
CHAPTER 1

Vectors and the Space Geometry

Our space may be viewed as a collection of points. Every geometri-
cal figure, such as a sphere, plane, or line, is a special subset of points in
space. The main purpose of an algebraic description of various objects
in space is to develop a systematic representation of these objects by
numbers. Interestingly enough, our experience shows that so far real
numbers and basic rules of their algebra appear to be sufficient to de-
scribe all fundamental laws of nature, model everyday phenomena, and
even predict many of them. The evolution of the Universe, forces bind-
ing particles in atomic nuclei, and atomic nuclei and electrons forming
atoms and molecules, star and planet formation, chemistry, DNA struc-
tures, and so on, all can be formulated as relations between quantities
that are measured and expressed as real numbers. Perhaps, this is
the most intriguing property of the Universe, which makes mathemat-
ics the main tool of our understanding of the Universe. The deeper
our understanding of nature becomes, the more sophisticated are the
mathematical concepts required to formulate the laws of nature. But
they remain based on real numbers. In this course, basic mathematical
concepts needed to describe various phenomena in a three-dimensional
Euclidean space are studied. The very fact that the space in which
we live is a three-dimensional Euclidean space should not be viewed as
an absolute truth. All one can say is that this mathematical model of
the physical space is sufficient to describe a rather large set of physical
phenomena in everyday life. As a matter of fact, this model fails to
describe phenomena on a large scale (e.g., our galaxy). It might also
fail at tiny scales, but this has yet to be verified by experiments.

1. Rectangular Coordinates in Space

1.1. A system of real numbers. Recall the notion of a real number sys-
tem. One starts with integers. Using the division, rational numbers
are obtained: any rational number is a ratio of two integers. The set of
rational numbers is closed with respect to all arithmetic operations (ad-
dition, subtraction, multiplication, and division), that is,the sum of two
rational numbers is a rational number, and so are their product, ratio,
and difference (in the ratio a/b, b 6= 0). For any two rational numbers x1
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and x2, the distance between them is defined as |x1−x2|. For example,
the distance between −1 and 1/2 is | − 1− 1/2| = | − 3/2| = 3/2. One
can always find two rational numbers with the distance between them
being less than any preassigned positive rational number ε. Indeed, the
distance between x1 = ε/3 and x2 = 2ε/3 is |x1−x2| = ε/3 < ε. Clearly,
two rational numbers are equal if and only if the distance between them
is equal zero.

Having defined a distance on a set of rational numbers, one can
study sequences of rational numbers. A sequence an, n = 1, 2, ..., is
said to converge to a rational number a if all its terms, except possibly
finitely many, stay arbitrary close to a. In other words, the distance
|an− a| does not exceed any preassigned positive rational number ε for
all large enough n. Suppose an is monotonically increasing sequence,
an+1 ≥ an for all n. Suppose it converges to a rational number a. Then
an ≤ a for all n. In other words, all terms of the monotonic convergent
sequence are bounded by its limit from above. Moreover, the limit is
the least upper bound of all numbers an because an can get arbitrary
close to a, but never exceed it!

Suppose an is a monotonically increasing sequence that is bounded.
Does it have a limit? This is a turning point in the development of
a system of real numbers. One can prove that such a sequence does
not necessarily have a limit in rational numbers or, alternatively, one
can say that the least upper bound of all rational numbers an is not
necessarily rational. It is not difficult to construct such a sequence.
Let a2 = 2. The positive root of this equation is denoted by

√
2. Then

one can show that a =
√

2 is not a rational number (this is left to the
reader an an exercise). On the other hand, the root of this equation
can be approximated by terms of the decimal expansion of

√
2:

a1 = 1 , a2 = 1.4 , a3 = 1.41 a4 = 1.414 , a5 = 1.4142 , ...

The terms of this sequence are rational, they are increasing, and they
can get arbitrary close and stay arbitrary close to the root of the equa-
tion a2 = 2 in the sense that the distance |a2

n − 2| is smaller than any
preassigned rational number ε > 0 for all large enough n:

|a2
n − 2| < ε .

Note well that the sequence an exists regardless of what is meant by
the symbol

√
2. In fact, this symbol is defined as the limit of the

above sequence. This example suggests that the system of rational
numbers has some “gaps” and there are sequences of rational numbers
that converge to these gaps. To fill out these gaps, an abstract notion
of a number, called an irrational number is introduced. An irrational
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number is the non-rational limit of a convergent sequence of rational
numbers. It cannot be obtained by arithmetic operations from rational
numbers, but, by construction, it can be approximated with any desired
accuracy by a rational number, that is, for any irrational number x
one can find a rational number a that is arbitrary close to x (for any
preassigned positive rational number ε, the distance |x−a| is less than
ε, no matter how small is ε). By basic laws of limits, all arithmetic
operations can be extended to the irrational numbers.

A system of real numbers, by definition, consists of all rational and
irrational numbers. The system is complete in the sense that it no
longer has “gaps” in contrast to the system of rational numbers. This
is known as the completeness axiom of real numbers.

The distance between two real numbers x1 and x2 is |x1 − x2|. If
x2 and x2 are not rational, then one should take suitable sequences of
rational numbers converging to x1 and x2, and the distance is computed
as the limit of the absolute value of the difference of the sequences:

an → x1 , bn → x2 ⇒ |x1 − x2| = lim
n→∞

|an − bn|

If three distinct numbers are taken, x1, x2, and x3 so that the distance
|x1−x3| is the largest amongst the distances between pairs of numbers,
then

|x1 − x3| = |x1 − x2| + |x2 − x3| .

1.2. Basic objects in space. Let us describe in a more formal way some
basic objects in space such as lines and planes.

Points. A point is an elementary object of the space in the sense that
any other object is a collection of points. In what follows any such
collection will be called a point set. In other words, a point cannot be
“divided” any further into “more elementary objects”. A good analogy
of a point is a number in a real number system. An interval (1, 2) is a
collection of all numbers between 1 and 2.

Distance between two points. Consider two points in space. They
can be connected by a path. Among all the continuous paths that
connect two points, there is a distinct one, namely, the one that has
the smallest length. This path is called a straight line segment. This
definition implies that one has a procedure how to measure the length
of a path. Not to mention, a path as a point set also needs a defini-
tion. In practice, the problem is solved by defining a physical process
that allows us to measure the distance between two points in space.
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For example, one can postulate that light (e.g., a laser beam) always
propagates along the shortest path between two points with a constant
speed c. Then a unit of length can be defined as the length traveled by
light in one unit of time. If the time is measured in seconds, then the
unit of length is c = 299, 792, 458m/s · 1 s ≈ 3 · 108 meters.

Regardless of physical processes that could be used to define the
distance between two points, it is postulated that in our space there is
a rule that assigns a unique real number |AB| to any two points A and
B. This rule is required to have the following properties, called the
distance axioms:

|AB| > 0 if A 6= B, |AA| = 0 ,

|AB| = |BA| ,
|AB| ≤ |AC|+ |CB| ,

for any points A, B, and C . The first property means that the dis-
tance is always positive and vanishes if and only if A = B (the points
coincide). The second property states that the distance function is
symmetric (whatever process is used to measure the distance, it should
not matter whether the distance is measured from A to B or from
B to A). The third property is called the triangle inequality. These
properties comply with our every day experience. So they are put into
foundations of a mathematical model of the space as postulates or ax-
ioms, the properties that are always assumed to be true. With the
distance defined, our space is said to be a metric space.

Straight lines. Let us fix two points, A and B, and connect them
by a shortest path. By our everyday experience, this path is a straight
line segment connecting A and B, and, for any point C on this path,
the triangle inequality in the distance axioms becomes the equality. So,
it is reasonable to define a straight line segment with endpoints A and
B as the collection of all points C such that |AB| = |AC|+ |CB|.

Intuitively, a straight line contains segments of any length and has
no “holes”. that is, it looks like a segment of an infinite length. A
straight line extends unboundedly in two directions from any point like
positive and negative numbers relative to zero. So for any three points
A, B, and C the triangle inequality becomes equality:

|AB| = |AC|+ |CB| ,

where |AB| is the largest distance among |AB|, |AC|, and |CB|. There-
fore a line is uniquely defined by any two distinct points in it. Fix two
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points in space and then find all points for which the triangle inequal-
ity becomes equality. The obtained point set is, by definition, is a line
through two given points:

Given two points A and B, the line through them is the collection of all
points for which the triangle inequality is saturated (becomes the equal-
ity).

Angles. Any three points in space A, B, and C can be connected
by straight line segments forming a triangle. If the angle at one of the
vertices is the right angle, say at the vertex A, then the Pythagorean
theorem holds:

|AB|2 + |AC|2 = |BC|2 .

However, in our mathematical model of the space, the very notion of
an angle between two straight line segments has not yet been defined.
Since our experience shows that the Pythagorean theorem is an exclu-
sive property of right-angled triangles, one can define the right angle
by turning the theorem into a postulate. Two straight line segments
AB and AC are said to be perpendicular if |AB|2 + |AC|2 = |BC|2:

AB ⊥ AC ⇔ |AB|2 + |AC|2 = |BC|2 .

Similarly, two intersecting straight lines are said to be perpendicular
if segments of them originating from the point of intersection are per-
pendicular.

Consider two straight line segments AB and AC . Let L denote the
straight line containing the segment AC . Construct a line through B
that is perpendicular to L and intersect it at a point D. If the segments
AD and AC lie on the same side from the point A (or the point A is not
in the interval CD), then the angle θ between the segments is defined
by

cos θ =
|AD|
|AB| , 0 ≤ θ ≤ π

2

and, if AD and AC are on the opposite sides (A lies in CD), then

cos θ = − |AD|
|AB| ,

π

2
< θ ≤ π .

Note that the points A, B, and D are vertices of a right-angled trian-
gle and the segment AB is its hypotenuse. Therefore by the triangle
inequality the ratio |AD|/|AB| can only take values between 0 and
1. The cosine function cos θ is defines a one-to-one correspondence
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between the intervals [−1, 1] and [0, π]. This property makes our defi-
nition consistent. In the first case, θ is the angle at the vertex A. In
the second case, the angle at the vertex A is π − θ, which explains
the minus sign in the definition. In other words, 0 ≤ θ ≤ π is the
“smallest” angle between the segments.

It should be noted that this construction defines only cos θ, not the
angle θ itself. For a logical consistency the cosine function has to be
defined in some algebraic way without any reference to geometry. For
example, the cosine and sine functions can be defined by their power
series:

cos θ =
∞

∑

n=0

(−1)n+1θ2n

(2n)!
, sin θ =

∞
∑

n=0

(−1)n+1θ2n+1

(2n + 1)!
,

The series converge for all real θ (for example, by the ratio test) and,
hence, defined functions called the cosine and sine functions, respec-
tively. Then the angle between two line segments is the root of the
equation cos θ = a that lies in the interval θ ∈ [−π, π] where the num-
ber a is calculated via the lengths of the interval as given above. The
left side of the equation is given by the cosine power series.

Three familiar consequences of the above definition of the angle
between straight line segments can be proved. If θ is an angle between
segments AB and AC , then

|BC|2 = |AB|2 + |AC|2 − 2|AB||AC| cosθ .

This relation is known as the cosine theorem. If α, β, and γ are angles
at the vertices A, B, and C , respectively, of a triangle ABC , then

α + β + γ = π ,

sinα

|BC| =
sin β

|CA| =
sin γ

|AB| .

The last relation is known as the law of sines for triangles. These as-
sertions will be proved later when our model of the space is complete.
Here they are just noted to emphasize that so far our hypotheses about
the space lead to familiar results and, hence, our progress in modeling
the space is on a right track.

Planes. Take a straight line L and fix a point A in it. A point set
that is the union of all straight lines through A and perpendicular to
L is called a plane. In other words, a plane P is uniquely determined
by a point A in it and a straight line segment AB perpendicular to it
so that a point C belongs to the plane whenever the segments AC and
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AB are perpendicular:

C ∈ P ⇔ AC ⊥ AB ⇔ |AC|2 + |AB|2 = |BC|2 .

Later it will be proved that the vertices of any triangle uniquely define
a plane through them. Two lines are said to be parallel if they do not
intersect and lie in a plane. Two planes are said to be parallel if they
do not intersect. Clearly, if two planes are perpendicular to the same
line, then they are parallel.

Rigid transformations in space. A transformation in space is a rule
that assigns a unique point to every point of the space. In other words,
given a point A, a transformation T maps A to a unique point T (A) of
the space. For example, a parallel transport is a transformation when
all points are moved along parallel lines by the same distance so that
any straight line segment preserves its length under the transformation
and is parallel to its image. A rotation in space is transformation under
which at least one point remains fixed and the distance between any
two points does not change. In general, a transformation that preserve
the distance between any two points is called a rigid transformation or
an isometry. In addition to parallel transports and rotations, reflec-
tions about a plane or a point in space are rigid transformations. A
composition of rigid transformations is a rigid transformation.

Areas and volumes. Consider two pairs of perpendicular straight line
segments of length a and b. By the Pythagorean theorem, it is not
difficult to see that they can be arranged in a plane to form a rectangle
whose characteristic property is that any two adjacent sides (segments)
are perpendicular. The number

S = ab

is called the area of the rectangle. The diagonal of the rectangle cuts
it into two right-angled triangles that can be transformed to one an-
other by a suitable rotation and a parallel transport in the plane. The
area does not change under such transformations because the latter
preserve the distance between points. Therefore the area of a right-
angled triangle is ab/2. Using the definition of the angle θ between two
segments AB and AC , one can prove a familiar result that the area of
the triangle ABC is

S =
1

2
|AB||AC| sinθ .



10 1. VECTORS AND THE SPACE GEOMETRY

Consider a rectangle with adjacent sides of length a and b. At
each vertex, construct a segment of length c that is perpendicular to
the plane in which the rectangle lies so that the segments are piercing
in the same direction from the plane. The solid bounded by parallel
planes that are perpendicular to one segment and contain the other
two is called a rectangular box. Its volume is, by definition,

V = abc .

The volume does not change under rigid transformations.

Limitations of mathematical modeling. The above geometrical model of
our space is based on the Pythagorean theorem which was postulated
as a fundamental property of the space. A space in which the stated
properties hold is known as a Euclidean space. However, the validity
of this postulate for the space we live in has yet to be verified by
observations. In fact, Einstein’s general relativity asserts that our space
can be viewed as a Euclidean space only in sufficiently small regions
of space in which the gravitational pull from nearby masses (planets
and stars) does not vary much. Even at distances comparable with
the radius of the Earth deviations from the Euclidean geometry were
observed. In particular, the sum of angles in a triangle is not equal to
π, but its deviation from π is hardly noticeable in our everyday life.

Furthermore our ability to verify postulates of a Euclidean space
at small distances is limited by the shortest interval that can be mea-
sured. At present, the shortest measurable distance is about 10−18 cm
(achieved at the Large Hadron Supercollider at CERN). Any object
with dimensions smaller than that would appear as a point without any
structure. As of now, there is no reason to believe that the Pythagorean
theorem holds at subatomic scales of our space. Yet, the very idea of
“continuity” of space at subatomic scales may also be questioned. It
may well be that the physical space has a fundamental length, meaning
that the length can only be changed by an elementary quantum, just
like a penny is the smallest amount of money by which a price of an
item can be changed.

1.3. Rectangular coordinate systems. Now it is time to restate our ge-
ometrical postulates of a Euclidean space in terms of real numbers
and thereby to complete a mathematical model of our space. In doing
so, geometrical properties of the space will be formulated in a pure
algebraic fashion. In turns, using only basic rules of algebra, novel
geometrical facts about various objects in space can be established.
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Fix a point O in space. It will be called the origin. Consider three
mutually perpendicular lines through it. A real number is associated
with every point of each line in the following way. The origin corre-
sponds to 0. Distances to points on one side of the line from the origin
are marked by positive real numbers, while distances to points on the
other half of the line are marked by negative numbers (the absolute
value of a negative number is the distance). Recall that each line has
exactly two points equidistant from a given point. The half-line with
the grid of positive numbers will be indicated by an arrow pointing
from the origin to distinguish it from the half-line with the grid of neg-
ative numbers. In this way, the real number system is identified with
each line in space through the origin O. Note that this identification
implies that a particular unit of length is used to measure distances in
space, e.g., the number 1 is associated with a point in space that lies
on the line at a distance of 1 unit of length (e.g., 1 meter) so that the
distances to all other points on the line are measured in these units .
The described system of lines is called a rectangular coordinate system
at the origin O. The lines with the constructed grid of real numbers
are called coordinate axes.

1.4. Points in Space as Ordered Triples of Real Numbers. The position of
any point in space can be uniquely specified as an ordered triple of real
numbers relative to a given rectangular coordinate system. Consider
a rectangular box with mutually perpendicular sides at every vertex,
whose two opposite vertices (the endpoints of the largest diagonal)
are the origin and a point P , while its sides that are adjacent at the
origin lie on the axes of the coordinate system. The construction is
illustrated in Figure 1.1. For every point P there is only one such
rectangular box. It is uniquely determined by its three sides adjacent
at the origin. Let the number x mark the position of one such side
that lies on the first axis, the numbers y and z do so for the second and
third sides, respectively. Note that, depending on the position of P ,
the numbers x, y, and z may be negative, positive, or even 0. In other
words, any point P in space is associated with a unique ordered triple of
real numbers (x, y, z) determined relative to a rectangular coordinate
system. This geometrical fact is written as

P = (x, y, z) .

The ordered triple of numbers (x, y, z) is called rectangular coordinates
of a point P relative to a given coordinate system.

To reflect the order in (x, y, z), the axes of the coordinate system
will be marked as x, y, and z axes. For example, to find a point in
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space with rectangular coordinates (1, 2,−3), one has to construct a
rectangular box with a vertex at the origin such that its sides adjacent
at the origin occupy the intervals [0, 1], [0, 2], and [−3, 0] along the x,
y, and z axes, respectively. The point in question is the vertex opposite
to the origin.

By construction, two points in space coincide if and only if their
corresponding coordinates are equal:

A = B ⇔ xa = xb, ya = yb, za = zb

where A = (xa, ya, zb) and B = (xb, yb, zb).

1.5. A Point as an Intersection of Coordinate Planes. Given a coordinate
system with the origin at O, the plane containing the x and y axes is
called the xy plane. It is perpendicular to the z axis. For all points in
this plane, the z coordinate is 0. The algebraic condition that a point
lies in the xy plane can therefore be stated as z = 0. The xz and yz
planes can be defined similarly. The condition that a point lies in the
xz or yz plane reads y = 0 or x = 0, respectively. The origin (0, 0, 0)
can be viewed as the intersection of three coordinate planes x = 0,
y = 0, and z = 0.

By definition, the intersection of two point sets S1 and S2 in space
is the collection of common points of these sets:

P ∈ S1 ∩ S2 ⇔ P ∈ S1 and P ∈ S2 .

Consider all points in space whose z coordinate is fixed to a particular
value z = z0 (e.g., z = 1). It is a plane that consists of all lines
through the point (0, 0, z0) perpendicular to the z axis. The planes
z = 0 and z = z0 6= 0 do not have common points. Therefore they are
parallel. All planes described by the condition that the z coordinate
is fixed, z = z0, are perpendicular to the z axis. The distance between
two parallel planes is defined as the length of the straight line segment
between the points of intersection of a line perpendicular to the planes.
The plane z = z0 lies |z0| units of length above the coordinate plane
z = 0 if z0 > 0 or below it if z0 < 0. A point P with coordinates
(x0, y0, z0) can therefore be viewed as an intersection of three coordinate
planes x = x0, y = y0, and z = z0 as shown in Figure 1.1. The faces
of the rectangular box introduced to specify the position of P relative
to a rectangular coordinate system lie in the coordinate planes. The
coordinate planes are perpendicular to the corresponding coordinate
axes: the plane x = x0 is perpendicular to the x axis, and so on.
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Figure 1.1. Left: Any point P in space can be viewed as
the intersection of three coordinate planes x = x0, y = y0,
and z = z0; hence, P can be given an algebraic description
as an ordered triple of numbers P = (x0, y0, z0).
Right: Translation of the coordinate system. The origin is
moved to a point (x0, y0, z0) relative to the old coordinate
system while the coordinate axes remain parallel to the axes
of the old system. This is achieved by translating the origin
first along the x axis by the distance x0 (as shown in the
figure), then along the y axis by the distance y0, and finally
along the z axis by the distance z0. As a result, a point P
that had coordinates (x, y, z) in the old system will have the
coordinates x′ = x − x0, y′ = y − y0, and z′ = z − z0 in the
new coordinate system.

1.6. Rigid Transformations of the Coordinate System. Since the origin
and directions of the axes of a coordinate system can be chosen arbi-
trarily, the coordinates of a point depend on this choice. Suppose a
point P has coordinates (x, y, z). Consider a new coordinate system
whose axes are parallel to the corresponding axes of the old coordinate
system, but whose origin is shifted to the point O′ with coordinates
(x0, 0, 0). It is straightforward to see that the point P would have
the coordinates (x − x0, y, z) relative to the new coordinate system
(Figure 1.1, right panel). Similarly, if the origin is shifted to a point
O′ with coordinates (x0, y0, z0), while the axes remain parallel to the
corresponding axes of the old coordinate system, then the coordinates



14 1. VECTORS AND THE SPACE GEOMETRY

(x′, y′, z′) of P in the new coordinate system are

(1.1) x′ = x− x0, y′ = y − y0, z′ = z − z0.

This transformation of the coordinate system is obviously a parallel
transport (all points are moved parallel the segment OO′).

Furthermore, consider a rotation in space under which the origin O
does not move. Since the distances between points on different coordi-
nate axes are preserved under rotations, the coordinate axes remains
perpendicular and the numerical grid on them is preserved as well,
while the orientation of the axes changes. Indeed, if A and B are points
on two distinct coordinate axes and A′ and B ′ their respective images
under the rotation, then |OA| = |OA′|, |OB| = |OB ′|, |AB| = |A′B ′|
and therefore

|OA|2 + |OB|2 = |AB|2 ⇒ |OA′|2 + |OB ′|2 = |A′B ′|2

that is, the new axes are perpendicular. Thus, a new coordinate system
can also be obtained by a rotation about the origin. The coordinates
of the same point in space are different in the original and rotated rect-
angular coordinate systems. Algebraic relations between old and new
coordinates can be established (Section 3.4). They are somewhat more
complicated than the relations between old and new coordinates in the
case of a parallel translation of the coordinate system discussed above.
A simple case, when a coordinate system is rotated about one of its
axes (e.g., the z axis does not change under a rotation), is investigated
in Study Problem 1.2.

It is important to emphasize that no physical or geometrical quan-
tity should depend on the choice of a coordinate system. For example,
the length of a straight line segment must be the same in any coor-
dinate system, while the coordinates of its endpoints depend on the
choice of the coordinate system. When studying a practical problem,
a coordinate system can be chosen in any way convenient to describe
objects in space and facilitate the use of algebraic rules for real num-
bers (coordinates) to compute physical and geometrical characteristics
of the objects. The numerical values of these characteristics should not
depend on the choice of the coordinate system.

Remark. A coordinate system can always be chosen so that the xy
coordinate plane coincides with a particular plane in space. If rotations
are such that it preserve the z axis (a rotation about the z axis), they
can be uniquely specified by the angle between the old and new x
axis counted counterclockwise from the former to the latter (see Study
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Figure 1.2. Distance between two points with coordinates
P1 = (x1, y1, z1) and P2 = (x2, y2, z2). The line segment
P1P2 is viewed as the largest diagonal of the rectangular box
whose faces are the coordinate planes corresponding to the
coordinates of the points. Therefore, the distances between
the opposite faces are a = |x1 − x2|, b = |y1 − y2|, and
c = |z1 − z2|. The length of the diagonal d is obtained by
the double use of the Pythagorean theorem in each of the
indicated rectangles: d2 = c2+f2 (top right) and f2 = a2+b2

(bottom right).

Problem 1.2). An algebraic description of a general rotation in space
is discussed in Study Problem 5.1.

1.7. Distance Between Two Points. Consider two points in space, P1

and P2. Let their coordinates relative to some rectangular coordinate
system be (x1, y1, z1) and (x2, y2, z2), respectively. How can one calcu-
late the distance between these points, or the length of a straight line
segment with endpoints P1 and P2? The point P1 is the intersection
point of three coordinate planes x = x1, y = y1, and z = z1. The point
P2 is the intersection point of three coordinate planes x = x2, y = y2,
and z = z2. These six planes contain faces of the rectangular box whose
largest diagonal is the straight line segment between the points P1 and
P2. The question therefore is how to find the length of this diagonal.

Consider three sides of this rectangular box that are adjacent, say,
at the vertex P1. The side parallel to the x axis lies between the
coordinate planes x = x1 and x = x2 and is perpendicular to them. So
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the length of this side is |x2 − x1|. The absolute value is necessary as
the difference x2 − x1 may be negative, depending on the values of x1

and x2, whereas the distance must be nonnegative. Similar arguments
lead to the conclusion that the lengths of the other two adjacent sides
are |y2 − y1| and |z2 − z1|. If a rectangular box has adjacent sides of
length a, b, and c, then the length d of its largest diagonal satisfies the
equation

d2 = a2 + b2 + c2 .

Its proof is based on the Pythagorean theorem (see Figure 1.2). Con-
sider the rectangular face that contains the sides a and b. The length f
of its diagonal is determined by the Pythagorean theorem f2 = a2 +b2.
Consider the cross section of the rectangular box by the plane that
contains the face diagonal f and the side c. This cross section is a
rectangle with two adjacent sides c and f and the diagonal d. They are
related as d2 = f2 + c2 by the Pythagorean theorem, and the desired
conclusion follows.

Put a = |x2−x1|, b = |y2−y1|, and c = |z2−z1|. Then d = |P1P2| is
the distance between P1 and P2. The distance formula is immediately
found:

(1.2) |P1P2| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 .

Note that the numbers (coordinates) (x1, y1, z1) and (x2, y2, z2) depend
on the choice of the coordinate system, whereas the number |P1P2| re-
mains the same in any coordinate system! For example, if the origin of
the coordinate system is translated to a point (x0, y0, z0) while the ori-
entation of the coordinate axes remains unchanged, then, according to
rule (1.1), the coordinates of P1 and P2 relative to the new coordinate
become (x1 −x0, y1 − y0, z1 − z0) and (x2 − x0, y2 − y0, z2 − z0), respec-
tively. The numerical value of the distance does not change because the
coordinate differences, (x2−x0)−(x1−x0) = x2−x1 (similarly for the y
and z coordinates), do not change. For example, the distance between
the points P1 = (−1, 0, 2) and P2 = (1, 2, 3), where the coordinates are
measured in meters, is

|P1P2| =
√

(1 − (−1))2 + (0 − 2)2 + (3 − 2)2 =
√

4 + 4 + 1 = 3m

Example 1.1. A point moves 3 units of length parallel to a line,
then it moves 6 units parallel to the second line that is perpendicular to
the first line, and then it moves 6 units parallel to the third line that is
perpendicular to the first and second lines. Find the distance between
the initial and final positions.
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Solution: The distance between points does not depend on the choice
of the coordinate system. Let the origin be positioned at the initial
point of the motion and the coordinate axes be directed parallel to
the corresponding three mutually perpendicular lines parallel to which
the point has moved. In this coordinate system, the trajectory of the
motion consists of three straight line segments (0, 0, 0) → (3, 0, 0) →
(3, 6, 0) → (3, 6, 6). The distance between the final point (3, 6, 6) and
the origin (0, 0, 0) is

D =
√

32 + 62 + 62 =
√

9(1 + 4 + 4) = 9 .

�

Verification of the distance axioms. Does the distance defined by (1.2)
satisfy the distance axioms? The first two axioms is not difficult to
verify. The distance |AB| is obviously non-negative for any A and
B. If A = B, then their coordinates coincide and, hence, |AB| =
0. Conversely, if |AB| = 0, the sum of squares of the differences of
the coordinates of A and B must be equal to zero, which is possible
only if each difference is equal to zero. So, the points have the same
coordinates and therefore A = B. Thus, the first axiom is fulfilled.

Clearly, |AB| = |BA| because (x1 − x2)
2 = (x2 − x1)

2 in (1.2) and
similarly for the other coordinates.

To verify the triangle inequality, consider the triangle ABC . Con-
struct the line through C that is perpendicular to the line through A
and B and intersects it at a point D. Then

|AC|2 = |AD|2 + |CD|2 ≥ |AD|2 ⇒ |AC| ≥ |AD|
The equality is possible only if C lies in the line segment AB. Similarly,

|BC| ≥ |BD| .
Since D lies in the line through A and B

|AD| + |BD| ≥ |AB|
and the equality is possible only if D lies in the line segment AB.
Therefore, the triangle inequality holds:

|AC|+ |BC| ≥ |AD| + |BD| ≥ |AB| .

Rigid Transformations in Space as Coordinate Transformations. Let P1 =
(x1, y1, z1) and P2 = (x2, y2, z2) relative to some rectangular coordinate
system. If P ′

1 = (x′
1, y

′
1, z

′
1) and P ′

2 = (x′
2, y

′
2, z

′
2) are images of P1 and

P2, respectively, under a rigid transformation, then

|P1P2| = |P ′
1P

′
2|
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by squaring this equality and using the distance formula (1.2)

(x2 −x1)
2 +(y2 − y1)

2 +(z2 − z1)
2 = (x′

2 −x′
1)

2 +(y′
2 − y′

1)
2 +(z′

2 − z′
1)

2

Conversely, any coordinate transformation (x, y, z) → (x′, y′, z′) for
which the above relation holds is a rigid transformation. Evidently, the
translation (1.1) satisfies this condition because x′

2 − x′
1 = (x2 − x0)−

(x1−x0) = x2−x1 and similarly y′
2−y′

1 = y2−y1 and z′
2−z1 = z2−z1.

The origin can always be translated to P1 so that in the new coor-
dinate system P1 = (0, 0, 0) and P2 = (x2 − x1, y2 − y1, z2 − z1). Then
any rigid transformation under which at least one point remains fixed
(the origin) is described by a coordinate transformation such that

(1.3) x2 + y2 + z2 = (x′)2 + (y′)2 + (z′)2

For example, a reflection about the origin

(x, y, z) → (−x,−y,−z) = (x′, y′, z′)

or a reflection in the xy plane

(x, y, z) → (−x, y, z) = (x′, y′, z′)

satisfy (1.3), and so do rotations about the origin.
In Study Problem 1.2 it is shown that under a counterclockwise

rotation of the coordinate system about the z axis through an angle φ

(1.4) x′ = x cos φ + y sin φ , y′ = y cos φ − x sin φ , z′ = z

In particular, under such a rotation through the angle φ = π/4:

(1.5) x′ =
1√
2

(x + y) , y′ =
1√
2
(y − x) , z′ = z .

It is not difficult to verify (1.3) (see Study Problem 1.2). A general
rotation in space is described in Study Problem 5.1.

It should be noted that the coordinate system obtained by the re-
flection of the coordinate axes about the origin cannot be obtained
by any rotation about the origin. Imagine that the thumb, index and
middle fingers of your right are extended in the directions of the axes
of a rectangular coordinate system, then it would not be possible to
match it with a similar coordinate system obtained by the same fingers
of your left hand by moving and rotating your wrists. It would only
be possible to match the directions of a pair of fingers. For example, if
the index and middle fingers of the right hand are moved so that they
point in the same directions as the index and middle fingers of the left
hand, then the thumbs would point in the opposite directions, that is,
a reflection is needed to match these left- and right-handed coordinate
system. Two coordinate systems (with the same origin) are said to
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have the same handedness if they can be obtained from another by a
rotations. All coordinate systems are split into two classes: left-handed
and right-handed systems. A reflection changes the handedness, while
rotations and translations do not. A more detailed discussion of left-
and right-handed coordinate system is postponed until Section 5.2.

1.8. Spheres in Space. In this course, relations between two equivalent
descriptions of objects in space – the geometrical and the algebraic
– will always be emphasized. One of the course objectives is to learn
how to interpret an algebraic equation by geometrical means and how to
describe geometrical objects in space algebraically. One of the simplest
examples of this kind is a sphere.

Geometrical Description of a Sphere. A sphere is a set of points in space
that are equidistant from a fixed point. The fixed point is called the
center of the sphere. The distance from the sphere center to any point
of the sphere is called the radius of the sphere.

Algebraic Description of a Sphere. An algebraic description of a sphere
implies finding an algebraic condition on coordinates (x, y, z) of points
in space that belong to the sphere. So let the center of the sphere
be a point P0 with coordinates (x0, y0, z0) (defined relative to some
rectangular coordinate system). If a point P with coordinates (x, y, z)
belongs to the sphere, then the numbers (x, y, z) must be such that the
distance |PP0| is the same for any such P and equal to the radius of
the sphere, denoted R, that is, |PP0| = R or

|PP0|2 = R2

(see Figure 1.3, left panel). Using the distance formula, this condition
can be written as

(1.6) (x − x0)
2 + (y − y0)

2 + (z − z0)
2 = R2 .

For example, the set of points with coordinates (x, y, z) that satisfy the
condition x2 + y2 + z2 = 4 is a sphere of radius R = 2 centered at the
origin x0 = y0 = z0 = 0.

Example 1.2. Find the center and the radius of the sphere
x2 + y2 + z2 − 2x + 4y − 6z + 5 = 0.

Solution: In order to find the coordinates of the center and the radius
of the sphere, the equation must be transformed to the standard form
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Figure 1.3. Left: A sphere is defined as a point set in
space. Each point P of the set has a fixed distance R from
a fixed point P0. The point P0 is the center of the sphere,
and R is the radius of the sphere. Right: An illustration to
Study Problem 1.2. Transformation of coordinates under a
rotation of the coordinate system in a plane.

(1.6) by completing the squares:

x2 − 2x = (x − 1)2 − 1 ,

y2 + 4y = (y + 2)2 − 4 ,

z2 − 6z = (z − 3)2 − 9 .

Then the equation of the sphere becomes

(x − 1)2 − 1 + (y + 2)2 − 4 + (z − 3)2 − 9 + 5 = 0 ,

(x − 1)2 + (y + 2)2 + (z − 3)2 = 9 .

The comparison with (1.6) shows that the center is at (x0, y0, z0) =
(1,−2, 3) and the radius is R =

√
9 = 3. �

1.9. Algebraic Description of Point Sets in Space. The idea of an alge-
braic description of a sphere can be extended to other sets in space. It
is convenient to introduce a brief notation for an algebraic description
of sets relative to some coordinate system. For example, for a set S
of points in space with coordinates (x, y, z) such that they satisfy the
algebraic condition (1.6), one writes

S =
{

(x, y, z)
∣

∣

∣
(x − x0)

2 + (y − y0)
2 + (z − z0)

2 = R2

}

.

This relation means that the set S is a collection of all points (x, y, z)
such that (the vertical bar) their rectangular coordinates satisfy (1.6).
The set

B =
{

(x, y, z)
∣

∣

∣
(x − x0)

2 + (y − y0)
2 + (z − z0)

2 ≤ R2

}
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consists of all points whose distance from the point (x0, y0, z0) does
not exceed R. Therefore, it is a (solid) ball of radius R centered at
(x0, y0, z0). The boundary sphere also belongs to B. If the inequality
≤ is replaced by the strict inequality < in the above description of B,
then the boundary sphere of radius R must be excluded from B. In the
latter case, the ball is called open.

Similarly, the xy plane can be viewed as a set of points whose z
coordinates vanish:

P =
{

(x, y, z)
∣

∣

∣ z = 0
}

.

The solid region in space that consists of points whose coordinates are
non-negative is called the first octant:

O1 =
{

(x, y, z)
∣

∣

∣
x ≥ 0, y ≥ 0, z ≥ 0

}

.

The spatial region

B =
{

(x, y, z)
∣

∣

∣ x > 0, y > 0, z > 0, x2 + y2 + z2 < 4
}

is the collection of all points in the portion of a ball of radius 2 that
lies in the first octant. The strict inequalities imply that the boundary
of this portion of the ball does not belong to the set B.

1.10. Study Problems.

Problem 1.1. Show that the coordinates of the midpoint of a straight
line segment are

(

x1 + x2

2
,

y1 + y2

2
,

z1 + z2

2

)

if the coordinates of its endpoints are (x1, y1, z1) and (x2, y2, z2).

Solution: Let P1 and P2 be the endpoints and let M be the point
with coordinates equal half-sums of the corresponding coordinates of
P1 and P2. One has to prove that

|MP1| = |MP2| =
1

2
|P1P2| .

These two conditions define M as the midpoint. Consider a rectangular
box B1 whose largest diagonal is P1M . The length of its side parallel
to the x axis is

∣

∣

∣

1

2
(x1 + x2) − x1

∣

∣

∣ = 1

2
|x2 − x1| .

Similarly, its sides parallel to the y and z axes have the lengths
|y2 − y1|/2 and |z2 − z1|/2, respectively. Consider a rectangular box B2
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whose largest diagonal is the segment MP2. Then its side parallel to
the x axis has the length

∣

∣

∣x2 − 1

2
(x1 + x2)

∣

∣

∣ = 1

2
|x2 − x1| .

Similarly, the sides parallel to the y and z axes have lengths |y2− y1|/2
and |z2 − z1|/2, respectively. Thus, the sides of B1 and B2 parallel to
each coordinate axis have the same length. By the distance formula
(1.2) the diagonals of B1 and B2 must have the same length |P2M | =
|MP1|. The lengths of the sides of a rectangular box whose largest
diagonal is P1P2 are a = |x2 − x1|, b = |y2 − y1|, and c = |z2 − z1|.
They are twice as long as the corresponding sides of B1 and B2. If the
length of each side of a rectangular box is scaled by a positive factor
q, then the length d of its diagonal is also scaled by q:
√

(qa)2 + (qb)2 + (qc)2 =
√

q2(a2 + b2 + c2) = q
√

a2 + b2 + c2 = qd .

In particular, this implies that |MP2| = 1

2
|P1P2|. �

Problem 1.2. Let (x, y, z) be coordinates of a point P . Consider a
new coordinate system that is obtained by rotating the x and y axes
about the z axis counterclockwise as viewed from the top of the z axis
through an angle φ. Let (x′, y′, z′) be coordinates of P in the new coor-
dinate system. Find the relations between the old and new coordinates.
Verify Eq. (1.3).

Solution: The height of P relative to the xy plane does not change
upon rotation. So z′ = z. It is therefore sufficient to consider rotations
in the xy plane, that is, for points P with coordinates (x, y, 0). Let
r = |OP | (the distance between the origin and P ) and let θ be the angle
counted from the positive x axis toward the ray OP counterclockwise
(see Figure 1.3, right panel). Then x = r cos θ and y = r sin θ (the polar
coordinates of P ). In the new coordinate system, the angle between
the positive x′ axis and the ray OP becomes θ′ = θ − φ. Therefore,

x′= r cos θ′ = r cos(θ − φ) = r cos θ cos φ + r sin θ sinφ

=x cos φ + y sin φ ,

y′= r sin θ′= r sin(θ − φ) = r sin θ cos φ − r cos θ sin φ

= y cos φ − x sinφ .

These equations define the transformation (x, y) → (x′, y′) of the old
coordinates to the new ones. The inverse transformation (x′, y′) →
(x, y) can be found by solving the equations for (x, y). A simpler way
is to note that if (x′, y′) are viewed as “old” coordinates and (x, y) as
“new” coordinates, then the transformation that relates them is the
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rotation through the angle −φ (a clockwise rotation). Therefore the
inverse relations can be obtained by swapping the “old” and “new”
coordinates and replacing φ by −φ in the direct relations. This yields

x = x′ cos φ − y′ sinφ , y = y′ cosφ + x′ sinφ .

