
Test 6 with solutions

1 (2 pt). (i) Solve the eigenvalue problem

−X ′′(x) = λX(x) , −a < x < a , X ′(−a) = X ′(a) = 0

(ii) Expand the function g(x) = a2 − x2 over the basis of eigenfunctions from Part (i).

Solutions: (i) This is a Sturm-Liouville problem with Neumann boundary conditions. So,
λ = 0 is an eigenvalue, and the corresponding eigenfunction is X0(x) = 1. Other eigenvalues
are positive. So, put λ = ν2, ν > 0. It is convenient to change the variable y = x + a so that
0 ≤ y ≤ 2a if −a ≤ x ≤ a. Since d

dx
= d

dy
, if Y (y) is a solution to the problem

−Y ′′(y) = λY (y) , 0 < y < 2a , Y ′(0) = Y ′(2a) = 0

Then X(x) = Y (x + a) is the solution to the problem in question. A solution Y (y) that satisfies
the boundary condition at y = 0 is Y = Y (y, ν) = cos(νy). The boundary condition at y = 2a
defines the eigenvalues:

Y ′(2a, ν) = 0 ⇒ sin(2νa) = 0 ⇒ ν = νn =
πn

2a
, n = 1, 2, ...

and the corresponding eigenfunctions are

Xn(x) = Y (x + a, νn) = cos[νn(x + a)] , n = 1, 2, ...

(ii) The expansion reads

g(x) = g0X0(x) +
∞
∑

n=1

gnXn(x) = g0 +
∞
∑

n=1

gn cos[νn(x + a)]

=
2a2

3
−

4a2

π2

∞
∑

m=1

cos[ν2m(x + a)]

m2

‖X0‖
2 = 〈X0, X0〉 =

∫ a

−a
X2

0
(x)dx =

∫ a

−a
dx = 2a

‖Xn‖
2 = 〈Xn, Xn〉 =

∫ a

−a
X2

n(x)dx =
∫

2a

0

X2

n(y − a) dy =
∫

2a

0

cos2(νny) dy

=
1

2

∫

2a

0

(1 + cos(2νny)) dy = a

g0 =
〈g, X0〉

‖X0‖2
=

1

2a

∫ a

−a
(a2 − x2)dx =

1

a

(

a3 −
a3

3

)

=
2a2

3

gn =
〈g, Xn〉

‖Xn‖2
=

1

a

∫ a

−a
g(x)Xn(x) dx =

1

a

∫

2a

0

g(y − a)Xn(y − a) dy

=
1

a

∫

2a

0

(2a − y)y cos(νny) dy =
1

aνn

∫

2a

0

(2a − y)yd sin(νny)



=
1

aνn

(2a − y)y sin(νny)
∣

∣

∣

2a

0
−

1

aνn

∫

2a

0

(2a − 2y) sin(νny) dy

= 0 +
1

aν2
n

(2a − 2y) cos(νny)
∣

∣

∣

2a

0
+

2

aν2
n

∫

2a

0

cos(νny) dy

= −
2[(−1)n + 1]

ν2
n

+
2

aν2
n

〈X0, Xn〉 = −
2[(−1)n + 1]

ν2
n

because cos(2aνn) = (−1)n and X0 = 1 is orthogonal to all other eigenfunctions Xn, n > 0. So,
only g2m 6= 0 for m = 1, ....

2 (5pts) Use the results of Problem 1 to find formal solutions to the following Cauchy (initial
value) problems for the wave equation

∂2u

∂2t
= 9

∂2u

∂2x
+ f(x, t) , t > 0 , −a < x < a

u
∣

∣

∣

t=0
= 0 ,

∂u

∂t

∣

∣

∣

t=0
= v1(x) ,

∂u

∂x

∣

∣

∣

x=±a
= 0

and the heat equation

∂u

∂t
= 3

∂2u

∂2x
+ g(x, t) , t > 0 , −a < x < a

u
∣

∣

∣

t=0
= u0(x) ,

∂u

∂x

∣

∣

∣

x=±a
= 0

in the following cases:
(i) f(x, t) = 0 and v1(x) = a2 − x2;
(ii) f(x, t) = sin(ωt)x and v1(x) = 0 where ω = 3π

a
;

