated integral over the N−2 dimensional
sphere that lies in the N − 1 hyperplane perpendicular to the selected
axis and the integral with respect to φ:
∫

|y|=1

ŷ2
j dS = σ

N−1

∫ π

0

cos2(φ) sinN−2(φ) dφ

= σ
N−1

∫ 1

0

s
1

2 (1 − s)
N−3

2 ds = σ
N−1

B
(N − 1

2
,
3

2

)

=
σ

N

N

where s = cos2(φ), B(p, q) is the Euler beta function

B(p, q) =

∫ 1

0

(1 − s)p−1sq−1ds =
Γ(p)Γ(q)

Γ(p + q)
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and the explicit form of σ
N

was used.

24.5. Multipole expansions of gravitational and electrostatic potentials. In
Sec.10.7, it was shown that an electrostatic (or gravitational) potential
created by charges (or masses) compactly distributed with a sufficiently
smooth density ρ is given by the convolution integral

u(x) = − 1

4π

∫

ρ(y) d3y

|x− y| = − 1

4π

1

|x| ∗ ρ(x) .

If support of ρ lies in a ball |y| ≤ R, let us investigate u for R � |x|.
Using the Taylor expansion

1

|x− y| =
1

|x| +
(x, y)

|x|3 +
3(x, y)2 − |y|2|x|2

2|x|5 +O
( 1

|x|4
)

,

in the integral representation of the solution, one infers that

(24.4) u(x) = − Q

4π|x| −
(x, P )

4π|x|3 − (x,Mx)

|x|5 +O
( R3

|x|4
)

,

where the scalar Q, vector P , and matrix M are called the total charge,
dipole and quadrupole moments, respectively, and they are given by

Q =

∫

ρ(y) d3y , Pj =

∫

yjρ(y) d
3y ,

Mij =
1

2

∫

(3yiyj − |y|2δij)ρ(y) d
3y .

The corresponding terms in the asymptotic expansion are called Coulomb,
dipole, and quadrupole potentials. The expansion can be continued to
obtain the so-called multipole asymptotic expansion of the solution to
the Poisson equation.

If the source density is not a regular distribution, then the above
expansion cannot be used. Nevertheless, the multipole asymptotic ex-
pansion of the distributional solution to the Poisson equation can be
calculated for any compactly supported distribution ρ. It is obtained
via an asymptotic expansion of ρ(x) as x → x0 for some x0. In this
case, the small parameter in the multipole expansion of the potential
u(x) is |x − x0|/R where R is the diameter of support of ρ. The pro-
cedure is illustrated with examples of gravitational and electrostatic
potentials created by point particles.

24.5.1. Multipole expansion of Newton’s potential of point particles. The
mass density of a collection of point particles is

ρ(x) =
∑

p

mpδ(x− xp) ,
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where mp is a mass of a particle at a position xp ∈ R3. Suppose that all
particles lie in a compact region, e.g., in a ball. Then ρ is a distribution
if the total mass of particles is finite:

M =
∑

p

mp <∞

Indeed, the series

(ρ, ϕ) =
∑

p

mpϕ(xp)

converges absolutely for any test function because
∑

p

|mpϕ(xp)| ≤ sup |ϕ|
∑

p

mp = M sup |ϕ| <∞ .

Let us construct an asymptotic expansion of ρ when R→ 0 where R is
the largest possible distance between the particles, R = supp,p′ |xp−xp′|.
The center of mass is

x0 =
1

M

∑

p

mpxp .

Therefore the magnitude of a position vector of any particle relative to
the center of mass, yp = xp − x0, cannot exceed R:

|yp| =
1

M

∣

∣

∣
Mxp−

∑

p′

mp′xp′

∣

∣

∣
=

1

M

∑

p′

mp′|xp−xp′| ≤
1

M

∑

p′

mp′R = R

Put y = x− x0. Using the asymptotic expansion of the delta function

δ(x− xp) = δ(y − yp) = δ(y) − (yp,∇)δ(y) +
1

2
(yp,∇)2δ(y) +O′(R3)

it is concluded that

ρ(x) = Mδ(y) − (P,∇)δ(y) +
1

2
(∇, Q∇)δ(y) +O′(R3) .

24.5.2. Multipole expansion of electrostatic potential of point charges. Con-
sider a finite collection point-like electric charges qp positioned at xp.
Then the charge density can be modeled by

ρ(x) =
∑

p

qpδ(x− xp) .

Define a diameter of the system by R = maxp,p′ |xp − xp′|. It follows
from the asymptotic Taylor expansion of a shifted delta function that in
the limit R → 0+, the density has the following asymptotic expansion

ρ(x) = Qδ(x)− (P,∇)δ(x) + (∇, M̃∇)δ(x) +O′(R3) ,
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where O′(R3) is a distribution such that (O′(R3), ϕ) = O(R3) for any
test function ϕ, and

Q =
∑

p

qp , Pj =
∑

p

qpxpj , M̃ij =
1

2

∑

p

qpxpixpj .

The terms in the asymptotic expansion of ρ are called the Coulomb,
dipole, and quadrupole charge densities, respectively, for a system of
point charges. Let us find the corresponding expansion for a distribu-
tional solution to the Poisson equation ∆u = ρ in the limit R → 0+.

For any distribution ρ with a bounded support, its regularization
ρa = φa ∗ f is a test function. Then it follows from (21.7) that

ρa = φa ∗ ρ = φa ∗ ∆u = ∆(φa ∗ u) = ∆ua ,

where ua is a regularization of the distributional solution u. Therefore

ua(x) = − 1

4π

1

|x| ∗ ρa(x) → u(x) in D′

as a→ ∞. So, to find u, one has to calculate the limit.
If δa is a regularization of δ, then by (21.7) ρa is a linear combination

of δa and its derivatives. On the other hand, the convolution 1
|x|

∗ δa =

δa ∗ 1
|x|

is a regularization of the distribution 1
|x|

. Therefore by (21.7)

1

|x| ∗D
βδa = Dβ(δa ∗

1

|x|) = δa ∗Dβ 1

|x| → Dβ 1

|x| in D′

as a→ 0+, and, hence,

u(x) = − 1

4π

( Q

|x| − (P,∇)
1

|x| + (∇, M̃∇)
1

|x|
)

+O
( R3

|x|4
)

.

The needed distributional derivatives are given in (21.12) and (21.14).
They coincide with the corresponding classical derivatives if x 6= 0.
By substituting the derivatives, one can see that the distributional
potential coincides with (24.4) for x 6= 0 where

Mij = 3M̃ij − Tr(M̃ ) δij =
1

2

∑

p

qp

(

3xpixpj − |xp|2δij

)

is the quadrupole moment of a system of point-like electric charges.
High-order terms in the multipole asymptotic expansion can be found
by using the corresponding higher-order terms in the asymptotic Taylor
expansion of a shifted delta function.

In the asymptotic region |x| → ∞ of the potential, the leading
contribution is given by the Coulomb potential if the total charge of
the system is not zero. If the total charge is equal to zero, then the
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leading term is given by the dipole potential. It takes into account a
separation of between the mean positions of all positive and negative
charges. Let q =

∑

qp>0 qp be the total positive charge. Then the total

negative charge is equal to −q. The mean positions of positive and
negative charges are defined by

x+ =
1

q

∑

qp>0

qpxp , x− =
1

q

∑

qp<0

|qp|xp ,

so that the dipole moment is P = q(x+−x−). The vector P is directed
from negative to positive charges. The dipole potential is the difference
of two Coulomb potentials created by point opposite charges located
at x+ and x− in the limit when |x+ − x−| → 0:

ρ(x) = qδ(x− x+) − qδ(x− x−) = −(P,∇)δ(x) +O′(|x+ − x−|2) .

24.6. Exercises.

1. Prove the asymptotic relations in D′(R)

(i) δ(x+ a) − δ(x− a) = 2aδ′(x) +O′(a3) ,

(ii) θ(x+ a) = θ(x) + aδ(x) +O′(a2)

as a→ 0.

2. Find a distribution g(x; a) ∈ D′(R) such that

(i)
1

x+ a + i0
=

1

x+ i0
+ g(x; a) +O′(a3) ,

(ii) P 1

x+ a
= P 1

x
+ g(x; a) +O′(an) , n ≥ 1 .

as a→ 0.

3. Find a distribution g ∈ D′(RN), N > 2, such that

1

|x|2 −m2 + i0
=

1

|x|2 +m2g(x) + O′(m4) .
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25. Product of distributions

The product of classical functions is defined as the product of their
pointwise values: (fg)(x) = f(x)g(x). This product is commutative
and associative. Is it possible to define a commutative and associative
product in the space of all distributions? The answer is not straight-
forward because distributions do not have pointwise values.

Suppose that such a product exists. Then if this products agrees
with the product of classical functions, at least for regular distributions,
then there is an obvious problem because the product of two locally
integrable functions is not generally locally integrable. For example,
the product of f(x) = g(x) = |x|−1/2 is |x|−1 which is not locally
integrable on R. Thus, the product of regular distributions cannot be
the product of the corresponding classical functions. If one wants to
define a product of distributions as close as possible to the product
of classical functions, then one can demand at least that this product
agrees with (18.1) that defines the product of distributions one of which
is a smooth function.

25.1. No-go theorem for a product of distributions. Let the dot be used
to denote a product in D′ (whether it agrees with (18.1) or not), then
the following properties are required to hold for any distributions f , g,
and h:

existence : f · g ∈ D′

commutativity : f · g = g · f
associativity : f · (g · h) = (f · g) · h

The following theorem due to L. Schwartz holds.

Theorem 25.1. (L. Schwartz)
There exist no product in D′ that is commutative and associative.

The assertion can easily be understood in the case of one-variable
distributions if, in addition, it is assumed that the rule of multiplication
of a distribution by a smooth function agrees with the distributional
multiplication:

a(x) · f(x) = a(x)f(x) , f ∈ D′ , a ∈ C∞ .

Then the following chain of equalities must hold:

δ(x) = 1 · δ(x) =
(

x · P 1

x

)

· δ(x) =
(

P 1

x
· x
)

· δ(x)

= P 1

x
·
(

x · δ(x)
)

= P 1

x
· 0 = 0 .
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Here the second equality follows from xP 1
x

= 1 in D′, the third equality
is a consequence of the commutativity, the forth equality is deduced
from the associativity, and finally the distributional relation xδ(x) = 0,
commutativity of the product, and multiplication by the zero function
were used. The delta-function is not equal to the zero distribution
and, hence, no product with the said properties exists in the space of
distributions.

This no-go theorem does not preclude us from constructing a prod-
uct of distributions on some subsets of D′. The very definition of the
product depends on features (or properties) of distributions that are
required to be preserved for the product. Here the approach based on
the localization theorem for distribution will be discussed. This product
is closest to the product of classical functions. Another approach based
on the Fourier transform of distributions will be discussed later. It is
used in quantum field theories. It should also be noted that there exists
an associative and commutative product in a subset of D′ known as a
convolution, which is important in applications to partial differential
equations. It also will be studied later in detail.

25.2. Partitions of unity. A partition of unity for a set Ω is a sum (or
series) of test functions that is equal to 1 in Ω. Of course, one should
show that a partition of unity exists. Let Ω = R. Then Ω can be viewed
as the union of open bounded intervals Ωn = (n, n+2), where n ranges
over all integers. Each Ωn is the proper subset of Ω. Similarly, Ω =
(0,∞) can aslo be represented as a countable union of open bounded
intervals Ωn = ( 1

n
, 2

n
) for positive integers n > 0, and Ωn = (1−n, 3−n)

if n ≤ 0. Each open interval Ωn is a proper subset of Ω. Open sets that
are unions of open bounded sets that are proper subsets in the union
can be constructed in RN . Then the following assertion holds.

Let an open set Ω ⊆ RN be the union of open bounded sets Ωn,
n = 1, 2, ..., where every Ωn is a proper subset of Ω,

Ω =
⋃

n≥1

Ωn , Ωn ⊂ Ω ,

such that any compact intersects only finitely many of Ωn. Then there
exist test functions ϕn ∈ D(Ωn) such that

∑

n

ϕn(x) = 1 , x ∈ Ω .

To prove the assertion, consider the setK1 that consists of all points
of Ω1 that are not in any Ωn, n ≥ 2. All boundary points of Ω1 must
be in at least one of the other sets Ωn, n ≥ 2, because Ω1 is a proper
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subset of Ω (the boundary ∂Ω1 ⊂ Ω) and, furthermore, there are only
finitely many of Ωn that intersect Ω1. Therefore K1 is a closed and
bounded subset of Ω1 and, hence, there exists an open set Ω′

1 that
contains K1 and is a proper subset of Ω1 (see the proof of Corollary
14.1). If Ω1 is replaced by its open subset Ω′

1 in the collection {Ωn},
the new collection has the same property:

Ω = Ω′
1

⋃

(

⋃

n≥2

Ωn

)

.