Since z′ = z under rotations about the z axis, relation (1.3) has to be
verified only for the x and y coordinates:

(x′)2 + (y′)2 = (x cos φ + y sin φ)2 + (y cos φ − x sin φ)2

= x2 cos2 φ + 2xy cos φ sinφ + y2 sin2 φ

+x2 sin2 φ− 2xy cos φ sin φ + y2 cos2 φ

= x2 + y2

where the fundamental trigonometric identity cos2 φ + sin2 φ = 1 was
used. �

Problem 1.3. Give a geometrical description of the set

S =
{

(x, y, z)
∣

∣

∣
x2 + y2 + z2 − 4z = 0

}

.

Solution: The condition on the coordinates of points that belong
to the set contains the sum of squares of the coordinates just like the
equation of a sphere. The difference is that (1.6) contains the sum
of perfect squares. So the squares must be completed in the above
equation and the resulting expression has to be compared with (1.6).
One has

z2 − 4z = (z − 2)2 − 4

so that the condition becomes

x2 + y2 + (z − 2)2 = 4 .

It describes a sphere of radius R = 2 that is centered at the point
(x0, y0, z0) = (0, 0, 2); that is, the center of the sphere is on the z axis
at a distance of 2 units above the xy plane. �

Problem 1.4. Give a geometrical description of the set

C =
{

(x, y, z)
∣

∣

∣ x2 + y2 − 2x − 4y ≤ 4
}

.

Solution: As in the previous problem, the condition can be written
via the sum of perfect squares

(x − 1)2 + (y − 2)2 ≤ 9

by means the of relations x2−2x = (x−1)2−1 and y2−4y = (y−2)2−4.
In the xy plane, the inequality describes the set of points whose distance
from the point (1, 2, 0) does not exceed

√
9 = 3, which is the disk of
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radius 3 centered at the point (1, 2, 0). As the algebraic condition
imposes no restriction on the z coordinate of points in the set, in any
plane z = z0 parallel to the xy plane, the x and y coordinates satisfy
the same inequality, and hence the corresponding points also form a
disk of radius 3 with the center (1, 2, z0). Thus, the set is the union of
all such disks, which is a solid cylinder of radius 3 whose axis is parallel
to the z axis and passes through the point (1, 2, 0). �

Problem 1.5. Give a geometrical description of the set

P =
{

(x, y, z)
∣

∣

∣
z(y − x) = 0

}

.

Solution: The condition is satisfied if either z = 0 or y = x. The
former equation describes the xy plane. The latter represents a line
in the xy plane. Since it does not impose any restriction on the z
coordinate, each point of the line can be moved up and down parallel
to the z axis without leaving the set. The resulting set is a plane that
contains the line y = x in the xy plane and the z axis. Thus, the set
P is the union of this plane and the xy plane. �

Problem 1.6. Find an algebraic description of a plane P that con-
tains the point A = (1, 2, 3) and is perpendicular to the line through A
and B = (2, 1,−1).

Solution: Let P = (x, y, z) be a point in the plane P . Then the
straight line segments AP , BP , and AB must satisfy the Pythagorean
theorem (see Section 1.2)

P ∈ P ⇔ AP ⊥ AB ⇔ |AP |2 + |AB|2 = |BP |2 .

By the distance formula (1.2)

|AB|2 = (2 − 1)2 + (1 − 2)2 + (−1 − 3)2 = 18 ,

|AP |2 = (x − 1)2 + (y − 2)2 + (z − 3)2

= x2 + y2 + z2 − 2x − 4y − 6z + 14 ,

|BP |2 = (x − 2)2 + (y − 1)2 + (z + 1)2

= x2 + y2 + z2 − 4x − 2y + 2z + 6 .

Substituting these distances into the Pythagorean theorem and can-
celling the quadratic terms, one finds an algebraic description of the
plane as a point set in space:

P =
{

(x, y, z)
∣

∣

∣x − y − 4z = −13
}

.

�
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1.11. Exercises.

1–2. Find the distance between the specified points.

1. (1, 2,−3) and (−1, 0,−2)
2. (−1, 3,−2) and (−1, 2,−1)

3–4. Determine whether the given points lie in a straight line.

3. (8, 3,−3), (−1, 6, 3), and (2, 5, 1)
4. (−1, 4,−2), (1, 2, 2), and (−1, 2,−1)

5. Determine whether the points (1, 2, 3) and (3, 2, 1) lie in the plane
through O = (1, 1, 1) and perpendicular to the line through O and
B = (2, 2, 2). If not, find a point in this plane.
6. Find the distance from the point (1, 2,−3) to each of the coordinate
planes and to each of the coordinate axes.
7. Find the length of the medians of the triangle with vertices A =
(1, 2, 3), B = (−3, 2,−1), and C = (−1,−4, 1).
8. Let the set S consist of points (t, 2t, 3t) where −∞ < t < ∞. Find
the point of S that is the closest to the point (3, 2, 1). Sketch the set
S.
9–18. Give a geometrical description of the given set S of points defined
algebraically and sketch the set:

9. S = {(x, y, z) |x2 + y2 + z2 − 2x + 4y − 6z = 0}
10. S = {(x, y, z) |x2 + y2 + z2 ≥ 4}
11. S = {(x, y, z) |x2 + y2 + z2 ≤ 4, z > 0}
12. S = {(x, y, z) |x2 + y2 − 4y < 0, z > 0}
13. S = {(x, y, z) | 4 ≤ x2 + y2 + z2 ≤ 9}
14. S = {(x, y, z) |x2 + y2 ≥ 1, x2 + y2 + z2 ≤ 4}
15. S = {(x, y, z) |x2 + y2 + z2 − 2z < 0, z > 1}
16. S = {(x, y, z) |x2 + y2 + z2 − 2z = 0, z = 1}
17. S = {(x, y, z) | (x− a)(y − b)(z − c) = 0}
18. S = {(x, y, z) | |x| ≤ 1, |y| ≤ 2, |z| ≤ 3}

19–24. Sketch the given set of points and give its algebraic description.

19. A sphere whose diameter is the straight line segment AB,
where A = (1, 2, 3) and B = (3, 2, 1).

20. Three spheres centered at (1, 2, 3) that just barely touch the
xy, yz, and xz planes, respectively.

21. Three spheres centered at (1,−2, 3) that just barely touch the
x, y, and z coordinate axes, respectively.

22. The largest solid cube that is contained in a ball of radius
R centered at the origin. Solve the same problem if the ball
is not centered at the origin. Compare the cases when the
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boundaries of the solid are included into the set or excluded
from it.

23. The solid region that is a ball of radius R that has a cylin-
drical hole of radius R/2 whose axis is at a distance of R/2
from the center of the ball. Choose a convenient coordinate
system. Compare the cases when the boundaries of the solid
are included into the set or excluded from it.

24. The part of a ball of radius R that lies between two parallel
planes each of which is at a distance of a < R from the center
of the ball. Choose a convenient coordinate system. Compare
the cases when the boundaries of the solid are included into
the set or excluded from it.

25. Consider the points P such that the distance from P to the point
(−3, 6, 9) is twice the distance from P to the origin. Show that the set
of all such points is sphere, and find its center and radius.
26. Find the volume of the solid whose boundaries are the spheres
x2 + y2 + z2 − 6z = 0 and x2 + y2 − 2y + z2 − 6z = −9.
27. Find the volume of the solid that is described by the inequalities
|x− 1| ≤ 2, |y − 2| ≤ 1, and |z + 1| ≤ 2. Sketch the solid.
28. The solid region is described by the inequalities |x − a| ≤ a,
|y − b| ≤ b, |z − c| ≤ c, and (y − b)2 + (z − c)2 ≥ R2. If R ≤ min(b, c),
sketch the solid and find its volume.
29. Sketch the set of all points in the xy plane that are equidistant
from two given points A and B. Let A and B be (1, 2) and (−2,−1),
respectively. Give an algebraic description of the set.
30. Sketch the set of all points in space that are equidistant from two
given points A and B. Let A and B be (1, 2, 3) and (−3,−2,−1),
respectively. Give an algebraic description of the set.
31. A point P = (x, y) belongs to the set S in the xy plane if |PA| +
|PB| = c where A = (a, 0), B = (−a, 0), and c > 2a. Show that S is
an ellipse.
32. Determine whether the points A = (1, 0,−1), B = (3, 1, 1), and
C = (2, 2,−3) are vertices of a right-angled triangle.
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2. Vectors in Space

2.1. Oriented Segments and Vectors. Suppose there is a point like object
moving in space along a straight line with a constant rate, say, 5 m/s.
If the object was initially at a point P1, and in 1 second it arrives at
a point P2, then the distance traveled is |P1P2| = 5 m. The rate (or
speed) 5 m/s does not provide a complete description of the motion of
the object in space because it only answers the question “How fast does
the object move?” but it does not say anything about “Where to does
the object move?” Since the initial and final positions of the object are
known, both questions can be answered, if one associates an oriented

segment
−−→
P1P2 with the moving object (think of bow arrows). The arrow

specifies the direction, “from P1 to P2,” and the length |P1P2| defines
the rate (speed) at which the object moves. So, for every moving object,
one can assign an oriented segment whose length equals its speed and
whose direction coincides with the direction of motion. This oriented
segment is called a velocity.

At two distinct moments of time a point like object moving with a
constant speed along a straight line has different positions on the line.
The two oriented segments corresponding to the velocity of the object
at two different points have the same length and the same direction,
but they are still different because their initial points do not coincide.
Similarly, the oriented segments corresponding to the velocities of two
objects moving along parallel lines with the same speed would also
have the same length and the same direction, but their initial points
do not coincide. On the other hand, the velocity should describe a
particular physical property of the motion itself (“how fast and where
to”), and therefore the spatial position where the motion occurs should
not matter. This observation leads to the concept of a vector as an
abstract mathematical object that represents all oriented segments that
are parallel and have the same length.

Vectors will be denoted by boldface letters. Two oriented segments−→
AB and

−−→
CD represent the same vector a if they lie either in the same

line or in parallel lines, have the same direction and equal lengths
|AB| = |CD|. In this case, one also says that they are obtained by
parallel transport from one another.

A representation of an abstract vector by a particular oriented seg-

ment is denoted by the equality a =
−→
AB or a =

−−→
CD. The fact that the

oriented segments
−→
AB and

−−→
CD represent the same vector is denoted

by the equality
−→
AB =

−−→
CD. Note that this geometrical definition of a

vector is not related to any particular coordinate system.
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Figure 2.1. Left: Oriented segments obtained from one
another by parallel transport. They all represent the same
vector. Right: A vector as an ordered triple of numbers.
An oriented segment is transported parallel so that its ini-
tial point coincides with the origin of a rectangular coordi-
nate system. The coordinates of the terminal point of the
transported segment, (a1, a2, a3), are components of the cor-
responding vector. So a vector can always be written as an
ordered triple of numbers: a = 〈a1, a2, a3〉. By construc-
tion, the components of a vector depend on the choice of the
coordinate system.

2.2. Vector as an Ordered Triple of Numbers. Consider an oriented seg-

ment
−→
AB that represents a vector a (i.e., a =

−→
AB). An oriented

segment
−−→
A′B ′ represents the same vector if it is obtained by parallel

transport of
−→
AB. In particular, let us take A′ = O, where O is the

origin of some rectangular coordinate system. Then a =
−→
AB =

−−→
OB ′.

The direction and length of the oriented segment
−−→
OB ′ is uniquely de-

termined by the coordinates of the point B ′. Continuing the analogy
between vectors and velocities, one can say that a velocity of a point-
like object is uniquely determined by the coordinates of the point at
which the object arrives in one unit of time starting from the origin of
some rectangular coordinate system. In turn, all points in space are
in one-to-one correspondence with ordered triple of numbers being the
coordinates of points in a rectangular coordinate system.

Thus, the following algebraic definition of a vector can be adopted.

Definition 2.1. (Vectors).
A vector in space is an ordered triple of real numbers:

a = 〈a1 , a2 , a3〉 .

The numbers a1, a2, and a3 are called components of the vector a.
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Position vector of a point. Consider a point A with coordinates (a1, a2, a3)

in some rectangular coordinate system. The vector a =
−→
OA = 〈a1, a2, a3〉

is called the position vector of A relative to the given coordinate sys-

tem. Similarly, the vector
−→
PA is called the position vector of A relative

to the point P . There is a one-to-one correspondence between vectors
and points in space: for every point there is a unique (position) vec-
tor and every vector defines a unique point as the position vector of
the point relative to a fixed point (the zero vector corresponds to the
fixed point). This implies, in particular, that, if the coordinate system
is changed by a rigid transformation, the components of a vector a

are transformed in the same way as the coordinates of a point whose
position vector is a.

Definition 2.2. (Equality of Two Vectors).
Two vectors a and b are equal or coincide if their corresponding com-
ponents are equal:

a = b ⇐⇒ a1 = b1, a2 = b2, a3 = b3 .

This definition agrees with the geometrical definition of a vector as a
class of all oriented segments that are parallel and have the same length.
Indeed, if two oriented segments represent the same vector, then, after
parallel transport such that their initial points coincide with the origin,
their final points coincide too and hence have the same coordinates. By
virtue of the correspondence between vectors and points in space, this
definition reflects the fact that two same points should have the same
position vectors.

Example 2.1. Find the components of a vector
−−→
P1P2 if the coordi-

nates of P1 and P2 are (x1, y1, z1) and (x2, y2, z2), respectively.

Solution: Consider a rectangular box whose largest diagonal coin-
cides with the segment P1P2 and whose sides are parallel to the coordi-
nate axes. After parallel transport of the segment so that P1 moves to

the origin (see the right panel of Fig. 2.1 where a =
−−→
P1P2), the coordi-

nates of the other endpoint are the components of
−−→
P1P2. Alternatively,

the coordinate system can be moved parallel so that the origin of the
new coordinate system is the point P1. Therefore,

−−→
P1P2 = 〈x2 − x1, y2 − y1, z2 − z1〉,

according to the coordinate transformation law (1.1), where P0 = P1.
�

The above example shows that, in order to find the components

of the vector
−−→
P1P2, one has to subtract the coordinates of the initial
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point P1 from the corresponding coordinates of the final point P2. For
instance, if P1 = (1,−1, 2) and P2 = (0, 1, 4), then

−−→
P1P2 = 〈0 − 1, 1 − (−1), 4 − 2〉 = 〈−1, 2, 2〉

Definition 2.3. (Norm of a Vector). The number

‖a‖ =
√

a2
1 + a2

2 + a2
3

is called the norm of a vector a.

By Example 2.1 and the distance formula (1.2), the norm of a vector
is the length of any oriented segment representing the vector. The norm
of a vector is also called the magnitude or length of a vector.

Definition 2.4. (Zero Vector).
A vector with vanishing components, 0 = 〈0, 0, 0〉, is called a zero
vector.

A vector a is a zero vector if and only if its norm vanishes:

‖a‖ = 0 ⇔ a1 = a2 = a3 = 0 .

Indeed, if a = 0, then a1 = a2 = a3 = 0 and hence ‖a‖ = 0. For the
converse, it follows from the condition ‖a‖ = 0 that a2

1 + a2
2 + a2

3 = 0,
which is only possible if a1 = a2 = a3 = 0, or a = 0. Recall that an
“if and only if” statement implies two statements. First, if a = 0, then
‖a‖ = 0 (the direct statement). Second, if ‖a‖ = 0, then a = 0 (the
converse statement).

2.3. Vector Algebra. Continuing the analogy between the vectors and
velocities of a moving object, consider two objects moving parallel but
with different rates (speeds). Their velocities as vectors are parallel,
but they have different magnitudes. What is the relation between the
components of such vectors? Suppose that the objects are moving along
lines parallel to the x axis and the direction of the motion is the same as
that of the x axis. In this case the velocity vectors are v = 〈v, 0, 0〉 and
u = 〈u, 0, 0〉 where v and u are the speeds. Evidently, the components
of the vector v can be obtained by multiplying the components of u

by the number s = v/u. This rules holds in general. Indeed, take a
vector a = 〈a1, a2, a3〉. It can be viewed as the largest diagonal of a
rectangular box with one vertex at the origin and the opposite vertex
at the point (a1, a2, a3). The adjacent sides of the rectangular box have
lengths given by the corresponding components of a (modulo the signs
if the components happen to be negative). When the lengths of the
sides are scaled by a factor s > 0, a new rectangular box is obtained
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whose largest diagonal is parallel to a. The components of the vector
representing this diagonal are obtained by multiplying the components
of a by s. This geometrical observation leads to the following algebraic
rule.

Definition 2.5. (Multiplication of a Vector by a Number).
A vector a multiplied by a number s is a vector whose components are
multiplied by s:

sa = 〈sa1, sa2, sa3〉.
If s > 0, then the vector sa has the same direction as a. If s < 0,

then the vector sa has the direction opposite to a. For example, the
vector −a has the same magnitude as a but points in the direction
opposite to a. Two vectors having opposite directions are sometimes
called anti-parallel. Note that the non-zero opposite vectors a and
−a cannot be obtained from one another by parallel transport. The
magnitude of sa is:

‖sa‖ =
√

(sa1)2 + (sa2)2 + (sa3)2 =
√

s2

√

a2
1 + a2

2 + a2
3 = |s| ‖a‖ ;

that is, when a vector is multiplied by a number, its magnitude changes
by the factor |s|.

Figure 2.2. Left: Multiplication of a vector a by a number
s. If s > 0, the result of the multiplication is a vector parallel
to a whose length is scaled by the factor s. If s < 0, then
sa is a vector whose direction is the opposite to that of a

and whose length is scaled by |s|. Middle: Construction
of a unit vector parallel to a. The unit vector â is a vector
parallel to a whose length is 1. Therefore, it is obtained from
a by dividing the latter by its length ‖a‖, i.e., â = sa, where
s = 1/‖a‖. Right: A unit vector in a plane can always be
viewed as an oriented segment whose initial point is at the
origin of a coordinate system and whose terminal point lies
on the circle of unit radius centered at the origin. If θ is the
polar angle in the plane, then â = 〈cos θ, sin θ, 0〉.
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Changing units and multiplication by a number. In practical applica-
tions, components of a vector are often measured in certain units. If
units are changed, then numerical values of the components change by
a factor that converts the old unit to the new one. For example, let
the position vector of a point in space be a = 〈1, 2,−2〉 whose com-
ponents are given in centimeters. If now the unit of length is changed
to millimeters, the components of a are scaled by the conversion fac-
tor s = 10 (1 cm = 10 mm): 〈10, 20,−20〉 = 10〈1, 2,−2〉. Naturally,
the direction of a vector representing a physical quantity (e.g., veloc-
ity) cannot depend on the choice of units in which the components are
measured, while a numerical value of the magnitude depends on it (in
the above example ‖a‖ = 3cm = 30mm).

Parallel vectors. The geometrical analysis of the multiplication of a
vector by a number leads to the following simple algebraic criterion for
two vectors being parallel. Two nonzero vectors are parallel if and only
if they are proportional:

a ‖ b ⇔ a = sb

for some real s. If all the components of the vectors in question do not
vanish, then this criterion may also be written as

(2.1) a ‖ b ⇔ a1

b1

=
a2

b2

=
a3

b3

,

which is easy to verify. If, say, b1 = 0, then b is parallel to a when
a1 = b1 = 0 and a2/b2 = a3/b3. Owing to the geometrical interpretation
of sb, all points in space whose position vectors are parallel to a given
nonzero vector b form a line (through the origin) that is parallel to b.

It is terminologically, notationally, and algebraically convenient to
regard the zero vector as being parallel to every vector, since 0 = 0b
for all vectors b. (Note, however, that for nonzero parallel vectors, each
vector is a multiple of the other: if a = sb and a 6= 0, then s 6= 0 and
b = 1

s
a. But if a = 0 and b 6= 0, then a is a multiple of b (because

a = sb with s = 0), but b is not a multiple of a.)

Definition 2.6. (Unit Vector).
A vector â is called a unit vector if its norm equals 1, ‖â‖ = 1.

Any nonzero vector a can be turned into a unit vector â that is
parallel to a. The norm (length) of the vector sa reads ‖sa‖ = |s|‖a‖ =
s‖a‖ if s > 0. So, by choosing s = 1/‖a‖, the unit vector in the
direction of a is obtained:

â =
1

‖a‖ a =

〈

a1

‖a‖ ,
a2

‖a‖ ,
a3

‖a‖

〉

.
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For example, owing to the trigonometric identity, cos2 θ + sin2 θ = 1,
any unit vector in the xy plane can always be written in the form
â = 〈cos θ, sin θ, 0〉, where θ is the angle counted from the positive
x axis toward the vector a counterclockwise (see the right panel of
Fig. 2.2). In many practical applications, the components of a vec-
tor often have dimensions. For instance, the components of a position
vector are measured in units of length (meters, inches, etc.), the com-
ponents of a velocity vector are measured in, for example, meters per
second, and so on. The magnitude of a vector a has the same dimen-
sion as its components. Therefore, the corresponding unit vector â is
dimensionless. It specifies only the direction of a vector a.

Example 2.2. Let A = (1, 2, 3) and B = (3, 1, 1). Find a =
−→
AB,

b =
−→
BA, the unit vectors â and b̂, and the vector c = −2

−→
AB and its

norm.

Solution: By Example 2.1,

a = 〈3 − 1, 2 − 1, 1 − 3〉 = 〈2,−1,−2〉 .

The norm of a is

‖a‖ =
√

22 + (−1)2 + (−2)2 =
√

9 = 3 .

The unit vector in the direction of a is

â = 1

3
a = 〈2

3
, −1

3
, −2

3
〉 .

Using the rule of multiplication of vector by a number,

c = −2a = −2〈2,−1,−2〉 = 〈−4, 2, 4〉 ,

‖c‖ = ‖(−2)a‖ = | − 2|‖a‖ = 2‖a‖ = 6 .

The direction of
−→
BA is the opposite to

−→
AB and both the vectors have

the same length. Therefore
−→
BA = −−→

AB ⇒ b = −a = 〈−2, 1, 2〉 ,

‖b‖ = ‖a‖ = 3, and b̂ = −â = 〈−2/3, 1/3, 2/3〉. �

The Parallelogram Rule. Suppose a person is walking on the deck of a
ship with speed v m/s. In 1 second, the person goes a distance v from
a point A to a point B of the deck. The velocity vector relative to the

deck is v =
−→
AB and ‖v‖ = |AB| = v (the speed). The ship moves

relative to the water with a constant velocity so that in 1 second a
point of the deck moves to a point D from a point C on the surface
of the water. The ship’s velocity vector relative to the water is then
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u =
−−→
CD with magnitude u = ‖u‖ = |CD|. What is the velocity vector

of the person relative to the water?
Suppose the point A on the deck coincides with the point C on

the surface of the water. Then the velocity vector is the displacement
vector of the person relative to the water in 1 second. As the person
walks on the deck along the segment AB, this segment travels the
distance u parallel to itself along the vector u relative to the water. In
1 second, the point B of the deck is moved to a point B ′ on the surface
of the water so that the displacement vector of the person relative

to the water will be
−−→
AB ′. Apparently, the displacement vector

−−→
BB ′

coincides with the ship’s velocity u because B travels the distance u

parallel to u. This suggests a simple geometrical rule for finding
−−→
AB ′

as shown in Figure 2.3. Take the vector
−→
AB = v, place the vector u

(by transporting it parallel) so that its initial point coincides with B,
and make the oriented segment with the initial point of v and the final
point of u in this diagram. The resulting vector is the displacement
vector of the person relative to the surface of the water in 1 second
and hence defines the velocity of the person relative to the water. This
geometrical procedure is called addition of vectors.

Figure 2.3. Left: Parallelogram rule for adding two vec-
tors. If two vectors form adjacent sides of a parallelogram
at a vertex A, then the sum of the vectors is a vector
that coincides with the diagonal of the parallelogram and
originates at the vertex A. Right: Adding several vec-
tors by using the parallelogram rule. Given the first vec-
tor in the sum, all other vectors are transported parallel
so that the initial point of the next vector in the sum co-
incides with the terminal point of the previous one. The
sum is the vector that originates from the initial point of
the first vector and terminates at the terminal point of the
last vector. It does not depend on the order of vectors in
the sum.
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Consider a parallelogram whose adjacent sides, the vectors a and
b, extend from the vertex of the parallelogram. The sum of the vec-
tors a and b is a vector, denoted a + b, that is the diagonal of the
parallelogram extended from the same vertex. Note that the parallel
sides of the parallelogram represent the same vector (they are parallel
and have the same length). This geometrical rule for adding vectors
is called the parallelogram rule. It follows from the parallelogram rule
that the addition of vectors is commutative:

a + b = b + a;

that is, the order in which the vectors are added does not matter. To
add several vectors (e.g., a + b + c), one can first find a + b by the
parallelogram rule and then add c to the vector a + b. Alternatively,
the vectors b and c can be added first, and then the vector a can be
added to b + c. According to the parallelogram rule, the resulting
vector is the same:

(a + b) + c = a + (b + c) .

This means that the addition of vectors is associative. So several vec-
tors can be added in any order. Take the first vector, then move the
second vector parallel to itself so that its initial point coincides with the
terminal point of the first vector. The third vector is moved parallel
so that its initial point coincides with the terminal point of the second
vector, and so on. Finally, make a vector whose initial point coincides
with the initial point of the first vector and whose terminal point coin-
cides with the terminal point of the last vector in the sum. To visualize
this process, imagine a man walking along the first vector, then going
parallel to the second vector, then parallel to the third vector, and so
on. The endpoint of his walk is independent of the order in which he
chooses the vectors.

Algebraic Addition of Vectors.

Definition 2.7. The sum of two vectors a = 〈a1, a2, a3〉 and b =
〈b1, b2, b3〉 is a vector whose components are the sums of the correspond-
ing components of a and b:

a + b = 〈a1 + b1, a2 + b2, a3 + b3〉.
This definition is equivalent to the geometrical definition of adding

vectors, that is, the parallelogram rule that has been motivated by

studying the velocity of a combined motion. Indeed, put a =
−→
OA,

where the endpoint A has the coordinates (a1, a2, a3). A vector b rep-
resents all parallel segments of the same length ‖b‖. In particular, b is
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one such oriented segment whose initial point coincides with A. Sup-

pose that a+b =
−→
OC = 〈c1, c2, c3〉, where C has coordinates (c1, c2, c3).

By the parallelogram rule, b =
−→
AC. Using the relation between the

components of a vector and the coordinates of its endpoints (see Ex-
ample 2.1):

b =
−→
AC = 〈c1 − a1, c2 − a2, c3 − a3〉 ,

The equality of two vectors means the equality of the corresponding
components, that is, b1 = c1 − a1, b2 = c2 − a2, and b3 = c3 − a3, which
implies that

c1 = a1 + b1 , c2 = a2 + b2 , c3 = a3 + b3 ,

as required by Definition 2.7.

Rules of Vector Algebra. Combining addition of vectors with multipli-
cation by real numbers, the following simple rule can be established by
either geometrical or algebraic means:

s(a + b) = sa + sb , (s + t)a = sa + ta .

The difference of two vectors can be defined as

a− b = a + (−1)b .

In the parallelogram with adjacent sides a and b, the sum of vectors
a and (−1)b represents the vector that originates from the endpoint
of b and ends at the endpoint of a because b + [a + (−1)b] = a in
accordance with the geometrical rule for adding vectors; that is a ± b

are two diagonals of the parallelogram. The procedure is illustrated in
Figure 2.4 (left panel).

Example 2.3. An object travels 3 seconds with the velocity v =
〈1, 2, 4〉, where the components are given in meters per second, and then
2 seconds with the velocity u = 〈2, 4, 1〉. Find the distance between the
initial and terminal points of the motion.

Solution: Let the initial and terminal points be A and B, respec-
tively. Let C be the point at which the velocity was changed. Then−→
AC = 3v and

−−→
CB = 2u. Therefore

−→
AB =

−→
AC +

−−→
CB = 3v + 2u = 3〈1, 2, 4〉 + 2〈2, 4, 1〉

= 〈3, 6, 12〉 + 〈4, 8, 2〉 = 〈7, 14, 14〉 = 7〈1, 2, 2〉
The distance |AB| is the length (or the norm) of the vector

−→
AB. So

|AB| = ‖7〈1, 2, 2〉‖ = 7‖〈1, 2, 2〉‖ = 7
√

1 + 4 + 4 = 21

meters. �
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Figure 2.4. Left: Subtraction of two vectors. The differ-
ence a − b is viewed as the sum of a and −b, the vector
that has the direction opposite to b and the same length as
b. The parallelogram rule for adding a and −b shows that
the difference a− b = a + (−b) is the vector that originates
from the terminal point of b and ends at the terminal of a

if a and b are adjacent sides of a parallelogram; that is, the
sum a + b and the difference a − b are the two diagonals
of the parallelogram. Right: Illustration to Study Problem
2.1. Any vector in a plane can always be represented as a
linear combination of two nonparallel vectors.

2.4. Study Problems.

Problem 2.1. Consider two nonparallel vectors a and b in a plane.
Show that any vector c in this plane can be written as a unique linear
combination c = ta + sb for some real t and s.

Solution: By parallel transport, the vectors a, b, and c can be moved
so that their initial points coincide. The vectors ta and sb are parallel
to a and b, respectively, for all values of s and t. Consider the lines La

and Lb that contain the vectors a and b, respectively. Construct two
lines through the terminal point of c; one is parallel to La and the other
to Lb as shown in Figure 2.4 (right panel). The points of intersection
of these lines with La and Lb and the initial and terminal points of c

form the vertices of the parallelogram whose diagonal is c and whose
adjacent sides are parallel to a and b. Therefore, a and b can always be
scaled so that ta and sb become the adjacent sides of the constructed
parallelogram. For a given c, the reals t and s are uniquely defined
by the proposed geometrical construction. By the parallelogram rule,
c = ta + sb. �

Problem 2.2. Find the coordinates of a point B that is at a distance
of 6 units of length from the point A = (1,−1, 2) in the direction of the
vector v = 〈2, 1,−2〉.
Solution: Coordinates of a point are the corresponding components

of the position vector. The position vector of the point A is a =
−→
OA =
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〈1,−1, 2〉. By the parallelogram rule the position vector of the point
B is

b =
−−→
OB =

−→
OA +

−→
AB ,

where
−→
AB is parallel to the vector v. Therefore

−→
AB = sv ,

where s is a positive number to be chosen so that the length |AB| =
s‖v‖ equals 6. Since ‖v‖ = 3, one finds s = 2. Therefore,

b = a + sv = 〈1,−1, 2〉 + 2〈2, 1,−2〉 = 〈5, 1,−2〉 .

�

Problem 2.3. Consider a straight line segment with the endpoints
A = (1, 2, 3) and B = (−2,−1, 0). Find the coordinates of the point C
on the segment such that it is twice as far from A as it is from B.

Solution: The coordinates of C are the corresponding components of
its position vector. Let a = 〈1, 2, 3〉, b = 〈−2,−1, 0〉, and c be position
vectors of A, B, and C , respectively. The question is to express c via
a and b. One has

c = a +
−→
AC .

Since C lies in the straight line segment connecting A and B, the vector−→
AC is parallel to

−→
AB = b− a = 〈−3,−3,−3〉 and hence

−→
AC = s

−→
AB = s(b− a) .

To find s, note that |AC| = 2|CB| and

|AB| = |AC|+ |CB| = |AC|+ 1

2
|AC| = 3

2
|AC| ⇒ |AC| =

2

3
|AB|

and therefore s = 2

3
. Thus,

c = a +
2

3

−→
AB = a +

2

3
(b − a) = 〈1, 2, 3〉 − 〈2, 2, 2〉 = 〈−1, 0, 1〉 .

�

Problem 2.4. In Study Problem 2.1, let ‖a‖ = 1, ‖b‖ = 2, and the
angle between a and b be 2π/3 (the smallest angle between oriented
segments with a common initial point that represent the vectors a and
b). Find the coefficients s and t if the vector c has a norm of 6 and
bisects the angle between a and b.
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Solution: It follows from the solution of Study Problem 2.1 that the
numbers s and t do not depend on the coordinate system relative to
which the components of all the vectors are defined. So choose the
coordinate system so that a is parallel to the x axis and b lies in the
xy plane. With this choice, a = 〈1, 0, 0〉 and

b = ‖b‖ b̂ = ‖b‖〈cos(2π/3), sin(2π/3), 0〉 = 〈−1,
√

3, 0〉
where the unit vector b̂ has been found by the procedure given in the
right panel of Fig. 2.2. Similarly, c is the vector of length ‖c‖ = 6
that makes the angle π/3 with the x axis, and therefore c = 6ĉ =
6〈cos(π/3), sin(π/3), 0〉 = 〈3, 3

√
3, 0〉. Equating the corresponding com-

ponents in the relation

c = ta + sb ⇒ 〈3, 3
√

3, 0〉 = t〈1, 0, 0〉 + s〈−1,
√

3, 0〉 ,

one finds
3 = t − s

3
√

3 = s
√

3
⇒ t = 3 + s = 6

s = 3

Hence, c = 6a + 3b. �

Problem 2.5. According to the law of geometrical optics a ray of light
is reflected by a flat mirror so that the incident and reflected rays lie
in the plane that contains the line through the point of reflection and
perpendicular to the mirror (called the normal line), and the incident
and reflected rays make the same angle with the normal line. Suppose
the three coordinate planes are all mirrored. A light ray strikes the
mirrors. Determine the direction in which the reflected ray will go.

Solution: Consider a plane that contains the incident and reflected
rays. The normal line and the point of reflection O also lie in this plane.
Construct a circle in this plane that is of unit radius and centered
at the point O. Let A, B, and C be the points of intersection of
the circle with the incident and reflected rays and the normal line,
respectively. If û and v̂ are unit vectors in the directions of the incident

and reflected rays, respectively, then v̂ =
−−→
OB and û =

−→
AO = −−→

OA.

Since the angles COA and COB are equal, the components of
−−→
OB and−→

OA along the normal line are equal, too. Then it follows from û = −−→
OA

that the components of û and v̂ along the normal line are opposite.
Since the segment OC bisects the angle AOB, the components of û

and v̂ along the mirror coincide (see the right panel of Fig. 2.2 and
set the normal line along the vertical axis). Thus, under a reflection
from a plane mirror, only the component of û along the normal line
changes its sign. Therefore, after three consecutive reflections from
each coordinate plane, all three components of û change their signs,
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and the reflected ray will go parallel to the incident ray but in the
exact opposite direction. For example, suppose the ray is reflected first
by the xz plane, then by the yz plane, and finally by the xy plane.
In this case, û = 〈u1, u2, u3〉 → 〈u1,−u2, u3〉 → 〈−u1,−u2, u3〉 →
〈−u1,−u2,−u3〉 = −û. �

Cat’s-eyes reflectors. The above reflection principle is used to design
reflectors like the cat’s-eyes on bicycles and those that mark lane bor-
ders on a road. No matter from which direction such a reflector is
illuminated (e.g., by headlights of a car), the reflected light goes back
to the light source so that the reflectors can always be seen by a car
driver as bright spots.

2.5. Exercises.

1–5. Find the components and norms of each of the following vectors:

1.
−→
AB where A = (1, 2, 3) and B = (−1, 5, 1).

2.
−→
BA where A = (1, 2, 3) and B = (−1, 5, 1).

3.
−→
AC where C is the midpoint of the line segment AB with
A = (1, 2, 3) and B = (−1, 5, 1).

4. The position vector of a point P obtained from the point A =
(−1, 2,−1) by moving the latter along a straight line by a
distance of 3 units in the direction of the vector u = 〈2, 2, 1〉
then by a distance of 10 units in the direction of the vector
w = 〈−3, 0,−4〉.

5. The position vector of the vertex C of a triangle ABC in the
first quadrant of the xy plane if A is at the origin, B = (a, 0, 0),
the angle at the vertex B is 2π/3, and |BC| = 2a.

6. Are the points A = (−3, 1, 2), B = (1, 5,−2), C = (0, 3,−1), and
D = (−2, 3, 1) vertices of a parallelogram?
7. If A = (2, 0, 3), B = (−1, 2, 0), and C = (0, 3, 1), determine the
point D such that A, B, C , and D are vertices of a parallelogram with
sides AB, BC , CD, and DA.
8. A parallelogram has a vertex at A = (1, 2, 3) and two sides a =
〈1, 0,−2〉 and b = 〈3,−2, 6〉 adjacent at A. Find the coordinates of
the point of intersection of the diagonals of the parallelogram.
9. Draw two vectors a and b that are neither parallel and nor perpen-
dicular. Sketch each of the following vectors: a + 2b, b− 2a, a − 1

2
b,

and 2a + 3b.
10. Draw three vectors a, b, and c in a plane, with none of them
parallel to either of the others. Sketch each of the following vectors:
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a + (b− c), (a + b) − c, 2a− 3(b + c), and (2a − 3b) − 3c.

11. Let a = 〈2,−1,−2〉 and b = 〈−3, 0, 4〉. Find unit vectors â and b̂.

Express 6â − 15b̂ in terms of a and b.
12. Let a and b be vectors in the xy plane such that their sum c = a+b

makes the angle π/3 with a and has the length twice the length of a.
Find b if a is based at the origin, has its terminal point in the first
quadrant, makes an angle π/3 with the positive x-axis, and has length
a. There are two vectors b with these properties. Find both of them.
13. Consider a triangle ABC . Let a be a vector from the vertex A to
the midpoint of the side BC , let b be a vector from B to the midpoint
of AC , and let c be a vector from C to the midpoint of AB. Use vector
algebra to find a + b + c, that is, do not resort to writing vectors in
component-form; just use properties of vector addition, subtraction,
and multiplication by scalars.
14. Let ûk, k = 1, 2, ..., n, be unit vectors in the plane such that the
smallest angle between the two vectors ûk and ûk+1 is 2π/n. What is
the sum vn = û1 + û2 + · · · + ûn for an even n? Sketch the sum for
n = 1, n = 3, and n = 5. Compare the norms ‖vn‖ for n = 1, 3, 5.
Investigate the limit of vn as n → ∞ by studying the limit of ‖vn‖ as
n → ∞.
15. Let ûk, k = 1, 2, ..., n, be unit vectors as defined in Exercise 14.
Let wk = ûk+1 − ûk for k = 1, 2, ..., n− 1 and wn = û1 − ûn. Find the
limit of ‖w1‖+ ‖w2‖+ · · ·+ ‖wn‖ as n → ∞. Hint: Use a geometrical
interpretation of the sum.
16. Suppose a wind is blowing at a speed of u mi/h in the direction
that is 0 < α < 90◦ degrees west of the northerly direction. A pilot
is steering a plane in the direction that is 0 < β < 90◦ degrees east
of the northerly direction at an airspeed (speed in still air) of v > u
mi/h. The true course of the plane is the direction of the resultant of
the velocity vectors of the plane and the wind. The ground speed is
the magnitude of the resultant. Find the true course and the ground
speed of the plane. If α, u, and v are fixed, what is the direction in
which the pilot should steer the plane to make the true course north?
17. Use vector algebra (do not resort to writing vectors in component-
form) to show that the line segment joining the midpoints of two sides
of a triangle is parallel to the third side and half its length.
18– 21. Describe geometrically the set of points whose position vectors
r satisfy the given conditions.

18. ‖r − a‖ = k and r lies in the xy plane, where a is a vector in
the xy plane and k > 0.
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19. ‖r− a‖+ ‖r−b‖ = k and r lies in the xy plane, where a and
b are vectors in the xy plane and k > ‖a− b‖.