(iii) g(x, t) = 0 and u0(x) = x;
(iv) g(x, t) = te−βt(a2 − x2) and u0(x) = 0 where β = 9π2

a2 .
(v) Find the formal solution to the above wave equation if f is given in Part (ii) and v1 is given
in Part (i), and the formal solution to the heat equation if if g is given in Part (iv) and u0 is given
in Part (iii)

Solution: The formal solution to any of (i)-(v) has the form

u(x, t) = T0(t)X0(x) +
∞
∑

n=1

Tn(t)Xn(x) .

where X0(x) = 1 and Xn(x) are given in the solution to Problem 1(i).
(i) The Fourier coefficients are solutions to the initial value problem

T ′′

n(t) + 9ν2

nTn(t) = 0 , Tn(0) = 0 , T ′

n(0) = gn ,

where gn are the Fourier coefficients of v1(x) found in Problem 1(ii). For n > 1, a general solution
is Tn(t) = An cos(3νnt) + Bn sin(3νnt). The first initial condition yields An = 0 and the second



one gives 2νnBn = gn. For n = 0, ν0 = 0, so that T0(t) = A0 +B0t and the initial conditions yield
A0 = 0 and B0 = g0. Thus

T0(t) = g0t , Tn(t) =
gn

3νn

sin(3νnt) .

(ii) The Fourier coefficients satisfy the initial value problem

T ′′

n(t) + 9ν2

nTn(t) = fn sin(ωt) , Tn(0) = 0 , T ′

n(0) = 0 ,

where fn are the Fourier coefficients of the function f(x) = x in the basis given in Problem 1 (ii).

f0 =
〈f, X0〉

‖X0‖2
=

1

2a

∫ a

−a
x dx = 0 ,

fn =
〈f, Xn〉

‖Xn‖2
=

1

a

∫ a

−a
x cos[νn(x + a)] dx =

1

a

∫

2a

0

(y − a) cos(νny) dy

= −
1

aνn

∫

2a

0

sin(νny) dy =
(−1)n − 1

aν2
n

Thus, the Fourier coefficients for all even n vanish and so do Tn(t) = 0 because the initial conditions
are zero. Thus, only Tn(t) for odd n are to be found. To find a particular solution by the method
of undetermined coefficients, one must check if ω matches any of eigen-frequencies 3νn for odd n
(recall the resonance phenomenon). The condition ω = 3νn or 1 = n

2
is satisfied only of n = 2 which

is even. Therefore, for any odd n a particular solution must have the form Tnp(t) = Cn sin(ωt) (no
resonance). A substitution to the equation yields Cn = fn/(9ν2

n − ω2). A general solution reads

Tn(t) = An cos(3νnt) + Bn sin(3νnt) +
fn

9ν2
n − ω2

sin(ωt)

The first initial condition yields An = 0 and Bn is found from T ′

n(0) = 0 so that

Tn(t) =
fn

3νn

·
3νn sin(ωt) − ω sin(3νnt)

9ν2
n − ω2

, n = 2m − 1 , m = 1, 2, ... , T2m(t) = 0 .

(iii) The Fourier coefficients satisfy the initial value problem

T ′

n(t) = 3ν2

nTn(t) , Tn(0) = an

where an are the Fourier coefficients of the function u0(x) = x in the basis from Problem 1(i).
They were found in Part (ii), an = fn. Therefore

Tn(t) = fne−3ν2
n
t , f0 = 0 , fn =

(−1)n − 1

aν2
n

.

