Test 5 with solutions

1 (2 pts). Consider the following boundary value problem

$$
\begin{aligned}
& \Delta u(x, y)=\frac{a x^{2}}{\left[x^{2}+y^{2}\right]^{5 / 2}}, \quad \Omega: x^{2}+y^{2}>4 \\
& \left.\frac{\partial u}{\partial \mathbf{n}}\right|_{\partial \Omega}=y^{2}
\end{aligned}
$$

where \mathbf{n} is the outward unit normal for the boundary $\partial \Omega$.
(i) Find all possible values of a parameter a for which the problem has a bounded solution;
(ii) Find all bounded solutions for each value of a found in Part (i).

Solution: (i) By the solvability condition for the external Neumann problem, the following double integral and line integral must be equal:

$$
\begin{aligned}
\iint_{\Omega} \frac{a x^{2}}{\left[x^{2}+y^{2}\right]^{5 / 2}} d x d y & =a \int_{0}^{2 \pi} \cos ^{2}(\theta) d \theta \int_{2}^{\infty} \frac{d r}{r^{2}}=\frac{a}{2} \int_{0}^{2 \pi}[1+\cos (2 \theta)] d \theta \int_{2}^{\infty} \frac{d r}{r^{2}}=a \cdot \pi \cdot \frac{1}{2} \\
\oint_{\partial \Omega} y^{2} d s & =\int_{0}^{2 \pi} 4 \sin ^{2}(\theta) 2 d \theta=4 \int_{0}^{2 \pi}[1-\cos (2 \theta)] d \theta=8 \pi \\
\frac{\pi a}{2} & =8 \pi \Rightarrow a=16
\end{aligned}
$$

where the double integral is evaluated in polar coordinates, $d x d y=r d r d \theta, x=r \cos (\theta), y=$ $r \sin (\theta)$, and in the line integral $d s=2 d \theta, x=2 \cos (\theta)$, and $y=2 \sin (\theta$ with $0 \leq \theta \leq 2 \pi$ for the parametric equations of the circle of radius 2 .
(ii) The inhomogeneity (with $a=16$) and the boundary data have the following representation in polar coordinates

$$
\begin{aligned}
\frac{8 x^{2}}{\left[x^{2}+y^{2}\right]^{5 / 2}} & =\frac{16 r^{2} \cos ^{2}(\theta)}{r^{5}}=\frac{8}{r^{3}}+\frac{8 \cos (2 \theta)}{r^{3}} \\
\left.y^{2}\right|_{\partial \Omega} & =\left.r^{2} \sin ^{2}(\theta)\right|_{r=2}=2-2 \cos (2 \theta)
\end{aligned}
$$

This shows that the solution must have the form

$$
u=A_{0}(r)+A_{2}(r) \cos (2 \theta)
$$

where A_{0} and A_{2} are solutions to the associated boundary value problems for the Cauchy-Euler equation in the interval $2<r<\infty$. Since the outward normal on the circle $r=2$ points toward the origin, the normal derivative is equal to $-\frac{\partial u}{\partial r}$ at $r=2$. Therefore,

$$
r^{2} A_{0}^{\prime \prime}+r A_{0}^{\prime}=\frac{8}{r}, \quad-A_{0}^{\prime}(2)=2, \quad\left|A_{0}(r)\right| \leq M<\infty \quad \Rightarrow \quad A_{0}(r)=C_{1}+\frac{8}{r} .
$$

A general solution is $A_{0}=C_{1}+C_{2} \ln (r)+A_{p}$ where a particular solution A_{p} can be found in the form $A_{p}=\frac{C}{r}$ (the method of undetermined coefficients). A substitution of A_{p} into the equation yields $C=8$. The boundedness of the solution requires that $C_{2}=0$, and the boundary condition is satisfied for any C_{1} :

$$
-\left.A_{0}^{\prime}\right|_{r=2}=\left.\frac{8}{r^{2}}\right|_{r=2}=2
$$

Similarly,

$$
r^{2} A_{2}^{\prime \prime}+r A_{2}^{\prime}-4 A_{0}=\frac{8}{r}, \quad-A_{2}^{\prime}(2)=-2, \quad\left|A_{2}(r)\right| \leq M<\infty \quad \Rightarrow \quad A_{2}(r)=-\frac{16}{3 r^{2}}-\frac{8}{3 r}
$$