20. ‖r − a‖ = k, where a is a vector in space and k > 0.
21. ‖r− a‖+ ‖r−b‖ = k, where a and b are vectors in space and

k > ‖a− b‖.
22. Let point-like massive objects be positioned at Pi, i = 1, 2, ..., n,
and let mi be the mass at Pi. The point P0 is called the center of
mass if

m1

−−→
P0P1 + m2

−−→
P0P2 + · · · + mn

−−−→
P0Pn = 0

Express the position vector r0 of P0 in terms of the position vectors
ri of Pi. In particular, find the center of mass of three point masses,
m1 = m2 = m3 = m, located at the vertices of a triangle ABC for
A = (1, 2, 3), B = (−1, 0, 1), and C = (1, 1,−1).
23. Consider the graph y = f(x) of a differentiable function and the
line tangent to it at a point x = a. Express components of a vector
parallel to the line in terms of the derivative f ′(a) and find a vector
perpendicular to the line. In particular, find such vectors for the graph
y = x2 at the point x = 1.
24. Let the vectors a, b, and c have fixed lengths a, b, and c, respec-
tively, while their direction may be changed. Is it always possible to
achieve a + b + c = 0? If not, formulate the most general condition
under which it is possible.
25. Let the vectors a and b have fixed lengths, while their directions
may be changed. Put c± = ‖a ± b‖. It is always possible to achieve
that c− > c+, or c− = c+, or c− < c+? If so, give examples of the
corresponding relative directions of a and b.
26. A point object travels in the xy plane, starting from an initial
point P0. Its trajectory consists of straight line-segments, where the
nth segment starts at point Pn−1 and ends at point Pn (for n ≥ 1).
When the object reaches Pn, it makes a 90–degree counterclockwise
turn to proceed towards Pn+1. (Thus each segment, other than the
first, is perpendicular to the preceding segment.) The length of the
first segment is a. For n ≥ 2, the nth segment is s times as long as the
(n−1)st segment, where s is a fixed number between 0 and 1 (strictly).
If the object keeps moving forever,
(i) what is the farthest distance it ever gets from P0, and
(ii) what is the distance between P0 and the limiting position P∞ that
the object approaches?
Hint: Investigate the components of the position vector of the object
in an appropriate coordinate system.
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3. The Dot Product

Definition 3.1. (Dot Product).
The dot product a ·b of two vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉
is a number:

a · b = a1b1 + a2b2 + a3b3.

By using this definition it is straightforward to verify that the dot
product has the following properties:

a · b = b · a ,

(sa) · b = s(a · b) ,

a · (b + c) = a · b + a · c,

which hold for any vectors a, b, and c and a number s. The first
property states that the order in which two vectors are multiplied in the
dot product does not matter; that is, the dot product is commutative.
It is a trivial consequence of commutativity of multiplication of real
numbers:

a · b = a1b1 + a2b2 + a3b3 = b1a1 + b2a2 + b3a3 = b · a .

The second property means that the result of the dot product does not
depend on whether the vector a is scaled first and then multiplied by b

or the dot product a · b is computed first and the result multiplied by
s. The third relation shows that the dot product is distributive. Both
the properties also follow from the algebraic rules for real numbers just
as the first one.

Example 3.1. Let a = 〈1, 2, 3〉, b = 〈2,−1, 1〉 and c = 〈1, 1,−1〉.
Find a · (2b− 5c).

Solution: One has

a · b = 1 · 2 + 2 · (−1) + 3 · 1 = 2 − 2 + 3 = 3

and, similarly,

a · c = 1 + 2 − 3 = 0 .

By the properties of the dot product:

a · (2b − 5c) = 2a · b− 5a · c = 2 · 3 − 5 · 0 = 6 .

�
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3.1. Geometrical Significance of the Dot Product. As it stands, the dot
product is an algebraic rule for calculating a number out of six given
numbers that are components of the two vectors involved. The compo-
nents of a vector depend on the choice of the coordinate system. Recall
that a rectangular coordinate system can be changed by a rigid trans-
formation (a composition of rotations, translations, and reflections).
Naturally, one should ask whether the numerical value of the dot prod-
uct depends on the coordinate system relative to which the components
of the vectors are determined. It turns out that it does not. Therefore,

the numerical value of the dot product represents an intrinsic
geometrical quantity associated with two oriented segments in
the product.

To elucidate the geometrical significance of the dot product, note first
the relation between the dot product and the norm (length) of a vector:

a · a = a2
1 + a2

2 + a2
3 = ‖a‖2 or ‖a‖ =

√
a · a .

Thus, if a = b in the dot product, then the latter does not depend
on the coordinate system with respect to which the components of a

are defined. Next, consider the triangle whose adjacent sides are the
vectors a and b as depicted in Figure 3.1 (left panel). Then the other
side of the triangle can be represented by the difference c = b−a. The
squared length of this latter side is

(3.1) c · c = (b− a) · (b− a) = b · b + a · a − 2a · b,

where the algebraic properties of the dot product have been used.
Therefore, the dot product can be expressed via the geometrical in-
variants, namely, the lengths of the sides of the triangle:

(3.2) a · b =
1

2

(

‖a‖2 + ‖b‖2 − ‖c‖2
)

.

This means that the numerical value of the dot product is independent
of the choice of a coordinate system.

In particular, let us take the coordinate system in which the vector
a is parallel to the x axis and the vector b lies in the xy plane as
shown in Figure 3.1 (right panel). Let the angle between a and b be θ.
By definition (given in Section 1.2), this angle lies in the interval [0, π]
(it is the smallest angle between two adjoint straight line segments).
When θ = 0, the vectors a and b point in the same direction. When
θ = π/2, they are said to be orthogonal or perpendicular, and they
point in the opposite directions if θ = π. In the chosen coordinate
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Figure 3.1. Left: Independence of the dot product from
the choice of a coordinate system. The dot product of
two vectors that are adjacent sides of a triangle can be ex-
pressed via the lengths of the triangle sides as shown in
(3.2). Right: Geometrical significance of the dot prod-
uct. It determines the angle between two vectors as stated
in (3.3). Two nonzero vectors are perpendicular if and only
if their dot product vanishes. This follows from (3.2) and the
Pythagorean theorem: ‖a‖2 +‖b‖2 = ‖c‖2 for a right-angled
triangle.

system, a = 〈‖a‖, 0, 0〉 and b = 〈‖b‖ cos θ, ‖b‖ sin θ, 0〉. Hence,

(3.3) a · b = ‖a‖‖b‖ cos θ or cos θ =
a · b

‖a‖‖b‖ .

Equation (3.3) reveals the geometrical significance of the dot product.
It determines the angle between two oriented segments in space. It
provides a simple algebraic method to establish a mutual orientation
of two straight line segments in space.

Theorem 3.1. (Geometrical Significance of the Dot Product).
If θ is the angle between nonzero vectors a and b, then

a · b = ‖a‖‖b‖ cos θ .

In particular, two nonzero vectors are orthogonal if and only if their
dot product vanishes:

a ⊥ b ⇐⇒ a · b = 0.

It is terminologically, notationally, and algebraically convenient to
regard the zero vector as being perpendicular to every vector, since
0 · b = 0 for all vectors b. Thus the zero vector is simultaneously
parallel and perpendicular to every vector. It is easy to show that 0

is the only vector that is simultaneously parallel and perpendicular to
any nonzero vector (Exercise 6).
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For a triangle with sides a, b, and c and an angle θ between sides a
and b, the cosine law for triangles follows from the relation (3.1)

c2 = a2 + b2 − 2ab cos θ.

For a right-angled triangle, c2 = a2 + b2 (the Pythagorean theorem).

Example 3.2. Consider a triangle whose vertices are A = (1, 1, 1),
B = (−1, 2, 3), and C = (1, 4,−3). Find all the angles of the triangle.

Solution: Let the angles at the vertices A, B, and C be α, β, and γ,
respectively. Then α + β + γ = 180◦. So it is sufficient to find any two

angles. To find the angle α, define the vectors a =
−→
AB = 〈−2, 1, 2〉

and b =
−→
AC = 〈0, 3,−4〉. The initial point of these vectors is A, and

hence the angle between the vectors coincides with α. Since ‖a‖ = 3
and ‖b‖ = 5, by the geometrical property of the dot product,

cos α =
a · b

‖a‖‖b‖ =
0 + 3 − 8

15
= −1

3
⇒

α = cos−1(−1/3) ≈ 109.5◦ .

To find the angle β, define the vectors a =
−→
BA = 〈2,−1,−2〉 and

b =
−−→
BC = 〈2, 2,−6〉 with the initial point at the vertex B. Then the

angle between these vectors coincides with β. Since ‖a‖ = 3, ‖b‖ =
2
√

11, and a · b = 4 − 2 + 12 = 14, one finds cos β = 14/(6
√

11) and
β = cos−1(7/(3

√
11)) ≈ 45.3◦. Therefore, γ ≈ 180◦ − 109.5◦ − 45.3◦ =

25.2◦. Note that the range of the function cos−1 must be taken from
0◦ to 180◦ in accordance with the definition of the angle between two
vectors. �

3.2. Further geometrical properties of the dot product.

Corollary 3.1. (Orthogonal decomposition of a vector)
Given a nonzero vector a, any vector b can be uniquely decomposed
into the sum of two orthogonal vectors one of which is parallel to a:

b = b⊥ + b‖, b⊥ = b− sa, s =
b · a
‖a‖2

, b‖ = sa

where b⊥ is orthogonal to b‖ and a, while b‖ is parallel to a.

Indeed, given a and b, put b⊥ = b − sa and demand that b⊥ is
orthogonal to a, that is,

a · b⊥ = 0 .
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This condition uniquely determines the coefficient s:

a · b − sa · a = 0 ⇒ s = b · a/‖a‖2 .

The vectors b⊥ and b‖ are called the orthogonal and parallel compo-
nents of b relative to the vector a. Let â = a/‖a‖ be the unit vector
along a. Then

b‖ = b‖â , b‖ =
a · b
‖a‖ = ‖b‖ cos θ .

The vector b‖ is also called a vector projection of b onto a, and the
number b‖ is called a scalar projection of b onto a. The orthogonal
decomposition b = b⊥ +b‖ is shown in Fig. 3.3 (right panel). It is also
easy to see from the figure that ‖b⊥‖ = ‖b‖ sin θ.

Example 3.3. Let a = 〈1,−2, 1〉 and b = 〈5, 1, 9〉. Find the or-
thogonal decomposition

b = b⊥ + b‖

relative to the vector a.

Solution: One has a · b = 5 − 2 + 9 = 12 and ‖a‖2 = a · a =
1 + (−2)2 + 1 = 6. Therefore s = 12/6 = 2,

b‖ = sa = 2〈1,−2, 1〉 = 〈2,−4, 2〉 ,

and

b⊥ = b− b‖ = 〈5, 1, 9〉 − 〈2,−4, 2〉 = 〈3, 5, 7〉 .

The result can also be verified: a · b⊥ = 3 − 10 + 7 = 0, i.e., a is
orthogonal to b⊥ as required. �

Theorem 3.2. (Cauchy-Schwarz Inequality).
For any two vectors a and b,

|a · b| ≤ ‖a‖ ‖b‖,
where the equality is reached only if the vectors are parallel.

This inequality is a direct consequence of the first relation in (3.3)
and the inequality | cos θ| ≤ 1. The equality is reached only when θ = 0
or θ = π, that is, when a and b are parallel or anti-parallel.

Theorem 3.3. (Triangle Inequality).
For any two vectors a and b,

‖a + b‖ ≤ ‖a‖ + ‖b‖.
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Proof. Put ‖a‖ = a and ‖b‖ = b so that a · a = ‖a‖2 = a2 and
similarly b · b = b2. Using the algebraic rules for the dot product,

‖a + b‖2 = (a + b) · (a + b)

= a2 + b2 + 2a · b
≤ a2 + b2 + 2ab = (a + b)2 ,

where the Cauchy-Schwarz inequality has been used. By taking the
square root of both sides, the triangle inequality is obtained. �

The triangle inequality has a simple geometrical meaning. Consider
a triangle with sides a, b, and c. The directions of the vectors are
chosen so that c = a + b. The triangle inequality states that the
length ‖c‖ cannot exceed the total length of the other two sides. It is
also clear that the maximal length ‖c‖ = ‖a‖ + ‖b‖ is attained only
if a and b are parallel and point in the same direction. If they are
antiparallel (they point in the opposite directions), then the length ‖c‖
becomes minimal and coincides with |‖a‖ − ‖b‖|. The absolute value
is necessary as the length of a may be less than the length of b. This
observation can be stated in the following algebraic form:

(3.4)
∣

∣

∣
‖a‖ − ‖b‖

∣

∣

∣
≤ ‖a + b‖ ≤ ‖a‖ + ‖b‖.

3.3. Direction Angles. Consider three unit vectors

ê1 = 〈1, 0, 0〉 , ê2 = 〈0, 1, 0〉 , ê3 = 〈0, 0, 1〉

that are parallel to the coordinate axes x, y, and z, respectively. By
the rules of vector algebra, any vector can be written as the sum of
three mutually perpendicular vectors:

a = 〈a1, a2, a3〉 = a1ê1 + a2ê2 + a3ê3 .

The vectors a1ê1, a2ê2, and a3ê3 are adjacent sides of the rectangular
box whose largest diagonal coincides with the vector a as shown in
Figure 3.2 (right panel). Define the angle α as the smallest angle
between the positive x semiaxis and the vector a. Evidently, 0 ≤ α ≤ π
for any nonzero vector a. In other words, the angle α is the angle
between ê1 and a. Similarly, the angles β and γ are, by definition, the
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Figure 3.2. Left: Direction angles of a vector are defined
as the angles between the vector and three coordinates axes.
Each angle ranges between 0 and π. They are the smallest
angles between the oriented segment representing the vector
and the positive coordinate semiaxes. The cosines of the
direction angles of a vector are components of the unit vector
parallel to that vector. Right: The decomposition of a vector
a into the sum of three mutually perpendicular vectors that
are parallel to the coordinate axes of a rectangular coordinate
system. The vector is the diagonal of the rectangular box
whose edges are formed by the vectors in the sum.

angles between a and the unit vectors ê2 and ê3, respectively. Then

cosα =
ê1 · a

‖ê1‖‖a‖
=

a1

‖a‖ ,

cosβ =
ê2 · a

‖ê2‖‖a‖
=

a2

‖a‖ ,

cos γ =
ê3 · a

‖ê3‖‖a‖
=

a3

‖a‖ .

These cosines are nothing but the components of the unit vector parallel
to a:

â =
1

‖a‖ a = 〈cos α, cos β, cos γ〉 .

Thus, the angles α, β, and γ uniquely determine the direction of a
vector. For this reason, they are called direction angles. Note that they
cannot be set independently because they always satisfy the condition
‖â‖ = 1 or

cos2 α + cos2 β + cos2 γ = 1 .
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In practice (physics, mechanics, etc.), vectors are often specified by
their magnitude ‖a‖ = a and direction angles. The components are
then found by a1 = a cos α, a2 = a cos β, and a3 = a cos γ.

3.4. Basis vectors and coordinate systems. Any vector a, as a particu-
lar element 〈a1, a2, a3〉 of the set of all ordered triples of numbers, is
uniquely represented as a linear combination of three particular vec-
tors ê1 = 〈1, 0, 0〉, ê2 = 〈0, 1, 0〉, and ê3 = 〈0, 0, 1〉. They are called the
standard basis. There are other triples of vectors with the characteristic
property that any vector is a unique linear combination of them.

Given three three mutually orthogonal unit vectors ûi, i = 1, 2, 3,
any vector in space can be uniquely expanded into the sum

a = s1û1 + s2û2 + s3û3

where the numbers si are the scalar projections of a onto ûi. Indeed,
by Corollary 3.1 a vector a has the unique orthogonal decomposition
relative to û1:

a = a‖ + a⊥ = (a · û1)û1 + a⊥ = s1û1 + a⊥

where s1 = a · û1 (recall ‖û1‖ = 1) and the vector a⊥ is perpendicular
to û1. Similarly, the vector a⊥ = a − s1û1 has the unique orthogonal
decomposition relative to û2. The parallel component of a⊥ relative to
û2 is (a⊥ · û2)û2 = (a · û2)û2 = s2û2, since û1 · û2 = 0. The vector
b = a− s1û1 − s2û2 is perpendicular to both û1 and û2 and therefore
parallel to û3. Hence, b = (b · û3)û3 = (a · û3)û3 = s3û3 owing to the
mutual orthogonality of ûi. By construction of the coefficients si, the
vector c = a − s1û1 − s2û2 − s3û3 is perpendicular to three mutually
perpendicular vectors ûi. Only the zero vector satisfies this condition
in space, c = 0, and therefore

a = a1ê1 + a2ê2 + a3ê3 = s1û1 + s2û2 + s3û3

A triple of mutually orthogonal unit vectors is called an orthonor-
mal basis in space. So with any orthonormal basis one can associate a
rectangular coordinate system in which the coordinates of a point are
given by the scalar projections of its position vector onto the basis vec-
tors. Consider two coordinate systems with common origin associated
with the basis êi and with the basis ûi. If a is a position vector of a
point A, then components of a in these two bases are coordinates of
A in the corresponding coordinate systems. The “new” coordinates si

can be expressed in terms of the “old” coordinates ai by means of the
above equation:

si = a · ûi = a1(ê1 · ûi) + a2(ê2 · ûi) + a3(ê3 · ûi) , i = 1, 2, 3 .
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Similarly, the inverse relations are

aj = a · êj = s1(û1 · êj) + s2(û2 · êj) + s3(û3 · êj) , j = 1, 2, 3 .

These relations solve the problem of changing the coordinate system in
space (when the origin is fixed) introduced in Section 1.6. The numbers
êj · ûi, i, j = 1, 2, 3, determine the transformation of coordinates under
changing the coordinate system. For a fixed j, they are cosines of the
direction angles of êj relative to the new coordinate system associated
with the basis ûi. For a fixed i, they are cosines of the direction angles
of ûi relative to the old coordinate system. A further discussion is given
in Study Problem 5.1.

Example 3.4. Verify that the vectors Let u1 = 〈1,−1, 0〉, u2 =
〈1, 1, 1〉, and u3 = 〈−1,−1, 2〉 are mutually orthogonal. Find the cor-
responding unit vectors ûi, i = 1, 2, 3. They form an orthonormal basis.
Consider a new rectangular coordinate system with the same origin and
whose axes are oriented along the basis vectors ûi. If P = (1, 2, 3), find
the coordinates of the point P in the new coordinate system.

Solution: One has u1 · u2 = 1− 1 = 0. So the vectors u1 and u2 are
orthogonal. Similarly, u1 · u3 = 0 and u2 · u3 = 0. Then

û1 =
1

‖u1‖
u1 =

1√
2
u1 =

1√
2
〈1,−1, 0〉,

û2 =
1

‖u2‖
u2 =

1√
3
u2 =

1√
3
〈1, 1, 1〉,

û3 =
1

‖u3‖
u3 =

1√
6
u3 =

1√
6
〈−1,−1, 2〉

Let r =
−→
OP = 〈1, 2, 3〉 be the position vector of the point P . Then

r = ê1 + 2ê2 + 3ê3 = s1û1 + s2û2 + s3û3

where si, i = 1, 2, 3, are the coordinates of P in the new coordinate
system. It follows from this equation that

s1 = r · û1 = 1√
2
(1 − 2 + 0) = − 1√

2
,

s2 = r · û2 = 1√
3
(1 + 2 + 3) = 2

√
3,

s3 = r · û3 = 1√
6
(1 + 2 − 6) = −

√
3√
2
.

�

Definition 3.2. (Basis in Space)
A triple of vectors u1, u2, and u3 is called a basis in space if any vector
a can be uniquely represented as a linear combination of them: a =
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s1u1+s2u2+s3u3. The coefficients s1, s2, and s3 are called components
of a in the basis. If the basis vectors are mutually orthogonal, the basis
is called orthogonal and if, in addition, they are unit vectors, then the
basis is called orthonormal.

A basis may contain vectors that are not necessarily orthogonal or
unit. For example, a vector in a plane is a unique linear combination of
two given non-parallel vectors in the plane (Study Problem 2.1). In this
sense, any two non-parallel vectors in a plane define a (non-orthogonal)
basis in a plane.

Definition 3.3. (Coplanar vectors)
Three vectors are called coplanar if one of them is a linear combination
of the others.

Coplanar vectors lie in a plane. Evidently, three mutually orthogo-
nal unit vectors are not coplanar. There are other triple of vectors that
are not in a plane and, hence, none of them is a linear combination of
the other two. Such vectors are called linearly independent. Thus, three
vectors a, b, and c are linearly independent if and only if the vector
equation xa+yb+zc = 0 has only a trivial solution x = y = z = 0 be-
cause otherwise one of the vectors is a linear combination of the others.
For example if x 6= 0, then a = −(y/x)b − (z/x)c. It can be proved
that any three linearly independent vectors form a basis in space (Study
Problems 3.1 and 3.2). So any vector in space is a linear combination
of three non-coplanar vectors just like any vector in a plane is a linear
combination of two non-parallel vectors in the plane and any vector in
a line is a multiple of one non-zero vector in the line. For this reason,
a line, a plane, and space are said to have dimensions one, two, and
three, respectively.

3.5. Non-rectangular coordinate systems. Let nonzero vectors a, b, and
c be linearly independent in space. Consider two points P and Q whose
respective position vectors are p and q relative to some rectangular
coordinate system. Then there are unique decompositions

p = p1a + p2b + p3c, q = q1a + q2b + q3c

Two vectors coincide, p = q, coincide if and only if their corresponding
decomposition coefficients are equal, p1 = q1, p2 = q2, and p3 = q3.
Indeed, the condition p = q is equivalent to p− q = 0 and by rules of
vector algebra

p − q = (p1 − q1)a + (p2 − q2)b + (p3 − q3)c = 0
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By linear independence of the vectors a, b, and c, this equation has
only trivial solution, p1 − q1 = 0, p2 − q2 = 0, and p3 − q3 = 0.

Consider three lines through the origin along the vectors a, b, and
c. Let us turn the lines into coordinate axes oriented parallel to the
vectors a, b, and c by defining the coordinate grid on them so that the
distance between points in each line is measured respectively in units
of ‖a‖, in units of ‖b‖, and in units of ‖c‖. Then any point P in space
is uniquely represented by the ordered triple of coordinates (p1, p2, p3)
which are the decomposition coefficients of the position vector of P
over the vectors a, b, and c. Note that the length of p1a (a vector in
the first coordinate line) is |p1| in units of ‖a‖ because ‖p1a‖ = |p1|‖a‖
(and similarly for the other axes).

The constructed coordinate system is non-rectangular because its
axes are not perpendicular but it is just as good as any rectangular
coordinate system to describe sets of points in space as collections of
ordered triple of numbers which have a clear geometrical interpretation
in terms of rules of vector algebra. Any relation between vectors can be
written as relations between the corresponding components in this non-
rectangular coordinate system. Geometrical quantities do not depend
on the choice of a coordinate system. For example, the distance be-
tween two points P and Q with position vectors p and q, respectively,
is always given by

|QP | = ‖p− q‖ =
√

(p− q) · (p − q)

in any coordinate system (rectangular or non-rectangular) and can be
computed using the properties of the dot product when the decompo-
sitions of p and q are given in the basis (orthogonal or non-orthogonal)
associated with a chosen coordinate system. Similarly, the angle be-
tween two straight line segments can be computed in any convenient
coordinate system by means of Eq. (3.2). So the rules of vector algebra
allows us to analyze relations between geometrical quantities without
any reference to a particular coordinate system.

3.6. Applications of the dot product.

Static Problems. A force applied to an object is a vector because it has
the direction in which it acts and a strength or magnitude. If mass,
distance, and time are measured in kilograms, meters, and seconds,
respectively, then the magnitude of a force (or components of the force
vector) are measured in newtons, 1 N = 1 kg · m/s2. According to
Newton’s mechanics, a pointlike object that was at rest remains at
rest if the vector sum of all forces applied to it vanishes. This is the
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fundamental law of statics:

F1 + F2 + · · · + Fn = 0.

This vector equation implies three scalar equations that require van-
ishing each of the three components of the total force. A system of
objects is at rest if all its elements are at rest. Thus,

for any element of a system at rest, the scalar projection of the to-
tal force onto any vector vanishes.

In particular, the components of the total force should vanish in any
orthonormal basis or, as a point of fact, they vanish in any basis in
space (see Study Problem 3.1). This principle is used to determine ei-
ther the magnitudes of some forces or the values of some geometrical
parameters at which the system in question is at rest.

Example 3.5. Let a ball of mass m be attached to the ceiling by two
ropes so that the smallest angle between the first rope and the ceiling is
θ1 and the angle θ2 is defined similarly for the second rope. Find the
magnitudes of the tension forces in the ropes.

Solution: The system in question is shown in Fig. 3.3 (left panel).
The equilibrium condition is

T1 + T2 + G = 0 .

This vector equation can be analyzed in any convenient basis. Let ê1

be a unit vector that is horizontal and directed from left to right and
ê2 be a unit vector directed upward. They form an orthonormal basis
in the plane in which the system lies. Using the scalar projections, the
forces can be expanded in this basis as

T1 = −T1 cos θ1ê1 + T1 sin θ1ê2,

T2 = T2 cos θ2ê1 + T2 sin θ2ê2,

G = −mgê2

where T1 and T2 are the magnitudes of the tension forces. The scalar
projections of the total force onto the horizontal and vertical directions
defined by ê1 and e2 should vanish:

−T1 cos θ1 + T2 cos θ2 = 0 , T1 sin θ1 + T2 sin θ2 − mg = 0,

This system is then solved for T1 and T2. By multiplying the first
equation by sin θ1 and the second by cos θ1 and then adding them, one
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gets

T2(cos θ2 sin θ1 + cos θ1 sin θ2) = mg cos θ1 ⇒ T2 =
mg cos θ1

sin(θ1 + θ2)
.

Substituting T2 into the first equation, the tension in the first rope is
obtained:

T1 =
T2 cos θ2

cos θ1

=
mg cos θ2

sin(θ1 + θ2)
.

�

Figure 3.3. Left: Illustration to Example 3.5. At equilib-
rium, the vector sum of all forces acting on the ball vanishes.
The components of the forces are easy to find in the coordi-
nate system in which the x axis is horizontal and the y axis is
vertical. Right: The vector c = b‖ is the vector projection
of a vector b onto a. The line through the terminal points
of b and c is perpendicular to a. The scalar projection of b

onto a is ‖b‖ cos θ where θ is the angle between a and b. It
is positive if θ < π/2, or vanishes if θ = π/2, or is negative if
θ > π/2.

Work Done by a Force. Suppose that an object of mass m moves with
speed v. The quantity K = mv2/2 is called the kinetic energy of
the object. Suppose that the object has moved along a straight line
segment from a point P1 to a point P2 under the action of a constant
force F. A law of physics states that a change in an object’s kinetic
energy is equal to the work W done by this force:

K2 − K1 = F · −−→P1P2 = W ,

where K1 and K2 are the kinetic energies at the initial and final points
of the motion, respectively. Energy and work are measured in joules,
1J = 1N · m = 1 kg · m2/s2.
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Example 3.6. Let an object slide on an inclined plane without fric-
tion under the gravitational force. The magnitude of the gravitational
force is equal to mg where m is the mass of the object and g is a univer-
sal constant for all objects near the surface of the Earth, g ≈ 9.8 m/s2.
Find the final speed v of the object if the relative height of the initial
and final points is h and the object was initially at rest.

Solution: Choose the coordinate system so that the displacement

vector
−−→
P1P2 and the gravitational force are in the xy plane. Let the

y axis be vertical so that the gravitational force is F = 〈0,−mg, 0〉,
where m is the mass and g is the acceleration of the free fall. The initial
point is chosen to have the coordinates (0, h, 0) while the final point
is (L, 0, 0), where L is the distance the object travels in the horizontal

direction while sliding. The displacement vector is
−−→
P1P2 = 〈L,−h, 0〉.

Since K1 = 0, one has

mv2

2
= W = F · −−→P1P2

= 〈0,−mg, 0〉 · 〈L,−h, 0〉 = mgh ⇒ v =
√

2gh .

Note that the speed is independent of the mass of the object and the
inclination angle of the plane (its tangent is h/L); it is fully determined
by the relative height only. �

3.7. Study Problems.

Problem 3.1. (General basis in space).
Let ui, i = 1, 2, 3, be three linearly independent (non-coplanar) vectors.
Show that they form a basis in space, that is, any vector a can be
uniquely expanded into the sum a = s1u1 + s2u2 + s3u3.

Solution: A solution employs the same approach as in the solution
of Study Problem 2.1. Let P1 be the parallelogram with adjacent sides
u2 and u3, P2 be the parallelogram with sides u1 and u3, P3 be the
parallelogram with sides u1 and u2. Consider a box whose faces are the
parallelograms P1, P2, and P3. This box is called a parallelepiped. Let
the vectors ui and a vector a have common initial point. Consider three
planes through the initial point of a that contain the parallelograms
P1, P2, P3 and three planes through the terminal point of a such that
the first plane is parallel to the plane containing the parallelogram P1,
the second one is parallel to P2, and the third one is parallel to P3.
These six planes enclose a parallelepiped whose diagonal is the vector
a and whose adjacent sides are parallel to the vectors ui and therefore
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are proportional to them, that is, the adjacent edges are the vectors
s1u1, s2u2 and s3u3 where the numbers s1, s2, and s3 are uniquely
determined by the proposed construction of the parallelepiped. Hence,
by the parallelogram rule of adding vectors a = s1u1 + s2u2 + s3u3.
Note that the same geometrical construction has been used to expand a
vector in an orthonormal basis êi as shown in Fig. 3.2 where the angles
between adjacent sides of the box are not necessarily right angles, while
the opposite faces are still parallel. �

Problem 3.2. Let u1 = 〈1, 1, 0〉, u2 = 〈1, 0, 1〉, and u3 = 〈2, 2, 1〉.
Show that these vectors are linearly independent and, hence, form a
basis in space. Find the components of a = 〈1, 2, 3〉 in this basis.

Solution: If the vectors ui are not linearly independent, then there
should exist numbers c1, c2, and c3 which do not simultaneously vanish
such that

c1u1 + c2u2 + c3u3 = 0

Indeed, this algebraic condition means that one of the vectors is a linear
combination of the other two whenever ci do not vanish simultaneously.
This vector equation can be written in the components:

c1u1 + c2u2 + c3u3 = 〈c1 + c2 + 2c3, c1 + 2c3, c2 + c3〉 = 〈0, 0, 0, 〉
and therefore







c1 + c2 + 2c3 = 0
c1 + 2c3 = 0
c2 + c3 = 0

⇐⇒







c1 + c2 + 2c3 = 0
c1 = −2c3

c2 = −c3

The substitution of the last two equations into the first one yields
−c3 − 2c3 + 2c3 = 0 or c3 = 0 and, hence, c1 = c2 = 0. Thus the
vectors ui are linearly independent and form a basis in space. For any
vector, a = s1u1 + s2u2 + s3u3 where the numbers si, i = 1, 2, 3, are
components of a in the basis ui. By writing this vector equation in
components for a = 〈1, 2, 3〉, the system of equations is obtained:







s1 + s2 + 2s3 = 1
s1 + 2s3 = 2
s2 + s3 = 3

⇐⇒







s1 + s2 + 2s3 = 1
s1 = 2 − 2s3

s2 = 3 − s3

The substitution of the last two equations into the first one yields s3 = 4
and hence s1 = −6 and s2 = −1 so that a = −6u1 − u2 + 4u3. �

Problem 3.3. Describe the set of all points in space whose position
vectors r satisfy the condition (r−a) · (r−b) = 0. Hint: Note that the
position vector satisfying the condition ‖r− c‖ = R describes a sphere
of radius R whose center has the position vector c.
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Solution: The equation of a sphere can also be written in the form

‖r − c‖2 = (r − c) · (r− c) = R2 .

The equation (r − a) · (r − b) = 0 can be transformed into the sphere
equation by completing the squares. Put

c =
1

2
(a + b) , R =

1

2
(a− b) ,

and R = ‖R‖. Then it is easy to verify that

c · c − a · b =
1

4

(

a · a + 2a · b + b · b
)

− a · b

=
1

4

(

a · a − 2a · b + b · b
)

= R · R = R2 > 0 .

Using the algebraic properties of the dot product and the vector c,

(r − a) · (r − b) = r · r − r · (a + b) + a · b
= r · r − 2r · c + a · b
= r · r − 2r · c + c · c − c · c + a · b
=(r − c) · (r − c) −R2

Hence, the set is a sphere of radius R, and its center is positioned at
c. If a and b are the position vectors of points A and B, then, by
the parallelogram rule, the center of the sphere is the midpoint of the
straight line segment AB and the segment AB is a diameter of the
sphere, |AB| = ‖b− a‖ = 2R. �

3.8. Exercises.

1–5. Find the dot product a · b for the given vectors a and b.

1. a = 〈1, 2, 3〉 and b = 〈−1, 2, 0〉
2. a =

−→
AB and b =

−−→
BC where A = (1,−2, 1), B = (2,−1, 3),

and C = (1, 1, 1).
3. a = ê1 + 3ê2 − ê3 and b = 3ê1 − 2ê2 + ê3

4. a = u1+3u2−u3 and b = 3u1−2u2+u3 where un, n = 1, 2, 3,
are orthogonal vectors and ‖un‖ = n.

5. a = 2c − 3d and b = c + 2d if c is a unit vector that makes
the angle π/3 with the vector d and ‖d‖ = 2

6. Let a be a nonzero vector. Show that 0 is the only vector that is
both parallel and perpendicular to a.
7–9. Are the given vectors a and b orthogonal, parallel, or neither?

7. a = 〈5, 2〉 and b = 〈−4,−10〉
8. a = 〈1,−2, 1〉 and b = 〈0, 1, 2〉
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9. For what values of b are the vectors 〈−6 , b , 2〉 and 〈b , b2 , b〉 orthog-
onal?
10. Use the dot product to find all unit vectors that are perpendicular
to the vectors 〈1, 1,−2〉 and 〈1,−2, 4〉.
11. Find the angle at the vertex A of a triangle ABC for A = (1, 0, 1),
B = (1, 2, 3), and = C(0, 1, 1). Express the answer in radians.
12. Find the cosines of the angles of a triangle ABC for A = (0, 1, 1),
B = (−2, 4, 3), and C = (1, 2,−1).
13. Consider a triangle whose one side is a diameter of a circle and
the vertex opposite to this side is on the circle. Use vector algebra to
prove that any such triangle is right-angled. Hint: Consider position
vectors of the vertices relative to the center of the circle.
14. Let a = sû + v̂ and b = û + sv̂ where the angle between unit
vectors û and v̂ is π/3. Find the values of s for which the dot product
a · b is maximal, minimal, or zero if such values exist.
15. Consider a cube whose edges have length a. Find the angle be-
tween its largest diagonal and any edge adjacent to the diagonal.
16. Consider a parallelepiped with adjacent sides a = 〈1,−2, 2〉,
b = 〈−2,−2, 1〉, and c = 〈−1,−1,−1〉 (see the definition of a paral-
lelepiped in Study Problem 3.1). It has four vertex-to-opposite-vertex
diagonals. Express them in terms of a, b, and c and find the largest
one. Find the angle between the largest diagonal and the adjacent sides
of the parallelepiped.
17. Let a = 〈1, 2, 2〉. For the vector b = 〈−2, 3, 1〉, find the scalar and
vector projections of b onto a and construct the orthogonal decompo-
sition b = b⊥ + b‖ relative to a.

18. Find the scalar and vector projections of
−→
AB onto

−−→
BC if A =

(0, 0, 4), B = (0, 3,−2), and C = (3, 6, 2).
19. Find all vectors that have a given length a and make an angle π/3
with the positive x axis and the angle π/4 with the positive z axis.
20. Find the components of all unit vectors û that make an angle φ
with the positive z axis. Hint: Put û = av̂ + bê3, where v̂ is a unit
vector in the xy plane. Find a, b, and all v̂ using the polar angle in
the xy plane.
21. If c = ‖a‖b+‖b‖a, where a and b are non zero vectors, show that
c bisects the angle between a and b. Hint: compare the angle between
c and a to the angle between c and b.
22. A rhombus is a parallelogram with sides of equal length. Prove
that the diagonals of a rhombus meet at right angles.
23. Consider a parallelogram with adjacent sides of length a and b.
If d1 and d2 are the lengths of the diagonals, prove the parallelogram
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law: d2
1 + d2

2 = 2(a2 + b2). Hint: Consider the vectors a and b that
are adjacent sides of the parallelogram and express the diagonals via a

and b. Use the dot product to evaluate d2
1 + d2

2.
24. Consider a right-angled triangle whose adjacent sides at the right
angle have lengths a and b. Let P be a point in space at a distance c
from all three vertices of the triangle (c ≥ a/2 and c ≥ b/2). Find the
angles between the line segments connecting P with the vertices of the
triangle. Hint: Consider vectors with the initial point P and terminal
points at the vertices of the triangle.
25. Show that the vectors u1 = 〈1, 1, 2〉, u2 = 〈1,−1, 0〉, and u3 =
〈2, 2,−2〉 are mutually orthogonal. For a vector a = 〈4, 3, 4〉 find the
scalar orthogonal projections of a onto ui, i = 1, 2, 3, and the numbers
si such that a = s1u1 + s2u2 + s3u3.
26. For two nonzero vectors a and b find all vectors coplanar with a

and b that have the same vector projection onto a as the vector b.
Express these vectors in terms of a and b.
27. A point object traveled 3 meters from a point A in a particular
direction, then it changed the direction by 60◦ and traveled 4 meters,
and then it changed the direction again so that it was traveling at 60◦

with each of the previous two directions. If the last stretch was 2 me-
ters long, how far from A is the object?
28. Two balls of the same mass m are connected by a piece of rope of
length h. Then the balls are attached to different points on a horizontal
ceiling by a piece of rope with the same length h so that the distance
L between the points is greater than h but less than 3h. Find the
equilibrium positions of the balls and the magnitude of tension forces
in the ropes.
29. A cart is pulled up a 20◦ slope a distance of 10 meters by a hori-
zontal force of 30 newtons. Determine the work.
30. Two tug boats are pulling a barge against the river stream. One
tug is pulling with the force of magnitude 20 (in some units) and at
the angle 45◦ to the stream and the second with the force of magni-
tude 15 at the angle 30◦ so that the angle between the pulling ropes
is 45◦ + 30◦ = 75◦. If the barge does not move in the direction of the
stream, what is the drag force exerted by the stream on the barge?
Does the barge move in the direction perpendicular to the stream?
31. A ball of mass m is attached by three ropes of the same length a to
a horizontal ceiling so that the attachment points on the ceiling form
a triangle with sides of length a. Find the magnitude of the tension
force in the ropes.
32. Four dogs are at the vertices of a square. Each dog starts running
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toward its neighbor on the right. The dogs run with the same speed
v. At every moment of time each dog keeps running in the direction of
its right neighbor (its velocity vector always points to the neighbor).
Eventually, the dogs meet in the center of the square. When will this
happen if the sides of the square have length a? What is the distance
traveled by each dog? Hint: Is there a particular direction from the
center of the square relative to which the velocity vector of a dog has
the same component at each moment of time?
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4. The Cross Product

4.1. Determinant of a Square Matrix.

Definition 4.1. The determinant of a 2× 2 matrix is the number
computed by the following rule:

det

(

a11 a12

a21 a22

)

= a11a22 − a12a21,

that is, the product of the diagonal elements minus the product of the
off-diagonal elements.

