
CHAPTER 3

Differentiation of Multivariable
Functions

16. Functions of Several Variables

The concept of a function of several variables can be qualitatively un-
derstood from simple examples in everyday life. The temperature in a room
may vary from point to point. A point in space can be defined by an or-
dered triple of numbers that are coordinates of the point in some coordinate
system, say, (x, y, z). Measurements of the temperature at every point from
a set D in space assign a real number T (the temperature) to every point of
D. The dependence of T on coordinates of the point is indicated by writing
T = T (x, y, z). Similarly, the concentration of a chemical can depend on a
point in space. In addition, if the chemical reacts with other chemicals, its
concentration at a point may also change with time. In this case, the concen-
tration C = C(x, y, z, t) depends on four variables, three spatial coordinates
and the time t. In general, if the value of a quantity f depends on values of
several other quantities, say, x1, x2,..., xm, this dependence is indicated by
writing f = f(x1, x2, ..., xm). In other words, f = f(x1, x2, ..., xm) indicates
a rule that assigns a unique real number f to each ordered m-tuple of real
numbers (x1, x2, ..., xm):

f : (x1, x2, ..., xm) → f(x1, x2, ..., xm)

Each number in the m-tuple may be of a different nature and measured in
different units. In the above example, the concentration depends on ordered
quadruples (x, y, z, t), where x, y, and z are the coordinates of a point in
space (measured in units of length) and t is time (measured in units of time).

To analyze properties of functions of several variables, a notion of a
distance between two ordered m−tuples is needed. For example, a rate of
change of a function is naturally defined as the difference of values of the
function at two points divided by the distance between them. This allows us
to determine that one function changes more rapidly than the other. In what
follows, functions on Euclidean spaces will be studied. In other words, the
distance between two ordered m−tuples (or two arguments of a function) is
assumed to be the Euclidean distance. To simplify notations, the argument
of a function of several variables will often be written in the vector form

f(x1, x2, ..., xm) = f(r) , r ∈ R
m .

The value of a function at a particular point P of a Euclidean space will
also be denoted by f(P ) to emphasize that this value is independent of the
choice of a coordinate system in which coordinates of P are given. For
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Figure 16.1. Left: A function f of two variables is a rule,
f : P → f(P ), that assigns a number f(P ) to every point
P of a planar region D. The set R of all numbers f(P ) is
the range of f . The region D is the domain of f . Right: A
function f of three variables is a rule that assigns a number
f(P ) to every point P of a solid region D.

example, a temperature in a room T = T (P ) depends on a point P , but the
coordinates of P (the ordered triples of numbers) are different in different
coordinate systems.

16.1. Real-Valued Functions of Several Variables.

Definition 16.1. (Real-Valued Function of Several Variables).
Let D be a set of ordered m-tuples of real numbers (x1, x2, ..., xm). A func-
tion f of m variables is a rule that assigns to each m−tuple in the set D
a unique real number denoted by f(x1, x2, ..., xm). The set D is the do-
main of f , and its range is the set of values that f takes on it, that is,
{f(x1, x2, ..., xm) | (x1, x2, ..., xm) ∈ D}.

This definition is illustrated in Fig. 16.1. The rule may be defined by
different means. For example, if D is a collection of N points Pi, i =
1, 2, ..., N , then a function f can be defined by a table (Pi, f(Pi)), where
f(Pi) is the value of f at Pi. A function f can be defined geometrically.
For example, the height of a mountain relative to sea level is a function of
its position on the globe. So the height is a function of two variables, the
longitude and latitude. A function can be defined by an algebraic rule that
prescribes algebraic operations to be carried out with real numbers in any
n-tuple to obtain the value of the function. For example,

f(x, y, z) = x2 − y + z3 .

The value of this function at (1, 2, 3) is

f(1, 2, 3) = 12 − 2 + 33 = 26 .

Unless specified otherwise, the domain of a function defined by an algebraic
rule is the set of m-tuples for which the rule makes sense.

Example 16.1. Find the domain and the range of the function of two
variables f(x, y) = ln(1− x2 − y2).



16. FUNCTIONS OF SEVERAL VARIABLES 243

Solution: The logarithm is defined for any strictly positive number. There-
fore, the doublets (x, y) must be such that 1 − x2 − y2 > 0 or x2 + y2 < 1.
Hence,

D = {(x, y) | x2 + y2 < 1} .

Since any doublet (x, y) can be uniquely associated with a point on a plane,
the set D can be given a geometrical description as a disk of radius 1 whose
boundary, the circle x2 + y2 = 1, is not included in D. For any point in
the interior of the disk, the argument of the logarithm lies in the interval
0 < 1 − x2 − y2 ≤ 1. So the range of f is the set of values of the logarithm
in the interval (0, 1], which is −∞ < f ≤ 0. �

Example 16.2. Find the domain and the range of the function of three

variables f(x, y, z) = x2
√

z − x2 − y2.

Solution: The square root is defined only for nonnegative numbers. There-
fore, ordered triples (x, y, z) must be such that z − x2 − y2 ≥ 0, that is,

D = {(x, y, z) | z ≥ x2 + y2} .

This set can be given a geometrical description as a point set in space because
any triple can be associated with a unique point in space. The equation

z = x2 + y2

describes a circular paraboloid. So the domain is the spatial (solid) region
containing points that lie on or above the paraboloid. The function is non-
negative. By fixing x and y and increasing z, one can see that the value of
f can be any positive number. So the range is 0 ≤ f(x, y, z) < ∞. �

The domain of a function of m variables is viewed as a subset of an
m-dimensional Euclidean space. For example, the domain of the function

f(r) = (1− x2
1 − x2

2 − · · · − x2
m)1/2 = (1 − ‖r‖2)1/2 ,

where r = 〈x1, x2, ..., xm〉, is the set of points in the m-dimensional Euclidean
space whose distance from the origin (the zero vector) does not exceed 1,

D = {r ∈ R
m | ‖r‖ ≤ 1} ;

that is, it is a closed m-dimensional ball of radius 1. So the domain of
a multivariable function defined by an algebraic rule can be described by
conditions on the components of the ordered m-tuple r under which the rule
makes sense.

16.2. The Graph of a Function of Two Variables. The graph of a function
of one variable f(x) is the set of points (x, y) of a plane such that

y = f(x) , x ∈ D

where the domain D is a collection of points on the x axis. The graph is
obtained by moving a point of the domain parallel to the y axis by an amount
determined by the value of the function y = f(x). The graph provides a
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Figure 16.2. Left: The graph of a function of two vari-
ables is the surface defined by the equation z = f(x, y). It
is obtained from the domain D of f by moving each point
(x, y, 0) in D along the z axis to the point (x, y, f(x, y)).
Right: The graph of the function studied in Example 16.3.

useful picture of the behavior of the function. The idea can be extended to
functions of two variables.

Definition 16.2. (Graph of a Function of Two Variables).
The graph of a function f(x, y) with domain D is a collection of points
(x, y, z) in space such that

z = f(x, y) , (x, y) ∈ D .

The domain D is a set of points in the xy plane. The graph is then
obtained by moving each point of D parallel to the z axis by an amount
equal to the corresponding value of the function z = f(x, y). If D is a
portion of the plane, then the graph of f is generally a surface (see Fig. 16.2
(left panel)). One can think of the graph as “mountains” of height f(x, y)
on the xy plane.

Example 16.3. Sketch the graph of the function f(x, y) =
√

1 − (x/2)2 − (y/3)2.

Solution: The domain is the portion of the xy plane

D = {(x, y) | (x/2)2 + (y/3)2 ≤ 1} .

It is bounded by the ellipse with semiaxes 2 and 3. The graph is the surface
defined by the equation

z =
√

1 − (x/2)2 − (y/3)2 .

By squaring both sides of this equation, one finds

(x/2)2 + (y/3)2 + z2 = 1 ,

which defines an ellipsoid. The graph is its upper portion with z ≥ 0 as
depicted in the right panel of Fig. 16.2. �
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Figure 16.3. Left: Cross sections of the graph z = f(x, y)
by horizontal planes z = ki, i = 1, 2, 3, are level curves
f(x, y) = ki of the function f . Right: Contour map of the
function f consists of level sets (curves) f(x, y) = ki. The
number ki indicates the value of f along each level curve.

The concept of the graph is obviously hard to extend to functions of
more than two variables. The graph of a function of three variables would
be a three-dimensional surface in four-dimensional space! So the qualita-
tive behavior of a function of three variables should be studied by different
graphical means.

16.3. Level Sets. When visualizing the shape of quadric surfaces, the method
of cross sections by coordinate planes has been helpful. It can also be ap-
plied to visualize the shape of the graph z = f(x, y). In particular, consider
the cross sections of the graph with horizontal planes z = k. The curve of
intersection is defined by the equation f(x, y) = k. Continuing the analogy
that f(x, y) defines the height of a mountain, a hiker traveling along the
path f(x, y) = k does not have to climb or descend as the elevation along
the path remains constant.

Definition 16.3. (Level Sets).
The level sets of a function f are subsets of the domain of f on which
the function has a fixed value; that is, they are determined by the equation
f(r) = k, where k is a number.

For functions of two variables, the equation f(x, y) = k generally defines
a curve, but not necessarily so. For example, if f(x, y) = x2 + y2, then the

equation x2 + y2 = k defines concentric circles of radii
√

k for any k > 0.
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However, for k = 0, the level set consists of a single point (x, y) = (0, 0).
If k < 0, then the corresponding level sets are empty. Clearly, if k is not
from the range of a function, then the corresponding level set is empty. If
f is a constant function on D, then it has just one non-empty level set; it
coincides with the entire domain D. In general, a level set of a function of
two variables may contain curves, isolated points, and even portions of the
domain with nonzero area.

Suppose that each level set f(x, y) = k for some k in the range of f is a
curve or a collection of curves. These curves are referred to as level curves
of a function. Recall that a curve in a plane can be described by parametric
equations x = x(t), y = y(t) where x(t) and y(t) are continuous functions
on an interval a ≤ t ≤ b. Therefore the equation f(x, y) = k defines a curve
(or a collection of curves) if there exist continuous functions x(t) and y(t)
(or a collection of pairs of continuous functions) such that f(x(t), y(t)) = k
for all values of t from an interval. For example, let

f(x, y) = x2 +
y2

4
.

Then the level set f(x, y) = 4 is an ellipse

x2 +
y2

4
= 4 ⇔ x2

22
+

y2

42
= 1

with semi-axes a = 2 and b = 4. The ellipse is also described by parametric
equations

x = 2 cos t , y = 4 sin t , 0 ≤ t ≤ 2π .

Indeed, x2/22 + y2/42 = cos2 t + sin2 t = 1 for all t.

Example 16.4. Determine the level set f(x, y) = 1 of the function
f(x, y) = (3 − x2 − y2)2. If the level set contains curves, find their pa-
rameterization.

Solution: It follows from the equation for the level set

(3− x2 − y2)2 = 1 ⇔ 3 − x2 − y2 = ±1 ⇔ x2 + y2 = 3 ± 1

The equations x2 + y2 = 4 and x2 + y2 = 2 describe circles of radii 2 and√
2, respectively. Their parametric equations may chosen in the form

x = a cos t , y = a sin t , 0 ≤ t ≤ 2π ,

where a = 2 or a =
√

2. �

Definition 16.4. (Contour Map).
A collection of level curves of a function of two variables is called a contour
map of the function.

The concept of level curves and a contour map of a function of two
variables are illustrated in Fig. 16.3. The contour map of the function in
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Example 16.3 consists of ellipses. Indeed, the range is the interval [0, 1]. For
any 0 ≤ k < 1, a level curve is an ellipse,

1 −
(x

2

)2
−

(y

3

)2
= k2 ⇔

(x

2

)2
+

(y

3

)2
= 1 − k2

or, after dividing both sides of the latter equation by k2 − 1 > 0,

x2

a2
+

y2

b2
= 1 , a = 2

√

1 − k2 , b = 3
√

1 − k2 .

The level set for k = 1 consists of a single point, the origin. Larger values of
the function (larger k) correspond to smaller ellipses (the semi-axes a and
b decrease with increasing k). So, the contour map of the function consists
of ellipses that have a common center (the origin) and lie inside the ellipse
with a = 2 and b = 3.

A contour map is a useful tool for studying the qualitative behavior
of a function. Consider the contour map that consists of level curves Ci,
i = 1, 2, ..., f(x, y) = ki, where ki+1 − ki = ∆k is fixed. The values of the
function along the neighboring curves Ci and Ci+1 differ by ∆k. So, in the
region where the level curves are dense (close to one another), the function
f(x, y) changes rapidly. Indeed, let P be a point of Ci and let ∆s be the
distance from P to Ci+1 along the normal to Ci at P . Then the slope of
the graph of f or the rate of change of f at P in that direction is ∆k/∆s.
Thus, the closer the curves Ci are to one another, the faster the function
changes. Contour maps are used in topography to indicate the steepness of
mountains on maps.

Example 16.5. Describe the level sets (a contour map) of the function
f(x, y) = (a2 − (x2 + y2/4))2.

Solution: The function depends only on single combination variables x
and y:

u2 = x2 + y2/4 ⇒ f(x, y) = (a2 − u2)2 .

Therefore the level sets f(x, y) = k ≥ 0 are sets on which u2 has a constant
value, that is, they contain ellipses:

f(x, y) = k ⇒ u2 = a2 ±
√

k ⇒ x2 +
y2

4
= a2 ±

√
k

The level set k = 0, is the ellipse x2/a2 + y2/(2a)2 = 1. The level sets with

0 < k < a4 contain two ellipses because a2 ±
√

k > 0. For k = a4, the level
set consists of the ellipse u2 = 2a2 and the point (x, y) = (0, 0). The level

set for k > a4 is the ellipse u2 = a2 +
√

k (the other root becomes negative
and the corresponding point set is empty). So the contour map contains the
ellipse x2/a2 + y2/(2a)2 = 1 along which the function attains its absolute
minimum f(x, y) = 0. As the value of k increases, this ellipse splits into
two ellipses. The smaller ellipse is shrinking with increasing k, while the
larger ellipse is expanding. At k = a4 the smaller ellipse collapses to a point
and disappear. This shows that the function f has a local maximum at
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the origin, f(0, 0) = a4. The larger ellipse keeps expanding in size with
increasing k. The graph of f looks like a Mexican hat stretched along the y
axis (by a factor 2). �

16.4. Level Surfaces. In contrast to the graph, the method of level curves
uses only the domain of a function of two variables to study its behavior.
Therefore the concept of level sets can be useful to study the qualitative
behavior of functions of three variables. In general, the equation f(x, y, z) =
k defines a surface in space, but not necessarily so as in the case of functions
of two variables. The level sets of the function f(x, y, z) = x2 + y2 + z2 are
concentric spheres x2 +y2 +z2 = k for k > 0, the level set for k = 0 contains
just one point (the origin), and the level sets are empty for k < 0.

Intuitively, a surface in space can be obtained by a continuous deforma-
tion (without breaking) of a part of a plane, just like a curve is obtained
by a continuous deformation of a line segment. Let S be a nonempty point
set in space. A neighborhood of a point P of S is a collection of all points
of S whose distance from P is less than a number δ > 0. In particular, a
neighborhood of a point in a plane is a disk centered at that point and the
boundary circle does not belong to the neighborhood. If every point of a
subset D of a plane has a neighborhood that is contained in D, then the set
D is called open. In other words, for every point P of an open region D in a
plane there is a disk of a sufficiently small radius that is centered at P and
contained in D. A point set S is a surface in space if every point of S has
a neighborhood that can be obtained by a continuous deformation (or a de-
formation without breaking) of an open set in a plane and this deformation
has a continuous inverse. This is analogous to the definition of a curve as a
point set in space given in Section 10.3.

When the level sets of a function of three variables are surfaces (or
collections of surfaces), they are called level surfaces. The shape of the
level surfaces may be studied, for example, by the method of cross sections
with coordinate planes. A collection of level surfaces Si, f(x, y, z) = ki,
ki+1 − ki = ∆k, i = 1, 2, ..., can be depicted in the domain of f . If P0 is
a point on Si and P is the point on Si+1 that is the closest to P0, then
the ratio ∆k/|P0P | determines the maximal rate of change of f at P . So
the closer the level surfaces Si are to one another, the faster the function
changes (see the left panel of Fig. 16.4).

Example 16.6. Sketch and/or describe the level surfaces of the function
f(x, y, z) = z/(1 + x2 + y2).

Solution: The domain is the entire space, and the range contains all real
numbers. The equation f(x, y, z) = k can be written in the form

z − k = k(x2 + y2) .

If k 6= 0, this equation defines a circular paraboloid whose symmetry axis is
the z axis and whose vertex is at (0, 0, k). For k = 0, the level surface is the
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Figure 16.4. Left: A level surface of a function f of three
variables is a surface in the domain of f on which the function
attains a constant value k, i.e., it is defined by the equation
f(x, y, z) = k. Here three level surfaces are depicted.
Right: Level surfaces of the function studied in Example
16.6. Here k2 > k1 > 0 and k4 < k3 < 0. The level surface
f(x, y, z) = 0 is the xy plane, z = 0.

xy plane (z = 0). For k > 0, the level surfaces are paraboloids above the
xy plane, i.e., they are concave upward (see the right panel of Fig. 16.4).
The paraboloid rises faster with increasing k. For k < 0, the paraboloids
are below the xy plane (i.e., they are concave downward). �

16.5. Applications to mechanics. Consider a motion of a particle of mass
m along a line under a force F = −V ′(x) where x = x(t) is the position of
the particle on the line as a function of time t and V (x) is a continuously
differentiable function, called the potential energy. By Newton’s law,

ma = F ⇒ mx′′(t) = −V ′(x(t)) ⇒ mx′′(t) + V ′(x(t)) = 0 .

Let us multiply this equation of motion by the velocity x′(t). Then by the
chain rule

mx′′(t)x′(t) + V ′(x(t))x′(t) = 0 ⇒ d

dt

(1

2
m(x′(t))2 + V (x(t))

)

= 0 .

Put p = mx′ which is called a momentum of the particle. Then it follows
from the above equation that the quantity

E(x, p) =
p2

2m
+ V (x)
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remains constant during the motion:

d

dt

((p(t))2

2m
+ V (x(t))

)

= 0 ⇒ E(x(t), p(t)) = const .

The function E(x, p) is called the total energy of the particle (the sum of
the kinetic and potential energies). The level sets of the energy function
E(x, p) = k are called a phase space portrait of a dynamical system. Given
the initial conditions x(0) = x0, p(0) = p0, the system evolves so that it
remains in the set E(x, p) = E(x0, p0). In particular, if a level set is a
curve that contain the initial state point (x0, p0), then the solution of the
equation of motion (x(t), p(t)) traverses the curve E(x, p) = E(x0, p0). So,
the phase space portrait describes all possible motions (for all possible initial
conditions) of a given dynamical system.

For example, according to Hooke’s law, small vibrations of a mass at-
tached to a spring are described by the equation

mx′′(t) = −λx(t) ,

where λ > 0 and x(t) is the coordinate of the position of the mass relative to
the equilibrium position that is set at x = 0. Since V ′(x) = λx, the potential
elastic energy is V (x) = λx2/2 (adopting the convention that the minimal
value of the energy is set to zero, V (0) = 0). The phase space portrait of
this dynamical system is a contour map of the energy function

E(x, p) =
p2

2m
+

λx2

2

It consists of ellipses, larger initial energies correspond to wider ellipses. It
follows from the phase space portrait that the motion remains bounded for
any initial conditions because for any initial energy E0:

−(2E0/λ)1/2 ≤ x(t) ≤ (2E0/λ)1/2

since (x(t), p(t)) traverses the ellipse E(x, p) = E0.

16.6. Exercises.
1–13. Find and sketch the domain of each of the following functions:

1. f(x, y) = x/y .
2. f(x, y) = x/(x2 + y2) .
3. f(x, y) = x/(y2 − 4x2) .
4. f(x, y) = ln(9 − x2 − (y/2)2) .

5. f(x, y) =
√

1− (x/2)2 − (y/3)2 .

6. f(x, y) =
√

4− x2 − y2 + 2x ln y .

7. f(x, y) =
√

4− x2 − y2 + x ln y2 .

8. f(x, y) =
√

4− x2 − y2 + ln(x2 + y2 − 1) .
9. f(x, y, z) = x/(yz)

10. f(x, y, z) = x/(x− y2 − z2)
11. f(x, y, z) = ln(1 − z + x2 + y2) .
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12. f(x, y, z) =
√

x2 − y2 − z2 + ln(1− x2 − y2 − z2) .
13. f(t, r) = (t2 − ‖r‖2)−1, r = 〈x1, x2, ..., xm〉 .

14–19. For each of the following functions, sketch a contour map and use
it to sketch the graph:

14. f(x, y) = x2 + 4y2 .
15. f(x, y) = xy .
16. f(x, y) = x2 − y2 .

17. f(x, y) =
√

x2 + 9y2 .
18. f(x, y) = sin x .
19. f(x, y) = y2 + (1 − cos x) .

20–25. Describe and sketch the level sets of each of the following functions:

20. f(x, y, z) = x + 2y + 3z .
21. f(x, y, z) = x2 + 4y2 + 9z2 .
22. f(x, y, z) = z + x2 + y2 .
23. f(x, y, z) = x2 + y2 − z2 .
24. f(x, y, z) = ln(x2 + y2 − z2) .
25. f(x, y, z) = ln(z2 − x2 − y2) .

26–32. Sketch the level sets of each of the following functions. Here
min(a, b) and max(a, b) denote the smallest number and the largest number
of a and b, respectively, and min(a, a) = max(a, a) = a.

26. f(x, y) = |x| + y .
27. f(x, y) = |x| + |y| − |x + y| .
28. f(x, y) = min(x, y) .
29. f(x, y) = max(|x|, |y|).
30. f(x, y) = sign(sin(x) sin(y)); here sign(a) is the sign function, it

has the values 1 and −1 for positive and negative a, respectively.
31. f(x, y, z) = (x + y)2 + z2 .

32. f(x, y) = tan−1
(

2ay
x2+y2−a2

)

, a > 0.

33–36. Explain how the graph z = g(x, y) can be obtained from the graph
of f(x, y) if

33. g(x, y) = k + f(x, y), where k is a constant ;
34. g(x, y) = mf(x, y), where m is a nonzero constant ;
35. g(x, y) = f(x − a, y − b), where a and b are constants ;
36. g(x, y) = f(px, qy), where p and q are nonzero constants .

37–39. Given a function f(x, y), sketch the graphs of the function g(x, y)
defined in Exercises 33–36. Analyze carefully various cases for values of the
constants (for example, m > 0, m < 0, p > 1, 0 < p < 1, and p = −1, etc.)

37. f(x, y) = x2 + y2 .
38. f(x, y) = xy .
39. f(x, y) = (a2 − x2 − y2)2 .
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40. Find f(u) if f(x/y) =
√

x2 + y2/x, x > 0.
41. Find f(x, y) if f(x + y, y/x) = x2 − y2.
42. Let z =

√
y + f(

√
x − 1). Find the functions z and f if z = x when

y = 1.
43. Graph the function F (t) = f(cos t, sin t) where f(x, y) = 1 if y ≥ x and
f(x, y) = 0 if y < x. Give a geometrical interpretation of the graph of F as
an intersection of two surfaces.
44–47. Let f(u) be a continuous function for all real u. Investigate the
relation between the shape of the graph of f and the shape of the following
surfaces:

44. z = f(y − ax) .

45. z = f(
√

x2 + y2) .

46. z = f(−
√

x2 + y2) .
47. z = f(x/y) .

48. Suppose that a potential energy of a particle of mass m is V (x) =
−λ(x2 − a2)2. Sketch the phase space portrait of this dynamical system in
two cases λ > 0 and λ < 0. Determine the set of all initial conditions at
which the motion remains bounded in each case.
49. A pendulum is a weight suspended on a rigid rod from a pivot so
that it can swing freely. Consider a planar motion of the pendulum. Then
its position can be described by the angle θ(t) counted counterclockwise
from its equilibrium position as a function of time t. If L is the length of
the pendulum and m is its mass, then its total energy is known to be E =
1
2mL2θ̇2+mgL(1−cos θ) where θ̇ = dθ/dt. Put p = mLθ̇ (the momentum of
the pendulum). Sketch the phase space portrait of the pendulum. Determine
the set of all initial conditions at which the pendulum cannot make a full
2π turn about the pivot point.
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17. Limits and Continuity

The function f(x) = sin(x)/x is defined for all reals except x = 0. So
the domain D of the function contains points arbitrarily close to the point
x = 0, and therefore the limit of f(x) can be studied as x → 0. It is known
from Calculus I that sin(x)/x → 1 as x → 0. A similar question can be
asked for functions of several variables. For example, the domain of the
function

f(x, y) =
sin(x2 + y2)

(x2 + y2)

is the entire plane except the point (x, y) = (0, 0). The domain contains
points arbitrary close to the origin and one can compute the values of the
function at points that are successively closer to the origin to determine
whether these values approach a particular number. For example, one can
take a straight line x = t, y = t and investigate the values of the function
on it as t → 0:

lim
t→0

f(t, t) = lim
t→0

sin(2t2)

2t2
= lim

u→0

sinu

u
= 1 .

In contrast to the one-dimensional case, there are infinitely many curves
passing through the origin along which the limit values of the function can
be studied. It is then natural to think of the limit, if it exists, as the number
to which the values of the function f(P ) as P approaches the origin along
any curve. It is not difficult to show that the values of the above function
indeed approach 1 along any curve through (0, 0). Let x = x(t), y = y(t)
be a parametric curve through the origin such that x(0) = 0 and y(0) = 0
(recall that x(t) and y(t) are continuous on an interval containing t = 0).

Then the distance from the origin R(t) =
√

x2(t) + y2(t) tends to 0 as t → 0
by continuity of x(t) and y(t). Therefore

lim
t→0

f(x(t), y(t)) = lim
R→0

sin(R2)

R2
= 1

for any parametric curve through the point (0, 0).
Consider another example: f(x, y) =

√
xy. The point (1,−1) is not in

the domain of the function. Furthermore, consider a disk of a radius less
than 1 that is centered at this point. Any such disk contains no point of the
domain of f . Evidently, the limit of f does not make any sense at (1,−1)
as one cannot investigate the values of the function at points arbitrary close

to (1,−1). The domain of the function f(x, y) =
√

−x2 − y2 consists of
a single point (0, 0). The limit of this function at the origin also does not
make any sense as the function has no value at any point different from
the origin. So, first of all one has to describe points for which the very
question about the limit of a function makes sense. As noted before, the
domain of a function f of several variables is a point set in an n-dimensional
Euclidean space. The distance between two points x = (x1, x2, ..., xm) and
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y = (y1, y2, ..., ym) is the Euclidean distance

‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xm − ym)2 .

Definition 17.1. (Neighborhood of a Point)
A neighborhood of a point r0 in a Euclidean space is an open ball of radius
δ > 0 centered at r0:

Nδ(r0) = {r | ‖r− r0‖ < δ} .

The number δ is called the radius of Nδ(r0).

In other words, a neighborhood of a point P is the collection of all points
whose distance from P is less than some positive number. A point P may
or may not be in the domain of a function f . The limit of f at a point P
would not make any sense if there is a neighborhood of P which contains no
points of the domain of the function other than possibly the point P itself
because it would be impossible to investigate the values of the function at
points arbitrary close to P .

Definition 17.2. (Limit Point of a Set).
A point r0 is said to be a limit point of a set D if any neighborhood Nδ(r0)
contains a point r of D and r 6= r0.

Let the domain of a function f be a set D. A limit point r0 of D may or
may not be in D (or f may or may not have a value at r0), but the limit of
the function f always makes sense at a limit point of the domain D because
a neighborhood of r0 of an arbitrary small radius contains a point of D.

17.1. Limits of Functions of Several Variables. Intuitively, if the values a
function f(r) near a point r0 get arbitrary close to a number c and stay
arbitrary close to c for all r 6= r0 in a suitably small neighborhood of r0,
then f is said to have the limit at r0 that is equal to c.

For example, the values of f(x, y) = x3y get arbitrary close to c = 0 if x

and y are suitably small. If R = (x2 + y2)1/2 is the distance from the origin
to a point (x, y), then |x| ≤ R and |y| ≤ R. Therefore

|f(x, y)| = |x|3|y| ≤ R4

which shows that the values of f(x, y) stay arbitrary close to zero throughout
a neighborhood of the origin of a suitably small radius, and it is concluded
that the function f(x, y) = x3y has the limit c = 0 at the point (0, 0).

Consider the function

f(x, y) =
xy

x2 + y2
.

The origin is not in the domain of the function, but it is a limit point
of the domain. So, one can consider the limit of this function when (x, y)
approach (0, 0). The values of the function along the coordinate axes vanish,
f(0, y) = f(x, 0). One can say that the values of f get arbitrary close to
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0 in any neighborhood of the origin. However, they do not stay arbitrary
close to 0 throughout any neighborhood of the origin. Indeed, the values of
the function on the line y = x are equal to 1

2 = f(x, x). Evidently, 1
2 is not

arbitrary close to 0, but the line y = x passes through any neighborhood
of the origin. Thus, it is concluded that the function f has no limit at the
origin.

The precise definition of limits. Although in the above examples it was
possible to give a precise meaning to the words “arbitrary close” and “stay
arbitrary close” in a “suitably small neighborhood”, the general situation
is not that simple. The precise definition of the limit is analogous to that
given in Calculus I for functions of a single variable.

Definition 17.3. (Limit of a Function of Several Variables).
Let f be a function of several variables whose domain is a set D in a Eu-
clidean space. Let r0 be a limit point of D. Then the limit of f(r) at r0

is said to be a number c if, for every number ε > 0, there exists a number
δ > 0 such that if r is in D and 0 < ‖r − r0‖ < δ, then |f(r) − c| < ε. In
this case, one writes

lim
r→r0

f(r) = c or f(r) → c as r → r0

pronounced “the limit of f(r) as r approaches (or goes to) r0 is c”.

The number |f(r)−c| determines a deviation of the value of f at the point
r from the number c. So, an arbitrary positive number ε sets a numerical
measure for how “close” the values of f to c are. The existence of the limit
means that no matter how small the number ε is set to be, one can find a
ball of a sufficiently small radius δ and centered at the limit point r0 such
that the values of the function at all points in this ball (except its center r0)
deviate from the limit value c no more than ε, that is,

c − ε < f(r) < c + ε whenever 0 < ‖r− r0‖ < δ .

In other words, the existence of such δ guarantees that the values of f “stay
arbitrary close” to c throughout a “suitably small neighborhood of r0”. The
condition 0 < ‖r − r0‖ ensures that r does not coincide with r0. Note that
f is not even defined at r0 if r0 is not in D. In the case of a function of two
variables, this definition is illustrated in the left panel of Fig. 17.1.

Suppose that the limit of f exists at r0 and equals c. Then the conditions
stated in Definition 17.3 also imply that the limit of values of f along any
curve through r0 is also c. Indeed, take a curve that ends at the limit point
r0 and fix ε > 0 (see the right panel of Fig. 17.1). Then, by the existence of
the limit c, there is a ball of radius δ = δ(ε, r0) > 0 centered at r0 such that
the values of f lie in the interval c− ε < f(r) < c+ ε for all points r 6= r0 in
the ball and hence for all points of the portion of the curve in the ball. For
any δ > 0, the ball Nδ(r0) contains points of the curve other than r0. Since
ε > 0 can be chosen arbitrary small, the limit along any curve through r0
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Figure 17.1. Left: An illustration of Definition 17.3 in
the case of a function f of two variables. Given a positive
number ε, consider two horizontal planes z = c − ε and z =
c + ε. Then one can always find a number δ > 0 and the
disk Nδ centered at r0 such that the portion of the graph
z = f(r) above the intersection Nδ with D lies between the
planes: c − ε < f(r) < c + ε. The radius δ > 0 of Nδ

depends, generally, on ε and the limit point r0. Right: The
independence of the limit of a path along which the limit
point r0 is approached. For every path leading to r0, there
is a part of it that lies in Nδ. The values of f along this part
of the path deviates from c no more than any preassigned
number ε > 0.

must be c. This is to be compared with the one-dimensional analog: if the
limit of f(x) exists as x → x0, then the right x → x+

0 and left x → x−
0 limits

exist and are equal (and vice versa). The limit of a function along a curve
is rigorously studied in the next section.

