Test 1 with solutions

1 (1 pts). For the Laplace equation in three variables

$$
\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0
$$

find all solutions of the form

$$
u(x, y)=f(s), \quad s=x^{2}+y^{2}+z^{2}
$$

where f is twice continuously differentiable function of one real variable. Indicate the largest region of space where such solutions exist.

Solution: By the chain rule

$$
\frac{\partial u}{\partial x}=f^{\prime}(s) \frac{\partial s}{\partial x}=2 x f^{\prime}(s), \quad \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial}{\partial x}\left(2 x f^{\prime}(s)\right)=2 f^{\prime}(s)+4 x^{2} f^{\prime \prime}(s)
$$

The corresponding derivatives with respect to y and z are obtained by replacing x by y and z in the above equations. Therefore

$$
\Delta u=6 f^{\prime}(s)+4 s f^{\prime \prime}(s)=0
$$

Put $g(s)=f^{\prime}(s)$. Then by separating variables in the first-order equation for g

$$
\frac{g^{\prime}}{g}=-\frac{3}{2 s} \quad \Rightarrow \quad g(s)=\frac{A}{s^{3 / 2}} \quad \Rightarrow \quad f(s)=\int g(s) d s=\frac{B}{\sqrt{s}}+C
$$

where A, B, and C are arbitrary constants. The solution is valid in any region that does not contain the origin $s \neq 0$ if $B \neq 0$, and a constant solution C is valid in the whole space $(B=0)$.

2 (1 pt). Find the most general solution to the heat equation

$$
\frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad a^{2}>0
$$

that can be obtained by separating variables t and x that is bounded

$$
|u(x, t)| \leq M, \quad t \geq 0, \quad-\infty<x<\infty
$$

for all non-negative $t \geq 0$ and all real values of x.
Solution: Let $u(x, t)=T(t) X(x)$. Then the heat equation is satisfied if

$$
X^{\prime \prime}(x)=\lambda X(x), \quad T^{\prime}(t)=a^{2} \lambda T(t)
$$

where λ is a constant of separation of variables. The latter equation has the following general solution

$$
T(t)=A e^{\lambda a^{2} t}
$$

where A is a constant. This solution is bounded for $t \geq 0$ only if $\lambda=0$ or $\lambda=-\nu^{2}<0$ If $\lambda=0$, then $X(x)=C x+B$. This function is bounded for all x only if $C=0$. If $\lambda=-\nu^{2}$, then
$X(x)=C \cos (\nu x)+B \sin (\nu x)$ so that $|X(x)| \leq|C|+|B|$ for all x because cos and sin function take values between -1 and 1 . Thus,

$$
u(x, t)=C_{0}+\sum_{n=1}^{N} e^{-a^{2} \nu_{n}^{2} t}\left(C_{n} \cos \left(\nu_{n} x\right)+B_{n} \sin \left(\nu_{n} x\right)\right)
$$

is a bounded solution for any choice of real constants C_{n}, B_{n}, and ν_{n}.
3 (1 pt). Find the most general solution to the equation

$$
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+(2 x-y) u=0
$$

that can be obtained by separation of variables x and y.
Solution: Let $u(x, y)=X(x) Y(y)$. Substituting this function into the equation and dividing the result by u, one infers that

$$
\frac{X^{\prime}(x)}{X(x)}+2 x+\frac{Y^{\prime}(y)}{Y(y)}-y=0
$$

for all x and y, which is only possibly if

$$
\frac{X^{\prime}(x)}{X(x)}+2 x=\lambda, \quad \frac{Y^{\prime}(y)}{Y(y)}-y=-\lambda
$$

Integrating these equations,

$$
\ln (X(x))+x^{2}=\lambda x+A, \quad \ln (Y(x))-\frac{1}{2} y^{2}=-\lambda y+B
$$

Therefore by taking the exponential of these relations

$$
X(x) Y(y)=C e^{-x^{2}+\frac{1}{2} y^{2}+\lambda(x-y)}, \quad u(x, y)=\sum_{n=1}^{N} C_{n} e^{-x^{2}+\frac{1}{2} y^{2}+\lambda_{n}(x-y)}
$$

for any choice of constants C_{n} and λ_{n}.
4 (4 pts). Consider the initial and boundary value problem for a 2 D wave equation

$$
\begin{aligned}
(\mathrm{PDE}): & \frac{\partial^{2} u}{\partial^{2} t}-4 \frac{\partial^{2} u}{\partial x^{2}}=f(x, t), \quad t>0, \quad 0<x<2 \\
(\mathrm{IC}): & \left.u\right|_{t=0}=u_{0}(x),\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=u_{1}(x), \quad 0 \leq x \leq 2 \\
(\mathrm{BC}): & \left.u\right|_{x=0}=\left.u\right|_{x=2}=0, \quad t \geq 0
\end{aligned}
$$