(iv) The Fourier coefficients satisfy the initial value problem

T ′

n(t) + 3ν2

nTn(t) = gnte−βt , Tn(0) = 0 .



where gn are the Fourier coefficients of a2 − x2 because 〈g(x, t), Xn〉 = te−ωt〈a2 − x2, Xn〉. They
were found in Problem 1(ii). The condition β = 3ν2

n or 3 = n2

4
cannot be satisfied for any integer

n. Therefore, according to the method of undetermined coefficients, a particular solution must
have the form Tnp(t) = (ant + bn)e

−βt. A substitution to the equation yields

ane
−βt − (ant + bn)βe−βt + 3ν2

n(ant + bn)e
−βt = gnte−βt ⇒ bn =

an

3ν2
n − β

, an =
gn

3ν2
n − β

When n = 0, νn = 0 in the above equations. A general solution is Tn(t) = Ane
−3ν2

n
t + Tpn(t). The

initial condition gives An + Tpn(0) = 0 or An = −an (also holds for n = 0). Thus,

Tn(t) =
gn

3ν2
n − β

(

e−βt − e−3ν2

n
t
)

+
gnt

(3ν2
n − β)2

e−βt

where νn = 0 if n = 0.
(v) By linearity of the problems, the said problem for the wave equation is solved by the sum of
solutions from Parts (i) and (ii) and, similarly, the said problem for the heat equation is solved
by the sum of solutions from Parts (iii) and (iv).

3 (3 pts) Consider the following boundary value problem

∆u(x, y) = f(x, y) , 0 < x < 2 , 0 < y < 1

u(0, y) = 0 , u(2, y) = y(1 − y) , u(x, 0) = x(2 − x) , u(x, 1) = 0

(i) Find the eigenvalues and eigenfunctions for the associated vertical and horizontal Sturm-
Liouville operators. The horizontal eigenfunctions form an orthogonal basis in the interval 0 <
x < 2, while the vertical eigenfunctions form an orthogonal basis in 0 < y < 1.
(ii) Find the formal solution to the homogeneous problem f(x, y) = 0.
(iii) Let f(x, y) = yx(2−x). Expand f(x, y) over the horizontal basis and find the formal solution
to the problem.

Solution: (i) The horizontal eigenvalue problem reads

−X ′′(x) = λX(x) , 0 < x < 2 , X(0) = X(2) = 0

This problem was shown in class to have positive simple eigenvalues and the following eigenfunc-
tions

λ = λn = ν2

n , νn =
πn

2
, X(x) = Xn(x) = sin(νnx) , n = 1, 2, ...

The horizontal basis functions are normalized by

‖Xn‖
2 =

∫

2

0

sin2(νnx) dx =
1

2

∫

2

0

(1 − cos(2νnx)) dx = 1 .

The vertical eigenvalue problem is similar

−Y ′′(y) = µY (y) , 0 < y < 1 , Y (0) = Y (1) = 0



Therefore
µ = µn = ξ2

n , ξn = πn , Y (y) = Yn(y) = sin(ξny) , n = 1, 2, ...

The vertical basis functions are normalized by

‖Yn‖
2 =

∫

1

0

sin2(ξny) dy =
1

2

∫

1

0

(1 − cos(2ξny)) dy =
1

2
.

(ii) The formal solution is the sum of two Fourier series over the vertical and horizontal bases:

u(x, y) =
∞
∑

n=1

Ỹn(y)Xn(x) +
∞
∑

n=1

X̃n(x)Yn(y)

The Fourier coefficient satisfy the following boundary value problems

Ỹ ′′

n (y)− ν2

nỸn(y) = 0 , Ỹn(0) = an , Ỹn(1) = 0

X̃ ′′(x) − ξ2

nX̃n(x) = 0 , X̃n(0) = 0 , X̃n(2) = bn

where an and bn are the Fourier coefficients of the boundary data in the horizontal and vertical
bases:

an =
〈x(2 − x), Xn〉

‖Xn‖2
=

∫

2

0

x(2 − x) sin(νnx) dx =
1

νn

∫

2

0

(2 − 2x) cos(νnx) dx

=
2

ν2
n

∫

2

0

sin(νnx) dx = −
2

ν3
n

(1 − cos(2νn)) =
2((−1)n − 1)

ν3
n

bn =
〈y(1 − y), Yn〉

‖Yn‖2
= 2

∫

1

0

y(1 − y) sin(ξny) dy =
2

ξn

∫

1

0

(1 − 2y) cos(ξny) dy

=
4

ξ2
n

∫

1

0

sin(ξny) dy = −
4

ξ3
n

(1 − cos(ξn)) =
4((−1)n − 1)