A general solution is $A_{2}=\frac{C_{1}}{r^{2}}+C_{2} r^{2}+A_{p}$ where a particular solution A_{p} can be found in the form $A_{p}=\frac{C}{r}$ (the method of undetermined coefficients). A substitution of A_{p} into the equation yields $-3 C=8$ or $C=-\frac{8}{3}$. The boundedness of the solution requires that $C_{2}=0$, and the boundary condition is satisfied if

$$
-\left.A_{2}^{\prime}\right|_{r=2}=\frac{2 C_{1}}{r^{3}}-\left.\frac{8}{3 r^{2}}\right|_{r=2}=\frac{C_{1}}{4}-\frac{2}{3}=-2 \quad \Rightarrow \quad C_{1}=-\frac{16}{3}
$$

2 (3 pts). Consider the following boundary value problem

$$
\begin{aligned}
& \Delta u(x, y)=f(x, y), \quad \Omega: 1<x^{2}+y^{2}<4 \\
& \left.\frac{\partial u}{\partial \mathbf{n}}\right|_{x^{2}+y^{2}=1}=\left.v_{1}(x, y)\right|_{x^{2}+y^{2}=1},\left.\quad\left(u+\frac{\partial u}{\partial \mathbf{n}}\right)\right|_{x^{2}+y^{2}=4}=\left.v_{2}(x, y)\right|_{x^{2}+y^{2}=4}
\end{aligned}
$$

where \mathbf{n} is the outward unit normal for the boundary $\partial \Omega$.
(i) Find all bounded solutions to the problem if

$$
f(x, y)=0, \quad v_{1}(x, y)=1+x, \quad v_{2}(x, y)=y
$$

or show that no solution exists.
(ii) Find all bounded solutions to the problem if

$$
f(x, y)=6 x y, \quad v_{1}(x, y)=0, \quad v_{2}(x, y)=0
$$

or show that no solution exists.
(iii) Explain (give reasons!) how solutions to Parts (i) and (ii) should be used to find all bounded solutions to the problem if f is given in Part (ii) and the boundary data $v_{1,2}$ are given in Part (i).

Solution: This is a mixed problem for the Poisson equation in an annulus, and it was shown in class to have a unique solution. The inhomogeneity and boundary data have the following expansion in polar coordinates

$$
f(x, y)=6 r^{2} \cos (\theta) \sin (\theta)=3 r^{2} \sin (2 \theta), \quad v_{1}=1+\cos (\theta), \quad v_{2}=2 \sin (\theta)
$$

The normal derivative on the circle $r=1$ is equal to $-\frac{\partial u}{\partial r}$ at $r=1$ because \mathbf{n} points toward the origin, and the normal derivative on the circle $r=2$ is equal to $\frac{\partial u}{\partial r}$ at $r=2$ because \mathbf{n} points from the origin.
(i) In this case the solution must have the form

$$
u=A_{0}(r)+A_{1}(r) \cos (\theta)+B_{1}(r) \sin (\theta)
$$

where

$$
r^{2} A_{0}^{\prime \prime}+r A_{0}^{\prime}=0, \quad-A_{0}^{\prime}(1)=1, \quad A_{0}(2)+A_{0}^{\prime}(2)=0 \quad \Rightarrow \quad A_{0}(r)=-\frac{1}{2}-\ln \left(\frac{r}{2}\right)
$$

A general solution reads $A_{0}=C_{1}+C_{2} \ln (r)$ so that $A_{0}^{\prime}=\frac{C_{2}}{r}$ and $C_{2}=-1$ by the boundary condition at $r=1$. The second boundary condition yields $C_{1}-\ln (2)+\frac{1}{2}=0$ or $C_{1}=-\frac{1}{2}+\ln 2$. Similarly,

$$
r^{2} A_{1}^{\prime \prime}+r A_{1}^{\prime}-A_{1}=0, \quad-A_{1}^{\prime}(1)=1, \quad A_{1}(2)+A_{1}^{\prime}(2)=0 \quad \Rightarrow \quad A_{1}(r)=-\frac{1}{13}\left(r-\frac{12}{r}\right)
$$

A general solution reads $A_{1}=C_{1} r+\frac{C_{2}}{r}$ so that $A_{1}^{\prime}=C_{1}-\frac{C_{2}}{r^{2}}$. The boundary condition at $r=1$ gives $-C_{1}+C_{2}=1$, and the second boundary condition gives $2 C_{1}+\frac{C_{2}}{2}+C_{1}-\frac{C_{2}}{4}=0$ or $C_{2}=-12 C_{1}$. Therefore $C_{1}=-\frac{1}{13}$ and $C_{2}=\frac{12}{13}$. Finally,

$$
r^{2} B_{1}^{\prime \prime}+r B_{1}^{\prime}-B_{1}=0, \quad-B_{1}^{\prime}(1)=0, \quad B_{1}(2)+B_{1}^{\prime}(2)=2 \quad \Rightarrow \quad B_{1}(r)=\frac{8}{13}\left(r+\frac{1}{r}\right)
$$

