
Test 1 with solutions

1 (1 pts). For the Laplace equation in three variables

∆u =
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0

find all solutions of the form

u(x, y) = f(s) , s = x2 + y2 + z2

where f is twice continuously differentiable function of one real variable. Indicate the largest
region of space where such solutions exist.

Solution: By the chain rule

∂u

∂x
= f ′(s)

∂s

∂x
= 2xf ′(s) ,

∂2u

∂x2
=

∂

∂x

(

2xf ′(s)
)

= 2f ′(s) + 4x2f ′′(s)

The corresponding derivatives with respect to y and z are obtained by replacing x by y and z in
the above equations. Therefore

∆u = 6f ′(s) + 4sf ′′(s) = 0

Put g(s) = f ′(s). Then by separating variables in the first-order equation for g

g′

g
= − 3

2s
⇒ g(s) =

A

s3/2
⇒ f(s) =

∫

g(s) ds =
B√
s

+ C

where A, B, and C are arbitrary constants. The solution is valid in any region that does not
contain the origin s 6= 0 if B 6= 0, and a constant solution C is valid in the whole space (B = 0).

2 (1 pt). Find the most general solution to the heat equation

∂u

∂t
= a2∂2u

∂x2
, a2 > 0 ,

that can be obtained by separating variables t and x that is bounded

|u(x, t)| ≤ M , t ≥ 0 , −∞ < x < ∞

for all non-negative t ≥ 0 and all real values of x.

Solution: Let u(x, t) = T (t)X(x). Then the heat equation is satisfied if

X ′′(x) = λX(x) , T ′(t) = a2λT (t)

where λ is a constant of separation of variables. The latter equation has the following general
solution

T (t) = Aeλa2t

where A is a constant. This solution is bounded for t ≥ 0 only if λ = 0 or λ = −ν2 < 0 If
λ = 0, then X(x) = Cx + B. This function is bounded for all x only if C = 0. If λ = −ν2, then



X(x) = C cos(νx) + B sin(νx) so that |X(x)| ≤ |C| + |B| for all x because cos and sin function
take values between −1 and 1. Thus,

u(x, t) = C0 +
N

∑

n=1

e−a2ν2
n
t
(

Cn cos(νnx) + Bn sin(νnx)
)

is a bounded solution for any choice of real constants Cn, Bn, and νn.

3 (1 pt). Find the most general solution to the equation

∂u

∂x
+

∂u

∂y
+ (2x − y)u = 0

that can be obtained by separation of variables x and y.

Solution: Let u(x, y) = X(x)Y (y). Substituting this function into the equation and divid-
ing the result by u, one infers that

X ′(x)

X(x)
+ 2x +

Y ′(y)

Y (y)
− y = 0

for all x and y, which is only possibly if

X ′(x)

X(x)
+ 2x = λ ,

Y ′(y)

Y (y)
− y = −λ

Integrating these equations,

ln
(

X(x)
)

+ x2 = λx + A , ln
(

Y (x)
)

− 1

2
y2 = −λy + B ,

Therefore by taking the exponential of these relations

X(x)Y (y) = Ce−x2+ 1

2
y2+λ(x−y) , u(x, y) =

N
∑

n=1

Cne
−x2+ 1

2
y2+λn(x−y)

for any choice of constants Cn and λn.

4 (4 pts). Consider the initial and boundary value problem for a 2D wave equation

(PDE) :
∂2u

∂2t
− 4

∂2u

∂x2
= f(x, t) , t > 0 , 0 < x < 2 ,

(IC) : u
∣

∣

∣

t=0
= u0(x) ,

∂u

∂t

∣

∣

∣

t=0
= u1(x) , 0 ≤ x ≤ 2 ,

(BC) : u
∣

∣

∣

x=0
= u

∣

∣

∣

x=2
= 0 , t ≥ 0 .

(i) Let f = 0. Find the most general solution to (PDE) by separating variables t and x that
satisfies the boundary conditions (BC).
(ii) Let f = 0 and the initial conditions (IC) be

u0(x) = 3 sin(πx) , u1(x) = sin(2πx)− 2 sin(πx/2)



Find a solution obtained in Part (i) that also satisfies these initial conditions or show that no such
solution exists.
(iii) Use the form of a solution obtained in Part (i) to solve the problem if

f(x, t) = sin(2t) sin(πx) , u0(x) = u1(x) = 0 .

(iv) Find a solution to the problem using the form obtained in Part (i) if the initial conditions are
given in Part (ii) and the inhomogeneity f is given in Part (iii) or show that no such solution exists.

Solution: (i) In the wave equation with boundary conditions (fixed ends) discussed in class,
put c = 2 and L = 2. Then a solution to (PDE) satisfying (BC) reads

u(x, t) =
N

∑

n=1

Tn(t) sin(νnx) , νn =
πn

L
=

πn

2

where Tn are solution to T ′′

n (t) + c2ν2
nTn(t) = 0 with c = 2.