Suppose that f(r) = c (a constant) for all r 6= r0, while f is not defined
at r0. Then

lim
r→r0

f(r) = c .

Indeed, let us fix ε > 0. Then in any neighborhood Nδ(r0) of radius δ > 0,
the deviation of values of f from c vanishes:

|f(r)− c| = |c − c| = 0 < ε , 0 < ‖r − r0‖ < δ .

In this simple case, the radius δ of a neighborhood in which f deviates from
the limit c no more than ε appears to be independent of the value of ε. This
is not so in general.
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Example 17.1. Show that

lim
(x,y,z)→(0,0,0)

(x2y + yz2 − 6z3) = 0.

Solution: The distance between r = (x, y, z) and the limit point r0 =
(0, 0, 0) is

R = ‖r− r0‖ =
√

x2 + y2 + z2 .

Then
|x| ≤ R , |y| ≤ R , |z| ≤ R .

Let us find an upper bound on the deviation of values of the function from
the limit value c = 0 in terms of R:

|f(r)− c| = |x2y + yz2 − 6z3| ≤ |x2y|+ |yz2| + 6|z3| ≤ 8R3,

where the inequality |a±b| ≤ |a|+ |b| and |ab| = |a||b| have been used. Next
let us show the existence of a neighborhood of r0 with the properties stated
in Definition 17.3. Fix ε > 0. To establish the existence of δ > 0, note that
the inequality 8R3 < ε or R < 3

√
ε/2 guarantees that |f(r)− c| < ε. So,

if 8R3 < ε , then |f(r)− c| < ε

Given ε > 0, one has to find a ball R < δ in which the latter inequality
holds. Therefore one can take

8δ3 = ε or δ = 3
√

ε/2

so that the condition R < δ is equivalent to 8R3 < ε and, hence,

|f(r)− c| < ε whenever 0 < ‖r − r0‖ < δ = 3
√

ε/2 .

For example, put ε = 10−6. Then, in the interior of a ball of radius δ = 0.005,
the values of the function can deviate from c = 0 no more than 10−6. �

Note that the choice of a particular value of δ > 0 is not unique. In
the previous example, one could take any number 0 < δ ≤ 3

√
ε/2 to fulfill

the conditions for the existence of the limit. The radius δ of a neighborhood
in which a function f deviates no more than ε from the value of the limit
depends on ε and, in general, on the limit point r0, that is, δ = δ(ε, r0).

Example 17.2. Let f(x, y) = xy. Show that

lim
(x,y)→(x0,y0)

f(x, y) = x0y0

for any point (x0, y0).

Solution: The distance between r = (x, y) and r0 = (x0, y0) is

R =
√

(x − x0)2 + (y − y0)2 .

Therefore
|x− x0| ≤ R and |y − y0| ≤ R .

Consider the identity

xy − x0y0 = (x − x0)(y − y0) + x0(y − y0) + (x − x0)y0 .



258 3. DIFFERENTIATION OF MULTIVARIABLE FUNCTIONS

Then the deviation of f from the limit value c = x0y0 is bounded as

|f(x, y)− c| ≤ |x − x0||y − y0|+ |x0||y − y0|+ |x − x0||y0|
≤ R2 + (|x0| + |y0|)R = R2 + 2aR

= (R + a)2 − a2 ,

a =
1

2
(|x0|+ |y0|) .

Now fix ε > 0 and demand that R is such that

0 < (R + a)2 − a2 < ε ⇒ 0 < R <
√

ε + a2 − a .

Therefore the function f deviates from c = x0y0 no more than ε in a neigh-
borhood of r0 of radius δ =

√
ε + a2 − a:

|xy − x0y0| < ε whenever
√

(x − x0)2 + (y − y0)2 < δ =
√

ε + a2 − a

The radius of the neighborhood depends on ε and the limit point r0. �

17.2. An alternative definition of the limit.

Definition 17.4. A sequence of points rn, n = 1, 2, ...., in a Euclidean
space is said to converge to a point r0 if

lim
n→∞

‖r0 − rn‖ = 0

or, for any ε > 0 there exists an integer N such that

‖r0 − rn‖ < ε for all n > N

In this case, rn is also said to approach r0 as n → ∞ and one writes
limn→∞ rn = r0 or rn → r0 as n → ∞.

In other words, a sequence of points approaches a particular point if
the distance between the particular point and the points of the sequence
tends to zero. One can also say that only finitely many points (n ≤ N ) of
a convergent sequence are outside of any neighborhood Nε(r0) of the limit
point.

As noted in the beginning of this section, for functions of several vari-
ables, there are infinitely many ways of how the limit point can be ap-
proached from within the domain of the function. More precisely, there are
infinitely many sequences of points approaching the same limit point. One
can take values of the function f(rn) on each such sequence and investigate
the limit of the numerical sequence f(rn). The question of interest is: What
is the relation between the limit of the function at a limit point and the
limits of the values of the function on various sequences of points converging
to the limit point? The following theorem answers this question.

Theorem 17.1. Let r0 be a limit point of the domain D of a function
f . Then

lim
r→r0

f(r) = c if and only if lim
n→∞

f(rn) = c

for every sequence of points rn in D that converges to r0 and rn 6= r0.
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Proof. Suppose that limr→r0
f(r) = c. Choose a sequence of points rn

that converges to r0. Fix ε > 0. By Definition 17.3 there is δ > 0 such that
|f(r)− c| < ε whenever 0 < ‖r − r0‖ < δ. By Definition 17.4, for any such
number δ > 0 there also exists an integer N such that 0 < ‖rn − r0‖ < δ for
all n > N . Therefore

|f(rn)− c| < ε for all n > N

which means that the numerical sequence of values of the function f(rn)
converges to the number c.

Conversely, suppose that the numerical sequence of values of the function
f(rn) converges to c for every sequence of points rn 6= r0 that converges to
the point r0. One has to show that limr→r0

f(r) = c. Suppose that this
conclusion is false. Then by negating Definition 17.3 there should exist
some ε > 0 such that for every δ > 0 one can find a point r in D (depending
on δ) for which

|f(r)− c| ≥ ε but 0 < ‖r− r0‖ < δ .

Since this property should be true for any δ, it is true if δ = δn = 1/n, where
n = 1, 2, 3, .... For each δn there is a point r = rn with the above property.
This means that there is a sequence of points rn approaching r0 because
‖rn − r0‖ < 1/n → 0 as n → ∞, but the corresponding sequence of values
of the function f(rn) does not converge to c. This is a contradiction. So,
limr→r0

f(r) = c. �

The intuitive idea that the limit of a function, if it exists, should not
depend on the way the limit point is approached is now rigorously established
in Theorem 17.1. The conditions under which the limit exists stated in
Definition 17.3 and in Theorem 17.1 have been proved to be equivalent. So
Theorem 17.1 could have been used as a definition of the limit of a function
of several variables: the limit of a function f exists at a limit point r0 of the
domain of f and equals c if the limit of the numerical sequence of values of
f on every sequence of points not containing r0 and converging to r0 exists
and equals c. Then Definition 17.3 becomes a theorem to be proved in this
approach.

17.3. Properties of the Limit. The basic properties of limits of functions
of one variable discussed in Calculus I are extended to the case of functions
of several variables.

Theorem 17.2. (Properties of the Limit).
Let f and g be functions of several variables that have a common domain.
Let c be a number. Suppose that limr→r0

f(r) = p and limr→r0
g(r) = q.
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Then the following properties hold:

lim
r→r0

(cf(r)) = c lim
r→r0

f(r) = cp,

lim
r→r0

(g(r) + f(r)) = lim
r→r0

g(r) + lim
r→r0

f(r) = q + p,

lim
r→r0

(g(r)f(r)) = lim
r→r0

g(r) lim
r→r0

f(r) = qp,

lim
r→r0

g(r)

f(r)
=

limr→r0
g(r)

limr→r0
f(r)

=
q

p
, if p 6= 0.

A proof of Theorem 17.2 is left to the reader as an exercise. As a
hint, note that, by Theorem 17.1, the above properties of the limit can be
equivalently restated in terms of the basic limits laws for numerical sequences
which have been established in Calculus II.

Squeeze Principle. The solution to Example 17.1 employs a rather general
strategy to verify whether a particular number c is the limit of f(r) as
r → r0.

Theorem 17.3. (Squeeze Principle).
Let the functions of several variables g, f , and h have a common domain
D and g(r) ≤ f(r) ≤ h(r) for any r ∈ D. If the limits of g(r) and h(r) as
r → r0 exist and equal a number c, then the limit of f(r) as r → r0 exists
and equals c, that is,

g(r) ≤ f(r) ≤ h(r) and lim
r→r0

g(r) = lim
r→r0

h(r) = c ⇒ lim
r→r0

f(r) = c.

Proof. From the hypothesis of the theorem, it follows that

0 ≤ f(r)− g(r) ≤ h(r) − g(r) .

Put
F (r) = f(r)− g(r) , H(r) = h(r)− g(r) .

Then
0 ≤ F (r) ≤ H(r)

implies |F (r)| ≤ |H(r)| (the positivity of F is essential for this conclusion).
By the hypothesis of the theorem and the properties of the limit,

H(r) = h(r)− g(r) → c− c = 0 as r → r0 .

Hence, for any ε > 0, there is a number δ such that

0 ≤ |F (r)| ≤ |H(r)| < ε whenever 0 < ‖r− r0‖ < δ .

By Definition 17.3 this means that limr→r0
F (r) = 0. By the basic properties

of the limit, it is then concluded that

f(r) = F (r) + g(r) → 0 + c = c as r → r0 .

�

Alternatively, the squeeze principle for limits of functions can be estab-
lished from the squeeze principle for numerical sequences by using Theorem
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17.1. The details are left to the reader as an exercise. A particular case of
the squeeze principle is also useful.

Corollary 17.1. (Simplified Squeeze Principle).
If there exists a function h of one variable such that

|f(r)− c| ≤ h(R) → 0 as ‖r− r0‖ = R → 0+,

then limr→r0
f(r) = c.

The condition |f(r)− c| ≤ h(R) is equivalent to

c − h(R) ≤ f(r) ≤ c + h(R)

which is a particular case of the hypothesis in the squeeze principle. In
Example 17.1, h(R) = 8R3. In general, the condition h(R) → 0 as R → 0+

implies that, for any ε > 0, there is an interval 0 < R < δ(ε) in which
h(R) < ε, where the number δ can be found by solving the equation h(δ) = ε.
Hence, |f(r)− c| < ε whenever ‖r− r0‖ = R < δ(ε).

Example 17.3. Show that

lim
(x,y)→(0,0)

f(x, y) = 0, where f(x, y) =
x3y − 3x2y2

x2 + y2 + x4
.

Solution: Let R =
√

x2 + y2 (the distance from the limit point (0, 0)).
Then |x| ≤ R and |y| ≤ R. Therefore,

|x3y − 3x2y2|
x2 + y2 + x4

≤ |x|3|y|+ 3x2y2

x2 + y2 + x4
≤ 4R4

R2 + x4
=

4R2

1 + (x4/R2)
≤ 4R2 .

It follows from this inequality that

−4(x2 + y2) ≤ f(x, y) ≤ 4(x2 + y2) ,

and, by the squeeze principle, f(x, y) must tend to 0 because
±4(x2 + y2) = ±4R2 → 0 as R → 0. In Definition 17.3, given ε > 0, a
number δ may be chosen as

√
ε/2 (or smaller). �

17.4. Continuity of Functions of Several Variables. Continuous functions
of several variables are defined by analogy with continuous functions of a
single variable.

Definition 17.5. (Continuity).
A function f of several variables with domain D is said to be continuous at
a point r0 in D if

lim
r→r0

f(r) = f(r0) .

The function f is said to be continuous on D if it is continuous at every
point of D.

Example 17.4. Let f(x, y) = 1 if y ≥ x and let f(x, y) = 0 if y < x.
Determine the region on which f is continuous.
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Solution: The function is continuous at every point (x0, y0) if y0 6= x0.
Indeed, if y0 > x0, then f(x0, y0) = 1. On the other hand, for every such
point one can find a disk of a sufficiently small radius δ and centered at
(x0, y0)) that lies in the region y > x. Therefore, for any ε > 0,

|f(r)− f(r0)| = 1 − 1 = 0 < ε whenever (x − x0)
2 + (y − y0)

2 < δ2 ,

which means that limr→r0
f(r) = f(r0) = 1. The same line of reasoning

applies to establish the continuity of f at any point (x0, y0), where y0 < x0.
If r0 = (x0, x0), that is, the point lies on the line y = x, then f(r0) = 1.

Any disk centered at such r0 is split into two parts by the line y = x. In
one part (y ≥ x), f(r) = 1, whereas in the other part (y < x), f(r) = 0.
So, for 0 < ε < 1, there is no disk of radius δ > 0 in which |f(r)− f(r0)| =
|f(r)−1| < ε because |f(r)−1| = 1 for y < x in any such disk. The function
is not continuous along the line y = x in its domain. �

Discontinuity at a limit point. Suppose that limr→r0
f(r) = c. If the limit

point r0 lies in the domain of the function f , then the function has a value
f(r0) and this value may or may not coincide with the limit value c. In fact,
the limit value c does not generally give any information about the possible
value of the function at the limit point. For example, if f(r) = 1 everywhere
except one point r0 at which f(r0) = f0. Then in every neighborhood
0 < ‖r − r0‖ < δ, f(r) = 1 and, hence, the limit of f as r → r0 exists and
equals c = 1. When f0 6= 1, the limit value does not coincide with the value
of the function at the limit point. The values of f suffer a jump discontinuity
when r reaches r0, and one says that f is discontinuous at r0.

A discontinuity also occurs when the limit of f as r → r0 does not exist
while f has a value at the limit point. Furthermore, if r0 is a limit point
of the domain D of f , but is not in D, then f is continuously extendable
to a larger domain D ∪ {r0} (the union of D and the point r0) if the limit
limr→r0

f(r) exists (the function is defined at r0 by its limit value at r0). A
function f is said to be discontinuous at a limit point r0 of its domain D if

(i) limr→r0
f(r) does not exist, or

(ii) limr→r0
f(r) exists, and r0 is in D, but limr→r0

f(r) 6= f(r0).

Note that the notion of “discontinuity at a limit point” of a function does
not always mean that the function is not continuous at a limit point because
the limit point may not be in the domain of the function (the function has
no value at that point). It means that the function is either not continuous
at a limit point (if the limit point is in the domain) or not continuously
extendable to the limit point (if the limit point is not in the domain). For
example, one says that the function f(x) = 1/x is discontinuous at x = 0.
Strictly speaking, this function is continuous on its domain (all x 6= 0).
Therefore one can also say that f is a continuous function of x that is
discontinuous at x = 0! This terminological paradox is eliminated if one
keeps in mind that, in this case, the term “discontinuous at x = 0” refers to
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the fact that f(x) is not continuously extendable to the limit point x = 0 of
its domain. The function g(x) = x2/x is also not defined at x = 0 (the rule
makes no sense at x = 0). But it can be continuously extended to x = 0 by
g(0) = 0 and therefore has no discontinuity at x = 0.

17.5. Properties of continuous functions. The following theorem is a simple
consequence of the basic properties of the limit.

Theorem 17.4. (Properties of Continuous Functions).
If f and g are continuous on D and q is a number, then qf(r), f(r) + g(r),
and f(r)g(r) are continuous on D, and f(r)/g(r) is continuous at any point
on D for which g(r) 6= 0.

The use of the definition to establish the continuity of a function defined
by an algebraic rule is not always convenient. The following two theorems
are helpful when studying the continuity of a given function. For an ordered
m-tuple r = 〈x1, x2, ..., xm〉, the function

f(r) = xk1

1 xk2

2 · · ·xkm
m ,

where k1, k2, ..., km are nonnegative integers, is called a monomial of degree
N = k1 +k2 + · · ·+km. For example, for two variables, monomials of degree
N = 3 are

x3 , x2y , xy2 , y3 .

A function f that is a linear combination of monomials is called a polynomial
function. For example, the function

f(x, y, z) = 1 + y − 2xz + z4

is a polynomial of three variables. The ratio of two polynomial functions is
called a rational function.

Theorem 17.5. (Continuity of Polynomial and Rational Functions).
Let f and g be polynomial functions of several variables. Then they are
continuous everywhere, and the rational function f(r)/g(r) is continuous at
any point r0 if g(r0) 6= 0.

Proof. Let f(r) = c be a constant function. Take a sequence of points
rn converging to r0 and rn 6= r0. Then the numerical sequence f(rn) = c
converges to c. By Theorem 17.1, f(r) → c = f(r0) as r → r0. So, a con-
stant function is continuous everywhere. Let gj(r) = xj (the jth coordinate
of a point r). Let r0 = 〈a1, a2, ..., am〉. Since |xj − aj| ≤ ‖r − r0‖ = R, the
function gj is continuous everywhere by the squeeze principle:

|gj(r)− gj(r0)| = |xj − aj| ≤ R → 0 as R → 0+ .

A monomial of any degree is a product of the functions gj, j = 1, 2, ..., m,
or a constant function. By the properties of continuous functions (Theorem
17.4), any monomial is a function continuous everywhere. A polynomial is a
linear combination of monomials and therefore is also a function continuous
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everywhere. A rational function is continuous as the ratio of two continuous
functions (provided the denominator does not vanish). �

Theorem 17.6. (Continuity of a Composition).
Let g(u) be continuous on the interval u ∈ [a, b] and let h be a function
of several variables that is continuous on D and has the range [a, b]. The
composition f(r) = g(h(r)) is continuous on D.

This theorem follows from Theorem 17.1 and Definition 17.5. A proof
is left to the reader as an exercise.

Basic functions studied in Calculus I, sinu, cosu, eu, ln u, and so on,
are continuous functions on their domains. If f(r) is a continuous function
of several variables, the elementary functions whose argument is replaced
by f(r) are continuous functions. In combination with the properties of
continuous functions, the composition rule defines a large class of contin-
uous functions of several variables, which is sufficient for many practical
applications.

Example 17.5. Find the limit

lim
r→0

exz cos(xy + z2)

x + yz + 3xz4 + (xyz − 2)2

Solution: The function is a ratio. The denominator is a polynomial and
hence continuous. Its limit value is (−2)2 = 4 6= 0. The function exz is
a composition of the exponential eu and the polynomial u = xy. So it
is continuous. Its value is 1 at the limit point. Similarly, cos(xy + z2) is
continuous as a composition of cosu and the polynomial u = xy + z2. Its
value is 1 at the limit point. The ratio of continuous functions is continuous
and the limit is 1/4. �

17.6. Study Problems.

Problem 17.1. Consider two rational functions f(x, y) = x2/(x2+y2) and
g(x, y) = x4/(x2 +y2). Find all points of discontinuity of these functions, if
any.

Solution: The denominator x2 + y2 vanishes only at the origin (0, 0).
Therefore f and g are continuous everywhere but the origin (Theorem 17.5).
The origin is not in the domain of these function but it is a limit point of the
domain. Let us verify whether these function are continuously extendable

to the whole plane. Since |x| ≤
√

x2 + y2 = R, by the squeeze principle

|g(x, y)|= x4

R2
≤ R4

R2
= R2 → 0 as R → 0+

it is concluded that g(x, y) → 0 as (x, y) → (0, 0). So, g has no discontinuity
at the origin (it is continuously extendable to the whole plane by g(0, 0) = 0).
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Take a sequence of points (xn, 0) where xn → 0 and as n → ∞ and xn 6= 0
(it converges to the origin from within the domain of f). Then

lim
n→0

f(xn, 0) = lim
n→∞

x2
n

x2
n

= 1 .

On the other hand, for a sequence of points (0, yn) where yn → 0 and as
n → ∞ and yn 6= 0 (it also converges to the origin from within the domain
of f), a different limit value of f is obtained:

lim
n→0

f(0, yn) = lim
n→∞

0

y2
n

= 0 .

By Theorem 17.1, the limit of f(x, y) at (0, 0) does not exists and f is
discontinuous at the limit point (0, 0) of its domain (it is not continuously
extendable to the whole plane). �

17.7. Exercises.
1–5. Use Definition 17.3 of the limit to verify each of the following limits
(i.e., given ε > 0, find a neighborhood of the limit point with the properies
specified in the definition):

1. lim
r→0

x3 − 4y2x + 5y3

x2 + y2
= 0

2. lim
r→0

x3 − 4y2x + 5y3

3x2 + 4y2
= 0

3. lim
r→0

x3 − 4y4 + 5y3x2

3x2 + 4y2
= 0

4. lim
r→0

x3 − 4y2x + 5y3

3x2 + 4y2 + y4
= 0

5. lim
r→0

3x3 + 4y4 − 5z5

x2 + y2 + z2
= 0

6–8. Use the squeeze principle to prove the following limits and find a
neighborhood of the limit point in which the deviation of the function from
the limit value does not exceed a small given number ε (Hint: | sinu| ≤ |u|):

6. lim
r→0

y sin(x/
√

y) = 0

7. lim
r→0

[1 − cos(y/x)]x2 = 0

8. lim
r→0

cos(xy) sin(4x
√

y)
√

xy
= 0

9. Suppose that limr→r0
f(r) = 2 and r0 is in the domain of f . If nothing

else is known about the function, what can be said about the value f(r0)?
If, in addition, f is known to be continuous at r0, what can be said about
the value f(r0)?
10–19. Find the points of discontinuity of each of the following functions:
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10. f(x, y) = yx/(x2 + y2) ;
11. f(x, y, z) = yxz/(x2 + y2 + z2) ;
12. f(x, y) = sin(

√
xy) ;

13. f(x, y) = cos(
√

xyz)/(x2y2 + 1) ;

14. f(x, y) = (x2 + y2) ln(x2 + y2) ;
15. f(x, y) = 1 if either x or y is rational and f(x, y) = 0 elsewhere. ;
16. f(x, y) = (x2 − y2)/(x− y) if x 6= y and f(x, x) = 2x ;
17. f(x, y) = (x2 − y2)/(x− y) if x 6= y and f(x, x) = x ;
18. f(x, y, z) = 1/[sin(x) sin(z − y)] ;

19. f(x, y) = sin
(

1
xy

)

.

20–22. Each of the following functions has the value at the origin f(0, 0) =
c. Determine whether there is a particular value of c at which the function
is continuous at the origin if for (x, y) 6= (0, 0):

20. f(x, y) = sin
(

1/(x2 + y2)
)

;

21. f(x, y) = (x2 + y2)ν sin
(

1/(x2 + y2)
)

, ν > 0 ;

22. f(x, y) = xnym sin
(

1/(x2 + y2)
)

, n ≥ 0, m ≥ 0, and n + m > 0 .

23-27. Use the properties of continuous functions to find the following limits

23. lim
r→0

(1 + x + yz2)1/3

2 + 3x − 4y + 5z2

24. lim
r→0

sin(x
√

y)

25. lim
r→0

sin(x
√

y)

cos(x2y)

26. lim
r→0

[exyz − 2 cos(yz) + 3 sin(xy)]

27. lim
r→0

ln(1 + x2 + y2z2)

28. Use Theorem 17.1 and the properties of limits of numerical sequences
to prove Theorem 17.2.
29. Use Theorem 17.1 to prove Theorem 17.6.
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18. A General Strategy to Study Limits

The definition of the limit gives only the criterion for whether a number
c is the limit of f(r) as r → r0. In practice, however, a possible value of the
limit is typically unknown. Some studies are needed to make an “educated”
guess for a possible value of the limit. Here a procedure to study limits is
outlined that might be helpful. In what follows, the limit point is often set to
the origin r0 = 0. This is not a limitation because one can always translate
the origin of the coordinate system to any particular point by shifting the
values of the argument, for example,

lim
(x,y)→(x0,y0)

f(x, y) = lim
(x,y)→(0,0)

f(x + x0, y + y0) ,

or, in general,

lim
r→r0

f(r) = lim
r→0

f(r + r0) .

18.1. Step 1: Continuity Argument. The simplest scenario in studying the
limit happens when the function f in question is continuous at the limit
point:

lim
r→r0

f(r) = f(r0) .

For example,

lim
(x,y)→(1,2)

xy

x3 − y2
= −2

3

because the function in question is a rational function that is continuous if
x3 − y2 6= 0. The latter is indeed the case for the limit point (1, 2). If the
continuity argument does not apply, then it is helpful to check the following.

18.2. Step 2: Composition Rule.

Theorem 18.1. (Composition Rule for Limits).
Let g(t) be a function continuous at t0. Suppose that the function f is the
composition f(r) = g(h(r)) so that r0 is a limit point of the domain of f
and h(r) → t0 as r → r0. Then

lim
r→r0

f(r) = lim
t→t0

g(t) = g(t0).

The proof is omitted as it is similar to the proof of the composition rule
for limits of single-variable functions given in Calculus I. The significance of
this theorem is that, under the hypotheses of the theorem, a tough problem
of studying a multivariable limit is reduced to the problem of the limit of
a function of a single argument. The latter problem can be studied, by, for
example, analyzing a local behavior of the function by a Taylor polynomial
approximation or by l’Hospital’s rule. Although there is a generalization of
l’Hospital’s rule for multivariable limits, but it is far more complicated and
much less practical to use as compared with the one-variable case. Various
asymptotic approximations of the behavior of functions involved near the
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limit point such as, e.g., Taylor polynomial approximations, are much more
practical to study multivariable limits.

Example 18.1. Find

lim
(x,y)→(0,0)

cos(xy)− 1

x2y2
.

Solution: The function in question is g(t) = (cos t−1)/t2 for t 6= 0, where
the argument t is replaced by the function h(x, y) = xy. The function h is
a polynomial and hence continuous. In particular, h(x, y) → h(0, 0) = 0 as
(x, y) → (0, 0). The function g(t) is continuous for all t 6= 0 and its value at
t = 0 is not defined. Since cos t = 1− t2/2 + O(t4) for small t,

lim
t→0

cos t − 1

t2
= lim

t→0

−t2/2 + O(t4)

t2
= lim

t→0

(

−1

2
+ O(t2)

)

= −1

2
.

So the function g(t) is continuously extendable at t = 0. By setting g(0) =
−1/2, the function g(t) becomes continuous at t = 0 and the hypotheses of
the composition rule are fulfilled. Therefore the two dimensional limit in
question exists and equals −1/2. �

18.3. Step 3: Limits Along Curves. Recall the following result about the
limit of a function of one variable. The limit of f(x) as x → x0 exists and
equals c if and only if the corresponding right and left limits of f(x) exist
and equal c:

lim
x→x+

0

f(x) = lim
x→x−

0

f(x) = c ⇐⇒ lim
x→x0

f(x) = c .

In other words, if the limit exists, it does not depend on the direction from
which the limit point is approached. Consequently, this fact allows us to
state a useful criterion for non-existence of the limit. If the left and right
limits exist but do not coincide, or at least one of them does not exist,
then the limit does not exist. A similar criterion for non-existence of a
multivariable limit can be found.

Definition 18.1. (Parametric Curve in a Euclidean Space).
A parametric curve in a Euclidean space R

m is a continuous vector function
r(t) = 〈x1(t), x2(t), ..., xm(t)〉, where t ∈ [a, b].

This is a natural generalization of the concept of a parametric curve in
a plane or space defined by parametric equations xi = xi(t), i = 1, 2, ..., m,
where xi(t) are continuous functions on [a, b]. For example, the parametric
curve r(t) = vt, ‖v‖ 6= 0, is the line through the origin parallel to the vector
v. (or a part of this line if the range of the parameter t is restricted to an
interval [a, b]).

Definition 18.2. (Limit Along a Curve).
Let r0 be a limit point of the domain D of a function f . Suppose there is
a parametric curve r(t), t0 ≤ t ≤ b, such that r(t) is in D if t > t0 and
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r(t0) = r0. Let F (t) = f(r(t)), t > t0, be the values of f on the curve. The
limit

lim
t→t+0

F (t) = lim
t→t+0

f(x1(t), x2(t), ..., xm(t))

is called the limit of f along the curve r(t) if it exists.

Theorem 18.2. If the limit of f(r) exists as r → r0 and is equal to c,
then the limit of f along any curve through r0 exists and is equal to c .

Proof. Fix ε > 0. By Definition 17.3 the existence of the limit c of f(r)
at r0 means that one can find a number δ > 0 such that

|f(r)− c| < ε whenever 0 < ‖r − r0‖ < δ

The vector function r(t) is continuous at t0, that is, limt→t+
0

r(t) = r(t0) = r0

by the hypothesis. It follows then from Definition 10.2 of the limit of a vector
function that for the number δ found above there is a number δ′ > 0 such
that

‖r(t)− r0‖ < δ whenever t0 < t < t + δ′ .

These two relations imply that for any number ε > 0 one can find a number
δ′ such that

|f(r(t))− c| = |F (t) − c| < ε whenever t0 < t < t + δ′ .

By the definition of the one-variable limit (Calculus I), this means that
F (t) → c as t → t+0 . So, the limit along any curve exists and is equal to c.
�

In regard of this theorem, recall the discussion of the right panel in
Fig. 17.1 in Section 17.1. An immediate consequence of this theorem is a
useful criterion for non-existence of a multi-variable limit.

Corollary 18.1. (Criterion for Nonexistence of the Limit).
Let f be a function of several variables on D and r0 be a limit point of
D. If there is a curve along which the limit of f at r0 does not exist, then
the multivariable limit limr→r0

f(r) does not exist either. If there are two
curves along which the limits of f at r0 exist but do not coincide, then the
multivariable limit limr→r0

f(r) does not exist.

Repeated limits. Let (x, y) 6= (0, 0). Consider a curve C1 that consists
of two straight line segments (x, y) → (x, 0) → (0, 0) and a curve C2 that
consists of two straight line segments (x, y) → (0, y) → (0, 0). Both the
curves connect (x, y) with the origin. The limits along C1 and C2,

lim
y→0

(

lim
x→0

f(x, y)
)

and lim
x→0

(

lim
y→0

f(x, y)
)

are called the repeated limits. Suppose that all points of C1 and C2 are
within the domain of f except the point (0, 0). Then Theorem 18.2 and
Corollary 18.1 establish the relations between the repeated limits and the
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two-variable limit lim(x,y)→(0,0) f(x, y). In particular, suppose that the func-
tion is continuous with respect to x if y 6= 0 is fixed and it is also continuous
with respect to y if x 6= 0 is fixed. Then f(x, y) → f(0, y) as x → 0 for y 6= 0
and f(x, y) → f(x, 0) as y → 0 for x 6= 0. The repeated limits become

lim
y→0

f(0, y) and lim
x→0

f(x, 0)

If at least one of them does not exists or they exist but are not equal, then
by Corollary 18.1 the two-variable limit does not exist. If they exist and
are equal, then the two-variable limit may or may not exist. A further
investigation of the two-variable limit is needed.

Example 18.2. Find the limit

lim
(x,y)→(0,0)

sin(x2 − y2)

x2 + y2

or show that the limit does not exist.

Solution: The domain of the function in question is the entire plane with
origin removed. The function is continuous with respect to x if y 6= 0 is
fixed and with respect to y if x 6= 0 is fixed. Therefore the repeated limits
are

lim
y→0

(

lim
x→0

sin(x2 − y2)

x2 + y2

)

= lim
y→0

sin(−y2)

y2
= − lim

y→0

sin(y2)

y2
= −1

lim
x→0

(

lim
y→0

sin(x2 − y2)

x2 + y2

)

= lim
x→0

sin(x2)

x2
= 1

The repeated limits exist but do not coincide. Therefore the two-variable
limit does not exist. �

The following should be emphasized. Suppose that the domain of the
function f does not include the coordinate axes (or their parts with the
origin), but the coordinates axes consist of limit points of the domain (e.g.,
the domain of f contains points (x, y) with x > 0 and y > 0). Then the
repeated limits make sense. However, the hypotheses of Corollary 18.1 are
not fulfilled (the curves along which the limits are taken are not in the
domain of the function). Examples given in Exercises 1-3 illustrate the
situation in this case. In particular, the non-existence of the repeated limits
does not imply the non-existence of the two-variable limit in this case. An
example is given in Exercise 3.