In other words, Ω1 can be reduced (but not too much because K1 ⊂
Ω′

1 ⊂ Ω1) so that the union is still equal to Ω.
In the new collection, the same reduction operation is applied to

obtain an open proper subset Ω′
2 ⊂ Ω2. The union of the new collection

where Ω2 is replaced by Ω′
2 is equal to Ω. Continuing this reduction

procedure, a new collection {Ω′
n} is obtained such that

Ω =
⋃

n≥1

Ω′
n ,

where Ω′
n is a proper open subset of Ωn. By Corollary 14.1, there exists

a test function ηn ∈ D(Ωn) such that

0 ≤ ηn(x) ≤ 1 , ηn(x) = 1 , x ∈ Ω′
n ⊂ Ωn .

Then the required decomposition of the unit function is given by

ϕn(x) =
ηn(x)

η(x)
, η(x) =

∑

k≥1

ηk(x) ≥ 1 .

The series converges because any x ∈ Ω belongs to finitely many Ω′
n.

Corollary 25.4. Let K be a compact in RN that is covered by
finitely many open bounded sets Ωn

K ⊂
m
⋃

n=1

Ωn .

Then there exists a family of test functions ψn ∈ D(Ωn) taking their
values in [0, 1] such that

m
∑

n=1

ϕn(x) = 1 , x ∈ K .

Let {Ω′
n}m

1 be a new cover of K such that Ω′
n is a proper open

subset of Ωn for every n. The assertion would follow from the partition
of unity constructed above for an open set Ω = ∪m

n=1Ω
′
n ⊃ K. Let us
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show that such a cover exists. In every Ωn, take a subset of points
whose distance to the boundary ∂Ωn is greater than δ > 0:

Ωnδ = {x ∈ Ωn | d(x, ∂Ωn) > δ} .
Then open sets Ωnδ, n = 1, 2, ..., m and all δ > 0, also form an open
cover for K. By the Heine-Borel theorem, any open cover of a compact
has a finite subcover. For every n, this finite subcover either contains
Ωnδn for some δn > 0 or does not contain Ωn at all. So, put Ω′

n = Ωnδn

in the former case and Ω′
n is any proper open subset of Ωn in the latter

case. Then Ω = ∪m
n=1Ω

′
n ⊃ K as required.

25.3. The localization theorem for distributions. An ordinary function is
zero in a region if and only if it vanishes at every point of the region. In
contrast to a function, it only makes sense to say that a distribution can
vanish in a neighborhood of a point. Clearly, if a distribution vanishes
in an open set Ω, then it vanishes in a neighborhood of any point of Ω.
It turns out that the converse is also true.

Proposition 25.6. In order for a distribution to vanish in an open
set it is necessary and sufficient that the distribution vanishes in a
neighborhood of every point of the set:

f(x) = 0 , x ∈ Ω ⇔ f(x) = 0 , x ∈ Ba(x0) , x0 ∈ Ω .

To prove this assertion, take a test function ϕ ∈ D(Ω). Its support
K = suppϕ is compact in Ω. Then the union of neighborhoods Bδ(x0)
over all x0 ∈ K covers K (δ generally depends on x0). By the Heine-
Borel theorem, this cover contains a finite subcover of K, say, Ωk =
Bδk

(xk), k = 1, 2, ..., n. By Corollary 25.4, there exist test functions
ϕk ∈ D(Ωk) such that

ϕ1(x) + ϕ2(x) + · · · + ϕn(x) = 1 , x ∈ K

Then φk = ϕkϕ is a test function with support in Ωk so that by the
hypothesis, (f, φk) = 0. Therefore

(f, ϕ) =

n
∑

k=1

(f, ϕkϕ) =

n
∑

k=1

(f, φk) = 0 .

which means that f(x) = 0 in Ω.

Theorem 25.2. (Localization theorem for distributions)
Let {Ωα} be an arbitrary collection of open sets whose union contains
an open set Ω ⊆ RN , and for every α there exists a distribution from
D′(Ωα) such that fα = fβ on Ωα ∩ Ωβ whenever the intersection is not
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empty. Then there exists a unique distribution f ∈ D′(Ω) such that
f = fα on Ωα for all α.

First, it should be noted that if f exists, then it is unique. Indeed, if
f1 and f2 are are two such distributions, then its difference f = f1 − f2

vanishes in every Ωα and, hence, vanishes in the whole Ω by Proposition
25.6. So, it is sufficient to construct one distribution f with the said
properties.

Recall that the support of a test function from D(Ω) is a proper
subset of ΩR = Ω ∩ BR for some ball BR. Then one can always find a
compact set K ⊂ Ω ∩BR that contain the support of ϕ. For example,
one can remove a neighborhood of the boundary ∂ΩR of a sufficiently
small radius from ΩR. Since suppϕ ⊆ K ⊂ Ω, by the Heine-Borel
theorem there exists a finite subcollection of open sets {Ωk}n

k=1 whose
union contains K (here αk = k for brevity). By Corollary 25.4, there
exist test functions ϕk ∈ D(Ωk), whose sum is equal to 1 in K and,
hence, in suppϕ. By the hypothesis, f = fk in Ωk and, hence, (f, φk) =
(fk, φk) where φk = ϕkϕ ∈ D(Ωk) for any ϕ ∈ D(Ω). Therefore the
value of f on ϕ can be calculated via the values of fk:

(25.1) (f, ϕ) =
n
∑

k=1

(f, ϕkϕ) =
n
∑

k=1

(f, φk) =
n
∑

k=1

(fk, φk) .

The number (f, ϕ) seems to depend on the choice of K, its finite
cover {Ωk}, and a partition of unity associated with the cover. But
(f, ϕ) must be unique for every ϕ in order to define a functional on
D(Ω). Despite its appearance, the rule (25.1) does define a linear con-
tinuous functional. First, let us show that for any choice of K, the
number (f, ϕ) is independent of the choice of {Ωk} and {ϕk}. Let
{Ω̃k}m

k=1 be a different finite cover of K and {ϕ̃k}m
k=1 be the associated

partition of unity. For any test function ϕ ∈ D(Ω), put φk = ϕkϕ and

φ̃j = ϕ̃jϕ. Then the product ϕ̃jφk is a test function from D(Ω̃j ∩ Ωk)

and vanishes if Ω̃j and Ωk do not intersect. It follows from the hypoth-
esis that

fk(x) = fj(x) , x ∈ Ω̃j ∩ Ωk ⇒ (fk, ϕ̃jφk) = (fj, ϕ̃jφk) = (fj, ϕkφ̃j) .

Since the sum of ϕ̃j is equal to 1 on K and, hence, on supp φk ⊆ K

and similarly, the sum of ϕk is equal to 1 on supp φ̃j ⊆ K, one infers
that

n
∑

k=1

(fk, φk) =

m
∑

j=1

n
∑

k=1

(fk, ϕ̃jφk) =

m
∑

j=1

n
∑

k=1

(fj, ϕkφ̃j) =

m
∑

j=1

(fj, φ̃j)
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This shows that the number (f, ϕ) is independent of the choice of the
subcover of K and the associated partition of unity.

Let K and K̃ be any two closed bounded subsets of Ω that contain
suppϕ. Then their union K∪K̃ also contain suppϕ. If {Ωk} and {Ω̃j}
are finite covers of K and K̃, respectively, their union is also a finite
cover of K and of K̃ . Let (f, ϕ)1, (f, ϕ)2, and (f, ϕ)12 be the values of
(f, ϕ) calculated for the cover of K, the cover of K̃, and the union of
two covers. Since (f, ϕ) does not depend on the choice of a cover of K,
(f, ϕ)1 = (f, ϕ)12, and similarly (f, ϕ)2 = (f, ϕ)12, which implies that
(f, ϕ)1 = (f, ϕ)2. Thus, the rule (25.1) defines a functional on D(Ω).
Its continuity and linearity follows from continuity and linearity of fα.

It remains to verify that f = fα in Ωα for all α. Since D(Ωα) ⊂
D(Ω), for any test function ϕα ∈ D(Ωα), there exists a compact K ⊂ Ω
such that suppϕα ⊆ K. Then for any partition of unity {ϕk} for K,
the product ϕkϕα is a test function from D(Ωk ∩ Ωα), and

(fk, ϕkϕα) = (fα, ϕkϕα)

because fk = fα in the intersection Ωk ∩ Ωα. By the rule (25.1),

(f, ϕα) =
n
∑

k=1

(fk, ϕkϕα) =
n
∑

k=1

(fα, ϕkϕα) = (fα, ϕα) .

as required.
Theorem 25.2 also shows that any distribution is uniquely defined

by its local values (by values on test functions with with supports in
a neighborhood of each point). The rule (25.1) is often referred to as
a piecewise gluing rule for distributions. If a distribution is known on
a collection of open sets that cover Ω, then a unique distribution on Ω
can be obtained by (25.1) by gluing its values in the open sets.

25.3.1. Example. Let {xn} be a sequence in R that has no limit points,
that is, any bounded interval contains finitely many points of the se-
quence. Suppose f ∈ D′ is a distribution that is equal to δ(x− xn) in
any open interval that contains xn and no other points of the sequence,
and f(x) = 0 in any open interval that has no points of the sequence.
Then

f(x) =
∑

n

δ(x− xn) .

Let xn < xm be two neighboring points of the sequence (there are
no points of the sequence in (xn, xm)). Let In and Im be open non-
intersecting intervals containing xn and xm, respectively. Let I0

n ⊂
(xn, xm) be an open subinterval that intersects with In and Im. If the
sequence is bounded from below, then xk < xn for all n 6= k and some k.
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In this case, Ik = (−∞, xk + δ) for some small enough δ > 0. Similarly,
if the sequence is bounded from above, then xn < xm for all n 6= m and
some m. In this case, Ik = (xm − δ,∞) for some small enough δ > 0.
The union of all In and all I0

n is equal to R. By construction

f(x) = δ(x− xn) , x ∈ In , f(x) = 0 , x ∈ I0
n .

The support of a test function ϕ lies in |x| ≤ R which contains finitely
points of the sequence, |xn| ≤ R. Therefore the interval |x| ≤ R is
covered by finitely many In and I0

n. Let ϕk and ϕ0
n be a partition of

unit for |x| ≤ R where ϕk ∈ D(Ik) and ϕ0
n ∈ D(I0

n):
∑

|xk|≤R

ϕk(x) +
∑

|xn|≤R

ϕ0
n(x) = 1 , |x| ≤ R .

For each k, there exists a neighborhood of xk that lies in Ik and does
not intersect I0

n. Therefore ϕk(xk) = 1. By the rule (25.1)

(f, ϕ) =
∑

|xk|<R

ϕk(xk)ϕ(xk) =
∑

|xk|<R

ϕ(xk)

which proves the assertion.

Proposition 25.7. Let f be a distribution from D′(RN ) such that
f(x) = fn(x) in Ωn, n = 1, 2, ..., where open sets Ωn are not intersecting
with each other, and f(x) = 0 in any open set that does not intersect
any Ωn. Then

f(x) =
∑

n

fn(x) .

A proof of this assertion is left to the reader as an exercise. It
should also be noted that the above proposition applies to the case of a
change of variables in distributions discussed in Sec.20.3.5 and extends
the result to any distribution (not just a delta-function).

25.4. Product of distributions by the localization method. Let f and g
be distributions from D′(Ω). Suppose that Ω = Ωf ∪Ωg , where Ωf and
Ωg are open sets and f is such that its reduction on D(Ωf ) is a regular
distribution defined by a C∞ function af , that is,

(f, ϕ) =

∫

af(x)ϕ(x) dNx , ϕ ∈ D(Ωf ) ,

and g is such that its reduction on D(Ωg) is a regular distribution
defined by a C∞ function ag. Then the product f(x)g(x) can be defined
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on Ωf and Ωg by

f(x)g(x) = af (x)g(x) , x ∈ Ωf ,

f(x)g(x) = ag(x)f(x) , x ∈ Ωg .

These products agrees on the intersection Ωg∩Ωf . For any test function
ϕ ∈ D(Ωg ∩ Ωf ), one infers that

(fg, ϕ) = (afg, ϕ) = (g, afϕ) = (ag, afϕ) = (afag, ϕ)

so that fg = afag in Ωg∩Ωf . Thus, fg is a linear continuous functional
on D(Ωf ) and on D(Ωg). By the localization theorem, it is a linear
continuous functional on D(Ω) and, hence, fg ∈ D′(Ω) defined by the
rule (25.1)

(fg, ϕ) = (f, agψgϕ) + (g, afψfϕ) , ϕ ∈ D(Ω)

where ψf ∈ D(Ωf ) and ψg ∈ D(Ωg) such that

ψf (x) + ψg(x) = 1 , x ∈ suppϕ .

25.4.1. Example. Let f(x) = P 1
x

and g(x) = δ(x− x0) where x0 > 0.
Then take Ωf = (−∞, x0 − δ) and Ωg = (δ,∞) where 0 < δ < x0

2
.