Definition 4.2. The determinant of a 3×3 matrix A is the number
obtained by the following rule:

det





a11 a12 a13

a21 a22 a23

a31 a32 a33



 = a11 detA11 − a12 det A12 + a13 detA13

=
3

∑

k=1

(−1)k+1a1k detA1k,

A11 =

(

a22 a23

a32 a33

)

, A12 =

(

a21 a23

a31 a33

)

, A13 =

(

a21 a22

a31 a32

)

,

where the matrices A1k, k = 1, 2, 3, are obtained from the original
matrix A by removing the row and column containing the element a1k.

It is straightforward to verify that the determinant can be expanded
over any row or column:

detA =
3

∑

k=1

(−1)k+mamk det Amk for any m = 1, 2, 3,

detA =
3

∑

m=1

(−1)k+mamk detAmk for any k = 1, 2, 3,

where the matrix Amk is obtained from A by removing the row and
column containing amk. This definition of the determinant is extended
recursively to N × N square matrices by letting k and m range over
1, 2, ..., N .

In particular, the determinant of a triangular matrix (i.e., the ma-
trix all of whose elements either above or below the diagonal vanish) is
the product of its diagonal elements:

det





a1 b c
0 a2 d
0 0 a3



 = det





a1 0 0
b a2 0
c d a3



 = a1a2a3
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for any numbers b, c, and d. For a lower triangular matrix (the one
on the right), the result follows from the expansion of the determinant
over the first row, while the expansion over the first column proves the
claim for an upper triangular matrix (the one on the left). Also, it
follows from the expansion of the determinant over any column or row
that, if any two rows or any two columns are swapped in the matrix, its
determinant changes sign. For 2×2 matrices, this is easy to see directly
from Definition 4.1. In general, if the matrix B is obtained from A by
swapping the first and second rows, that is b1k = a2k and b2k = a1k,
then the matrices B2k and A1k coincide and so do their determinants.
By expanding detB over its second row b2k = a1k, one infers that

detB =
3

∑

k=1

(−1)2+kb2k detB2k =
3

∑

k=1

(−1)2+ka1k detA1k

= −
3

∑

k=1

(−1)1+ka1k detA1k = − det A

This argument can be applied to prove that the determinant changes
its sign under swapping any two rows or columns in a square matrix of
any dimension.

Example 4.1. Calculate detA, where

A =





1 2 3
0 1 3

−1 2 1



 .

Solution: Expanding the determinant over the first row yields

detA = 1 · det

(

1 3
2 1

)

− 2 · det

(

0 3
−1 1

)

+ 3 · det

(

0 1
−1 2

)

= 1(1 − 6) − 2(0 + 3) + 3(0 + 1) = −8 .

Alternatively, expanding the determinant over the second row yields
the same result:

detA = −0 · det

(

2 3
2 1

)

+ 1 · det

(

1 3
−1 1

)

− 3 · det

(

1 2
−1 2

)

= 0 + 1(1 + 3) − 3(2 + 2) = −8 .

One can check that the same result can be obtained by expanding the
determinant over any row or column. �
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4.2. The Cross Product of Two Vectors.

Definition 4.3. (Cross Product).
Let ê1 = 〈1, 0, 0〉, ê2 = 〈0, 1, 0〉 and ê3 = 〈0, 0, 1〉. The cross product of
two vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉 is a vector that is the
determinant of the formal matrix expanded over the first row:

a× b = det





ê1 ê2 ê3

a1 a2 a3

b1 b2 b3





= det

(

a2 a3

b2 b3

)

ê1 − det

(

a1 a3

b1 b3

)

ê2 + det

(

a1 a2

b1 b2

)

ê3

= 〈a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1〉.(4.1)

Note that the first row of the matrix consists of the unit vectors
parallel to the coordinate axes rather than numbers. For this reason, it
is referred as to a formal matrix. The use of the determinant is merely
a compact way to write the algebraic rule to compute the components
of the cross product.

Example 4.2. Evaluate the cross product a×b if a = 〈1, 2, 3〉 and
b = 〈2, 0, 1〉.
Solution: By the definition

〈1, 2, 3〉 × 〈2, 0, 1〉 = det





ê1 ê2 ê3

1 2 3
2 0 1





= det

(

2 3
0 1

)

ê1 − det

(

1 3
2 1

)

ê2 + det

(

1 2
2 0

)

ê3

= (2 − 0)ê1 − (1 − 6)ê2 + (0 − 4)ê3

= 2ê1 + 5ê2 − 4ê3 = 〈2, 5,−4〉 .

�

Properties of the cross product. The cross product has the following
properties that follow from its definition:

a × b = −b× a,

(a + c) × b = a× b + c × b,

(sa) × b = s(a× b) .

The first property is obtained by swapping the components of b and a

in (4.1). Alternatively, recall that the determinant of a matrix changes
its sign if two rows are swapped in the matrix (the rows a and b



4. THE CROSS PRODUCT 65

in Definition 4.3). So the cross product is skew-symmetric, i.e., it is
not commutative and the order in which the vectors are multiplied is
essential; changing the order leads to the opposite vector. In particular,
if b = a, then a × a = −a× a or 2(a × a) = 0 or

a× a = 0 .

The cross product is distributive according to the second property. To
prove it, change ai to ai + ci, i = 1, 2, 3, in (4.1). If a vector a is scaled
by a number s and the resulting vector is multiplied by b, the result is
the same as the cross product a×b computed first and then scaled by
s (change ai to sai in (4.1) and then factor out s).

The double cross product satisfies the so called “bac-cab” rule

(4.2) a× (b× c) = b(a · c) − c(a · b)

and the Jacobi identity

(4.3) a× (b× c) + b× (c × a) + c × (a× b) = 0 .

The “bac-cab” rule expresses the double cross product as a linear com-
bination of the vectors b and c. Note that the second and third terms
in the left side of Eq. (4.3) are obtained from the first by cyclic permu-
tations of the vectors. The proofs the “bac-cab” rule and the Jacobi
identity are given in Study Problems 4.3 and 4.4. The Jacobi identity
implies that

a × (b × c) 6= (a× b) × c

This means that the multiplication of vectors defined by the cross prod-
uct is not associative in contrast to multiplication of numbers. This
observation is further discussed in Study Problem 4.5.

Example 4.3. Calculate a×(b×c) if a = 〈1, 2,−1〉, b = 〈2,−1, 2〉,
and c = 〈3, 1, 2〉.
Solution: Using the “bac-cab” rule:

a · c = 3 + 2 − 2 = 3 , a · b = 2 − 2 − 2 = −2

a× (b× c) = 3b − (−2)c = 3〈2,−1, 2〉 + 2〈3, 1, 2〉 = 〈12,−1, 10〉 .

�

4.3. Geometrical Significance of the Cross Product. The above algebraic
definition of the cross product uses a particular coordinate system rel-
ative to which the components of the vectors are defined. Does the
cross product change under rigid transformations of the rectangular
coordinate system with respect to which the components of the vectors
are determined to compute the cross product? In contrast to a similar
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question about the dot product, here one should investigate both the
direction and the magnitude of the cross product.

Let us first investigate the mutual orientation of the oriented seg-
ments a, b, and a × b. A simple algebraic calculation leads to the
following result:

a · (a× b) = a1(a2b3 − a3b2) + a2(a3b1 − a1b3) + a3(a1b2 − a2b1) = 0.

Swapping the vectors a and b in this relation and using the skew sym-
metry of the cross product, it is also concluded that

0 = b · (b× a) = −b · (a × b) .

By the geometrical property of the dot product, the cross product must
be perpendicular to both vectors a and b:

(4.4) a ·(a×b) = b ·(a×b) = 0 ⇐⇒ a×b ⊥ a and a×b ⊥ b.

Let us calculate the length of the cross product. By Definition 4.1,

‖a× b‖2 = (a× b) · (a × b)

= (a2b3 − a3b2)
2 + (a3b1 − a1b3)

2 + (a1b2 − a2b1)
2

= (a2
1 + a2

2 + a2
3)(b

2
1 + b2

2 + b2
3) − (a1b1 + a2b2 + a3b3)

2

= ‖a‖2‖b‖2 − (a · b)2

where the third equality is obtained by computing the squares of the
components of the cross product and regrouping terms in the obtained
expression. The last equality uses the definitions of the norm and the
dot product. Next, recall the geometrical property of the dot product
(3.3). If θ is the angle between the vectors a and b, then

‖a × b‖2 = ‖a‖2‖b‖2 − ‖a‖2‖b‖2 cos2 θ

= ‖a‖2‖b‖2(1 − cos2 θ) = ‖a‖2‖b‖2 sin2 θ

Since 0 ≤ θ ≤ π, sin θ ≥ 0 and the square root of the both sides of this
equation can be taken with the result that

‖a × b‖ = ‖a‖‖b‖ sin θ

This relation shows that length of the cross product defined by (4.1)
does not depend on the choice of the coordinate system as it is expressed
via the geometrical invariants, the lengths of a and b and the angle
between them.

Now consider the parallelogram with adjacent sides a and b. If ‖a‖
is the length of its base, then h = ‖b‖ sin θ is its height. Therefore the
norm of the cross product, ‖a × b‖ = ‖a‖h = A, is the area of the
parallelogram.
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Figure 4.1. Left: Geometrical interpretation of the cross
product of two vectors. The cross product is a vector that
is perpendicular to both vectors in the product. Its length
equals the area of the parallelogram whose adjacent sides are
the vectors in the product. If the fingers of the right hand
curl in the direction of a rotation from the first to second
vector through the smallest angle between them, then the
thumb points in the direction of the cross product of the
vectors.
Right: Illustration to Study Problem 4.2.

Owing to that the angles between the vectors a, b, and a× b 6= 0

found in (4.4) as well as that their lengths are preserved under rotations
of the coordinate system, the coordinate system can be oriented so that
a is along the x axis, b is in the xy plane, while a×b is parallel to the z
axis. In this coordinate system, a = 〈a1, 0, 0〉, where a1 = ‖a‖, and b =
〈b1, b2, 0〉 where b1 = ‖b‖ cos θ and b2 = ‖b‖ sin θ > 0 if b lies either in
the first or second quadrant of the xy plane and b2 = −‖b‖ sin θ < 0 if
b lies either in the third or fourth quadrant. By Definition 4.1,

a× b = det





ê1 ê2 ê3

a1 0 0
b1 b2 0



 = a1b2ê3 = 〈0, 0, a1b2〉 .

In the former case (b2 > 0), the cross product is directed along the z
axis: a × b = 〈0, 0, A〉, where A > 0 is the area of the parallelogram.
In the latter case (b2 < 0), a × b = 〈0, 0,−A〉 and the cross product
has the opposite direction. It turns out that the direction of the cross
product in both the cases can be described by a simple rule known as
the right-hand rule: If the fingers of the right hand curl in the direction
of a rotation from a toward b through the smallest angle between them,
then the thumb points in the direction of a × b.

In particular, by Definition 4.3, ê1 × ê2 = 〈1, 0, 0〉 × 〈0, 1, 0〉 =
〈0, 0, 1〉 = ê3. If a is orthogonal to b, then the relative orientation
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of the triple of vectors a, b, and a × b is the same as that of the
standard basis vectors ê1, ê2, and ê3. Furthermore, given two non-
parallel vectors, one can construct an orthogonal basis associated with
them using the cross product (see Exercise 10).

The stated geometrical properties (independent of the choice of a
coordinate system) are depicted in the left panel of Fig. 4.1 and sum-
marized in the following theorem.

Theorem 4.1. (Geometrical Significance of the Cross Product).
The cross product a × b of vectors a and b is the vector that is per-
pendicular to both vectors, a × b⊥ a and a × b⊥b, has a magnitude
equal to the area of the parallelogram with adjacent sides a and b, and
is directed according to the right-hand rule.

Two useful consequences can be deduced from this theorem.

Corollary 4.1. Two nonzero vectors are parallel if and only if
their cross product vanishes:

a × b = 0 ⇐⇒ a ‖b .

If a × b = 0, then the area of the corresponding parallelogram
vanishes, ‖a×b‖ = 0, which is only possible if the adjacent sides of the
parallelogram are parallel. Conversely, for two parallel vectors, there is
a number s such that a = sb. Hence, a×b = (sb)×b = s(b×b) = 0.

If in the cross product a× b the vector b is changed by adding to
it any vector parallel to a, the cross product does not change:

a × (b + sa) = a × b + s(a× a) = a× b

Let b = b⊥ + b‖ be the orthogonal decomposition of b relative to a
non-zero vector a. By Corollary 4.1, a× b‖ = 0 because b‖ is parallel
to a. It is then concluded that the cross product depends only on the
component b⊥ of b that is orthogonal to a. Thus, a× b = a×b⊥ and
‖a× b‖ = ‖a‖‖b⊥‖.

Area of a triangle. One of the most important applications of the cross
product is in calculations of the areas of planar figures in space.

Corollary 4.2. (Area of a Triangle).
Let vectors a and b be two sides of a triangle and have the same initial
point at a vertex of a triangle. Then the area of the triangle is

Area 4 =
1

2
‖a × b‖.

Indeed, by the geometrical construction, the area of the triangle is
half of the area of a parallelogram with adjacent sides a and b.
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Example 4.4. Let A = (1, 1, 1), B = (2,−1, 3), and C = (−1, 3, 1).
Find the area of the triangle ABC and a vector orthogonal to the plane
that contains the triangle.

Solution: Take two vectors with the initial point at any of the vertices
of the triangle which form the adjacent sides of the triangle at that

vertex. For example, a =
−→
AB = 〈1,−2, 2〉 and b =

−→
AC = 〈−2, 2, 0〉.

Then

a× b = 〈(−2) · 0 − 2 · 2, −(1 · 0 − (−2) · 2), 1 · 2 − (−2) · (−2)〉
= 〈−4,−4,−2〉 = −2〈2, 2, 1〉 .

Therefore
1

2
‖a× b‖ =

1

2
· 2‖〈2, 2, 1〉‖ = 3

is the area of the triangle ABC by Corollary 4.2. The units here are
squared units of length used to measure the coordinates of the triangle
vertices (e.g., m2 if the coordinates are measured in meters).

Since a and b are non-zero and non-parallel vectors, any vector in
the plane that contains the triangle is a linear combination sa + tb.
Therefore the vector a × b is perpendicular to any such vector and,
hence, to the plane because a× b is orthogonal to both a and b:

(a× b) · (sa + tb) = s(a × b) · a + t(a× b) · b = 0 .

Thus, a vector n perpendicular to the plane containing a triangle ABC

is a scalar multiple of
−→
AB ×−→

AC. For example, one can take

n = −1

2
a× b = 〈2, 2, 1〉 .

Note that all scalar multiples of the vector a × b lie in the same line

(perpendicular to the plane in question). The choice a =
−−→
CB and

b =
−→
CA or a =

−→
BA and b =

−−→
BC would give the same answer (modulo

the sign change in the cross product). �

Area of a quadrilateral. Consider a quadrilateral in space. Its four
vertices lie in a plane. Let the coplanar vectors a, b, and c be the
vectors originating from one of the vertices and terminating at the other
three vertices of the quadrilateral so that the vectors a and b are two
adjacent sides of the quadrilateral, while c is its diagonal (the oriented
segment c lies in the quadrilateral). The area of the quadrilateral is
the sum of the area of the triangles with adjacent sides a and c and
the area of the triangle with adjacent sides b and c:

A =
1

2
‖c × a‖ +

1

2
‖c× b‖ .
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Since the vectors a, b and c lie in a plane, the cross products c×a and
c×b are perpendicular to the plane. Moreover, by the right-hand rule
they point in the opposite directions (they are anti-parallel). Therefore
the vectors c×a and −(c×b) = c× (−b) point in the same direction.
The length of the sum of two parallel vectors is equal to the sum of
their lengths. This validates the following equalities:

A =
1

2
‖c × a‖ +

1

2
‖c × (−b)‖ =

1

2
‖c × a + c × (−b)‖

=
1

2
‖c × (a− b)‖ .

The vector a−b is another diagonal of the quadrilateral. Note that the
oriented segment a−b may not lie in the quadrilateral (as an example,
sketch the quadrilaterals with c = −a− b or c = 1

3
a + 1

3
b).

Corollary 4.3. (Area of a quadrilateral)
Let c and d be oriented segments connecting the opposite vertices of a
quadrilateral. Then the area of the quadrilateral is

A =
1

2
‖c × d‖ .

Alternatively, one can say that if c and d are the lengths of the
diagonals of a quadrilateral and θ is the angle between them, then the
area of the quadrilateral is A = 1

2
cd sin θ.

A parallelogram with adjacent sides a and b is a particular quadri-
lateral whose opposite sides are parallel. Let us verify Corollary 4.3
in this case. The diagonals of the parallelogram are c = a + b and
d = a− b. Using the properties of the cross product

c × d = (a + b) × d = a× d + b× d

= a× (a− b) + b× (a − b)

= a× a− a× b + b × a + b× b

= 0 − a× b− a× b + 0 = −2(a× b)

Therefore
1

2
‖c × d‖ =

1

2
‖ − 2(a × b‖ =

1

2
| − 2| ‖a× b‖ = ‖a× b‖ = A

where the latter equality follows from the geometrical properties of
the cross product. For a general quadrilateral, a diagonal c extended
from the vertex at which the vectors a and b are adjacent sides is a
linear combinations c = ta + sb where the numbers t and s are non-
zero and uniquely determined (see Study Problem 2.1). The numbers
t and s must be both either positive or negative in order for c to be a
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diagonal of the quadrilateral. If t > 0 and s < 0 or t < 0 and s > 0,
then c cannot be a diagonal and can only be viewed as a side of a
quadrilateral adjacent to either b or a, respectively, (or, either a or b

becomes a diagonal), as follows from Study Problem 2.1. So, the area
of a quadrilateral can also be expressed in terms of t, s, and ‖a × b‖
as is illustrated in the following example.

Example 4.5. Let a = 〈1, 2,−1〉, b = 〈2, 1, 1〉 and c = ta + sb,
where t and s are non-zero numbers, be position vectors of three vertices
of a quadrilateral relative to one particular vertex so that c is a diagonal
of the quadrilateral. Express the area A of the quadrilateral in terms of
t, s, and ‖a× b‖. Put t = 3 and s = 1 and then calculate A for given
a and b.

Solution: The other diagonal of the quadrilateral is d = a−b. Then
by analogy with the case of a parallelogram:

c × d = (ta + sb) × d = t(a× d) + s(b× d)

= −t(a× b) + s(b× a) = −t(a× b) − s(a × b)

= −(t + s)a× b

A =
1

2
‖c × d‖ =

|t + s|
2

‖a× b‖

a× b = det





ê1 ê2 ê3

1 2 −1
2 1 1



 = 〈2 − (−1),−(1 − (−2)), 1 − 4〉

= 〈3,−3,−3〉 = 3〈1,−1,−1〉
‖a × b‖ = ‖3〈1,−1,−1〉‖ = 3‖〈1,−1,−1〉‖ = 3

√
3

A =
|3 + 1|

2
3
√

3 = 6
√

3 .

�

4.4. Applications in physics. Torque. Torque or moment of force is the
tendency of a force to rotate an object about an axis or a pivot. Just
as a force is a push or a pull, a torque can be thought of as a twist. If r

is the vector from a pivot point to the point where a force F is applied,
then the torque is defined as the cross product

τ = r ×F .

The torque depends only on the component F⊥ of the force that is
orthogonal to r, i.e., τ = r × F⊥. If θ is the angle between r and F,
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then the magnitude of the torque τ = ‖τ‖ is

τ = ‖r‖‖F⊥‖ = rF sin θ ,

where r = ‖r‖ is the distance from the pivot point to the point where
the force of magnitude F is applied. One can think of r as a lever
attached to a pivot point and the force F is applied to the other end
of the lever to rotate it about the pivot point. Naturally, the lever
would not rotate if the force is parallel to it (θ = 0 or θ = π), whereas
the maximal rotational effect is created when the force is applied in
the direction perpendicular to the lever (θ = π/2). The direction of
τ determines the axis about which the lever rotates. By the property
of the cross product, this axis is perpendicular to the plane contain-
ing the force and position vectors. According to the right hand rule,
the rotation occurs counterclockwise when viewed from the top of the
torque vector. When driving a car, a torque is applied to the steering
wheel to change the direction of the car. When a bolt is tightened by
applying a force to a wrench, the produced turning effect is the torque.

An extended object is said to be rigid if the distance between any
two its points remains constant in time regardless of external forces
exerted on it. Let P be a fixed (pivot) point about which a rigid object
can rotate. Suppose that the forces Fi, i = 1, 2, ..., n, are applied to
the object at the points whose position vectors relative to the point P
are ri. The Principle of Moments states that a rigid object does not
rotate about the point P if it was initially at rest and the total torque
vanishes:

τ = τ 1 + τ 2 + · · · + τ n = r1 × F1 + r2 × F2 + · · · + rn × Fn = 0

If, in addition, the total force vanishes F = F1 + F2 + · · · + Fn = 0,
then a rigid object remains at rest and will not rotate about any other
pivot point. Indeed, suppose that the torque about P vanishes and let
r0 be a position vector of P relative to another point P0. Then the
position vectors of the points at which the forces are applied relative
to the new pivot point P0 are ri + r0. The total torque or the total
moment of the forces about P0 also vanishes:

τ 0 = (r1 + r0) × F1 + · · · + (rn + r0) × Fn

= r1 × F1 + · · · + rn × Fn + r0 × (F1 + · · · + Fn)

= τ + r0 × F = 0

because by the hypothesis τ = 0 and F = 0. The conditions τ = 0

and F = 0 comprise the fundamental law of statics for rigid objects.
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Example 4.6. The ends of rigid rods of length L1 and L2 are rigidly
joined at the angle π/2. A ball of mass m1 is attached to the free end
of the rod of length L1 and a ball of mass m2 is attached to the free end
of the rod of length L2. The system is hanged by the joining point so
that the system can rotate freely about it under the gravitational force.
Find the equilibrium position of the system if the masses of the rods
can be neglected as compared to the masses of the balls.

Solution: The gravitational forces have magnitudes F1 = m1g and
F2 = m2g for the first and second ball, respectively (g is the free fall
acceleration). They are directed downward and, therefore, lie in the
plane that contains the position vectors of the balls relative to the
pivot point. So the torques of the gravitational forces are orthogonal
to this plane, and the equilibrium condition τ 1 + τ 2 = 0 is equivalent
to τ1 − τ2 = 0 where τ1,2 are the magnitudes of the torques. The minus
sign follows from the right hand rule by which the vectors τ 1 and τ 2 are
parallel but have opposite directions. In other words, the gravitational
forces applied to the balls generate opposite rotational moments. When
the latter are equal in magnitude, the system is at rest.

In the plane that contains the system, let θ1 and θ2 be the smallest
angles between the rods and a horizontal line. They determine the
equilibrium position of the system. The objective is therefore to find
these angles. Since the rods are perpendicular, θ1+θ2 = π/2. The angle
between the position vector of the first ball and the gravitational force
acting on it is φ1 = π/2 − θ1, and similarly φ2 = π/2 − θ2 is the angle
between the position vector of the second ball and the gravitational
force acting on it. Therefore τ1 = L1F1 sin φ1 and τ2 = L2F2 sinφ2.
Owing to the identity sin(π/2 − θ) = cos θ, it follows that

τ1 = τ2 ⇔ m1L1 cos θ1 = m2L2 cos θ2 ⇔ tan θ1 =
m1L1

m2L2

where the relation θ2 = π/2 − θ1 has been used. �

4.5. Study Problems.

Problem 4.1. Find the most general vector r that satisfies the equa-
tions a · r = 0 and b · r = 0, where a and b are nonzero, nonparallel
vectors. Give a geometrical interpretation of all vectors satisfying these
conditions.

Solution: The conditions imposed on r hold if and only if the vector
r is orthogonal to both vectors a and b. Therefore, it must be parallel
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to their cross product. Thus,

r = t(a× b) , −∞ < t < ∞ .

If r is a position vector of a point relative to a fixed point O in space,
then the vectors r = t(a×b), −∞ < t < ∞, are position vectors of all
points in the line through O parallel to the vector a× b. �

Problem 4.2. Use geometrical means to find the cross products of
the unit vectors parallel to the coordinate axes.

Solution: Consider ê1× ê2. Since ê1 ⊥ ê2 and ‖ê1‖ = ‖ê2‖ = 1, their
cross product must be a unit vector perpendicular to both ê1 and ê2.
There are only two such vectors, ±ê3. By the right-hand rule,

ê1 × ê2 = ê3 .

Similarly, the other cross products are shown to be obtained by cyclic
permutations of the indices 1, 2, and 3 in the above relation. A permu-
tation of any two indices leads to a change in sign (e.g., ê2× ê1 = −ê3).
Since a cyclic permutation of three indices {ijk} → {kij} (and so on)
consists of two permutations of any two indices, the relation between
the unit vectors can be cast in the form

êi = êj × êk , {ijk} = {123} and cyclic permutations.

�

Problem 4.3. Prove the “bac − cab” rule (4.2).

Solution: If c and b are parallel, b = sc for some real s, then the
relation is true because both its sides vanish. If c and b are not parallel,
then by the remark after Corollary 4.1 the double cross product a×(b×
c) depends only on the component of a that is orthogonal to b × c.
This component lies in the plane containing b and c and hence is a
linear combination of them (see Study Problem 2.1). So without loss
of generality,

a = tb + pc .

Also, using the orthogonal decomposition of c relative to b:

b× c = b× c⊥ , c⊥ = c − sb , s =
c · b
‖b‖2

,

where c⊥ is the component of c orthogonal to b (note b · c⊥ = 0).
The vectors b, c⊥ and b × c⊥ are mutually orthogonal and oriented
according to the right hand rule. In particular, ‖b × c‖ = ‖b‖‖c⊥‖.
By applying the right hand rule twice, it is concluded that b× (b×c⊥)
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has the direction opposite to c⊥. Since b and b × c⊥ are orthogonal,
‖b× (b× c⊥)‖ = ‖b‖‖b× c⊥‖ = ‖b‖2‖c⊥‖. Therefore

b× (b× c) = −c⊥‖b‖2 = b(b · c) − c(b · b)

By swapping the vector b and c in this equation, one also obtains

c × (b× c) = −c × (c× b) = b⊥‖c‖2 = −c(c · b) + b(c · c)

It follows from these relations that

a × (b × c) = tb× (b× c) + pc × (b× c)

= b[(tb + pc) · c] − c[(tb + pc) · b]

= b(a · c) − c(a · b)

�

Problem 4.4. Prove the Jacobi identity (4.3)

Solution: By the “bac-cab” rule (4.2) applied to each term,

a × (b × c) = b(a · c) − c(a · b)

b × (c × a) = c(b · a) − a(b · c)

c × (a× b) = a(c · b) − b(a · c)

By adding these equalities, it is easy to see that the coefficients at each
of the vectors a, b, and c in the right side are added up to make 0. �

Problem 4.5. Consider all vectors in a plane. Any such vector a can
be uniquely determined by specifying its length a = ‖a‖ and the angle
θa that is counted from the positive x axis toward the vector a (i.e.,
0 ≤ θa < 2π). The relation 〈a1, a2〉 = 〈a cos θa, a sin θa〉 establishes
a one-to-one correspondence between ordered pairs (a1, a2) and (a, θa).
Define the vector product of two vectors a and b as the vector c for
which c = ab and θc = θa + θb. Show that, in contrast to the cross
product, this product is associative and commutative, that is, that c

does not depend on the order of vectors in the product.

Solution: Let us denote the vector product by a small circle to
distinguish it from the dot and cross products, a ◦ b = c. Since
c = 〈ab cos(θa + θb), ab sin(θa + θb)〉, the commutativity of the vector
product a ◦ b = b ◦ a follows from the commutativity of the product
and addition of numbers: ab = ba and θa + θb = θb + θa. Similarly,
the associativity of the vector product (a ◦ b) ◦ c = a ◦ (b ◦ c) follows
from the associativity of the product and addition of ordinary numbers:
(ab)c = a(bc) and (θa + θb) + θc = θa + (θb + θc). �
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Remark. The vector product introduced for vectors in a plane is known
as the product of complex numbers which can be viewed as two-dimensional
vectors. It is interesting to note that no commutative and associative
vector product (i.e., “vector times vector = vector”) can be defined in
a Euclidean space of more than two dimensions.

Problem 4.6. Let u be a vector rotating in the xy plane about the z
axis. Given a vector v, find the position of u such that the magnitude
of the cross product v × u is maximal.

Solution: For any two vectors,

‖v × u‖ = ‖v‖‖u‖ sin θ ,

where θ is the angle between v and u. The magnitude of v is fixed,
while the magnitude of u does not change when rotating. Therefore,
the absolute maximum of the cross-product magnitude is reached when

sin θ = 1 ⇒ cos θ = 0 ⇒ v ⊥ u ,

i.e., when the vectors are orthogonal. The corresponding algebraic
condition is

v · u = 0 .

Since u is rotating in the xy plane, its components are

u = 〈‖u‖ cos φ, ‖u‖ sinφ, 0〉 , 0 ≤ φ < 2π ,

where φ is the angle counted counterclockwise from the x axis toward
the current position of u. Put v = 〈v1, v2, v3〉. Then the direction of u

is determined by the equation

v · u = ‖u‖(v1 cos φ + v2 sinφ) = 0 ⇒ tan φ = −v1

v2

.

This equation has two solutions in the range 0 ≤ φ < 2π:

φ = − tan−1(v1/v2) and φ = − tan−1(v1/v2) + π .

Geometrically, these solutions correspond to the case when u is parallel
to the line v2y + v1x = 0 in the xy plane. �

4.6. Exercises.

1–7. Find the cross product a × b for the given vectors a and b.

1. a = 〈1, 2, 3〉 and b = 〈−1, 0, 1〉
2. a = 〈1,−1, 2〉 and b = 〈3,−2, 1〉
3. a = ê1 + 3ê2 − ê3 and b = 3ê1 − 2ê2 + ê3

4. a = 2c − d, b = 3c + 4d where c × d = 〈1, 2, 3〉.
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5. a = u1 +2u2 +3u3 and b = u1−u2 +u3 where the vectors ui,
i = 1, 2, 3, are mutually orthogonal, have the same length 3,
and u1×u2 = 3u3. Express the answer as a linear combination
of ui (not their cross products).

6. a has length 3 units, lies in the xy plane, and points from the
origin to the first quadrant at the angle π/3 to the x axis and
b has length 2 units and points from the origin in the direction
of the z axis.

7. a and b point from the origin to the second and first quadrant
of the xy plane, respectively, so that a makes the angle 15◦

with the y axis and b makes the angle 75◦ with the x axis,
and ‖a‖ = 2, ‖b‖ = 3.

8. Let a = 〈3, 2, 1〉, b = 〈−2, 1,−1〉, and c = 〈1, 0,−1〉. Find
a × (b × c), b × (c × a), and c × (a × b). Verify the Jacobi iden-
tity.
9. Let a be a unit vector orthogonal to b and c. If c = 〈1, 2, 2〉, find
the length of the vector a× [(a + b) × (a + b + c)]
10. Given two nonparallel vectors a and b, show that the vectors a,
a × b and a × (a × b) are mutually orthogonal, and, hence, form an
orthogonal basis in space.
11. Suppose a lies in the xy plane, its initial point is at the origin, and
its terminal point is in first quadrant of the xy plane. Let b be parallel
to ê3. Use the right-hand rule to determine whether the angle between
a × b and the unit vectors parallel to the coordinate axes lies in the
interval (0, π/2) or (π/2, π) or equals π/2.
12. If vectors a, b, and c have the initial point at the origin and lie,
respectively, in the positive quadrants of the xy, yz, and xz planes,
determine the octants in which the pairwise cross products of these
vectors lie by specifying the signs of the components of the cross prod-
ucts.
13. If a, b, and c are coplanar vectors, find (a× b) × (b× c).
14. Find a unit vector perpendicular to the vectors ê1 + ê2 − 2ê3 and
ê1 − 2ê2 + 4ê3.
15. Find the area of a triangle whose vertices lie on the different coor-
dinate axes at distances a, b, and c from the origin.
16. Find the area of a triangle ABC for A(1, 0, 1), B(1, 2, 3), and
C(0, 1, 1) and a nonzero vector perpendicular to the plane containing
the triangle.
17. Use the cross product to show that the area of the triangle whose
vertices are midpoints of the sides of a triangle with area A is A/4.
Hint: Define sides of the triangle of area A as vectors and express the
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sides of the other triangle in question in terms of these vectors.
18. Consider a triangle whose vertices are midpoints of any three sides
of a parallelogram. If the area of the parallelogram is A, find the area
of the triangle. Hint: Define adjacent sides of the parallelogram as
vectors and express the sides of the triangle in terms of these vectors.
19. Let A = (1, 2, 1) and B = (−1, 0, 2) be vertices of a parallelo-
gram. If the other two vertices are obtained by moving A and B along
straight lines by a distance of 3 units in the direction of the vector
a = 〈2, 1,−2〉, find the area of the parallelogram.
20. Consider four points in space. Suppose that the coordinates of the
points are known. Describe a procedure based on the properties of the
cross product to determine whether the points are in one plane. In par-
ticular, are the points (1, 2, 3), (−1, 0, 1), (1, 3,−1), and (0, 1, 2) in one
plane?
21. Let the sides of a triangle have lengths a, b, and c and let the
angles at the vertices opposite to the sides a, b, and c be, respectively,
α, β, and γ. Prove that

sinα

a
=

sinβ

b
=

sin γ

c
.

Hint: Define the sides as vectors and express the area of the triangle
in terms of the vectors adjacent at each vertex of the triangle.
22. A polygon ABCD in a plane is a part of the plane bounded by
four straight line segments AB, BC , CD, and DA. Suppose that the
polygon is convex, that is, a straight line segment connecting any two
points in the polygon lies in the polygon. If the coordinates of the
vertices are specified, describe the procedure based on vector algebra
to calculate the area of the polygon. In particular, let a convex polygon
be in the xy plane and put A = (0, 0), B = (x1, y1), C = (x2, y2), and
D = (x3, y3). Express the area in terms of xi and yi, i = 1, 2, 3.
23. Consider a parallelogram. Construct another parallelogram whose
adjacent sides are diagonals of the first parallelogram. Find the relation
between the areas of the parallelograms.
24. Given two nonparallel vectors a and b, show that any vector r in
space can be written as a linear combination r = xa+ yb+ za×b and
that the numbers x, y, and z are unique for every r. Express z in terms
of r, a and b. In particular, put a = 〈1, 1, 1〉 and b = 〈1, 1, 0〉. Find
the coefficients x, y, and z for r = 〈1, 2, 3〉. Hint: See Study Problems
4.1 and 2.1.
25. A tetrahedron is a solid with four vertices and four triangular faces.
Let v1, v2, v3, and v4 be vectors with lengths equal to the areas of the
faces and directions perpendicular to the faces and pointing outward.
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Show that v1 + v2 + v3 + v4 = 0. Hint: Set up vectors being the
egdes of a tetrahedron. There are six edges. So all these vectors can
be expressed as linear combinations of particular three non-coplanar
vectors. Use the cross product to find the vectors vj, j = 1, 2, 3, 4, in
terms of the three non-coplanar vectors.
26. If a is a non-zero vector, a · b = a · c, and a × b = a × c, does it
follow that b = c?
27. Given two non-parallel vectors a and b, construct three mutually
orthogonal unit vectors ûi, i = 1, 2, 3, one of which is parallel to a.
Are such unit vectors unique? In particular, put a = 〈1, 2, 2〉 and
b = 〈1, 0, 2〉 and find ûi.
28. Find the area of a quadrilateral ACDB if A = (1, 0,−1), B =

(2, 1, 2), C = (0, 1, 2), and
−−→
AD = 2

−→
AC −−→

AB.
29. Find the area of a quadrilateral ABCD whose vertices are obtained
as follows. The vertex B is the result of moving A by a distance of 6
units along the vector u = 〈2, 1,−2〉, C is obtained from B by moving
the latter by a distance of 5 units along the vector v = 〈−3, 0, 4〉, and−−→
CD = v − u.
30. Let ûi, i = 1, 2, 3, be an orthonormal basis in space with the
property that û3 = û1 × û2. If a1, a2, and a3 are the components of
vector a relative to this basis and b1, b2, and b3 are the components of
b, show that the components of the cross product a × b can also be
computed by the determinant rule given in Definition 4.3 where êi are
replaced by ûi. Hint: Use the “bac-cab” rule to find all pairwise cross
products of the basis vectors ûi.
31. Let the angle between the rigid rods in Example 4.6 be 0 < ϕ < π.
Find the equilibrium position of the system.
31. Two rigid rods of the same length are rigidly attached to a ball
of mass m so that the angle between the rods is π/2. A ball of mass
2m is attached to one of the free ends of the system. The remaining
free end is used to hang the system. Find the angle between the rod
connecting the pivot point and the ball of mass m and the vertical axis
along which the gravitational force is acting. Assume that the masses
of the rods can be neglected as compared to m.
33. Three rigid rods of the same length are rigidly joined by one end
so that the rods lie in a plane and the other end of each rod is free.
Let three balls of masses m1, m2, and m3 are attached to the free ends
of the rods. The system is hanged by the joining point and can rotate
freely about it. Assume that the masses of the rods can be neglected as
compared to the masses of the balls. Find the angles between the rods
at which the system remains in a horizontal plane under gravitational
forces acting vertically.
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5. The Triple Product

Definition 5.1. The triple product of three vectors a, b, and c is
a number obtained by the rule: a · (b× c).

It follows from the algebraic definition of the cross product and the
definition of the determinant of a 3 × 3 matrix that

a · (b× c) = a1 det

(

b2 b3

c2 c3

)

− a2 det

(

b1 b3

c1 c3

)

+ a3 det

(

b1 b2

c1 c2

)

=det





a1 a2 a3

b1 b2 b3

c1 c2 c3



.

This provides a convenient way to calculate the numerical value of
the triple product. If two rows of a matrix are swapped, then its
determinant changes sign. Therefore, the sign of the triple product
changes under swapping any two vectors in it:

a · (b× c) = −b · (a× c) = −c · (b × a) .

This means, in particular, that the absolute value of the triple product
is independent of the order of the vectors in the triple product. Also,
the value of the triple product is invariant under cyclic permutations of
vectors in it:

a · (b× c) = b · (c × a) = c · (a× b) ,

because a cyclic permutation is obtained by swapping vectors in two
different pairs.

5.1. Geometrical Significance of the Triple Product. Suppose that b and
c are not parallel (otherwise, b × c = 0). Let θ be the angle between
a and b × c as shown in Figure 5.1 (left panel). If a⊥b × c (i.e.,
θ = π/2), then the triple product vanishes. Let θ 6= π/2. Consider
parallelograms whose adjacent sides are pairs of the vectors a, b, and
c. They enclose a non-rectangular box whose edges are the vectors a,
b, and c.

A box with parallelogram faces is called a parallelepiped with adja-
cent sides a, b, and c. The cross product b×c is orthogonal to the face
containing the vectors b and c, whereas A = ‖b×c‖ is the area of this
face of the parallelepiped (the area of the parallelogram with adjacent
sides b and c). By the geometrical property of the dot product,

a · (b× c) = A‖a‖ cos θ .
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Figure 5.1. Left: Geometrical interpretation of the triple
product as the volume of the parallelepiped whose adja-
cent sides are the vectors in the product: h = ‖a‖ cos θ,
A = ‖b× c‖, V = hA = ‖a‖ ‖b× c‖ cos θ = a · (b× c). Here
0 < θ < π/2 and, hence, cos θ > 0. If the terminal point of a

lies below the plane containing b and c (not shown in the fig-
ure), then θ > π/2 and cos θ < 0. In this case, h = −‖a‖ cos θ
and V = |a · (b× c)|.
Right: Test for the coplanarity of three vectors. Three vec-
tors are coplanar if and only if their triple product vanishes:
a · (b× c) = 0.