Limits Along Straight Lines. Let the limit point be the origin r0 = 0. The
simplest curve through r0 is a straight line xi = vit, where t → 0+ for some
numbers vi, i = 1, 2, ...,m, that do not vanish simultaneously (or in the
vector form r(t) = tv, v 6= 0). In particular, in the case of two variables it
is convenient to take

x = t , y = at or x = t cos θ , y = t sin θ



18. A GENERAL STRATEGY TO STUDY LIMITS 271

where a and θ are parameters. If the multivariable limit of f exists, then
the limit of f along every straight line (in the domain of f) should exist and
be the same:

lim
r→0

f(r) = c ⇒ lim
t→0+

f(tv) = c for any v 6= 0 .

Consequently, if the limit along a particular line does not exists, or there
are two lines along which the limits exist but are not equal, then the multi-
variable limit does not exist:

limt→0+ f(tv) does not exist
or
limt→0+ f(tv1) 6= limt→0+ f(tv2)

⇒ lim
r→0

f(r) does not exist

where v1 and v2 are not parallel (v1 6= sv2, s > 0).

Example 18.3. Investigate the two-variable limit

lim
(x,y)→(0,0)

xy3

x4 + 2y4
.

Solution: Consider the limits along straight lines x = t, y = at (or y = ax,
where a is the slope) as t → 0+:

lim
t→0+

f(t, at) = lim
t→0+

a3t4

t4(1 + 2a4)
=

a3

1 + 2a4
.

So the limit along a straight line depends on the slope of the line. Therefore,
the two-variable limit does not exist. �

Example 18.4. Investigate the limit

lim
(x,y)→(0,0)

sin(
√

xy)

x + y
.

Solution: The domain of the function consists of the first and third quad-
rants as xy ≥ 0 except the origin. Lines approaching (0, 0) from within the
domain are x = t, y = at, a ≥ 0 and t → 0. The line x = 0, y = t also lies
in the domain (the line with an infinite slope). The limit along a straight
line approaching the origin from within the first quadrant is

lim
t→0+

f(t, at) = lim
t→0+

sin(t
√

a)

t(1 + a)
= lim

t→0+

t
√

a + O(t3)

t(1 + a)
=

√
a

1 + a
,

where sin u = u+O(u3), u = t
√

a, has been used to calculate the limit. The
limit depends on the slope of the line, and hence the two-variable limit does
not exist. �
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Limits Along Power Curves (Optional). If the limit along straight lines
exists and is independent of the choice of the line, the numerical value of
this limit provides a desired “educated” guess for the actual multivariable
limit. However, this has yet to be proved by means of either the definition
of the multivariable limit or, for example, the squeeze principle. The latter
comprises the final step of the analysis of limits (Step 4; see below).

The following should be stressed. If the limits along all straight lines
happen to be the same number, this does not mean that the multivariable
limit exists and equals that number because there might exist other curves
through the limit point along which the limit attains a different value or does
not even exist.

Example 18.5. Investigate the limit

lim
(x,y)→(0,0)

y3

x
.

Solution: The domain of the function is the whole plane with the y axis
removed (x 6= 0). The limit along a straight line

lim
t→0+

f(t, at) = lim
t→0+

a3t3

t
= a3 lim

t→0+
t2 = 0

vanishes for any slope; that is, it is independent of the choice of the line.
However, the two-variable limit does not exist! Consider the power curve

x = t , y = at1/3 ,

through the origin. The limit along this curve can attain any value by
varying the parameter a:

lim
t→0+

f(t, at1/3) = lim
t→0+

a3t

t
= a3.

Thus, the multivariable limit does not exist. �

In general, limits along power curves are convenient for studying limits
of rational functions because the values of a rational function of several
variables on a power curve are given by a rational function of the curve
parameter t. One can then adjust, if possible, the power parameter of the
curve so that the leading terms of the top and bottom power functions match
in the limit t → 0+. For instance, in the example considered, put x = t and
y = atn. Then f(t, atn) = (a3t3n)/t. The powers of the top and bottom
functions in this ratio match if 3n = 1; hence, for n = 1/3, the limit along
the power curve depends on the parameter a and can be any number.

18.4. Step 4: Using the Squeeze Principle. If Steps 1 and 2 do not apply to
the multivariable limit in question, then an “educated” guess for a possible
value of the limit is helpful. This is the outcome of Step 3. If limits along
a family of curves (e.g., straight lines) happen to be the same number c,
then this number is the sought-for “educated” guess. The definition of the
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multivariable limit or the squeeze principle can be used to prove or disprove
that c is the multivariable limit.

Example 18.6. Find the limit or prove that it does not exist:

lim
(x,y)→(0,0)

sin(xy2)

x2 + y2
.

Solution:

Step 1. The function is not defined at the origin. The continuity argument
does not apply.
Step 2. No substitution exists to transform the two-variable limit to a one-
variable limit.
Step 3. Put (x, y) = (t, at), where t → 0+. The limit along straight lines

lim
t→0+

f(t, at) = lim
t→0+

sin(a2t3)

t2(1 + a2)
= lim

t→0+

a2t3 + O(t9)

t2(1 + a2)

= lim
t→0+

(

a2t

1 + a2
+ O(t7)

)

= 0

vanishes (here sinu = u + O(u3), u = a2t3, has been used to calculate the
limit).
Step 4. If the two-variable limit exists, then it must be equal to 0. This can
be verified by means of the simplified squeeze principle; that is, one has to
verify that there exists h(R) such that |f(x, y)− c| = |f(x, y)| ≤ h(R) → 0

as R =
√

x2 + y2 → 0+. A key technical trick here is the inequality

| sinu| ≤ |u| ,

which holds for any real u. One has

|f(x, y)− 0| =
| sin(xy2)|
x2 + y2

≤ |xy2|
x2 + y2

≤ R3

R2
= R → 0,

where the inequalities |x| ≤ R and |y| ≤ R have been used. Thus, the
two-variable limit exists and equals 0. �

For two-variable limits, it is sometimes convenient to use polar coordi-
nates centered at the limit point x − x0 = R cos θ, y − y0 = R sin θ. The
idea is to find out whether the deviation of the function f(x, y) from c (the
“educated” guess from Step 3) can be bounded by h(R) uniformly for all
θ ∈ [0, 2π]:

|f(x, y)− c| = |f(x0 + R cos θ, y0 + R sin θ) − f0| ≤ h(R) → 0

as R → 0+. This technical task can be accomplished with the help of the
basic properties of trigonometric functions, for example, | sin θ| ≤ 1, | cos θ|
≤ 1, and so on.
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In Example 18.5, Step 3 gives an “educated” guess for the limit c = 0
(by studying the limits along straight lines). Then

|f(x, y)− c| =
|y|3
|x| =

|R3 sin3 θ|
|R cos θ| = R2 sin2(θ)|tanθ| .

Despite that the deviation of f from 0 is proportional to R2 → 0 as R → 0+,
it cannot be made as small as desired uniformly for all θ by decreasing R
because tan θ is not a bounded function. There is a sector in the plane
corresponding to angles near θ = π/2 where tan θ can be larger than any
number whereas sin2 θ is strictly positive in it (its value is close to 1) so that
the deviation of f from 0 can be as large as desired no matter how small R
is. So, for any ε > 0, the inequality |f(r)− c| < ε is violated in that sector
of any disk 0 < ‖r − r0‖ < δ, and hence the limit does not exist. In other
words, even though values of f are close to 0 for some points near (0, 0),
they do not stay close to 0 everywhere near (0, 0), and hence 0 cannot be
the limit of f at (0, 0).

Remark. For multivariable limits with m > 2, a similar approach exists.
If, for simplicity, r0 = 0. Then put xi = Rui, where the variables ui satisfy
the condition u2

1 + u2
2 + · · ·+ u2

m = 1 so that ‖r‖ = R or in the vector form
r = Ru where ‖u‖ = 1. For m = 2, u1 = cos θ and u2 = sin θ. For m ≥ 3,
the variables ui can be viewed as the directional cosines, that is, the cosines
of the angles between u and unit vectors êi parallel to the coordinate axes,
ui = u · êi. Then one has to investigate whether there is h(R) such that

|f(Ru1, Ru2, ..., Rum) − f0| ≤ h(R) → 0 , R → 0+ .

This technical, often rather difficult, task may be accomplished using the
inequalities |ui| ≤ 1 and some specific properties of the function f . As
noted, the variables ui are the directional cosines. They can also be trigono-
metric functions of the angles in the spherical coordinate system in an n-
dimensional Euclidean space.

18.5. Infinite limits and limits at infinity. Suppose that the limit of a multi-
variable function f does not exist as r → r0. There are two particular cases,
which are of interest, when f tends to either positive or negative infinity.

Definition 18.3. (Infinite limits)
The limit of f(r) as r → r0 is said to be the positive infinity if for any
number M > 0 there exists a number δ > 0 such that f(r) > M whenever
0 < ‖r − r0‖ < δ. Similarly, the limit is said to be the negative infinity if
for any number M < 0 there exists a number δ > 0 such that f(r) < M
whenever 0 < ‖r − r0‖ < δ. In these cases, one writes, respectively,

lim
r→r0

f(r) = +∞ and lim
r→r0

f(r) = −∞ .
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For example,

lim
r→0

1

x2 + y2
= +∞ .

Indeed, put R =
√

x2 + y2. Then, for any M > 0, the inequality f(r) =

1/R2 > M can be written in the form R < 1/
√

M . Therefore the values of

f in the disk 0 < ‖r‖ < δ = 1/
√

M are larger than any preassigned positive
number M .

The squeeze principle has a natural extension to infinite limits. Suppose
that functions g(r) and f(r) have a common domain and satisfy the following
conditions for all points in the domain, then

g(r) ≤ f(r) and lim
r→r0

g(r) = +∞ ⇒ lim
r→r0

f(r) = +∞

f(r) ≤ g(r) and lim
r→r0

g(r) = −∞ ⇒ lim
r→r0

f(r) = −∞

Furthermore, if the limit of a function f is infinite, the values of the function
f must approach the infinity along any curve through the limit point. For
example, the limit

lim
r→0

f(x, y) = lim
r→0

y

x2 + y2
does not exist

because the limits along straight lines (x, y) = (t, at) are different:

lim
t→0+

f(t, at) = lim
t→0+

a

t(1 + a2)
=







+∞ if a > 0
0 if a = 0

−∞ if a < 0

If, however, the domain of f is restricted to the half-plane y > 0, then the
limit exists and is ∞. Indeed,

for all x and y > 0, f(x, y) =
y

x2 + y2
≥ y

y2
=

1

y
→ +∞ as y → 0+ ,

and the conclusion follows from the squeeze principle.
For functions of one variable x, one can define the limits at infinity,

i.e., when x → +∞ or x → −∞. In both the cases, the values of the
function f(x) are investigated in neighborhoods of the infinities ±∞, defined
as Nδ(∞) = {x | x > δ} and Nδ(−∞) = {x | x < −δ} for some δ > 0.
Similarly, in a Euclidean space, one can investigate the values of the function
in neighborhoods of infinity:

Nδ(∞) = {r | ‖r‖ > δ > 0} .

If the domain D of a function f(r) is an unbounded region (D is not con-
tained in a ball of a sufficiently large radius), then a neighborhood of infinity
in D consists of all points of D whose distance from the origin exceeds a pos-
itive number δ, ‖r‖ > δ. A smaller neighborhood is obtained by increasing
δ.
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Definition 18.4. (Limit at infinity)
Let f be a function on an unbounded region D. A number c is the limit of
a function f at infinity if for any number ε > 0 there exists a number δ > 0
such that |f(r)−c | < ε whenever ‖r‖ > δ in D and, in this case, one writes

lim
r→∞

f(r) = c or f(r) → c as r → ∞ .

Infinite limits at infinity are defined similarly.

Definition 18.5. (Infinite Limits at Infinity)
Let f be a function on an unbounded region D. Then

lim
r→∞

f(r) = +∞ or lim
r→∞

f(r) = −∞

if for any number M > 0 there exists a number δ > 0 such that, respectively,

f(r) > M or f(r) < −M whenever ‖r‖ > δ in D .

The squeeze principle has a natural extension to the infinite limits and
at infinity. If g(r) ≤ f(r) for all r and g(r) → ∞ as r → ∞, then f(r) → ∞.
If f(r) ≤ g(r) for all r and g(r) → −∞ as r → ∞, then f(r) → −∞.

18.6. Study Problems.

Problem 18.1. Find the limit limr→r0
f(r) or show that it does not exist,

where

f(r) = f(x, y, z) = (x2 + 2y2 + 4z2) ln(x2 + y2 + z2) , r0 = 0 .

Solution:

Step 1. The continuity argument does not apply because f is not defined at
r0.
Step 2. No substitution is possible to transform the limit to a one-variable
limit.
Step 3. Put r(t) = tv where v = 〈a, b, c〉 is a unit vector, a2 + b2 + c2 = 1.
Then

f(r(t)) = At2 ln(t2) = 2At2 ln t

where A = a2 + 2b2 + 4c2 > 0 and t > 0. By l’Hospital’s rule

lim
t→0+

t2 ln t = lim
t→0+

ln t

t−2
= lim

t→0+

t−1

−2t−3
= −1

2
lim

t→0+
t = 0

and therefore f(r(t)) → 0 as t → 0+. So, if the limit exists, then it must be
equal to 0.
Step 4. Put R2 = x2 + y2 + z2. Since the limit R → 0+ is of interest, one
can always assume that R < 1 so that lnR2 = 2 lnR < 0. By making use of
the inequalities |x| ≤ R, |y| ≤ R, |z| ≤ R, one has

R2 ≤ x2 + 2y2 + 4z2 ≤ 7R2 .

By multiplying the latter inequality by lnR2 < 0,

R2 lnR2 ≥ f(r) ≥ 7R2 ln(R2) .
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Since t ln t → 0 as t = R2 → 0+, the limit exists and equals 0 by the squeeze
principle. �

Problem 18.2. Prove that the limit limr→r0
f(r) exists, where

f(r) = f(x, y) =
1− cos(x2y)

x2 + 2y2
, r0 = 0 ,

and find a disk centered at r0 in which values of f deviate from the limit no
more than ε = 0.5 × 10−4.

Solution:

Step 1. The continuity argument does not apply because f is not defined at
r0.
Step 2. No substitution is possible to transform the limit to a one-variable
limit.
Step 3. Put r(t) = 〈t, at〉. Then

lim
t→0+

f(r(t)) = lim
t→0+

1 − cos(at3)

t2(1 + 2a2)
=

1

1 + 2a2
lim

t→0+

1 − (1 − 1
2 (at3)2 + O(t12))

t2

=
1

1 + 2a2
lim

t→0+

(

a2t4

2
+ O(t10)

)

= 0 ,

where cos u = 1 − 1
2u2 + O(u4), u = at3, have been used to evaluate the

limit. Therefore, if the limit exists, it must be equal to 0.
Step 4. It follows from the inequality | sinu| ≤ |u| that sin2 u ≤ u2 and,
hence,

1 − cos u = 2 sin2(u/2) ≤ 2(u/2)2 = u2/2 .

Put R2 = x2+y2. Then, by making use of the above inequality with u = x2y
together with |x| ≤ R and |y| ≤ R, the following chain of inequalities is
obtained:

|f(r)− 0| ≤ (x2y)2/2

x2 + 2y2
=

(x2y)2/2

R2 + y2
≤ (x2y)2/2

R2
≤ 1

2

R6

R2
=

R4

2
→ 0

as R → 0+. By the squeeze principle, the limit exists and equals 0. It follows
from |f(r)| ≤ R4/2 that |f(r)| < ε whenever R4/2 < ε or R = ‖r − r0‖ <

δ(ε) = (2ε)1/4 = 0.1. In the disk 0 < ‖r‖ < 0.1 the values of the function
deviate from 0 no more than 0.5 · 10−4. �

Problem 18.3. Find the limit limr→r0
f(r) or show that it does not exist,

where

f(r) = f(x, y) =
x2y

x2 − y2
, r0 = 0 .

Solution:

Step 1. The continuity argument does not apply because f is not defined at
r0.
Step 2. No substitution is possible to transform the limit to a one-variable
limit.
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Step 3. The domain D of the function is the whole plane with the lines
y = ±x excluded. So put r(t) = 〈t, at〉, where a 6= ±1. Then

f(r(t)) =
at3

t2(1− a2)
=

at

1 − a2
→ 0 as t → 0+ .

So, if the limit exists, then it must be equal to 0.
Step 4. In polar coordinates, x = R cos θ and y = R sin θ, where ‖r−r0‖ = R,

f(r) =
R3 cos2 θ sin θ

R2(cos2 θ − sin2 θ)
=

1

2

R cos θ sin(2θ)

cos(2θ)
=

R cos θ

2
tan(2θ).

Therefore, in any disk 0 < ‖r − r0‖ < δ, there is a sector corresponding to
the polar angle π/4 < θ < π/4 + ∆θ in which the deviation |f(r)− 0| can
be made larger that any positive number by taking ∆θ > 0 small enough
(no matter how small R is) because tan(2θ) is not bounded in this interval.
Hence, for any ε > 0, there is no δ > 0 such that |f(r)| < ε whenever
0 < ‖r − r0‖ < δ (naturally, r also lies in the domain D). Thus, the limit
does not exist.
Step 3 (Optional). The nonexistence of the limit established in Step 4 implies
that there should exist curves along which the limit differs from 0. It is
instructive to demonstrate this explicitly. Any such curve should lie within
one of the narrow sectors containing the lines y = ±x (where tan(2θ) takes
large values). So put, for example,

x = t , y = t − atn or r(t) = 〈t, t − atn〉 ,

where t ≥ 0, n > 1, and a 6= 0 is a number. Observe that the line (x, y) =
(t, t) (or y = x) is tangent to the curve r(t) at the origin because r′(0) = 〈1, 1〉
for n > 1. The term −atn in r(t) models a small deviation of the curve from
the line y = x in the vicinity of which the function f is expected to be
unbounded. Then

f(r(t)) =
t3 − atn+2

2atn+1 − a2t2n
.

This function tends to a number as t → 0+ if n is chosen to match the
leading (smallest) powers of the top and bottom of the ratio in this limit:
3 = n + 1 or n = 2. Thus, for n = 2,

f(r(t)) =
t3 − at4

2at3 − a2t4
=

1 − at

2a − a2t
→ 1

2a
as t → 0+ ,

and f(r(t)) diverges for n > 2 in this limit. �

Problem 18.4. Find

lim
r→∞

ln(x2 + y4)

x2 + 2y2

or show that the limit does not exist.

Solution: Step 1. Does not apply.
Step 2. No substitution exists to reduce the limit to a one-variable limit.
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Step 3. Put (x, y) = (t, at) and let t → ∞. Then ‖r‖ → ∞ as t → ∞. Recall
that

ln(1 + u) = u + O(u2)

for small u. Therefore for a 6= 0 and u = 1/(a4t2) the numerator in the
function for large t behaves as

ln(t2 + a4t4) = ln
[

a4t4
(

1 +
1

a4t2

)]

= ln(a4t4) + ln
(

1 +
1

a4t2

)

= ln(a4t4) +
1

a4t2
+ O(t−4) = ln(a4t4) + O(t−2)

= 4 ln t + ln(a4) + O(t−2) .

Then the function for large values of t and a 6= 0 behaves as

f(t, at) =
4

1 + 2a2

ln t

t2
+ O(t−2) → 0 as t → ∞

since ln t/t2 → 0 as t → ∞. Recall that ln t grows slower than any power
function tn, n > 0, so that ln t/tn → 0 as t → ∞. If a = 0, then f(t, 0) =
2 ln t/t2 → 0 as t → ∞. So the limit along all straight lines is 0.

Step 4. To prove that the limit is indeed 0, put R =
√

x2 + y2 so that
|x| ≤ R and |y| ≤ R. Since the limit R → ∞ is of interest, take R > 1 so
that R4 > R2. Then owing to the monotonicity of the logarithm function

ln(x2 + y4) ≤ ln(R2 + R4) ≤ ln(2R4)

Therefore

|f(x, y)− 0| ≤ ln(2R4)

x2 + 2y2
=

ln(2R4)

R2 + y2
≤ 4 lnR + ln2

R2
→ 0 as R → ∞

Thus, by the squeeze principle the limit is indeed 0. �

18.7. Exercises.
1–3. Prove the following statements:

1. Let f(x, y) = (x− y)/(x + y). Then

lim
x→0

(lim
y→0

f(x, y)) = 1 , lim
y→0

( lim
x→0

f(x, y)) = −1

but the limit of f(x, y) as (x, y) → (0, 0) does not exist.
2. Let f(x, y) = x2y2/(x2y2 + (x − y)2). Then

lim
x→0

(lim
y→0

f(x, y)) = lim
y→0

( lim
x→0

f(x, y)) = 0

but the limit of f(x, y) as (x, y) → (0, 0) does not exist.
3. Let f(x, y) = (x + y) sin(1/x) sin(1/y). Then the repeated limits

lim
x→0

(lim
y→0

f(x, y)) and lim
y→0

( lim
x→0

f(x, y))

do not exist, but the limit of f(x, y) exists and equals 0 as (x, y) →
(0, 0). Does the result contradict to Theorem 18.2? Explain.
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4–17. Find each of the following limits or show that it does not exist:

4. lim
r→0

cos(xy + z)

x4 + y2z2 + 4
;

5. lim
r→0

sin(xy)− xy

(xy)3
;

6. lim
r→0

√

xy2 + 1 − 1

xy2
;

7. lim
r→0

sin(xy3)

x2
;

8. lim
r→0

x3 + y5

x2 + 2y2
;

9. lim
r→0

e‖r‖ − 1 − ‖r‖
‖r‖2

;

10. lim
r→0

x2 + sin2 y

x2 + 2y2
;

11. lim
r→0

xy2 + x sin(xy)

x2 + 2y2
;

12. lim
(x,y)→(1,0)

ln(x + ey)
√

x2 + y2
;

13. lim
r→0

(x2 + y2)x2y2

;

14. lim
r→0

1

xy
tan

( xy

1 + xy

)

;

15. lim
r→0

ln
(sin(x2 − y2)

x2 − y2

)2
;

16. lim
r→0

√
xy + 1 − 1

y
√

x
;

17. lim
r→0

xbya

xa + yb
, 0 < b < a, x, y > 0 ;

18. Let

f(x, y) =
|x| + |y| − |x + y|

(x2 + y2)k
if x2 + y2 6= 0, and f(0, 0) = c .

Find all values of constants c and k > 0 at which the function is continuous
at the origin.
19. Let f(x, y) = x2y/(x4 + y2) if x2 + y2 6= 0 and f(0, 0) = 0. Show
that f is continuous along any straight line through the origin, i.e., F (t) =
f(x(t), y(t)) is continuous for all t where x(t) = t cos θ, y(t) = t sin θ for
any fixed θ, nevertheless f is not continuous at (0, 0). Hint: Investigate the
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limits of f along power curves through the origin.
20. Let f(x, y) be continuous in a rectangle a < x < b, c < y < d. Let g(x)
be continuous on the interval (a, b) and takes values in (c, d). Prove that
the function F (x) = f(x, g(x)) is continuous on (a, b).

21. Investigate the limits of the function f(x, y) = x2e−(x2−y) along the
rays x(t) = cos(θ)t, y(t) = sin(θ)t, as t → ∞ for all 0 ≤ θ ≤ 2π. Are the
values of the function arbitrary small for all ‖r‖ > δ if δ is large enough?
Does the limit limr→∞ f(x, y) exist?
22–31. Find the limit or show that it does not exist:

22. lim
r→0

sin(x2 + y2 + z2)

x4 + y4 + z4
;

23. lim
r→0

x2 + 2y2 + 3z2

x4 + y2z4
;

24. lim
r→∞

ln(x2y2z2)

x2 + y2 + z2
;

Hint : Consider the limits along the curves

x = y = z = t and x = e−t2, y = z = t

25. lim
r→∞

e3x2+2y2+z2

(x2 + 2y2 + 3z2)2012
;

26. lim
r→0

z

x2 + y2 + z2
;

27. lim
r→0

z

x2 + y2 + z2
if z < 0 ;

28. lim
r→∞

x2 + y2

x2 + y4
;

29. lim
r→∞

sin

(

πx

2x + y

)

;

30. lim
r→∞

(x2 + y2)e−|x+y| ;

31. lim
r→∞

( xy

x2 + y2

)x2

.

32. Find the repeated limits

lim
x→1

(

lim
y→0

logx(x + y)
)

and lim
y→0

(

lim
x→1

logx(x + y)
)

What can be said about the corresponding two-variable limit?
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19. Partial Derivatives

The derivative f ′(x0) of a function f(x) at x = x0 contains important
information about the local behavior of the function near x = x0. It defines
the slope of the tangent line y = L(x), L(x) = f(x0) + f ′(x0)(x − x0) to
the graph y = f(x) at x0. For x close enough to x0, values of f can be well
approximated by the linearization L(x), that is, f(x) ≈ L(x). In particular,
if f ′(x0) > 0, f increases near x0, and, if f ′(x0) < 0, f decreases near x0.
Furthermore, the second derivative f ′′(x0) supplies more information about
f near x0, namely, its concavity.

It is therefore important to develop a similar concept for functions of sev-
eral variables in order to study their local behavior. A significant difference
is that, given a point in the domain, the rate of change is going to depend on
the direction in which it is measured. For example, if f(r) is the height of
a hill as a function of position r in the base of the hill, then the slopes from
west to east and from south to north may be different. This observation
leads to the concept of partial derivatives. Let x and y be the coordinates
from west to east and from south to north, respectively. The graph of f is
the surface z = f(x, y). At a fixed point r0 = (x0, y0), the height changes
as h(x) = f(x, y0) along the west–east direction, and as g(y) = f(x0, y)
along the south–north direction. Their graphs are intersections of the sur-
face z = f(x, y) with the coordinate planes x = x0 and y = y0, that is,
z = f(x0, y) = g(y) and z = f(x, y0) = h(x). The slope along the west–
east direction is then h′(x0), and along the south–north direction, is g′(y0).
These slopes are called partial derivatives of f and denoted as

∂f

∂x
(x0, y0) =

d

dx
f(x, y0)

∣

∣

∣

x=x0

,

∂f

∂y
(x0, y0) =

d

dy
f(x0, y)

∣

∣

∣

y=y0

.

The partial derivatives are also denoted as

∂f

∂x
(x0, y0) = f ′

x(x0, y0) ,
∂f

∂y
(x0, y0) = f ′

y(x0, y0).

The subscript of f ′ indicates the variable with respect to which the derivative
is calculated. The above analysis of the geometrical significance of partial
derivatives is illustrated in Fig. 19.1 The concept of partial derivatives can
easily be extended to functions of more than two variables.

19.1. Partial Derivatives of a Function of Several Variables. Let D be a
subset of an n-dimensional Euclidean space.

Definition 19.1. (Interior Point of a Set).
A point r0 is said to be an interior point of D if there is a neighborhood
Nδ(r0) = {r | ‖r− r0‖ < δ} of radius δ > 0 that lies in D.
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P

Q

z = f(x0, y)
z = f(x, y0)

z = f(x, y)

y = y0

x = x0

z

x

P

x0

θx

z = f(x, y0)

tan θx = f ′
x(x0, y0)

z

yy0

P

tan θy = f ′
y(x0, y0)

θy

z = f(x0, y)

Figure 19.1. Geometrical significance of partial deriva-
tives. Left: The graph z = f(x, y) and its cross sections
by the coordinate planes planes x = x0 and y = y0. The
point Q = (x0, y0, 0) is in the domain of f and the point
P = (x0, y0, f(x0, y0)) lies on the graph. Middle: The cross
section z = f(x, y0) of the graph in the plane y = y0 and
the tangent line to it at the point P . The slope tan θx of the
tangent line is determined by the partial derivative f ′

x(x0, y0)
at the point Q. Right: The cross section z = f(x0, y) of the
graph in the plane x = x0 and the tangent line to it at the
point P . The slope tan θy of the tangent line is determined by
the partial derivative f ′

y(x0, y0) at the point Q. Here θy < 0
as it is counted clockwise.

In other words, r0 is an interior point of D if there is a positive number
δ > 0 such that all points whose distance from r0 is less than δ also lie in
D. For example, if D is a set of points in a plane whose coordinates are
integers, then D has no interior points at all because the points of a disk of
radius 0 < δ < 1 centered at any point r0 of D do not belong to D except
r0. If D = {(x, y) | x2 + y2 ≤ 1}, then any point of D that does not lie on
the circle x2 + y2 = 1 is an interior point.

Definition 19.2. (Open Sets).
A set D in a Euclidean space is said to be open if all points of D are interior
points of D.

An open set is an extension of the notion of an open interval (a, b) to
the multivariable case. In particular, the whole Euclidean space is open.

Recall that any vector in space may be written as a linear combination
of three unit vectors, r = 〈x, y, z〉 = xê1 + yê2 + zê3, where ê1 = 〈1, 0, 0〉,
ê2 = 〈0, 1, 0〉, and ê3 = 〈0, 0, 1〉. Similarly, using the rules for adding m-
tuples and multiplying them by real numbers, one can write

r = 〈x1, x2, ..., xm〉 = x1ê1 + x2ê2 + · · ·+ xmêm,

where êi is the m-tuple whose components are zeros except the ith one,
which is equal to 1. Obviously, ‖êi‖ = 1, i = 1, 2, ...,m.
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Definition 19.3. (Partial Derivatives at a Point).
Let f be a function of several variables (x1, x2, ..., xm). Let D be the domain
of f and let r0 be an interior point of D. If the limit

f ′
xi

(r0) = lim
h→0

f(r0 + hêi) − f(r0)

h

exists, then it is called the partial derivative of f with respect to xi at r0.

The reason the point r0 needs to be an interior point is simple. By
the definition of the one-variable limit, h can be negative or positive. So
the points r0 + hêi, i = 1, 2, ..., m, must be in the domain of the function
because otherwise f(r0 +hêi) is not even defined. This is guaranteed if r0 is
an interior point because all points r in a neighborhood Nδ(r0) of sufficiently
small radius δ are in D; the points r0 + hêi lie in D if |h| < δ.

Remark. It is also common to omit “prime” in the notations for partial
derivatives. For example, the partial derivatives of f(x, y) at a point (x0, y0)
are denoted as fx(x0, y0) and fy(x0, y0). In what follows, the notation in-
troduced in Definition 19.3 will be used.

Let r0 = 〈a1, a2, ..., am〉, where ai are fixed numbers. Consider the func-
tion F (xi) of one variable xi (i is fixed), which is obtained from f(r) by
setting all the variables to a number xj = aj except the ith one (i.e., xj = aj

for all j 6= i). By the definition of the ordinary derivative, the partial deriv-
ative f ′

xi
(r0) exists if and only if the derivative F ′(ai) exists because

(19.1) f ′
xi

(r0) = lim
h→0

F (ai + h)− F (ai)

h
=

dF (xi)

dxi

∣

∣

∣

xi=ai

just like in the case of two variables discussed at the beginning of this section.
This rule is practical for calculating partial derivatives as it reduces the
problem to computing ordinary derivatives.

Example 19.1. Find the partial derivatives of f(x, y, z) = x3 − y2z at
the point (1, 2, 3).

Solution: By the rule (19.1),

f ′
x(1, 2, 3) =

d

dx
f(x, 2, 3)

∣

∣

∣

x=1
=

d

dx
(x3 − 12)

∣

∣

∣

x=1
= 3,

f ′
y(1, 2, 3) =

d

dy
f(1, y, 3)

∣

∣

∣

y=2
=

d

dy
(1− 3y2)

∣

∣

∣

y=2
= −12,

f ′
z(1, 2, 3) =

d

dz
f(1, 2, z)

∣

∣

∣

z=3
=

d

dz
(1 − 4z)

∣

∣

∣

z=3
= −4.

�

Geometrical Significance of Partial Derivatives. From the rule (19.1), it
follows that the partial derivative f ′

xi
(r0) defines the rate of change of the

function f when only the variable xi changes while the other variables are



19. PARTIAL DERIVATIVES 285

kept fixed. If, for instance, the function f in Example 19.1 defines the
temperature in degrees Celsius as a function of position whose coordinates
are given in meters, then, at the point (1, 2, 3), the temperature increases
at the rate 3 degrees Celsius per meter in the direction of the x axis, and it
decreases at the rates −12 and −4 degrees Celsius per meter in the direction
of the y and z axes, respectively.