Then Ω = Ωf ∪ Ωg = R. Then

P 1

x
=

1

x
, x > δ ; δ(x− x0) = 0 , x < x0 − δ

Therefore the product fg exists in D′ because

P 1

x
δ(x− x0) =

1

x
δ(x− x0) , x > δ ,

P 1

x
δ(x− x0) = 0 , x < x0 − δ ,

and for any ϕ ∈ D,

(

P 1

x
δ(x− x0), ϕ(x)

)

=
(

δ(x− x0),
1

x
ψgϕ) =

1

x0
ψg(x0)ϕ(x0)

where ψg(x0) = 1 because x0 /∈ Ωf and ψf ∈ D(Ωf ) so that ψf(x0) = 0.
Therefore

P 1

x
δ(x− x0) =

1

x0
δ(x− x0) .
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25.4.2. Singular support of a distribution. The above idea can be ex-
tended to define the product fg of distributions f and g if f and g
behave near every point in the same way as in the example considered
above, that is, one of them is defined by a smooth function. Recall that
the localization theorem guarantees that any distribution from D′(Ω) is
uniquely defined by its values in a neighborhood of each point of Ω by
the rule (25.1). However, not any pair of distributions would have such
a property. For example, the distributions f(x) = P 1

x
and g(x) = δ(x)

cannot be represented by a smooth function in any neighborhood of
x = 0. Therefore it would not be possible to define their product.

Definition 25.1. (Regular points and singular support of f ∈ D′)
A point x0 is called a regular point of a distribution f if there exists a
neighborhood U(x0) such that f is equal to a smooth function af ∈ C∞

in it:

(f, ϕ) =

∫

af(x)ϕ(x) dNx , ϕ ∈ D(U(x0)) .

The complement of all regular points of f is called the singular support
of f and denoted by Ssupp f .

It follows from this definition that the singular support of f is a
closed subset in the support of f .

For example, if f(x) = P 1
x
, then its singular support consists of the

single point x = 0. The singular support of spherical delta function
coincides with its support being a sphere. If f(x) is locally integrable,
then it can have no regular point. For example, if f(x) is nowhere dif-
ferentiable, then its singular support coincides with the whole support.

25.4.3. Product of distributions with non-intersecting singular supports.

Suppose that the singular supports of distributions f and g do not
have common points:

Ssupp f ∩ Ssupp g = ∅ .

Then near any point x0, one of them is equal to a smooth function
and, hence, their product can be defined near x0. Let af and ag be C∞

functions such that

f(x) = af (x) , x ∈ U(x0) , x0 ∈ Ssupp g ,

g(x) = ag(x) , x ∈ U(x0) , x0 ∈ Ssupp f .

Since the singular supports of f and g are closed sets in RN and, by
hypothesis, have no common points, the functions af and af exist for
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any x0. Then in a neighborhood of x0, the product is defined by

(fg)(x) = af(x)g(x) , x ∈ U(x0) , x0 ∈ Ssupp g

(fg)(x) = ag(x)f(x) , x ∈ U(x0) , x0 ∈ Ssupp f

By the localization theorem, there exists a unique distribution fg ∈ D′

whose reduction to a neighborhood of any point x0 is given by the above
distribution on D′(U(x0)). The rule (25.1) allows us to find (fg, ϕ) for
any ϕ ∈ D.

It should be noted that the condition that the singular supports of
distributions have no common points is rather restrictive. For example,
the product cannot be defined by the localization method if f(x) and
g(x) are regular distributions that are not smooth near one common
point even though the product f(x)g(x) is a locally integrable function.
For example, if f(x) = g(x) = |x|, x ∈ RN , then the singular supports
of f and g consist of the single point x = 0. So, the localization
method does not apply. However, f(x)g(x) = |x|2 which is a smooth
function, hence, defines a regular distribution. The product of some
distributions with intersecting singular supports can be defined via
their Fourier transforms as shown later.

25.5. Product of distributions via a regularization. Any distribution can
be viewed as a distributional limit of a sequence of smooth functions
obtained by a regularization of the distribution. Let f and g be dis-
tributions. Let fn → f in D′ where {fn} ⊂ C∞. Then the product
fn(x)g(x) is well defined in D′. By the completeness theorem, if the
sequence (fng, ϕ) converges for any test function ϕ, then there exists a
distribution h such that (h, ϕ) = limn→∞(fng, ϕ). So, it is tempting to
define a product of any distributions by this limiting procedure:

(fg, ϕ)
def
= lim

n→∞
(fng, ϕ) = lim

n→∞
(g, fnϕ)

provided the limit exists for any test function ϕ.
If the singular supports of f and g do not intersect, then this defini-

tion of the product agrees with the product defined by the localization
method. Indeed, the convergence in D′ implies the convergence in
D′(U(x0)). Therefore fn → f = af in D′(U(x0)) for any x0 from the
singular support of g. Furthermore fng = fnag in U(x0) if x0 lies in
the singular support of f and, hence, fng → fag in D′(U(x0)). The
conclusion does not depend of the choice of a regularizing sequence fn.
It also does not matter which of the two distributions in the product
fg is to be regularized in this case.
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Suppose that the singular supports of f and g have common points.
Then, first, the product defined via a regularization is not commutative,
meaning that it can depend on which of the two distributions in the
product is regularized. If one agrees that the distribution to the left
in the product is to be regularized to find the product, then fg 6= gf
in general because the distributional limits of fng and gnf may not be
the same even if they exists. Second, the limit of fng can depend on
the choice of the sequence fn → f .

This is illustrated by the following example. Let f(x) = θ(x) and
g(x) = δ(x). Let g be regularized by the hat function ωa → δ as
a→ 0+. Then for any test function ϕ,

(ωaθ, ϕ) =

∫ ∞

0

ωa(x)ϕ(x) dx =

∫ ∞

0

ωa(x)
(

ϕ(x) − ϕ(0)
)

dx+
1

2
ϕ(0) .

The integral in this identity vanishes in the limit a → 0+ because the
support of ωa is the interval [−a, a] so that the integration interval can
be reduced to [0, a] and in this interval |ϕ(x) − ϕ(0)| ≤ |x| sup |ϕ′| ≤
a sup |ϕ′| so that

∣

∣

∣

∫ ∞

0

ωa(x)
(

ϕ(x) − ϕ(0)
)

dx
∣

∣

∣ ≤ 1

2
sup |ϕ′|a→ 0

Thus, the product δθ is the limit

ωa(x)θ(x) →
1

2
δ(x)

On the other hand, let ηa be a bump function for [0,∞) such that
ηa(x) = 1 if x > −a and ηa(x) = 0 if x < −3a. This function is the
convolution of ωa and the shifted step function θ(x+2a). Then ηa → θ
in D′. Indeed for any test function

(ηa, ϕ) =

∫ 0

−3a

ηa(x)ϕ(x) dx+

∫ ∞

0

ϕ(x) dx → (θ, ϕ)

because 0 ≤ ηa(x) ≤ 1 and the first integral vanishes in the limit
a→ 0+

∣

∣

∣

∫ 0

−3a

ηa(x)ϕ(x) dx
∣

∣

∣
≤ 3a sup |ϕ| → 0 .

The product in the reversed order, θδ, is the limit

ηa(x)δ(x) = ηa(0)δ(x) = δ(x) → δ(x)

as a→ 0+, so that

θ(x)δ(x) 6= δ(x)θ(x) .
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Let us take a different regularization of θ obtained by the convolution
ωa ∗ θ. Then

(ωa ∗ θ)(x)δ(x) = (ωa ∗ θ)(0)δ(x) =

∫ 0

−∞

ωa(y) dy δ(x) =
1

2
δ(x)

by the normalization property of the hat function so that the distribu-
tional limits of (ωa∗θ)δ and ηaδ are different whereas the distributional
limits of ωa ∗ θ and ηa are equal.

25.5.1. Remark. Products of distributions appear in treatments of non-
linear equations with distributional sources (e.g. a motion of a point
particle in Einstein’s general relativity) based on perturbation theory.
Products of Green’s functions for some differential operators occur in
quantum (field) theory. Without a properly defined product of distri-
butions, a mathematically consistent treatment of such problems is not
possible.

25.6. Exercises.

1. Let x0 > 0. Find the product of distributions

(i)
1

x± i0
δ′(x− x0) ,

(ii) P 1

|x| δ(x
2 − x2

0) ,

(iii)
1

x− x0 + i0
P 1

x2
,

using the localization method. Give an explicit rule for the value of the
product on any test function from D. Express the answers for (i) and
(ii) via a linear combination of shifted delta functions, and the answer
for (iii) via a linear combination of Sokhotsky and principal value dis-
tributions.

2. Suppose that a(x) is from C∞ such that a(0) 6= 0, all zeros of a
are simple, and the set of all zeros {xn} has no limit point. Show that
there exists a regularization of 1/a(x) such that the product defined by
the localization method

f(x) = Reg
1

a(x)
P 1

x

is a solution to the equation a(x)f(x) = P 1
x
.

3. Let P (x) and Q(x) be polynomials with no common zeros. Find
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distributional regularizations of the reciprocals of P (x), Q(x), and the
product P (x)Q(x) such that

Reg
1

P (x)
Reg

1

Q(x)
= Reg

1

P (x)Q(x)

where the product of distributions is defined by the localization method.
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26. Algebraic distributional equations

Consider the following equation

a(x)f(x) = g(x) , x ∈ Ω ⊆ R
N ,

where a is a smooth function and g is a given distribution. The ob-
jective is to find the most general distribution f ∈ D′(Ω) that satisfies
this equation. The equation is linear and, hence, its general solution,
if it exists, must have the form

f(x) = fp(x) + h(x) , a(x)h(x) = 0 ,

where fp(x) is a particular solution and h is a general solution to the
associated homogeneous equation.

26.1. Division problem in distributional algebraic equations. For exam-
ple, one has to find a distribution f that satisfies the equation

xf(x) = P 1

x
.

The equation makes perfect sense because xf(x) is a distribution for
any distribution f . If one formally divides the equation by x, one would
get a meaningless expression f(x) = 1

x
P 1

x
. The function x−1 is not

smooth and f is not a distribution. Alternatively, if the equation can
be formally multiplied by P 1

x
, then assuming associativity and com-

mutativity of the product P 1
x
(xf) = (xP 1

x
)f = f so that f = (P 1

x
)2.

Apart from that no associative and commutative product exists in D′

due to the Schwartz theorem and, hence, the formal algebraic manipu-
lations in the left-hand side of the equation are not valid, the resulting
expression for f is the squared principal value distribution which can-
not be defined by the localization method. This simple example shows
that conventional algebraic rules for solving algebraic equations fail or
make no sense in the case of distributions because there is no asso-
ciative and commutative product in D′ and it is not always possible to
divide a distribution by a smooth function. The latter is known as the
division problem for distributions.

26.2. Localization method. Suppose that a is analytic. By the localiza-
tion theorem, f can be recovered from its values in a neighborhood of
any point. Let a(x0) 6= 0. Then there exists a neighborhood U(x0) in
which a(x) 6= 0 by continuity of a so that the reciprocal 1/a(x) is from
C∞ near x0 and the solution exists and is unique:

f(x) =
1

a(x)
g(x) , x ∈ U(x0) .
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Indeed, for any test function ϕ ∈ D(U(x0)), φ(x) = ϕ(x)/a(x) is also
a test function from D(U(x0)) so that if f is a solution, then

(f, ϕ) = (f, aφ) = (af, φ) = (g, φ) =
(1

a
g, ϕ

)

,

as required. Suppose that a(x0) = 0. Then a(x) = (x − x0)
nb(x) for

some integer n > 0, where b is from class C∞ and b(x0) 6= 0. Therefore
there exists a neighborhood U(x0) in which b(x) 6= 0. By the above
analysis, the original equation is equivalent to the equation

(x− x0)
nf(x) =

1

b(x)
g(x) , x ∈ U(x0) .

Thus, the problem is reduced to finding a general solution near points
where analytic a has zeros. Let us first solve the associated homoge-
neous equation.

26.3. General distributional solution to xnf(x) = 0. Let n be a positive
integer. Consider the equation

xnf(x) = 0 , f ∈ D ′(R)

Any solution to this equation must have the form

f(x) =

n−1
∑

k=1

ck δ
(k)(x) ,

where ck are constants.
To prove the assertion, one has to show that if f is a solution, then

there exist constants ck such that

(f, ϕ) =

n−1
∑

k=1

ck(δ
(k), ϕ) =

n−1
∑

k=1

(−1)kckϕ
(k)(0)

for any test function ϕ. To do so, let us show first that for any test
function ϕ(x), there exists a test function ψ(x) such that

ϕ(x) = xnψ(x) + η(x)pn−1(x)

where pn−1(x) is the Taylor polynomial for ϕ about x = 0 of order
n − 1, and η(x) is a test function with support in |x| < a, for some
a > 0, and η(x) = 1 in a neighborhood of x = 0. If the support of ϕ
is an interval [0, R]. Then ϕ(m)(0) = 0 for any m ≥ 0. By l’Hospital’s
rule it follows that

lim
x→0+

ϕ(x)

xm
= lim

x→0+

ϕ(m)(x)

m!
= 0
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Therefore in this case

ψ(x) =
ϕ(x)

xn
∈ D

is a test function with support being [0, R]. Suppose that a neighbor-
hood of x = 0 lies in the support of ϕ. Then, if x 6= 0,

ψ(x) =
1

xn

(

ϕ(x)− η(x)
n−1
∑

k=0

ϕ(k)(0)

k!
xk

)

The support of ψ is bounded because the supports of ϕ and η are
bounded. The function ψ has continuous derivatives of any order for
all x 6= 0. So, it is sufficient to check if ψ(x) has a smooth extension to
x = 0. For a sufficiently small a and any m > n, by Taylor’s theorem

ϕ(x) =
m
∑

k=0

ϕ(k)(0)

k!
xk +O(xm+1) , |x| < a

It follows that

ψ(x) =
m
∑

k=n

ϕ(k)(0)

k!
xk−n +O(xm−n+1) , |x| < a

because η(x) = 1 if |x| < a. Since m is arbitrary, ψ(x) is smooth near
x. So, ψ ∈ C∞. In particular,

ψ(k)(0) = ϕ(k+n)(0)

for any k ≥ 0.
Let f(x) be a solution to the stated equation. Then

(f, ϕ) = (f, ηpn−1) + (f, xnψ) = (f, ηpn−1) + (xnf, ψ) = (f, ηpn−1)

=
n−1
∑

k=0

(f, xkη)

k!
ϕ(k)(0) =

n−1
∑

k=0

(f, xkη)

k!
(−1)k(δ(k), ϕ)

This shows that

ck =
(−1)k(f, xkη)

k!
.