On the other hand, the distance between the two faces parallel to both
b and c (or the height of the parallelepiped) is h = ‖a‖ cos θ if θ < π/2
and h = −‖a‖ cos θ if θ > π/2 or,

h = ‖a‖| cos θ| .
The volume of the parallelepiped is V = Ah. This proves to the fol-
lowing theorem.

Theorem 5.1. (Geometrical Significance of the Triple Product).
The volume V of a parallelepiped whose adjacent sides are the vectors
a, b, and c is the absolute value of their triple product:

V = |a · (b× c)| .
Thus, the triple product is a convenient algebraic tool for calculat-

ing volumes. Note also that the vectors can be taken in any order in
the triple product to compute the volume because the triple product
only changes its sign when two vectors are swapped in it.

Example 5.1. Find the volume of a parallelepiped with adjacent
sides a = 〈1, 2, 3〉, b = 〈−2, 0, 1〉, and c = 〈2, 1, 2〉.
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Solution: The expansion of the determinant over the first row yields

b · (a× c) = det





−2 0 1
1 2 3
2 1 2



 = −2(4 − 3) + 1(1 − 4) = −5

Taking the absolute value of the triple product, the volume is obtained,
V = | − 5| = 5. The components of the vectors must be given in the
same units of length, e.g., meters. Then the volume is 5 cubic meters.
�

In Section 3.4, it is stated that three nonzero linearly independent
vectors are not coplanar (see Definition 3.3) and form a basis in space.
Simple algebraic criteria for three vectors to be either coplanar or lin-
early independent can be deduced from Theorem 5.1.

Corollary 5.1. (Test for three vectors to be coplanar).
Three vectors are coplanar if and only if their triple product vanishes:

a, b, c are coplanar ⇐⇒ a · (b × c) = 0.

Indeed, if the vectors are coplanar (Figure 5.1, right panel), then
the cross product of any two vectors must be perpendicular to the
plane where the vectors are and therefore the triple product vanishes.
If, conversely, the triple product vanishes, then either b × c = 0 or
a⊥b× c. In the former case, b is parallel to c, or c = tb, and hence a

always lies in a plane with b and c. In the latter case, all three vectors
a, b, and c are perpendicular to b × c and therefore must be in one
plane (perpendicular to b × c).

Corollary 5.2. (Test for three vectors to form a basis in space)
Three vectors u1, u2, and u3 are linearly independent and, hence, form
a basis in space if and only if their triple product does not vanish.

Given three vectors u1, u2, and u3, for every vector a one can find
unique numbers s1, s2, and s3 such that

a = s1u1 + s2u2 + s3u3

if and only if u1 · (u2 × u3) 6= 0.

Example 5.2. Determine whether the points A = (1, 1, 1), B =
(2, 0, 2), C = (3, 1,−1), and D = (0, 2, 3) are in the same plane.

Solution: Consider the vectors a =
−→
AB = 〈1,−1, 1〉, b =

−→
AC =

〈2, 0,−2〉, and c =
−−→
AD = 〈−1, 1, 2〉. The points in question are in

the same plane if and only if the vectors a, b, and c are coplanar, or
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a · (b × c) = 0 by Corollary 5.1. The evaluation of the triple product
yields

a·(b×c) = det





1 −1 1
2 0 −2

−1 1 2



 = 1(0+2)+1(4−2)+1(2−0) = 6 6= 0 .

Therefore, the points are not in the same plane. �

Example 5.3. Can the vector a = 〈1, 1, 1〉 be represented as a
linear combination of the vectors u1 = 〈1, 2, 3〉, u2 = 〈2, 1,−6〉, and
u3 = 〈1, 1,−1〉?

Solution: Any vector in space is a linear combination of u1, u2, and
u3 if they form a basis. Let us verify first whether or not they form a
basis. By Corollary 5.2,

u1 · (u2 ×u3) = det





1 2 3
2 1 −6
1 1 −1



 = 1(−1+6)−2(−2+6)+3(2−1) = 0

these vectors do not form a basis. By Corollary 5.1, they are coplanar.
Note that u3 = 1

3
(u1 + u2). Therefore only if the vector a lies in the

same plane as the vectors u1, u2, and u3, then a is a linear combination
of two non-parallel vectors, say, u1 and u3. Since the following triple
product does not vanish,

a ·(u1×u3) = det





1 1 1
1 2 3
1 1 −1



 = 1(−2−3)−1(−1−3)+1(1−2) = −2,

the vector a is not coplanar with the vectors u1, u2, and u3. Therefore
a is not a linear combination of them. �

Example 5.4. Can the points A = (1, 0, 1), B = (4, 3, 4), C =
(1, 3, 1), and D = (−2, 3,−2) be vertices of a quadrilateral? If so, find
the areas of the quadrilaterals ABCD and ABDC. The order of letters
specifies the adjacent sides at each vertex. For example, at the vertex B
the sides BC and BD are adjacent in the quadrilateral ABCD, while
in ABDC, the adjacent sides at B are BA and BD.

Solution: With a four points in a plane one can construct a quadri-
lateral. So, the first objective is to determine whether the given points

are in a plane. As in Example 5.2, put a =
−→
AB = 〈3, 3, 3〉, b =

−→
AC =
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〈0, 3, 0〉 and c =
−−→
AD = 〈−3, 3,−3〉. Then

a · (b× c) = b · (c× a) = det





0 3 0
−3 3 −3
3 3 3



 = −3(−9 + 9) = 0 .

By Corollary 5.1 the vectors a, b, and c are coplanar, and, hence,
the points A, B, C , and D are in one plane and can be vertices of a
quadrilateral.

The diagonals in the quadrilateral ABCD are u =
−→
AC = 〈0, 3, 0〉

and v =
−−→
BD = 〈−6, 0,−6〉 By Corollary 4.3, the area is

Aabcd =
1

2
‖u× v‖ =

1

2
‖〈−18, 0, 18〉‖ =

18

2
‖〈−1, 0, 1〉‖ = 9

√
2 .

The diagonals in the quadrilateral ABDC are u =
−−→
AD = 〈−3, 3,−3〉

and v =
−−→
BC = 〈−3, 0,−3〉. By Corollary 4.3, the area is

Aabdc =
1

2
‖u× v‖ =

1

2
‖〈−9, 0, 9〉‖ =

9

2
‖〈−1, 0, 1〉‖ =

9
√

2

2
.

�

5.2. Right- and left-handed coordinate systems. In Section 3.4 it was
shown that with any triple of mutually orthogonal unit vectors ûi, i =
1, 2, 3, one can associate a rectangular coordinate system. Any vector
in space is uniquely expanded into the sum

r = xû1 + yû2 + zû3 .

where the ordered triple of numbers (x, y, z) is determined by scalar
projections of r onto ûi. If r is a position vector of a point P relative

to a particular point O, r =
−→
OP , then (x, y, z) are coordinates of P

relative to the rectangular coordinate system with the origin at O and
whose axes are oriented parallel to the vectors ûi.

The vector û1 × û2 must be parallel to û3 because the latter is
orthogonal to both û1 and û2. Furthermore, owing to the orthogonality
of û1 and û2,

‖û1 × û2‖ = ‖û1‖‖û2‖ = 1 ⇒ û1 × û2 = ±û3 .

Consequently,

û3 · (û1 × û2) = û1 · (û2 × û3) = ±1

or, owing to the mutual orthogonality of the vectors, û2 × û3 = ±û1.
So all rectangular coordinate systems are divided into two classes. A
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coordinate system is called right-handed if û1 · (û2 × û3) = 1 and a
coordinate system for which û1 · (û2 × û3) = −1 is called left-handed:

û1 · (û2 × û3) =

{

1 , right−handed systems
−1 , left−handed systems

The coordinate system associated with the standard basis û1 = ê1 =
〈1, 0, 0〉, û2 = ê2 = 〈0, 1, 0〉, and û3 = ê3 = 〈0, 0, 1〉 is right-handed
because ê1 · (ê2 × ê3) = 1.

A right-handed system can be visualized as follows. With the
thumb, index, and middle fingers of the right hand at right angles to
each other (with the index finger pointed straight), the middle finger
points in the direction of û1 = û2 × û3 when the thumb represents û2

and the index finger represents û3. A left-handed system is obtained
by the reflection û1 → −û1 and therefore is visualized by the fingers
of the left hand in the same way. Since the dot product cannot be
changed by rotations and translations in space, the handedness of the
coordinate system does not change under simultaneous rotations and
translations of the triple of vectors ûi (three mutually orthogonal fin-
gers of the left hand cannot be made pointing in the same direction
as the corresponding fingers of the right hand by any rotation of the
hand). The reflection of all three vectors ûi → −ûi or just one of them
turns a right-handed system into a left-handed one and vice versa. A
mirror reflection of a right-handed system is the left-handed one.

Remark. Under a reflection of a basis ûi → −ûi, components of a vec-
tor change the sign: a → −a. The cross product of two vectors does
not change under the reflection: (−a)× (−b) = a×b. For this reason,
the cross product is often called a pseudo vector. In physics, a transfor-
mation under which left and right coordinate systems are swapped is
called a parity transformation. Laws of physics are formulated in terms
of vectors associated with physical quantities like forces, velocities, etc.
It turns out, the fundamental laws of physics are not invariant under
the parity transformation. In other words, the laws of nature are differ-
ent in right- and left-handed coordinate systems. There are observable
processes in subatomic systems (the so called weak interactions) which
would be different in our universe and its mirror copy.

5.3. Distances Between Lines and Planes. In Sections 1.3 and 1.5, a geo-
metrical description of lines and planes was given as point sets in space.
If the lines or planes in space are not intersecting, then how can one
find the distance between them? This question can be answered using
the geometrical properties of the triple and cross products (Theorems
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4.1 and 5.1). Let S1 and S2 be two sets of points in space. Let a point
A1 belong to S1, let a point A2 belong to S2, and let |A1A2| be the
distance between them.

Definition 5.2. (Distance Between Sets in Space).
The distance D between two sets of points in space, S1 and S2, is the
largest number that is less than or equal to all the numbers |A1A2| when
the point A1 ranges over S1 and the point A2 ranges over S2.

Naturally, if the sets have at least one common point, the distance
between them vanishes. If S1 is a closed interval [0, 1] on, say, the
x axis and S2 is [2, 3] on the same axis, then S1 and S2 do not have
common points. The distance between them is the smallest number
x2 − x1 where 2 ≤ x2 ≤ 3 and 0 ≤ x1 ≤ 1 which is apparently 1 (the
minimum is attained when x2 = 2 and x1 = 1).

The distance between sets may vanish even if the sets have no com-
mon points. For example, let S1 be an open interval (0, 1) on the x axis,
while S2 is the interval (1, 2) on the same axis. Apparently, the sets
have no common points (the point x = 1 does not belongs to either of
them). The distance is the largest number D such that D ≤ |x1 − x2|,
where 0 < x1 < 1 and 1 < x2 < 2. The value of |x1 − x2| > 0 can be
made smaller than any preassigned positive number by taking x1 and
x2 close enough to 1. Since the distance D ≥ 0, the only possible value
is D = 0.

Intuitively, the sets are separated by a single point that is not an
“extended” object, and hence the distance between them should vanish.
In other words, there are situations in which the minimum of |A1A2| is
not attained for some A1 ∈ S1, or some A2 ∈ S2, or both. Nevertheless,
the distance between the sets is still well (uniquely) defined as the
largest number that is less than or equal to all numbers |A1A2|. Such a
number is called the infimum of the set of numbers |A1A2| and denoted
inf |A1A2|. Thus,

D = inf |A1A2| , A1 ∈ S1 , A2 ∈ S2 .

The notation A1 ∈ S1 stands for “a point A1 belongs to the set S1,”
or simply “A1 is an element of S1.” The definition is illustrated in
Figure 5.2 (left panel).

In Section 1.5 the distance between parallel planes is defined as the
length of a straight line segment between two points of intersection
of the planes with a line perpendicular to them. This definition is
consistent with Definition 5.2 if S1 and S2 are parallel planes.
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Figure 5.2. Left: Distance between two point sets S1 and
S2 defined as the largest number that is less than or equal
to all distances |A1A2|, where A1 ranges over all points in
S1 and A2 ranges over all points in S2. Right: Distance
between two parallel planes (Corollary 5.3). Consider a par-
allelepiped whose opposite faces lie in the planes P1 and P2.
Then the distance D between the planes is the height of the
parallelepiped, which can be computed as the ratio D = V/A,
where V = |a · (b × c)| is the volume of the parallelepiped
and A = ‖b× c‖ is the area of the face.

Corollary 5.3. (Distance Between Parallel Planes).
The distance between parallel planes P1 and P2 is given by

D =
|−→AP · (−→AB ×−→

AC)|
‖−→AB ×−→

AC‖
,

where A, B, and C are any three points in the plane P1 that are not
on the same line, and P is any point in the plane P2.

Proof. Since the points A, B, and C are not on the same line, the

vectors b =
−→
AB and c =

−→
AC are not parallel and their cross product

is a vector perpendicular to the planes (see Figure 5.2, right panel).

Consider the parallelepiped with adjacent sides a =
−→
AP , b, and c.

Two of its faces, the parallelograms with adjacent sides b and c, lie in
the parallel planes, one in P1 and the other in P2. The distance between
the planes is, by construction, the height of the parallelepiped which is
equal to V/Ap, where Ap is the area of the face parallel to b and c and
V is the volume of the parallelepiped. The conclusion follows from the
geometrical properties of the triple and cross products: V = |a·(b×c)|
and Ap = ‖b× c‖. �

Similarly, the distance between two parallel lines L1 and L2 can be
determined. Two lines are parallel if they are not intersecting and lie in
the same plane. Let A and B be any two points on the line L1 and let C
be any point on the line L2. Consider the parallelogram with adjacent

sides a =
−→
AB and b =

−→
AC as depicted in Figure 5.3 (left panel). The
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distance between the lines is the height of this parallelogram which is
D = Ap/‖a‖, where Ap = ‖a×b‖, is the area of the parallelogram and
‖a‖ is the length of its base.

Figure 5.3. Left: Distance between two parallel lines.
Consider a parallelogram whose two parallel sides lie in the
lines. Then the distance between the lines is the height
of the parallelogram (Corollary 5.4): D = A/‖a‖ where
A = ‖a × b‖ is the area of the parallelogram. Right: Dis-
tance between skew lines. Consider a parallelepiped whose
two non parallel edges AB and CP in the opposite faces lie in
the skew lines L1 and L2, respectively. Then the distance be-
tween the lines is the height of the parallelepiped, which can
be computed as the ratio D = V/A, where V = |a · (b× c)|
is the volume of the parallelepiped and A = ‖b × c‖ is the
area of the face (Corollary 5.5).

Corollary 5.4. (Distance Between Parallel Lines).
The distance between two parallel lines L1 and L2 is

D =
‖−→AB ×−→

AC‖
‖−→AB‖

,

where A and B are any two distinct points on the line L1 and C is any
point on the line L2.

Definition 5.3. (Skew Lines).
Two lines that are not intersecting and not parallel are called skew
lines.

To determine the distance between skew lines L1 and L2, consider
any two points A and B on L1 and any two points C and P on L2.

Define the vectors b =
−→
AB and c =

−→
CP that are parallel to lines L1

and L2, respectively. Since the lines are not parallel, the cross product
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b × c does not vanish. The lines L1 and L2 lie in the parallel planes
perpendicular to b×c (by the geometrical properties of the cross prod-
uct, b×c is perpendicular to b and c). The distance between the lines
coincides with the distance between these parallel planes. Consider the

parallelepiped with adjacent sides a =
−→
AC, b, and c as shown in Figure

5.3 (right panel). The lines lie in the parallel planes that contain the
faces of the parallelepiped parallel to the vectors b and c. Thus, the
distance between skew lines is the distance between the parallel planes
containing them. By Corollary 5.3, this distance is D = V/Ap where
V and Ap = ‖b× c‖ are, respectively, the volume of the parallelepiped
and the area of its base.

Corollary 5.5. (Distance between non-parallel lines).
The distance between two skew lines L1 and L2 is

D =
|−→AC · (−→AB ×−→

CP)|
‖−→AB ×−→

CP‖
,

where A and B are any two distinct points on L1, while C and P are
any two distinct points on L2.

If L1 and L2 are intersecting, then they lie in a plane and the vectors−→
AC,

−→
AB, and

−→
CP are coplanar. Their triple product vanishes and so

does the distance between L1 and L2 as required.
As a consequence of the obtained distance formulas, the following

criterion for mutual orientation of two lines in space holds.

Corollary 5.6. (Positions of two lines in space)
Let L1 be a line through A and B 6= A, and L2 be a line through C and
P 6= C. Then
(1) L1 and L2 are skew if and only if

−→
AC · (−→AB ×−→

CP) 6= 0 ;

(2) L1 and L2 intersect if and only if

−→
AC · (−→AB ×−→

CP) = 0 ;

(3) L1 and L2 are parallel if and only if

−→
AB ×−→

CP = 0 and
−→
AC ×−→

CP 6= 0 ;

(4) L1 and L2 coincide if and only if

−→
AB ×−→

CP = 0 and
−→
AC ×−→

CP = 0 .
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Proof. By Corollary 5.5, for non-parallel lines
−→
AB ×−→

CP 6= 0 (Corol-

lary 4.1) and the distance or the triple product
−→
AC ·(−→AB×−→

CP) vanishes
if and only if the lines are intersecting and does not vanish if and only
if the lines are skew. If the lines L1 and L2 coincide, then the vec-

tors
−→
AB,

−→
CP , and

−→
AC are parallel to each other and, hence, their

cross products vanish. Conversely, the conditions
−→
AB × −→

CP = 0 and−→
AC×−→

CP = 0 imply that
−→
AB is parallel to

−→
CP and that

−→
AC is parallel

to
−→
CP and, hence,

−→
AB is parallel to

−→
AC. The latter means that the

point C also belongs to L1 and therefore L1 = L2. If
−→
AB × −→

CP = 0,

but
−→
AC×−→

CP 6= 0, then C cannot be a point of L1 because the vectors−→
AB and

−→
AC are not parallel, and the lines must be parallel. �

Example 5.5. Find the distance between the line through the points
A = (1, 1, 2) and B = (1, 2, 3) and the line through C = (1, 0,−1) and
P = (−1, 1, 2).

Solution: Let a =
−→
AB = 〈0, 1, 1〉 and b =

−→
CP = 〈−2, 1, 3〉. Then

a× b = 〈3 − 1,−(0 + 2), 0 + 2〉 = 〈2,−2, 2〉 6= 0 .

So the lines are not parallel by Part (3) in Corollary 5.6. Put c =−→
AC = 〈0,−1,−3〉. Then

c · (a× b) = 〈0,−1,−3〉 · 〈2,−2, 2〉 = 0 + 2 − 6 = −4 6= 0 .

By Part (1) in Corollary 5.6, the lines are skew. Next,

‖a× b‖ = ‖〈2,−2, 2〉‖ = ‖2〈1,−1, 1〉‖ = 2‖〈1,−1, 1〉‖ = 2
√

3 .

By Corollary 5.5 the distance between the lines is

D =
|c · (a× b)|
‖a× b‖ =

| − 4|
2
√

3
=

2√
3

.

�

5.4. Study Problems.

Problem 5.1. (Rotations in space)

Let
−→
OP be a position vector of a point P relative to a point O. If

êj, j = 1, 2, 3, and ûi, i = 1, 2, 3, are orthonormal bases associated
with two rectangular coordinate systems with a common origin at O,
then −→

OP = a1ê1 + a2ê2 + a3ê3 = a′
1û1 + a′

2û2 + a′
3û3

where (a1, a2, a3) and (a′
1, a

′
2, a

′
3) are “old” and “new” coordinates of P

(Section 3.4). Let V be a 3 × 3 matrix elements vij = ûi · êj. Define
vectors vi = 〈vi1, vi2, vi3〉 and wj = 〈v1j, v2j, v3j〉, i, j = 1, 2, 3, whose



5. THE TRIPLE PRODUCT 91

components are the rows and columns of V , respectively.
(i). Show that for a rotation of the coordinate system about the origin,
the rows of V are mutually orthonormal, the columns of V are also
mutually orthonormal, and V has unit determinant:

(5.1) vi · vj = wi · wj =

{

1 if i = j
0 if i 6= j

, and detV = 1

Consider the ordered triples a = 〈a1, a2, a3〉 and a′ = 〈a′
1, a

′
2, a

′
3〉

(ii). Show that the “new” and “old” coordinates are related as

(5.2)
a′

i = vi1a1 + vi2a2 + vi3a3 = vi · a, i = 1, 2, 3,
aj = v1ja

′
1 + v2ja

′
2 + v3ja

′
3 = wj · a′ j = 1, 2, 3 ,

(iii). How many independent parameters can the matrix V have for a
generic rotation in space? In particular, find the rotation matrix V for
a rotation about one of the coordinate axes (Study Problem 1.2) and
verify the properties (5.1).
Hint: Use the orthogonal decompositions of vectors ûi in the basis êj

and the orthogonal decomposition of vector êj in the basis ûi. Es-
tablish relations between components of vi and wi and the expansion
coefficients. Prove that ûi · ûj = vi · vj, êi · êj = wi · wj , and

(5.3) û1 · (û2 × û3) = detV ê1 · (ê2 × ê3)

Solution: Put vij = ûi · êj, a = 〈a1, a2, a3〉, and a′ = 〈a′
1, a

′
2, a

′
3〉.

Then

a′
i = ûi ·

−→
OP = ûi · ê1a1 + ûi · ê2a2 + ûi · ê3a3

= vi1a1 + vi2a2 + vi3a3 = vi · a
aj = êj ·

−→
OP = êj · û1a

′
1 + êj · û2a

′
2 + êj · û3a

′
3

= v1ja
′
1 + v2ja

′
2 + v3ja

′
3 = wj · a′

For a fixed j, the numbers vij are scalar projections of êj onto ûi,
i = 1, 2, 3, and hence are components of êj relative to the basis ûi.
Thus, the jth column of V coincides with the components of êj in the
basis ûi. Similarly, the ith row of V coincides with the components of
ûi in the basis êj. So making use of the orthogonal expansions

êj = (êj · û1)û1 + (êj · û2)û2 + (êj · û3)û3 = v1jû1 + v2jû2 + v3jû3

ûi = (ûi · ê1)ê1 + (ûi · ê2)ê2 + (ûi · ê3)ê3 = vi1ê1 + vi2ê2 + vi3ê3

it follows from the orthonormality of ûi and the orthonormality of êj,
respectively, that

êi · êj = v1iv1j + v2iv2j + v3iv3j = wi · wj

ûi · ûj = vi1vj1 + vi2vj2 + vi3vj3 = vi · vj
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Owing the orthonormality of the basis vectors, the first relation in (5.1)
is proved. Next, consider the cross product

û2 × û3 = (v21ê1 + v22ê2 + v23ê3) × (v31ê1 + v32ê2 + v33ê3)

= detV11(ê2 × ê3) − detV12(ê3 × ê1) + detV13(ê1 × ê2)

V11 =

(

v22 v23

v32 v33

)

, V12 =

(

v21 v23

v31 v33

)

, V13 =

(

v21 v22

v31 v32

)

where the skew symmetry of the cross product êi × êj = −êj × êi and
the definition of the determinant of a 2 × 2 matrix have been used;
the matrices V1i, i = 1, 2, 3, are obtained by removing from V the row
and column that contain v1i. Using the symmetry of the triple product
under cyclic permutations of the vectors, one has

û1 · (û2 × û3) =
(

v11 detV11 − v12 detV12 + v13 detV13

)

ê1 · (ê2 × ê3)

Equation (5.3) follows from this relation and Definition 4.2 of the de-
terminant of a 3×3 matrix. Now recall that the handedness of a coordi-
nate system is preserved under rotations (Section 5.2), û1 · (û2 × û3) =
ê1 · (ê2 × ê3) = ±1, and therefore detV = 1. It is concluded that
any combination of rotations and reflections is described by a matrix
V whose rows and columns form orthonormal bases, and detV = ±1.
The handedness of a coordinate system is changed if detV = −1.

The vector û3 is determined by its three direction angles in the
original coordinate system. Only two of these angles are independent.
A rotation about the axis containing the vector û3 does not affect û3

and can be specified by a rotation angle in a plane perpendicular to
the coordinate axis parallel to û3. This angle determines the vectors
û1 and û2 relative to the original basis. So a general rotation matrix
V has three independent parameters.

In particular, the matrix V for counterclockwise rotations about
the z axis through an angle φ (see Study Problem 1.2) is

V =





cos φ sinφ 0
− sin φ cos φ 0

0 0 1





because û1 ·ê1 = cos φ, û1 ·ê2 = sin φ û2 ·ê1 = − sinφ, and û2 ·ê2 = cosφ
by the definition of the angle φ (see Fig. 1.3, right panel). Relations
(5.1) for V and its rows and columns

v1 = 〈cos φ, sinφ, 0〉
v2 = 〈− sinφ, cos φ, 0〉
v3 = 〈0, 0, 1〉

w1 = 〈cos φ,− sinφ, 0〉
w2 = 〈sin φ, cosφ, 0〉
w3 = 〈0, 0, 1〉
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are easy to verify. The result of Study Problem 1.2 can be stated in
the form (5.2) where a = 〈x, y, z〉 and a′ = 〈x′, y′, z′〉. �

Problem 5.2. Find the most general vector r that satisfies the equa-
tion a · (r × b) = 0, where a and b are nonzero, nonparallel vectors.

Solution: By the algebraic property of the triple product, a·(r×b) =
r · (b×a) = 0. Hence, r⊥ a×b. The vector r lies in a plane parallel to
both a and b because a×b is orthogonal to these vectors. Any vector
in the plane is a linear combination of any two nonparallel vectors in
it:

r = ta + sb

for any real t and s (see Study Problem 2.1). �

Problem 5.3. (Volume of a Tetrahedron). A tetrahedron is a solid
with four vertices and four triangular faces. Its volume V = 1

3
Ah,

where h is the distance from a vertex to the opposite face and A is the
area of that face. Given coordinates of the vertices B, C, D, and P ,
express the volume of the tetrahedron through them.

Solution: Put b =
−−→
BC, c =

−−→
BD, and a =

−−→
BP . The area of the

triangle BCD is A = 1

2
‖b × c‖ (Corollary 4.2). The distance from P

to the plane P1 containing the face BCD is the distance between P1

and the parallel plane P2 through the vertex P . By Corollary 5.4,

V =
1

3
A
|a · (b × c)|
‖b× c‖ =

1

6
|a · (b × c)| .

So the volume of a tetrahedron with adjacent sides a, b, and c is one-
sixth the volume of the parallelepiped with the same adjacent sides.
Note the result does not depend on the choice of a vertex. Any vertex
could have been chosen instead of B in the above solution. �

Problem 5.4. (Systems of linear equations)
Consider a system of linear equations for the variables x, y, and z:







a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3

Define vectors a = 〈a1, a2, a3〉, b = 〈b1, b2, b3〉, c = 〈c1, c2, c3〉, and
d = 〈d1, d2, d3〉. Show that the system has a unique solution for any d

if

a · (b× c) = det





a1 a2 a3

b1 b2 b3

c1 c2 c3



 6= 0 .
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If a · (b × c) = 0, formulate conditions on d under which the system
has a solution.

Solution: The system of linear equations can be cast in the vector
form

xa + yb + zc = d

This equation states that a given vector d is a linear combination of
three given vectors. In Study Problem 3.1 it was demonstrated that
any vector in space can be uniquely represented as a linear combination
of three non-coplanar vectors. So by Corollary 5.1, the numbers x, y,
and z exist and are unique if a · (b× c) 6= 0.

When a · (b × c) = 0, the vectors a, b, and c lie in one plane. If
d is not this plane, the system has no solution because d cannot be
represented as a linear combination of vectors in this plane.

Suppose that two of the vectors a, b, and c are not parallel. Then
their cross product is orthogonal to the plane and d must be orthogonal
to the cross product in order to be in the plane. If, say, a × b 6= 0,
that is, a and b are linearly independent in the plane, then, whenever
d · (a × b) = 0, the vector d − zc also lies in this plane (as a linear
combinations of two vectors in the plane). The latter implies (Study
Problem 1.6) that for any real z there exist unique numbers x and y
such that

xa + yb = d− zc .

In this case the system has infinitely many solutions labeled by a real
number z (if c 6= 0).

Finally, it is possible that all the vectors a, b, and c are parallel,
that is, all pairwise cross products vanish. Then d must be parallel
to them. If, say, a 6= 0, then the system has a solution if d × a = 0.
in this case, the vector d − yb − zc is parallel to a for any choice of
numbers y and z, and there is a unique number x such that

xa = d− yb− zc .

In this case, the system also has infinitely many solutions labeled by a
pair or real numbers (y, z) (if b 6= 0 and c 6= 0).

�

5.5. Exercises.

1–5. Find the triple products a · (b× c), b · (a× c), and c · (a×b) for
given vectors a, b, and c.

1. a = 〈1,−1, 2〉, b = 〈2, 1, 2〉, and c = 〈2, 1, 3〉.
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2. a, b, and c are, respectively, position vectors of the points
A = (1, 2, 3), B = (1,−1, 1), and C = (2, 0,−1) relative to the
point O = (1, 1, 1).

3. a, b, and c are coplanar so that c = 2a − 3b.
4. a = u1 + 2u2, b = u1 − u2 + 2u3, and c = u2 − 3u3 if

u1 · (u2 × u3) = 2
5. a, b, and c are pairwise perpendicular and ‖a‖ = 1, ‖b‖ =

2, and ‖c‖ = 3. Is the answer unique under the specified
conditions?

6. Verify whether the vectors a = ê1 +2ê2 − ê3, b = 2ê1 − ê2 + ê3, and
c = 3ê1 + ê2 − 2ê3 are coplanar.
7. Consider the vectors a = 〈1, 2, 3〉, b = 〈−1, 0, 1〉 and c = 〈s, 1, 2s〉
where s is a number.
(i) Find all values of s, if any, for which these vectors are coplanar.
(ii) If such s exists, find the area of the quadrilateral whose three ver-
tices have position vectors a, b, and c relative to the fourth vertex.
Hint: Determine which of the vectors a, b, and c is a diagonal of the
quadrilateral.
8. Determine whether the points A = (1, 2, 3), B = (1, 0, 1), C =
(−1, 1, 2), and D = (−2, 1, 0) are in one plane and, if not, find the
volume of the parallelepiped with adjacent edges AB, AC , and AD.
9. Find:
(i) all values of s at which the points A = (s, 0, s), B = (1, 0, 1),
C = (s, s, 1), and D = (0, 1, 0) are in the same plane;
(ii) all values of s at which the volume of the parallelepiped with adja-
cent edges AB, AC , and AD is 9 units.
10. Let a = 〈1, 2, 3〉, b = 〈2, 1, 0〉, and c = 〈3, 0, 1〉. Find the volume
of the parallelepiped with adjacent sides sa + b, c − tb, and a − pc if
the numbers s, t, and p satisfy the condition stp = 1.
11. Let the numbers u, v, and w be such that uvw = 1 and u3 + v3 +
w3 = 1. Are the vectors a = uê1 + vê2 + wê3, b = vê1 + wê2 + uê3,
and c = wê1 + uê2 + vê3 coplanar? If not, what is the volume of the
parallelepiped with adjacent edges a, b, and c?
12. Prove that

(a× b) · (c × d) = det

(

a · c b · c
a · d b · d

)

.

Hint: Put n = a × b. Use the invariance of the triple product under
cyclic permutations of vectors in it and the “bac-cab” rule (4.2).
13. Let P be a parallelepiped of volume V . Find the volumes of all
parallelepipeds whose adjacent edges are diagonals of the adjacent faces
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of P .
14. Let P be a parallelepiped of volume V . Find the volumes of all
parallelepipeds whose two adjacent edges are diagonals of two non-
parallel faces of P , while the third adjacent edge is a diagonal of P
(the segment connecting two vertices of P that does not lie in a face of
P ).
15. Given two non-parallel vectors a and b, find the most general
vector r that satisfies the conditions a · (r × b) = 0 and b · r = 0.
16. Let a set S1 be the circle x2 + y2 = 1 and let a set S2 be the line
through the points (0, 2) and (2, 0). Find the distance between the sets
S1 and S2.
17. Consider a plane through three points A = (1, 2, 3), B = (2, 3, 1),
and C = (3, 1, 2). Find the distance between the plane and a point
P obtained from A by moving the latter 3 units along a straight line
segment parallel to the vector a = 〈−1, 2, 2〉.
18. Consider two lines. The first line passes through the points (1, 2, 3)
and (2,−1, 1), while the other passes through the points (−1, 3, 1) and
(1, 1, 3). Find the distance between the lines.
19. Find the distance between the line through the points (1, 2, 3)
and (2, 1, 4) and the plane through the points (1, 1, 1), (3, 1, 2), and
(1, 2,−1). Hint: If the line is not parallel to the plane, then they
intersect and the distance is 0. So check first whether the line is parallel
to the plane. How can this be done?
20. Consider the line through the points (1, 2, 3) and (2, 1, 2). If a
second line passes through the points (1, 1, s) and (2,−1, 0), find all
values of s, if any, at which the distance between the lines is 3/2 units.
21. Consider two parallel straight line segments in space. Formulate
an algorithm to compute the distance between them if the coordinates
of their end points are given. In particular, find the distance between
AB and CD if:

(i) A = (1, 1, 1), B = (4, 1, 5), C = (2, 3, 3), D = (5, 3, 7);
(ii) A = (1, 1, 1), B = (4, 1, 5), C = (3, 5, 5), D = (6, 5, 9)

Note that this distance does not generally coincide with the distance
between the parallel lines containing AB and CD. The segments may
even be in the same line at a nonzero distance.
22-25. Consider the parallelepiped with adjacent edges AB, AC , and
AD where A = (3, 0, 1), B = (−1, 2, 5), C = (5, 1,−1), D = (0, 4, 2).
Find the specified distances.

22. The distances between the edge AB and all other edges parallel
to it.
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23. The distances between the edge AC and all other edges parallel
to it;

24. The distances between the edge AD and all other edges parallel
to it;

25. The distances between all parallel planes containing the faces
of the parallelepiped.

26. The distances between all skew lines containing the edges of
the parallelepiped.
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6. Planes in Space

6.1. An algebraic description of a plane in space. In Section 1.2, a plane
P through a point P0 was defined as a set points in space that consists
of all straight lines through P0 that are perpendicular to a given line
through P0. A point P belongs to the plane P if and only if the straight
line segment P0P is perpendicular to a given (fixed) line L through
through P0. Relative to a rectangular coordinate system any point has
coordinates P = (x, y, z). Here the objective is to find an algebraic
condition on the coordinates (x, y, z) under which the point belongs to
a plane P , that is, to define a plane algebraically in the same sense
as points sets in space were defined in Section 1.9. An example of an
algebraic description of a plane was given in Study Problem 1.6. It can
be extended to a general plane. However, it turns out that a simpler
solution can be obtained by means of vector algebra.

Consider the plane through the origin P0 = (0, 0, 0) and perpendic-
ular to the z axis. It is the set of points whose coordinates (x, y, z)
satisfy the equation z = 0. This algebraic condition can be restated

in term of vectors. The position vector
−−→
P0P = 〈x, y, z〉 of any point

P = (x, y, z) in this plane is perpendicular to ê3. By the geometrical
properties of the dot product,

−−→
P0P ⊥ ê3 ⇔ −−→

P0P · ê3 = 〈x, y, z〉 · 〈0, 0, 1〉 = 0 ⇔ z = 0 .

Since the coordinate system can be arbitrarily chosen by translating
the origin and rotating the coordinate axes, any plane in space can
be obtained from the xy plane in a particular coordinate system by
suitable rotations and translations and, hence, admits the following
equivalent description:

a plane in space is a set of points whose position vectors rela-
tive to a particular point in the set are orthogonal to a given
nonzero vector n

The vector n is called a normal of the plane. Note that a normal is
not unique. If n is a normal, then sn is also a normal for any s 6= 0
because any vector orthogonal to n is also orthogonal to its multiple sn
(which is parallel to n). Thus, the geometrical description of a plane P
in space entails specifying a point P0 that belongs to P and a normal
n of P . Then a point P belongs to the plane P if an only if the vector−−→
P0P is perpendicular to n:

P ∈ P ⇔ −−→
P0P ⊥ n , P0 ∈ P
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Figure 6.1. Left: Algebraic description of a plane. If r0

is a position vector of a particular point in the plane and r is
the position vector of a generic point in the plane, then the
vector r−r0 lies in the plane and is orthogonal to its normal,
that is, n · (r− r0) = 0.
Right: Equations of parallel planes differ only by their con-
stant terms. The difference of the constant terms determines
the distance between the planes as stated in (6.3).

Let a plane P be defined by a point P0 that belongs to it and
a normal n. In some coordinate system, the point P0 has coordi-
nates (x0, y0, z0) and the vector n is specified by its components n =
〈n1, n2, n3〉. A generic point in space P has coordinates (x, y, z). An
algebraic description of a plane amounts to specifying conditions on
the variables (x, y, z) such that the point P = (x, y, z) belongs to the
plane P . Let r0 = 〈x0, y0, z0〉 and r = 〈x, y, z〉 be the position vectors
of a particular point P0 in the plane and a generic point P in space,
respectively. Then the position vector of P relative to P0 is

−−→
P0P = r − r0 = 〈x − x0, y − y0, z − z0〉 .

This vector lies in the plane P if it is orthogonal to the normal n,
according to the geometrical description of a plane (see Figure 6.1, left
panel). The algebraic condition equivalent to the geometrical one reads

n⊥−−→
P0P ⇔ n · −−→P0P = 0 ⇔ n · (r − r0) = 0 .

Thus, the following theorem has just been proved.

Theorem 6.1. (Equation of a plane).
A point with coordinates (x, y, z) belongs to a plane through a point
P0 = (x0, y0, z0) and normal to a vector n = 〈n1, n2, n3〉 if

n1(x − x0) + n2(y − y0) + n3(z − z0) = 0 or n · r = n · r0,
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where r = 〈x, y, z〉 and r0 = 〈x0, y0, z0〉 are position vectors of a generic
point and a particular point P0 in the plane.

A normal to a given plane can always be obtained by taking the
cross product of any two non-parallel vectors in the plane. Indeed, any
vector in a plane is a linear combination of two non-parallel vectors a

and b (Study Problem 2.1). The vector n = a × b is orthogonal to
both a and b and, hence, to any linear combination of them.

Example 6.1. Find an equation of the plane through three given
points A = (1, 1, 1), B = (2, 3, 0), and C = (−1, 0, 3). In particular,
determine whether the points (5, 0,−3), (−2, 1, 2), (1, s, 1), where s is
real, lie in the plane.

Solution: A plane is specified by a particular point P0 in it and by
a vector n normal to it. Three points in the plane are given, so any of
them can be taken as P0, for example, P0 = A or (x0, y0, z0) = (1, 1, 1).
A vector normal to a plane can be found as the cross product of any
two nonparallel vectors in that plane (see Figure 6.2, left panel). So

put a =
−→
AB = 〈1, 2,−1〉 and b =

−→
AC = 〈−2,−1, 2〉. Then one can

take

n = a × b = 〈(4 − 1),−(2 − 2),−1 + 4〉 = 〈3, 0, 3〉 .

An equation of the plane is

3(x − 1) + 0(y − 1) + 3(z − 1) = 0 ⇔ x + z = 2 .