19.2. Partial Derivatives as Functions. Suppose that the partial derivatives
of f exist at all points of a set D. Then each partial derivative can be
viewed as a function of several variables on D. These functions are denoted
as f ′

xi
(r), where r ∈ D. They can be found by the same rule (19.1) if,

when differentiating with respect to xi, all other variables are not set to any
specific values but rather viewed as independent of xi (i.e., dxj/dxi = 0 for
all j 6= i). This agreement is reflected by the notation

f ′
xi

(x1, x2, ..., xm) =
∂

∂xi
f(x1, x2, ..., xm);

that is, the symbol ∂/∂xi means differentiation with respect to xi while
regarding all other variables as numerical parameters independent of xi.

Example 19.2. Find f ′
x(x, y) and f ′

y(x, y) if f(x, y) = x sin(xy).

Solution: Assuming first that y is a numerical parameter independent of
x, one obtains

f ′
x(x, y) =

∂

∂x
f(x, y) =

( ∂

∂x
x
)

sin(xy) + x
∂

∂x
sin(xy)

= sin(xy) + xy cos(xy)

by the product rule for the derivative. If now the variable x is viewed as a
numerical parameter independent of y, one obtains

f ′
y(x, y) =

∂

∂y
f(x, y) = x

∂

∂y
sin(xy) = x2 cos(xy).

�

19.3. Basic Rules of Differentiation. Since a partial derivative is just an
ordinary derivative with one additional agreement that all other variables
are viewed as numerical parameters, the basic rules of differentiation apply
to partial derivatives. Let f and g be functions of several variables and let
c be a number. Then

∂

∂xi
(cf) = c

∂f

∂xi
,

∂

∂xi
(f + g) =

∂f

∂xi
+

∂g

∂xi
,

∂

∂xi
(fg) =

∂f

∂xi
g + f

∂g

∂xi
,

∂

∂xi

(f

g

)

=

∂f
∂xi

g − f ∂g
∂xi

g2
.

Let h(u) be a differentiable function of one variable and let g(r) be a function
of several variables whose range lies in the domain of h. Then one can define
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the composition f(r) = h(g(r)). Assuming that the partial derivatives of g
exist, the chain rule holds

(19.2)
∂f

∂xi
= h′(g)

∂g

∂xi
.

Example 19.3. Find the partial derivatives of the function f(r) =
‖r‖−1, where r = 〈x1, x2, ..., xm〉.

Solution: Put h(g) = g−1/2 and g = g(r) = x2
1 + x2

2 + · · · + x2
m = ‖r‖2.

Then f(r) = h(g(r)). Since h′(g) = (−1/2)g−3/2 and ∂g/∂xi = 2xi, the
chain rule gives

∂

∂xi

1

‖r‖ =
(

− 1

2g3/2

)

(2xi) = − xi

‖r‖3
, i = 1, 2, ...,m .

�

19.4. Exercises.
1-7. Find the specified partial derivatives of each of the following functions:

1. f(x, y) = (x − y)/(x + y), f ′
x(1, 2), f ′

y(1, 2) ;

2. f(x, y, z) = (xy + z)/(z + y), f ′
x(1, 2, 3), f ′

y(1, 2, 3), f ′
z(1, 2, 3) ;

3. f(r) = (x1 + 2x2 + · · ·+ mxm)/(1 + ‖r‖2), f ′
xi

(0), i = 1, 2, ...,m ;
4. f(x, y, z) = x sin(yz), f ′

x(1, 2, π/2), f ′
y(1, 2, π/2), f ′

z(1, 2, π/2);

5. f(x, y) = x + (y − 1) sin−1(
√

x/y), f ′
x(1, 1), f ′

y(1, 1) ;

6. f(x, y) = (x3 + y3)1/3, f ′
x(0, 0), f ′

y(0, 0) ;

7. f(x, y) =
√

|xy|, f ′
x(0, 0), f ′

y(0, 0) .

8-23. Find the partial derivatives of each of the following functions:

8. f(x, y) = (x + y2)n ;
9. f(x, y) = xy ;

10. f(x, y) = xe(x+2y)2 ;
11. f(x, y) = sin(xy) cos(x2 + y2) ;
12. f(x, y, z) = ln(x + y2 + z3) ;
13. f(x, y, z) = xy2 cos(z2x) ;
14. f(r) = (a1x1 + a2x2 + · · ·+ amxm)n = (a · r)n ;
15. f(x, y) = tan−1(y/x) ;

16. f(x, y) = sin−1(x/
√

x2 + y2) ;
17. f(x, y, z) = xyz

;

18. f(x, y, z) = xy/z ;
19. f(x, y) = tan(x2/y) ;
20. f(x, y, z) = sin(x sin(y sin z)) ;
21. f(x, y) = (x + y2)/(x2 + y) ;
22. f(x, y, z) = a · (b× r), where a and b are constant vectors ;
23. f(x, y, z) = ‖a× r‖, where a is a constant vector .
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24-28. For each of the following functions, determine whether the function
f increases or decreases at a specified point P0 when one variable increases,
while the others are fixed:

24. f(x, y) = xy/(x + y), P0 = (1, 2) ;

25. f(x, y) = (x2 − 2y2)1/3, P0 = (1, 1) ;
26. f(x, y) = x2 sin(xy), P0 = (−1, π) ;
27. f(x, y, z) = zx/(x + y2), P0 = (1, 1, 1) ;

28. f(x, y, z) = (x + yz)/
√

x + 2y + z2, P0 = (1, 2, 2).



288 3. DIFFERENTIATION OF MULTIVARIABLE FUNCTIONS

20. Higher-Order Partial Derivatives

Since partial derivatives of a function are also functions of several vari-
ables, they can be differentiated with respect to any variable. For example,
for a function of two variables, all possible second partial derivatives are

∂f

∂x
7−→ ∂

∂x

∂f

∂x
=

∂2f

∂x2
,

∂

∂y

∂f

∂x
=

∂2f

∂y ∂x
,

∂f

∂y
7−→ ∂

∂x

∂f

∂y
=

∂2f

∂x ∂y
,

∂

∂y

∂f

∂y
=

∂2f

∂y2
.

Throughout the text, brief notations for higher-order partial derivatives will
also be used. For example,

∂2f

∂x2
= (f ′

x)′x = f ′′
xx ,

∂2f

∂x ∂y
= (f ′

y)
′
x = f ′′

yx

and similarly for f ′′
yy and f ′′

xy. Partial derivatives of the third order are
defined as partial derivatives of second partial derivatives, and so on.

Example 20.1. For the function f(x, y) = x4−x2y +y2, find all second
and third partial derivatives.

Solution: The first partial derivatives are

f ′
x = 4x3 − 2xy , f ′

y = −x2 + 2y .

Then the second partial derivatives are

f ′′
xx = (4x3 − 2xy)′x = 12x2 − 2y , f ′′

yy = (−x2 + 2y)′y = 2,

f ′′
xy = (4x3 − 2xy)′y = −2x , f ′′

yx = (−x2 + 2y)′x = −2x .

The third partial derivatives are found similarly:

f
′′′

xxx = (12x2 − 2y)′x = 24x , f
′′′

yyy = (2)′y = 0,

f
′′′

xxy = (12x2 − 2y)′y = −2 , f
′′′

xyx = f
′′′

yxx = (−2x)′x = −2,

f
′′′

yyx = (2)′x = 0 , f
′′′

yxy = f
′′′

xyy = (−2x)′y = 0.

�

In contrast to the one-variable case, there are higher-order partial deriva-
tives of a new type that are obtained by differentiating with respect to dif-
ferent variables in different orders, like f ′′

xy and f ′′
yx. In the above example,

it has been found that

f ′′
xy = f ′′

yx,

f
′′′

xxy = f
′′′

xyx = f
′′′

yxx,

f
′′′

xyy = f
′′′

yyx = f
′′′

yxy;

that is, the result is independent of the order in which the partial derivatives
have been taken. Is this a peculiarity of the function considered or a general
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property of higher-order partial derivatives? The following theorem answers
this question.

Theorem 20.1. (Clairaut’s Theorem).
Let f be a function of several variables (x1, x2, ..., xm) that is defined on an
open ball D in a Euclidean space. If the second partial derivatives f ′′

xixj
and

f ′′
xjxi

, where j 6= i, are continuous functions on D, then f ′′
xixj

= f ′′
xjxi

at any
point of D.

A consequence of Clairaut’s theorem can be proved. It asserts that:

The result of partial differentiation does not depend on the order in which
the partial derivatives have been taken if all higher-order partial derivatives
in question are continuous.

It is not always necessary to calculate higher-order partial derivatives in
all possible orders to verify the hypothesis of Clairaut’s theorem (i.e., the
continuity of the partial derivatives). Partial derivatives of polynomials are
polynomials and hence continuous. By the quotient rule for partial deriva-
tives, rational functions have continuous partial derivatives (where the de-
nominator does not vanish). Derivatives of basic elementary functions like
the sine and cosine and exponential functions are continuous. So composi-
tions of these functions with multivariable polynomials or rational functions
have continuous partial derivatives of any order. In other words, the conti-
nuity of higher-order partial derivatives can often be established by different,
simpler means.

Example 20.2. Find the third derivatives f
′′′

xyz, f
′′′

yzx, f
′′′

zxy, and so on,

for all permutations of x, y, and z, if f(x, y, z) = sin(x2 + yz).

Solution: The sine and cosine functions are continuously differentiable as
many times as desired. The argument of the sine function is a multivari-
able polynomial. By the chain rule, (sin g)′x = g′x cos g and similarly for the
other partial derivatives. Therefore partial derivatives of any order must
be products of polynomials and the sine and cosine functions whose argu-
ment is a polynomial. Therefore, they are continuous in the entire space.
The hypothesis of Clairaut’s theorem is satisfied, and hence all the partial
derivatives in question coincide and are equal to

f
′′′

xyz = (f ′
x)′′yz = (2x cos(x2 + yz))′′yz = (−2xz sin(x2 + yz))′z

= −2x sin(x2 + yz) − 2xyz cos(x2 + yz) .

�

20.1. Reconstruction of a Function from Its Partial Derivatives. One of
the standard problems in calculus is finding a function f(x) if its derivative
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f ′(x) = G(x) is known. A sufficient condition for the existence of a solution
is the continuity of G(x). In this case,

f ′(x) = G(x) =⇒ f(x) =

∫

G(x) dx .

A similar problem can be posed for a function of several variables. Given
the first partial derivatives

(20.1) f ′
xi

(r) = Gi(r) , i = 1, 2, ...,m,

find f(r) if it exists. The existence of such f is a more subtle question in
the case of several variables. Suppose that the partial derivatives ∂Gi/∂xj

exist and are continuous functions in an open ball. Then taking the partial
derivative ∂/∂xj of both sides of (20.1) and applying Clairaut’s theorem,
one infers that

(20.2) f ′′
xixj

= f ′′
xjxi

=⇒ ∂Gi

∂xj
=

∂Gj

∂xi
.

Thus, the conditions (20.2) on the functions Gi must be fulfilled; other-
wise, f satisfying (20.1) does not exist. The conditions (20.2) are called
integrability conditions for the system of equations (20.1).

Example 20.3. Suppose that f ′
x(x, y) = 2x + y and f ′

y(x, y) = 2y − x.
Does such a function f exist?

Solution: The first partial derivatives of f ,

f ′
x(x, y) = G1(x, y) = 2x + y , f ′

y(x, y) = G2(x, y) = 2y − x ,

are polynomials, and hence their partial derivatives are continuous in the
entire plane. In order for f to exist, the integrability condition

∂G1

∂y
=

∂G2

∂x

must hold in the entire plane. This is not so because

∂G1

∂y
=

∂

∂y
(2x + y) = 1 ,

∂G2

∂x
=

∂

∂x
(2y − x) = −1 ⇒ ∂G1

∂y
6= ∂G2

∂x
.

Thus, no such f exists. �

Suppose now that the integrability conditions (20.2) are satisfied. How
is a solution f to (20.1) to be found? Evidently, one has to calculate an
antiderivative of the partial derivative. In the one-variable case, an anti-
derivative on an interval is defined up to an additive constant. This is not
so in the multivariable case. For example, consider the equation

f ′
x(x, y) = 3x2y .

An antiderivative of f ′
x is a function whose partial derivative with respect

to x is 3x2y. It is easy to verify that x3y satisfy this requirement. It is
obtained by taking an antiderivative of 3x2y with respect to x while viewing
y as a numerical parameter independent of x. Since f ′

x as a function of x is
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defined for all x (that is, on a single interval) at each fixed y, one can always
add a constant to a particular antiderivative, x3y + c, and obtain another
solution. The key point to observe is that the constant may be a function
of y only. Indeed, if c = g(y), then c′x = (g(y))′x = 0. Thus,

f ′
x(x, y) = 3x2y ⇒ f(x, y) = x3y + g(y)

for some function g(y). If, in addition, the other partial derivative f ′
y is

given, then an explicit form of g(y) can be found. Put, for example,

f ′
x(x, y) = 3x2y

f ′
y(x, y) = x3 + 2y

The integrability conditions are fulfilled:

(f ′
x)′y = (3x2y)′y = 3x2

(f ′
y)

′
x = (x3 + 2y)′x = 3x2 ⇒ f ′′

xy(x, y) = f ′′
yx(x, y)

So a function with the said partial derivatives does exist. The obtained
general solution to the first equation is substituted into the second equation
to find an equation for the unknown function g(y):

f(x, y) = x3y + g(y)
f ′
y(x, y) = x3 + 2y

⇒ (x3y + g(y))′y = x3 + 2y ⇒ g′(y) = 2y

Therefore g(y) = y2 + c and f(x, y) = x3y + y2 + c.

Remark. In the above example, note the cancellation of the x3 term in the
equation for g(y). This is a direct consequence of the fulfilled integrability
condition. Had one tried to apply the same procedure to a similar problem
without checking the integrability conditions, one could have found that, in
general, no such g(y) exists. In Example 20.3, the equation f ′

x = 2x+ y has
a general solution f(x, y) = x2 + yx + g(y). Its substitution into the second
equation f ′

y = 2y − x yields

f(x, y) = x2 + yx + g(y)
f ′
y(x, y) = 2y − x

⇒ x + g′(y) = 2y − x ⇒ g′(y) = 2y − 2x .

The derivative of g(y) cannot depend on x and hence no such g(y) exists.

Example 20.4. Find f(x, y, z) if f ′
x = yz + 2x, f ′

y = xz + 3y2, and

f ′
z = xy + 4z3 or show that it does not exist.

Solution: The integrability conditions have to be verified first:

(G1)
′
y = (G2)

′
x ,

(G1)
′
z = (G3)

′
x ,

(G2)
′
z = (G3)

′
y ,

G1 = yz + 2x

G2 = xz + 3y2

G3 = xy + 4z3

⇒
(yz + 2x)′y = (xz + 3y2)′x
(yz + 2x)′z = (xy + 4z3)′x

(xz + 3y2)′z = (xy + 4z3)′y

The calculation of the partial derivatives in the last three equations yields,
respectively, z = z, y = y, and x = x so that the integrability conditions are
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satisfied. Therefore f exists. Taking the antiderivative with respect to x in
the first equation, one finds

f ′
x = yz + 2x ⇒ f(x, y, z) = xyz + x2 + g(y, z) ,

for some g(y, z). The substitution of f into the second equations yields

f ′
y = xz + 3y2 ⇒ xz + g′y(y, z) = xz + 3y2

⇒ g′y(y, z) = 3y2 ⇒ g(y, z) = y3 + h(z)

⇒ f(x, y, z) = xyz + x2 + y3 + h(z),

for some h(z). The substitution of f into the third equation yields

f ′
z = xy + 4z3 ⇒ xy + h′(z) = xy + 4z3

⇒ h′(z) = 4z3

⇒ h(z) = z4 + c

⇒ f(x, y, z) = xyz + x2 + y3 + z4 + c,

where c is a constant. �

The procedure of reconstructing f from its first partial derivatives as
well as the integrability conditions (20.2) will be important when discussing
conservative vector fields and the potential of a conservative vector field.

20.2. Partial Differential Equations. The relation between a function of
several variables and its partial derivatives (of any order) is called a partial
differential equation. Partial differential equations are a key tool to study
various phenomena in nature. Many fundamental laws of nature can be
stated in the form of partial differential equations.

Diffusion Equation. Let n(r, t), where r = 〈x, y, z〉 is the position vector in
space and t is time, be a concentration of a substance, say, in air or water or
even in a solid. Even if there is no macroscopic motion in the medium, the
concentration changes with time due to thermal motion of the molecules.
This process is known as diffusion. In some simple situations, the rate at
which the concentration changes with time at a point is

n′
t = k(n′′

xx + n′′
yy + n′′

zz),

where the parameter k is a diffusion constant. So the concentration as
a function of the spatial position and time must satisfy the above partial
differential equation.

Wave Equation. Sound in air is propagating disturbances of the air density.
If u(r, t) is the deviation of the air density from its constant (nondisturbed)
value u0 at the spatial point r = 〈x, y, z〉 and at time t, then it can be shown
that disturbances of the air density small compared to u0 satisfy the wave
equation:

u′′
tt = c2(u′′

xx + u′′
yy + u′′

zz),
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where c is the speed of sound in the air (its values depends on u0 and the
air pressure). Light is an electromagnetic wave. Its propagation is also
described by the wave equation, where c is the speed of light in vacuum (or
in a medium, if light goes through a medium) and u is the amplitude of
electric or magnetic fields.

Laplace and Poisson Equations. The equation

u′′
xx + u′′

yy + u′′
zz = f,

where f is a given non-zero function of position r = 〈x, y, z〉 in space, is
called the Poisson equation. In the special case when f = 0, this equation is
known as the Laplace equation. The Poisson and Laplace equations are used
to determine static electromagnetic fields created by static electric charges
and currents.

Example 20.5. Let h(q) be a twice-differentiable function of a variable
q. Show that u(r, t) = h(ct− n̂ · r) is a solution of the wave equation for any
fixed unit vector n̂.

Solution: Let n̂ = (n1, n2, n3), where n2
1 + n2

2 + n2
3 = 1 as n̂ is the unit

vector. Put
q = ct − n̂ · r = ct − n1x − n2y − n3z .

By the chain rule (19.2), u′
t = q′th

′(q) and similarly for the other partial
derivatives. Therefore

u′
t = ch′(q)

u′
x = −n1h

′(q)

u′
y = −n2h

′(q)

u′
z = −n3h

′(q)

⇒

u′′
tt = c2h′′(q)

u′′
xx = n2

1h
′′(q)

u′′
yy = n2

2h
′′(q)

u′′
zz = n2

3h
′′(q)

Then

c2(u′′
xx + u′′

yy + u′′
zz) = c2(n2

1 + n2
2 + n2

3)h
′′(q) = c2h′′(q) = u′′

tt

which means that the wave equation is satisfied for any h. �

Consider the level sets of the solution of the wave equation discussed
in this example. They correspond to a fixed value of q = q0. So, for each
moment of time t, the disturbance of the air density u(r, t) has a constant
value h(q0) in the plane

n̂ · r = ct − q0 = d(t) .

All planes with different values of the parameter d are parallel as they have
the same normal vector n̂. Since here d(t) is a function of time, the plane on
which the air density has a fixed value moves along the vector n̂ at the rate
d′(t) = c. Thus, a disturbance of the air density propagates with speed c.
This is the reason that the constant c in the wave equation is called the speed
of sound. Evidently, the same line of arguments applies to electromagnetic
waves; that is, they move through space at the speed of light. The speed of
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sound in the air is about 342 meters per second, or about 768 mph. The
speed of light is 3 · 108 meters per second, or 186 miles per second. If a
lightning strike occurs a mile away during a thunderstorm, it can be seen
almost instantaneously, while the thunder will be heard in about 5 seconds
later. Conversely, if one sees a lightning and starts counting seconds until
the thunder is heard, then one could determine the distance to the lightning.
The sound travels 1 mile in about 4.7 seconds.

20.3. Study Problems.

Problem 20.1. Consider the function

f(x, y) =
x3y − xy3

x2 + y2
if (x, y) 6= (0, 0) and f(0, 0) = 0.

Find f ′
x(x, y) and f ′

y(x, y) for (x, y) 6= (0, 0). Use the rule (19.1) to find

f ′
x(0, 0) and f ′

y(0, 0) and, thereby, to establish that f ′
x and f ′

y exist every-

where. Use the rule (19.1) again to show that f ′′
xy(0, 0) = −1 and f ′′

yx(0, 0) =

1, that is, f ′′
xy(0, 0) 6= f ′′

yx(0, 0). Does this result contradict Clairaut’s theo-
rem?

Solution: Using the quotient rule for differentiation, one finds

f ′
x(x, y) =

x4y + 4x2y3 − y5

(x2 + y2)2
, f ′

y(x, y) =
x5 − 4x3y2 − xy4

(x2 + y2)2

if (x, y) 6= (0, 0). Note that, owing to the symmetry f(x, y) = −f(y, x), the
partial derivative f ′

y is obtained from f ′
x by changing the sign of the latter

and swapping x and y. The partial derivatives at (0, 0) are found by the
rule (19.1):

f ′
x(0, 0) =

d

dx
f(x, 0)

∣

∣

∣

x=0
= 0 , f ′

y(0, 0) =
d

dy
f(0, y)

∣

∣

∣

y=0
= 0.

The first-order partial derivatives are continuous functions for all (x, y) 6=
(0, 0). Put

√

x2 + y2 = R. Then using |x| ≤ R and |y| ≤ R,

|f ′
x(x, y)| = |x4y + 4x2y3 − y5|

R4
≤ R5 + 4R5 + R5

R4
= 6R → 0

as R → 0+. Therefore by the squeeze principle, f ′
x(x, y) → 0 = f ′

x(0, 0)
as (x, y) → (0, 0). So, f ′

x(x, y) is continuous everywhere. The continuity of
f ′
y(x, y) at the origin is established similarly.
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Next, one has

f ′′
xy(0, 0) =

d

dy
f ′
x(0, y)

∣

∣

∣

y=0
= lim

h→0

f ′
x(0, h)− f ′

x(0, 0)

h

= lim
h→0

−h − 0

h
= −1,

f ′′
yx(0, 0) =

d

dx
f ′
y(x, 0)

∣

∣

∣

x=0
= lim

h→0

f ′
y(h, 0)− f ′

y(0, 0)

h

= lim
h→0

h − 0

h
= 1.

The result does not contradict Clairaut’s theorem because f ′′
xy(x, y) and

f ′′
yx(x, y) are not continuous at (0, 0). By using the quotient rule to differen-

tiate f ′
x(x, y) with respect to y, an explicit form of f ′′

xy(x, y) can be obtained

for (x, y) 6= (0, 0). By taking the limit of f ′′
xy(x, y) as (x, y) → (0, 0) along

the straight line (x, y) = (t, at), t → 0+, one infers that the limit depends
on the slope a and hence the two-dimensional limit does not exist, that is,
lim(x,y)→(0,0) f ′′

xy(x, y) 6= f ′′
xy(0, 0) = −1 and f ′′

xy is not continuous at (0, 0).
The technical details are left to the reader. �

Problem 20.2. Find the value of a constant a for which the function

u(r, t) = t−3/2e−ar2/t , r = ‖r‖,

satisfies the diffusion equation for all t > 0.

Solution: Note that u depends on the combination r2 = x2 + y2 + z2. To
find the partial derivatives of u, it is convenient to use the chain rule:

∂u

∂x
=

∂u

∂r2

∂r2

∂x
= 2x

∂u

∂r2
= −2ax

t
u,

u′′
xx =

∂

∂x

(∂u

∂x

)

= −2a

t
u − 2ax

t

∂u

∂x
=

(

−2k

t
+

4a2x2

t2

)

u.

To obtain u′′
yy and u′′

zz , note that r2 is symmetric with respect to permu-
tations of x, y, and z. Therefore, u′′

yy and u′′
zz are obtained from u′′

xx by
replacing, in the latter, x by y and x by z, respectively. Hence, the right
side of the diffusion equation reads

k(u′′
xx + u′′

yy + u′′
zz) =

(

− 6ka

t
+

4ka2r2

t2

)

u.

Using the product rule to calculate the partial derivative with respect to
time, one finds for the left side of the diffusion equation

u′
t = −3

2
t−5/2e−ar2/t + t−3/2e−ar2/tar2

t2
=

(

− 3

2t
+

ar2

t2

)

u.
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Since both sides must be equal for all values of t > 0 and r2, the comparison
of the last two expressions yields two conditions:

u′
t = k(u′′

xx + u′′
yy + u′′

zz) ⇒
{

6ka = 3
2

a = 4ka2 ⇒ a =
1

4k
,

where the equality means matching the coefficients at 1/t and the second
one is needed to match the coefficients at r2/t2. The only common solution
of these equations is a = 1/(4k). �

20.4. Exercises.
1–6. Find all second partial derivatives of each of the following functions
and verify Clairaut’s theorem:

1. f(x, y) = tan−1(xy) ;
2. f(x, y, z) = x sin(zy2) ;
3. f(x, y, z) = x3 + zy + z2 ;
4. f(x, y, z) = (x + y)/(x + 2z) ;

5. f(x, y) = cos−1(
√

x/y) ;
6. f(x, y) = xy ;
7. f(x1, x2, ..., xm) = (a · r)(b · r) ,where r = 〈x1, x2, ..., xm〉 and a

and b are constant vectors.

8–12. Show without explicit calculations of higher-order partial derivatives
why the hypotheses of Clairaut’s theorem are satisfied for the following
functions:

8. f(x, y, z) = sin(x2 + y − z) cos(xy) ;
9. f(x, y) = sin(x + y2)/(x2 + y2), x2 + y2 6= 0 ;

10. f(x, y, z) = ex2yz(y2 + zx4) ;
11. f(x, y) = ln(1 + x2 + y4)/(x2 − y2), x2 6= y2 ;
12. f(x, y, z) = (x + yz2 − xz5)/(1 + x2y2z4) .

13-20. Find the indicated partial derivatives of each of the following func-
tions:

13. f(x, y) = xn + xy + ym, f ′′′
xxy, f ′′′

xyx, f ′′′
yyx, f ′′′

xyy ; here n and m are
positive integers ;

14. f(x, y, z) = x cos(yx) + z3, f ′′′
xyz, f ′′′

xxz, f ′′′
yyz ;

15. f(x, y, z) = sin(xy)ez, ∂f5/∂z5, f
(4)
xyzz , f

(4)
zyxz , f

(4)
zxzy ;

16. f(x, y, z, t) = sin(x + 2y + 3z − 4t), f
(4)
abcd where abcd denotes all

permutations of xyzt ;

17. f(x, y) = exy(y2 +x), f
(4)
abcd where abcd denotes all permutations

of xxxy ;

18. f(x, y, z) = tan−1
(

x+y+z−xyz
1−xy−xz−yz

)

, f
(3)
abc where abc denotes all per-

mutations of xyz ;

19. f(x, y, z, t) = ln
(

(x− y)2 + (z − t)2
)−1/2

, f
(4)
abcd where abcd are

all permutations of xyzt ;
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20. f(x, y) = ex sin(y), ∂n+mf
∂nx∂my (0, 0), where n and m are positive

integers.

21-25. Given partial derivatives, find the function or show that it does not
exist:

21. f ′
x = 3x2y, f ′

y = x3 + 3y2 ;

22. f ′
x = yz + 3x2, f ′

y = xz + 4y, f ′
z = xy + 1 ;

23. f ′
xk

= kxk, k = 1, 2, ...,m ;

24. f ′
x = xy + z, f ′

y = x2/2, f ′
z = x + y ;

25. f ′
x = sin(xy) + xy cos(xy), f ′

y = x2 cos(xy) + 1 .

26-32. Verify that a given function is a solution of the indicated differential
equation:

26. f(t, x) = A sin(ct − x) + B cos(ct + x), c−2f ′′
tt − f ′′

xx = 0 if A, B,
and c are constants ;

27. f(x, y, t) = g(ct− ax− by)+ h(ct + ax + by), f ′′
tt = c2(f ′′

xx + f ′′
yy)

if a, b, and c are constants such that a2 + b2 = 1, and g and h are
twice differentiable functions ;

28. f(x, y) = ln(x2 + y2), f ′′
xx + f ′′

yy = 0 ;

29. f(x, y) = ln(ex + ey), f ′
x + f ′

y = 1 and f ′′
xxf ′′

yy − (f ′′
xy)

2 = 0 ;
30. f(r) = exp(a · r), where a · a = 1 and r ∈ R

m,
f ′′
x1x1

+ f ′′
x2x2

+ · · ·+ f ′′
xmxm

= f ;

31. f(r) = ‖r‖2−m, where r ∈ R
m , f ′′

x1x1
+ f ′′

x2x2
+ · · ·+ f ′′

xmxm
= 0

for ‖r‖ 6= 0 ;
32. f(x, y, z) = sin(k‖r‖)/‖r‖, f ′′

xx + f ′′
yy + f ′′

zz + k2f = 0 (Helmholtz
equation), where k is a constant .

33. Find a relation between constants a, b and c such that the function
u(x, y, t) = sin(ax + by + ct) satisfies the wave equation u′′

tt − u′′
xx − u′′

yy = 0.
Give a geometrical description of such a relation, e.g., by setting values of c
on a vertical axis, and the values of a and b on two horizontal axes.

34. Let f(x, y, z) = u(t) where t = xyz. Show that f
(3)
xyz = F (t) and find

F (t) in terms of u(t).
35-36. Find (f ′

x)
2+(f ′

y)2+(f ′
z)

2 and f ′′
xx+f ′′

yy +f ′′
zz for each of the following

functions:

35. f = x3 + y3 + z3 − 3xyz ;
36. f = (x2 + y2 + z2)−1/2 .

37-38. Let the action of K on a function f be defined by Kf = xf ′
x + yf ′

y.

Find Kf , K2f = K(Kf), and K3f = K(K2f) if

37. f = x/(x2 + y2) ;

38. f = ln
√

x2 + y2 .

39. Let f(x, y) = xy2/(x2 + y2) if (x, y) 6= (0, 0) and f(0, 0) = 0. Do
f ′′
xy(0, 0) and f ′′

yx(0, 0) exist?
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40–43. If f = f(x, y) and g = g(x, y, z), find the most general solution to
each of the following equations:

40. f ′′
xx = 0 ;

41. f ′′
xy = 0 ;

42. ∂nf/∂yn = 0 ;
43. g′′′xyz = 0 .

44–46. Find f(x, y) that satisfies the given conditions:

44. f ′
y = x2 + 2y, f(x, x2) = 1 ;

45. f ′′
yy = 4, f(x, 0) = 2, f ′

y(x, 0) = x ;

46. f ′′
xy = x + y, f(x, 0) = x, f(0, y) = y2 .
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21. Differentiability of Multivariable Functions

A differentiable one-variable function f(x) can be approximated near
x = x0 by its linearization

L(x) = f(x0) + f ′(x0)(x − x0)

or the tangent line. Put x = x0+∆x. Then by the definition of the derivative
f ′(x0),

lim
∆x→0

f(x) − L(x)

∆x
= lim

∆x→0

f(x0 + ∆x) − f(x0)

∆x
− f ′(x0)

= f ′(x0) − f ′(x0) = 0

This relation implies that the error of the linear approximation goes to 0
faster than the deviation ∆x = x − x0 of x from x0, that is,

(21.1) f(x) = L(x) + ε(∆x) ∆x, where ε(∆x) → 0 as ∆x → 0 .

For example, if f(x) = x2, then its linearization at x = 1 is

L(x) = 1 + 2(x − 1) ,

It follows that near x = 1

f(1 + ∆x)− L(1 + ∆x) = (∆x)2 ⇒ ε(∆x) = ∆x .

