Test 5 with solutions

1 (2 pts). Consider the following boundary value problem
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where n is the outward unit normal for the boundary 0f2.
(i) Find all possible values of a parameter a for which the problem has a bounded solution;
(ii) Find all bounded solutions for each value of a found in Part (i).

SOLUTION: (i) By the solvability condition for the external Neumann problem, the following
double integral and line integral must be equal:
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where the double integral is evaluated in polar coordinates, dxdy = rdrdf, * = rcos(d), y =
rsin(f), and in the line integral ds = 2df, © = 2cos(f), and y = 2sin(0 with 0 < 0 < 27 for the
parametric equations of the circle of radius 2.

(ii) The inhomogeneity (with a = 16) and the boundary data have the following representation in
polar coordinates
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This shows that the solution must have the form
u = Ap(r) + Az(r) cos(20)

where Ay and A, are solutions to the associated boundary value problems for the Cauchy-Euler
equation in the interval 2 < r < co. Since the outward normal on the circle r = 2 points toward
the origin, the normal derivative is equal to —% at r = 2. Therefore,
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A general solution is Ay = C1 + C2In(r) + A, where a particular solution A, can be found in the
form A, = € (the method of undetermined coefficients). A substitution of A, into the equation
yields C' = 8. The boundedness of the solution requires that Cy = 0, and the boundary condition
is satisfied for any Cf: .
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Similarly,
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A general solution is Ay = % +Cyr? + A, where a particular solution A, can be found in the form
A, = £ (the method of undetermined coefficients). A substitution of A, into the equation yields
—3C =8or C = —%. The boundedness of the solution requires that Cy = 0, and the boundary
condition is satisfied if
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2 (3 pts). Consider the following boundary value problem
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where n is the outward unit normal for the boundary 0f2.
(i) Find all bounded solutions to the problem if

f($>y):0> U1($>y):1+z> U2($>y):y

or show that no solution exists.
(ii) Find all bounded solutions to the problem if

f($>y):6Iy> U1($>y):07 'U2(l',y):0

or show that no solution exists.
(iii) Explain (give reasons!) how solutions to Parts (i) and (ii) should be used to find all bounded
solutions to the problem if f is given in Part (ii) and the boundary data v; 5 are given in Part (i).

SOLUTION: This is a mixed problem for the Poisson equation in an annulus, and it was shown
in class to have a unique solution. The inhomogeneity and boundary data have the following
expansion in polar coordinates

f(z,y) = 6r?cos(d)sin(f) = 3r*sin(20), vy =1+cos(d), vy = 2sin(h)

The normal derivative on the circle r = 1 is equal to —% at 7 = 1 because n points toward the
origin, and the normal derivative on the circle r = 2 is equal to % at r = 2 because n points from
the origin.

(i) In this case the solution must have the form
u = Ay(r) + Ai(r) cos(0) + By (r) sin(0)
where
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A general solution reads Ay = C; + C2In(r) so that A = % and Cy = —1 by the boundary
condition at 7 = 1. The second boundary condition yields C; —In(2) + 1 =0or C; = —3 +In2.
Similarly,
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A general solution reads A; = Cir + CQ so that A} = Cy — % The boundary Condition at
r =1 gives —Cy1 + Cy = 1, and the second boundary condition gives 2C; + 2 4+ C; — £ =0 or
Cy = —12C. Therefore C’1 and Cy = Flnally,
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A general solution reads B; = Cir + % so that B} = C; — 2. The boundary condition at r=1
gives (] = (s, and the second boundary Condition gives 201 —I— 021 +Ch — 041 =2or () =
(i) In this case, the solution must have the form

u = Bs(r) sin(26)
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A general solution reads By = C1r? + £ + B,. A particular solution B, can be found in the form
B, = Cr'. A substitution into the equation yields 12C' + 4C — 4C = 3 or C' = 1. Therefore
Bl =2Cr — 202 + 3. The coefficients are chosen to satisfy the boundary conditions
—Bj(1) =—-20,+2C,—1 = 0 3 B
{ Bo(2) + By(2) =8C, +12 = 0 CGh=-3 CG=-1

(iii) Let u; and wug be solutions found in parts (i) and (ii), respectively. The sought-after solution
is u = uy + ug. Indeed, Au = Au; + Auy = 0+ f = f so it satisfies the equation. The bound-
ary conditions BC[u] (the said combination of u and its normal derivative) are also linear and
BC[u;] = v and BC[us] = 0 so that BC[u; + us] = BC[u1] + BClug] = v + 0 = v as required.

3 (2 pts). Let

f()—l—%> lz| <7, flz+27)=f(r), —oco<z<o00

(i) Expand f(x) into a trigonometric Fourier series.
(ii) Find all points x for which the trigonometric Fourier series converges to f(z). In particular,
by studying the convergence of the Fourier series at = 0, show that
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SOLUTION: (i) The Fourier coefficients are
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where = = y/7 and the latter integral vanishes by symmetry (as f is even). Therefore
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(i) The function f is continuous and 27 periodic. Therefore its trigonometric series converges to
f(z) for any real x. In particular, by setting z = 0 so that f(0) = 1 yields
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4 (2 pts) Consider the following boundary value problem
Au(z,y) =0, (z,y)€Q,

v(z, y)’ v(z,y)=1-— %’ arctan (%)
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where the branches of the arctan function is chosen so that on any simple curve (no self intersec-
tions) encircling the origin it is increasing from 0 at y = 0, x > 0 to 7 at y = 0, z < 0 along the
part of the curve for which y > 0 and it is decreasing from 0 at y = 0, x > 0 to —7 at y = 0,
x < 0 along the part of the curve for which y < 0. Assuming that u(z,y) is bounded in {2, use
the method of trigonometric Fourier series to find a formal solution to the problem if

(i) Q:a*+y?t <1,
i) Q:2®+y*>1.

Hint: Find a relation between the boundary data and the function f(x) in Problem 3.

SOLUTION: In polar coordinates, let us choose the interval of the polar angle to be [—m, 7] and
y/x = tan(f). Therefore the boundary data are
6]

v(cos(f),sin(h)) =1 — prt i <f6<m

Therefore its trigonometric Fourier series is the same as the one found in Problem 3 and, hence,
the formal solution must have the form

u=Ap(r) + i Agp—1(r) cos[(2m — 1)0]
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(i) The coefficients are regular solutions to the boundary value problem for the Cauchy-Euler
equation in the interval 0 < r < 1:
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because a general bounded solution is constant in this case. Similarly
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because a general solution is a linear combination of r?m~!

bounded.
(i) The solution must have the same form as in Part (i) but boundedness requires that solutions
proportional to 2™~! (or In(r) for Ag) must be discarded so that
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5 Extra credit (1 pt). Solve the boundary value problem
Au(z,y)=1, (z,y)€Q: 2*+y° <4,
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where n is the unit outward normal for the boundary 02 and v(x,y) is given in Problem 4.

SOLUTION: The problem has no solution because the solvability condition for the Neumann
problem is not fulfilled:
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Note that ds = 2df as the radius is equal to 2.