(ii) The initial condition (IC) contains linear combinations of sin(νnx) for n = 1, n = 2, and
n = 4. Therefore only Tn for these values of n contribute to the solution (others vanish as shown
in class). A general solution reads

Tn(t) = A cos(πnt) + B sin(πnt)

Implementation of (IC):

n = 1 : T1(0) = 0 , T ′

1(0) = −2 ⇒ T1(t) = − 2

π
sin(πt) ,

n = 2 : T2(0) = 3 , T ′

2(0) = 0 ⇒ T2(t) = 3 cos(2πt) ,

n = 4 : T4(0) = 0 , T ′

4(0) = 1 ⇒ T4(t) =
1

4π
sin(4πt) ,

⇒ u(x, t) = − 2

π
sin(πt) sin(πx/2) + 3 cos(2πt) sin(πx) +

1

4π
sin(4πt) sin(2πx)

(iii) The inhomogeneity is proportional to sin(νnx) for n = 2. Therefore only T2(t) is not zero and
satisfies the initial value problem:

T ′′

2 (t) + (2π)2T2(t) = sin(2t) , T2(0) = T ′

2(0) = 0 .

The problem is solved by the method of undetermined coefficients. A particular solution has the
form C sin(2t). Its substitution to the equation yields C = 1/(4π2 − 4). Thus, a general solution
reads

T2(t) = A cos(2πt) + B sin(2πt) +
sin(2t)

4(π2 − 1)

The condition T2(0) = 0 implies that A = 0 and T ′

2(0) = 0 implies that 2πB + 1
2(π2−1)

= 0.
Therefore

u(x, t) =
1

4(π2 − 1)

(

sin(2t) − 1

π
sin(2πt)

)

sin(πx)

(iv) Let u2 and u3 be solutions in Parts (ii) and (iii), respectively. Then the sum u = u2 + u3 is a
solution to (PDE) that satisfies (BC). Since u3 = 0 at t = 0, u satisfies the first (IC) because u2

satisfies it. Since ∂u3

∂t
= 0 at t = 0, u satisfies the second (IC) because ∂u2

∂t
satisfies it. Thus, the



solution is the sum of solutions obtained in Parts (ii) and (iii).

5 (2 pts). Solve the following boundary value problems for the 2D Laplace equation by sepa-
rating variables in polar coordinates:

∂2u

∂x2
+

∂2u

∂y2
= 0 , (x, y) ∈ Ω , u(x, y)

∣

∣

∣

∂Ω
= x2 − 4xy

∣

∣

∣

∂Ω

if
(i) Ω is a disk x2 + y2 < 4;
(ii) Ω is a complement of a disk, x2 + y2 > 4, and, in addition, the solution is required to be
bounded in Ω, |u(x, y)| ≤ M for all (x, y) in Ω.

Solution: The most general solution obtainable by separating variables in polar coordinates
in any region reads

u = A0 + C0 ln(r) +
N

∑

m=1

rm
[

Am cos(mθ) + Bm sin(mθ)
]

+
N

∑

m=1

1

rm

[

Cm cos(mθ) + Dm sin(mθ)
]

The boundary condition can also be written as a linear combination of cos(mθ) and sin(mθ):

u(x, y)
∣

∣

∣

∂Ω
= x2 − 4xy

∣

∣

∣

r=2
= 2cos2(θ) − 16 cos(θ) sin(θ) = 2 + 2 cos(2θ) − 8 sin(2θ)

where the double-angle equation has been used.
(i). In this case any solution must be regular at r = 0. This demands that C0 = 0 and Cm =
Dm = 0 for all m. Since the boundary data is a linear combination of 1, cos(2θ), and sin(2θ),
the solution is also a linear combination of them, that is, only A0, A2, and B2 do not vanish.
Implementation of the boundary condition:

1 : A0 = 2 ,

cos(2θ) : 4A2 = 2 ⇒ A2 =
1

2
,

sin(2θ) : 4B2 = −8 ⇒ B2 = −2 ,

u = 2 + r2
[1

2
cos(2θ) − 2 sin(2θ)

]

(ii) Boundedness of the solution requires that C0 = 0 and Am = bm = 0 for all m. By the same
reason as in Part (i), only A0, C2, and D2 are non-zero here. Implementation of the boundary
condition:

1 : A0 = 2 ,

cos(2θ) :
C2

4
= 2 ⇒ A2 = 8 ,

sin(2θ) :
D2

4
= −8 ⇒ D2 = −32 ,

u = 2 +
1

r2

[

8 cos(2θ) − 32 sin(2θ)
]

6 (Extra credit, 1pt). Find the most general solution to the equation

∂u

∂x
+

∂u

∂y
= 2(x − y)u2



Solution: Let ξ = x + y and η = x− y. Then by the chain rule

∂

∂x
=

∂ξ

∂x

∂

∂ξ
+

∂η

∂x

∂

∂η
=

∂

∂ξ
+

∂

∂η
,

∂

∂y
=

∂

∂ξ
− ∂

∂η
⇒ ∂u

∂x
+

∂u

∂y
= 2

∂u

∂ξ

Therefore in the new variables, the equation becomes an ordinary differential equation in the
variable ξ whereas η is a parameter. The equation is integrated by separating variables:

∂u

∂ξ
= ηu2 ⇒

∫

du

u2
= η

∫

dξ + g(η) ⇒ u = − 1

ηξ + g(η)
= − 1

x2 − y2 + g(x − y)

where g is any continuously differentiable function of a real variable.


