
Test 5 with solutions

1 (2 pts). Consider the following boundary value problem

∆u(x, y) =
ax2

[x2 + y2]5/2
, Ω : x2 + y2 > 4 ,

∂u

∂n

∣

∣

∣

∂Ω
= y2 .

where n is the outward unit normal for the boundary ∂Ω.
(i) Find all possible values of a parameter a for which the problem has a bounded solution;
(ii) Find all bounded solutions for each value of a found in Part (i).

Solution: (i) By the solvability condition for the external Neumann problem, the following
double integral and line integral must be equal:

∫ ∫

Ω

ax2

[x2 + y2]5/2
dxdy = a

∫

2π

0

cos2(θ) dθ
∫

∞

2

dr

r2
=

a

2

∫

2π

0

[1 + cos(2θ)] dθ
∫

∞

2

dr

r2
= a · π ·

1

2
∮

∂Ω

y2 ds =
∫ 2π

0

4 sin2(θ) 2dθ = 4
∫ 2π

0

[1 − cos(2θ)] dθ = 8π

πa

2
= 8π ⇒ a = 16

where the double integral is evaluated in polar coordinates, dxdy = rdrdθ, x = r cos(θ), y =
r sin(θ), and in the line integral ds = 2dθ, x = 2cos(θ), and y = 2 sin(θ with 0 ≤ θ ≤ 2π for the
parametric equations of the circle of radius 2.
(ii) The inhomogeneity (with a = 16) and the boundary data have the following representation in
polar coordinates

8x2

[x2 + y2]5/2
=

16r2 cos2(θ)

r5
=

8

r3
+

8cos(2θ)

r3

y2
∣

∣

∣

∂Ω
= r2 sin2(θ)

∣

∣

∣

r=2
= 2 − 2 cos(2θ)

This shows that the solution must have the form

u = A0(r) + A2(r) cos(2θ)

where A0 and A2 are solutions to the associated boundary value problems for the Cauchy-Euler
equation in the interval 2 < r < ∞. Since the outward normal on the circle r = 2 points toward
the origin, the normal derivative is equal to −∂u

∂r
at r = 2. Therefore,

r2A′′

0 + rA′

0 =
8

r
, −A′

0(2) = 2 , |A0(r)| ≤ M < ∞ ⇒ A0(r) = C1 +
8

r
.

A general solution is A0 = C1 + C2 ln(r) + Ap where a particular solution Ap can be found in the
form Ap = C

r
(the method of undetermined coefficients). A substitution of Ap into the equation

yields C = 8. The boundedness of the solution requires that C2 = 0, and the boundary condition
is satisfied for any C1:

−A′

0

∣

∣

∣

r=2
=

8

r2

∣

∣

∣

r=2
= 2



Similarly,

r2A′′

2 + rA′

2 − 4A0 =
8

r
, −A′

2(2) = −2 , |A2(r)| ≤ M < ∞ ⇒ A2(r) = −
16

3r2
−

8

3r
.

A general solution is A2 = C1

r2 +C2r
2 +Ap where a particular solution Ap can be found in the form

Ap = C
r

(the method of undetermined coefficients). A substitution of Ap into the equation yields
−3C = 8 or C = −8

3
. The boundedness of the solution requires that C2 = 0, and the boundary

condition is satisfied if

−A′

2

∣

∣

∣

r=2
=

2C1

r3
−

8

3r2

∣

∣

∣

r=2
=

C1

4
−

2

3
= −2 ⇒ C1 = −

16

3

2 (3 pts). Consider the following boundary value problem

∆u(x, y) = f(x, y) , Ω : 1 < x2 + y2 < 4 ,

∂u

∂n

∣

∣

∣

x2+y2=1
= v1(x, y)

∣

∣

∣

x2+y2=1
,

(

u +
∂u

∂n

)
∣

∣

∣

x2+y2=4
= v2(x, y)

∣

∣

∣

x2+y2=4
,

where n is the outward unit normal for the boundary ∂Ω.
(i) Find all bounded solutions to the problem if

f(x, y) = 0 , v1(x, y) = 1 + x , v2(x, y) = y

or show that no solution exists.
(ii) Find all bounded solutions to the problem if

f(x, y) = 6xy , v1(x, y) = 0 , v2(x, y) = 0

or show that no solution exists.
(iii) Explain (give reasons!) how solutions to Parts (i) and (ii) should be used to find all bounded
solutions to the problem if f is given in Part (ii) and the boundary data v1,2 are given in Part (i).