Conversely, consider a line through the point (x0, f(x0)) and demand
that the condition (21.1) holds. If n is the slope of the line, then

L(x) = f(x0) + n(x − x0) = f(x0) + n∆x

and (21.1) implies that

lim
∆x→0

f(x)− L(x)

∆x
= lim

∆x→0

f(x0 + ∆x) − f(x0)

∆x
− n = 0

By the definition of the derivative f ′(x0), the existence of this limit implies
the existence of f ′(x0) and the equality n = f ′(x0). Thus, among all linear
approximations of f near x0, only the line with the slope n = f ′(x0) is a
good approximation in the sense that the error of the approximation de-
creases faster than ∆x with decreasing ∆x. The above analysis shows that:

A function f(x) is differentiable at x = x0 if and only if it has a good
linear approximation at x = x0, that is, there is a linear function L(x) such
that

lim
x→x0

f(x) − L(x)

x − x0
= 0 .
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21.1. Tangent plane to a surface. Let us try to extend the concept of a
good linear approximation at a point to functions of two variables. Consider
the graph z = f(x, y) of a continuous two-variable function. Then the
graph is a surface. Let a point P0 = (x0, y0, z0) be on this surface, that is,
z0 = f(x0, y0). A linear approximation to f at (x0, y0), or the most general
linear function L(x, y) with the property L(x0, y0) = f(x0, y0) = z0, has the
form

L(x, y) = z0 + n1(x − x0) + n2(y − y0) .

The graph

z = L(x, y) ⇒ n1(x − x0) + n2(y − y0) − (z − z0) = 0

is a plane through the point P0 on the graph z = f(x, y) with a normal
vector n = 〈n1, n2,−1〉. How should the slopes in the x and y directions, n1

and n2, be chosen in order for L(x, y) to be a good linear approximation?
To answer this question, one might employ the following strategy. Con-

sider the curve of intersection of the graph with the coordinate plane x = x0.
Its equation is z = f(x0, y). Then the vector function

r1(t) = 〈x0 , t , f(x0, t)〉
traces out the curve of intersection. The curve goes through the point P0

and r1(y0) =
−−→
OP0. A tangent vector at the point P0 to this curve is

v1 = r′1(y0) = 〈0 , 1 , f ′
y(x0, y0)〉

(see Fig. 21.1). Similarly, the graph z = f(x, y) intersects the coordinate
plane y = y0 along the curve z = f(x, y0) whose parametric equations are

r2(t) = 〈t, y0, f(t, y0)〉 .

A tangent vector to this curve at the point P0 is

v2 = r′2(x0) = 〈1, 0, f ′
x(x0, y0)〉 .

In order for these tangent vectors to exist, it has to be assumed that the
function f has partial derivatives at (x0, y0). The lines through P0 and
parallel to the vectors v1 and v2 are not parallel because v1 and v2 are
not parallel. By construction, these lines are good linear approximations to
two graphs, z = f(x0, y) and z = f(x, y0), in the surface z = f(x, y). It is
therefore natural to assume the plane z = L(x, y) that provides a good linear
approximation to the surface z = f(x, y) at a point P0 must contain the lines
that provide good linear approximations to two particular curves through P0

in the surface. Since these lines are not parallel, they define a unique plane
that contains them.

Let us find this plane. A normal of this plane must be perpendicular
to both vectors v1 and v2 and, by the geometrical properties of the cross
product, may be taken as

n = v1 × v2 = 〈f ′
x(x0, y0) , f ′

y(x0, y0) , −1〉 .



21. DIFFERENTIABILITY OF MULTIVARIABLE FUNCTIONS 301

z = L(x, y)

z = f(x, y)

z = f(x0, y)

P0
v1

v2

z = f(x, y0)

Figure 21.1. The tangent plane to the graph z = f(x, y)
at the point P0 = (x0, y0, f(x0, y0)). The curves z = f(x0, y)
and z = f(x, y0) are the cross sections of the graph by the
coordinate planes x = x0 and y = y0, respectively. Vectors v1

and v2 are tangent to the curves of the cross sections at the
point P0. The plane through P0 and parallel to these vectors
is the tangent plane to the graph. Its normal is n = v1 ×v2.

The equation of the plane through P0 and perpendicular to a vector n has
the form

n · 〈x − x0, y − y0, z − z0〉 = 0 ,

z = z0 + f ′
x(x0, y0)(x− x0) + f ′

y(x0, y0)(y − y0) .(21.2)

The latter suggests that the linear approximation in which the coefficients
are equal to the corresponding partial derivatives

L(x, y) = f(x0, y0) + n1(x − x0) + n2(y − y0) ,

n1 = f ′
x(x0, y0) , n2 = f ′

y(x0, y0) ,

is the sough-after good linear approximation to the function f(x, y) near
the point (x0, y0). Since the graph of the linearization is a tangent plane
to the graph, a good linear approximation is also called a tangent plane
approximation in the case of functions of two variables.

Example 21.1. Find the tangent plane to the paraboloid z = 3−x2/4−y2

through the point P0 = (2, 1, 1).
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Solution: The paraboloid is the graph of the function

f(x, y) = 3 − x2

4
− y2 , f(2, 1) = 1

The normal of the tangent plane is determined by the partial derivatives

f ′
x(2, 1) =

d

dx
f(x, 1)

∣

∣

∣

x=2
=

(

2− x2

4

)′∣
∣

∣

x=2
= −x

2

∣

∣

∣

x=2
= −1 ,

f ′
y(2, 1) =

d

dy
f(2, y)

∣

∣

∣

y=1
= (2 − y2)′

∣

∣

∣

y=1
= −2y

∣

∣

∣

y=1
= −2 .

Therefore the equation for the tangent plane (21.2) reads

z = 1 − (x − 2)− 2(y − 1) or z = 5 − x − 2y .

�

21.2. Continuity and the Existence of Partial Derivatives. Let us examine
how good is the tangent plane approximation in Example 21.1. Following
the analogy with the case of functions of one variable, one has to find how
fast the error of the approximation decreases with decreasing the distance
between (x, y) and (x0, y0) = (2, 1). Put x = 2 + ∆x and y = 1 + ∆y. A
linear approximation is given by the linear function L(x, y) = 5 − x − 2y =
1 − ∆x − 2∆y (the graph z = L(x, y) is the tangent plane to the surface
z = f(x, y) at the point (2, 1)). Then

f(x, y)− L(x, y) = f(2 + ∆x, 1 + ∆y)− 1 + ∆x + 2∆y

= 3 − 1

4
(2 + ∆x)2 − (1 + ∆y)2 − 1 + ∆x + 2∆y

= −1

4
(∆x)2 − (∆y)2 .

The distance between (x, y) and (x0, y0) is R =
√

(∆x)2 + (∆y)2. Therefore

|f(x, y)− L(x, y)|
R

=
(∆x)2/4 + (∆y)2

R
≤ R2/4 + R2

R
=

5

4
R → 0

as R → 0. Thus, by the squeeze principle, the error of the approximation
decreases faster than R with decreasing R (it decreases as R2), and the
constructed linear approximation is a good one just like in the one-variable
case.

It seems that the mere existence of partial derivatives at a point is suffi-
cient for the existence of a good linear approximation at that point. Unfor-
tunately, this conclusion is wrong for functions of more than one variable!

Here is a simple counterexample. It is not difficult to see that the graph
of the function in Example 21.1 is the paraboloid concave downward with
vertex at (0, 0, 3). So the function attains its maximal value at (0, 0). The
partial derivatives vanish at this point f ′

x(0, 0) = f ′
y(0, 0) = 0. Hence, the
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tangent plane through the vertex of the paraboloid is the horizontal plane
z = 3. Let us change the function in the following way:

f(x, y) → g(x, y) =

{

0 , x > 0 , y > 0
3 − x2/4− y2 , otherwise

In other words, the function f has been changed by setting its values to zero
in the first quadrant, excluding the coordinate axes on which it retains its
old values

g(0, y) = f(0, y) = 3− y2 , g(x, 0) = f(x, 0) = 3 − x2/4

Therefore

g′y(0, 0) = f ′
y(0, 0) = 0 , g′x(0, 0) = f ′

x(0, 0) = 0 .

It follows that the tangent plane to the graph z = g(x, y) at (0, 0) is also the
horizontal plane z = 3. But this horizontal plane is no good approximation
at all! The difference g(x, y)− 3 remains equal to −3 for all x > 0, y > 0,
no matter how close the point (x, y) to the origin (0, 0). It appears that
the function g(x, y) is not even continuous at (0, 0), despite the existence
of its partial derivatives at (0, 0). The graph of f looks like a hill of the
shape of a paraboloid, while the graph of g looks like the same hill with
its south-east part (corresponding to the first quadrant) flatten, creating a
cliff, so that one can still walk on the edge of the cliff (corresponding to the
positive coordinate axes). At the top of the hill with such a cliff the slopes
are still determined by (zero) slopes along the edges of the cliff, while the
height drops abruptly in the south-east direction. It is also interesting to
point out if the coordinate system relative to which the height of the hill is
determined was rotated, say, by 45◦, one of the partial derivatives relative
to the new variables would not exist at the origin.

Example 21.2. Consider the function

f(x, y) =

{ xy
x2+y2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
.

Show that this function is not continuous at (0, 0), but that the partial deriva-
tives f ′

x(0, 0) and f ′
y(0, 0) exist.

Solution: In order to check the continuity, one has to calculate the limit
lim(x,y)→(0,0) f(x, y). If it exists and equals f(0, 0) = 0, then the function is
continuous at (0, 0). This limit does not exist. Along lines (x, y) = (t, at),
the function has constant value

f(t, at) =
at2

t2 + a2t2
=

a

1 + a2
, t 6= 0 .

Therefore the limit of f(x, y) as (x, y) → (0, 0) does not exist and the func-
tion is not continuous at (0, 0). Note also that the non-existence of the limit
means that the function is not even continuously extendable at (0, 0). In
other words, there is no value of f(0, 0) at which f would become continuous.
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The partial derivatives in question can be found by the rule 19.1:

f(x, 0) = 0 ⇒ f ′
x(0, 0) =

d

dx
f(x, 0)

∣

∣

∣

x=0
= 0 ,

f(0, y) = 0 ⇒ f ′
y(0, 0) =

d

dy
f(0, y)

∣

∣

∣

y=0
= 0 .

Thus, the partial derivatives exist at the origin, f ′
x(0, 0) = fy(0, 0) = 0 but

f is not continuous at the origin. �

In the example considered, the plane defined by Eq. 21.2 at (x0, y0) =
(0, 0) is z = 0. The deviation of the graph z = f(x, y) from the xy plane
is finite along the lines (x, y) = (t, at), a 6= 0 no matter how close is t to 0.
So, it does not even decrease with decreasing the distance from the origin!
Thus, the tangent plane z = 0 defined by Eq. (21.2) no approximation at
all to the graph of the function near the origin.

The above examples illustrate the following important relation between
the continuity and the existence of partial derivatives:

• The existence of partial derivatives at a point does not imply that
the function is continuous at that point;

In full contrast to the one-variable case, this implies that the deviation of
the plane defined by Eq. (21.2) from the graph z = f(x, y) may not be small
no matter how close is the point (x, y) to (x0, y0) even though f has partial
derivatives at (x0, y0).

This is quite a departure from the one-variable case, where the existence
of the derivative at a point implied continuity at that point and was neces-
sary and sufficient for the existence of a good linear approximation. This is
the reason that functions of several variables require a generalization of the
concept of differentiability. Differentiability of a function of several variables
at a point will be understood in the sense that the function has a good linear
approximation at that point.

21.3. Differentiability of multivariable functions. Consider a function of
two variables f(x, y) and a point (x0, y0) in its domain. As already noted, the
most general linear function L(x, y) with the property L(x0, y0) = f(x0, y0)
has the form

L(x, y) = f(x0, y0) + n1(x − x0) + n2(y − y0)

where n1 and n2 are arbitrary numbers. It defines a linear approximation
to f(x, y) near (x0, y0) in the sense that L(x0, y0) = f(x0, y0). This notion
is extended to functions of any number of variables. Given a multivariable
function f(r), a linear function

L(r) = f(r0) + n · (r− r0)

is said to be a linear approximation to f near r0 in the sense that L(r0) =
f(r0). The dot product is defined in an m−dimensional Euclidean space if f
is a function of m variables. The vector n is an arbitrary vector so that L(r)
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is the most general linear function satisfying the condition L(r0) = f(r0).
Note that in the case of two variables x1 = x and x2 = y, n = 〈n1, n2〉 and
r− r0 = 〈x− x0, y − y0〉 so that n · (r − r0) = n1(x− x0) + n2(y − y0).

Definition 21.1. (Differentiable Functions).
The function f of several variables r = 〈x1, x2, ..., xm〉 on an open set D is
said to be differentiable at a point r0 of D if there exists a linear approxi-
mation L(r) such that

(21.3) lim
r→r0

f(r)− L(r)

‖r− r0‖
= 0.

If f is differentiable at all points of D, then f is said to be differentiable on
D.

In what follows, functions differentiable on an open set will be called
differentiable. By this definition, the differentiability of a function is inde-
pendent of a coordinate system chosen to label points of D (a linear function
remains linear under general rotations and translations of the coordinate sys-
tem and the distance ‖r−r0‖ is also invariant under these transformations).
For functions of single variable f(x) the existence of a linear approximation
at x0 with the property (21.3) is equivalent to the existence of the derivative
f ′(x0). Indeed, put x − x0 = ∆x. Then the condition (21.3) is equivalent
to (21.1):

(21.4) lim
∆x→0

f(x) − L(x)

|∆x| = 0 ⇔ lim
∆x→0

f(x) − L(x)

∆x
= 0

and, hence, to the existence of f ′(x0) as shown above. Note that the exis-
tence of the first limit implies that the corresponding left (∆x → 0−) and
right (∆x → 0+) limits are equal to 0. Since |∆x| and ∆x differ only by
sign, the right and left limits corresponding to the second limit also vanish
and, hence, so does the second limit. The converse is established similarly.

By Definition 21.1, a function f is differentiable at a point r0 if it has a
good linear approximation in the sense that the error of the approximation
decreases faster than the distance ‖r − r0‖ as r → r0:

(21.5) f(r) = L(r) + ε(r)‖r− r0‖, where ε(r) → 0 as r → r0 .

To make Definition 21.1 of differentiability consistent, one has to show that
a good linear approximation is unique if it exists. This is true for functions
of one variable as has been already shown.

Theorem 21.1. (Uniqueness of a good linear approximation)
A linear approximation L to a multivariable function f near a point r0 that
satisfies the property (21.3) is unique if it exists.

Proof. Suppose that, contrary to the conclusion of the theorem, there
are two linear approximations L1(r) = f(r0) + n1 · (r − r0) and L2(r) =
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f(r0) + n2 · (r − r0) that satisfy the condition (21.3) for which n1 6= n2.
Making use of the identity

L2(r)− L1(r) = [f(r)− L1(r)]− [f(r)− L2(r)] ,

it is concluded that

lim
r→r0

L2(r)− L1(r)

‖r − r0‖
= lim

r→r0

f(r)− L1(r)

‖r− r0‖
− lim

r→r0

f(r)− L2(r)

‖r− r0‖
= 0

Note that owing to the existence of the limit (21.3) for both linear functions
L1 and L2, the limit of the difference equals the difference of the limits (the
basic law of limits). On the other hand,

L2(r)− L1(r) = (n2 − n1) · (r − r0) .

Put n = n2 − n1; note that n 6= 0 since n1 6= n2 by the assumption. Then

0 = lim
r→r0

L2(r)− L1(r)

‖r− r0‖
= lim

r→r0

n · (r− r0)

‖r− r0‖
.

If a multivariable limit exists, then its value does not depend on a curve
along which the limit point is approached. In particular, take the straight
line parallel to n, r = r0 + nt, t → 0+, in the above relation. Then along
this line,

n · (r− r0)

‖r− r0‖
=

tn · n
|t|‖n‖ =

n · n
‖n‖

because t > 0, and, hence,

0 = lim
t→0+

n · n
‖n‖ =

n · n
‖n‖ = ‖n‖ ⇒ n = 0 ⇔ n1 = n2

which is a contradiction. Thus, a good linear approximation in the sense
(21.3) is unique if it exists, L1(r) = L2(r). �

21.4. Properties of Differentiable Functions. In the one-variable case, a
function f(x) is differentiable at x0 if and only if it has the derivative f ′(x0).
Also, the existence of the derivative at x0 implies continuity at x0 (recall
Calculus I). In the multivariable case the relations between differentiability,
continuity, and the existence of partial derivatives are more subtle.

Theorem 21.2. (Properties of Differentiable Functions).
If f is differentiable at a point r0, then it is continuous at r0 and its partial
derivatives exist at r0.

Proof. A linear function is continuous (it is a polynomial of degree one).
Therefore L(r) → L(r0) = f(r0) as r → r0. By taking the limit r → r0 in
(21.5), it is concluded that f(r) → f(r0). Hence, f is continuous at r0. If
the multivariable limit (21.3) exists, then the limit along any curve through
the limit point has the same value. In particular, take a straight line parallel
to the jth coordinate axis. If êj is the unit vector parallel to this axis, then
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the vector equation of the line is r = r(t) = r0+têj . Then ‖r−r0‖ = |t| → 0
as t → 0 along the line, and

f(r(t))− L(r(t)) = f(r0 + têj) − f(r0)− n · êjt

= f(r0 + têj) − f(r0)− njt

where nj is the jth component of the vector n parallel to the line. Making
use of Eq. 21.4 with ∆x = t, it is concluded that the condition (21.3) implies

lim
t→0

f(r0 + têj)− f(r0)

t
− nj = 0 ⇒ nj = f ′

xj
(r0)

according to Definition 19.3 of partial derivatives at a point. The existence
of partial derivatives is guaranteed by the existence of the limit (21.3). �

The proof also shows that the components of the vector n that defines
a good linear approximation at a point are partial derivatives at that point:

f is differentiable at r0 ⇒ L(r) = f(r0) + n · (r− r0), nj = f ′
xj

(r0)

In particular, if f(x, y) is differentiable at (x0, y0), then there is a unique
good linear approximation defined by the tangent plane (21.2).

How to verify differentiability. It follows from Theorem 21.2 that a func-
tion is not differentiable at a point if its partial derivatives do not exist at
the point. Therefore the existence of partial derivatives is a necessary (but
not sufficient) condition for differentiability. This observation allows us to
formulate a practical procedure to verify differentiability of a given function
f(r) at a point r0:

• Find partial derivatives of f at r0. If at least one of them does not
exist, f is not differentiable at r0.

• Construct the linear function L(r) = n · (r− r0) where the compo-
nents of the vector n are the corresponding partial derivatives of f
at r0.

• Investigate the limit (21.3). If it exists and is equal to 0, then f is
differentiable at r0. Otherwise, f is not differentiable at r0.

Continuity and the Existence of Partial Derivatives vs Differentiability.
Theorem 21.2 states that both the continuity and the existence of partial
derivatives are necessary for differentiability. Is the converse of Theorem
21.2 true? in other words, are the continuity and the existence of partial
derivatives sufficient for differentiability? Unfortunately, this in not so:

• The existence of partial derivatives of a continuous function at a
point does not imply differentiability at that point.

• A good linear approximation in the sense (21.3) (or (21.5)) may
not exist even if a function is continuous and has partial derivatives
at a point.

The following example proves this assertion.
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Example 21.3. Let

f(x, y) =

{

xy√
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
.

Show that f is continuous at (0, 0) and has the partial derivatives f ′
x(0, 0)

and f ′
y(0, 0), but that it is not differentiable at (0, 0).

Solution: The continuity is verified by the squeeze principle. Put R =
√

x2 + y2. Then |xy| = |x||y| ≤ R2. Therefore

|f(x, y)| ≤ R2

R
= R → 0 as R → 0+ ,

By the squeeze principle,

lim
(x,y)→(0,0)

f(x, y) = 0 = f(0, 0)

and, hence, f is continuous at (0, 0). The partial derivatives are found in
the same fashion as in Example 21.2:

f(x, 0) = 0 ⇒ f ′
x(x, 0) = 0 ⇒ f ′

x(0, 0) = 0

f(0, y) = 0 ⇒ f ′
y(0, y) = 0 ⇒ f ′

y(0, 0) = 0

The continuity of f and the existence of its partial derivatives at (0, 0)
suggest that if a linear approximation with the property (21.3) exists, then
L(x, y) = 0 by Theorem 21.2. However, L(x, y) = 0 does not satisfy (21.3).
Indeed, in this case

f(x, y)− L(x, y)

‖r‖ =
f(x, y)

√

x2 + y2
=

xy

x2 + y2
, (x, y) 6= (0, 0)

which coincides with the function from Example 21.2 for (x, y) 6= (0, 0). In
Example 21.2 it has been shown that this function takes constant nonzero
values along straight lines through the origin (that do not coincide with
the coordinate axes). It does not approach 0 as (x, y) → (0, 0). Therefore
the characteristic property (21.3) cannot be fulfilled and the function in
question is not differentiable at (0, 0). The plane z = 0 is not a good linear
approximation to f at (0, 0). �

The following theorem establishes a sufficient condition for differentia-
bility (its proof is omitted).

Theorem 21.3. (Differentiability and Partial Derivatives).
Let f be a function on an open set D of a Euclidean space. Then f is dif-
ferentiable on D if its partial derivatives exist and are continuous functions
on D.

Thus, in order for a function to be differentiable at a point, its partial
derivatives should exist in a neighborhood of the point and be continuous
at that point. The continuity of partial derivatives ensures the existence a
good linear approximation 21.5. This is a useful criterion for differentiability
which is easy to verify in most cases.
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Example 21.4. Find the region in which the function exz cos(yz) is
differentiable.

Solution: The function exz is the composition of the exponential eu and
the polynomial u = xz. By the chain rule 19.2, its partial derivatives are
continuous everywhere (e.g., (exz)′x = zexz). Similarly, the partial deriva-
tives of cos(yz) are also continuous everywhere. By the product rule for
partial derivatives, the partial derivatives of exz cos(yz) are continuous ev-
erywhere. By Theorem 21.3, the function is differentiable everywhere and
a good linear approximation exists everywhere. �

Remark. Theorem 21.3 provides only a sufficient condition for differ-
entiability. It is important to emphasize that:

There are functions differentiable at a point whose partial derivatives ex-
ist in a neighborhood of the point but are not continuous at that point.

An example is discussed in Study Problem 21.1.

21.5. Linearization of a function. The concept of differentiability is impor-
tant for approximations. Only differentiable functions have a good linear
approximation. Owing to the uniqueness of the good linear approximation,
it is convenient to give it a name.

Definition 21.2. (Linearization of a Multivariable Function).
Let f be a function of m variables r = 〈x1, x2, ..., xm〉 on D that is differ-
entiable at an interior point r0 = 〈a1, a2, ..., am〉 of D. Put ni = f ′

xi
(r0),

i = 1, 2, ...,m. The linear function

L(r) = f(r0) + n1(x1 − a1) + n2(x2 − a2) + · · ·+ nm(xm − am)

is called the linearization of f at r0.

If ∆xi denotes the deviation of xi from ai, then

(21.6) L(r) = f(r0) + n1∆x1 + n2∆x2 + · · ·+ nm∆xm , ni = f ′
xi

(r0) .

Example 21.5. Find all points at which the function f(x, y) = x2 +3y2

has a good linear approximation. Find the tangent plane to the graph z =
f(x, y) at the point (2, 1, 7) or show that no such plane exists.

Solution: The tangent plane at a point (x0, y0, z0) of the graph z = f(x, y)
exits if and only if f(x, y) is differentiable at (x0, y0). The polynomial func-
tion f(x, y) = x2 + 3y2 has continuous partial derivatives at any point and,
by Theorem 21.3, f is differentiable everywhere. The components of a nor-
mal of the tangent plane are

n1 = f ′
x(2, 1) = 2x

∣

∣

∣

(2,1)
= 4 , n2 = f ′

y(2, 1) = 6y
∣

∣

∣

(2,1)
= 6 , n3 = −1 .

An equation of the tangent plane is 4(x − 2) + 6(y − 1) − (z − 7) = 0 or
4x + 6y − z = 7. �
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Example 21.6. Use the linearization to estimate the number
[(2.03)2 + (1.97)2 + (0.94)2]1/2.

Solution: Let f(x, y, z) = [x2 + y2 + z2]1/2. This function has continuous
partial derivatives everywhere except the origin because it is a composition
of the polynomial g = x2 + y2 + z2 and the power function: f = (g)1/2. By
Theorem 21.3, f is differentiable everywhere except the origin. The number
in question is the value of this function at (x, y, z) = (2.03, 1.97, 0.94). This
point is close to (x0, y0, z0) = (2, 2, 1) at which f(2, 2, 1) = 3. Since f is
differentiable at (x0, y0, z0), its linearization can be used to approximate
values of f in a neighborhood of (x0, y0, z0) The deviations are

∆x = x − x0 = 2.03− 2 = 0.03 ,

∆y = y − y0 = 1.97− 2 = −0.03 ,

∆z = z − z0 = 0.94− 1 = −0.06 .

The partial derivatives are

f ′
x(x0, y0, x0) =

x

(x2 + y2 + z2)1/2

∣

∣

∣

(2,2,1)
=

2

3
,

f ′
x(x0, y0, x0) =

y

(x2 + y2 + z2)1/2

∣

∣

∣

(2,2,1)
=

2

3
,

f ′
x(x0, y0, x0) =

z

(x2 + y2 + z2)1/2

∣

∣

∣

(2,2,1)
=

1

3
.

The linear approximation (21.6) gives

f(x, y, z) ≈ L(x, y, z) = 3 + (2/3) ∆x + (2/3) ∆y + (1/3) ∆z = 2.98.

The calculator value is 2.98084 (rounded to 5 decimal places). �

Example 21.7. Is there a point on the saddle surface z = xy at which
the tangent plane is parallel to the plane 3x+ 2y + z = 4? Find this tangent
plane if it exists.

Solution: The saddle surface is the graph of the function f(x, y) = xy
which is differentiable everywhere in the xy plane because it is a polynomial.
So, the surface has a tangent plane at each point. Let a point (x0, y0, z0) be
on the surface, that is, z0 = x0y0. Then a normal of the tangent plane at
this point is

〈f ′
x(x0, y0) , f ′

y(x0, y0) , −1〉 = 〈y0 , x0 , −1〉 .

Two plane are parallel if their normals are parallel. Therefore x0 and y0 must
such that the above vector is parallel t the vector 〈3, 2, 1〉 (the normal of the
given plane). Two vectors are parallel if and only if they are proportional.
So there should exists a number s such that

〈y0 , x0 , −1〉 = s〈3 , 2 , 1〉 ⇒







y0 = 3s
x0 = 2s
−1 = s

⇒ x0 = −2
y0 = −3
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The equation of the tangent plane through the point (−2,−3, 6) is

z = 6 − 3(x + 2)− 2(y + 3) or 3x + 2y + z = 6 .

�

21.6. Applications to a system of nonlinear equations. Consider two dif-
ferentiable functions f(x, y) and g(x, y). Suppose that level sets f(x, y) = a
and g(x, y) = b of these functions have a common point (x0, y0), that is, the
system of equations has a solution:

(21.7)

{

f(x, y) = a
g(x, y) = b

⇒ (x, y) = (x0, y0) .

One might think of levels sets as curves so that a solution is a point of
intersection of the curves. Clearly the values of x0 and y0 depend on a and
b. Suppose the value of a is changed by adding a small number ∆a and b
is changed by adding a small number ∆b. What are the new values of x0

and y0? In other words, what is a point of intersection of two level curves
that are “close” to the given level curves if the point of intersection of the
latter is known? It is generally a difficult task to find an exact solution of a
system of nonlinear equations. So an approximation should be used. Since
the functions are differentiable, their values in a neighborhood of (x0, y0)
are well approximated by their linearization. So the system of nonlinear
equation may be linearized to obtain an approximate solution. Let the new
solution be x = x0 + ∆x and y = y0 + ∆y where ∆x and ∆y are to be
determined. Then by linearizing the function f and g at (x0, y0),

{

f(x0, y0) + f ′
x(x0, y0)∆x + f ′

y(x0, y0)∆y = a + ∆a
g(x0, y0) + g′x(x0, y0)∆x + g′y(x0, y0)∆y = b + ∆b

Since f(x0, y0) = a and g(x0, y0) = b, the deviations ∆x and ∆y satisfies
the system of linear equations:

{

f ′
x(x0, y0)∆x + f ′

y(x0, y0)∆y = ∆a
g′x(x0, y0)∆x + g′y(x0, y0)∆y = ∆b

which is easy to solve. Recall that such system of linear equations has a
unique solution if

det

(

f ′
x(x0, y0) f ′

y(x0, y0)
g′x(x0, y0) g′y(x0, y0)

)

6= 0

The concept of using linearization to approximate a solution of a system
of nonlinear equations is readily extended to the case of more than two
variables.
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Multivariable Newton’s method. In Calculus I, Newton’s method was in-
troduced to find an approximate solution to a nonlinear equation. There is
its multi-variable generalization. It employs the same logic as in the prob-
lem just discussed. Suppose that the system (21.7) with a = b = 0 has a
solution (x0, y0) (there is no loss of generality here because the constants a
and b may always be included into the definitions of f and g). Let a point
(x1, y1) be such that the values f(x1, y1) and g(x1, y1) are small ((x1, y1) is
an initial guess for the solution). Put x2 = x1 + ∆x1 and y2 = y1 + ∆y1,
linearize the functions f and g at (x1, y1), and demand that ∆x1 and ∆y1

satisfy the linearized system (21.7):
{

f ′
x(x1, y1)∆x1 + f ′

y(x1, y1)∆y1 = −f(x1, y1)
g′x(x1, y1)∆x1 + g′y(x1, y1)∆y1 = −g(x1, y1)

.

The point (x2, y2) is expected to be closer to the true solution (x0, y0). To
obtain an even better approximation, the procedure may be repeated for
a point (x2, y2) (the system is linearized at (x2, y2) and solved to obtained
a better approximation (x3, y3)). This recursive procedure can be used to
construct a sequence of points (xn, yn), n = 1, 2, ..., where xn+1 = xn + ∆xn

and yn+1 = yn +∆yn with ∆xn and ∆yn being the solution of the linearized
system

{

f ′
x(xn, yn)∆xn + f ′

y(xn, yn)∆yn = −f(xn, yn)
g′x(xn, yn)∆xn + g′y(xn, yn)∆yn = −g(xn, yn)

, n = 1, 2, ...

Just like in the case of one-variable Newton’s method, it can be proved that
if (x1, y1) is sufficiently close to the true solution (x0, y0), the sequence of
points rn = 〈xn, yn〉 converges to r0 = 〈x0, y0〉, that is, ‖rn − r0‖ → 0 as
n → ∞, and, hence, f(xn, yn) → 0 and g(xn, yn) → 0 as n → ∞. The
exact sufficient conditions under which this sequence converges to the true
solution are studied in more advanced calculus courses. In practice, it is
often sufficient to verify that the absolute values |f(xn, yn)| and |g(xn, yn)|
become smaller than a preassigned small positive number (say, 10−6) and use
the point at which this occurs as an approximate solution. A generalization
to the case of more than two variables follows the same line of reasoning.

Remark. Note that Newton’s method is based on the assumption that the
system has a solution near the initial point. So before initiating Newton’s
algorithm, the existence of a solution must be established by some means
(e.g., by analyzing level curves of the functions f and g and showing that
they intersect).

Example 21.8. Use one iteration of Newton’s method initiated at the
point (x1, y1) = (0, 0) to find an approximate solution to the system

{

exy + 2x + y = 1.1
sin(x + y) + x − 2y = 0.3



21. DIFFERENTIABILITY OF MULTIVARIABLE FUNCTIONS 313

Assume that a solution exists near the initial point. Verify that the obtained
approximate solution is better than the initial point.

Solution: Put f(x, y) = exy + 2x + y and g(x, y) = sin(x + y) + x − 2y
so that at the initial point f(0, 0) = 1 and g(0, 0) = 0. The functions
have continuous partial derivatives everywhere and, hence, differentiable
everywhere. In particular,

f ′
x(0, 0) = yexy + 2

∣

∣

∣

(0,0)
= 2 , f ′

y(0, 0) = xexy + 1
∣

∣

∣

(0,0)
= 1 ,

g′x(0, 0) = cos(x + y) + 1
∣

∣

∣

(0,0)
= 2 , g′y(0, 0) = cos(x + y)− 2

∣

∣

∣

(0,0)
= −1 .