Note that ck do not depend on the choice of η because the support of
any distributional solution f is x = 0. So, the action of f on a test
function from D(R) is determined by properties of the test function
in a neighborhood of x = 0 where η(x) = 1. The coefficients ck are
determined by the action of f on a test function that looks like xk near
x = 0.
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An alternative proof. It follows from the equation xnf(x) = 0 that f
must be supported at a single point x = 0. By the structure theorem
for such distributions, f is a linear combination of δ(k), k = 0, 1, ..., m.
Substituting a general linear combination of δ(k) into the equation and
using the results of Sec.18.1, one can show that only δ(k) with m ≤ n−1
contribute to f .

26.4. General solution to the homogeneous equation. Suppose that zeros
of a form a sequence {xn}. This sequence cannot have limit points by
analyticity of a. Indeed, suppose that {xn} (or any its subsequence)
converges to x0. Then by continuity a(x0) = 0 and by analyticity
a(x) = (x− x0)

kb(x) for some positive integer k, where b(x0) 6= 0. By
continuity, b(x) 6= 0 in a neighborhood of x0 and, hence, x0 cannot be
a limit point of {xn}. By Proposition 25.7, a general solution to the
homogeneous equation reads

f(x) =
∑

n

fn(x) , fn(x) =
kn
∑

k=1

cnkδ
(k)(x− xn) .

where cnk are arbitrary constants and kn > 0 is the order of zero xn.
The series series converges in D′ because

(f, ϕ) =
∑

|xn|<R

(fn, ϕ) , suppϕ ⊆ [−R,R] ,

and any bounded interval has only finitely many zeros of a since {xn}
has no limit points.

For example, a general solution to the equation

sin2(x)f(x) = 0 , f ∈ D′ ,

has the form

f(x) =
∞
∑

n=−∞

(

Anδ(x− πn) +Bnδ
′(x− πn)

)

for any constants An and Bn.

26.5. Particular solution for smooth inhomogeneity. A particular solu-
tion can be found using the localization theorem in combination with
the concept of a distributional regularization of singular functions if
the inhomogeneity is a smooth function. The idea is first illustrated by
a simple example.
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26.5.1. Example. Let us find a general distributional solution to the
equation

(x− a)(x− b)f(x) = 1 , a 6= b .

A general solution to the associated homogeneous equation

(x− a)(x− b)h(x) = 0

is obtained by the localization method,

h(x) = Aδ(x− a) +Bδ(x− b) ,

for any constants A and B.
To find a particular solution, note that a formal particular solution

[(x − a)(x − b)]−1 is not a locally integrable function so it does not
define a distribution. One has to find a distributional extension of this
function to singular points with the properties

(x− a)(x− b)Reg
1

(x− a)(x− b)
= 1 ,

Reg
1

(x− a)(x− b)
=

1

(x− a)(x− b)
, x ∈ Ω

in any open interval Ω that does not contain a and b. For example, the
distributions

P 1

x
,

1

x− i0+
,

1

x+ i0+

satisfy the equation xg(x) = 1 and can be viewed as different distribu-
tional extensions of a formal solution 1

x
to the singular point x = 0.

Consider a partial fraction decomposition of the formal singular
solution

1

(x− a)(x− b)
=

1

a− b

(

1

x− a
− 1

x− b

)

Then the right side can be turned into a distribution by

g(x) = Reg
1

(x− a)(x− b)
=

1

a− b

(

P 1

x− a
− P 1

x− b

)

It is not difficult to verify that g is a required particular solution:

(x− a)(x− b)g(x) =
1

a− b

(

(x− b)(x− a)P 1

x− a

− (x− a)(x− b)P 1

x− b

)

=
1

a− b

(

(x− b) − (x− a)
)

= 1
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A regularization or distributional extension is not unique. For exam-
ple one can also use Sokhotsky distributions to regularize the formal
solution

Reg
1

(x− a)(x− b)
=

1

a− b

(

1

x− a± i0+
− 1

x− b± i0+

)

.

This method can be used to find a particular solution to the equa-
tion

P (x)f(x) = Q(x) ⇒ f(x) = Reg
Q(x)

P (x)
∈ D′ ,

where P and Q are polynomials. The rational function Q(x)/P (x) can
be expanded into a sum of partial fractions and each singular term
can then be regularized by using the principal value or Sokhotsky dis-
tributions to obtain a distributional solution. The details are left to
the reader as an Exercise. This method is used to construct Fourier
transforms of Green’s functions of differential operators.

26.5.2. Use of generalized principal value distributions. It is easy to see
that

xnP 1

xn
= 1 .

Indeed, the Taylor polynomial of order n − 2 about x = 0 is zero for
the function xnϕ(x) for any test function ϕ. Therefore

(

xnP 1

xn
, ϕ
)

=
(

P 1

xn
, xnϕ

)

=

∫

ϕ(x) dx = (1, ϕ) .

Second, if ϕ ∈ D(a, b) and (a, b) does not contain x = 0, then any
Taylor polynomial of ϕ about x = 0 is zero so that

(

P 1

xn
, ϕ
)

=

∫ b

a

ϕ(x)

xn
dx , ϕ ∈ D(a, b)

where 0 < a < b or a < b < 0. This means that the generalized
principal value distribution is equal to the corresponding reciprocal
power function on any open interval that does not contain x = 0:

P 1

xn
=

1

xn
, x 6= 0 .

Let use this idea to find a solution to the equation

a(x)f(x) = 1

where a is analytic. Let {xn} be the set of zeros of an analytic function
a(x) and mn be a multiplicity of xn. It is assumed that xn−1 < xn (the
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set is ordered). Then a solution f can be obtained by the localization
method. In a neighborhood of xn, it is given by

f(x) = fn(x) =
(x− xn)

mn

a(x)
P 1

(x− xn)mn
, x ∈ U(xn)

and for any x′ 6= xn

f(x) =
1

a(x)
, x ∈ U(x′) .

Let δn be the midpoint of the interval (xn, xn+1). Note that δn ≥ δ > 0
for some δ because the sequence {xn} has no limits points. Define a
distribution P 1

a(x)
by the rule

(26.1)
(

P 1

a(x)
, ϕ
)

=
∑

n

p.v.

∫ δn

δn−1

ϕ(x) − pmn−2(x)

a(x)

where pk(x) is the Taylor polynomial of ϕ about x = xn of order k.
Then

P 1

a(x)
= fn(x) , x ∈ U(xn) , P 1

a(x)
=

1

a(x)
, x ∈ U(x′) .

By the localization theorem, any distribution is uniquely defined by its
values in a neighborhood of any point. Therefore the linear functional
defined by the rule (26.1) is a distribution for any analytic function a.
It will be called a principal value regularization of the reciprocal of an
analytic function.

If g ∈ C∞ and a is analytic, then a particular solution to af = g is
given by the generalized principal value distribution multiplied by g:

f(x) = g(x)P 1

a(x)
.

26.5.3. Example. Let us find a general solution to the distributional
equation

sin2(x)f(x) = cos(x)

A general solution to the associated homogeneous equation was found
at the end of Sec.26.4. A particular solution is obtained by the method
from the previous section

f(x) = cos(x)P 1

sin2(x)
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The value of this distribution on any test function ϕ is computed by
the rule

(f, ϕ) =
∑

n

p.v.

∫ πn+π
2

πn−π
2

ϕ(x)− ϕ(πn)

sin2(x)
cos(x) dx

The series converges owing to the boundedness of support of ϕ (the
summation is restricted to all n such that π|n| < R if suppϕ ⊂
(−R,R)).

26.6. Particular solution for distributional inhomogeneity. There are two
basic methods for solving an algebraic distributional equation if the
inhomogeneity is not a smooth function.

26.6.1. Particular solution via the product of distributions. Consider the
equation a(x)f(x) = g(x) where a is analytic and g ∈ D′. If the set of
zeros of analytic function a does not intersect the singular support of
the inhomogeneity g, then a particular solution can be obtained using
the product of distributions defined by the localization method:

f(x) = P 1

a(x)
g(x) .

Owing to the above identity, a(x)P 1
a(x)

= 1, the distribution f sat-

isfies the said equation. Here the generalized principal value can also
be replaced by any regularization Reg 1

a(x)
that satisfies the equation

a(x)f(x) = 1
For example, let us find a general solution to the equation

(x− x0)f(x) =
1

x+ i0

where x0 6= 0. So, the product

f(x) = P 1

x− x0

1

x− i0

exists in D′ and solves the equation. In the localization method for
computing the product, one can take two open sets, |x| < 2δ and
|x| > δ, where 0 < 2δ < x0, as a cover of R. Then for any test function
ϕ ∈ D,
(

P 1

x− x0

1

x− i0
, ϕ
)

= lim
a→0+

∫

|x|<δ

ϕ(x)dx

(x− x0)(x+ ia)
+ p.v.

∫

|x|>δ

ϕ(x) dx

x(x− x0)
.

Using the partial fraction decomposition in the integrand

1

x(x− x0)
=

1

x0

( 1

x− x0
− 1

x

)



350 3. CALCULUS WITH DISTRIBUTIONS

the product of distributions can be reduced to

P 1

x− x0

1

x− i0
=

1

x0

( 1

x+ i0
− P 1

x− x0

)

.

26.6.2. Overlapping singularities. If the set of zeros of analytic func-
tion a and the singular support of the inhomogeneity g have common
points, then a particular solution near these points cannot be obtained
by the product of distributions based on the localization method. As
mentioned earlier, there exists a generalization of the product of dis-
tributions based on the Fourier method. It can be used to obtain a
solution if it exists. However, there is a simpler method that works in
special cases. It is illustrated by examples.

26.6.3. Generalized principal value as inhomogeneity. Consider the equa-
tion

a(x)f(x) = g(x)Reg
1

b(x)
,

where a and b are analytic, g is from class C∞, and the distributional
regularization of 1/b(x) satisfies the equation b(x)Reg 1

b(x)
= 1. Then

any solution f to this equation is also a solution to the equation

b(x)a(x)f(x) = g(x) .

Note that the converse is not true. If f is a solution to the latter
equation, then f + h is also a solution if bh = 0. The set of solutions
to the former equation does not have this freedom. Since the product
of two analytic function is an analytic function, a general solution is
given by

f(x) = P 1

b(x)a(x)
+
∑

n

mn
∑

k=1

Cnkδ
(k)(x− xn)

where mn is the multiplicity of a root xn of the product a(x)b(x). As
noted, this distribution may not satisfy the original equation for any
choice of constants Cnk. So, the solution is to be substituted in the
original equation to find all Cnk for which the equation is satisfied. It
is clear, that Cnk associated with the roots of a(x) remain arbitrary.
But the coefficients associated with roots of b that are different from
the roots of a cannot be arbitrary. Furthermore, if xn is a common root
of a and b then all coefficients Cnk for which k exceeds the multiplicity
of xn in a(x) = 0 cannot be arbitrary either.
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26.6.4. Example. Let us find a general solution to the equation

xf(x) =
1

x+ i0
.

By multiplying the equation by x, one concludes that any solution is
also a solution to the equation

x2f(x) = 1 .

A general solution to this equation reads

f(x) = P 1

x2
+ c1δ(x) + c2δ

′(x) .

Let us substitute this distribution into the original equation

xf(x) = P 1

x
+ c2δ

′(x) = P 1

x
− c2δ(x) =

1

x+ i0

It follows from the Sokhotsky equation that the last equality is true
only if c2 = iπ. Thus, a general solution can be written in the form

f(x) = P 1

x2
+ iπδ′(x) + c1δ(x) ,

where c1 is a constant.

26.6.5. Inhomogeneity with a point support. Consider the equation

a(x)f(x) = δ(k)(x) ,

where a is analytic. Let b ∈ C∞. Put b(n)(0) = bn. Then using the
technique from Sec.18.1, it is not difficult to obtain that

(26.2) b(x)δ(k)(x) =
k
∑

n=0

Bnδ
(n)(x) , Bn = (−1)k−n

(

k

n

)

bk−n .

Suppose that a(0) 6= 0, then a particular solution is given by

f(x) =
1

a(x)
δ(k)(x) =

k
∑

n=0

Bnδ
(n)(x) ,

where Bn are given by (26.2) for b(x) = 1
a(x)

.