The coordinates of the point (5, 0,−3) satisfy this equation and, hence,
the point is in the plane, while the coordinates of the point (−2, 1, 2)
do not satisfy it and, hence, the point is not in this plane. The points
(1, s, 1) satisfy the equation for any s. They form a line through the
point A (s = 1) that is parallel to the y axis. Note that if a particu-
lar component of n vanishes, then the equation of the plane does not
contain the corresponding coordinate. This implies that the plane is
parallel to the corresponding coordinate axis (or contains it). In the
example considered, the y component of n vanishes and there is no y
in the equation of the plane. The normal n is orthogonal to ê2 because
n · ê2 = 0; that is, the y axis is orthogonal to n and hence parallel to
the plane. �

6.2. Relative positions of planes in space. Given a nonzero vector n and
a number d, consider a general linear equation

n1x + n2y + n3z = d or n · r = d .
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Figure 6.2. Left: Illustration to Example 6.1. The cross
product of two non parallel vectors in a plane is a normal of
the plane. Right: Distance between a point P1 and a plane.
An illustration to the derivation of the distance formula (6.1).
The segment P1B is parallel to the normal n so that the
triangle P0P1B is right-angled. Therefore, D = |P1B| =

|P0P1| cosθ.

The set of solutions does not change if both sides are divided by a
nonzero number, in particular, by the length of n. So n can always be
assumed to be a unit vector. It is always possible to find a particular
solution of this equation, r = r0. Indeed, since at least one component
of n does not vanish, say, n1 6= 0, then r0 = 〈d/n1, 0, 0〉. Therefore
a general solution of the linear equation is r = r0 + p where p is any
vector orthogonal to n. Any such p may be viewed as the position
vector of a point in a plane relative to a particular point in the plane.
So, every plane can be described by a linear equation and every linear
equation describes a plane.

In notations of Section 1.9, a plane in space is the point set

P = {r | n̂ · r = d}
for a unit vector n̂ and a number d. Note that this description of
a plane does not refer to any particular coordinate system, since the
value of the dot product is independent of the choice of the coordinate
system. The unit vector n̂ specifies the direction to which the plane
is orthogonal, while the number d determines the position of the plane
in space in the following way. Suppose that all points of the plane are
transported parallel by a vector a, i.e., r → r + a for every position
vector r. The result is a new plane whose equation is n̂ · (r+ a) = d or

n̂ · r = d − n̂ · a .

The vector a has unique orthogonal decomposition relative to n̂ (Corol-
lary 3.1):

a = a‖ + a⊥ = sn̂ + a⊥ , s = n̂ · a , a⊥ · n̂ = 0
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where a‖ is parallel to n̂ and a⊥ is orthogonal to n̂. So the parallel
transport of a plane by a vector a may be viewed the composition T
of two parallel transports:

T : r → r + a⊥ → (r + a⊥) + a‖ = r + a .

First, all points in the plane are transported within the plane by the
vector a⊥. In this case, the plane as a point set does not change and
neither does the number d because n · a⊥ = 0. Then all points of
the plane are transported parallel to the normal n̂ by the vector a‖.
The result is a parallel plane. The number d changes by the amount
−n̂ · a‖ = −s 6= 0 for some real s 6= 0. So, variations of d correspond
to shifts of the plane parallel to itself along its normal (see Figure 6.1,
right panel). All planes with parallel normals are either parallel or
coincide.

Corollary 6.1. (Relative positions of planes)
Two planes P1 = {r | n1 · r = d1} and P2 = {r | n2 · r = d2}
(i) are intersecting if their normals n1 and n2 are not parallel;
(ii) are parallel P1‖P2 if n2 = sn1 for some s 6= 0 and d2 6= sd1;
(iii) coincide P1 = P2 if n2 = sn1 for some s 6= 0 and d2 = sd1.

Note that in the last case the equations n1 · r = d1 and n2 · r = d2

are equivalent (they have the same set of solutions).

Example 6.2. Determine whether the planes x − 2y − z = 5 and
−2x + 4y + 2z = 1 are parallel, or coincide, or neither.

Solution: The normals of the planes are n1 = 〈1,−2,−1〉 and n2 =
〈−2, 4, 2〉 (the components of a normal are the corresponding coeffi-
cients at the coordinates x, y, and z). By Eq. (2.1), it is easy to verify
that the normals are proportional n2 = −2n1, but d2/d1 = 1/5 6= −2,
and, hence, the planes are parallel. �

Consider two non-parallel planes P1 and P2. It is clear that they
intersect along a line L. The plane P2 can always be obtained from
P1 by a rigid rotation of the latter about the line L through an angle
θ. The smallest rotation angle needed to obtained P2 from P1 (or P1

from P2) by rotation about their line of intersection is called the angle
between two intersecting planes.

Let n̂1 and n̂2 be unit normals of two intersecting planes. Then
n̂1 · n̂2 = cos θ where 0 ≤ θ ≤ π is the angle between the normals. The
plane P2 is obtained from P1 by either a rotation through the angle θ
or by a rotation through the angle π− θ in the opposite direction (like
clockwise or counterclockwise). So, the angle between the planes is the
smallest of these two angles. If 0 ≤ θ ≤ π/2, then the angle between
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the planes coincides with θ and, if π/2 < θ ≤ π, then it is π − θ. A
rotation of a plane through the angle π about a line in the plane does
not change the plane as a point set in space, but its normal reverses the
direction under such a rotation. So the second case is reduced to the
first one by reversing the normal of one of the planes. Consequently,
the angle θ between the planes is uniquely determined by the root of
the equation cos θ = |n̂1 · n̂2| in the interval 0 ≤ θ ≤ π/2. So the
following algebraic definition of the angle between two planes may be
adopted.

Definition 6.1. (Angle between two planes).
If n1 and n2 are normals of two planes, then the angle 0 ≤ θ ≤ π/2
satisfying the equation

cos θ =
|n1 · n2|
‖n1‖ ‖n2‖

= |n̂1 · n̂2|

is called the angle between the planes.

The planes are perpendicular if the angle between them is π/2 (their
normals are perpendicular). For example, the planes x + y + z = 1 and
x + 2y − 3z = 4 are perpendicular because their normals n1 = 〈1, 1, 1〉
and n2 = 〈1, 2,−3〉 are perpendicular: n1 · n2 = 1 + 2 − 3 = 0 (i.e.,
n1⊥n2). If the angle between the planes is 0, then the planes are
parallel (they may also coincide). The angle between two non-parallel
planes is also also called the angle of intersection of the planes.

Example 6.3. Find the angle at which the plane through the points
A = (1, 1, 1), B = (1, 2, 3), and C = (2, 0, 1) intersects the xy plane.

Solution: The vectors a =
−→
AB = 〈0, 1, 2〉 and b =

−→
AC = 〈1,−1, 0〉

are in the plane in question. Therefore its normal is

n1 = a× b = 〈0 + 2,−(0 − 2), 0 − 1〉 = 〈2, 2,−1〉
and ‖n1‖ = 3. The vector n2 = ê3 = 〈0, 0, 1〉 is a normal of the xy
plane. Therefore the angle θ of intersection of the planes satisfies

cos θ =
1

3
|n1 · ê3| =

1

3
| − 1| =

1

3

and, hence, θ = cos−1(1/3) ≈ 1.23 rad ≈ 70.5◦. �

6.3. The Distance Between a Point and a Plane. Consider the plane
through a point P0 with a normal n. Let P1 be a point in space.
What is the distance between P1 and the plane? Let the angle between

n and the vector
−−→
P0P1 be θ (see Figure 6.2, right panel). Then the
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distance in question is D = ‖−−→P0P1‖ cos θ if θ ≤ π/2 (the length of the
straight line segment connecting P1 and the plane along the normal n).
For θ > π/2, cos θ must be replaced by − cos θ because D ≥ 0. So

(6.1) D = ‖−−→P0P1‖| cos θ| =
‖n‖‖−−→P0P1‖| cos θ|

‖n‖ =
|n · −−→P0P1|

‖n‖ .

Let r0 and r1 be position vectors of P0 and P1, respectively. Then−−→
P0P1 = r1 − r0, and

(6.2) D =
|n · (r1 − r0)|

‖n‖ =
|n · r1 − d|

‖n‖ ,

which is a bit more convenient than (6.1) if the plane is defined by an
equation n · r = d.

Distance Between Parallel Planes. If parallel planes are defined by the
equations n · r = d1 and n · r = d2, then Eq. (6.2) allows us to obtain
a simpler formula for the distance between them than that given in
Corollary 5.3 (see Figure 6.1, right panel):

(6.3) D =
|d2 − d1|
‖n‖ .

Indeed, the distance between two parallel planes is the distance between
the first plane and a point r2 in the second plane. By (6.2), this distance
is

D =
|n · r2 − d1|

‖n‖ =
|d2 − d1|
‖n‖

because n · r2 = d2 for any point in the second plane.

Example 6.4. Find an equation of a plane that is parallel to the
plane 2x − y + 2z = 2 and at a distance of 3 units from it.

Solution: Since the planes are parallel, their normals may be cho-
sen to coincide with n = 〈2,−1, 2〉 (the normal of the given plane).
Therefore, the problem is reduced to finding a particular point in each
parallel plane. Let P0 be a particular point in the given plane. Then
a point in a parallel plane can be obtained from it by moving P0 by
a distance of 3 units along a straight line segment parallel to the nor-
mal n. If r0 is the position vector of P0, then a point on a parallel
plane has a position vector r0 + sn, where the displacement vector sn
must have a length of 3, or ‖sn‖ = |s|‖n‖ = 3|s| = 3 and therefore
s = ±1. Naturally, there should be two planes parallel to the given
one and at the same distance from it. To find a particular point on the
given plane, one can set two coordinates to 0 and find the value of the
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third coordinate from the equation of the plane. Take, for instance,
P0 = (1, 0, 0). Particular points on the parallel planes are

r0 ± n = 〈1, 0, 0〉 ± 〈2,−1, 2〉 =

{

〈3,−1, 2〉
〈−1, 1,−2〉 .

Using these points in the standard equation of a plane, the equations
of two parallel planes are obtained:

r · n = (r0 ± n) · n = 2 ± 9 ⇒ 2x − y + 2z = 11
2x − y + 2z = −7

.

An alternative algebraic solution is based on the distance formula (6.3)
for parallel planes. An equation of a plane parallel to the given one
should have the form 2x− y +2z = d. The number d is determined by
solving Eq. (6.3) where D = 3:

|d − 2|
‖n‖ = 3 ⇒ |d − 2| = 9 ⇒ d = ±9 + 2 .

�

6.4. Study Problems.

Problem 6.1. Find an equation of the plane that is normal to a
straight line segment AB and bisects it if A = (1, 1, 1) and B =
(−1, 3, 5).

Solution: One has to find a particular point in the plane and its

normal. Since AB is perpendicular to the plane, n =
−→
AB = 〈−2, 2, 4〉.

The midpoint of the segment lies in the plane. Hence, P0 = (0, 2, 3) (the
coordinates of the midpoints are the half sums of the corresponding
coordinates of the endpoints by Study Problem 1.1). The equation
reads

−2x + 2(y − 2) + 4(z − 3) = 0 ⇒ −x + y + 2z = 8 .

�

Problem 6.2. Find the plane through the point P0 = (1, 2, 3) that is
perpendicular to the planes x + y + z = 1 and x − y + 2z = 1.

Solution: One has to find a particular point in the plane and any
vector orthogonal to it. The first part of the problem is easy to solve:
P0 is given. Let n be a normal of the plane in question. Then, from
the geometrical description of a plane, it follows that

n ⊥ n1 = 〈1, 1, 1〉 and n ⊥ n2 = 〈1,−1, 2〉 .
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where n1 and n2 are normals of the given planes. So n is a vector
orthogonal to two given vectors. By the geometrical property of the
cross product, such a vector can be constructed as

n = n1 × n2 = 〈2 + 1, −(2 − 1), −1 − 1〉 = 〈3,−1,−2〉 .

Hence, the equation reads

3(x − 1) − (y − 2) − 2(z − 3) = 0 or 3x − y − 2z = −5 .

�

Problem 6.3. Determine whether two planes x + 2y − 2z = 1 and
2x + 4y + 4z = 10 are parallel and, if not, find the angle between them.

Solution: The normals are n1 = 〈1, 2,−2〉 and n2 = 〈2, 4, 4〉 =
2〈1, 2, 2〉. They are not proportional. Hence, the planes are not parallel.
Since ‖n1‖ = 3, ‖n1‖ = 6, and n1 · n2 = 2, the angle is determined by
cos θ = 2/18 = 1/9 or θ = cos−1(1/9). �

Problem 6.4. Find a family of all planes that contains the straight
line segment AB if A = (1, 2,−1) and B = (2, 4, 1).

Solution: All the planes in question contain the point A. So it can be
chosen as a particular point in every plane. Since the segment AB lies in
every plane of the family, the question amounts to describing all vectors

orthogonal to a =
−→
AB = 〈1, 2, 2〉 which determine the normals of the

planes in the family. It is easy to find a particular vector orthogonal
to a. For example, b = 〈0, 1,−1〉 is orthogonal to a because a · b = 0.
Next, the vector a × b = 〈−4, 1, 1〉 is orthogonal to both a and b.
Any vector orthogonal to a lies in a plane orthogonal to a and hence
must be a linear combination of any two non-parallel vectors in this
plane. So the sought-after normals are all linear combinations of b and
c = a × b:

a · n = 0 ⇔ n = sb + tc ,

for any non-zero choice of numbers s and t, where a, b, and c are
mutually orthogonal, by construction. Since the length of each normal
is irrelevant, the family of the planes is described by all unit vectors
orthogonal to a. Recall that any unit vector in a plane can be written
in the form

n̂θ = cos θû1 + sin θû2 ,
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where û1,2 are two unit orthogonal vectors in the plane and 0 ≤ θ < 2π.
Indeed,

n̂ = sû1 + tû2 ⇒ 1 = ‖û‖2 = (sû1 + tû2) · (sû1 + tû2)

= s2û1 · û1 + t2û2 · û2 + 2stû1 · û2

= s2 + t2

⇒ s = cos θ, t = sin θ .

So put n = nθ where

û1 = b̂ =
1

‖b‖ b =
1√
2
〈0, 1,−1〉 , û2 = ĉ =

1

‖c‖ c =
1

3
√

2
〈−4, 1, 1〉 .

The range for the parameter θ must be restricted to 0 ≤ θ < π because
nθ+π = −nθ. Therefore no new plane is obtained for π ≤ θ < 2π. The
family of the planes is described by equations

n̂θ · (r − r0) = 0 .

where 0 ≤ θ < π and r0 = 〈1, 2,−1〉 (the position vector of A). After
some simple algebraic transformations this equation assumes the form

(−4 sin θ)x + (3 cos θ + sin θ)y + (sin θ − 3 cos θ)z = 9cos θ − 3 sin θ .

�

6.5. Exercises.

1. Find an equation of the plane through the origin and parallel to the
plane 2x − 2y + z = 4. What is the distance between the two planes?
2. Do the planes 2x + y − z = 1 and 4x + 2y − 2z = 10 intersect?
3. Determine whether the planes 2x + y − z = 3 and x + y + z = 1 are
intersecting. If they are, find the angle between them.
4–6. Consider a parallelepiped with one vertex at the origin O at
which the adjacent sides are the vectors a = 〈1, 2, 3〉, b = 〈2, 1, 1〉, and
c = 〈−1, 0, 1〉. Let OP be its diagonal extended from the vertex O.
Find equations of the following planes.

4. The planes that contain the faces of the parallelepiped.
5. The planes that contain the diagonal OP and the diagonal of

each of three its faces adjacent at P .
6. The planes that contain parallel diagonals in the opposite faces

of the parallelepiped.

7. Find an equation of the plane with x intercept a 6= 0, y intercept
b 6= 0, and z intercept c 6= 0. What is the distance between the origin
and the plane? Find the angles between the plane and the coordinate
planes.
8. Show that the points A = (1, 1, 1), B = (1, 2, 3), C = (2, 0,−1) and
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D = (3, 1, 0) are not in a plane and therefore vertices of a tetrahedron.
Any two of the four faces of the tetrahedron are intersecting along one
of its six edges. Find the angles of intersection of the face BCD with
the other three faces.
9. Find equations of all planes that are perpendicular to the line
through (1,−1, 1) and (3, 0,−1) and that are at the distance 2 from
the point (1, 2, 3).
10. Find an equation for the set of points that are equidistant from
the points (1, 2, 3) and (−1, 2, 1). Give a geometrical description of the
set.
11. Find an equation of the plane that is perpendicular to the plane
x + y + z = 1 and contains the line through the points (1, 2, 3) and
(−1, 1, 0).
12. To which of the planes x + y + z = 1 and x + 2y − z = 2 is the
point (1, 2, 3) the closest?
13–15. Give a geometrical description of each of the following families
of planes where c is a numerical parameter.

13. x + y + z = c .
14. x + y + cz = 1 .
15. x sin c + y cos c + z = 1 .

16. Find values of c for which the plane x + y + cz = 1 is closest to the
point P = (1, 2, 1) and farthest from P .
17. Consider three planes with normals n1, n2, and n3 such that each
pair of the planes is intersecting. Under what condition on the normals
are the three lines of intersection parallel or even coincide?
18. Find equations of all the planes that are perpendicular to the plane
x + y + z = 1, have the angle π/3 with the plane x + y = 1, and pass
through the point (1, 1, 1).
19. Let a = 〈1, 2, 3〉 and b = 〈1, 0,−1〉. Find an equation of the plane
that contains the point (1, 2,−1), the vector a and a vector orthogonal
to both a and b.
20. Consider the plane P through three points A = (1, 1, 1), B =
(2, 0, 1) and C = (−1, 3, 2). Find all the planes that contain the seg-
ment AB and have the angle π/3 with the plane P . Hint: see Study
Problem 6.4.
21. Find an equation of the plane that contains the line through (1, 2, 3)
and (2, 1, 1) and cuts the sphere x2 + y2 + z2 − 2x + 4y − 6z = 0 into
two hemispheres.
22. Find all planes perpendicular to n = 〈1, 1, 1〉 whose intersection
with the ball x2 + y2 + z2 ≤ R2 is a disk of area πR2/4.
23. Find an equation of the plane that is tangent to the sphere
x2 + y2 + z2 − 2x − 4y − 6z + 11 = 0 at the point (2, 1, 2). Hint:
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What is the angle between a line tangent to a circle at a point P and
the segment OP where O is the center of the circle? Extend this ob-
servation to a plane tangent to a sphere to determine a normal of the
tangent plane.
24. Find the family of planes through the point (0, 0, a), a > R, that
are tangent to the sphere x2 +y2 +z2 = R2. Hint: Compare this family
with the family of planes in Exercise 15.
25. Consider a sphere of radius R centered at the origin and two points
P1 and P2 whose position vectors are r1 and r2. Suppose that ‖r1‖ > R
and ‖r2‖ > R (the points are outside the sphere). Find the equation
n·r = d of the plane through P1 and P2 whose distance from the sphere
is maximal. What is the distance? Hint: Show first that a normal of
the plane can always be written in the form n = r1 + c(r2 − r1). Then
find a condition to determine the constant c.
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7. Lines in Space

Let a straight line pass through points A and B. By Section 1.3,
for any point P in the segment AB, the distances between the three
points A, B, and P satisfy the condition |AB| = |AP |+|PB|. Here the
objective is to give an algebraic description of a line in terms of con-
ditions on coordinates of its points relative to some coordinate system
just as planes in space were described in the previous Section.

Let us first reformulate the above geometrical description of a line
(in terms of distances) using the vector algebra. Consider the line that
coincides with a coordinate axis of a rectangular coordinate system,
say, the x axis. Any point in it has the characteristic property that
its position vector is proportional to the position vector of a particular
point. For example, if r is a position vector of a point on the x axis, then
r = xê1 = 〈x, 0, 0〉 for some x. By suitable rotations and translations
of the coordinate system, the x axis can be transformed to any given
line. Since translations and rotations preserve distances and angles,
any line in space can also be given the following equivalent definition:

a line in space is a set of points whose position vectors relative
to a particular point in the set are parallel to a given nonzero
vector v.

The vector v is called a tangent vector of the line. It is not unique
because any vector parallel to v is a also a tangent vector of the same
line. Thus, the line is uniquely defined by a particular point in it and
a non-zero vector parallel to the line. In order for a point P to be in
a line L that passes through a point P0 and is parallel to a non-zero

vector v, the vector
−−→
P0P must be parallel to v:

P ∈ L ⇔ −−→
P0P ‖ v , v ‖ L , P0 ∈ L

This geometrical condition is easy to turn into an algebraic condition
in some coordinate system.

7.1. An Algebraic Description of a Line. In some coordinate system,
a particular point P0 of a line L has coordinates (x0, y0, z0), and a
vector parallel to L is defined by its components, v = 〈v1, v2, v3〉. Let
r = 〈x, y, z〉 be a position vector of a generic point of L and let r0 =

〈x0, y0, z0〉 be the position vector of P0. Then the vector
−−→
P0P = r−r0 is

the position vector of P relative to P0. By the geometrical description
of the line, it must be parallel to v. Since any two parallel vectors are
proportional, a point (x, y, z) belongs to L if and only if r − r0 = tv
for some real t (see the left panel of Fig. 7.1).
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Figure 7.1. Left: Algebraic description of a line L through
r0 and parallel to a vector v. If r0 and r are position vectors
of particular and generic points of the line, then the vector
r − r0 is parallel to the line and hence must be proportional
to a vector v, that is, r − r0 = tv for some real number t.
Right: Distance between a point P1 and a line L through a
point P0 and parallel to a vector v. It is the height of the

parallelogram whose adjacent sides are the vectors ~P0P1 and

v.

Theorem 7.1. (Vector and parametric equations of a line).
The coordinates of the points of the line L through a point
P0 = (x0, y0, z0) and parallel to a vector v = 〈v1, v2, v3〉 satisfy the
vector equation

(7.1) r = r0 + tv , −∞ < t < ∞.

or the parametric equations

(7.2) x = x0 + tv1 , y = y0 + tv2 , z = z0 + tv3 , −∞ < t < ∞.

The parametric equations of the line can be solved for t. If none of
the components of v vanishes, then t = (x−x0)/v1, t = (y−y0)/v2, and
t = (z− z0)/v3. Equating the right sides of these equations, symmetric
equations of a line are obtained that do not involve any parameter.

Corollary 7.1. (Symmetric equations of a line)
Coordinates (x, y, z) of points of a line through a point (x0, y0, z0) and
parallel to a vector 〈v1, v2, v3〉 with non-vanishing components satisfy
the equations

(7.3)
x− x0

v1

=
y − y0

v2

=
z − z0

v3

,

Equations (7.3) make sense only if all the components of v do not
vanish. If, say, v1 = 0, then the first equation in (7.2) does not contain
the parameter t at all. So the symmetric equations are written in the
form

x = x0 ,
y − y0

v2

=
z − z0

v3

.
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The first and second equations in (7.3) can also be written in the form
{

v2(x − x0) − v1(y − y0) = 0
v3(y − y0) − v2(z − z0) = 0

Each of these equations describes a plane. So symmetric equations
define a line in space is an intersection of two planes through the
point (x0, y0, z0) and whose normals are n1 = 〈v2,−v1, 0〉 and n2 =
〈0, v3,−v2〉, respectively:

L = P1 ∩ P2 , P1 ⊥ n1 = 〈v2,−v1, 0〉 , P2 ⊥ n2 = 〈0, v3,−v2〉 .

The reader is advised to verify that the vectors v and n1 × n2 are
parallel. Why? (See Example 7.2.)

Example 7.1. Find the vector, parametric, and symmetric equa-
tions of the line through the points A = (1, 1, 1) and B = (1, 2, 3). Give
equations of two planes whose intersection is the line through AB.

Solution: Take v =
−→
AB = 〈0, 1, 2〉 and P0 = A. Then

r = 〈1, 1, 1〉 + t〈0, 1, 2〉,
x = 1 , y = 1 + t , z = 1 + 2t ,

x = 1 , y − 1 =
z − 1

2
are the vector, parametric, and symmetric equations of the line,
respectively. According to the symmetric equations, the line is the in-
tersection of two planes:

{

x = 1
2y − z = 1

�

Clearly, a line can always be described as the set of points of in-
tersection of two non-parallel planes. Since the line of intersection lies
in each plane, it must be orthogonal to the normals of these planes.
Therefore a vector parallel to the line can always be chosen as the cross
product of the normals.

Example 7.2. Find the line that is the intersection of the planes
x + y + z = 1 and 2x − y + z = 2.

Solution: The normals of the planes are n1 = 〈1, 1, 1〉 and n2 =
〈2,−1, 1〉. So the vector

v = n1 × n2 = 〈2, 1,−3〉
is parallel to the line. To find a particular point of the line, note that its
three coordinates (x0, y0, z0) should satisfy two equations of the planes.
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So one can choose one of the coordinates at will and find the other
two from the equations of the planes. It follows from the parametric
equations (7.2) that if, for example, v3 6= 0, then there is a value of t at
which z vanishes, meaning that the line always contains a point with
the vanishing z coordinate. Since v3 = −3 6= 0 for the line in question,
put z0 = 0. Then

{

x0 + y0 = 1
2x0 − y0 = 2

By adding these equation, x0 = 1 and, hence, y0 = 0. The parametric
equations of the line of intersection are

x = 1 + 2t , y = t , z = −3t .

Alternative Solution: Three coordinates (x, y, z) of points of the
line of intersection satisfy two equations of the planes. This system of
equations can be solved for two variables, while the other variable is
viewed as parameter:

x + y + z = 1
2x − y + z = 2

⇒ x = 1 − 2

3
z

y = −1

3
z

⇒
x = 1 − 2

3
s

y = −1

3
s

z = s

where −∞ < s < ∞. The last three equations are parametric equa-
tions of the line of intersection. They appear to be different from those
found before. Nevertheless, they describe the same set of points in
space. Indeed, by setting s = −3t the equivalence is established. This
freedom in parametric equations of a line is easy to understand. The
choice of a particular point of the line and a vector parallel to the line is
not unique. In the above two sets of parametric equations, the vectors
parallel to the line are different, v = 〈2, 1,−3〉 and u = 〈−2

3
,−1

3
, 1〉

(note v = −3u), while a particular point is the same, (1, 0, 0). �

Distance Between a Point and a Line. Let L be a line through P0 and
parallel to v. What is the distance between a given point P1 and the
line L? Consider a parallelogram with vertex P0 and whose adjacent

sides are the vectors v and
−−→
P0P1 as depicted in Figure 7.1 (right panel).

The distance in question is the height of this parallelogram, which is
therefore its area divided by the length of the base ‖v‖. If r0 and r1

are position vectors of P0 and P1, then
−−→
P0P1 = r1 − r0 and hence

(7.4) D =
‖v ×−−→

P0P1‖
‖v‖ =

‖v × (r1 − r0)‖
‖v‖ .

Equation (7.4) also follows from Corollary 5.4 because the distance
between a line L and a point P1 is the distance between L and a
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parallel line through P1. So, in Corollary 5.4, put v =
−→
AB, A = P0,

and C = P1 to obtain Eq. (7.4).

7.2. Relative Positions of Lines in Space. Two lines in space can be in-
tersecting, parallel, or skew. The criterion for relative positions of the
lines in space is stated in Corollary 5.6. Given an algebraic description
of the lines established here, it can now be restated as follows.

Corollary 7.2. (Relative positions of lines in space)
Let L1 be a line through P1 and parallel to a vector v1 6= 0 and L2 be a

line through P2 and parallel to a vector v2 6= 0. Put r12 =
−−→
P1P2. Then

(1) L1 and L2 are skew if and only if v1, v2, and r12 are not
coplanar, or r12 · (v1 × v2) 6= 0 ;

(2) L1 and L2 intersect at a point if and only if v1, v2, and r12 are
coplanar, but v1 and v2 are not parallel, or r12 · (v1 × v2) = 0
and v1 × v2 6= 0 ;

(3) L1 and L2 coincide if and only if v1, v2, and r12 are parallel,
or v1 × v2 = 0 and r12 × v1 = 0 ;

(4) L1 and L2 are parallel if and only if v1 and v2 are parallel, but
r12 is not parallel to them, or v1 × v2 = 0 and r12 × v1 6= 0 .

Indeed, the vector v1 can always be viewed as a vector with initial
and terminal points on the line L1. The same observation is true for
the vector v2 and the line L2. With this observation the equivalence
of Corollary 5.6 to Corollary 7.2 is obvious.

Let L1 and L2 be intersecting. How can one find the point of
intersection? To solve this problem, consider the vector equations for
the lines

L1 : rt = r1 + tv1

L2 : rs = r2 + sv2

When changing the parameter t, the terminal point of rt slides along
the line L1, while the terminal point of rs slides along the line L2 when
changing the parameter s as depicted in Figure 7.2 (left panel). Note
that the parameters of both lines are not related in any way according
to the geometrical description of the lines. If two lines are intersecting,
then there should exist a pair of numbers (t, s) = (t0, s0) at which the
terminal points of vectors rt and rs coincide:

rt = rs ⇒ (t, s) = (t0, s0)

If this equation has no solution, then the lines are not intersecting. The
vector rt at t = t0 (or rs at s = s0) is the position vector of the point of
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Figure 7.2. Left: Intersection point of two lines L1 and
L2. The terminal point of the vector rt traverses L1 as t
ranges over all real numbers, while the terminal point of the
vector rs traverses L2 as s ranges over all real numbers inde-
pendently of t. If the lines are intersecting, then there should
exist a pair of numbers (t, s) = (t0, s0) such that the vectors
rt and rs coincide, which means that their components must
be the same. This defines three equations on two variables
t and s. Right: The point of intersection of a line L and
a plane P . The terminal point of the vector rt traverses L
as t ranges over all real numbers. If the line intersects the
plane defined by the equation r · n = d, then there should
exist a particular value of t at which the vector rt satisfies
the equation of the plane: rt · n = d.

intersection. Let vi = 〈ai, bi, ci〉, i = 1, 2. Writing the vector equation
rt = rs in components, the following system of equations is obtained:

x1 + ta1 = x2 + sa2,

y1 + tb1 = y2 + sb2,

z1 + tc1 = z2 + sc2.

This system of equations is solved in a conventional manner, e.g., by
expressing t via s from the first equation, substituting it into the second
and third ones, and verifying that the resulting two equations have the
same solution for s. Note that the system has three equations for
only two variables. It is an overdetermined system, which may or may
not have a solution. If the conditions of Parts (1) or (4) in Corollary
7.2 are satisfied, then the system has no solution (the lines are skew or
parallel). If the conditions of Part (3) in Corollary 7.2 are fulfilled, then
there is a unique solution. Naturally, if the lines coincide there will be
infinitely many solutions. Let (t, s) = (t0, s0) be a unique solution.
Then the position vector of the point of intersection is r1 + t0v1 or
r2 + s0v2:

L1 ∩ L2 = P0 ,
−−→
OP0 = r1 + t0v1 = r2 + s0v2 .
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Two lines intersecting at a point P0 lie in a plane. Each of the lines
can be obtained from the other by rotation about P0 in this plane.
The smallest rotation angle is called the angle between the lines. If
v1 and v2 are vectors parallel to the first and second line, respectively,
then the angle between the lines coincides with the angle θ between the
vectors v1 and v2 if 0 ≤ θ ≤ π/2. If π/2 < θ ≤ π, then the smallest
rotation angle is π − θ. So the angle between two intersecting lines
can be defined similarly to the angle between two intersecting planes
(Definition 6.1).

Definition 7.1. (Angle between two intersecting lines).
If v1 and v2 are vectors parallel to two intersecting lines, then the angle
0 ≤ θ ≤ π/2 satisfying the equation

cos θ =
|v1 · v2|
‖v1‖ ‖v2‖

= |v̂1 · v̂2|

is called the angle between the lines.

Example 7.3. Determine whether the lines

L1 : x − 1 = y − 1 = −z + 1

2

L2 :
x − 1

2
= y = −z

3

are skew, intersecting, or parallel. If they are intersecting, find the
point of intersection and the angle of intersection.

Solution: The first line contains the point P1 = (1, 1,−1) and is
parallel to the vector v1 = 〈1, 1,−2〉. The second line contains the
point P2 = (1, 0, 0) and is parallel to the vector v2 = 〈2, 1,−3〉. So the
lines are traversed by the position vectors

L1 : rt = 〈1 + t, 1 + t,−1 − 2t〉
L2 : rs = 〈1 + 2s, s,−3s〉

If the lines are intersecting, then the vector equation rt = rs should
have a solution for some (t, s). The vector equation implies that:

1 + t = 1 + 2s , 1 + t = s , −1 − 2t = −3s

This system has a unique solution t = −2 and s = −1. So the lines are
intersecting at the point whose position vector is

L1 ∩ L2 : rt

∣

∣

∣

t=−2

= rs

∣

∣

∣

s=−1

= 〈−1,−1, 3〉 .
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The angle between the lines is calculated by Definition 7.1. One has
v1 · v2 = 9, ‖v1‖ =

√
6, and ‖v2‖ =

√
14. Therefore

cos θ =
9√

6
√

14
=

3
√

3

2
√

7
⇒ θ ≈ 10.9◦

�

7.3. Relative Positions of Lines and Planes. Consider a line L and a
plane P :

L : r = r0 + tv ; P : r · n = d .

The question of interest is to determine whether they are intersecting or
parallel. If the line does not intersect the plane (they have no common
points), it must be in a plane parallel to P . Therefore a vector v parallel
to L must be orthogonal to a normal n of P . A line perpendicular to
n can also lie in the plane P , which occurs if and only if a particular
point r0 lies in the plane.

Corollary 7.3. (Criterion for a line and a plane to be parallel).
A line L, r = r0 + tv, is parallel to a plane P, r ·n = d, if and only if a
vector parallel to the line v and a normal n of the plane are orthogonal
and a particular point of L is not in the plane P:

L ‖ P ⇔ v ⊥ n and r0 /∈ P ⇔ v · n = 0 and r0 · n 6= d.

If v and n are not orthogonal, v ·n 6= 0, then the line and the plane
have one point of intersection and there should exist a unique value of
the parameter t for which the position vector rt = r0 + tv of a point of
L also satisfies an equation of the plane r ·n = d (see Figure 7.2, right
panel). The value of the parameter t that corresponds to the point of
intersection is determined by the equation

rt · n = d ⇒ r0 · n + tv · n = d ⇒ t =
d − r0 · n

v · n .

The position vector of the point of intersection is found by substituting
this value of t into the vector equation of the line rt = r0 + tv. Note
that if the equation rt · n = d is satisfied for all values of t, which is
only possible if v · n = 0 and r0 · n = d, then the line lies in the plane.

Example 7.4. A point object is traveling along the line

L : x − 1 =
y

2
=

z + 1

2

with a constant speed v = 6 meters per second. If all coordinates are
measured in meters and the initial position vector of the object is r0 =
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〈1, 0,−1〉, when does it reach the plane 2x + y + z = 13? What is the
distance traveled by the object?

Solution: Parametric equations of the line are

x = 1 + s , y = 2s , z = −1 + 2s .

The value of the parameter s at which the line intersects the plane is
determined by the substitution of these equations into the equation of
the plane:

2(1 + s) + 2s + (−1 + 2s) = 13 ⇔ 6s = 12 ⇔ s = 2

So the position vector of the point of intersection is r = 〈3, 4, 3〉. The
distance between it and the initial point is

D = ‖r − r0‖ = ‖〈2, 4, 4〉‖ = ‖2〈1, 2, 2〉‖ = 2‖〈1, 2, 2〉‖ = 6

meters and the travel time is T = D/v = 1 sec. �

Remark. In this example the parameter s does not coincide with the
physical time. If an object travels with a constant speed v along the
line through r0 and parallel to a unit vector v̂, then its velocity vector is
v = vv̂ and its position vector is r = r0+vt where t is the physical time.
Indeed, the vector r− r0 is the displacement vector of the object along
its trajectory and hence its length determines the distance traveled by
the object: ‖r − r0‖ = ‖vt‖ = vt, which shows that the parameter
t > 0 is the travel time.

Example 7.5. Find an equation of the plane P that is perpendicu-
lar to the plane P1, x + y− z = 1, and contains the line x− 1 = y/2 =
z + 1.

Solution: The plane P contains the given line and therefore its nor-
mal n must be orthogonal to the vector v = 〈1, 2, 1〉 that is parallel
to the line (the components of v appear in the denominators in sym-
metric equations (7.3)). The plane P is perpendicular to the plane P1

and therefore n must be orthogonal to the normal n1 = 〈1, 1,−1〉 of P1

(Definition 6.1). So n is a nonzero vector orthogonal to both n1 and
v. Therefore, one can take

{

n ⊥ n1 = 〈1, 1,−1〉
n ⊥ v = 〈1, 2, 1〉 ⇒ n = n1 × v = 〈3,−2, 1〉 .

The line lies in P and therefore any of its points can be taken as
a particular point of P . For example, put x = 1 in the symmetric
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equations to get 0 = y/2 = z + 1 and hence P0 = (1, 0,−1). An
equation of P reads

3(x − 1) − 2y + (z + 1) = 0 or 3x − 2y + z = 2 .

�

Example 7.6. Find the planes that are perpendicular to the line
x = y/2 = −z/2 and have the distance 3 units from the point (−1,−2, 2)
on the line.

Solution: The line is parallel to the vector v = 〈1, 2,−2〉. So the
planes have the same normal n = v. Particular points in the planes
may be taken as the points of intersection of the line with the planes.
These points are at the distance 3 from r0 = 〈−1,−2, 2〉 and their
position vectors r should satisfy the condition ‖r − r0‖ = 3. The
substitution of the vector equation of the line r = r0 + tv into this
condition yields the values of t at which the distance of 3 units from r0

along the line is reached:

3 = ‖r − r0‖ = ‖tv‖ = |t|‖v‖ = 3|t| ⇒ t = ±1 .

So the position vectors of particular points in the planes are

r

∣

∣

∣

t=±1

= r0 ± v = 〈−1,−2, 2〉 ± 〈1, 2,−2〉 =

{

〈0, 0, 0〉
〈−2,−4, 4〉

Equations of the planes are

P1 : x + 2y − 2z = 0 ,

P2 : (x + 2) + 2(y + 4) − 2(z − 4) = 0 or x + 2y − 2z = −18 .

�

7.4. Parametric equations of a plane. Let P0 be in a plane P . Let a and
b be two non-parallel vectors in P . Any vector in a plane is a linear
combination of a and b. Therefore for any point P ∈ P there exists a
unique ordered pair of numbers (s, t) such that

−−→
P0P = sa + tb .

Let r and r0 be position vectors of the points P and P0. Then
−−→
P0P =

r − r0 so that

r = r0 + sa + tb , −∞ < t, s < ∞
This vector equation is equivalent to three scalar equations in some
rectangular coordinate system. Put r = 〈x, y, z〉, r0 = 〈x0, y0, z0〉.
Then

x = x0 + a1s + b1t , y = y0 + a2s + b2t , z = z0 + a3s + b3t ,
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where s and t are any real numbers (parameters). These equations are
called parametric equations of a plane through a point (x0, y0, z0) that
contains two non-parallel vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉.

For a fixed value of s, parametric equation of the plane define a line
Ls through the point rs = r0 + sa and parallel to the vector b. So, all
the lines Ls, −∞ < s < ∞, are parallel, and the plane is the union of
all such lines. Alternatively, if t is fixed, then the parametric equations
of the plane define a line Lt through the point rt = r0 + tb and parallel
to the vector a. So all the lines Lt, −∞ < t < ∞, are parallel, and the
plane is their union:

P =
⋃

s

Ls =
⋃

t

Lt

where the unions are taken over all real t and s.