Let x = x1 +∆x = ∆x and y = y1 +∆y = ∆y. By linearizing the equations
at (0, 0), the system of linear equations is obtained for ∆x and ∆y and
solved:

{

2∆x + ∆y = 1.1− f(0, 0) = 0.1
2∆x − ∆y = 0.3− g(0, 0) = 0.3

⇒ ∆x = 0.1 ∆y = −0.1 .

So an approximation to the root is the point (0.1,−0.1). If (x0, y0) is a true
solution, then f(x0, y0) = 1.1 and g(x0, y0) = 0.3. It follows then

f(0.1,−0.1) ≈ 1.09 , g(0.1,−0.1) = 0.3 .

Thus, the values of the functions appear to be closer to their values at the
true solution. So, the point (0.1,−0.1) is a better approximation to the true
solution than the initial guess (0, 0). �

21.7. Study Problems.

Problem 21.1. Let

f(x, y) =

{

(x2 + y2) sin
(

1
x2+y2

)

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
.

Show that f is differentiable at (0, 0) (and hence that f ′
x(0, 0) and f ′

y(0, 0)

exist), but that f ′
x and f ′

y are not continuous at (0, 0).

Solution: By the definition of partial derivatives

f ′
x(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim

h→0
h sin(1/h2) = 0

which follows from the squeeze principle: 0 ≤ |h sin(1/h2)| ≤ |h| → 0 where
the inequality | sinu| ≤ 1 has been used. Similarly, f ′

y(0, 0) = 0. Since the
partial derivatives exist, to show differentiability of f at (0, 0), one has to
verify whether the linear function L(x, y) = f(0, 0)+f ′

x(0, 0)x+f ′
y(0, 0)y = 0

satisfies the condition (21.3). Put R =
√

x2 + y2. Then

lim
(x,y)→(0,0)

f(x, y)− L(x, y)
√

x2 + y2
= lim

R→0+
R sin(1/R2) = 0
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by the squeeze principle: 0 ≤ |R sin(1/R2)| ≤ R → 0 as R → 0+ where the
inequality | sinu| ≤ 1 has been used. Thus, L(x, y) = 0 is indeed a good
linear approximation and the function f is differentiable at the origin.

To investigate the continuity of partial derivatives, one has to study the
limits f ′

x(x, y) and f ′
y(x, y) at the origin. For (x, y) 6= (0, 0),

f ′
x(x, y) = 2x sin

(

1

x2 + y2

)

− 2x

x2 + y2
cos

(

1

x2 + y2

)

The first term in this expression converges to 0 by the squeeze principle:
0 ≤ |2x sin(1/r2)| ≤ 2|x| → 0 as (x, y) → (0, 0), whereas the second term
can take arbitrary large values in any neighborhood of the origin. To see
this, consider a sequence of points that converges to the origin:

(xn, yn) =
( 1√

πn
, 0

)

, n = 1, 2, ..., R2
n = x2

n + y2
n =

1

πn

so that Rn → 0 as n → ∞. Then cos(1/R2
n) = (−1)n, sin(1/R2

n) = 0, and

f ′
x(xn, yn) = 2Rn sin

( 1

R2
n

)

− 2

Rn
cos

( 1

R2
n

)

= 2(−1)n+1√πn .

So f ′
x(xn, yn) can take arbitrary large positive and negative values as n → ∞

and the limit lim(x,y)→(0,0) f ′
x(x, y) does not exist, which means that the

partial derivative f ′
x(x, y) is not continuous at the origin. Owing to the

symmetry f(x, y) = f(y, x), the same conclusion holds for f ′
y(x, y). �

21.8. Exercises.
1. Let g(x, y) = 4 − x2 − y2. Sketch the graph z = g(x, y) for the
disk x2 + y2 ≤ 4. Find g′x(1, 1) and g′y(1, 1). Consider the plane z =

g(1, 1)+ g′x(1, 1)(x− 1) + g′y(1, 1)(y− 1) = L(x, y). Is this plane a good lin-
ear approximation to the function near (1, 1)? Is the function differentiable
at (1, 1)?
2. Let f(x, y) = 4−x2−y2 if (x, y) is not in D = {(x, y) | x < y < 2x−1 , x >
1} and f(x, y) = 0 if (x, y) is in D. Sketch D and the graph z = f(x, y) for
the disk x2 +y2 ≤ 4. Use the definition of partial derivatives to find f ′

x(1, 1)
and f ′

y(1, 1). Consider the plane z = f(1, 1)+f ′
x(1, 1)(x−1)+f ′

y(1, 1)(y−1) =
L(x, y). Is this plane a good linear approximation to the function near
(1, 1)? Is the function differentiable at (1, 1)? Hint: Investigate the differ-
ence f(x, y)− L(x, y) along straight lines through the point (1, 1).
3. Let f(x, y) = xy2 if (x, y) 6= (0, 0) and f(0, 0) = 1 and let g(x, y) =
√

|x| +
√

|y|. Are the functions f and g differentiable at (0, 0)?
4. Let f(x, y) = xy2/(x2 + y2) if x2 + y2 6= 0 and f(0, 0) = 0. Show that f
is continuous and has bounded partial derivatives f ′

x and f ′
y, but that f is

not differentiable at (0, 0). Investigate continuity of partial derivatives near
(0, 0).

5. Show that the function f(x, y) =
√

|xy| is continuous at (0, 0) and has
the partial derivatives f ′

x(0, 0) and f ′
y(0, 0), but that f is not differentiable
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at (0, 0). Investigate continuity of the partial derivatives f ′
x and f ′

y at the
origin.
6. Let f(x, y) = x3/(x2 + y2) if (x, y) 6= (0, 0) and f(0, 0) = 0. Show that f
is continuous, has partial derivatives at (0, 0), but that f is not differentiable
at (0, 0).
7–13. Find the set on which each of the following functions is differentiable:

7. f(x, y) = y
√

x ;
8. f(x, y) = xy

2x+y ;

9. f(x, y, z) = sin(xy + z)ezy ;

10. f(x, y, z) =
√

x2 + y2 − z2 ;
11. f(r) = ln(1− ‖r‖), where r = 〈x1, x2, ..., xm〉 ;

12. f(x, y) = 3
√

x3 + y3 ;

13. f(r) = e−1/‖r‖2

if r 6= 0 and f(0) = 0, where r = 〈x, y〉
Hint: Show f ′

x(0) = f ′
y(0) = 0 using the definition of partial deriva-

tives. Calculate the partial derivatives at r 6= 0. Investigate conti-
nuity of partial derivatives.

14–19. The line through a point P0 of a surface perpendicular to the tangent
plane at P0 is called the normal line. Show that each of the following surfaces
has a tangent plane at the given point P0, and find an equation of the tangent
plane and symmetric equations of the normal line to each of the following
surfaces at the specified point:

14. z = x2 + 3y − y3x, P0 = (1, 2,−1) ;

15. z =
√

x3y, P0 = (1, 4, 2) ;
16. z = y ln(x2 − 3y), P0 = (2, 1, 0);
17. y = tan−1(xz2), P0 = (1, π

4 ,−1) ;
18. x = z cos(y − z), P0 = (1, 1, 1) ;
19. z − y + ln z − ln x = 0, P0 = (1, 1, 1) .

20–22. Show that each of the following functions is differentiable at the
given point r0, and find its linearization at r0:

20. f(x, y) = 2y+3
4x+1 , r0 = 0 ;

21. f(x, y, z) = z1/3
√

x + cos2(y), r0 = 〈0, 0, 1〉 ;
22. f(r) = sin(n · r), r0 = 〈a1, a2, ..., am〉, where r = 〈x1, x2, ..., xm〉

and n 6= 0 is a constant vector orthogonal to r0 .

23–26. Use the linearization to approximate the following numbers. Then
use a calculator to find the numbers. Compare the results.

23.
√

20− 7x2 − y2 , where (x, y) = (1.08, 1.95);
24. xy2z3 , where (x, y, z) = (1.002, 2.003, 3.004) ;

25.
(1.03)2

3
q

0.98 4
√

(1.05)2
;

26. (0.97)1.05 .

27-29. Use one iteration of Newton’s method initiated at the given point
P0 to approximate the solution of each of the following system of nonlinear
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equations. Assume that the solution exists near P0. Explain why Newton’s
method is applicable in each case. Check whether the approximate solution
is better than the initial guess P0.

27. x2 + xy + 2y2 = 4.2 , x2 − x3y + y3 = 0.9 , P0 = (1, 1) ;
28. ln(1 + y + 2x) + x2 + y = 3.2 , x3 + y2 = 2.7 , P0 = (−1, 2) ;
29. y sin(y − x) + x = 1.2 , x cos(y2 − x) + y = 0.8 , P0 = (1, 1).

30-31. The existence of partial derivatives at a point is not sufficient for
continuity of the function at that point (Example 21.2). Prove the following
assertions:

30. Suppose that a function f(x, y) is continuous with respect to x
at each fixed y and has a bounded partial derivative f ′

y(x, y), i.e.,

|f ′
y(x, y)| ≤ M for some M > 0 and all (x, y). Then f is continuous.

31. Let f(x, y) be defined on open set D and have bounded partial
derivatives, |f ′

x(x, y)| ≤ M1 and |f ′
y(x, y)| ≤ M2 for all (x, y) in D

and some positive M1 and M2. Then f is continuous on D.
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22. Chain Rules and Implicit Differentiation

22.1. Chain Rules. Consider the function

f(x, y) = x3 + xy2

whose domain is the entire plane. Let x = x(t), y = y(t) be parametric
equations of a curve such that the functions x(t) and y(t) are differentiable
for all t. Then the function

F (t) = f(x(t), y(t)) = x3(t) + x(t)y2(t)

defines the values of f along the curve. The function F (t) is differentiable
and its derivative is

dF (t)

dt
=

d

dt

(

x3(t)
)

+
d

dt

(

x(t)y2(t)
)

= 3x2(t)
dx(t)

dt
+

dx(t)

dt
y2(t) + x(t)

d

dt

(

y2(t)
)

=
(

3x2(t) + y2(t)
)dx(t)

dt
+ 2x(t)y(t)

dy(t)

dt

By noting that f ′
x(x, y) = 3x2 + y2 and f ′

y(x, y) = 2xy, the above relation
can be written in the form

(22.1)
df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
, where x = x(t) , y = y(t) .

Equation (22.1) is an example of chain rules for functions of several vari-
ables. The function F (t) is the composition of the function f(x, y) and two
functions x = x(t), y = y(t). If the partial derivatives f ′

x and f ′
y are known

at a point (x0, y0) and the rates of change x′(t0) and y′(t0) are also known,
where x(t0) = x0 and y(t0) = y0, then the rate of change F ′(t0) can be
computed by the chain rule:

(22.2) F ′(t0) = f ′
x(x0, y0)x

′(t0) + f ′
y(x0, y0)y

′(t0) .

Now consider the function

f(x, y) =
y3

x2 + y2
, if (x, y) 6= (0, 0) and f(0, 0) = 0 .

It has partial derivatives everywhere. Indeed, for (x, y) 6= (0, 0) it is a
rational function and, hence, is differentiable. The partial derivatives at the
origin are easy to find:

f ′
x(x, 0) =

d

dx
f(x, 0) =

d

dx
0 = 0 ⇒ f ′

x(0, 0) = 0 ,

f ′
y(0, y) =

d

dy
f(0, y) =

d

dy
y = 1 ⇒ f ′

y(0, 0) = 1 .

Consider a straight line through the origin x = x(t) = t cos θ, y = y(t) =
t sin θ, where θ is a numerical parameter that defines a vector u = 〈cos θ, sin θ〉
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parallel to the line. The composition of f and the linear functions x(t) and
y(t) reads

F (t) = f(x(t), y(t)) =
t3 sin3 θ

t2(cos2 θ + sin2 θ)
= t sin3 θ for t 6= 0 .

For t = 0, put F (0) = f(0, 0) = 0 so that the above equation defines F (t)
for all t. Therefore

F ′(t) = sin3 θ ⇒ F ′(0) = sin3 θ .

On the other hand, x′(0) = cos θ and y′(0) = sin θ so that the chain rule
(22.2) gives a different result:

f ′
x(0, 0)x′(0) + f ′

y(0, 0)y′(0) = sin θ 6= sin3 θ = F ′(0) .

So the chain rule (22.2) fails to give the correct rate of change of the compo-
sition at the point (0, 0) despite that the function f has partial derivatives
at (0, 0). It is not difficult to verify that the chain rule (22.1) holds for all
(x, y) 6= (0, 0) and any smooth parametric curve x = x(t), y = y(t) (cal-
culations are pretty much the same as in the first example of a polynomial
f).

Why does the chain rule fail at the origin? The considered function is
not differentiable at the origin and this is the reason for the chain rule to
fail! Note that since the partial derivatives f ′

x(0, 0) = 0 and f ′
y(0, 0) = 1

exist, a good linear approximation at the origin should have the form

L(x, y) = f(0, 0) + f ′
x(0, 0)x + f ′

y(0, 0)y = y .

However, this linear function does not satisfy the condition (21.3) and there-
fore f is not differentiable at the origin. Indeed, for (x, y) 6= (0, 0)

f(x, y)− L(x, y)
√

x2 + y2
=

y3 − y(x2 + y2)

(x2 + y2)3/2
= − yx2

(x2 + y2)3/2
6→ 0

as (x, y) → (0, 0). The limit of this function at the origin cannot be zero
because its limit along the line x = y = t, t → 0+, does not vanish and is
equal to −2−3/2 6= 0.

Thus, the chain rule (22.1) holds if the function f(x, y) and the functions
x = x(t) and y = y(t) are differentiable. In the one-variable case, the
differentiability is equivalent to the existence of the derivative so that the
chain rule df/dt = f ′(x)x′(t), x = x(t), holds if f ′(x) and x′(t) exist. In
contrast to the one-variable case, the mere existence of partial derivatives
is not sufficient to validate the chain rule in the multi-variable case, and a
stronger condition on f (differentiability of f) is required.

Theorem 22.1. (Chain Rule).
Let f be a differentiable function of n variables r = 〈x1, x2, ..., xn〉. Suppose
that each variable xi is, in turn, a differentiable function of m variables
u = 〈u1, u2, ..., um〉. The composition of xi = xi(u) with f(r) defines f as
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a function of u. Then its rate of change with respect to uj, j = 1, 2, ...,m,
reads

(22.3)
∂f

∂uj
=

∂f

∂x1

∂x1

∂uj
+

∂f

∂x2

∂x2

∂uj
+ · · ·+ ∂f

∂xn

∂xn

∂uj
=

n
∑

i=1

∂f

∂xi

∂xi

∂uj
.

The proof of this theorem is given at the end of this section. For n =
m = 1, this is the familiar chain rule for functions of one variable df/du =
f ′(x)x′(u). If n = 1 and m > 1, it is the chain rule (19.2) established earlier.
If n = 2 and m = 1, the chain rule (22.1) is obtained.

Theorem 21.3 established sufficient conditions for differentiability of a
function of several variables and offers a practical criterion for applicability
of the chain rule:

If a function f(x1, x2, ..., xn) has continuous partial derivatives in an open
n−ball and the functions xj = xj(u1, u2, ..., um), j = 1, 2, ..., n, also have
continuous partial derivatives in an open m−ball D, then the chain rule
(22.3) holds in D (assuming that the composition of the functions exists in
D).

The continuity of partial derivatives can be verified by simpler means than
the existence of a good linear approximation (differentiability) for f and the
functions xj.

Example 22.1. Let f(x, y) = x3 +xy2. Find the rates of change f ′
r and

f ′
θ as functions of the polar coordinates (r, θ) where x = r cos θ, y = r sin θ.

Solution: The chain rule for polar coordinates is a particular case of the
chain rule (22.3) for n = m = 2, where r = (x, y) and u = (r, θ). The
function f(x, y) is a polynomial and hence has continuous partial derivatives
everywhere. The functions x = r cos θ and y = r sin θ also have continuous
partial derivatives for all (r, θ). Therefore the chain rule holds and

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r
= (3x2 + y2) cos θ + 2xy sin θ = 3r2 cos θ,

∂f

∂θ
=

∂f

∂x

∂x

∂θ
+

∂f

∂y

∂y

∂θ
= −(3x2 + y2)r sin θ + 2xyr cos θ = −r3 sin θ,

where x and y have been expressed in the polar coordinates to obtain the
final expressions. Note that f can also be expressed first as a function of
(r, θ),

f(x, y) = x(x2 + y2) = r3 cos θ .

The partial derivatives f ′
r and f ′

θ of this function obviously coincide with
those obtained by the chain rule. �

Example 22.2. Let a function f(x, y, z) be differentiable at r0 = 〈1, 2, 3〉
and have the following rates of change, f ′

x(r0) = 1, f ′
y(r0) = 2, and f ′

z(r0) =
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−2. Suppose that x = x(t, s) = t2s, y = y(t, s) = s+ t, and z = z(t, s) = 3s.
Find the rates of change of f with respect to t and s at the point r0.

Solution: In the chain rule (22.3), put r = 〈x, y, z〉 and u = 〈t, s〉. The
point r0 = 〈1, 2, 3〉 corresponds to the point u0 = 〈1, 1〉 in the new variables:

x = t2s
y = s + t
z = 3s

⇒
1 = t2s
2 = s + t
3 = 3s

⇒
1 = t2s
1 = t
1 = s

⇒
1 = 1
1 = t
1 = s

The partial derivatives of the old variables with respect to the new ones
are x′

t = 2ts, y′t = 1, z′t = 0, x′
s = t2, y′s = 1, and z′s = 3. They are

continuous everywhere and hence the functions x(s, t), y(s, t), and z(s, t)
are differentiable at the point (1, 1) by Theorem 21.3 and the chain rule
holds. By the chain rule,

f ′
t(r0) = f ′

x(r0)x
′
t(u0) + f ′

y(r0)y
′
t(u0) + f ′

z(r0)z
′
t(u0)

= 1 · 2 + 2 · 1 + (−2) · 0 = 4,

f ′
s(r0) = f ′

x(r0)x
′
s(u0) + f ′

y(r0)y
′
s(u0) + f ′

z(r0)z
′
s(u0)

= 1 · 1 + 2 · 1 + (−2) · 3 = −3.

�

Example 22.3. Let f(x, y, z) = z2(1 + x2 + y2)−1. Find the rate of
change of f along the parametric curve r(t) = (sin t, cos t, et) in the direction
of increasing t. Determine whether the function f is decreasing or increasing
along the curve.

Solution: The function f is differentiable because its partial derivatives,

f ′
x = − 2xz2

(1 + x2 + y2)2
, f ′

y = − 2yz2

(1 + x2 + y2)2
, f ′

z =
2z

1 + x2 + y2
,

are continuous everywhere. The components of r(t) are also differentiable:
x′(t) = cos t, y′(t) = − sin t, z′(t) = et. By the chain rule (22.3) for n = 3
and m = 1,

df

dt
= f ′

x(r(t))x′(t) + f ′
y(r(t))y

′(t) + f ′
z(r(t))z

′(t)

= − 2xz2 cos t

(1 + x2 + y2)2
+

2yz2 sin t

(1 + x2 + y2)2
+

2zet

1 + x2 + y2

= −2e2t sin t cos t

4
+

2e2t cos t sin t

4
+

2e2t

2

= e2t > 0 .

The function f has a positive rate of change along the curve and therefore
it is increasing along the curve in the direction of increasing t. �
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22.2. Geometrical significance of the chain rules. Let f be a differentiable
function of several variables and C be a smooth curve in the domain of
f . Then one can restrict the function f to the curve C, that is, define a
function on the curve C by values of f on C. Let r = r(s) be a natural
parameterization of C in some rectangular coordinate system. Then

df

ds
= f ′

x1
(r(s)) x′

1(s) + f ′
x2

(r(s)) x′
2(s) + · · ·+ f ′

xm
(r(s)) x′

m(s)

is the rate of change of f along C at a point r(s) with increasing s.
For example, suppose f is the temperature in a room measured in

Fahrenheits as a function of position and C is a smooth curve. Suppose
that df/ds = 5 at a point P0 of C corresponding to s = s0. This means that
the temperature along C is increasing at P0 at the rate 5 F ◦ per unit length
in the direction of increasing s along C. Alternatively, let r = r(t) be the
trajectory of a particle (t is time) such that the particle passes P0 at time
t = t0. If df/dt = 3 at P0, then the particle “sees” that the temperature is
increasing at P0 (at t = t0) at the rate 3 F ◦ per unit time.

Let a function f(x, y) be differentiable at a point P0 = (x0, y0) 6= (0, 0).
This point can be viewed as the intersection of two coordinate lines x = x0

and y = y0. Consider the polar coordinates x = r cos θ, y = r sin θ. Then for
every pair (x, y) 6= (0, 0) one can find a unique pair (r, θ) where 0 < r < ∞
and 0 ≤ θ < 2π. In particular, the point P0 has polar coordinates (r0, θ0).
All points for which r = r0 form a circle of radius r0 centered at the origin,
and all points in the plane for which θ = θ0 form a ray extended from the
origin. It makes the angle θ0 with the x axis counted counterclockwise. So
the point P0 can also be viewed as the intersection of the coordinate lines (or
curves) of the polar coordinates, the circle r = r0 and the ray θ = θ0 (the
curves along which the polar coordinates have constant values). Parametric
equations of the circle and the ray are, respectively,

C1 : x = x(θ) = r0 cos θ , y = y(θ) = r0 sin θ , 0 ≤ θ ≤ 2π ,

C2 : x = x(r) = r cos θ0 , y = y(r) = r sin θ0 , 0 ≤ r < ∞ .

Consequently, the rates f ′
θ(x0, y0) and f ′

r(x0, y0) found in Example 22.1 de-
fine the rates of change of f at the point P0 along the circle C1 and the ray
C2, respectively, in the direction of increasing the parameters θ and r.

A similar interpretation holds for Example 22.2. The relations between
(x, y, z) and (t, s) define a surface S in space as a graph of a function of two
variables:

x = t2s , y = s + t , z = 3s ⇒ x = g(y, z) = 1
27z(3y − z)2 .

To obtain g(y, z), the variables (t, s) are expressed in terms of y and z using
the last two equations, s = z/3 and t = y−s = y−z/3, and then substituted
into x = t2s. So the function f(x, y, z) is restricted to this surface when
(x, y, z) are replaced by the given expressions in terms of (t, s). The point
r0 = 〈1, 2, 3〉 lies in the surface. The fixed value of the parameter t = t0 = 1
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defines a curve C1 in the surface S that passes through P0, whereas the
fixed value of the other parameter s = s0 = 1 defines another curve C2 in S
through P0. Parametric equations of these curves are

C1 : r = r1(s) = 〈s, s + 1, 3s〉 ; C2 : r = r2(t) = 〈t2, t + 1, 3〉 .

They are obtained by setting, respectively, t = 1 and s = 1 in the relations
between (x, y, z) and (t, s). The rate f ′

t(r0) = 4 > 0 shows that the function
f restricted to the curve C2 is increasing at the point r0 at a rate of 4
units per unit increment of the parameter t, while f restricted to the curve
C1 is decreasing at a rate of 3 units per unit increment of the parameter s
because f ′

s(r0) = −3 < 0. Note that the parameters t and s are not the
arclength parameter of these curves. So, the unit increments of t and s do
not correspond to the unit increment of the arclength along the curves.

22.3. Chain rules for higher-order partial derivatives. The chain rule (22.3)
can be used to calculate higher order partial derivatives with respect to new
variables if the functions in Theorem 22.1 have continuous partial derivatives
of the needed order (partial derivatives of lower orders should be differen-
tiable functions). For example, let

f = f(x, y) , x = x(t) , y = y(t) .

Then, assuming that f has continuous partial derivatives up to second order
and the functions x(t) and y(t) are twice differentiable,

d2f

dt2
=

d

dt

df

dt
=

d

dt

(

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

)

=
d

dt

(

∂f

∂x

)

dx

dt
+

∂f

∂x

d2x

dt2
+

d

dt

(

∂f

∂y

)

dy

dt
+

∂f

∂y

d2y

dt2

=

(

∂2f

∂x2

dx

dt
+

∂2f

∂y∂x

dy

dt

)

dx

dt
+

∂f

∂x

d2x

dt2

+

(

∂2f

∂x∂y

dx

dt
+

∂2f

∂y2

dy

dt

)

dy

dt
+

∂f

∂y

d2y

dt2

=
∂2f

∂x2

(

dx

dt

)2

+ 2
∂2f

∂y∂x

dy

dt

dx

dt
+

∂2f

∂y2

(

dy

dt

)2

+
∂f

∂x

d2x

dt2
+

∂f

∂y

d2y

dt2

where Clairaut’s theorem f ′′
xy = f ′′

yx was used (owing to the assumption of
continuity of the partial derivatives).

Example 22.4. If g(u, v) = f(x, y) where x = (u2 − v2)/2 and y =
uv, find g′′uv. Assume that f has continuous second partial derivatives. If
f ′
y(1, 2) = 1, f ′′

xx(1, 2) = f ′′
yy(1, 2) = 2, and f ′′

xy(1, 2) = 3, find the value of

g′′uv at (x, y) = (1, 2).

Solution: One has x′
u = u, x′

v = −v, y′u = v, and y′v = u. Then

g′u = f ′
xx′

u + f ′
yy

′
u = f ′

xu + f ′
yv .
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The derivative g′′uv = (g′u)′v is calculated by applying the chain rule to the
function g′u:

g′′uv = u(f ′
x)

′
v + v(f ′

y)
′
v + f ′

y

= u(f ′′
xxx

′
v + f ′′

xyy
′
v) + v(f ′′

yxx′
v + f ′′

yyy′v) + f ′
y

= u(−vf ′′
xx + uf ′′

xy) + v(−vf ′′
yx + uf ′′

yy) + f ′
y

= uv(f ′′
yy − f ′′

xx) + (u2 − v2)f ′′
xy + f ′

y = y(f ′′
yy − f ′′

xx) + 2xf ′′
xy + f ′

y .

where f ′′
xy = f ′′

yx has been used. The value of g′′uv at the point in question is
2 · (2 − 2) + 2 · 3 + 1 = 7. �

22.4. Implicit Differentiation. Let F (x, y, z) be a function of three vari-
ables. Suppose that the equation F (x, y, z) = 0 can be solved for the variable
z to obtain z as a function of two variables:

F (x, y, z) = 0 =⇒ z = z(x, y)

The characteristic property of the function z(x, y) is that

(22.4) F (x, y, z(x, y)) = 0 for all (x, y) .

In other words, a function of two variables z(x, y) is not defined by an explicit
rule but rather by an equation to be solved to find the values of the function.
For example,

F (x, y, z) = z2 − 2xz + y = 0(22.5)

⇒ z = z±(x, y) = x ±
√

x2 − y , x2 ≥ y .

In this case, the equation has a solution if x2 ≥ y which is the domain of
the functions z±(x, y). The solution is not unique. There are two functions,
z+(x, y) and z−(x, y), defined by the given equation. For every pair (x, y)
there are two values of z = z±(x, y) that satisfy the equation F (x, y, z) = 0.
From the geometrical point of view, one can say that the level set on which
the function F take zero value consists of two surfaces z = z±(x, y), just like
the sphere x2 + y2 + z2 = 1 can be viewed as the level set of F (x, y, z) =
x2 + y2 + z2 which is the union of two graphs

x2 + y2 + z2 = 1 ⇔ z = z±(x, y) = ±
√

1 − x2 − y2

representing the upper and lower hemispheres.
To resolve the uniqueness problem, one can impose an additional condi-

tion on the solution. Suppose that a point P0 = (x0, y0, z0) lies in the level
set F (x, y, z) = 0, that is, F (x0, y0, z0) = 0. Then it is required that the so-
lution z(x, y) satisfy the condition z(x0, y0) = z0. Geometrically, this means
that the graph z = z(x, y) coincides with the level surface F (x, y, z) = 0 in a
neighborhood of a particular point P0 in the level surface. In Example (22.5),
let us take a particular point P0 = (x0, y0, z0) = (2, 3, 1). This point lies in
the level set F (2, 3, 1) = 0. Then the graph z = z−(x, y) coincides with the
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level set F (x, y, z) = 0 in a neighborhood of P0 because z−(2, 3) = 1, while
the other does not because z+(2, 3) = 3 6= 1:

z2 − 2xy + y = 0
z(2, 3) = 1

⇒ z = z−(x, y) = x −
√

x2 − y .

In the example considered an explicit form of the solution was not so difficult
to find by solving the quadratic equation. But in most cases, an explicit
solution is not possible to obtain. For example, finding an explicit form of
the function z = z(x, y) satisfying an addition condition and the equation

(22.6) F (x, y, z) = z5 − 2xz + y = 0 , z(2, 3) = 1 , F (2, 3, 1) = 0 ,

requires solving an equation of the fifth order. Only equations up to the
fourth order can be solved analytically. Does a solution exist? Is it unique?
It will be shown later that Eq. 22.6 does have a unique solution near the
point (2, 3, 1).

Let us put aside these questions for a moment and suppose that, given
a function F (x, y, z), the equation F (x, y, z) = 0 is proved to have a unique
solution when (x, y) lie in some open region D in the xy plane. In this case,
the function z(x, y) with the property (22.4) for all (x, y) in D is said to be
defined implicitly on D. Although an analytic form of an implicitly defined
function is unknown, its rates of change can be found and provide important
information about its local behavior.

Suppose that F is differentiable. Furthermore, the root z(x, y) is also
assumed to be differentiable on D. Since relation (22.4) holds for all (x, y)
in D, the partial derivatives of its left side must also vanish in D. They can
be computed by the chain rule (22.3), where n = 3, m = 2, r = 〈x, y, z〉, u =
〈u, v〉, and the relations between old and new variables are x = u, y = v, and
z = z(u, v). One has x′

u = 1, x′
v = 0, y′u = 0, y′v = 1, and z′u(u, v) = z′x(x, y)

and z′v(u, v) = z′y(x, y) because x = u and y = v. Therefore Eq. (22.4)
implies that

∂

∂u
F (x, y, z(x, y)) =

∂F

∂x
+

∂F

∂z

∂z

∂x
= 0 =⇒ z′x = −F ′

x

F ′
z

,

∂

∂v
F (x, y, z(x, y)) =

∂F

∂y
+

∂F

∂z

∂z

∂y
= 0 =⇒ z′y = −

F ′
y

F ′
z

,

These equations are called the implicit differentiation equations. They de-
termine the rates of change of an implicitly defined function of two variables.
Note that in order for these equations to make sense, the condition F ′

z 6= 0
must be imposed.
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In Example (22.5)

F ′
x = −2z , F ′

y = 1 , F ′
z = 2z − 2x

⇒ z′x(x, y) = −F ′
x

F ′
z

∣

∣

∣

z=z(x,y)
=

z(x, y)

z(x, y)− x
,

⇒ z′y(x, y) = −
F ′

y

F ′
z

∣

∣

∣

z=z(x,y)
= − 1

2(z(x, y)− x)

In order to obtain the partial derivatives as explicit functions of (x, y), the
root z = z(x, y) has to be substituted into the implicit differentiation equa-
tions. For example, if one takes the root z = z−(x, y) then

z(x, y) = x −
√

x2 − y

⇒ z′x(x, y) =

√

x2 − y − x
√

x2 − y
= 1− x

√

x2 − y
, z′y(x, y) =

1

2
√

x2 − y

Note that the implicit differentiation equations give the same answer for
partial derivatives that can be obtained by explicit differentiation:

z′x(x, y) =
∂

∂x

(

x −
√

x2 − y
)

= 1 − x
√

x2 − y
,

z′y(x, y) =
∂

∂y

(

x −
√

x2 − y
)

=
1

2
√

x2 − y
.

The advantage of using the implicit differentiation equations become appar-
ent when no explicit form of the root z(x, y) can be found. Let z(x, y) be
defined by Eq. (22.6). Then F (x, y, z) = z5 − 2xz + y and

F ′
x = −2z , F ′

y = 1 , F ′
z = 5z4 − 2x ,(22.7)

⇒ z′x(x, y) = −F ′
x

F ′
z

=
2z

5z4 − 2x
, z′y(x, y) = −

F ′
y

F ′
z

= − 1

5z4 − 2x
.