ξ3
n

A general solution for Ỹn reads

Ỹn(y) = An sinh(νny) + Bn cosh(νny)

The boundary condition at y = 0 requires that Bn = an, and the boundary condition at y = 1
requires that An = −Bn cosh(νn)/ sinh(νn). Therefore

Ỹn(y) =
an

sinh(νn)

(

sinh(νn) cosh(νny) − cosh(νn) sinh(νny)
)

Similarly, a general solution for X̃n reads

X̃n(x) = An sinh(ξnx) + Bn cosh(ξnx)

The boundary condition at x = 0 requires that Bn = 0, and the boundary condition at x = 2
requires that An = bn/ sinh(2ξn). Therefore

X̃n(x) =
bn

sinh(2ξn)
sinh(ξnx)



(iii) Let ∆v(x, y) = f(x, y) and v(x, y) vanishes on the boundary of the rectangle [0, 2] × [0, 1].
Then the solution to the said Poisson equation is the sum of the solution in Part (ii) and v(x, y).
Let us use the horizontal basis to find v(x, y). The advantage is that the Fourier coefficients of f
are already calculated in Part (ii):

Fn(y) =
〈f, Xn〉

‖Xn‖2
= y

〈x(2 − x), Xn〉

‖Xn‖2
= any

Therefore

v(x, y) =
∞
∑

n=1

Ỹn(y)Xn(x)

where the Fourier coefficients are solutions to the boundary value problem

Ỹ ′′

n (y)− ν2

nỸn(y) = Fn(y) = any , Ỹn(0) = 0 , Ỹn(1) = 0

A particular solution to the equation can be found in the form Ỹp = Cy. A substitution to the
equation yields C = −an/ν

2
n. So a general solution is

Ỹn(y) = An sinh(νny) + Bn cosh(νny)−
any

ν2
n

The boundary condition at y = 0 requires that Bn = 0 and the boundary condition at y = 1
requires that An = an/ν

2
n. Thus,

Ỹn(y) =
an

ν2
n

(

sinh(νny)− y
)

4 EC (1 pts). Consider the following boundary value problem

∆u(x, y) = 6x2y , 0 < x < 2 , 0 < y < 1

u′

x(0, y) = −3 , u′

x(2, y) = −2y , u′

y(x, 0) = −2x , u′

y(x, 1) = 1

Is it correct that a solution to this problem exists? Is it true that if a solution exits, then it can
be written as the sum u(x, y) = v(x, y) + h(x, y) where v and h are solutions to the following
problems:

∆v(x, y) = 6x2y , 0 < x < 2 , 0 < y < 1

v′

x(0, y) = 0 , v′

x(2, y) = 0 , v′

y(x, 0) = −2x , v′

y(x, 1) = 1

∆h(x, y) = 0 , 0 < x < 2 , 0 < y < 1

h′

x(0, y) = −3 , h′

x(2, y) = −2y , h′

y(x, 0) = 0 , h′

y(x, 1) = 0 ?

Solution: This is a Neumann problem. So, it has a solution only if the solvability condition is
fulfilled. If ∂u

∂n
= w(x, y) on the boundary of Ω = [0, 2] × [0, 1], then

∮

∂Ω

w(x, y) ds =
∫ ∫

Ω

f(x, y)dxdy = 6
∫

2

0

x2dx
∫

1

0

ydy = 8



To calculate the line integral, note that the normals derivative coincides with −u′

x on x = 0, u′

x

on x = 2, −u′

y on y = 0, and u′

y on y = 1. Therefore

∮

∂Ω

w(x, y) ds =
∫

1

0

3dy +
∫

1

0

(−2y) dy +
∫

2

0

2x dx +
∫

2

0

1dx = 3 − 1 + 4 + 2 = 8

Thus, a solution exists. However it cannot be written as the said sum because v(x, y) and h(x, y)
do not exist. For example, the solvability condition for h is not fulfilled:

∮

∂Ω

∂h

∂n
ds =

∫

1

0

3dy +
∫

1

0

(−2y) dy = 3 − 1 = 2 6= 0 =
∫ ∫

Ω

0dxdy .