A general solution reads $B_{1}=C_{1} r+\frac{C_{2}}{r}$ so that $B_{1}^{\prime}=C_{1}-\frac{C_{2}}{r^{2}}$. The boundary condition at $r=1$ gives $C_{1}=C_{2}$, and the second boundary condition gives $2 C_{1}+\frac{C_{1}}{2}+C_{1}-\frac{C_{1}}{4}=2$ or $C_{1}=\frac{8}{13}$.
(ii) In this case, the solution must have the form

$$
u=B_{2}(r) \sin (2 \theta)
$$

where

$$
r^{2} B_{2}^{\prime \prime}+r B_{2}^{\prime}-4 B_{2}=3 r^{4}, \quad\left\{\begin{array}{r}
-B_{2}^{\prime}(1)=0 \\
B_{2}(2)+B_{2}^{\prime}(2)=0
\end{array} \quad \Rightarrow \quad B_{2}(r)=-\frac{3 r^{2}}{2}-\frac{1}{r^{2}}+\frac{r^{4}}{4}\right.
$$

A general solution reads $B_{2}=C_{1} r^{2}+\frac{C_{2}}{r^{2}}+B_{p}$. A particular solution B_{p} can be found in the form $B_{p}=C r^{4}$. A substitution into the equation yields $12 C+4 C-4 C=3$ or $C=\frac{1}{4}$. Therefore $B_{2}^{\prime}=2 C_{1} r-\frac{2 C_{2}}{r^{3}}+r^{3}$. The coefficients are chosen to satisfy the boundary conditions

$$
\left\{\begin{array}{r}
-B_{2}^{\prime}(1)=-2 C_{1}+2 C_{2}-1=0 \\
B_{2}(2)+B_{2}^{\prime}(2)=8 C_{1}+12=0
\end{array} \quad \Rightarrow \quad C_{1}=-\frac{3}{2}, \quad C_{2}=-1\right.
$$

(iii) Let u_{1} and u_{2} be solutions found in parts (i) and (ii), respectively. The sought-after solution is $u=u_{1}+u_{2}$. Indeed, $\Delta u=\Delta u_{1}+\Delta u_{2}=0+f=f$ so it satisfies the equation. The boundary conditions $\mathrm{BC}[u]$ (the said combination of u and its normal derivative) are also linear and $\mathrm{BC}\left[u_{1}\right]=v$ and $\mathrm{BC}\left[u_{2}\right]=0$ so that $\mathrm{BC}\left[u_{1}+u_{2}\right]=\mathrm{BC}\left[u_{1}\right]+\mathrm{BC}\left[u_{2}\right]=v+0=v$ as required.

3 (2 pts). Let

$$
f(x)=1-\frac{|x|}{\pi}, \quad|x| \leq \pi, \quad f(x+2 \pi)=f(x), \quad-\infty<x<\infty
$$

(i) Expand $f(x)$ into a trigonometric Fourier series.
(ii) Find all points x for which the trigonometric Fourier series converges to $f(x)$. In particular, by studying the convergence of the Fourier series at $x=0$, show that

$$
\sum_{m=1}^{\infty} \frac{1}{(2 m-1)^{2}}=\frac{\pi^{2}}{8}
$$

Solution: (i) The Fourier coefficients are

$$
\begin{aligned}
a_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{2} \int_{-1}^{1}(1-|y|) d y=\int_{0}^{1}(1-y) d y=\frac{1}{2} \\
a_{m} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (m x) d x=\int_{-1}^{1}(1-|y|) \cos (\pi m y) d y=\frac{2}{\pi m} \int_{0}^{1}(1-y) d \sin (\pi m y) \\
& =\frac{2}{\pi m} \int_{0}^{1} \sin (\pi m y) d y=\frac{2\left[1-(-1)^{m}\right]}{(\pi m)^{2}} \\
& \Rightarrow a_{2 m-1}=\frac{4}{\pi^{2}(2 m-1)^{2}}, \quad a_{2 m}=0, \quad m=1,2, \ldots \\
b_{m} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (m x) d x=0
\end{aligned}
$$

where $x=y / \pi$ and the latter integral vanishes by symmetry (as f is even). Therefore

$$
f(x)=\frac{1}{2}+\frac{4}{\pi^{2}} \sum_{m=1}^{\infty} \frac{\cos [(2 m-1) x]}{(2 m-1)^{2}}
$$

(ii) The function f is continuous and 2π periodic. Therefore its trigonometric series converges to $f(x)$ for any real x. In particular, by setting $x=0$ so that $f(0)=1$ yields

$$
1=\frac{1}{2}+\frac{4}{\pi^{2}} \sum_{m=1}^{\infty} \frac{1}{(2 m-1)^{2}} \Rightarrow \sum_{m=1}^{\infty} \frac{1}{(2 m-1)^{2}}=\frac{\pi^{2}}{8}
$$