(i) Let $f=0$. Find the most general solution to (PDE) by separating variables t and x that satisfies the boundary conditions (BC).
(ii) Let $f=0$ and the initial conditions (IC) be

$$
u_{0}(x)=3 \sin (\pi x), \quad u_{1}(x)=\sin (2 \pi x)-2 \sin (\pi x / 2)
$$

Find a solution obtained in Part (i) that also satisfies these initial conditions or show that no such solution exists.
(iii) Use the form of a solution obtained in Part (i) to solve the problem if

$$
f(x, t)=\sin (2 t) \sin (\pi x), \quad u_{0}(x)=u_{1}(x)=0
$$

(iv) Find a solution to the problem using the form obtained in Part (i) if the initial conditions are given in Part (ii) and the inhomogeneity f is given in Part (iii) or show that no such solution exists.

Solution: (i) In the wave equation with boundary conditions (fixed ends) discussed in class, put $c=2$ and $L=2$. Then a solution to (PDE) satisfying (BC) reads

$$
u(x, t)=\sum_{n=1}^{N} T_{n}(t) \sin \left(\nu_{n} x\right), \quad \nu_{n}=\frac{\pi n}{L}=\frac{\pi n}{2}
$$

where T_{n} are solution to $T_{n}^{\prime \prime}(t)+c^{2} \nu_{n}^{2} T_{n}(t)=0$ with $c=2$.
(ii) The initial condition $(I C)$ contains linear combinations of $\sin \left(\nu_{n} x\right)$ for $n=1, n=2$, and $n=4$. Therefore only T_{n} for these values of n contribute to the solution (others vanish as shown in class). A general solution reads

$$
T_{n}(t)=A \cos (\pi n t)+B \sin (\pi n t)
$$

Implementation of (IC):

$$
\begin{aligned}
& n=1: \\
& n=2: \\
& n=4 T_{1}(0)=0, \quad T_{2}(0)=3, \quad T_{2}^{\prime}(0)=0 \quad \Rightarrow \quad T_{4}(0)=0, \quad T_{4}^{\prime}(0)=1 \quad \Rightarrow \quad T_{2}(t)=-\frac{2}{\pi} \sin (\pi t) \\
& n=3 \cos (2 \pi t) \\
& \Rightarrow u(x, t)=-\frac{2}{\pi} \sin (\pi t) \sin (\pi x / 2)+3 \cos (2 \pi t) \sin (\pi x)+\frac{1}{4 \pi} \sin (4 \pi t) \\
&=4 \pi t) \sin (2 \pi x)
\end{aligned}
$$

(iii) The inhomogeneity is proportional to $\sin \left(\nu_{n} x\right)$ for $n=2$. Therefore only $T_{2}(t)$ is not zero and satisfies the initial value problem:

$$
T_{2}^{\prime \prime}(t)+(2 \pi)^{2} T_{2}(t)=\sin (2 t), \quad T_{2}(0)=T_{2}^{\prime}(0)=0
$$

The problem is solved by the method of undetermined coefficients. A particular solution has the form $C \sin (2 t)$. Its substitution to the equation yields $C=1 /\left(4 \pi^{2}-4\right)$. Thus, a general solution reads

$$
T_{2}(t)=A \cos (2 \pi t)+B \sin (2 \pi t)+\frac{\sin (2 t)}{4\left(\pi^{2}-1\right)}
$$

The condition $T_{2}(0)=0$ implies that $A=0$ and $T_{2}^{\prime}(0)=0$ implies that $2 \pi B+\frac{1}{2\left(\pi^{2}-1\right)}=0$. Therefore

$$
u(x, t)=\frac{1}{4\left(\pi^{2}-1\right)}\left(\sin (2 t)-\frac{1}{\pi} \sin (2 \pi t)\right) \sin (\pi x)
$$