Solution: This is a mixed problem for the Poisson equation in an annulus, and it was shown
in class to have a unique solution. The inhomogeneity and boundary data have the following
expansion in polar coordinates

f(x, y) = 6r2 cos(θ) sin(θ) = 3r2 sin(2θ) , v1 = 1 + cos(θ) , v2 = 2 sin(θ)

The normal derivative on the circle r = 1 is equal to −∂u
∂r

at r = 1 because n points toward the
origin, and the normal derivative on the circle r = 2 is equal to ∂u

∂r
at r = 2 because n points from

the origin.
(i) In this case the solution must have the form

u = A0(r) + A1(r) cos(θ) + B1(r) sin(θ)

where

r2A′′

0 + rA′

0 = 0 , −A′

0(1) = 1 , A0(2) + A′

0(2) = 0 ⇒ A0(r) = −
1

2
− ln

(r

2

)



A general solution reads A0 = C1 + C2 ln(r) so that A′

0 = C2

r
and C2 = −1 by the boundary

condition at r = 1. The second boundary condition yields C1 − ln(2) + 1

2
= 0 or C1 = −1

2
+ ln 2.

Similarly,

r2A′′

1 + rA′

1 −A1 = 0 , −A′

1(1) = 1 , A1(2) + A′

1(2) = 0 ⇒ A1(r) = −
1

13

(

r −
12

r

)

A general solution reads A1 = C1r + C2

r
so that A′

1 = C1 − C2

r2 . The boundary condition at
r = 1 gives −C1 + C2 = 1, and the second boundary condition gives 2C1 + C2

2
+ C1 −

C2

4
= 0 or

C2 = −12C1. Therefore C1 = − 1

13
and C2 = 12

13
. Finally,

r2B ′′

1 + rB ′

1 − B1 = 0 , −B ′

1(1) = 0 , B1(2) + B ′

1(2) = 2 ⇒ B1(r) =
8

13

(

r +
1

r

)

A general solution reads B1 = C1r + C2

r
so that B ′

1 = C1 −
C2

r2 . The boundary condition at r = 1
gives C1 = C2, and the second boundary condition gives 2C1 + C1

2
+ C1 −

C1

4
= 2 or C1 = 8

13
.

(ii) In this case, the solution must have the form

u = B2(r) sin(2θ)

where

r2B ′′

2 + rB ′

2 − 4B2 = 3r4 ,

{

−B ′

2(1) = 0
B2(2) + B ′

2(2) = 0
⇒ B2(r) = −

3r2

2
−

1

r2
+

r4

4
.

A general solution reads B2 = C1r
2 + C2

r2 + Bp. A particular solution Bp can be found in the form
Bp = Cr4. A substitution into the equation yields 12C + 4C − 4C = 3 or C = 1

4
. Therefore

B ′

2 = 2C1r −
2C2

r3 + r3. The coefficients are chosen to satisfy the boundary conditions

{

−B ′

2(1) = −2C1 + 2C2 − 1 = 0
B2(2) + B ′

2(2) = 8C1 + 12 = 0
⇒ C1 = −

3

2
, C2 = −1

(iii) Let u1 and u2 be solutions found in parts (i) and (ii), respectively. The sought-after solution
is u = u1 + u2. Indeed, ∆u = ∆u1 + ∆u2 = 0 + f = f so it satisfies the equation. The bound-
ary conditions BC[u] (the said combination of u and its normal derivative) are also linear and
BC[u1] = v and BC[u2] = 0 so that BC[u1 + u2] = BC[u1] + BC[u2] = v + 0 = v as required.