4 (2 pts) Consider the following boundary value problem

$$
\begin{aligned}
& \Delta u(x, y)=0, \quad(x, y) \in \Omega \\
& \left.u\right|_{\partial \Omega}=\left.v(x, y)\right|_{\partial \Omega}, \quad v(x, y)=1-\frac{1}{\pi}\left|\arctan \left(\frac{y}{x}\right)\right|
\end{aligned}
$$

where the branches of the arctan function is chosen so that on any simple curve (no self intersections) encircling the origin it is increasing from 0 at $y=0, x>0$ to π at $y=0, x<0$ along the part of the curve for which $y>0$ and it is decreasing from 0 at $y=0, x>0$ to $-\pi$ at $y=0$, $x<0$ along the part of the curve for which $y<0$. Assuming that $u(x, y)$ is bounded in Ω, use the method of trigonometric Fourier series to find a formal solution to the problem if
(i) $\Omega: x^{2}+y^{2}<1$;
(ii) $\Omega: x^{2}+y^{2}>1$.

Hint: Find a relation between the boundary data and the function $f(x)$ in Problem 3.
Solution: In polar coordinates, let us choose the interval of the polar angle to be $[-\pi, \pi]$ and $y / x=\tan (\theta)$. Therefore the boundary data are

$$
v(\cos (\theta), \sin (\theta))=1-\frac{|\theta|}{\pi}, \quad-\pi \leq \theta \leq \pi
$$

Therefore its trigonometric Fourier series is the same as the one found in Problem $\mathbf{3}$ and, hence, the formal solution must have the form

$$
u=A_{0}(r)+\sum_{m=1}^{\infty} A_{2 m-1}(r) \cos [(2 m-1) \theta]
$$

(i) The coefficients are regular solutions to the boundary value problem for the Cauchy-Euler equation in the interval $0<r<1$:

$$
r^{2} A_{0}^{\prime \prime}+r A_{0}^{\prime}=0, \quad A_{0}(1)=a_{0},\left|A_{0}(r)\right| \leq M<\infty \quad \Rightarrow \quad A_{0}(r)=a_{0}=\frac{1}{2}
$$

because a general bounded solution is constant in this case. Similarly

$$
\begin{aligned}
& r^{2} A_{2 m-1}^{\prime \prime}+r A_{2 m-1}^{\prime}-(2 m-1)^{2} A_{2 m-1}=0, \quad A_{2 m-1}(1)=a_{2 m-1}, \quad\left|A_{2 m-1}(r)\right| \leq M<\infty \\
& \Rightarrow \quad A_{2 m-1}(r)=a_{2 m-1} r^{2 m-1}=\frac{4 r^{2 m-1}}{\pi^{2}(2 m-1)^{2}}
\end{aligned}
$$

because a general solution is a linear combination of $r^{2 m-1}$ and $\frac{1}{r^{2 m-1}}$ but the second one is not bounded.
(ii) The solution must have the same form as in Part (i) but boundedness requires that solutions proportional to $r^{2 m-1}$ (or $\ln (r)$ for A_{0}) must be discarded so that

$$
A_{0}(r)=\frac{1}{2}, \quad A_{2 m-1}(r)=\frac{a_{2 m-1}}{r^{2 m-1}}=\frac{4}{\pi^{2}(2 m-1)^{2} r^{2 m-1}}
$$

5 Extra credit (1 pt). Solve the boundary value problem

$$
\begin{aligned}
& \Delta u(x, y)=1, \quad(x, y) \in \Omega: \quad x^{2}+y^{2}<4 \\
& \left.\frac{\partial u}{\partial \mathbf{n}}\right|_{\partial \Omega}=\left.v(x, y)\right|_{\partial \Omega}
\end{aligned}
$$

where \mathbf{n} is the unit outward normal for the boundary $\partial \Omega$ and $v(x, y)$ is given in Problem 4.
Solution: The problem has no solution because the solvability condition for the Neumann problem is not fulfilled:

$$
\begin{aligned}
& \iint_{\Omega} 1 d x d y=\operatorname{Area}(\Omega)=\pi 2^{2}=4 \pi \\
& \oint_{\partial \Omega} v d s=2 \int_{-\pi}^{\pi}\left(1-\frac{|\theta|}{\pi}\right) d \theta=4 \pi a_{0}=2 \pi \neq 4 \pi
\end{aligned}
$$

Note that $d s=2 d \theta$ as the radius is equal to 2 .