Suppose that a(x) = xmb(x), where b is analytic and b(0) 6= 0.
Then using the identity

xk+1δ(k)(x) = 0 ,

any solution to the said equation is also a solution to

xm+k+1b(x)f(x) = 0 .
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Since b(0) 6= 0, a general solution to this equation is the sum

f(x) =

m+n+1
∑

k=n+1

ckδ
(k)(x) + h(x) , a(x)h(x) = 0 ,

where h is a general solution to the associated homogeneous equation.
Therefore a particular solution is obtained by choosing coefficients ck
so that the original equation is satisfied:

m+k+1
∑

n=k+1

cna(x)δ
(n)(x) = δ(k)(x) .

The left-hand side can be transformed in to a linear combination of
the delta function and its derivatives using (26.2) for b(x) = a(x) so
that the coefficients ck are found by matching the coefficients at the
corresponding derivatives of the delta functions in the left and right
hand sides of the equation.

26.6.6. Example. Let us find a general solution to the equation

xf(x) = δ′(x)

Any solution to this equation is also a solution to the equation

x3f(x) = x2δ′(x) = 0

Then all solutions to the original equation are linear combinations

f(x) = cδ(x) + c1δ
′(x) + c2δ

′′(x)

The first term is a general solution to the homogeneous equation xf(x) =
0. So a particular solution must be a linear combination of δ′ and δ′′

The substitution of this distribution into the original equation yields

δ′(x) = xf(x) = c1xδ
′(x) + c2xδ

′′(x) = −c1δ(x) + 2c2xδ
′(x)

Therefore c1 = 0 and c2 = 1
2

so that a general solution reads

f(x) = cδ(x) +
1

2
δ′′(x) .

26.6.7. Superposition principle. If the distributions f1 and f2 satisfy
the equations af1 = g1 and af2 = g2, then the sum f = f1 + f2 is a
solution to af = g1 + g2 by linearity of the equation. This is called
the superposition principle for linear equations. For example a general
solution to the equation

xf(x) = 2δ′(x) − 3

x+ i0
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is obtained by the superposition principle using the particular solutions
from the two above examples:

f(x) = cδ(x) + δ′′(x) − 3iπδ′(x)− P 3

x2
.

26.7. Higher dimensional generalizations. Let a smooth function a(x)
have isolated zeros xn ∈ RN of finite orders. Then any distribution f
that satisfies the equation a(x)f(x) = 0 is the sum

f(x) =
∑

n

fn(x) ,

where fn(x) is a distribution with support being the single point xn.
This follows from the localization theorem. By the structure theorem
for distribution with point supports, each fn is a linear combination of
Dβδ(x−xn). By substituting such combinations into the equation, the
most general form of fn can be found. In practice, finding independent
parameters in linear combinations of derivatives of multi-variable delta-
functions is often a tedious combinatorial problem. It is solved best
via the Fourier transform of distributions and, for this reason, will be
discussed later.

If a(x) = 0 defines a smooth M surface in R
N , then a solution

can be constructed from delta functions on the surface and possibly
its derivatives. However, a general solution is often difficult to obtain.
The Fourier method is helpful for this purpose if the surface is defined
by zeros of a multi-variable polynomial.

26.8. Exercises.

1. Find a general distributional solution f ∈ D′(R) to the equations

(i) x2f(x) = 1 ,

(ii) (x− a)2f(x) = x ,

(iii) x2(x− 1)f(x) = x2 + 1 ,

(iv) (x− a)f(x) = δ′(x) , a 6= 0

2. Find a general distributional solution to

(x− a)n(x− b)mf(x) = h(x)

where n and m are positive integers, and h(x) > 0 is a C∞ function.

3. Find a general distributional solution to the equation

P (x)f(x) = Q(x) ,
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where P and Q are polynomials.

4. Find a general distributional solution to the equation

xf(x) = 2P 1

x
.

5. Find a general distributional solution to the equation

(i) sin(x)f(x) = x ,

(ii) sin(x)f(x) = δ(x) ,

(iii) sin(x)f(x) = P 1

x
.

Give an explicit rule for computing (f, ϕ) where ϕ ∈ D.

8. Suppose that a(x) is a C∞ function that has only one zero a(0) = 0
and the root x = 0 has infinite multiplicity, that is, a(n)(0) = 0 for all
n ≥ 0 (so a is not analytic at x = 0). For example, a(x) = exp(− 1

|x|
) if

x 6= 0 and a(0) = 0. Show that the distribution

fm(x) =
m
∑

n=0

cnδ
(n)(x) ∈ D′(R) ,

is a solution to the equation a(x)f(x) = 0 for any m and any choice of
constants cn. However the formal series

f(x) = lim
m→∞

fm(x) =
∞
∑

n=0

cnδ
(n)(x) /∈ D′(R)

is not a distribution for a general choice of constants cn, that is, the
distributional sequence fm does not converge in D′.
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27. Integration of distributions

27.1. Antiderivative of a distribution. Consider the following distribu-
tional equation

f ′(x) = δ(x)

It is satisfied by the step-function up to an additive constant:

f(x) = θ(x) + c

One can say that θ(x) + c is an antiderivative of the delta function. In
this regard, two questions can be posed:

(i) does any distribution f have a distributional antiderivative F
in the sense that

F ′(x) = f(x) ?

(ii) what is the most general antiderivative of a distribution?

The following theorem answers these questions.

Theorem 27.1. (Antiderivative of a distribution)
For any distribution f there exists a distribution F such that F ′(x) =
f(x), and F is unique up to an additive constant.

Let us first investigate uniqueness. Suppose that a distribution F
exists. Then for any test function ψ,

F ′ = f ⇒ (F, ψ′) = −(f, ψ)

Therefore the distribution F is defined on a subset of D that consists
of derivatives of all test functions. So, F has to be extended to the
whole D in order to be an element of D′. The following relation be-
tween a set of derivatives of all test functions and D can be established.

For any test function ϕ there exists a test function ψ such that

ϕ(x) = ψ′(x) + (1, ϕ)η(x)

where η is a particular test function with the property

(1, η) =

∫ ∞

−∞

η(x) dx = 1 .

For example, one can take η(x) = ωa(x) (a hat function). A proof of
this assertion is done by verifying that

(27.1) ψ(x) =

∫ x

−∞

(

ϕ(y)− (1, ϕ)η(y)
)

dy ,
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is a test function. Clearly, ψ is from C∞. Let the supports of ϕ and η
be in [−R,R] and [−a, a], respectively. Then the support of ψ lies in
the interval:

suppψ ⊂ [−b, b] , b = max{R, a} .

Indeed, if x < b, then integrand is identically zero and so is ψ(x). If
x > b, then the first integral is equal to (1, ϕ) (the integral of ϕ over
its whole support), while the second integral is equal to (1, ϕ)(1, η) =
(1, ϕ) and, hence, cancels the first one so that ψ(x) = 0.

Therefore for any ϕ ∈ D

(F, ϕ) = (F, ψ′) + (1, ϕ)(F, η) = −(f, ψ) + (F, η)(1, ϕ) .

The constant C = (F, η) is the value of the distribution F at a partic-
ular test function η (independent of ϕ). So, the above relation can be
restated as

(27.2) (F, ϕ) = −(f, ψ) + (C, ϕ) .

If F exists, then its value at any test function is uniquely defined up
to an additive constant distribution.

It remains to show that F is a distribution, that is, the functional
(27.2) is linear and continuous. To do so, let us use the standard trick.
Define a transformation of D into itself by

T : ϕ→ T (ϕ) = −ψ ,

where ψ is defined by (27.1). If T is linear and continuous on D, then
its adjoint maps D′ into itself D′ by the rule (T ∗(f), ϕ) = (f, T (ϕ)) =
−(f, ψ). Therefore F = T ∗(f) + C by (27.2). A constant function
defines a distribution. So, if T ∗(f) is a distribution, then F is also a
distribution. Linearity of T is obvious. Let ϕn → 0 in D. One has to
show that T (ϕn) is also a null sequence in D. One has

T (ϕn) = −
∫ x

−∞

ϕn(y) dy + (1, ϕn)

∫ x

−∞

η(y) dy .

The support of all ϕn lies in [−R,R] (by definition of topology in D)
and, hence, the support of all T (ϕn) is in [−b, b] where b is defined
above. Then

|T (ϕn)(x)| ≤ 2R sup |ϕn| + |(1, ϕn)| · 2a sup |η|
≤ 2R

(

1 + 2a sup |η|
)

sup |ϕn|
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because the supports of ϕn and η in [−R,R] and [−a, a], respectively.
The estimate holds for all x and, hence,

sup |T (ϕn)| ≤ 2R
(

1 + 2a sup |η|
)

sup |ϕn| .

It follows from this inequality, that if sup |ϕn| → 0, then sup |T (ϕn)| →
0. Since

DβT (ϕn) = Dβ−1ϕn − (1, ϕn)D
β−1η , β > 0 ,

similar estimates hold for derivatives of T (ϕn):

sup |DβT (ϕn)| ≤ sup |Dβ−1ϕn| + 2R sup |ϕn| sup |Dβ−1η| .
This shows that the convergence sup |DβT (ϕn)| → 0 follows from the
convergence sup |Dαϕn| → 0 for any α ≥ 0. Thus, T is continuous on
D and, hence, T ∗(f) is a distribution and so is F = T ∗(f) + C .

Finally, let us verify that F ′ = f in D′. For any ϕ ∈ D,

(F ′, ϕ) = −(F, ϕ′) = −(T ∗(f), ϕ′) − (C, ϕ′) = −(f, T (ϕ′)) = (f, ϕ)

because (C, ϕ′) = 0 for any constant C and

T (ϕ′)(x) = −
∫ x

−∞

ϕ′(y)dy − (1, ϕ′)

∫ x

−∞

η(y) dy = −ϕ(x) .

27.2. Indefinite integral of a distribution. Let us define a particular an-
tiderivative of a distribution f denoted by D−1f as

D−1f = T ∗(f) .

By construction, the antiderivative D−1 is a linear and continuous
transformation of D′ into itself. If fn → f in D′, then D−1fn → D−1f
in D′ by continuity of the adjoint transformation. The indefinite inte-
gral of a distribution is defined as the most general antiderivative:

∫

f(x) dx = D−1f(x) + C .

Clearly, the operation D−1 can be repeated any number of times. So,
an antiderivative of a distribution f of order β, D−βf , is a distribution.

27.3. Classical and distributional antiderivatives. Let f(x) be continu-
ous. Put

F (x) =

∫ x

x0

f(y) dy

for some x0. Then F is a classical antiderivative of f because dF (x) =
f(x)dx by the fundamental theorem of calculus. Let us calculate the
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distributional antiderivative D−1f . By integration by parts one infers
that

(D−1f, ϕ) = (f, T (ϕ)) =

∫ ∞

−∞

f(x)T (ϕ)(x) dx =

∫ ∞

−∞

T (ϕ)dF

=

∫ ∞

−∞

F (x) dT (ϕ) = −(F, ψ′) = (F, ϕ) − (1, ϕ)(F, η) .

Thus, the classical and distributional antiderivatives are equal for con-
tinuous functions up to an additive constant

D−1f(x) = {D−1f} + C, C = ({D−1f}, η) .
This implies that the classical and distributional indefinite integrals
are equal for all continuous functions. Note that different choices of
η in the definition of D−1 = T ∗ simply leads to different constants
C so that the classical and distributional indefinite integrals coincide
whenever the former exists.

In particular,

D−1xn =
xn+1

n+ 1
+ C , C =

(xn+1, η)

n+ 1
, n = 0, 1, ....

It follows from this relation that a distributional antiderivative of order
β is unique up to an additive polynomial of order β − 1. For example,
the double indefinite integral of a distribution f reads

∫
(
∫

f(x) dx

)

dx =

∫

(

D−1f(x) + C1

)

dx

= D−2f(x) + C1x+ C2

27.4. Examples. Let us find D−1δ(x) using the definition of the action
of D−1 on D′. One has

(D−1δ, ϕ) = −(δ, ψ) = −ψ(0) = −
∫ 0

−∞

ϕ(x) dx+ (1, ϕ)

∫ 0

−∞

η(x) dx

The integrals are the values of the regular distribution −θ(−x), where
θ is the step function, at a test function. Therefore

D−1δ(x) = −θ(−x) + C , C =

∫ 0

−∞

η(x) dx .

The constant C depends on the choice of η. If one takes η(−x) = η(x),
then the condition (1, η) = 1 implies that C = 1

2
and

D−1δ(x) = −θ(−x) +
1

2
=

1

2
ε(x)



27. INTEGRATION OF DISTRIBUTIONS 359

If η is such that
∫ 0

−∞

η(x) dx = 1

then
D−1δ(x) = −θ(−x) + 1 = θ(x)

So,
∫

δ(x) dx = θ(x) + C

Finding antiderivatives of distributions does not always require the
use of the rule (27.2) and (27.1), just like in the case of smooth functions
derivatives of basic distributions allows us to find antiderivatives of
other distributions. For example,

DP 1

x
= −P 1

x2
⇒ D−1P 1

x2
= −P 1

x
+ C

D ln(|x|) = P 1

x
⇒ D−1P 1

x
= ln(|x|) + C

27.4.1. Integration by parts. The Leibniz rule is also helpful for finding
antiderivatives (just like the integration by parts for classical func-
tions). If a(x) is a smooth function and f is a distribution, then inte-
grating the Leibniz identity

a(x)f ′(x) =
(

a(x)f(x)
)′

− a′(x) f(x)

one infers the integration by parts for distributions
∫

a(x)f ′(x) dx = a(x)f(x) −
∫

a′(x)f(x) dx .