One might ask: What is the point of these equations if an explicit form z =
z(x, y) is not known and, hence, the values of the partial derivative cannot
be calculated at any point (x, y)? It is true that an explicit form of the
partial derivatives is impossible to obtain, but their values can be computed
at any point that is known to lie in the level set F (x, y, z) = 0. For example,
F (2, 3, 1) = 0. So the point (2, 3, 1) lies in the level set F (x, y, z) = 0. If
the solution z = z(x, y) satisfying the condition z(2, 3) = 1 is proved to be
unique, then

z′x(2, 3) = −F ′
x(2, 3, 1)

F ′
z(2, 3, 1)

= − −2

5 − 4
= 2 ,

z′y(2, 3) = −
F ′

y(2, 3, 1)

F ′
z(2, 3, 1)

= − 1

5 − 4
= −1 .

The values of the partial derivatives allows us to conclude that the function
z(x, y) increases with increasing x and decreases with increasing y at the
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point (2, 3). This conclusion about the behavior of the function z(x, y) near
the point (2, 3) has been reached without an explicit form of z(x, y).

The implicit function theorem. The questions about the very existence and
uniqueness of z(x, y) for a given F (x, y, z) and the differentiability of z(x, y)
have been left unanswered in the above analysis of the implicit differentia-
tion. The following theorem addresses them all.

Theorem 22.2. (Implicit Function Theorem).
Let F be a function of m + 1 variables, F (r, z), where r = 〈x1, x2, ..., xm〉
and z is real such that F and F ′

z are continuous in an open ball B in R
m+1.

Suppose that there exists a point (r0, z0) in B such that F (r0, z0) = 0 and
F ′

z(r0, z0) 6= 0. Then there exists an open neighborhood D of r0 in R
m, an

open interval I, and a unique function z(r) on D with the range I such that
for r in D and u in I, F (r, u) = 0 if and only if u = z(r). Moreover, the
function z(r) is continuous. If, in addition, F is differentiable in B, then
the function z(r) is differentiable in D and

z′xi
(r) = −F ′

xi
(r, z(r))

F ′
z(r, z(r))

.

for all r in D.

The proof of this theorem goes beyond the scope of this course. It in-
cludes proofs of the existence and uniqueness of z(r) and its differentiability.
Once these facts are established, a derivation of the implicit differentiation
equations follows the same way as in the m = 2 case:

∂F

∂xi
+

∂F

∂z

∂z

∂xi
= 0 =⇒ z′xi

(r) = −F ′
xi

(r, z(r))

F ′
z(r, z(r))

.

Example 22.5. Show that the equation (22.6) has a unique continuous
solution z = z(x, y) near (x, y) = (2, 3) and that the function z(x, y) is
differentiable near (2, 3).

Solution: Let us verify the hypotheses of the implicit function theorem.
The function F (x, y, z) = z5−2xz+y and its partial derivative F ′

z = 5z4−2x
are polynomials and, hence, continuous everywhere. In particular, they
are continuous in a ball centered at (2, 3, 1). Furthermore, F (2, 3, 1) = 0
and F ′

z(2, 3, 1) = 1 6= 0. By the implicit function theorem the equation
F (x, y, z) = 0 has a unique solution z = z(x, y) in some disk D centered at
(2, 3) such that z(2, 3) = 1 and the function z(x, y) is continuous in the disk.

Next, the partial derivatives of F (x, y, z) are polynomials and, hence,
continuous everywhere and, in particular, in a ball centered at (2, 3, 1). The
function F (x, y, z) is differentiable in the ball because it has continuous
partial. By the implicit function theorem the solution z = z(x, y) is a
differentiable function in the disk D, and its partial derivatives are given by
the implicit differentiation equations (see (22.7)). �
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Geometrical significance of the implicit differentiation. Let us analyze a
geometrical significance of the implicit differentiation equations. Suppose
that F (x, y, z) has continuous partial derivatives and F ′

z 6= 0. The equation
F (x, y, z) = 0 defines a level set of the function F . This level set is a surface.
Indeed, in a neighborhood of any particular point, the level set coincides with
the graph z = z(x, y) of a differentiable function z(x, y) (which is a surface)
as follows from the implicit function theorem. Let r0 = 〈x0, y0, z0〉 be a point
in this level surface (that is, z0 = z(x0, y0)). Since the graph coincides with
the level surface F (x, y, z) = 0 (at least in some neighborhood of (x0, y0)),
the tangent plane to the graph

z = z0 + z′x(x0, y0)(x − x0) + z′y(x0, y0)(y − y0) ,

z′x(x0, y0) = −F ′
x(r0)

F ′
z(r0)

, z′y(x0, y0) = −
F ′

y(r0)

F ′
z(r0)

is also a tangent plane to the level surface F (x, y, z) = 0 at the point
(x0, y0, z0). By multiplying this equation by F ′

z(r0), it can be written in
the form

(22.8) F ′
x(r0)(x − x0) + F ′

y(r0)(y − y0) + F ′
z(r0)(z − z0) = 0 .

Therefore the vector

n = 〈F ′
x(r0) , F ′

y(r0) , F ′
z(r0)〉

is a normal vector to the tangent plane to a level surface F (x, y, z) = 0 at a
point (x0, y0, z0). In fact, it is a normal vector to a level surface F (x, y, z) = k
for any k (from the range of F ) because the partial derivatives of F (x, y, z)
and F (x, y, z)− k coincide (naturally, the point (x0, y0, z0) must satisfy the
condition F (x0, y0, z0) = k).

If the solution z(x, y) to F (x, y, z) = 0 is differentiable at (x0, y0), then
its values in a neighborhood of this point can be approximated by its lin-
earization:

z(x0 + ∆x, y0 + ∆y) ≈ z0 + z′x(x0, y0)∆x + z′y(x0, y0)∆y .

In other words, having found a root z0 of the equation F (x, y, z) = 0 at
a particular point (x0, y0), the linearization of the implicit function z(x, y)
allows us to approximate the root at any point near (x0, y0).

For example, the linearization of the function z(x, y) implicitly defined
by (22.6) at the point (x0, y0) = (2, 3) has the form

(22.9) z(x, y) ≈ 1 + 2(x− 2) + (−1)(y − 3) = 1 + 2∆x − ∆y ,

where x = 2 + ∆x and y = 3 + ∆y. Let us substitute this approximation of
z(x, y) into (22.6). Using the binomial expansion

(1 + a)5 = 1 + 5a + 10a2 + 10a3 + 5a4 + a5 .
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it is not difficult to find that

z5 = (1 + 2∆x − ∆y)5 = 1 + 10∆x − 5∆y + t.o.h.o.

−2zx = −2(1 + 2∆x − ∆y)(2 + ∆x) = −4 − 10∆x + 4∆y + t.o.h.o.

y = 3 + ∆y

where t.o.h.o. stands for terms of higher orders and denotes terms propor-
tional (∆x)n(∆y)m with n + m ≥ 2 (terms that are non-linear functions
of ∆x and ∆y). By adding these three relations, it is concluded that the
characteristic condition (22.4) holds for the linearization of the solution to
Eq. (22.6) up to terms of higher orders:

F (x, y, z) = F (2 + ∆x, 3 + ∆y, 1 + 2∆x − ∆y) = 0 + t.o.h.o.

In other words, when values of terms of higher orders can be neglected as
compared to the values of ∆x and ∆y, then the linearization of the implicit
function z(x, y) approximates the root of the equation F (x, y, z) = 0 and
this approximation becomes better with decreasing ∆x and ∆y.

Example 22.6. Use the linearization of an implicit function to approx-
imate the root of Eq. (22.6) at x = 1.99 and y = 3.02. Find the plane
tangent to the surface defined by (22.6) at the point (2, 3, 1).

Solution: It follows from Example 22.5 that Eq. (22.6) defines a differ-
entiable function z = z(x, y) near (2, 3) Therefore its values near (2, 3) may
be approximated by the linearization of z(x, y) at (2, 3). Set ∆x = −0.01
and ∆y = 0.02. Then using (22.9)

z(1.99, 3.02) = z(2 + ∆x, 3 + ∆y) ≈ 1 + 2∆x − ∆y = 1 − 0.04 = 0.96

The tangent plane in questions coincides with the tangent plane to the graph
of the implicit function z = z(x, y) at (2, 3, 1). Therefore setting ∆x = x−2
and ∆y = y − 3, the equation of the tangent plane is obtained:

z = 1 + 2(x − 2) − (y − 3) or 2x − y − z = 0 .

Alternatively, the tangent plane can be obtained from (22.8). Using (22.7)
F ′

x(2, 3, 1) = −2, F ′
y(2, 3, 1) = 1, F ′

z(2, 3, 1) = 1. Therefore the tangent plane
to the surface (22.6) is

−2(x − 2) + (y − 3) + (z − 1) = 0 or 2x − y − z = 0 .

�

Example 22.7. Show that the equation z(3x − y) = π sin(xyz) has a
unique differentiable solution z = z(x, y) in a neighborhood of (1, 1) such
that z(1, 1) = π/2 and find the rates of change z′x(1, 1) and z′y(1, 1). Use the
linearization of z(x, y) at (1, 1) to approximate z(1.1, 0.9)

Solution: Put F (x, y, z) = π sin(xyz)− z(3x−y). Then the existence and
uniqueness of the solution can be established by verifying the hypotheses
of the implicit function theorem in which r = 〈x, y〉, r0 = 〈1, 1〉, and z0 =
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π/2. First, note that the function F is the sum of a polynomial and the
sine function of a polynomial. So F is continuous everywhere. Its partial
derivative

F ′
z(x, y, z) = πxy cos(xyz) − 3x + y

is also continuous everywhere (by the same reasoning) and satisfies the con-
dition

F ′
z(1, 1, π/2) = −2 6= 0 .

By the first part of the implicit function theorem there is an open disk in
the xy plane containing the point (1, 1) in which the equation F (x, y, z) = 0
has a unique continuous solution z = z(x, y).

Next, the function F is differentiable everywhere because its partial
derivatives are continuous everywhere

F ′
x = πyz cos(xyz)− 3z , F ′

y = πxz cos(xyz) + z .

Therefore, by the second part of the implicit function theorem, the solution
z = z(x, y) is a differentiable function in a neighborhood of (1, 1) and by the
implicit differentiation equations,

z′x(1, 1) = −F ′
x(1, 1, π/2)

F ′
z(1, 1, π/2)

= −3π

4
, z′y(1, 1) = −

F ′
y(1, 1, π/2)

F ′
z(1, 1, π/2)

=
π

4
.

Since z(x, y) is differentiable at (1, 1), there is a good linear approximation
at (1, 1) (see Eq. (21.3)). Put x = 1 + ∆x and y = 1 + ∆y where ∆x = 0.1
and ∆y = −0.1. Then

z(1 + ∆x, 1 + ∆y) ≈ z(1, 1) + z′x(1, 1)∆x + z′y(1, 1)∆y

=
π

2
− 3π

40
− π

40
=

2π

5
.

�

Remark. If the function F (r, z) has sufficiently many continuous higher
order partial derivatives, then higher order partial derivatives of the solution
z(r) to the equation F (r, z) = 0 can be obtained by differentiating of the
implicit differentiation equations. An example is given in Study Problem
22.1.

22.5. Proof of Theorem 22.1. Since the functions xi(u) are differentiable,
the partial derivatives ∂xi/∂uj exist and moreover, by Eq. (21.5),

∆xi = xi(u + êjh) − xi(u) =
∂xi

∂uj
h + εi(h)|h|, εi(h) → 0, h → 0 ,

for every i. Define the vector ∆rh = (∆x1, ∆x2, ..., ∆xn). It has the property
that ∆rh → 0 as h → 0. If F (u) = f(x1(u), x2(u), ..., xn(u)), then by the
definition of the partial derivatives

∂f

∂uj
= lim

h→0

F (u + êjh) − F (u)

h
= lim

h→0

f(r + ∆rh) − f(r)

h
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if the limit exists. By the hypothesis, the function f is differentiable and,
hence, has partial derivatives ∂f/∂xi which determine a linear approxima-
tion (21.6) with the property (21.5):

f(r + ∆rh)− f(r) =
∂f

∂x1
∆x1 +

∂f

∂x2
∆x2 + · · ·+ ∂f

∂xn
∆xn + ε(∆rh)‖∆rh‖,

where ε(∆rh) → 0 as ∆rh → 0 or as h → 0. The substitution of this relation
into the limit shows that the limit exists and the conclusion of the theorem
follows. Indeed, the first n terms contain the limits

lim
h→0

∆xi

h
=

∂xi

∂uj
+ lim

h→0
εi(h)

|h|
h

=
∂xi

∂uj

because |h|/h = ±1 for all h 6= 0 and εi(h) → 0 as h → 0. The ratio

‖∆rh‖/|h| = [(∆x1/h)2 + (∆x2/h)2 + · · · + (∆xn/h)2]1/2 → M < ∞ as
h → 0 where M is determined by the partial derivatives ∂xi/∂uj. Therefore
the limit of the last term vanishes:

lim
h→0

ε(∆rh)
‖∆rh‖

h
= lim

h→0
ε(∆rh)

|h|
h

‖∆rh‖
|h|

= lim
h→0

ε(∆rh)
|h|
h

· lim
h→0

‖∆rh‖
|h| = 0 · M = 0

because ε(∆rh)|h|/h = ±ε(∆rh) if h 6= 0 and ε(∆rh) → 0 as h → 0. This
competes the proof.

22.6. Study Problems.

Problem 22.1. Let the function z(x, y) be defined implicitly by z5 + zx−
y = 0 in a neighborhood of (1, 2, 1). Find all its first and second partial
derivatives. In particular, give the values of these partial derivatives at
(x, y) = (1, 2).

Solution: Let F (x, y, z) = z5 + zx − y. It is a polynomial and, hence,
differentiable everywhere. Then F ′

z = 5z4 + x. The function z(x, y) exists
and is differentiable in a neighborhood of (1, 2) by the implicit function
theorem because F (1, 2, 1) = 0 and F ′

z(1, 2, 1) = 6 6= 0. The first and second
partial derivatives of F are continuous everywhere:

F ′
x = z, F ′

y = −1, F ′
z = 5z4 + x ,

F ′′
xx = 0, F ′′

xy = 0, F ′′
xz = 1 ,

F ′′
yy = 0, F ′′

yz = 0, F ′′
zz = 20z3 .

By implicit differentiation,

z′x = −F ′
x

F ′
z

= − z

5z4 + x
, z′y = −

F ′
y

F ′
z

=
1

5z4 + x
.

Since z(x, y) has continuous partial derivatives, the obtained functions z′x(x, y)
and z′y(x, y) also have continuous partial derivatives (the partial derivatives
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are differentiable functions). Taking the partial derivatives of z′x and z′y
with respect to x and y (with the assumption that z = z(x, y)) and us-
ing the quotient rule for differentiation, the second partial derivatives are
obtained:

z′′xx = −z′x(5z4 + x) − z(20z3z′x + 1)

(5z4 + x)2
=

(15z4 − x)z′x + z

(5z4 + x)2
,

z′′xy = z′′yx = (z′y)
′
x = −20z3z′x + 1

(5z4 + x)2
, z′′yy = −

20z3z′y
(5z4 + x)2

.

The explicit form of z′x and z′y may be substituted into these relations to
express the second partial derivatives via x, y, and z. At the point (1, 2),
the values of the first partial derivatives are

z′x(1, 2) = −1

6
, z′y(1, 2) =

1

6
.

Using these values and z(1, 2) = 1, the values of the second partial deriva-
tives are evaluated:

z′′xx(1, 2) = − 1

27
, z′′xy(1, 2) =

7

108
, z′′yy(1, 2) = − 5

54
.

�

22.7. Exercises.
1. Let f(x, y) = 4−x2−y2 if (x, y) is not in D = {(x, y)|x < y < 2x−1 , x >
1} and f(x, y) = 0 if (x, y) is in D. Sketch D and the graph z = f(x, y)
for the disk x2 + y2 ≤ 4. Use the definition of partial derivatives to find
f ′
x(1, 1) and f ′

y(1, 1). Consider a smooth simple curve through the point
(1, 1) with parametric equations x = x(t), y = y(t) so that x(0) = y(0) = 1
and x′(0) and y′(0) do not vanish. Put F (t) = f(x(t), y(t)). Is it true that
F ′(0) = f ′

x(1, 1)x′(0) + f ′
y(1, 1)y′(0) for any smooth simple curve through

(1, 1)? If not, give an example of a curve for which the chain rule holds and
an example of a curve for which it does not hold.

2. Use the chain rule to find dz/dt if z =
√

1 + x2 + 2y2 and x = 2t3,
y = ln t.
3. Use the chain rule to find ∂z/∂s and ∂z/∂t if z = e−x sin(xy) and x = ts,

y =
√

s2 + t2.
4–5. Use the chain rule to write the partial derivatives of each of the
following functions F with respect to the new variables:

4. F = f(x, y), x = x(u, v, w), y = y(u, v, w);
5. F = f(x, y, z, t), x = x(u, v), y = y(u, v), z = z(w, s), t = t(w, s) .

6. Find the rates of change ∂z/∂u, ∂z/∂v, ∂z/∂w when (u, v, w) = (2, 1, 1)
if z = x2 + yx + y3 and x = uv2 + w3, y = u + v ln w.
7. For a differentiable function f(x, y, z) find the rates of change f ′

u, f ′
v ,

f ′
w when (x, y, z) = (0, 2,−1) if x = 2/u − v + w, y = vuw, z = w3, and

f ′
x(0, 2,−1) = 2, f ′

y(0, 2,−1) = 1, f ′
z(0, 2,−1) = −1.
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8. If z(u, v) = f(x, y) where x = eu cos v and y = eu sin v, show that
z′′xx + z′′yy = e−2u(z′′uu + z′′vv).

9. If z(u, v) = f(x, y) where x = u2 + v2 and y = 2uv, find all the second
order partial derivatives of z(u, v).
10. If z(u, v) = f(x, y) where x = u + v and y = u − v, show that (z′x)2 +
(z′y)

2 = z′uz′v .
11–16. Find the first and second partial derivatives of the function g in
terms of the first and second partial derivatives of the function f :

11. g(x, y, z) = f(x2 + y2 + z2) ;
12. g(x, y) = f(x, x/y) ;
13. g(x, y, z) = f(x, xy, xyz) ;
14. g(x, y) = f(x/y, y/x) ;
15. g(x, y, z) = f(x + y + z, x2 + y2 + z2) ;
16. g(x, y) = f(x + y, xy) .

17. Find g′′xx + g′′yy + g′′zz if g(x, y, z) = f(x + y + z, x2 + y2 + z2)
18. Let x = r cos θ and y = r sin θ. Show that

f ′′
xx + f ′′

yy =
1

r

∂

∂r

(

r
∂f

∂r

)

+
1

r2

∂2f

∂2θ

19. Let x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ. The variables
(ρ, φ, θ) are called spherical coordinates. Show that

f ′′
xx + f ′′

yy + f ′′
zz =

1

ρ2

∂

∂ρ

(

ρ2∂f

∂ρ

)

+
1

ρ2 sinφ

∂

∂φ

(

sinφ
∂f

∂φ

)

+
1

ρ2 sin2 φ

∂2f

∂θ2

20. Prove that if a function f(x, y) satisfies the Laplace equation f ′′
xx+f ′′

yy =

0, then the function g(x, y) = f(x/(x2 + y2), y/(x2 + y2)), x2 + y2 > 0, also
satisfies the Laplace equation.
21. Prove that if a function f(x, t) satisfies the diffusion equation f ′

t = a2f ′′
xx,

a > 0, then the function

g(x, t) =
1

a
√

t
e−x2/(4a2t)f

( x

a2t
,− x

a4t

)

, t > 0

also satisfies the diffusion equation.
22. Prove that if f(x, y, z) satisfies the Laplace equation f ′′

xx +f ′′
yy +f ′′

zz = 0,
then the function

g(x, y, z) =
1

r
f
(a2x

r2
,
a2y

r2
,
a2z

r2

)

, r =
√

x2 + y2 + z2 6= 0,

also satisfies the Laplace equation for any real a.
23. Show that the function g(x, y) = xnf(y/x2), where f is a differentiable
function, satisfies the equation xg′x + 2yg′y = ng.

24. Show that the function g(x, y, z) = xnf(y/xa, z/xb), where f is a
differentiable function, satisfies the equation xg′x + ayg′y + bzg′z = ng.
25–27. Assume in each case below that the given equation determines z
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implicitly as a function of x and y. Find the first partial derivatives of this
function z(x, y):

25. x + 2y + 3z = ez ;
26. x − z = tan−1(yz) ;
27. x/z = ln(z/y) + 1 .

28–30. Assume in each case below that the given equation determines z
implicitly as a function of x and y. Find the second partial derivatives of
this function z(x, y):

28. x + 2y + 3z = ln z ;
29. x + z = tan−1(yz) ;
30. zx = eyz .

31–33. Verify the hypotheses of the implicit function theorem to show
that in each case below the given equation determines z implicitly as a
differentiable function of x and y in a neighborhood of the given point P0 =
(x0, y0, z0). Use the linearization to approximate the specified value of this
function z(x, y).

31. z3 − xz + y = 0 , P0 = (3,−2, 2) , z(2.8,−2.3);
32. ln z + xz − 2y = 0 , P0 = (2, 1, 1) , z(0.9, 1.2);
33. yz ln(1 + xz) − x ln(1 + zy) = 0 , P0 = (1, 1, 1), z(0.8, 1.1).

34. Find f ′
x and f ′

y where f = (x+ z)/(y + z) and z is defined implicitly by
the equation zez = xex + yey.
35. Show that the function z(x, y) defined by the equation F (x−az, y−bz) =
0, where F is a differentiable function of two variables and a and b are con-
stants, satisfies the equation az′x + bz′y = 1.
36. Let the temperature of the air at a point (x, y, z) be T (x, y, z) degrees
Celsius. Suppose that T is a differentiable function. An insect flies through
the air so that its position as a function of time t, in seconds, is given by
x =

√
1 + t, y = 2t, z = t2 − 1. If T ′

x(2, 6, 8) = 2, T ′
y(2, 6, 8) = −1, and

T ′
z(2, 6, 8) = 1, how fast is the temperature rising (or decreasing) on the

insect’s path as it flies through the point (2, 6, 8)?
37. Let the concentration of a chemical in a medium at a point (x, y, z)
be f(x, y, z) gram per cubic centimeter. Suppose that f is a differentiable
function. Let the curve C be the intersection of the surfaces z = xy/a,
y = x2/b, where (x, y, z) are given in centimeters and a = b = 1 cm. Find
the rate of change of the concentration of the chemical along the curve C at
the point (2, 4, 8) in the direction away from the origin if the rates of change
along the coordinate axes are f ′

x(2, 4, 8) = 1 g/cm4, f ′
y(2, 4, 8) = 2 g/cm4,

and f ′
z(2, 4, 8) = −1 g/cm4.

38. Assume f = f(x, y, z) to be a differentiable function. Put x = 2uv, y =
u2 − v2 + w, z = u3vw. Find the partial derivatives f ′

u, f ′
v , and f ′

w at the
point u = v = w = 1, if f ′

x = a, f ′
y = b, and f ′

z = c at (x, y, z) = (2, 1, 1).
39. Let a rectangular box have the dimensions x, y, and z that change
with time. Suppose that at a certain instant the dimensions are x = 1 m,
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y = z = 2 m, and x and y are increasing at the rate 2 m/s and z is decreasing
at the rate 3 m/s. At that instance, find the rates at which the volume, the
surface area, and the largest diagonal are changing.
40. A function is said to be homogeneous of degree n if, for any number
t, it has the property f(tx, ty) = tnf(x, y). Give an example of a poly-
nomial function that is homogeneous of degree n. Show that a homoge-
neous differentiable function satisfies the equation xf ′

x + yf ′
y = nf and that

f ′
x(tx, ty) = tn−1f ′

x(x, y).
41. Suppose that the equation F (x, y, z) = 0 defines implicitly the functions
z = z(x, y), or y = y(x, z), or x = x(y, z). Assuming that F is differentiable
and the partial derivatives F ′

x, F ′
y, and F ′

z do not vanish, prove that

∂z

∂x

∂x

∂y

∂y

∂z
= −1 .

42. Let x2 = vw, y2 = uw, z2 = uv, and f(x, y, z) = F (u, v, w). If f and F
are differentiable functions, show that xf ′

x + yf ′
y + zf ′

z = uF ′
u + vF ′

v + wF ′
w.

43. Simplify z′x secx + z′y sec y if z = sin y + f(sinx − sin y) where f is a
differentiable function.
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23. The Differential and Taylor Polynomials

23.1. The differential of multivariable functions. Given m variables r =
〈x1, x2, ..., xm〉, one can introduce another m independent variables dr =
〈dx1, dx2, ..., dxm〉 called differentials of variables r. For example, the vol-
ume of a rectangular box with dimensions x, y, and z is a function of three
variables V (x, y, z) = xyz. The dimensions of the box are measured with
errors dx, dy, and dz, respectively. The errors depend on a method of mea-
surements (e.g., rulers with different grids produce different errors). So the
errors dr = 〈dx, dy, dz〉 can be viewed as variables whose values are inde-
pendent of values of the dimensions r = 〈x, y, z〉. In a way, differentials dr
can be regarded as variations of the variables r that are independent of any
particular value of r.

Definition 23.1. (Differential).
Let f be a differentiable function of m variables. The function of 2m vari-
ables, r and dr,

df(r) = f ′
x1

(r) dx1 + f ′
x2

(r) dx2 + · · ·+ f ′
xm

(r) dxm

is called the differential of f .

Note that the differential is a linear function in dr. For example, let
f(x, y) = x sin(xy). It is differentiable everywhere and its differential reads

df(x, y) = f ′
x(x, y)dx + f ′

y(x, y)dy

=
(

sin(xy) + xy cos(xy)
)

dx + x2 sin(xy) dy .

Similarly, the differential of a function of three variables (x, y, z) is a function
of 6 variables, (x, y, z) and (dx, dy, dz). For example, let

f(x, y, z) = x3y + 2y2z2 + xz .

Then

df(x, y, z) = f ′
x(x, y, z)dx + f ′

y(x, y, z)dy + f ′
z(x, y, z)dz

= (3x2y + z)dx + (x3 + 4yz2)dy + (4y2z + x)dz .

Geometrical significance of the differential. Consider the graph y = f(x) of
a function f of a single variable x (see Fig. 23.1 (left panel)). The differential

df(x0) = f ′(x0)dx

at a point x = x0 determines the increment of y along the tangent line

y = L(x) = f(x0) + f ′(x0)(x− x0)

as x changes from x0 to x0 + ∆x where ∆x = dx:

dy = L(x0 + dx)− L(x0) = f ′(x0)dx = df(x0) .
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y = f(x)
y = L(x)

f(x0 + ∆x)

∆yf(x0) df

dx
x0 x0 + ∆x

z = f(x, y)

∆z

df

z = L(x, y)
z = z0dxdy

Figure 23.1. Geometrical significance of the differential.
Left: The differential of a function of one variable. It defines
the increment of y along the tangent line y = L(x) to the
graph y = f(x) at (x0, y0), y0 = f(x0), when x changes from
x0 to x0 + ∆x where dx = ∆x. As ∆x → 0, the difference
∆y − df tends to 0 faster than ∆x. Right: The differential
of a function of two variables. It defines the increment of
z along the tangent plane z = L(x, y) to the graph z =
f(x, y) at (x0, y0, z0), z0 = f(x0, y0), when (x, y) changes
from (x0, y0) to (x0 + ∆x, y0 + ∆y) where dx = ∆x and
dy = ∆y. The difference ∆z − df tends to 0 faster than
‖∆r‖ =

√

(∆x)2 + (∆y)2 as ‖∆r‖ → 0.

If ∆y = f(x0 + ∆x)− f(x0) is the increment of y along the graph y = f(x),
then with dx = ∆x one has

∆y − df(x0) = ∆y − f ′(x0)∆x =

(

∆y

∆x
− f ′(x0)

)

∆x

= ε(∆x)∆x , ε(∆x) → 0 , ∆x → 0 ,

because ∆y/∆x → f ′(x0) as ∆x → 0. Thus, the difference ∆y − df tends
to zero faster than ∆x. Therefore, for any differentiable function f :

f(x0 + dx) = f(x0) + df(x0) + ε(dx)dx

= f(x0) +
(

f ′(x0) + ε(dx)
)

dx ,

where ε(dx) → 0 as dx → 0. This shows that for dx small enough, ε(dx) can
be neglected as compared to the number f ′(x0) 6= 0 and the values of f near
x0 are well approximated by f(x0)+df(x0). The error of the approximation
ε(dx)dx tends to zero faster than dx.

Similarly, the differential df(x0, y0) of a function of two variables at a
point P0 = (x0, y0) determines the increment of z along the tangent plane

z = L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + f ′
y(x0, y0)(y − y0)

to the graph z = f(x, y) at the point (x0, y0, f(x0, y0)), when (x, y) changes
from (x0, y0) to (x0 + ∆x, y0 + ∆y) where dx = ∆x and dy = ∆y:

L(x0 + dx, y0 + dy)− L(x0, y0) = fx(x0, y0)dx + f ′
y(x0, y0)dy = df(x0, y0)



23. THE DIFFERENTIAL AND TAYLOR POLYNOMIALS 337

as depicted in the right panel of Fig. 23.1. The increment of the function
along its graph is

∆z = f(x0 + dx, y0 + dy)− f(x0, y0) .

Since f is differentiable and, hence, has a good linear approximation (see
(21.3)), the difference ∆z− df(x0, y0) tends to zero faster than the distance

dr =
√

(dx)2 + (dy)2 as dr → 0. Therefore, similarly to the one-variable
case, the differential defines the linearization of the function and approx-
imates variations of values of the function in a neighborhood of a given
point,

f(x0 + dx, y0 + dy) = f(x0, y0) + df(x0, y0) + ε(dx, dy)dr ,

where ε(dx, dy) → 0 as dr =
√

(dx)2 + (dy)2 → 0.
It is now straightforward to generalize the relation between the differen-

tial and the linearization to functions of any number of variables. Let L(r)
be the linearization of a function f at a point r0. Then

L(r0 + dr) = f(r0) + df(r0) .

By differentiability of f (see (21.3)), the differential approximates variations
of values of f in a neighborhood of a given point

f(r0 + dr) = f(r0) + df(r0) + ‖dr‖ε(dr)
where the error of the approximation ‖dr‖ε(dr) tends to 0 faster than ‖dr‖
because ε(dr) → 0 as dr → 0. In other words, the differential determines
variations of a differentiable function f under variations dr of its argument,
when higher powers ‖dr‖p, p > 1, can be neglected as compared to ‖dr‖.

Example 23.1. Find df(x, y) if f(x, y) =
√

1 + x2y. In particular,
evaluate df(1, 3) for (dx, dy) = (0.1,−0.2). What is the significance of this
number?

Solution: The function has continuous partial derivatives in a neighbor-
hood of (1, 3) and hence is differentiable at (1, 3). One has

df(x, y) = f ′
x(x, y)dx + f ′

y(x, y)dy =
xydx

√

1 + x2y
+

x2dy

2
√

1 + x2y
.

Then

df(1, 3) =
3

2
dx +

1

4
dy = 0.15− 0.05 = 0.1

The number f(1, 3) + df(1, 3) defines the value of the linearization L(x, y)
of f at (1, 3) for (x, y) = (1 + dx, 3 + dy). It can be used to approximate

f(1 + dx, 3 + dy) when ‖dr‖ =
√

(dx)2 + (dy)2 are small enough (small in
comparison with, e.g., ‖dr‖2):

f(1 + dx, 3 + dy) ≈ L(1 + dx, 3 + dy) = f(1, 3) + df(1, 3)
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In particular, a calculator gives f(1 + 0.1, 3−0.2)− f(1, 3) = 0.09476 which
is to be compared with df(1, 3) = 0.1. Note that in this case (dx)2 = 0.01
and (dy)2 = 0.04 are nearly tenfold smaller than dx and dy. �

23.2. Applications to the Error Analysis. If a quantity f depends on sev-
eral other quantities, say, x, y, and z, for definitiveness, i.e., f is a function
f(x, y, z). Suppose measurements show that x = x0, y = y0, and z = z0.
Since in practice all measurements contain errors, the value f(x0, y0, z0) does
not have much of practical significance until its error is determined.

For example, the volume of a rectangular box with dimensions x, y, and
z is the function of three variables

V (x, y, z) = xyz .