7.5. Study Problems.

Problem 7.1. Let L1 be the line through P1 = (2, 3, 0) and parallel
to v1 = 〈1, 2,−1〉 and let L2 be the line through P2 = (0,−2,−2) and
parallel to v2 = 〈2, 1, 0〉. Determine whether the lines are parallel,
intersecting, or skew and find the line L that is perpendicular to both
L1 and L2 and intersects them.

Solution: The vectors v1 and v2 are not proportional, and hence the

lines are either skew or intersecting by Corollary 7.2. Put r12 =
−−→
P1P2 =

〈−2,−5,−2〉. Then

v1 × v2 = 〈1,−2,−3〉 ⇒ r12 · (v1 × v2) = 14 6= 0 ,

and the lines are skew by Corollary 7.2. The vector v = v1 × v2 is
parallel to L because L is perpendicular to both the lines L1 and L2.
So the objective is to find a particular point of L. Since L is intersecting
L1 and L2, any of the points of intersection may be taken a particular
point of L. Let rt = r1 + tv1 be a position vector of a point of L1

and let rs = r2 + sv2 be a position vector of a point of L2 as shown
in Figure 7.3 (left panel). The line L is orthogonal to both vectors v1

and v2. As it intersects the lines L1 and L2, there should exist a pair
of values (t, s) of the parameters at which the vector rs − rt is parallel
to L; that is, the vector

rs − rt = 〈−2 + 2s − t, −5 + s − 2t, −2 + t〉

becomes orthogonal to v1 and v2 when the values of t and s correspond
to the points of intersection of L with L1 and L2. The corresponding
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Figure 7.3. Left: Illustration to Study Problem 7.1. The
vectors rs and rt trace out two given skewed lines L1 and L2,
respectively. There are particular values of t and s at which
the distance ‖rt − rs‖ becomes minimal. Therefore, the line
L through such points rt and rs is perpendicular to both L1

and L2. Right: Intersection of a line L and a sphere S.
An illustration to Study Problem 7.2. The terminal point
of the vector rt traverses the line as t ranges over all real
numbers. If the line intersects the sphere, then there should
exist a particular value of t at which the components of the
vector rt satisfy the equation of the sphere. This equation is
quadratic in t, and hence it can have two distinct real roots,
or one multiple real root, or no real roots. These three cases
correspond to two, one, or no points of intersection. One
point of intersection occurs when the line is tangent to the

sphere.

algebraic conditions are

rs − rt ⊥ v1 ⇐⇒ (rs − rt) · v1 = −10 + 4s − 6t = 0,

rs − rt ⊥ v1 ⇐⇒ (rs − rt) · v2 = −9 + 5s − 4t = 0.

This system has the solution t = −1 and s = 1. Thus, the points with
the position vectors rt=−1 = r1 − v1 = 〈1, 1, 1〉 and rs=1 = r2 + v2 =
〈2,−1,−2〉 belong to L. In particular, the vector v = rs=1 − rt=0 =
〈1,−2,−3〉 is parallel to L (as expected, it is parallel to v1×v2). Taking
a particular point of L with the position vector 〈1, 1, 1〉, the parametric
equations read x = 1 + t, y = 1 − 2t, z = 1 − 3t. �

Problem 7.2. Consider a line through the origin that is parallel to
the vector v = 〈1, 1, 1〉. Find the part of this line that lies inside the
sphere x2 + y2 + z2 − x − 2y − 3z = 9.
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Solution: The parametric equations of the line are

x = t , y = t , z = t .

If the line intersects the sphere, then there should exist particular val-
ues of t at which the coordinates of a point of the line also satisfy
the equation for the sphere (see Figure 7.3, right panel). In general,
parametric equations of a line are linear in t, while an equation of a
sphere is quadratic in the coordinates. Therefore, the equation that
determines the values of t corresponding to the points of intersection
is quadratic. A quadratic equation has two, one, or no real solutions.
Accordingly, these cases correspond to two, one, and no points of in-
tersection, respectively. In our case,

3t2 − 6t = 9 ⇒ t2 − 2t = 3 ⇒ t = −1 and t = 3 .

The points of intersection are A = (−1,−1,−1) and B = (3, 3, 3).
The line segment connecting them can be described by the parametric
equations

AB : x = t , y = t , z = t , −1 ≤ t ≤ 3 .

�

Problem 7.3. Let P be a plane through a point P0 and orthogonal to
a vector n 6= 0. Represent P as the union of lines through P0.

Solution: Let r0 be the position vector of P0. Given n = 〈n1, n2, n3〉
is not difficult to find a non-zero vector orthogonal to n. For example,

m = 〈n2,−n1, 0〉 ⇒ m · n = n2n1 − n1n2 = 0 ⇒ m ⊥ n

Then the vectors m, m×n, and n are mutually orthogonal. Therefore
the unit vectors

û1 =
1

‖m‖ m , û2 =
1

‖m × n‖ m × n

are orthogonal to each other and parallel to the plane P . Any unit
vector in the plane P can therefore be written in the form (see Study
Problem 6.4)

vθ = cos θ û1 + sin θ û2

for some 0 ≤ θ < 2π. Consequently, any line through P0 that is also in
the plane P can be described by the vector equation

Lθ : r = r0 + tvθ , 0 ≤ θ < π .
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The lines corresponding to the values of θ that differ by π are identical
because vθ+π = −vθ. For this reason, the range of the parameter θ is
restricted to the interval [0, π). Then the plane P is the union:

P =
⋃

θ

Lθ ,

where the union is taken over 0 ≤ θ < π. Recall that a plane was
first defined as the point set of all the lines through a given point and
perpendicular to a given line through that point. �

7.6. Exercises.

1–7. Find vector, parametric, and symmetric equations of the specified
line.

1. The line containing the segment AB where A = (1, 2, 3) and
B = (−1, 2, 4)

2. The lines containing the diagonals of the parallelogram whose
adjacent sides at the vertex (1, 0,−1) are a = 〈1, 2, 3〉 and
b = 〈−1, 2, 1〉.

3. The line through the vertex A of a triangle ABC and per-
pendicular to the sides AB and AC if A = (1, 0,−1), B =
(−1, 1, 2), and C = (2,−1,−2)

4. The line through the vertex C of a triangle ABC and parallel
to the edge AB if A = (1, 0,−1), B = (−1, 1, 2), and C =
(2,−1,−2)

5. A line through the origin that makes an angle of 60◦ with the
x and y axes. Is such a line unique? Explain.

6. The line through the vertex A = (1, 2, 3) of a parallelogram
with adjacent sides at A being a = 〈1, 2, 2〉 and b = 〈−2, 1,−2〉
that bisects the angle of the parallelogram at A. Hint: See Ex-
ercise 21 in Section 3.8.

7. The line parallel to the vector 〈1,−2, 0〉 that contains a diam-
eter of the sphere x2 + y2 + z2 − 2x + 4y − 6z = 0.

8. Show that the line through P1 = (1, 2,−1) and parallel to v1 =
〈1,−1, 3〉 coincides with the line through P2 = (0, 3,−4) and parallel
to v2 = 〈−2, 2,−6〉 as points sets in space.
9. Do the lines x − 1 = 2y = 3z and r = r0 + tv, where r0 = 〈7, 3, 2〉
and v = 〈6, 3, 2〉, coincide as point sets in space?
10. Find parametric equations of the line through the point (1, 2, 3)
and perpendicular to the plane x + y + 2z = 1. Find the point of
intersection of the line and the plane.
11. Find parametric and symmetric equations of the line of intersection
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of the planes x + y + z = 1 and 2x − 2y + z = 1.
12–13. Determine whether the given lines are are parallel, skew, or
intersecting. If they intersect, find the point of intersection and the
angle between the lines.

12. The line through the points (1, 2, 3) and (2,−1, 1) and the line
through the points (0, 1, 3) and (1, 0, 2)

13. The lines x = 1 + 2t, y = 3t, z = 2 − t and x + 1 = y − 4 =
(z − 1)/3.

14. Let
−→
AB = 〈1, 2, 2〉, −→AC = 〈2,−1,−2〉, and

−−→
AD = 〈0, 3, 4〉 be the

adjacent sides of a parallelepiped. Show that the diagonal of the paral-
lelepiped extended from the vertex A intersects the diagonal extended
from the vertex D and find the angle between the diagonals.
15. Are the four lines containing the diagonals of a parallelepiped in-
tersecting at a point? Prove your answer. If they are intersecting, find
the position vector of the point of intersection relative to a vertex at
which the adjacent sides of the parallelepiped are a, b, and c.
16. Find vector and parametric equations of the straight line segment
from the point (1, 2, 3) to the point (−1, 1, 2).
17. Let r1 and r2 be position vectors of two points in space. Find a
vector equation of the straight line segment from r1 to r2.
18. Find the distance from the point (1, 2, 3) to the line 2x = y + 1,
z = 3.
19. Consider the plane x + y − z = 0 and a point P = (1, 1, 2) in it.
Find parametric equations of the lines through the origin that lie in the
plane and are at a distance of 1 unit from P . Hint: A vector parallel
to these lines can be taken in the form v = 〈1, c, 1+ c〉 where c is to be
determined. Explain why!
20. Find the parallel lines intersecting the line x = 2 + t, y = 1 + t,
z = 2 + 2t at a right angle and parallel to the plane x + 2y − 2z = 1
that are at a distance of 1 unit from the plane. Hint: Find values of t
at which the distance from a point in the given line to the plane is 1.
This determines the points of intersection of the lines in question with
the given line.
21. Find parametric equations of the line that is parallel to v =
〈2,−1, 2〉 and goes through the center of the sphere x2 + y2 + z2 =
2x + 6z − 6. Restrict the range of the parameter to describe the part
of the line that is inside the sphere.
22. Let the line L1 pass through the point A(1, 1, 0) parallel to the vec-
tor v = 〈1,−1, 2〉 and let the line L2 pass through the point B(2, 0, 2)
parallel to the vector w = 〈−1, 1, 2〉. Show that the lines are intersect-
ing. Find the point C of intersection and parametric equations of the
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line L3 through C that is perpendicular to L1 and L2.
23. Find parametric equations of the line through (1, 2, 5) that is per-
pendicular to the line x − 1 = 1 − y = z and intersects this line.
24. Find the distance between the lines x = y = z and x + 1 = y/2 =
z/3.
25. A small meteor moves with the speed v along a straight line par-
allel to a unit vector û. If the meteor passed the point r0, find the
condition on û so that the meteor hits an asteroid of the shape of a
sphere of radius R centered at the point r1. Determine the position
vector of the impact point.
26. A projectile is fired in the direction v = 〈1, 2, 3〉 from the point
(1, 1, 1). Let the target be a disk of radius R centered at (2, 3, 6) in the
plane 2x− 3y +4z = 19. If the trajectory of the projectile is a straight
line, determine whether it hits a target in two cases R = 2 and R = 3.
27. Consider a triangle ABC where A = (1, 1, 1), B = (3, 1,−1),
C = (1, 3, 1). Find the area of a polygon DPQB where the vertices D
and Q are the midpoints of CB and AB, respectively, and the vertex
P is the intersection of the segments CQ and AD.
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8. Euclidean Spaces.

The concept of a Euclidean space is studied in detail in courses of
Linear Algebra. Here only a few facts are given which are necessary to
define functions of several variables discussed in Chapter 3. The reader
may skip this section and review it later before reading Chapter 3.

With every ordered pair of numbers (x, y), one can associate a point
in a plane and its position vector relative to a fixed point (0, 0) (the
origin), r = 〈x, y〉. With every ordered triple of numbers (x, y, z), one
can associate a point in space and its position vector (again relative
to the origin (0, 0, 0)), r = 〈x, y, z〉. So the plane can be viewed as
the set of all two-component vectors; similarly, space is the set of all
three-component vectors. From this point of view, the plane and space
have common characteristic features. First, their elements are vectors.
Second, they are closed relative to addition of vectors and multiplica-
tion of vectors by a real number; that is, if a and b are elements of
space or a plane and c is a real number, then a+b and ca are also ele-
ments of a space (ordered triples of numbers) or a plane (ordered pairs
of numbers). Third, the norm or length of a vector ‖r‖ vanishes if and
only if the vector has zero components. Consequently, two elements
of space or a plane coincide if and only if the norm of their difference
vanishes, that is, a = b ⇔ ‖a − b‖ = 0. Finally, the dot product a · b
of two elements is defined in the same way for two- or three-component
vectors (plane or space) so that ‖a‖2 = a · a. Since points and vec-
tors are described by the same mathematical object, an ordered triple
(or pair) of numbers, there is no necessity to make a distinction be-
tween them. So the space may be viewed as the set of all vectors (or
ordered triple of numbers) in which the addition, multiplication by a
number, and the dot product are defined. These observations can be
extended to ordered n-tuples for any positive n and lead to the notion
of a Euclidean space.

8.1. Higher-dimensional Euclidean spaces.

Definition 8.1. (Euclidean Space).
For each positive integer n, consider the set of all ordered n-tuples
of real numbers. For any two elements a = 〈a1, a2, ..., an〉 and b =
〈b1, b2, ..., bn〉 and a number c, put

a + b = 〈a1 + b1, a2 + b2, ..., an + bn〉,
ca = 〈ca1, ca2, ..., can〉,

a · b = a1b1 + a2b2 + · · · + anbn,

‖a‖ =
√

a · a =
√

a2
1 + a2

2 + · · · + a2
n .
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The set of all ordered n−tuples in which the addition, the multiplication
by a number, the dot product, and the norm are defined by these rules
is called an n-dimensional Euclidean space and denoted R

n. Elements
of R

n are also called vectors.

Two elements of a Euclidean space are said to coincide, a = b, if
the corresponding components are equal, that is,

a = b ⇔ ai = bi , i = 1, 2, ..., n .

It follows that a = b if and only if ‖a−b‖ = 0. Indeed, by the definition
of the norm, ‖c‖ = 0 if and only if c = (0, 0, ..., 0). Put c = a − b.
Then ‖a − b‖ = 0 if and only if a = b. The number ‖a− b‖ is called
the distance between two elements a and b of a Euclidean space.

The dot product in a Euclidean space has the same geometrical
properties as in two and three dimensions. The Cauchy-Schwarz in-
equality can be extended to any Euclidean space (cf. Theorem 3.2).

Theorem 8.1. (Cauchy-Schwarz Inequality).

|a · b| ≤ ‖a‖‖b‖
for any elements a and b of R

n, and the equality is reached if and only
if a = tb for some number t.

Proof. Put a = ‖a‖ and b = ‖b‖, that is, a2 = a · a and similarly
b2 = b · b. If b = 0, then b = 0, and the conclusion of the theorem
holds. For b 6= 0 and any real t,

‖a− tb‖2 = (a− tb) · (a− tb) ≥ 0 .

Therefore,
a2 − 2tc + t2b2 ≥ 0 ,

where c = a·b. Completing the squares in the left side of this inequality,
(

bt − c

b

)2

− c2

b2
+ a2 ≥ 0 ,

shows that the left side attains its absolute minimum when the expres-
sion in the parenthesis vanishes, i.e., at t = c/b2. Since the inequality
is valid for any t, it is satisfied for t = c/b2, that is,

a2 − c2/b2 ≥ 0 ⇒ c2 ≤ a2b2 ⇒ |c| ≤ ab

⇒ |a · b| ≤ ‖a‖‖b‖ .

The inequality becomes an equality if and only if ‖a − tb‖2 = 0 and
hence if and only if a = tb. �

It follows from the Cauchy-Schwarz inequality that a·b = s‖a‖‖b‖,
where s is a number such that |s| ≤ 1. So one can always put s = cos θ,
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where θ ∈ [0, π]. If θ = 0, then a = tb for some positive t > 0 (such
elements of R

n are called parallel), and a = tb, t < 0, when θ = π
(such elements of R

n are called antiparallel). The dot product vanishes
when θ = π/2. This allows one to define θ as the angle between two
elements of a Euclidean space:

cos θ =
a · b

‖a‖‖b‖
much like in two and three dimensions. Two elements of R

n are called
orthogonal if their dot product vanishes. Consequently, the triangle
inequality (3.4) holds in a Euclidean space of any dimension.

8.2. A basis in a Euclidean space. Consider n elements êj, j = 1, 2, ..., n,
of R

n such that all components of êj are 0 except the jth compo-
nent which is 1, that is, ê1 = 〈1, 0, ..., 0〉, ê2 = 〈0, 1, 0, ..., 0〉, ...,
ên = 〈0, 0, ..., 0, 1〉. Evidently, these elements are mutually orthogonal
and have unit norm: êj · êm = 0 if j 6= m and êj · êj = 1 or ‖êj‖ = 1. By
the definition of a Euclidean space, every element a = 〈a1, a2, ..., an〉 is
a linear combination of êj:

a = a1ê1 + a2ê2 + · · · + anên .

Definition 8.2. (Standard basis in a Euclidean space)
The set of elements êj, j = 1, 2, ..., n, is called the standard basis of an
n−dimensional Euclidean space.

Note that any non-zero vector a = sê1 = 〈s, 0, ..., 0〉 6= 0, which
is a multiple of ê1 cannot be expressed as a linear combination of the
other basis vectors êj, j = 2, 3, ..., n, because the first component of a
general linear combination a2ê2 + a3ê3 + · · · + anên = 〈0, a2, a3, ..., an〉
is always zero. It is then not difficult to see that none of the standard
basis vectors is a linear combination of the others. The standard basis
is said to be a set of linearly independent vectors.

Definition 8.3. (A set of linearly independent vectors)
A set of vectors uk, k = 1, 2, ..., m ≤ n, in an n−dimensional Euclidean
space is called linearly independent if none of these vectors is a linear
combination of the others.

Clearly, any m vectors (m ≤ n) from the standard basis form a
linearly independent set of vectors. It is proved in Linear Algebra
that any set of n linearly independent vectors in an n−dimensional
Euclidean space form a basis in the sense that every element of R

n
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is expressed as a unique linear combination of these vectors. Simi-
larly to Section 3.4, one can show that any set of n mutually orthog-
onal unit vectors ûj , j = 1, 2, ..., n, form an orthonormal basis in an
n−dimensional Euclidean space in the sense that, for every element
a = 〈a1, a2, ..., an〉 = a1ê1 + a2ê2 + · · · + anên, there exist unique num-
bers sj such that a = s1û1 + s2û2 + · · · + snûn.

Theorem 8.2. (A criterion for linear independence)
Non-zero vectors uj, j = 1, 2, ..., m ≤ n, in an n−dimensional Eu-
clidean space are linearly independent if and only if the vector equation

s1u1 + s2u2 + · · · + smum = 0

has a trivial solution s1 = s2 = · · · = sm = 0.

Note that if the vector equation has a nontrivial solution, then one
of the numbers sj is not zero, say, s1 6= 0. The latter implies that u1 is
a linear combination of the others: u1 = −(s2/s1)u2−· · ·−(sm/s1)um.
The numbers s2, s3,...,sm cannot vanish simultaneously because u1 6= 0.
So, the vectors cannot be linearly independent. Using this observation
is not difficult to prove the theorem.

It can also be proved that there are exactly n − 1 nonzero linearly
independent vectors orthogonal to a given nonzero vector in R

n.

Example 8.1. Show that the vectors u1 = 〈1, 0, ..., 0〉,
u2 = 〈1, 1, 0, ..., 0〉, ..., un−1 = 〈1, 1, ..., 1, 0〉, and un = 〈1, 1, ..., 1〉 in
an n−dimensional Euclidean space are linearly independent and, hence,
form a basis. Find components of the vector a = 〈1, 2, ..., n − 1, n〉 in
this basis.

Solution: By Theorem 8.2 one has to show that the vector equation
s1u1 +s2u2 + · · ·+snun = 0 admits only a trivial solution. Writing this
equation in components, one infers that the numbers sj, j = 1, 2, ..., n,
satisfy the system of n equations

s1 = 0
s1 + s2 = 0
· · ·
s1 + s2 + · · · sn−1 = 0
s1 + s2 + · · · sn−1 + sn = 0

Substituting the first equation into the second one, it is concluded
that s1 = s2 = 0. Continuing this procedure recursively downward
to the third equation, then to the fourth equation, and so on. It is
easy to see that s3 = 0, s4 = 0, and so on. Thus, the system has a
trivial solution and the vectors in question are linearly independent.
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To prove that these vectors form a basis, one has to show that there
exist unique numbers sj , j = 1, 2, ..., n, such that a = 〈a1, a2, ..., an〉 =
s1u1 + s2u2 + · · · + snun for every a. The latter vector equation is
equivalent to the system of equations:

s1 = a1

s1 + s2 = a2

· · ·
s1 + s2 + · · · sn−1 = an−1

s1 + s2 + · · · sn−1 + sn = an

which has a unique solution s1 = a1, s2 = a2 − s1 = a2 − a1, s3 =
a3−(s1+s2) = a3−a2 and so on, sj = aj−aj−1 for j = 2, 3, ..., n. For the
vector with component aj = j in the standard basis, the components
in the basis of the vectors uj are s1 = 1 and sj = j − (j − 1) = 1 for
j = 2, 3, ..., n, that is, 〈1, 2, ..., n〉 = u1 + u2 + · · · + un. �

8.3. Lines and planes in a Euclidean space. In Section 1.3, a line in
space was defined using the concept of the shortest path connecting two
points. The latter requires a description of how the length of a path
can be measured, which is based on properties of the space we live in
and other laws of physics (e.g., the speed of light is a universal con-
stant). These physical laws themselves have to be tested and verified.
Yet, their validity has been established only with some certainty. The
history of physics shows that more accurate measurements invalidate
established laws and every physics law has a limited validity. In con-
trast, mathematics is based on a pure logic that establishes properties
of an object from its definition (a theorem is proved using definitions,
axioms, and other established theorems), and, hence, it cannot use
approximate laws of Nature. One can think of a mathematician as a
person developing abstract mathematical concepts with no reference
to a real world whatsoever, following only a logical consistency of the
concepts developed. Whether or not these abstract mathematical con-
cepts may be applied to the real world is a question yet to be answered!
The concept of a Euclidean space (Definition 8.1) has been shown to
be quite useful. However Definition 8.1 does include the notion of the
shortest path between two points or, in fact, any path connecting two
points. So the logical consistency requires a definition of a line in a
Euclidean space.

A line in a Euclidean space. Consider all elements of a Euclidean space
that are multiples of a particular nonzero element v, r = tv where
−∞ < t < ∞. All such elements also form a Euclidean space because
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the set of these vectors is closed relative to addition of its elements and
multiplication of its elements by a real number:

r1 + r2 = tv + sv = (t + s)v ,
sr = s(tr) = (st)r

for any real s and t, that is, the sum of any two elements of the set and
a multiple of any element of the set belong to the set. This subset of
a Euclidean space is said to be a one-dimensional Euclidean subspace
because all of its elements are obtained as multiples of a single nonzero
element; it is denoted by R. A line in a Euclidean space R

n is defined
as a one-dimensional subspace of R

n. Take three elements a = tav,
b = tbv, and c = tcv of a one-dimensional subspace of R

n and calculate
the pairwise distances between them, dab = ‖a− b‖ = |ta − tb|v, dbc =
‖b− c‖ = |tb− tc|v, and dac = ‖a− c‖ = |ta− tc|v, where v = ‖v‖ > 0.
Suppose dab is the largest of the three. Then

dab = dbc + dac or |ta − tb| = |tb − tc| + |ta − tc| .
The latter is identical to the distance property of a real number system
discussed in Section 1.3.

Let us fix a particular element r0 of R
n. The element r−r0 is called

a position vector of an element r relative to r0. A line through r0 is a
collection of elements of R

n whose position vectors relative to r0 form
a one-dimensional subspace. Evidently, all such elements elements can
be written in the form

r = r0 + tv , −∞ < t < ∞
for some nonzero element v. Note well that for every element of a line
there is a unique real number t and vice versa.

A plane in a Euclidean space. A plane in a Euclidean space R
n, n ≥ 2,

is defined as a two-dimensional subspace R
2 of R

n in the sense that
every element of R

2 is obtained as a linear combination of two nonzero
linearly independent elements v and u. This definition is to be com-
pared with the result of Study Problem 2.1. Similarly to the case of R,
it is not difficult to verify that this subset of elements of R

n is closed
relative to addition and multiplication by a number. A plane through a
particular element r0 is a collection of all elements of R

n whose position
vectors relative to r0 are linear combinations of two linearly indepen-
dent elements v and u:

r = r0 + tv + su , −∞ < t, s < ∞ .

Every element of a plane is uniquely determined by an ordered pair of
real numbers (t, s) (which are elements of R

2). If n = 3, then, owing
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to the geometrical properties of the cross product, the above vector
equation of a plane can be written in the standard form n · r = n · r0

given in Theorem 6.1 where the normal is n = v × u (recall n · v =
n ·u = 0). Note that in R

n, n > 3, there are n−2 linearly independent
vectors orthogonal to both nonzero linearly independent vectors v and
u. Consequently, there are non-parallel planes that intersect at a single
point! For example, consider two planes in R

4 whose vector equations
are r = t1ê1+t2ê2 = 〈t1, t2, 0, 0〉 and r = s1ê3+s2ê4 = 〈0, 0, s1, s2〉. The
set of common elements of these planes satisfies the vector equation

〈t1, t2, 0, 0〉 = 〈0, 0, s1, s2〉 ⇔ t1 = t2 = s1 = s2 = 0

and, hence, consists of a single element 〈0, 0, 0, 0〉.

A hyperplane in a Euclidean space. In a Euclidean space R
n one can

define an m−dimensional subspace R
m, m ≤ n, as a collection of all

linear combination of m nonzero linearly independent vectors. Let uj ,
j = 1, 2, ..., m ≤ n be nonzero linearly independent vectors in R

n. The
set of vectors

r = r0 + t1u1 + t2u2 + · · · + tmum , −∞ < t1, t2, ..., tm < ∞ ,

is called an m−dimensional hyperplane through r0. Every element of
a hyperplane is uniquely described by an ordered m−tuple of num-
bers (t1, t2, ..., tm), that is, by an element of R

m. Conversely, for every
m−tuple (or an element of R

m) there is a unique element of a hyper-
plane.

8.4. Coordinate systems and bases. Given a basis uj , j = 1, 2, ..., m,
in R

m, every vector is uniquely represented by a linear combination
r = x1u1 + x2u2 + · · · + xmum. Consider m straight lines through
〈0, 0, ..., 0〉 that are parallel to the basis vectors and oriented by arrows
in the direction of of the corresponding basis vector. The set of these
straight lines is called a coordinate system in R

m. An element r =
x1u1 + x2u2 + · · · + xmum of R

m is called a point that has coordinates
(x1, x2, ..., xm) relative to the coordinate system associated with the
basis uj. If the basis is orthonormal, the coordinate system is called
a rectangular coordinate system. The length of the position vector of
a point (x1, x2, ..., xm) is ‖r‖ = (x2

1 + x2
2 + · · · + xm)1/2. The distance

between two points P1 = (x1, x2, ..., xm) and P2 = (y1, y2, ..., ym) is
given by the norm of the vector

−−→
P1P2 = (y1 − x1)u1 + (y2 − x2)u2 + · · · + (ym − xm)um
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If the basis is orthonormal (the associated coordinate system is rect-
angular), then

|P1P2| =
√

(y1 − x1)2 + (y2 − x2)2 + · · · + (ym − xm)2 .

Every point set in R
m can now be described algebraically in terms of

conditions imposed on the coordinates of points in some coordinate
system.

This completes an abstract mathematical model of our space as a
three-dimensional Euclidean space. Now the model has no reference to
any particular law of physics and is solely based on the properties of
real numbers. The postulated properties of a Euclidean space (Defi-
nition 8.1) and their consequences are to be compared with observed
properties of the space we live in to decide how accurate this model is
(e.g., does the light travels along straight lines in a Euclidean space,
or, is the distance between two points coincides with the distance in a
Euclidean space?).

Multidimensional spheres and balls. Given a coordinate system in R
m,

points sets can be described algebraically by imposing conditions on
coordinates of points in R

m. An m−dimensional sphere (or simply
m−sphere) with radius R and center at a is a collection of elements
of R

m+1 whose distance from a is R. Take the coordinate system
associated with the standard basis. Then a = 〈a1, a2, ..., am+1〉 and
r = 〈x1, x2, ..., xm+1〉 are position vectors of the sphere center and a
generic point in R

m, respectively. The point r belongs to a m−sphere
of radius R and centered at a if

‖r−a‖2 = R2 ⇔ (x1−a1)
2+(x2−a2)

2+· · ·+(xm+1−am+1)
2 = R2

Evidently, a one-dimensional sphere is a circle in a plane and a two-
dimensional sphere is a sphere in space.

Similarly, the set of elements in R
n satisfying the condition

‖r − a‖ < R

is called an open ball of radius R and centered at a. If the equality is
also allowed, ‖r− a‖ ≤ R, the ball is called closed.
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9. Quadric Surfaces

In Section 1.9, an algebraic description of point sets in space has
been introduced. Spheres, cylinders, planes, and lines can be de-
scribed algebraically by imposing certain conditions on the coordinates
of points in the set. Lines and planes can be described by linear equa-
tions, while spheres and cylinders by quadratic equations. In Calculus
2, rotational surfaces have been discussed, such as circular paraboloids,
cones, and ellipsoids. It turns out that all these surfaces can also be
described by quadratic equations. In general, one can pose a question
about a classification of all surfaces described by quadratic equations
in some rectangular coordinate system.

Definition 9.1. (Quadric Surface).
A nonempty set of points whose coordinates in a rectangular coordinate
system satisfy the equation

Ax2 + By2 + Cz2 + Fxy + Gxz + Hyz + Px + Qy + V z + D = 0,

where numbers A, B, C, F , G, and H do not vanish simultaneously,
and P , Q, V , and D are real numbers, is called a quadric surface if it
does not admit an alternative description in terms of equations linear
in x, y, and z.

The equation that defines quadric surfaces is the most general equa-
tion quadratic in all the coordinates. This is why surfaces defined by
it are called quadric. A sphere provides a simple example of a quadric
surface:

x2 + y2 + z2 − R2 = 0 ,

that is, A = B = C = 1, D = −R2 (here R is the radius of the
sphere), and other constants vanish in the general quadratic equation.
If B = C = 1, P = −1, while the other constants vanish, the quadratic
equation x = y2+z2 defines a circular paraboloid whose symmetry axis
is the x axis. On the other hand, if A = B = 1, V = −1, while the
other constants vanish, the equation

z = x2 + y2

also defines a paraboloid that can be obtained from the former one
by a rotation about the y axis through the angle π/2 under which
(x, y, z) → (z, y,−x) so that x = y2 + z2 → z = y2 + x2. Thus, there
are quadric surfaces of the same shape described by different equations.

Sometimes a quadratic equation can be reduced to a linear one. For
example, the quadratic equation

(x + 2y + 3z)2 = 1 ⇔ x + 2y + 3z = ±1
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admits an alternative description in terms of two linear equations that
describe two parallel planes with the normal n = 〈1, 2, 3〉. Similarly,
the set of solutions to the quadratic equation

(x − y)2 + z2 = 0 ⇔ y = x and z = 0

coincides with the set of common solutions to two linear equations. In
this case, it is the intersection of two planes which is the line y = x in
the xy plane. The set described by the quadratic equation

x2 + y2 + z2 = 0 ⇔ (x, y, z) = (0, 0, 0)

consists of a single point. It is not difficult to give an example of a
quadratic equation which has no solution:

x2 + 2y2 + 3z2 = −1

There is no point (x, y, z) whose coordinates satisfy this equation be-
cause for any point the left side is non-negative, while the right side is
negative. So, this quadratic equation describes an empty set.

When quadric surfaces are discussed, it is always assumed that the
corresponding quadratic equation cannot be reformulated in terms of
linear equations according to Definition 9.1 so that the set of solutions
is not empty and not a collection of planes, lines , or isolated points
(the latter can always be described by linear equations).

As has been already noted, two different quadratic equations can
describe the very same surface. The shape of a surface does not change
under rigid transformations because the distance between any two
points of the shape is preserved. On the other hand, the equation
that describes the shape would change under rigid transformations of
the coordinate system. The freedom in choosing the coordinate system
can be used to simplify the equation for quadric surfaces and obtain a
classification of different shapes described by it. In other words, two
points sets in space are said to have the same shape if they can be
transformed into one another by a rigid transformation.

9.1. Quadric Cylinders. Consider first a simpler problem in which the
equation of a quadric surface does not contain one of the coordinates,
say, z (i.e., C = G = H = V = 0). Then the set S,

S =
{

(x, y, z)
∣

∣

∣
Ax2 + By2 + Fxy + Px + Qy + D = 0

}

,

is the same curve in every horizontal plane z = const. For example, if
A = B = 1, F = P = Q = 0, and D = −R2, the cross section of the
surface S by any horizontal plane is a circle x2 + y2 = R2:

S = {(x, y, z) |x2 + y2 = R2}
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So the surface S is a cylinder of radius R that is swept by the circle
when the latter is shifted up and down parallel to the z axis. Similarly,
a general cylindrical shape is obtained by rigid translations of a curve
in the xy plane up and down parallel to the z axis. For example, a
cylinder obtained by rigid translations of the parabola

S = {(x, y, z) | y = x2}
is called a parabolic cylinder.

In what follows, the notations introduced in Study Problem 1.2
will be used. The coordinates of a point in the original coordinate
system will be denoted as (x, y, z) and the ordered triple (x′, y′, z′) is
used to denote the coordinates of the same point in a new coordinate
system obtained by translations and rotations of the original coordinate
system.

Theorem 9.1. (Classification of Quadric Cylinders).
A general equation for quadric cylinders

S =
{

(x, y, z)
∣

∣

∣Ax2 + By2 + Fxy + Px + Qy + D = 0
}

can be brought to one of the standard forms

A′x′2 + B ′y′2 + D′ = 0 or A′x′2 + Q′y′ = 0

by a rigid transformation of the coordinate system, provided A, B, and
F do not vanish simultaneously. In particular, these forms define the
quadric cylinders:

y′ − ax′2 = 0 (parabolic cylinder), Q′ 6= 0

x′2

a2
+

y′2

b2
= 1 (elliptic cylinder),

A′

D′ < 0,
B ′

D′ < 0, D′ 6= 0

x′2

a2
− y′2

b2
= 1 (hyperbolic cylinder), A′B ′ < 0, D′ 6= 0

The shapes of quadric cylinders are shown in Figure 9.1. Other than
quadric cylinders, the standard equations may define planes or a line
for some particular values of the constants A′, B ′, D′, and Q′ (points
sets that admit an alternative description in terms linear equations).
For example, for A′ = −B ′ = 1 and D′ = 0 the equation x′2 = y′2

defines two planes x′ ± y′ = 0. For A′ = B ′ = 1 and D′ = 0, the
equation x′2 + y′2 = 0 defines the line x′ = y′ = 0 (the z axis).

Proof of Theorem 9.1. Let (x′, y′) be coordinates in the coordinate sys-
tem obtained by a rotation through an angle φ. The equation of S in
the new coordinate system is obtained by the transformation:

(x, y) = (x′ cosφ − y′ sinφ, y′ cos φ + x′ sinφ)
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Figure 9.1. Left: Parabolic cylinder. The cross section
by any horizontal plane z = const is a parabola y = ax2.
Middle: An elliptic cylinder. The cross section by any hor-
izontal plane z = const is an ellipse x2/a2 + y2/b2 = 1.
Right: A hyperbolic cylinder. The cross section by
any horizontal plane z = const is a hyperbola x2/a2−
y2/b2 = 1.

according to Study Problem 1.2. The angle φ can be chosen so that
the equation for S does not contain the “mixed” term x′y′. Indeed,
consider the transformation of quadratic terms in the equation for S:

x2 = cos2 φ x′2 + sin2 φ y′2 − 2 sin φ cos φ x′y′ ,

= 1

2
(1 + cos(2φ))x′2 + 1

2
(1 − cos(2φ)y′2 − sin(2φ)x′y′ ,

y2 = sin2 φ x′2 + cos2 φ y′2 + 2 sin φ cos φ x′y′

= 1

2
(1 − cos(2φ))x′2 + 1

2
(1 + cos(2φ)y′2 + sin(2φ)x′y′ ,

xy = sinφ cos φ(x′2 − y′2) + (cos2 φ − sin2 φ)x′y′

= 1

2
sin(2φ)(x′2 − y′2) + cos(2φ)x′y′ .

Substituting these relations into the original quadratic equation, the
coefficient F ′ at xy is obtained:

F ′ = (B − A) sin(2φ) + F cos(2φ) .

The angle φ is set so that F ′ = 0 or

(9.1) tan(2φ) =
F

A − B
if A 6= B and φ =

π

4
if A = B.
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Similarly, the coefficients A′ and B ′ (the factors at x′2 and y′2) and P ′

and Q′ (the factors at x′ and y′) are

A′ = 1

2
[A + B + (A − B) cos(2φ) + F sin(2φ)],

B ′ = 1

2
[A + B − (A − B) cos(2φ) − F sin(2φ)],

P ′ = P cos φ + Q sin φ , Q′ = Q cos φ − P sinφ ,

where φ satisfies (9.1). Depending on the values of A, B, and F , the
following three cases can occur.

First, A′ = B ′ = 0, which is only possible if A = B = F = 0.
Indeed, under any rotation

Ax2 + By2 + Fxy = A′x′2 + B ′y′2 + F ′x′y′ .

If A′ = B ′ = F ′ = 0 for a particular φ (chosen to make F ′ = 0), then
this combination should be identically zero in any other coordinated
system obtained by rotation. In this case, S is defined by the linear
equation Px + Qy + D = 0, which is a plane parallel to the z axis.

Second, only one of A′ and B ′ vanishes. For establishing the shape
it is irrelevant how the horizontal and vertical coordinates in the plane
are called. Also, it is always possible to make an additional rotation
through the angle π/2 under which

(x′, y′) → (y′,−x′)

and hence A′x′2 + B ′y′2 + P ′x′ + Q′y′ + D = 0 becomes

A′y′2 + B ′x′2 + P ′y′ − Q′x′ + D = 0 ,

that is, the coefficients at x′2 and y′2 are swapped. So, without loss of
generality, put B ′ = 0. In this case, the equation for S assumes the
form

A′x′2 + P ′x′ + Q′y′ + D = 0 .

This equation defines a quadric cylinder only if Q′ 6= 0. By completing
the squares, it becomes

A′
(

x′ − x0

)2

+ Q′(y′ − y0) = 0 , x0 = − P ′

2A′ , y0 =
A′x2

0 − D

Q′ .

After the translation of the coordinate system:

x′ → x′ + x0 , y′ → y′ + y0 ,

the equation is reduced to

A′x′2 + Q′y′ = 0

which defines a parabola y′ − ax′2 = 0 where a = −A′/Q′.
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Third, both A′ and B ′ do not vanish. Then, after the completion
of squares, the equation A′x′2 + B ′y′2 + P ′x′ + Q′y′ + D = 0 has the
form

A′(x′ − x0)
2 + B ′(y′ − y0)

2 + D′ = 0 ,

x0 = − P ′

2A′ , y0 = − Q′

2B ′ , D′ = D − A′x2
0 −B ′y2

0 .

Finally, after the translation of the origin to the point (x0, y0), the
equation becomes

A′x′2 + B ′y′2 + D′ = 0 .

If D′ = 0, then this equation defines two straight lines y′ = ±mx′,
where m = (−A′/B ′)−1/2, provided A′ and B ′ have opposite signs.
Otherwise, the equation has the solution x′ = y′ = 0 (a line). If
D′ 6= 0, then the equation can be written as

(

−A′

D′

)

x′2 +
(

−B ′

D′

)

y′2 = 1 , D′ 6= 0 .