3 (2 pts). Let

f(x) = 1 −
|x|

π
, |x| ≤ π , f(x + 2π) = f(x) , −∞ < x < ∞

(i) Expand f(x) into a trigonometric Fourier series.
(ii) Find all points x for which the trigonometric Fourier series converges to f(x). In particular,
by studying the convergence of the Fourier series at x = 0, show that

∞
∑

m=1

1

(2m − 1)2
=

π2

8



Solution: (i) The Fourier coefficients are

a0 =
1

2π

∫ π

−π
f(x) dx =

1

2

∫ 1

−1

(1 − |y|) dy =
∫ 1

0

(1 − y)dy =
1

2

am =
1

π

∫ π

−π
f(x) cos(mx) dx =

∫ 1

−1

(1 − |y|) cos(πmy) dy =
2

πm

∫ 1

0

(1 − y)d sin(πmy)

=
2

πm

∫ 1

0

sin(πmy) dy =
2[1 − (−1)m]

(πm)2

⇒ a2m−1 =
4

π2(2m − 1)2
, a2m = 0 , m = 1, 2, ...

bm =
1

π

∫ π

−π
f(x) sin(mx) dx = 0

where x = y/π and the latter integral vanishes by symmetry (as f is even). Therefore

f(x) =
1

2
+

4

π2

∞
∑

m=1

cos[(2m − 1)x]

(2m − 1)2

(ii) The function f is continuous and 2π periodic. Therefore its trigonometric series converges to
f(x) for any real x. In particular, by setting x = 0 so that f(0) = 1 yields

1 =
1

2
+

4

π2

∞
∑

m=1

1

(2m − 1)2
⇒

∞
∑

m=1

1

(2m − 1)2
=

π2

8

4 (2 pts) Consider the following boundary value problem

∆u(x, y) = 0 , (x, y) ∈ Ω ,

u
∣

∣

∣

∂Ω
= v(x, y)

∣

∣

∣

∂Ω
, v(x, y) = 1 −

1

π

∣

∣

∣ arctan
(y

x

)
∣

∣

∣ ,

where the branches of the arctan function is chosen so that on any simple curve (no self intersec-
tions) encircling the origin it is increasing from 0 at y = 0, x > 0 to π at y = 0, x < 0 along the
part of the curve for which y > 0 and it is decreasing from 0 at y = 0, x > 0 to −π at y = 0,
x < 0 along the part of the curve for which y < 0. Assuming that u(x, y) is bounded in Ω, use
the method of trigonometric Fourier series to find a formal solution to the problem if

(i) Ω : x2 + y2 < 1 ;

(ii) Ω : x2 + y2 > 1 .

Hint: Find a relation between the boundary data and the function f(x) in Problem 3.

Solution: In polar coordinates, let us choose the interval of the polar angle to be [−π, π] and
y/x = tan(θ). Therefore the boundary data are

v(cos(θ), sin(θ)) = 1 −
|θ|

π
, −π ≤ θ ≤ π

Therefore its trigonometric Fourier series is the same as the one found in Problem 3 and, hence,
the formal solution must have the form

u = A0(r) +
∞
∑

m=1

A2m−1(r) cos[(2m − 1)θ]



(i) The coefficients are regular solutions to the boundary value problem for the Cauchy-Euler
equation in the interval 0 < r < 1:

r2A′′

0 + rA′

0 = 0 , A0(1) = a0 , |A0(r)| ≤ M < ∞ ⇒ A0(r) = a0 =
1

2

because a general bounded solution is constant in this case. Similarly

r2A′′

2m−1 + rA′

2m−1 − (2m − 1)2A2m−1 = 0 , A2m−1(1) = a2m−1 , |A2m−1(r)| ≤ M < ∞

⇒ A2m−1(r) = a2m−1r
2m−1 =

4r2m−1

π2(2m − 1)2

because a general solution is a linear combination of r2m−1 and 1

r2m−1 but the second one is not
bounded.
(ii) The solution must have the same form as in Part (i) but boundedness requires that solutions
proportional to r2m−1 (or ln(r) for A0) must be discarded so that

A0(r) =
1

2
, A2m−1(r) =

a2m−1

r2m−1
=

4

π2(2m − 1)2r2m−1

5 Extra credit (1 pt). Solve the boundary value problem

∆u(x, y) = 1 , (x, y) ∈ Ω : x2 + y2 < 4 ,

∂u

∂n

∣

∣

∣

∂Ω
= v(x, y)

∣

∣

∣

∂Ω
,

where n is the unit outward normal for the boundary ∂Ω and v(x, y) is given in Problem 4.

Solution: The problem has no solution because the solvability condition for the Neumann
problem is not fulfilled:

∫ ∫

Ω

1dxdy = Area(Ω) = π22 = 4π

∮

∂Ω

vds = 2
∫ π

−π

(

1 −
|θ|

π

)

dθ = 4πa0 = 2π 6= 4π

Note that ds = 2dθ as the radius is equal to 2.