For example,
∫

(

xδ′(x)
)

dx = xδ(x)−
∫

δ(x) dx = −θ(x) + C

because xδ(x) = 0.

27.5. Distributional initial value problem. The classical initial value prob-
lem is to find a function F whose derivative and value at a particular
point are known:

F ′(x) = f(x) , F (x0) = F0

It has a unique solution for a continuous f :

F (x) = F0 +

∫ x

x0

f(y) dy
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If f is locally integrable, then F is absolutely continuous and the above
equality holds almost everywhere. So, the problem has a unique solu-
tion in the space of regular distributions.

If f is a general distribution, then it does not have point values. So,
the initial condition fixes the value of the functional f on a particular
test function η:

F ′ = f , (F, η) = F0 .

The problem has a unique solution

F (x) = F0 +D−1f(x)

where the test function η used in the definition of D−1f is the test
function at which the “initial” data are set. In this case

(D−1f, η) = 0

because the test function ψ vanishes if ϕ = η in (27.1). This is similar
to the above classical solution where the antiderivative is defined so
that D−1f(x0) = 0.

27.6. Higher dimensional generalizations. Let x ∈ R and y ∈ RN . The
objective is to find a general distributional solution to the equation

(27.3) DxF (x, y) = f(x, y) ,

where f ∈ D′(RN+1). If f is a regular distribution defined by a contin-
uous function, then

F (x, y) =

∫ x

x0

f(s, y) ds + g(y) = D−1
x f(x, y) + g(y)

for some function g independent of x. Let us show that this solution
can be extended to distributions. In other words, a general solution
is an antiderivative of the distribution f with respect to x up to an
additive distribution that is independent of x. Here the concept of an
antiderivative with respect to a particular variable needs to be defined.

Consider a transformation T : D(RN+1) → D(RN+1) defined by
the rule

T (ϕ)(x, y) = −
∫ x

−∞

ϕ(s, y) ds+ φ(y)

∫ x

−∞

η(s) ds

φ(y) =

∫ ∞

−∞

ϕ(x, y) dx =
(

1(x), ϕ(x, y)
)

∈ D(RN ) ,

where η is the same as in (27.1). If the variable y is omitted, then this
transformation is identical to (27.1) up the overall sign. So, a proof
that T (ϕ) is a test function is identical to that given for (27.1) if one
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notes that φ is a test function obtained by the reduction of variables.
Since the latter is a linear continuous transformation (see Sec.17.3), the
transformation T is also linear and continuous. Then its adjoint defines
a transformation of distributions T ∗ : D′(RN+1) → D′(RN+1) by the
usual rule (T ∗(f), ϕ) = (f, T (ϕ)). Let us calculate the distributional
derivative DxT

∗(f). One infers that

(DxT
∗(f), ϕ) = −(T ∗(f), Dxϕ) = −(f, T ∗(Dxϕ)) = (f, ϕ) .

The latter equality follows from
(

1(x), Dxϕ(x, y)
)

= −
(

Dx1(x), ϕ(x, y)
)

= 0

justified by the analysis in Sec.19.4 so that

T (Dxϕ)(x, y) = −
∫ x

−∞

Dsϕ(s, y) ds = −ϕ(x, y)

This shows that the distribution T ∗(f) is an antiderivative of f with
respect to x,

DxT
∗(f)(x, y) = f(x, y) .

So put
D−1

x f(x, y) = T ∗(f)(x, y) .

This distribution is a particular solution to (27.3).
It follows from the definition of T (ϕ) that

ϕ(x, y) = −DxT (ϕ)(x, y) + φ(y)η(x) .

Let F be any solution to (27.3). Define a distribution g(y) ∈ D′(RN)
by the rule

(g, φ) =
(

F (x, y), η(x)φ(y)
)

, η ∈ D(R) , φ ∈ D(RN ) .

The linearity and continuity of the functional g follows from the lin-
earity and continuity of the functional F . Then for any ϕ ∈ D(RN+1),

(F, ϕ) = −(F,Dxψ) + (F, φη) = (f, ψ) + (g, φ)

= (T ∗(f), ϕ) +
(

1(x)g(y), ϕ(x, y)
)

,

where 1(x)g(y) stands for a distribution of N + 1 variables that is
independent of variable x (see Sec.17.3). Thus, a general solution to
(27.3) reads

F (x, y) =

∫

f(x, y) dx = D−1
x f(x, y) + g(y) ,

where g is any distribution that is independent of x. So, an antideriva-
tive and indefinite integral with respect to any variable can be defined
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for distributions of several variables. The properties of such distri-
butional antiderivatives and indefinite integrals are identical to their
classical analogs.
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28. Differential equations for distributions

Let ak(x), k = 0, 1, ..., n, be smooth functions of a real variable x.
Consider a differential equation

L(D)f =
n
∑

k=0

ak(x)D
kf(x) = g(x) ,

where g is a given distribution. The problem is to find all distributions
f ∈ D′(R) that satisfy the equation or show that none exists. If x ∈ RN ,
then the distribution f ∈ D′(RN) is a solution to a partial differential
equation.

Let ϕ1,2 be test functions. The formal adjoint L∗ of L is defined by
the relation

(Lϕ1, ϕ2) =

∫

Lϕ1ϕ2 dx =

∫

ϕ1L
∗ϕ2 dx = (ϕ1, L

∗ϕ2) ,

where the second equality is obtained by integration by parts. There-
fore

L∗(D)ϕ =
n
∑

k=0

(−1)kDk(akϕ) .

If f ∈ D′ is a solution to a differential equation, then for any test
function ϕ,

(28.1) (L(D)f, ϕ) = (f, L∗(D)ϕ) = (g, ϕ) .

The differential operator L is linear. Therefore any two solutions
differ by a solution to the associated homogeneous equation. So, a
general solution has the form

f(x) = fp(x) + h(x) , L(D)h = 0 ,

where fp is a particular solution. So, the first problem is to find a
general solution to the homogeneous equation. A general theory for
the latter problem is already difficult enough for classical functions.
For example, second-order ordinary differential equations require the
Frobenius theory when a2(x) has zeros to construct classical solutions
near the zeros. Classical solutions are in general singular functions at
zeros of a2 and may not have distributional extensions to the zeros. The
stated problem for ordinary differential equations is generally more of
a theoretical significance than of importance for applications. So, the
discussion will be limited to first-order equations and to some simple
examples of equations of other types to illustrate peculiarities of dis-
tributional differential equations that are not present in the classical
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theory of ordinary differential equations. A general theory for equa-
tions with constant coefficients will be developed later and extended to
partial differential equations.

It should be noted that if the coefficients are not smooth every-
where, then the problem of multiplication of distributions arises in this
equation. It must be resolved somehow so that the equation makes
sense in the space of distributions, e.g., by restricting the class of dis-
tributions in which a solution is sought. For example, the problem can
still make sense for distributions in an interval, f ∈ D′(Ω), Ω ⊂ R, if
the coefficients are smooth on Ω, ak ∈ C∞(Ω) for all k.

28.1. Simple examples. Let us find a general distributional solution to
the equation

x2f ′(x) = 1 .

Put g(x) = f ′(x). Then it was shown earlier that

g(x) = P 1

x2
+ C1δ(x) + C2δ

′(x)

where C1 and C2 are constants. Therefore

f(x) =

∫

g(x) dx = −P 1

x
+ C1θ(x) + C2δ(x) + C3

where C3 is an integration constant. It is noteworthy that in contract
to the classical case, a general distributional solution has three arbi-
trary constants for a first-order equation. But just like in the classical
case, arbitrary constants are parameters of a general solution to the
associated homogeneous equation.

28.1.1. A second-order equation. Let us find a general solution to

xf ′′(x) = δ(x) .

By multiplying the equation by a smooth function x and using the
identity, xδ(x) = 0, it is concluded that any solution of the equation is
among solutions of the homogeneous equation:

x2f ′′(x) = 0 ⇒ f ′′(x) = C1δ(x) + C2δ
′(x)

The substitution of f ′′ into the original equation yields

C2xδ
′(x) = δ(x) ⇒ C2 = −1 .

Therefore

f(x) =

∫∫

(−δ′(x) + C1δ(x)
)

dx dx =

∫

(

− δ(x) + C1θ(x) + C2

)

dx

= −θ(x) + C1xθ(x) + C2x+ C3 ,
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where C1, C2, and C3 are arbitrary constants. Note that −θ(x) is a
particular solution, whereas the other terms comprise a general solution
to the associated homogeneous equation.

28.1.2. General solution to a homogeneous 2D wave equation. Let us find
a general distributional solution to the 2D wave equation discussed in
Sec.21.6.3. The change of variables xpm = x ± ct is legitimate for
distributions of two variables and the chain rule holds. Therefore,
denoting the partial derivatives with respect to x± by D±, the said
equation is equivalent to

(D2
t − c2D2

x)u = [c2(D+ −D−)2 − c2(D+ +D−)2]u

= −4c2D+D−u = 0 .

The latter equation is of type (27.3) and can be integrated using dis-
tributional antiderivatives with respect to x±:

D−u = h(x−) ⇒ u(x, t) = D−1
− h(x−) + f(x+)

= g(x− ct) + f(x+ ct) ,

where h′ = g and f and g are arbitrary distributions of one real variable.
For example, u(x, t) = δ(x− ct) describes a propagation of a delta-

like pulse in the direction of increasing x with speed c. It can be viewed
as an idealization of a propagating of a narrow pulse represented by a
classical (smooth) solution obtained from a distributional one by, e.g.,
a convolution regularization ua(x, y) = ωa(x − ct) where ωa(x−) is a
hat function.

28.2. Localization method. Example. Recall that any distribution is
uniquely defined by its values in neighborhoods of all points. Then
a differential equation can be solved near each point and the solution
in the whole region is obtained by the localization theorem using (25.1).
To illustrate the concept, let us find a general solution to the following
equation

a(x)f ′(x) = δ(k)(x) , k ≥ 0 ,

where a(x) is a smooth function. If fk is a particular solution to this
equation, then by linearity of the equation, the distribution

f(x) =
M
∑

k=0

ckfk(x)
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is a particular solution to the equation af ′ = g with inhomogeneity
being a general distribution with point support

g(x) =
M
∑

k=0

ckδ
(k)(x) .

The problem is solved using the result from Sec.26.6.5. If a(x) does
not vanish anywhere, then the reciprocal of a is from C∞. Then

(28.2) f(x) =

∫

1

a(x)
δ(k)(x) dx = C +B0θ(x) +

k−1
∑

n=0

Bn+1δ
(n)(x) ,

where the coefficients Bn are given by (26.2) for b(x) = 1/a(x) and C
is an integration constant. Note that a constant C is a general solution
to the associated homogeneous problem.

If a(x) has zeros, then due to the division problem for distributions
this method is not applicable. It is further assumed that each zero has
a finite multiplicity and the sequence of zeros of a has no limit points.
Under the latter assumption, one can construct a countable cover of R

by open intervals such that each interval contains just one root of a.
Let {xn} be a sequence where x0 = 0 and xn, n 6= 0, are roots of a
(x0 is not necessarily a root). The terms of the sequence are ordered
so that xn < xn+1. Let In be an open interval containing xn such that
R = ∪nIn. Put f(x) = fn(x) if x ∈ In where fn is a general solution
near xn. These local solutions must match in the intersections In∩In+1

so that

(28.3) fn(x) = fn+1(x) , x ∈ In ∩ In+1 ⊂ (xn, xn+1) .

Once all fn have been found, the distribution f is obtained by (25.1).
For the sake of avoiding unessential technical complications that might
be fogging the concept, let us make a simplifying assumption that all
roots of a are simple. The case of roots of higher multiplicity can
be treated in the same way by the method developed in Sec.26.4 but
technicalities are more involved. Specific examples are better to work
out individually following the concept.

If xn is a simple root, then a(x) = (x − xn)b(x) where b(xn) 6= 0
and b is from C∞ near xn. Therefore or n 6= 0,

a(x)f ′
n(x) = 0 ⇒ f ′

n(x) = Cδ(x− xn) ,

for some constant C . It is now easy to integrate the equation. A general
solution is convenient to write in the form

fn(x) = C−
n + (C+

n − C−
n )θ(x− xn) .
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Note that f ′
n(x) = 0 for x 6= xn so that it is defined by constant

functions C− and C+ for x < xn and x > xn in In, respectively. The
solutions fn and fn+1 must coincide in the interval (xn, xn+1). So the
matching condition (28.3) for two neighboring non-zero roots is

C+
n = C−

n+1 .

This shows that a general solution to the homogeneous equation is given
by a general piecewise constant function with jump discontinuities at
the roots of a.

Our next objective is to find a general solution in I0,

a(x)f ′
0(x) = δ(k)(x) , x ∈ I0 ,

and match it with solutions in I±1. Suppose a0 = a(0) 6= 0. In this
case, there is no division problem in I0 and a general solution coincides
with (28.2). The matching conditions in (x−1, 0) and (0, x1) require
that

C = C+
−1 , C−

1 = B0 + C+
−1 .