One can always assume that A′/D′ < 0. Indeed, an additional rota-
tion of the coordinate system through the angle π/2 swaps the axes,
(x′, y′) → (y′,−x′), which can be used to reverse the sign of A′/D′.
Now put −A′/D′ = 1/a2 and B ′/D′ = ±1/b2 (depending on whether
B ′/D′ is positive or negative) so that the equation becomes

x′2

a2
± y′2

b2
= 1 .

When the plus is taken, this equation defines an ellipse. When the mi-
nus is taken, this equation defines a hyperbola. The proof is complete.

9.2. Classification of General Quadric Surfaces. The classification of gen-
eral quadric surfaces can be carried out in the same way. The general
quadratic equation can be written in the new coordinate system that
is obtained by a translation (1.1) and rotation (5.2) described in Study
Problem 5.1. The rotational freedom can be used first to eliminate
the “mixed” terms x′y′, x′z′, and y′z′, that is, three parameters that
determine a rotation of the coordinate system (see Study Problem 5.1)
can be chosen so that F ′ = 0, G′ = 0, and H ′ = 0 much like in the
proof of Theorem 9.1. After this rotation, the squares in the equation
in the new coordinates are to be completed and the linear terms are
then eliminated by a suitable translation, provided A′, B ′, and C ′ do
not vanish. If one of these coefficients vanishes, say, C ′ = 0, then the
resulting equation is quadratic only in x′ and y′ and linear in z′. If
two of them vanish, say, B ′ = C ′ = 0, then one can use an additional
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rotation about the x′ axis to eliminate either y′ or z′ (the coordinate x′

does not change under such rotations) and the subsequent completion
of the squares for the remaining two variables. In this case, the final
equation describes a quadric cylinder. The corresponding technical-
ities can be carried using the result of Study Problem 5.1, but they
are rather lengthy. Yet, they are done best by linear algebra methods.
So the final result is given without a proof where x, y, and z denote
coordinates in the rotated and translated coordinate system (to avoid
too many primes in the equations).

Theorem 9.2. (Classification of Quadric Surfaces).
By rotation and translation of a coordinate system, a general equation
for quadric surfaces can be brought to one of the standard forms:

A′x2 + B ′y2 + C ′z2 + D′ = 0 or A′x2 + B ′y2 + V ′z = 0 .

In particular, the standard forms describe quadric cylinders and one of
the following six surfaces:

x2

a2
+

y2

b2
+

z2

c2
= 1 (ellipsoid) ,

z2

c2
=

x2

a2
+

y2

b2
(elliptic double cone),

x2

a2
+

y2

b2
− z2

c2
= 1 (hyperboloid of one sheet) ,

−x2

a2
− y2

b2
+

z2

c2
= 1 (hyperboloid of two sheets) ,

z

c
=

x2

a2
+

y2

b2
(elliptic paraboloid),

z

c
=

x2

a2
− y2

b2
(hyperbolic paraboloid) .

The indicated six shapes are the counterparts in three dimensions
of the conic sections in the plane discussed in Calculus 2.

9.3. Visualization of Quadric Surfaces. The shape of a quadric surface
can be understood by studying intersections of the surface with the
coordinate planes x = x0, y = y0, and z = z0. These intersections are
also called traces.

An Ellipsoid. If a2 = b2 = c2 = R2, then the ellipsoid becomes a sphere
of radius R. So, intuitively, an ellipsoid is a sphere “stretched” along
the coordinate axes (see Fig. 9.2 (left panel)). Traces of an ellipsoid in
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Figure 9.2. Left: An ellipsoid. A cross section by any
coordinate plane is an ellipse. Right: An elliptic double
cone. A cross section by a horizontal plane z = const is an
ellipse. A cross section by any vertical plane through the z
axis is two lines through the origin.

Figure 9.3. Left: A hyperboloid of one sheet. A cross
section by a horizontal plane z =const is an ellipse. A cross
section by a vertical plane x =const or y =const is a hyper-
bola. Right: A hyperboloid of two sheets. A non-empty
cross section by a horizontal plane is an ellipse. A cross sec-
tion by a vertical plane is a hyperbola.
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Figure 9.4. Left: An elliptic paraboloid. A nonempty
cross section by a horizontal plane is an ellipse. A cross sec-
tion by a vertical plane is a parabola. Right: A hyperbolic
paraboloid (a “saddle”). A cross section by a horizontal plane
is a hyperbola. A cross section by a vertical plane is a

parabola.

the planes x = x0, |x0| < a, are ellipses

y2

b2
+

z2

c2
= k or

y2

(b
√

k)2
+

z2

(c
√

k)2
= 1, k = 1 − x2

0

a2
> 0.

As the plane x = x0 gets closer to x = a or x = −a, k becomes smaller
and so does the ellipse because its major axes b

√
k and c

√
k decrease.

Apparently, the traces in the planes x = ±a consist of a single point
(±a, 0, 0), and there is no trace in any plane x = x0 if |x0| > a. Traces
in the planes y = y0 and z = z0 are also ellipses and exist only if
|y0| ≤ b and |z0| ≤ c. Thus, the characteristic geometrical property of
an ellipsoid is that its traces are ellipses.

A Paraboloid. Suppose c > 0. Then the paraboloid lies above the xy
plane because it has no trace in all horizontal planes below the xy
plane, z = z0 < 0. In the xy plane, its trace contains just the origin.
Traces of the paraboloid in the planes z = z0 > 0 are ellipses,

x2

a2
+

y2

b2
= k or

x2

(a
√

k)2
+

y2

(b
√

k)2
= 1, k = z0/c > 0.

The ellipses become wider as z0 gets larger because their major axes
a
√

k and b
√

k grow with increasing k. Vertical traces (traces in the
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planes x = x0 and y = y0) are parabolas:

z − kc =
c

b2
y2, k =

x2
0

a2
and z − kc =

c

a2
x2, k =

y2
0

b2
.

Similarly, a paraboloid with c < 0 lies below the xy plane. So the
characteristic geometrical property of a paraboloid is that its horizontal
traces are ellipses, while its vertical ones are parabolas (see Fig. 9.4
(left panel)). If a = b, the paraboloid is also called a circular paraboloid
because its horizontal traces are circles.

A Double Cone. Horizontal traces are ellipses

x2

a2
+

y2

b2
= k2 or

x2

(ak)2
+

y2

(bk)2
= 1, k = z0/c.

So as |z0| grows, that is, as the horizontal plane moves away from the
xy plane (z = 0), the ellipses become wider. In the xy plane, the cone
has a trace that consists of a single point (the origin). The vertical
traces in the planes x = 0 and y = 0 are a pair of lines

z = ±(c/b)y and z = ±(c/a)x .

Furthermore, the trace in any plane that contains the z axis is also a
pair of straight lines (see Fig. 9.2). Indeed, take parametric equations
of a line in the xy plane through the origin,

x = v1t , y = v2t .

Then the z coordinate of any point of the trace of the cone in the plane
that contains the z axis and this line satisfies the equation

z2

c2
=

[

(v1/a)2 + (v2/b)
2

]

t2 ⇒ z = ±v3t ,

where v3 = c
√

(v1/a)2 + (v2/b)2. So the points of intersection form two
straight lines through the origin:

x = v1t , y = v2t , z = ±v3t , −∞ < t < ∞ .

Given an ellipse in a plane, consider a line through the center of the
ellipse that is perpendicular to the plane. Fix a point P on this line
that does not coincide with the point of intersection of the line and the
plane. Then a double cone is the surface that contain all lines through
P and points of the ellipse. The point P is called the vertex of the cone.
So the characteristic geometrical property of a cone is that horizontal
traces are ellipses; its vertical traces in planes through the axis of the
cone are straight lines (see Fig. 9.2 (right panel)).
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Vertical traces in the planes x = x0 6= 0 and y = y0 6= 0 are
hyperbolas y2/b2−z2/c2 = k, where k = −x2

0/a
2, and x2/a2−z2/c2 = k,

where k = −y2
0/b

2. Recall in this regard conic sections studied in
Calculus II.

If a = b, the cone is called a circular cone. In this case, vertical
traces in the planes containing the cone axis are a pair of lines with
the same slope that is determined by the angle φ between the axis of
the cone and any of these lines: c/b = c/a = cotφ. The equation of a
circular double cone can be written as

z2 = cot2(φ)(x2 + y2) , 0 < φ < π/2 .

The equation for an upper (z ≥ 0) or lower (z ≤ 0) cone of the double
circular cone is

z = ± cot(φ)
√

x2 + y2 .

A Hyperbolic Paraboloid. Horizontal traces in the planes z = z0 are
hyperbolas

x2

a2
− y2

b2
= k, k =

z0

c
.

Suppose c > 0. If z0 > 0 (horizontal planes above the xy plane), then
k > 0. In this case the hyperbolas are symmetric about the x axis, and
their branches lie either in x > 0 or in x < 0 (i.e., they do not intersect
the y axis) because x2/a2 = y2/b2 +k > 0 (x cannot not vanish for any
y). If z0 < 0, then k < 0. In this case the hyperbolas are symmetric
about the y axis, and their branches lie either in y > 0 or in y < 0
(i.e., they do not intersect the x axis) because y2/b2 = x2/a2 − k > 0
(y cannot vanish for any x). Vertical traces in the planes x = x0 and
y = y0 are concave down and up parabolas, respectively:

z − z0 = − c

b2
y2, z0 =

cx2
0

a2
and z − z0 =

c

a2
x2, z0 = −cy2

0

b2

Take the parabolic trace the zx plane z = (c/a2)x2 (i.e. in the plane
y = y0 = 0). The traces in the perpendicular planes x = x0 are
parabolas whose vertices are (x0, 0, z0), where z0 = (c/a2)x2

0, and hence
lie on the parabola z = (c/a2)x2 in the zx plane. This observation
suggests that the hyperbolic paraboloid is swept by the parabola in
the zy plane, z = −(c/b2)y2, when the latter is moved parallel so that
its vertex remains on the parabola z = (c/a2)x2 in the perpendicular
plane. The obtained surface has the characteristic shape of a “saddle”
(see Fig. 9.4 (right panel)).
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A Hyperboloid of One Sheet. Traces in horizontal planes z = z0 are
ellipses:

x2

a2
+

y2

b2
= k2 or

x2

(ka)2
+

y2

(kb)2
= 1, k =

√

1 + z2
0/c

2 ≥ 1

The ellipse is the smallest in the xy plane (z0 = 0 and k = 1). The
major axes of the ellipse, ka and kb, grow as the horizontal plane gets
away from the xy plane because k increases. The surface looks like
a tube with ever expanding elliptic cross section. The vertical cross
section of the ”tube” by the planes x = 0 and y = 0 are hyperbolas:

y2

b2
− z2

c2
= 1 and

x2

a2
− z2

c2
= 1

So, the characteristic geometrical property of a hyperboloid of one sheet
is that its horizontal traces are ellipses and its vertical traces are hy-
perbolas (see Fig. 9.3 (left panel)).

A Hyperboloid of Two Sheets. A distinctive feature of this surface is
that it consists of two sheets (see Fig. 9.3 (right panel)). Indeed, the
trace in the plane z = z0 satisfies the equation

x2

a2
+

y2

b2
=

z2
0

c2
− 1

which has no solution if z2
0/c

2 −1 < 0 or −c < z0 < c. So one sheet lies
above the plane z = c and the other lies below the plane z = −c. Hori-
zontal traces in the planes z = z0 > c or z = z0 < −c are ellipses whose
major axes increase with increasing |z0|. The upper sheet touches the
plane z = c at the point (0, 0, c), while the lower sheet touches the
plane z = −c at the point (0, 0,−c). These points are called vertices
of a hyperboloid of two sheets. Vertical traces in the planes x = 0 and
y = 0 are hyperbolas:

z2

c2
− y2

b2
= 1 and

z2

c2
− x2

a2
= 1

Thus, the characteristic geometrical properties of hyperboloids of one
sheet and two sheets are similar, apart from the fact that the latter one
consists of two sheets. Also, in the asymptotic region |z| � c (reads
“|z| is much larger than c”), the hyperboloids approach the surface
of the double cone. Indeed, in this case, z2/c2 � 1, and hence the
equations for hyperboloids can be well approximated by the double
cone equation:

x2

a2
+

y2

b2
= ±1 +

z2

c2
≈ z2

c2
,

z2

c2
� 1 ,
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the numbers ±1 can be neglected as compared to z2/c2 for large enough
z2. In the region z > 0, the hyperboloid of one sheet approaches the
double cone from below, while the hyperboloid of two sheets approaches
it from above. For z < 0, the converse holds. In other words, the
hyperboloid of two sheets lies “inside” the cone, while the hyperboloid
of one sheet lies “outside” it. Both the hyperboloids become closer to
the double cone as z2 gets larger (away from the xy plane).

9.4. Shifted quadric surfaces. If the origin of a coordinated system is
shifted to a point (x0, y0, z0) without any rotation of the coordinate
axes, then the coordinates of a point in space are translated

(x, y, z) → (x − x0, y − y0, z − z0) .

Therefore any equation of the form f(x, y, z) = 0 becomes a “shifted”
equation in the new coordinates:

f(x, y, z) = 0 → f(x − x0, y − y0, z − z0) = 0 .

If the equation f(x, y, z) = 0 defines a surface in space, then the equa-
tion f(x − x0, y − y0, z − z0) = 0 defines the very same surface that
has been translated as the whole (each point of the surface is shifted
by the same vector 〈x0, y0, z0〉). For example, the equation

(x− x0)
2

a2
+

(y − y0)
2

b2
=

(z − z0)
2

c2

describes a double elliptic cone whose axis is parallel to the z axis and
whose vertex is at (x0, y0, z0). Equations of shifted quadric surfaces can
be reduced to the standard form by completing the squares.

Example 9.1. Classify the quadric surface

9x2 + 36y2 + 4z2 − 18x + 72y + 16z + 25 = 0

Solution: Let us complete the squares for each of the variables:

9x2 − 18x = 9(x2 − 2x) = 9[(x − 1)2 − 1] = 9(x − 1)2 − 9

36y2 + 72y = 36(y2 + 2y) = 36[(y + 1)2 − 1] = 36(y + 1)2 − 36

4z2 + 16z = 4(z2 + 4z) = 4[(z + 2)2 − 4] = 4(z + 2)2 − 16

The equation becomes 9(x − 1)2 + 36(y + 1)2 + 4(z + 2)2 = 36 and by
dividing it by 36 the standard form is obtained

(x − 1)2

16
+ (y + 1)2 +

(z + 2)2

9
= 1

This equation describes an ellipsoid with the center at (1,−1,−2) and
major axes a = 4, b = 1, and c = 3. �
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Example 9.2. Classify the surface x2 + 2y2 − 4y − 2z = 0

Solution: By completing the squares

2y2 − 4y = 2(y2 − 2y) = 2[(y − 1)2 − 1] ,

the equation can written in the form

x2 + 2(y − 1)2 − 2 − 2z = 0 or z + 1 =
x2

2
+ (y − 1)2

which is an elliptic paraboloid with the vertex at (0, 1,−1) because it
is obtained from the standard equation z = x2/2 + y2 by the shift of
the coordinate system (x, y, z) → (x, y − 1, z + 1). �

Example 9.3. Classify the surface x2 − 4y2 + z2 − 2x− 8z +1 = 0.

Solution: By completing the squares, the equation is transformed to

(x − 1)2 − 1 − 4y2 + 4(z + 1)2 − 4 + 1 = 0 ,

(x − 1)2

4
+ (z + 1)2 − y2 = 1

which is a hyperboloid of one sheet whose axis is the line through
(1, 0,−1) that is parallel to the y axis. �

Example 9.4. Use an appropriate rotation in the xy−plane to re-
duce the equation z = 2xy to the standard form and classify the surface.

Solution: Let (x′, y′) be coordinates in the rotated coordinate system
through the angle φ. By Study Problem 1.2, the old coordinates (x, y)
are expressed via the new ones (x′, y′):

x = x′ cos φ − y′ sinφ, y = y′ cos φ + x′ sinφ

In the new coordinate system, the equation

z = 2xy = 2x′2 cos φ sinφ − 2y′2 cosφ sinφ + 2x′y′(cos2 φ − sin2 φ)

would have the standard form if the coefficient at x′y′ vanishes. So,
put φ = π/4. Then 2 sinφ cos φ = sin(2φ) = 1 and

z = x′2 − y′2

which is a hyperbolic paraboloid (a saddle). �
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9.5. Study Problems.

Problem 9.1. Classify the quadric surface 3x2 + 3z2 − 2xz = 4.

Solution: The equation does not contain one variable (the y coordi-
nate). The surface is a cylinder parallel to the y axis. To determine
the type of cylinder, consider a rotation of the coordinate system in
the xz plane and choose the rotation angle so that the coefficient at
the xz term vanishes in the transformed equation. The rotation angle
is obtained from Eq. (9.1) for A = B = 3 and F = −2 so that

φ =
π

4
.

Then

A′ =
1

2
(A + B − F ) = 4 , B ′ =

1

2
(A + B + F ) = 2 .

So, in the new coordinates, the equation becomes

4x′2 + 2z′2 = 4 ⇔ x′2 +
z′2

2
= 1 ,

which is an ellipse with semi-axes a = 1 and b =
√

2. The surface is an
elliptic cylinder parallel to the y axis. �

Problem 9.2. Classify the quadric surface x2 − 2x + y − z = 0.

Solution: The characteristic feature of this quadratic equation is
that the “mixed” terms xy, xz, and yz are absent. By completing the
squares, the equation can be transformed into the form

(x − 1)2 + (y − 1) + z = 0 .

After shifting the origin to the point (1, 1, 0), the equation becomes

x2 + y − z = 0 .

Consider rotations of the coordinate system about the x axis (see re-
marks in the beginning of Section 9.2 about the case when B ′ = C ′ =
0):

(y, z) = (cosφ y′ + sinφ z′, cosφ z′ − sinφ y′) .

Under this rotation,

y − z = (cosφ + sinφ)y′ + (sinφ − cos φ)z′ .

Therefore, by setting φ = π/4, the variable z′ is eliminated and the
equation assumes one of the standard forms

x2 +
√

2 y′ = 0

which corresponds to a parabolic cylinder. �
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Problem 9.3. Classify the quadric surface x2 + z2 − 2x +2z− y = 0.

Solution: By completing the squares, the equation can be trans-
formed into the form

(x − 1)2 + (z + 1)2 − (y + 2) = 0 .

The latter can be brought into one of the standard forms by shifting
the origin to the point (1,−2,−1):

x2 + z2 = y ,

which is a circular paraboloid. Its symmetry axis is parallel to the y
axis (the line of intersection of the planes x = 1 and z = −1) and its
vertex is (1,−2,−1). �

Figure 9.5. An illustration to Study Problem 9.4. The
vector ûθ rotates about the vertical line so that the line
through (1, 2, 0) and parallel to vθ sweeps a double cone with
the vertex at (1, 2, 0).

Problem 9.4. Sketch and/or describe the set of points in space formed
by a family of lines through the point (1, 2, 0) and parallel to vθ =
〈cos θ, sin θ, 1〉, where θ ∈ [0, 2π] labels lines in the family.

Solution: The parametric equations of each line are

x = 1 + t cos θ , y = 2 + t sin θ , z = t .

Therefore,
(x − 1)2 + (y − 2)2 = z2

for all values of t and θ. Thus, the lines form a double cone whose axis
is parallel to the z axis and whose vertex is (1, 2, 0). Alternatively, one
could notice that the vector vθ rotates about the z axis as θ changes.
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Indeed, put vθ = û+ êz, where û = 〈cos θ, sin θ, 0〉 is the unit vector in
the xy plane as shown in Figure 9.5. It rotates as θ changes, making
a full turn as θ increases from 0 to 2π. So the set in question can be
obtained by rotating a particular line, say, the one corresponding to
θ = 0, about the vertical line through (1, 2, 0). The line sweeps the
double cone. �

9.6. Exercises.

1–10. Use traces to sketch and identify each of the following surfaces:

1. y2 = x2 + 9z2;
2. y = x2 − z2;
3. 4x2 + 2y2 + z2 = 4;
4. x2 − y2 + z2 = −1;
5. y2 + 4z2 = 16;
6. x2 − y2 + z2 = 1;
7. x2 + 4y2 − 9z2 + 1 = 0;
8. x2 + z = 0;
9. x2 + 9y2 + z = 0;

10. y2 − 4z2 = 16.

11–15. Reduce each of the following equations to one of the standard
forms, classify the surface, and sketch it:

11. x2 + y2 + 4z2 − 2x + 4y = 0;
12. x2 − y2 + z2 + 2x − 2y + 4z + 2 = 0;
13. x2 + 4y2 − 6x + z = 0;
14. y2 − 4z2 + 2y − 16z = 0;
15. x2 − y2 + z2 − 2x + 2y = 0 .

16–20. Use rotations in the appropriate coordinate plane to reduce
each of the following equations to one of the standard forms and classify
the surface:

16. 6xy + x2 + y2 = 1;
17. 3y2 + 3z2 − 2yz = 1;
18. x − yz = 0;
19. xy − z2 = 0;
20. 2xz + 2x2 − y2 = 0.

21. Find an equation for the surface obtained by rotating the line
y = 2x about the y axis. Classify the surface.
22. Find an equation for the surface obtained by rotating the curve
y = 1 + z2 about the y axis. Classify the surface.
23. Find equations for the family of surfaces obtained by rotating the
curves x2 − 4y2 = k about the y axis where k is real. Classify the
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surfaces.
24. Find an equation for the surface consisting of all points that are
equidistant from the point (1, 1, 1) and the plane z = 2.

25. Sketch the solid region bounded by the surface z =
√

x2 + y2 from
below and by x2 + y2 + z2 − 2z = 0 from above.
26. Sketch the solid region bounded by the surfaces y = 2 − x2 − z2,
y = x2 + z2 − 2, and x2 + z2 = 1.
27. Sketch the solid region bounded by the surfaces x2 + y2 = R2 and
x2 + z2 = R2

28. Find an equation for the surface consisting of all points P for which
the distance from P to the y axis is twice the distance from P to the
zx plane. Identify the surface.
29. Show that if the point (a, b, c) lies on the hyperbolic paraboloid z =
y2−x2, then the lines through (a, b, c) and parallel to v = 〈1, 1, 2(b−a)〉
and u = 〈1,−1,−2(a+b)〉 both lie entirely on this paraboloid. Deduce
from this result that the hyperbolic paraboloid can be generated by the
motion of a straight line. Show that hyperboloids of one sheet, cones,
and cylinders can also be obtained by the motion of a straight line.

Remark. The fact that hyperboloids of one sheet are generated by the
motion of a straight line is used to produce gear transmissions. The
cogs of the gears are the generating lines of the hyperboloids.

30. Find an equation for the cylinder of radius R whose axis goes
through the origin and is parallel to a vector v.
31. Show that the curve of intersection of the surfaces x2−2y2 +3z2 −
2x + y − z = 1 and 2x2 − 4y2 + 6z2 + x − y + 2z = 4 lies in a plane.
32. The projection of a point set S onto the xy plane is obtained by
setting the z coordinates of all points of S to zero. The projections of S
onto the other two coordinate axes are defined similarly. What are the
curves that bound the projections of the ellipsoid x2 +y2 + z2 −xy = 1
onto the coordinate planes?
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Selected Answers and Hints to Exercises

Section 1.11. 1. 3. 2.
√

2. 3. The points lie in a line. 4. The points
do not lie in a line. 5. If P = (x, y, z) is a point in the plane in
question, then |OP |2 + |OB|2 = |PB|2 or x + y + z = 3. The given
points are not in this plane. 6. Let Da be the distance to the a axis,
and Dab be the distance to the ab plane. Then Dx =

√
13, Dy =√

10, Dz =
√

5, Dxy = 3, Dxz = 2, Dyz = 1. 7. 3
√

3, 3
√

3, and 6.
8. S is the straight line through the origin and the point (1, 2, 3). The
point of S that is closest to (3, 2, 1) is (5/7, 10/7, 15/7) (minimize the
squared distance from (3, 2, 1) to (t, 2t, 3t) relative to the parameter t).
9. The sphere centered at (1,−2, 3) of radius

√
14. 10. The whole

space with the ball of radius 2 centered at the origin removed; the
boundary sphere is included into the set. 11. The upper half of the
the ball of radius 2 centered at the origin; the spherical part of the
boundary is included into the set, while the bottom (planar) boundary
is excluded. 14. The ball centered at the origin of radius 2 that has a
cylindrical hole of radius 1 along the z axis. 15. The part of the sphere
of radius 1 centered at (0, 0, 1) that lies above the coordinate plane
z = 1. 16. The circle x2 + y2 = 1 of radius 1 in the plane z = 1. The
center of the circle is at (0, 0, 1). 17. The union of three coordinate
planes x = a, y = b, and z = c. 18. The rectangular box whose
faces lie in the coordinate planes x = ±1, y = ±2, and z = ±3. 19.
(x−2)2 +(y−2)2 +(z−2)2 = 2. 20. (x−1)2 +(y−2)2 +(z−3)2 = R2

where R = 3, R = 1, and R = 2 for the spheres touching the xy, yz,
and xz planes, respectively. 21. (x−1)2+(y+2)2+(z−3)2 = R2 where
R =

√
13, R =

√
10, and R =

√
5 for the spheres touching the x, y, and

z axes, respectively. 23. x2 +y2 +z2 ≤ R2 and x2 +(y−R/2)2 ≥ R2/4.
26. 104π/3. 27. 32. 28. 8abc − 2πR2a. 29. The line x + y = 0. 30.
The plane perpendicular to the segment AB and passing through the
midpoint P0 = (−1, 0, 1) of AB. If P = (x, y, z) is a point of the set,
then |PA|2 = |PB|2 or x + y + z = 0.

Section 2.5. 1. 〈−2, 3,−2〉. 2. 〈2,−3, 2〉. 3. 〈−1, 3

2
,−1〉. 4. 〈−5, 4,−8〉.

5. 〈2a,
√

3a, 0〉. 6. Yes.
−→
AC+

−−→
AD =

−→
AB. 7. D = (3, 1, 4). 8. (3, 1, , 5).

11. â = 〈2

3
,−1

3
,−2

3
〉, b̂ = 〈−3

5
, 0, 4

5
〉, 2a − 3b. 12. 〈−3

2
a,

√
3

2
a, 0〉 and

〈3

2
a,−

√
3

2
a, 0〉, where a is the length of a. 13. 0. 15. 2π (the length

of a circle of radius 1). 16. If the x axis is directed from west to
east, and the y axis from south to north, then the velocity is 〈v sinβ −
u sinα, u cos α + v cosβ, 0〉, the speed is (u2 + v2 + 2uv cos(α + β))1/2;
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the aircraft flies north if β = arcsin((u/v) sinα). 18. A circle of ra-
dius k centered at the point whose position vector is a. 19. An ellipse
whose foci have position vectors a and b. 20. A sphere of radius k
centered at the point whose position vector is a. 21. A surface ob-
tained by rotating the ellipse in Exercise 19 about the line through
its foci (called an ellipsoid). 22. r0 = 1

m
(m1r1 + m2r2 + · · · + mnrn)

where m = m1 +m2 + · · ·+mn is the total mass; for the triangle ABC ,
r0 = 〈1

3
, 1, 1〉. 23. A tangent vector is 〈a, f ′(a)〉, a normal vector is

〈−f ′(a), a〉; if f(x) = x2 and a = 1, then the tangent and normal vec-
tors are, respectively, 〈1, 2〉 and 〈−2, 1〉. 24. If c is the largest vector,
then by the parallelogram rule ‖a‖ + ‖b‖ > ‖c‖.

Section 3.8. 1. 3. 2. −3. 3. −4. 4. −30. 5. −21. 7. Neither. 8.
Orthogonal. 9. b = ±2 and b = 0. 10. ± 1√

5
〈0, 2, 1〉. 11. π/3. 12. If

α, β, and γ are the angles at the vertices A, B, and C , respectively,
then cos α = − 3√

6
√

17
, cosβ = 20√

17
√

29
, cos γ = 9√

6
√

29
. 14. Minimum

at s = −2 and a · b = 0 at s = −2 ±
√

3. 15. cos−1(1/
√

3). 16. d1 =
a+b+c, d2 = a+b−c, d3 = a−b+c, d4 = c+b−a. 17. The scalar
projection is b‖ = 2, the vector projection is b‖ = (2/3)a, and b⊥ =

b − b‖. 18. The scalar projection is −15/
√

34, the vector projection

is −15

34
〈3, 3, 4〉. 19. 〈a/2, ±a/2, a/

√
2〉. 24. 2 sin−1(2

√
a2 + b2/c),

2 sin−1 (2a/c), and 2 sin−1(2b/c). 25. a = 5

2
u1 + 1

2
u2 + 1

2
u3. 26. If b‖

is the vector projection of b onto a, then b⊥ = b−b‖ is orthogonal to
a, and the vectors b + tb⊥, where t is real, have the same projection
onto a as b. 27.

√
55. 28. The equilibrium configuration is the

symmetric trapezoid with the largest side of length L on the ceiling. If
θ is the angle between the rope connecting the ball to the ceiling and
the vertical line, then sin θ = (L−h)/(2h), 0 < θ < π/2, the tension in
the rope connecting the balls is mg tan θ, and the tension in the ropes
connecting the balls to the ceiling is mg/ cos θ. 29. 300 cos(20◦) N.
30. 10

√
2 + 15

2

√
3 is the drag force; the barge moves in the direction

perpendicular to the stream.

Section 4.6. 1. 〈2,−4, 2〉. 2. 〈3, 5, 1〉. 3. 〈1,−4,−11〉. 4. 11(c × d) =
〈11, 22, 33〉. 5. 15u1 + 6u2 − 9u3. 6. 〈3

√
3,−3, 0〉. 7. The angle between

the vectors is θ = π/6. By the right hand rule, a × b = 〈0, 0, c〉, where
c = ‖a‖‖b‖ sinθ = 3. 8. a × (b × c) = 〈1, 2,−7〉, b × (c × a) = 〈−2, 2, 6〉,
c × (a × b) = 〈1,−4, 1〉. 9. The vector is −c and ‖ − c‖ = 3. 11. Let
α, β, and γ be the direction angles of a × b. Then 0 < α < π/2, π/2 <
β < π, and γ = π/2. 12. a × b has a negative y component and positive
x and z components; a× c has a positive x component and negative y and
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z components; b × c has a negative z component and positive x and y
components. 13. 0. 15. 1

2
(b2c2 + a2c2 + a2b2)1/2. 16. 〈−1,−1, 1〉 and the

area is
√

3. 18. A/4. 19.
√

17. 20. Points A, B, C, and D are in a plane

if and only if
−−→
AB × −→

AC and
−−→
DB × −−→

DC are parallel (or proportional). 23.
If A1 is the area of the given parallelogram and A2 is the area in question,
then A2 = 2A1. 26. Yes. 27. Make unit vectors parallel or antiparallel,
respectively, to a, a × b, and a × (a × b) (mutually orthogonal vectors);

û1 = 1
3
a = 1

3
〈1, 2, 2〉, û2 = 1√

5
〈2, 0,−1〉, û3 = 1

3
√

5
〈−2, 5,−4〉. 28.

√
46/2.

29. 3
√

29/2. 32. tan−1(2/3).

Section 5.5. 1. 3, −3, 3, respectively. 2. 4, −4, 4, respectively. 3. 0. 4.
14, −14, 14, respectively. 5. |a · (b× c)| = ‖a‖‖b‖‖c‖ = 6 (the volume of a
rectangular box); then a·(b×c) = ±6 and a·(b×c) = c·(a×b) = −b·(a×c).
6. Not coplanar. 7. s = 2/3. 8. A, B, C, and D are not in a plane;
V = 8. 9. Part (i): s = 1; Part (ii): s = 4 and s = −2. 10. 24. 11.
a · (b × c) = 3uvw − (u3 + v3 + w3) = 2 6= 0 (not coplanar); the volume
is |a · (b × c)| = 2. 13. The diagonals are d1 = a + pb, d2 = b + sc,
and d3 = a + tc, where the numbers p, s, and t take values 1 or −1; then
d1 ·(d2×d3) = (t+ps)a·(b×c), where t+ps is 0 (the diagonals are coplanar,
the volume is zero) or ±2 and the volume is 2V . 15. a·(r·b) = r·(b×a) = 0;
so r ⊥ a×b or r = sa+tb where s and t are any real numbers; if, in addition,
r ⊥ b, then t = −s(a ·b)/‖b‖2 and r is any vector orthogonal to b that also
lies in the plane containing the vectors a and b. 16.

√
2 − 1. 17.

√
3. 18.

3/
√

38. 20. s = (−5 ± 3
√

5)/2.

Section 6.5. 1. 2x−2y+z = 0, D = 4
3
. 2. No. 3. 0 < cos−1(

√
2/3) < π/2.

4. The faces through the origin: x − 5y + 3z = 0, x − 3y + z = 0, and
x−2y+z = 0; the faces through the point P : x−5y+3z = 2, x−3y+z = −2,
and x−2y + z = 1. 5. 3x−7y +3z = 0, x+y − z = 0, and x−4y +2z = 0.
6. The planes through the origin are the same as in 5; the other three
planes are 3x − 9y + 5z = 2, y − z = −1, and 3x − 7y + 3z = −2. 7.
x/a + y/b + z/c = 1, the distance is D = abc/

√
a2b2 + a2c2 + b2c2, and the

angles are cos−1(D/|a|) (for the yz plane), cos−1(D/|b|) (for the xz plane),
and cos−1(D/|c|) (for the xy plane), where the inverse cosine value is taken
in the interval (0, π/2). 8. The faces ABC, ACD, and ABD make the
angles with the face BCD, cos−1( 13√

5
√

38
), cos−1( 23

2
√

7
√

19
), and cos−1( 7√

5
√

38
),

respectively. 9. 2x + y − 2z = −8 and 2x + y − 2z = 4. 10. x + z = 2, the
plane through the midpoint of the segment AB and perpendicular to it. 11.
2x − y − z = −3. 12. P lies in the second plane (the distance is 0) and is
at the distance 5/

√
3 from the first plane. 13. Parallel planes orthogonal to

〈1, 1, 1〉. 14. Planes intersecting the coordinate axes at (1, 0, 0), (0, 1, 0) and
(0, 0, 1/c); or all planes containing the line x + y = 1 in the xy plane and
intersecting the z axis. 15. All planes through the point (0, 0, 1) orthogonal
to the vectors ê3 + û where û is a unit vector in the xy plane; or all planes
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obtained from the plane y + z = 1 by rotations about the z axis. 16. The
squared distance between P and the plane is (2 + c)2/(2 + c2); the critical
points of this function, c = −2 and c = 1, are zeros of its derivative; if
c = −2, P lies in the plane (the distance is 0); for c = 1, the distance takes

the largest value of
√

3. 17. n1 · (n2 × n3) = 0 (the normals are coplanar).
19. 4x + y − 2z = 3. 21. 2x + z = 5. 22. x + y + z = ±3R/2. 23.
x − y − z = −1.

Section 7.6. 1. x = 1− 2t, y = 2, z = 3+ t; or y = 2, (1−x)/2 = z − 3. 2.
The through the given vertex: x = 1, y = t, z = −1+ t; or x = 1, y = z +1;
the line containing the other diagonal: x = t, y = 2, z = t; or y = 2, x = z.
3. x = 1 + 2t, y = t, z = −1 + t; or x − 1 = 2y = 2(z + 1). 4. x = 2 − 2t,
y = −1 + t, z = −2 + 3t; or (x − 2)/2 = y + 1 = (z + 2)/3. 5. Four such
lines exist. Put v = 〈cos α, cosβ, cos γ〉 where α, β, and γ are the direction
angles. If the line parallel to v makes the angle π/3 with the x axis, then
cosα = ±1/2 (similarly for cos β). Since −v defines the same line, only 4
vectors out of 8 distinct sets of values of the triple (cosα, cosβ, cos γ) define

distinct lines: x = ±t/2, y = t/2, z = ±t/
√

2, and x = ±t/2, y = ±t/2,

z = ±t/
√

2. 6. x = 1 − t, y = 2 + 3t, z = 3; or 3(1 − x) = y − 2, z = 3.
7. Take the center of the sphere as a particular point of the line; then
x = 1 + t, y = −2 − 2t, z = 3; or 2x = −y, z = 3. 8. The lines have the
same symmetric equations x = 3 − y = (z + 4)/3 and, hence, coincide. 9.
Yes (they have the same symmetric equations). 10. x = 1 + t, y = 2 + t,
z = 3 + 2t; the point of intersection is at t = −4/3. 11. x = 3t, y = t,
z = 1 − 4t; or x/3 = y = (1 − z)/4. 12. The lines are intersecting at
(2,−1, 1). 13. The lines are skew. 14. If P is the point of intersection,

then
−→
AP = 〈 3

2
, 2, 2〉 and the angle of intersection is cos−1( 15√

41
√

29
). 15.

1

2
(a + b + c). 17. r = r1 + (r2 − r1)t where 0 ≤ t ≤ 1. 18. 1/

√
5. 21.

x = 1+2t, y = −t, z = 3+2t, where −2

3
≤ t ≤ 2

3
. 23. x = 1+4t, y = 2−7t,

z = 5− 11t. 24. 1/
√

6. 25. ‖(r1 − r0)× û‖ ≤ R. 26. The projectile misses
the target if R = 2 and hits it if R = 3.

Section 9.6. 1. A double elliptic cone, the y axis is the axis of the cone. 2.
A “saddle” or hyperbolic paraboloid. 3. An ellipsoid wit a = 1, b =

√
2, c =

2. 4. A hyperboloid of two sheets, the y axis is the axis of the hyperboloid. 5.
An elliptic cylinder, the x axis is the axis of the cylinder. 6. A hyperboloid
of one sheet, the y axis is the axis of the hyperboloid. 7. A hyperboloid of
two sheets, the z axis is the axis of the hyperboloid. 8. A parabolic cylinder
parallel to the y axis. 9. An elliptic paraboloid (concave down), the z axis is
the axis of the paraboloid. 10. A hyperbolic cylinder parallel to the x axis.
11. An ellipsoid with the center at (1,−2, 0) and a = b =

√
5, c =

√
5/2.

12. A hyperboloid of one sheet with the center at (−1,−1,−2) and the axis
parallel to the y axis. 13. An elliptic paraboloid concave downward and
with the vertex at (3, 0, 9). 14. A hyperbolic cylinder with the axis through
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(0,−1,−2) and parallel to the x axis. 15. A double cone with the vertex at
(1, 1, 0) and the axis parallel to the y axis. 16. A hyperbolic cylinder. 18.
A “Saddle” or hyperbolic paraboloid. 21. The double cone 1

4
y2 = z2 + x2.

20. An elliptic double cone. Consider a rotation in the xz plane through an
angle φ so that sin(2φ) = −1/

√
2 and cos(2φ) = 1/

√
2. 24. The paraboloid

(x − 1)2 + (y − 1)2 = −2z + 3 (concave down, the vertex at (1, 1, 3

2
)). 25.

A part of the ball x2 + y2 + (z − 1)2 ≤ 1 that lies inside the cone whose
vertex (0, 0, 0) is a point of the surface of the ball and whose axis (the z axis)
contains a diameter of the ball. 28. The double circular cone x2 + z2 = 4y2

about the y axis. 30. ‖r × v‖2 = R2‖v‖2 where r = 〈x, y, z〉. 31. Multiply
the first equation by 2 and subtract the result from the second equation to
show that all points of intersection satisfy 5x − 3y + 4z = 2 and, hence, lie
in the plane.