(iv) Let u_{2} and u_{3} be solutions in Parts (ii) and (iii), respectively. Then the sum $u=u_{2}+u_{3}$ is a solution to (PDE) that satisfies (BC). Since $u_{3}=0$ at $t=0, u$ satisfies the first (IC) because u_{2} satisfies it. Since $\frac{\partial u_{3}}{\partial t}=0$ at $t=0, u$ satisfies the second (IC) because $\frac{\partial u_{2}}{\partial t}$ satisfies it. Thus, the
solution is the sum of solutions obtained in Parts (ii) and (iii).
5 (2 pts). Solve the following boundary value problems for the 2D Laplace equation by separating variables in polar coordinates:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad(x, y) \in \Omega,\left.\quad u(x, y)\right|_{\partial \Omega}=x^{2}-\left.4 x y\right|_{\partial \Omega}
$$

if
(i) Ω is a disk $x^{2}+y^{2}<4$;
(ii) Ω is a complement of a disk, $x^{2}+y^{2}>4$, and, in addition, the solution is required to be bounded in $\Omega,|u(x, y)| \leq M$ for all (x, y) in Ω.

Solution: The most general solution obtainable by separating variables in polar coordinates in any region reads

$$
u=A_{0}+C_{0} \ln (r)+\sum_{m=1}^{N} r^{m}\left[A_{m} \cos (m \theta)+B_{m} \sin (m \theta)\right]+\sum_{m=1}^{N} \frac{1}{r^{m}}\left[C_{m} \cos (m \theta)+D_{m} \sin (m \theta)\right]
$$

The boundary condition can also be written as a linear combination of $\cos (m \theta)$ and $\sin (m \theta)$:

$$
\left.u(x, y)\right|_{\partial \Omega}=x^{2}-\left.4 x y\right|_{r=2}=2 \cos ^{2}(\theta)-16 \cos (\theta) \sin (\theta)=2+2 \cos (2 \theta)-8 \sin (2 \theta)
$$

where the double-angle equation has been used.
(i). In this case any solution must be regular at $r=0$. This demands that $C_{0}=0$ and $C_{m}=$ $D_{m}=0$ for all m. Since the boundary data is a linear combination of $1, \cos (2 \theta)$, and $\sin (2 \theta)$, the solution is also a linear combination of them, that is, only A_{0}, A_{2}, and B_{2} do not vanish. Implementation of the boundary condition:

$$
\begin{aligned}
1 & : A_{0}=2 \\
\cos (2 \theta) & : 4 A_{2}=2 \Rightarrow A_{2}=\frac{1}{2} \\
\sin (2 \theta) & : 4 B_{2}=-8 \quad \Rightarrow \quad B_{2}=-2 \\
u & =2+r^{2}\left[\frac{1}{2} \cos (2 \theta)-2 \sin (2 \theta)\right]
\end{aligned}
$$

(ii) Boundedness of the solution requires that $C_{0}=0$ and $A_{m}=b_{m}=0$ for all m. By the same reason as in Part (i), only A_{0}, C_{2}, and D_{2} are non-zero here. Implementation of the boundary condition:

$$
\begin{aligned}
1 & : A_{0}=2 \\
\cos (2 \theta) & : \frac{C_{2}}{4}=2 \Rightarrow A_{2}=8 \\
\sin (2 \theta) & : \frac{D_{2}}{4}=-8 \Rightarrow D_{2}=-32 \\
u & =2+\frac{1}{r^{2}}[8 \cos (2 \theta)-32 \sin (2 \theta)]
\end{aligned}
$$

6 (Extra credit, 1pt). Find the most general solution to the equation

$$
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=2(x-y) u^{2}
$$

Solution: Let $\xi=x+y$ and $\eta=x-y$. Then by the chain rule

$$
\frac{\partial}{\partial x}=\frac{\partial \xi}{\partial x} \frac{\partial}{\partial \xi}+\frac{\partial \eta}{\partial x} \frac{\partial}{\partial \eta}=\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta}, \quad \frac{\partial}{\partial y}=\frac{\partial}{\partial \xi}-\frac{\partial}{\partial \eta} \quad \Rightarrow \quad \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=2 \frac{\partial u}{\partial \xi}
$$

Therefore in the new variables, the equation becomes an ordinary differential equation in the variable ξ whereas η is a parameter. The equation is integrated by separating variables:

$$
\frac{\partial u}{\partial \xi}=\eta u^{2} \quad \Rightarrow \quad \int \frac{d u}{u^{2}}=\eta \int d \xi+g(\eta) \quad \Rightarrow \quad u=-\frac{1}{\eta \xi+g(\eta)}=-\frac{1}{x^{2}-y^{2}+g(x-y)}
$$

where g is any continuously differentiable function of a real variable.