So, a general solution is

f(x) = h(x) +
k−1
∑

n=0

Bn+1δ
(n)(x) , disc

x=0
h = B0 ,

where k > 0, h is a general piecewise constant functions with jump
discontinuities at roots of a and x = 0 (the discontinuity at x = 0 must
have a fixed value B0), and f = h if k = 0.

Suppose a has a (simple) root x = 0. In this case, the equation is
equivalent to

xf ′
0(x) =

∑

n=0

Bnδ
(n)(x) , x ∈ I0 ,

where Bn are given by (26.2) for b(x) = x/a(x) which is from C∞ near
x = 0 and b(0) 6= 0. If gn is a solution to xgn = δ(n), then by linearity

f ′
0(x) =

k
∑

n=0

Bngn(x) , xgn = δ(n) .

The distribution gn must have a point support because it vanishes for
x 6= 0. Therefore it is a linear combination of the delta function and
its derivatives. The coefficients in the linear combination are easy to
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find:

xgn(x) =
M
∑

m=0

cmxδ
(m)(x) = −

M
∑

m=0

cmmδ
(m−1)(x) = δ(n)(x) ,

gn(x) = c0δ(x)−
1

n+ 1
δ(n+1)(x) ,

where c0 is an arbitrary constant. Note that the first term is nothing
but a general solution to the associated homogeneous equation. Sub-
stituting gn and taking an antiderivative of f ′

0, one infers that

f0(x) = C+
−1 + (C−

1 − C+
−1)θ(x) −

k
∑

n=0

Bn

n+ 1
δ(n)(x) ,

where c0 and the integration constant are chosen so that f0(x) = C+
−1

in (x−1, 0) and f0(x) = C−
1 in (0, x1). Thus, a general solution is given

by

f(x) = h(x) −
k
∑

n=0

Bn

n+ 1
δ(n)(x) ,

where h is a general piecewise constant function with discontinuities at
roots of a.

28.3. Linear first-order equations. The most general linear first-order
equation reads

b(x)f ′(x) + a(x)f(x) = h(x) , h ∈ D′ , a, b ∈ C∞ .

If b(x) has no zeros, then the problem is fully analogous to the cor-
responding classical problem as shown below. If b has zeros, then the
problem can have no solution in D′ at all.

For example, consider the following homogeneous equation

x2f ′(x) + νf(x) = 0 , f ∈ D′ ,

where ν is a constant. For x 6= 0, a distributional solution, if it exists,
must coincide with the classical solution:

f(x) = C+e
ν
x , x > 0 , f(x) = C−e

ν
x , x < 0 ,

where C± are arbitrary constants. Let f(x) = {f(x)} for x 6= 0 where
{f} is the above classical solution. The function {f} is singular and
does not define any distribution on R. It must be extended to x = 0.
However, in Sec.16.5 it was shown that such {f} is too singular and
has no distributional extension to x = 0. So the problem does not have
any non-trivial solution in D′(R). A non-trivial solution exists in D′(Ω)
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for any open interval Ω that does not contain the singular point x = 0
and, in this case, the distributional and classical solutions coincide.

28.3.1. Case b 6= 0. The equation can be divided by b to obtain an
equivalent equation. Therefore without loss of generality, put b(x) = 1
and consider a substitution

f(x) = exp
(

−
∫ x

0

a(y) dy
)

g(x) ,

where g is a unknown distribution. Since the exponential is smooth
function that vanishes nowhere, the substitution makes sense in D′

and is invertible. For any f ∈ D′ there exists a unique g ∈ D′ and vice
versa. By the Leibniz rule, g is shown to satisfy the equation

exp
(

−
∫ x

0

a(y) dy
)

g′(x) = h(x) .

Therefore, a general solution reads

(28.4) f(x) = e−
R x

0
a(y)dy

∫

e
R x

0
a(y) dyh(x) dx .

The indefinite (distributional) integral contains an additive integration
constant C . The term Ce−

R x

0
a(y) dy is a general solution to the associ-

ated homogeneous equation. In particular, if h(x) = δ(x), one gets

f(x) =
(

θ(x) + C
)

e−
R x

0
a(y) dy ,

where C is a constant.

28.4. General homogeneous equation. Let us analyze a general solution
to the associated homogeneous equation

b(x)f ′(x) + a(x)f(x) = 0 , f ∈ D′ ,

where b has zeros. As noted, the existence of a solution depends on
the behavior of b and a near zeros of b. The approach is based on
the localization theorem. It is assumed that b and a are smooth and
zeros of b have finite multiplicity. The sequence of zeros has no limit
point so that the existence of f can be studied in an open interval
containing a single zero of b. If solutions near each zero exist, then a
general solution in D′ is obtained by (25.1) (or by fulfilling matching
conditions) as illustrated in Sec.28.2.

Let b(0) = 0. Then near x = 0

a(x)

b(x)
= q(x) +

ν

x
+ pn(x) , pn(x) =

ν2

x2
+ · · · + νn

xn
,
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for some integer n > 1 and an analytic function q(x). Then a distribu-
tional solution must coincide with the classical solution near x = 0

f(x) = {f(x)} = C±e
−

R

(a/b)dx =
C±

|x|ν e
−Pn(x)e−Q(x) , x 6= 0 ,

where C± are constants for x > 0 and x < 0 as in the example above,
and Pn and Q are antiderivatives of pn and q, respectively. Due to
the factor e−Pn , the function {f} is too singular at x = 0 to have
a distributional regularization in a neighborhood of x = 0 as in the
example considered in Sec.16.5. So, no distributional solution exists if
pn 6= 0.

If a/b is bounded near a particular point, then this point is called
a regular point of the equation, otherwise it is called a singular point.
Near every regular point a distributional solution exists and coincide
with a classical solution. Suppose that

lim
x→x0

(x− x0)a(x)

b(x)
= ν .

In this case, x0 is called a regular singular point of the equation. The
parameters ν and multiplicity m of the root x0 of b are called indices
of the regular singular point. Near every such point, a distributional
solution also exists. Indeed, a classical solution

{f(x)} ∼ e−Q(x)

|x− x0|ν
,

is locally integrable if ν < 1 and, hence, defines a distribution in a
neighborhood of x = 0. If ν ≥ 1, {f} is not locally integrable, but any
reciprocal of a power function admits a distributional extension to the
singular point x = x0. For example, one can always take the princi-
pal value regularization defined in (16.2). Thus, if all singular points
of the equation are regular singular points, then a distributional solu-
tion exists near every point. Between any two regular singular points,
the distributional solution is given by the classical solution which is a
smooth function. It remains to show that local distributional solutions
have enough parameters to fulfill the latter matching conditions. Then
by the localization theorem, the equation has a solution in D′(R).

28.4.1. The structure of a general solution. Let {xs} be a sequence of
regular singular points with indices νs andms ordered so that xs < xs+1

It is assumed that the sequence has no limit point (or any bounded
interval contains at most finitely many points of {xs}. Let Is be non-
overlapping open intervals obtained from R by removing singular points
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xs. Then the distributional solution coincides with the classical one in
any of these intervals

{fs(x)} = Cs exp
(

−
∫

a(x)

b(x)
dx
)

, x ∈ Is

where Cs is an arbitrary constant. Between any two singular points xs

and xs+1 there are two equivalent representations of a/b:

a(x)

b(x)
=

νs

x− xs

+ qs(x) =
νs+1

x− xs+1

+ qs+1(x) ,

where qs and qs+1 are smooth functions in (xs, xs+1). Therefore there
are two representations of the classical solution

{fs(x)} =
Cs

|x− xs|νs
exp

(

−
∫ x

xs

qs(y) dy
)

,

=
C ′

s

|x− xs+1|νs+1
exp

(

−
∫ x

xs+1

qs+1(y) dy
)

,

in the interval xs < x < xs+1. The constants Cs and C ′
s are propor-

tional to one another, and the proportionality coefficient can be defined
by matching the solutions at any particular point in (xs, xs+1). For
definitiveness, the first representation is used in any bounded interval
Is. If {xs} is bounded from above, then in the interval (max{xs},∞)
the first representation is used for xs = max{xs}. If the sequence
{xs} is bounded from below, then the classical solution in the interval
(−∞,min{xs}) is defined by the second representation xs = min{xs}.

Each function {fs} is extended to R by zero outside of Is so that

{f(x)} =
∑

s

{fs(x)} ,

is a general classical solution wherever it exists. By construction

lim
x→x±

s

|x− xs|νs{f(x)} = C±
s ,

whereC+
s = Cs are independent parameters of {f}, whereas C−

s = C ′
s−1

is proportional to C+
s−1. If the sequence {xs} is bounded from below,

then C−
s = Cs is also an independent parameters of {f} in the interval

(−∞,min{xs}). This shows that if any of νs > 1, {f(x)} is not locally
integrable and does not define a distribution. However it has a distri-
butional regularization by means of the principal value regularization
defined in Sec.16.4.2. Recall that a distributional regularization is not
unique. It is defined up to an additive distribution supported in the
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set to which {f} is extended. Therefore by the localization theorem
any distributional solution, if it exists, must have the form

f(x) = Pr{f(x)} + F (x) , suppF = {xs} .
Since the support of F consists of isolated points,

F (x) =
∑

s

Fs(x) , Fs(x) =
Ms
∑

n=0

Asnδ
(n)(x− xs)

for some choice of constants Asn. By construction f satisfies the equa-
tion in any Is. The objective is to show that there always exists a
choice of parameters Cs and Asn for which the equation is satisfied in
a neighborhood of each xs.

The formal adjoint of the differential operator L(D) = bD + a is
defined by

L∗(D)ϕ = −D(bϕ) + aϕ

for any test function ϕ. It follows from (28.1) that the distribution F
satisfies the equation

(L(D)F, ϕ) = −
(

Pr{f}, L∗(D)ϕ
)

≡ G.

The right-hand side of this equation G can be expressed as the sum
over s of linear combinations of derivatives ϕ(n)(xs) = (−1)n(δ(n)(x−
xs), ϕ(x)) because F is a distribution supported at {xs}. To do so,
define neighborhoods of singular points:

I ′s = (xs − c, xs + c) ,

where c is small enough so that I ′s contains only one singular point xs.
Let Ic be the complement of the union of all I ′s. Then by Sec.16.4.2

and continuity of the integral

G =
∑

s

lim
ε→0+

∫

I′εs

{f(x}
(

L∗ϕ(x) − Ps(x)
)

dx+

∫

Ic

{f(x)}L∗ϕ(x) dx ,

where I ′εs is defined by ε < |x−xs| < c, and Ps(x) is a Taylor polynomial
for the test function L∗ϕ about xs of the minimal order defined by the
condition that the function {f}(L∗ϕ−Ps) is integrable on I ′s. If {f}L∗ϕ
is integrable on Is, then Ps = 0. The classical solution {f} is smooth
in every I ′εs and in Ic. Integrating by parts in every integral containing
the derivative D(bϕ) and using that L(D){f(x)} = 0 in every I ′εs and
in Ic, the last equation is reduced to

G =
∑

s

lim
ε→0+

(
∫

I′εs

{f(x}Ps(x) dx − {f(x)}b(x)ϕ(x)
∣

∣

∣

xs+ε

xs−ε

)

.
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It remains to find the polynomial Ps and calculate the integral and
the limit. It should be stressed that the limit always exists for every
s because Pr{f} is a distribution by construction. If xs is not in the
support of ϕ, then any Taylor polynomial of ϕ about xs vanishes. This
implies that the sum contains only finitely many terms because support
of any test function contains at most finitely many points from {xs}.

To simplify notations, put y = x − xp. Near xs, the coefficients b
and a have the form

b(x) = yms(b0 + b1y + · · · + bky
k +O(yk+1)) ,

a(x) = yms−1(a0 + a1y + · · · + ak +O(yk+1)) ,

where, by the hypothesis, ms ≥ 1, b0 6= 0, and νs = a0/b0. Put

ϕ(x) = ϕ0 + ϕ1y + · · · + ϕky
k +O(yk+1) .

Then

L∗ϕ(x) = yms−1(γ0 + γ1y + · · · + γky
k) +O(xk+mp)

= Ps(x) +O(yk+mp) ,

γk =

k
∑

n=0

(an − (ms − k)bn)ϕk−n .

Therefore Ps = 0 if νs −ms ≤ 0. Indeed, one has γ0 = (νs −ms)b0ϕ0.
If γ0 6= 0, then {f}L∗ϕ ∼ |y|ms−νs−1 is integrable if νs − ms < 0. If
γ0 = 0 or νs −ms = 0 because b0 6= 0, then {f}L∗ϕ ∼ |γ1| is bounded
near y = 0. If νs −ms > 0, then the minimal integer k = ks ≥ 0 for
which the function

{f(x)}(L∗ϕ(x) − Ps(x)) = O(|y|k+ms−νs)

is integrable in a neighborhood of y = 0 is uniquely defined by the
condition

νs −ms − 1 < ks ≤ νs −ms .

Thus, for each s, the limit in G is a linear combination of ϕn =
ϕ(n)(xs)/n!, 0 ≤ n ≤ ks. As noted, this implies that the distribution
Fs satisfies the equation

(28.5) L(D)Fs(x) =
ks
∑

n=0

Bsnδ(x− xs) ,

where the coefficients Bsn are uniquely determined by arbitrary pa-
rameters C+

s = Qs(xs), C
−
s = Qs−1(xs), and functions a(x) and b(x).

It is always possible to choose Qs so that C+
s = Cs (a parameter of

the classical solution in Is) so that C−
s is proportional to Cs−1. The
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distribution L(D)Fs can always be written as a linear combinations of
δ(x− xs) and its derivatives. The coefficients are linear combinations
of parameters Asn. Therefore Asn satisfy a linear system of equation.
It is proved in the next section that there always exists a choice of
parameters Cs for which the linear system has a solution.

28.4.2. The existence of a solution. 8

Let us show that (28.5) always has a solution for some choice of
parameters Cs. It is convenient to make a substitution

Fs(x) = e−Qs(x)Gs(x− xs) , Q′
s(x) = qs(x) ,

and rewrite the equation in terms of the variable y = x− xs:

ymsG′
s(y) + νsy

ms−1Gs(y) = eQs(y+xs)

ks
∑

n=0

Bsnδ
(n)(y) =

ks
∑

n=0

BQ
snδ

(n)(y) ,

where

Gs(y) = eQs(y+xs)

Ms
∑

n=0

Asnδ
(n)(y) =

Ms
∑

n=0

AQ
snδ

(n)(y) .

The coefficients BQ
sn and AQ

sn are uniquely determined by Bsn and Asn,
respectively, and vice versa because eQs does not vanish anywhere (see
Sec.18.1). Using the results of Sec.18.1, the equation is further reduced
to

Ms
∑

n=ms−1

αsnA
Q
snδ

(n−ms+1) =
ks
∑

n=0

BQ
snδ

(n) ,

αsn = − (−1)msn!

(n−ms + 1)!
(νs − n− 1) .

ThereforeAQ
sn remains arbitrary for 0 ≤ n ≤ ms−2 (no such parameters

are present if ms = 1). By shifting the summation index, one infers
that

(−1)ms
(n +ms − 1)!

n!
(νs −ms − n)AQ

s(n+ms−1) = BQ
sn

for 0 ≤ n ≤ ks. If νs is not an integer, then Ms = ks −ms − 1, and AQ
sn

are uniquely determined for ms − 1 ≤ n ≤ Ms. Thus, the distribution
Fs always exists if νs is not an integer and has It is concluded that a
solution Fs exists and the distributional solution f(x) near xs has ms

free parameters, one parameter Cs and the others are AQ
sn, 0 ≤ n ≤

ms − 2.

8This section is NOT complete yet and to be revised
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Suppose that νs is an integer. The case Ps = 0 (and, hence, Bsn =
0) is possible only if νs = ms ≥ 1. In this case, the equation for Gs is
reduced to

(ymsGs)
′ = 0 ⇒ Gs(y) =

ms−1
∑

n=0

AQ
snδ

(n)(y) .

where Asn are arbitrary. If νs −ms > 0 (or Ps 6= 0) and νs ≥ 2 is an
integer, then ks = νs − ms > 0. The last equation in the system for
Asn yields the condition on C±

s :

Bsn = 0 , n = ks = νs −ms ,

whereas the coefficient Asn remains arbitrary for n = νs − 1.
In particular, if νs −ms ≤ 0, then Ps = 0 and, hence, Bsn = 0 so

that

Fs(y) =

ms−2
∑

n=0

Asnδ
(n)(y) , ms ≥ 2 , Fs(y) = 0 , ms = 1 .

Recall that a distributional regularization is unique up to an addi-
tive distribution supported in the set to which the extension is carried
out. Therefore any distributional solution near a root x = 0 must have
the form

f(x) = Pr{f(x)} + f0(x) , f0(x) =
M
∑

n=0

Cnδ
(n)(x) ,

where f0 is a general distribution supported at x = 0. Note that C±

and Cn are to be determined by substituting this distribution into the
equation. The parameters C± are to be used to fulfill the matching con-
ditions in open intervals between singular regular points of the equa-
tion. The objective is to investigate if they are independent parameters
of the solution near each root of b.

Near x = 0, the coefficients b and a have the form

b(x) = xm(b0 + b1x+O(x2)) , a(x) = xm−1(a0 + a1x+O(x2)) ,

where, by the hypothesis, b0 6= 0, while a0 can be zero, and ν = a0/b0.
It is convenient to make a substitution

f(x) = e−Q(x)g(x) ,

where Q is defined above, and reduce the equation an equivalent one

L(D)g(x) = xmDg(x) + νxm−1g(x) = 0
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near x = 0. As noted, any solution to this equation must have the form

g(x) = Pr{g(x)} + g0(x) , g0(x) =

M
∑

n=0

Cnδ
(n)(x) , {g(x)} =

C±

|x|ν ,

for some choice of parameters C± and Cn because e−Q(x) is smooth and
vanish nowhere. The parameters are such that Eq. (28.1) is satisfied:

To calculate Pr{g}, one has to find a Taylor polynomial pL of a
minimal order for the test function L∗(D)ϕ about x = 0 such that
{g}(L∗ϕ− pL) is locally integrable. Then

(Pr{g}, L∗(D)ϕ) =

∫

|x|<1

{g(x)}
(

L∗(D)ϕ(x) − pL(x)
)

dx

+

∫

|x|>1

{g(x)}L∗(D)ϕ(x) dx .

In the first integral, the integration interval is reduced to ε < |x| <
1 with the subsequent limit ε → 0+ (by continuity of the integral).
Then the integration by parts is carried out in all terms containing
D(xmϕ). Owing to that L(D){g} = 0 for |x| > ε and cancellation
of the boundary terms at x = 1 in both the integrals, the equation is
reduced to

(Pr{g}, L∗(D)ϕ) = − lim
ε→0+

(

∫

ε<|x|<1

{g(x)}pL(x) dx

−εm{g(ε)}ϕ(ε)− (−ε)m{g(−ε)}ϕ(−ε)
)

.

It remains to find the polynomial pL, calculate the integral and the
limit.

Put ϕ(n)(0) = ϕn. Then

L∗(D)ϕ(x) = xm−1
k
∑

n=0

(ν − n− 1)ϕnx
n +O(xk+m) .

If ν −m + 1 < 1 or ν < m, the product {g}L∗ϕ is integrable on the
interval |x| < 1. Therefore pL = 0. Otherwise,

(28.6) pL(x) = xm−1

k
∑

n=0

(ν − n− 1)ϕnx
n ,

where the order k ≥ 0 is determined by ν −m ≤ k < ν −m+ 1.



28. DIFFERENTIAL EQUATIONS FOR DISTRIBUTIONS 377

28.4.3. The case ν < m. 9 Since pL(x) = 0,

(Pr{g}, L∗(D)ϕ) = O(εm−ν) → 0

as ε → 0+ because m−ν > 0. By (28.5) the distribution g0 is anihillated
by L(D):

xmg′0(x) + xm−1g0(x) = 0 .

Let m = 1 (a simple zero of b). In this case, one has to find a
general distribution supported at x = 0 that satifies the equation

(28.7) xg′0(x) + νg0(x) =
M
∑

n=0

(ν − n− 1)Cnδ
(n)(x) = 0

Therefore Cn = 0 because ν − n − 1 6= 0 for ν < m = 1 and n ≥ 0.
It follows from f = e−Qg that the distributional and classical solutions
coincide:

f(x) = {f(x)} , ν < m = 1 ,

as already noted earlier.
If m ≥ 2, then the parameters Cn satisfy the condition that is

obtained from (28.7) by multiplying the latter by xm−1. Using the
result of Sec.18.1, it is concluded that

(ν − n− 1)Cn = 0 , n ≥ m− 1 ,

whereas no conditions on Cn for n = 0, 1, ..., m − 2 arise because
xm−1δ(n)(x) = 0 for n < m−1. Since ν < m, Cn = 0 for n ≥ m−1. The
distribution f0 = e−Qg0 also has exactly m − 1 arbitrary parameters
because e−Q(0) 6= 0 and, hence, a general solution has the form

(28.8) f(x) = Pr{f(x)} +

m−2
∑

n=0

Cnδ
(n)(x) , ν < m , m ≥ 2 ,

and depends on m+ 1 independent parameters, C± and Cn.

28.4.4. The case ν ≥ m. 10 Using (28.6) to evaluate the integral and a
Taylor approximation of ϕ(±ε), the limit is found to be

(Pr{g}, L∗ϕ) = −
k
∑

n=0

(

(−1)m+nC− −C+

)

ϕn .

9This section is NOT complete yet and to be revised
10This section is NOT complete yet and to be revised
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Since ϕn = (−1)n(δ(n), ϕ)/n!, it follows from (28.5) that the distribu-
tion g0 satisfies the equation

xmg′0(x) + xm−1g0(x) =

k
∑

n=0

Anδ
(n)(x) , An =

(−1)mC− − (−1)nC+

n!
.

Using the results of Sec.18.1, the equation is reduced to

M
∑

n=m−1

αmnCnδ
(n−m+1) =

k
∑

n=0

Anδ
(n) ,

αmn = − (−1)mn!

(n−m+ 1)!
(ν − n− 1) .

If ν is not an integer, then αmn cannot be zero. In this case, the
equation implies that Cn remain arbitrary for n = 0, 1, ..., m − 2 (if
m = 1, then no such Cn are present in the solution),

Cn =
An−m+1

αmn

, m− 1 ≤ n ≤ k +m− 1 .

and Cn = 0 for n ≥ k + m. So, a general solution is given by the
distribution (28.8) plus a linear combination of δ(n), n ≥ m − 1, with
coefficients uniquely determined by parameters C±.

If ν ≥ m is an integer, then ν = m+ k by definition of the integer
k. Therefore αmn = 0 if n = ν − 1. This implies that Ak = 0 or

C− = (−1)νC+

and the coefficient Cν−1 is also arbitrary in addition to Cn, n ≤ m− 2.
Under the above condition on C±

Pr{g(x)} = C+P
1

xν
.

It also follows from the explicit form of An that Ak−2l = 0 for any
non-negative integer l ≤ k/2 so that Cn = C+βn for m− 1 ≤ n ≤ ν− 2
and βν−2l−1 = 0 for 1 ≤ l ≤ k/2. A general solution has again m + 1
parameters:

g(x) = C+

(

P 1

xν
+

ν−2
∑

n=m−1

βnδ
(n)(x)

)

+

m−2
∑

n=0

Cnδ
(n)(x) + Cν−1δ

(ν−1)(x) .

The distribution f(x) = e−Q(x)g(x) contains a linear combination of δ(n)

for 0 ≤ n ≤ ν−1 but among ν coefficients only m+1 are independent.
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28.4.5. Matching conditions. 11 The above analysis shows that a dis-
tributional solution always exists near a regular singular point of the
equation. Let {xn} be a sequence of all such points (and no other
singular points exist), νn and mn be parameters of a singular point
x = xn, and C±

n be parameters of the classical solution near x = xn. If
νn ≥ mn is an integer, then C−

n = (−1)νC+
n . In the interval (xn, xn+1),

the distributional solution coincides with the classical one

f(x) = {fn(x)} = C0
n exp

(

−
∫

a(x)

b(x)
dx
)

, x ∈ (xn, xn+1) ,

where C0
n is an arbitrary constant. There are two equivalent represen-

tations on the integrand in this interval

a(x)

b(x)
=

νn

x− xn
+ qn(x) =

νn+1

x− xn+1
+ qn+1(x) .

If the first representation is used in the integral, the local solution near
x = xn is obtained in (xn, xn+1). Therefore C+

n = C0
n. If the second

representation is used, the local solution near x = xn+1 is obtained
in (xn, xn+1) and, hence, C−

n+1 = C0
n. Thus, the local distributional

solutions obtained near every singular point define a distribution on R

if

C+
n = C−

n+1 .

This condition can always be fulfilled. This is obvious if none of νn

is an integer. In this case, C+
n = C0

n are arbitrary. Suppose that all
νn ≥ mn are integers. Then the only independent parameters to be
used for matching are C+

n . In this case, the matching condition reads
C+

n+1 = (−1)νn+1C+
n or C0

n+1 = (−1)νn+1C0
n. Therefore the integration

constants C0
n in every interval (xn, xn+1) must be equal up to a sign.

28.5. Exercises.

1. Find general first and second antiderivatives of Sokhotsky distri-
butions

D−1 1

x± i0+
, D−2 1

x± i0+

11This section is NOT complete yet and to be revised
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2. Find a general distributional solution to each of the following equa-
tions

(i) (x− a)(x− b)f ′(x) = 1

(ii) (x− a)(x− b)f ′′(x) = δ(x)

(iii) f ′(x) + a(x)f(x) = δ′(x) , a ∈ C∞

(iv) xf ′(x) + xa(x)f(x) = δ(x) , a ∈ C∞

Hint: Multiply Equations (ii) and (iv) by x.

3. Let f(x, t) be a distribution of two real variables. Find a general
solution to an inhomogeneous distributional wave equation:

(D2
t − c2Dx)u(x, t) = f(x, t)

Express the answer in terms of antiderivatives of f with respect to x
and t.