In practice, repetitive measurements give the values of x, y, and z from
intervals

x0 − δx ≤ x ≤ x0 + δx, y0 − δy ≤ y ≤ y0 + δy, z0 − δz ≤ z ≤ z0 + δz,

where r0 = 〈x0, y0, z0〉 are the mean values of the dimensions for all mea-
surements, while δr = 〈δx, δy, δz〉 are upper bounds of the absolute errors or
the maximal uncertainties of the measurements. To indicate the maximal
uncertainty in the measured quantities, one writes

x = x0 ± δx , y = y0 ± δx , z = z0 ± δz .

Different methods of the length measurement would have different absolute
error bounds (or maximal uncertainties). In other words, the dimensions x,
y, and z and the bounds δx, δy, and δz are all independent variables. The
values of the dimensions obtained in each measurement are

x = x0 + dx , y = y0 + dy , z = z0 + dz ,

where the differentials (dx, dy, dz) (or small variations) take their values in
the intervals

−δx ≤ dx ≤ δx, −δy ≤ dy ≤ δy, −δz ≤ dz ≤ δz .

Let Rδ be the rectangular box spanned by all such values of dr = 〈dx, dy, dz〉.
The question arises:

Given the mean values r0 = 〈x0, y0, z0〉 and the absolute error bounds δr,
what is the absolute error bound of the volume value calculated at r0?

For each particular measurement, the error is

V (r0 + dr)− V (r0) = dV (r0)

assuming that terms tending to 0 faster than ‖dr‖ can be neglected (errors
of measurements are assumed to be small, at least, one wishes so). The
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components of dr are independent variables taking their values in the rect-
angular box Rδ. Then the maximal uncertainty of the calculated value of
the volume is

δV = max
Rδ

|dV (r0)| ,

where the maximum is taken over all dr in Rδ. For example, if r0 = 〈1, 2, 3〉
is in centimeters and δr = 〈1, 1, 1〉 is in millimeters, then the absolute error
of the volume is

δV = max
Rδ

|dV (r0)| = max
Rδ

|y0z0 dx + x0z0 dy + x0y0 dz|

= max
Rδ

|6dx + 3dy + 2dz| = 0.6 + 0.3 + 0.2 = 1.1 cm3

V = V (r0) ± δV = 6± 1.1 cm3 .

Here the maximum is reached at dx = dy = dz = ±0.1 cm. The above
analysis of error bounds can be generalized.

Definition 23.2. (Absolute and Relative Error Bounds).
Let f be a quantity that depends on other quantities r = 〈x1, x2, ..., xm〉 so
that f = f(r) is a differentiable function. Suppose that the values xi = ai

are known with the absolute error bounds δxi. Put r0 = 〈a1, a2, ..., am〉,
dr = 〈dx1, dx2, ..., dxm〉, and

δf = max
Rδ

|df(r0)| , Rδ = {dr | − δxi ≤ dxi ≤ δxi , i = 1, 2, ...,m} .

where the maximum is taken over all the rectangular box Rδ. The number
δf is called the absolute error bound of the value of f at r = r0. If, in
addition, f(r0) 6= 0, then the number

ε =
δf

|f(r0)|
× 100%

is called the relative error bound of the value of f at r = r0.

In the above example, the relative error bound of the volume measure-
ments is ε = (1.1/6)× 100% ≈ 18%. The values of each term in the linear
function

df(r0) =

m
∑

i=1

f ′
xi

(r0) dxi

lie in the interval

−|f ′
xi

(r0)|δxi ≤ f ′
xi

(r0) dxi ≤ |f ′
xi

(r0)|δxi , i = 1, 2, ...,m

where the boundary values are reached when dxi = ±δxi. Taking the sum
over i in this inequality it is concluded that |df(r0)| attains its maximal value
on Rδ when dxi = δxi for all i for which the coefficient f ′

xi
(r0) is positive
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and dxi = −δxi for all i for which the coefficient f ′
xi

(r0) is negative. So the
absolute error bound can be written in the form

δf =

m
∑

i=1

|f ′
xi

(r0)| δxi.

23.3. Accuracy of a Linear Approximation. Values of a differentiable func-
tion f(x) near x0 can be well approximated by its linearization:

f(x0 + dx) ≈ f(x0) + df(x0) = f(x0) + f ′(x0)dx ,

where dx denotes a variation of the variable x near x0. Suppose f is differ-
entiable many times. The following questions are of interest.

• Can one estimate the error bound of the linear approximation?
• Can one systematically improve an approximation of f near x0?

These questions are answered by the Taylor theorem studied in Calculus I
and II. It asserts that if f(x) has continuous derivatives up to order n on an

interval I containing x0 and f (n+1) exists and is bounded on I, |f (n+1)(x)| ≤
Mn+1 for some constant Mn+1, then

f(x) = Tn(x) + εn(x) ,

Tn(x) = f(x0) +
f ′(x0)

1!
∆x +

f ′′(x0)

2!
(∆x)2 + · · ·+ f (n)(x0)

n!
(∆x)n ,

|εn(x)| ≤ Mn+1

(n + 1)!
|∆x|n+1 , ∆x = x − x0 .(23.1)

The polynomial Tn(x) is called the Taylor polynomial of degree n about x0.
The remainder εn(x) determines the absolute error of the nth-order Taylor
polynomial approximation f(x) ≈ Tn(x).

Suppose one wants to approximate the values of a function f in an
interval

I : x0 − δx ≤ x ≤ x0 + δx

for some δx > 0. The function f is assumed to have sufficiently many
continuous derivatives in this interval. Put

x = x0 + dx , |dx| ≤ δx .

The differential dx determines variations of the argument of f near x0 and
δx is the upper bound of these variations. Let us write an explicit form of a
few first Taylor polynomials about the point x0 (with x− x0 = dx) and the
upper bound of the error of the corresponding approximation of the function
f in the interval I :

T0(x0 + dx) = f(x0) ,

|f(x0 + dx)− T0(x0 + dx)| ≤ M1|dx| , M1 = max
I

|f ′(x)|

The zero-degree Taylor polynomial is a constant T0(x) = f(x0). It approx-
imates the values of f in the interval I by the value f(x0). Naturally, the
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maximal error of such an approximation is determined by the maximal slope
M1 of f in the interval I .

A better approximation is obtained if the rate of change of f at x0 is
taken into account. This is achieved by the tangent line approximation
which is also the first-order Taylor polynomial approximation:

T1(x0 + dx) = f(x0) + f ′(x0)dx = f(x0) + df(x0) ,

|f(x0 + dx) − T1(x0 + dx)| ≤ 1

2
M2|dx|2 , M2 = max

I
|f ′′(x)|(23.2)

Equation (23.2) answers the question about the accuracy of the tangent
line approximation. If the second derivative of f is bounded, then the error
of the tangent line approximation decreases quadratically with decreasing
the distance from the point in a neighborhood of which the function is
approximated.

Naturally, an even better approximation can be obtained if, in addition
to the slope, the concavity of the approximated function is taken into ac-
count. This is done by the second-order Taylor polynomial approximation:

T2(x0 + dx) = f(x0) + f ′(x0)dx +
f ′′(x0)

2!
(dx)2 ,

|f(x0 + dx) − T2(x0 + dx)| ≤ M3

6
|dx|3 , M3 = max

I
|f ′′′(x)| .

Now the error of the approximation decreases with decreasing the distance
|dx| even faster.

For a constant function, the zero-order Taylor polynomial approximation
about any point is exact (it has no error). For a linear function, the first-
order Taylor polynomial approximation about any point is exact because
a linear function is uniquely determined by its value and the slope at a
point. The second-order Taylor polynomial approximation of a quadratic
polynomial about any point is also exact (a quadratic polynomial has a
constant (fixed) concavity and, hence, is uniquely determined by the value
of the concavity and by its value and the slope at a point):







f ′′(x) = a
f ′(x0) = b
f(x0) = c

⇔ f(x) = c + b(x− x0) +
1

2
a2(x − x0)

2 .

It is not difficult to see that the Taylor polynomial of degree n for a poly-
nomial of the same degree about any point coincides with that polynomial.
A polynomial of degree n has a constant nth derivative and therefore can
be uniquely reconstructed from the value of f (n)(x) = a (by taking n an-
tiderivatives), provided the values of the polynomial and the values of its
derivatives up to order n − 1 are given at a particular point (to determine
the integration constants). The reconstructed polynomial coincides with the
Taylor polynomial.
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Let us introduce shorter (more convenient) notations for Taylor polyno-
mials. The differential df can be viewed as the result of the action of the
operator d on a differentiable function f :

d = dx
d

dx
: f(x) → df(x) = dx

df(x)

dx
= f ′(x)dx

that is, the action of d on f means taking the derivative of f at a point
x and multiplying the result by an independent variable dx. A repetitive
action of the operator d on f produces higher-order differentials of f . The
nth differential of f is defined by the rule

dnf(x) = f (n)(x)(dx)n =

(

dx
d

dx

)n

f(x)

where the action of the powers dn on f is understood as successive actions
of the operator d, dnf = dn−1(df), in which the variables dx and x are
independent. For example,

d2f(x) = d(df(x)) = dx
∂

∂x

(

f ′(x)dx
)

= (dx)2
∂

∂x
f ′(x) = (dx)2f ′′(x) .

Then the Taylor polynomials about x0 can be written as

Tn(x0 + dx) = f(x0) +
1

1!
df(x0) +

1

2!
d2f(x0) + · · ·+ 1

n!
dnf(x0) ,

where x = x0 + dx or dx = x − x0, and n = 1, 2, .... An upper bound of
errors of the nth order Taylor polynomial approximation in the interval I is

|f(x0 + dx)− Tn(x0 + dx)| ≤ Mn+1

(n + 1)!
|dx|n+1 ,(23.3)

Mn+1 = max
I

|f (n+1)(x)| .

It is desirable to find a convenient way to estimate the Taylor approximation
error, avoiding the calculation of constants Mn.

An estimate of the Taylor approximation error. Let us estimate first the
absolute error of the linear approximation. Put |dx| ≤ δx and I = [x0 −
δx, x0+δx]. Suppose in addition that f ′′′(x) is continuous on I . By the mean
value theorem (Calculus 1), for any continuously differentiable function g(x)
on I there exists a point x∗ between x0 and x0 + dx such that

g(x0 + dx)− g(x0) = g′(x∗)dx ⇒ g(x0 + dx) = g(x0) + g′(x∗)dx .

In particular, set g(x) = f ′′(x) and use |A + B| ≤ |A| + |B| to obtain

|f ′′(x0 + dx)| ≤ |f ′′(x0)|+ |f ′′′(x∗)||dx|
≤ |f ′′(x0)|+ M3|δx| , M3 = max

I
|f ′′′(x)| .

The latter inequality holds for any dx in the left side. Therefore

M2 = max
I

|f ′′(x)| ≤ |f ′′(x0)| + M3δx
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because |dx| ≤ δx. For small enough variations of dx (small enough δx), the
second term in the right side is much smaller than the first one so that M2

can be approximated by |f ′′(x0)|: M2 ≈ |f ′′(x0)|. The absolute error of the
linear approximation can therefore be estimated as

ε1 = |f(x0 + dx)− T1(x0 + dx)| = |f(x0 + dx)− f(x0) − df(x0)|

≤ M2

2
|dx|2 ≈ |f ′′(x0)|

2
|dx|2 =

1

2
|d2f(x0)| ,

ε1 ≈ εes
1 =

1

2
|d2f(x0)| .

Here εes
1 is an estimate of the absolute error of the linear approximation of

f near x0.
Similarly by setting g(x) = f (n+1)(x) and assuming that f has suffi-

ciently many continuous derivatives, the constant Mn+1 in Eq. (23.3) is
shown to satisfy the condition

Mn+1 ≤ |f (n+1)(x0)|+ Mn+2δx .

For small enough δx, the constant Mn+1 can be approximated by the de-
rivative |f (n+1)(x0)|. It follows from (23.3) that the absolute error of the
Taylor polynomial approximation can be estimated as

εn = |f(x0 + dx)− Tn(x0 + dx| ≈ εes
n(23.4)

εes
n =

|f (n+1)(x0)|
(n + 1)!

|dx|n+1 =
|dn+1f(x0)|

(n + 1)!

The right side of Eq. (23.4) is the term that defines the next order of the
Taylor polynomial approximation. If the current approximation is accurate,
then a “correction” to it is expected to be small.

This observation can be quantified by estimating the relative error of
the Taylor approximation

εn =
|f(x)− Tn(x)|

|f(x)| × 100% , x = x0 + dx

The top of this ratio is approximated by εes
n , while in the denominator one

can use

(23.5) f(x0 + dx) ≈ Tn(x0 + dx)

so that

(23.6) εes
n =

|dn+1f(x0)|
(n + 1)!|Tn(x0 + dx)| × 100% .

The number εes
n is easier to calculate than εn. It is expected to be close to

εn whenever the next term in the Taylor expansion is much smaller than
the previous one. For example, the linear approximation is expected to be
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accurate if the term quadratic in dx in the Taylor polynomial approximation
is small as compared to the linear one:

(23.7)
1

2
|d2f(x0)| � |df(x0)| or

|d2f(x0)|
2|df(x0)|

� 1 ,

where � stands for “much less”, and the absolute value is needed because
the values of the first and second differential may be positive or negative.
In this case, the relative error and its estimate

(23.8) ε1 ≈ εes
1 =

|d2f(x0)|
2|f(x0) + df(x0)|

× 100% .

are small.
It should be understood that a rigorous bound on the error is given in

the Taylor theorem (23.3). The proposed criteria can be used to estimate
the error by order of magnitude. If, for example, the ratio (23.7) is 0.1
or less (one can say, 0.1 � 1), then the next (second) order approximation
would only change the approximate value of the function in the next decimal
place as compared to the first order approximation.

To illustrate the above error analysis, let us estimate the number e0.6

using several Taylor polynomial approximations about 0. So, put

f(x) = ex , x0 = 0 , dx = 0.6 .

Let us write first six terms of the Taylor expansion and calculate their values
(up to d5f(x0)). Since f ′(x) = ex = f(x) so that f (n)(0) = 1,

e0.6 ≈ 1 + dx +
(dx)2

2
+

(dx)3

6
+

(dx)4

24
+

(dx)5

120
= 1 + 0.6 + 0.18 + 0.036 + 0.0054 + 0.000648

= 1.822058

The exact value (rounded to the same decimal place) is 1.822119. Let us
compare the exact and approximate values of the relative errors for a few
Taylor approximations, keeping two first significant digits:

εes
0 = 60% , εes

1 = 11% , εes
2 = 2.0% , εes

3 = 0.30% , εes
4 = 0.036%

ε0 = 45% , ε1 = 12% , ε2 = 2.3% , ε3 = 0.34% , ε4 = 0.039%

So, the estimate of the relative error is not far off, εes
n ≈ εn.

So, the Taylor polynomial approximations provide a systematic way to
approximate a function in a neighborhood of a point if the function has
sufficiently many continuous derivatives in that neighborhood. It is therefore
desirable to develop an analogous method for functions of several variables.

Remark. There are differentiable functions that cannot be approximated
by Taylor polynomials at some points. For example, the function

f(x) = exp
(

− 1

x2

)

, x 6= 0; f(0) = 0 ,
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is differentiable at x = 0 any number of times (as it is at any other point).
Using the definition of the derivative as the limit, it is not difficult to show
recursively for n = 1, 2, ... that

f (n)(0) = 0 ⇒ dnf(0) = 0 , n = 1, 2, ... ,

(this is left to the reader as an exercise). Therefore all Taylor polynomials
for f about x = 0 identically vanish in any neighborhood of x = 0. On
other hand, the function is not zero for a non-zero value of its argument.
Hence, f(x) cannot be approximated by Taylor polynomials about x = 0. Of
course, Taylor approximations exist about any x0 6= 0 because dnf(x0)) 6= 0
for all n if x0 6= 0.

23.4. Taylor Polynomials of Two Variables. Let f be a function of two
variables x and y and the differentials dx and dy be another two independent
variables. By the analogy with the one-variable case, the differential df is
viewed as the result of the action of the operator d on f :

df(x, y) =

(

dx
∂

∂x
+ dy

∂

∂y

)

f(x, y) = dxf ′
x(x, y) + dyf ′

y(x, y) .

The operator d has the same properties as the differential (e.g., the product
and quotient rules):

d(f + g) = df + dg , d(fg) = dfg + fdg , d

(

f

g

)

=
dfg − fdg

g2

for any two differentiable functions f and g (g 6= 0 in the quotient rule).

Definition 23.3. Suppose that f has continuous partial derivatives up
to order n. The quantity

dnf(x, y) =

(

dx
∂

∂x
+ dy

∂

∂y

)n

f(x, y)

is called the nth order differential of f , where the action of powers dn on
f is defined successively dnf = dn−1(df) and the variables dx, dy, x, and y
are viewed as independent when taking partial derivatives.

The differential dnf is a function of 4 variables dx, dy, x, and y. For
example,

d2f =

(

dx
∂

∂x
+ dy

∂

∂y

)2

f =

(

dx
∂

∂x
+ dy

∂

∂y

)

(dxf ′
x + dyf ′

y)

=

(

(dx)2
∂

∂x
+ dxdy

∂

∂y

)

f ′
x +

(

dxdy
∂

∂x
+ (dy)2

∂

∂y

)

f ′
y

= f ′′
xx(dx)2 + 2f ′′

xydxdy + f ′′
yy(dy)2

By continuity of the partial derivatives, the order of differentiation is irrele-
vant (Clairaut’s theorem), f ′′

xy = f ′′
yx. The numerical coefficients at each of
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the terms are binomial coefficients: (a+b)2 = a2 +2ab+b2. Similarly, using
the binomial coefficients for the cube of the sum

(a + b)3 = a3 + 3a2b + 3ab2 + b3

the third differential is obtained:

d3f = f ′′′
xxx(dx)3 + 3f ′′′

xxy(dx)2dy + 3f ′′′
xyydx(dy)2 + f ′′′

yyy(dy)3 ,

where Clairaut’s theorem has been used again. The nth differential can be
written in the form

dnf =

n
∑

k=0

Bn
k

∂nf

∂xn−k∂yk
(dx)n−k(dy)k , Bn

k =
n!

k!(n − k)!

where Bn
k are the binomial coefficients:

(a + b)n =

n
∑

k=0

Bn
k an−kbk .

Example 23.2. Find d2f if f(x, y) = x2y + y3.

Solution: The function is a polynomial and hence has continuous partial
derivatives of any order. In particular,

f ′′
xx = 2y

f ′′
xy = 2x

f ′′
yy = 6y

⇒
d2f = f ′′

xx(x, y)(dx)2 + 2f ′′
xy(x, y)dxdy + f ′′

yy(x, y)(dy)2

= 2y(dx)2 + 4xdxdy + 6y(dy)2 .

�

Example 23.3. Find dnf if f(x, y) = eax+by where a and b are con-
stants.

Solution: Note first that the function is the composition f(x, y) = eu

where u = ax + by. If f(x, y) = g(u) where u is a function of (x, y), then by
the product rule for the operator d

df = g′(u)du , d2f = d(g′(u)du) = g′′(u)(du)2 + g′(u)d2u .

So by successive actions of the operator d, the differentials of f can be
expressed in terms of the differentials of u. In the case considered, u is a
linear function and therefore all second partial derivatives are identically
zero (and so are all higher-order partial derivatives). Therefore dnu = 0 for
all n ≥ 2. Or, notice that du = adx + bdy does not depend on (x, y) and
hence d2u = d(du) = 0. It is then concluded that

df = eudu ⇒ d2f = eu(du)2

⇒ dnf = eu(du)n = eax+by(adx + bdy)n ,

for all n. �
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Definition 23.4. (Taylor polynomials of two variables)
Let f have continuous partial derivatives up to order n. The Taylor polyno-
mial of degree n about a point (x0, y0) is

Tn(x, y) = f(x0, y0) +
1

1!
df(x0, y0) +

1

2!
d2f(x0, y0) + · · ·+ 1

n!
dnf(x0, y0)

where dx is set to x − x0 and dy to y − y0 after taking the differentials.

The first four Taylor polynomials are

T0(r) = f(r0),

T1(r) = f(r0) + f ′
x(r0) dx + f ′

y(r0) dy ,

T2(r) = T1(r) +
f ′′
xx(r0)

2
(dx)2 + f ′′

xy(r0) dxdy +
f ′′
yy(r0)

2
(dy)2,

T3(r) = T2(r) +
f ′′′
xxx(r0)

6
(dx)3 +

f ′′′
xxy(r0)

2
(dx)2dy

+
f ′′′
xyy(r0)

2
dx(dy)2 +

f ′′′
yyy(r0)

6
(dy)3 ,

where r = 〈x, y〉, r0 = 〈x0, y0〉, dx = x − x0, and dy = y − y0. The
linearization of f at r0 coincides with the first-degree Taylor polynomial
T1(r).

23.5. Multivariable Taylor Polynomials. For more than two variables, Tay-
lor polynomials are defined similarly. Let

r = 〈x1, x2, ..., xm〉 , dr = 〈dx1, dx2, ..., dxm〉 .

Suppose that a function f has continuous partial derivatives up to order n.
The nth order differential of f(r) is defined by

dnf(r) =

(

dx1
∂

∂x1
+ dx2

∂

∂x2
+ · · ·+ dxm

∂

∂xm

)n

f(r)

where the variables r and dr are viewed as independent when differentiating.
For example,

d2f(r) =

m
∑

j=1

m
∑

i=1

f ′′
xjxi

(r) dxjdxi ,

d3f(r) =

m
∑

k=1

m
∑

j=1

m
∑

i=1

f ′′′
xkxjxi

(r) dxkdxjdxi .

Owing to continuity of the partial derivatives and Clairaut’s theorem, some
of the terms in these multiple sums are identical. Numerical coefficients at
the equal terms are the multivariable analog of the binomial coefficients that
appear in the expansion of (a1 + a2 + · · ·+ am)n, n = 2, 3, ....

The Taylor polynomial of degree n about a point r0 is

Tn(r) = f(r0) +
1

1!
df(r0) +

1

2!
d2f(r0) + · · ·+ 1

n!
dnf(r0)
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where dr is set to r−r0 after calculating the differentials. Taylor polynomials
are partial sum of the power series:

f(r0) +
∞
∑

n=1

dnf(r0)

n!
, dr = r − r0 ,

which is called the Taylor series for f about a point r0. If the series converges
to f(r) in some neighborhood of r0:

f(r) = f(r0) +

∞
∑

n=1

dnf(r0)

n!
, dr = r − r0 ,

then the series is called a power (Taylor) series representation of f near r0.

23.6. Multivariable Taylor polynomial approximations.

Theorem 23.1. (Taylor Theorem)
Let D be an open ball centered at r0 and let the partial derivatives of a
function f be continuous up to order n on D. Then

f(r) = Tn(r) + εn(r)

and the reminder εn satisfies the condition

|εn(r)| ≤ hn(r)‖r− r0‖n where hn(r) → 0 as r → r0

If n = 1, then T1(r) = L(r) is the linearization of f at r0. The Taylor
theorem merely states that a function with continuous partial derivatives
has a good linear approximation. This is a simple consequence of Theorem
21.3 (the continuity of partial derivatives ensures differentiability of f at r0,
and, hence, the existence of a good linear approximation). For n ≥ 2, it
states that the approximation of f by the Taylor polynomial Tn is a good
approximation in the sense that the error decreases faster than ‖r − r0‖n.
Consequently, the relative error of the approximation

(23.9) εn =
|εn(r)|
|f(r)| × 100% =

|f(r)− Tn(r)|
|f(r)| × 100%

is expected to get smaller with increasing n for r close to r0 (assuming that
f(r) 6= 0).

So, a practical significance of the Taylor theorem is that higher-order
differentials of a function can be used to obtain successively better approxi-
mations of values of a function near a point if the function has continuous
partial derivatives of higher orders in a neighborhood of that point.

Example 23.4. Let f(x, y) =
√

1 + x2y. Find df(1, 3) and d2f(1, 3)
and use them to approximate f(1 + 0.1, 3− 0.2) by the linear and quadratic
Taylor polynomials about (1, 3). Compare the results with the exact value
(e.g., use a calculator to find it) by finding the relative errors ε1 and ε2.
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Solution: Put (dx, dy) = (0.1,−0.2). It was found in Example 23.1 that
df(1, 3) = 0.1. The second partial derivatives are obtained by the quotient
rule (see f ′

x and f ′
y in Example 23.1):

f ′′
xx(1, 3) =

y(1 + x2y)1/2 − x2y2(1 + x2y)−1/2

1 + x2y

∣

∣

∣

(1,3)
=

3

8

f ′′
xy(1, 3) =

2x(1 + x2y)1/2 − x3y(1 + x2y)−1/2

2(1 + x2y)

∣

∣

∣

(1,3)
=

5

16

f ′′
yy(1, 3) = −x4

4
(1 + x2y)−3/2

∣

∣

∣

(1,3)
= − 1

32

Therefore

d2f(1, 3) = f ′′
xx(1, 3)(dx)2 + 2f ′′

xy(1, 3)dxdy + f ′′
yy(1, 3)(dy)2

=
3

8
(dx)2 +

5

8
dxdy − 1

32
(dy)2 = −0.01

The linear approximation gives

f(1 + dx, 3 + dy) ≈ f(1, 3) + df(1, 3) = 2 + 0.1 = 2.1 .

The approximation by the quadratic Taylor polynomial about (1, 3) gives

f(1 + dx, 3 + dy) ≈ f(1, 3) + df(1, 3) +
1

2
d2f(1, 3)

= 2.1− 0.01/2 = 2.095 .

The exact (calculator) value is f(1 + dx, 3 + dy) = 2.0948 rounded to 4
decimal places. The relative errors (rounded to two significant digits) of the
obtained Taylor approximations are

ε1 =
|2.0948− 2.1|

2.0948
× 100% = 0.25% ,

ε2 =
|2.0948− 2.095|

2.0948
× 100% = 0.0095% .

Evidently, the quadratic approximation is better than the linear approxima-
tion. �

Just like in the one-variable case, it is desirable to have a simple method
to estimate the relative error of Taylor approximations. The Taylor theorem
does not allow to do so because the function hn remains unknown. However,
if the function has sufficiently many continuous partial derivatives, an upper
bound on hn can be obtained.

Suppose that one wishes to approximate a function f in a ball of radius
δ centered at r0:

Bδ : r = r0 + dr , ‖dr‖ ≤ δ .

Let us first consider the two-variable case, r = 〈x, y〉. The following conse-
quence of the Taylor theorem can be proved.
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Corollary 23.1. (Error bound of the linear approximation)
Suppose that a function f has continuous partial derivatives in an open disk
Bδ = {r | ‖r − r0‖ ≤ δ and the second partial derivatives exist and are
bounded on Bδ:

|f ′′
xx| ≤ M20 , |f ′′

xy| ≤ M11 , |f ′′
yx| ≤ M11 , |f ′′

yy| ≤ M02 ,

all points in Bδ. Let T1(r) = L(r) be the linearization of f at r0. Put
r = r0 + dr. Then

|f(r)− L(r)| ≤ 1

2

(

M20(dx)2 + 2M11|dxdy|+ M02(dy)2
)

≤ M2

2
‖dr‖2 ≤ 1

2
M2δ

2(23.10)

for all r in D, where M2 = M20 + 2M11 + M02

Inequality (23.10) follows from |dx| ≤ ‖dr‖ and similarly for the variable y.
It is the two-variable analog of (23.2) in the one-variable case. If f has more
continuous partial derivatives, then a two-variable analog of (23.3) can also
be established from the Taylor theorem.

Corollary 23.2. (Error Bound of Taylor Polynomial Approximations)
If, in addition to the hypotheses of Theorem 23.1, the function f has partial
derivatives of order n+1 that are bounded on Bδ; that is, there exist numbers
Mkn+1, k = 0, 1, 2, ..., n + 1, such that

∣

∣

∣

∣

∂n+1f(x, y)

∂xn+1−k∂yk

∣

∣

∣

∣

≤ Mkn+1 , r = r0 + dr , ‖dr‖ ≤ δ .

Then the remainder satisfies

|εn(r)| ≤
n+1
∑

k=0

Bn+1
k Mkn+1

(n + 1)!
|dx|n+1−k|dy|k ,

where Bn+1
k = (n + 1)!/(k!(n + 1 − k)!) are binomial coefficients.

The upper bound for the error can be simplified a little bit. Note |dx| ≤
‖dr‖ and |dy| ≤ ‖dr‖. Hence, |dx|n+1−k|dy|k ≤ ‖dr‖n+1. Making use of this
inequality, one infers that

(23.11) |εn(r0 + dr)| ≤ Mn+1

(n + 1)!
‖dr‖n+1,

where the constant Mn+1 =
∑n+1

k=0 Bn+1
k Mkn+1. Inequality (23.11) is a two-

variable analog of (23.3).
There are natural extensions of Corollaries 23.1 and 23.2 to multivariable

functions. In fact, (23.11) remains valid for any number of variables, where
the calculation of the constant Mn+1 is changed. Finding an upper bound
for the error of Taylor polynomial approximations requires bounds on partial
derivatives of f in a neighborhood of a point. This is not generally an easy
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task. So, just like in the one-variable case, one has to establish a simple
practical way to estimate the error of Taylor approximations.

Error estimates for multivariable Taylor approximations. Suppose that f
has sufficiently many continuous partial derivatives in the ball Bδ (intro-
duced above). In contrast to the hypotheses of Corollary 23.2, the partial
derivatives of order n + 1 are assumed to be not only existing and bounded,
but also continuous. The latter implies that all partial derivatives up order
n + 1 are differentiable functions. This, in turns, means that any partial
derivative of order n + 1 has a good linear approximation and, hence, its
maximal value in the ball Bδ differs from its value at r0 by a term propor-
tional to the radius δ ≈ ‖dr‖ of the ball (just like in the one-variable case).
Therefore, by replacing the upper bounds Mkn+1 by the absolute values of
the corresponding partial derivatives at r0 in Corollary 23.2, the error bound
is changed by terms of order ‖dr‖n+2 which are small as compared to the
leading terms of order ‖dr‖n+1 in (23.11), provided, of course, that ‖dr‖ is
small enough.

Hence, just like in the one-variable case, the absolute error of a Taylor
polynomial approximation

f(r0 + dr) = Tn(r0 + dr) + εn(dr)

can be estimated by the (n + 1)th differential:

εn(dr) ≈ εes
n (dr) =

|d(n+1)f(r0)|
(n + 1)!

A Taylor polynomial approximation is sufficiently accurate if the next term
of the Taylor expansion is much smaller than the former one:

|d(n+1)f(r0)|
(n + 1)!

� |dnf(r0)|
n!

⇒ |d(n+1)f(r0)|
(n + 1)|dnf(r0)|

� 1 .

The relative error of the linear approximation for a function with continuous
second partial derivatives near a point r0 can be estimated as

(23.12) εes
1 =

|d2f(r0)|
2|f(r0) + df(r0)|

× 100%

If the second differential happens to be identically zero, then the next non-
zero (third) differential can be used to access the accuracy of the linear
approximation. Similarly, the relative error (23.9) of the nth order Taylor
approximation (where r = r0 + dr) is estimated as

εes
n =

|d(n+1)f(r0)|
(n + 1)!|Tn(r0 + dr)| × 100%

provided the function f has continuous partial derivatives up to order n+1.
The above analysis is not specific for functions of two variables. So, the
given estimates of the relative error of Taylor polynomial approximations
can be used for functions of any number of variables.
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Example 23.5. Find the linear and quadratic Taylor polynomials for
the function f(x, y) =

√
2 + xy about the point (x0, y0) = (2, 1). Use the

polynomials to estimate f(3, 1.5). Estimate the relative relative error of the
constant, linear, and quadratic Taylor polynomial approximations. Compare
the estimates with the exact relative error of these approximations.

Solution: Put x = 2 + dx and y = 1 + dy where dx = 1 and dy =
0.5. To estimate the relative accuracy of the quadratic Taylor polynomial
approximation, one has to calculate d3f(2, 1). To avoid computing partial
derivatives of f(x, y) up to the third order, the following technical trick is
used (compare with technicalities in Example 23.4):

f(2 + dx, 1 + dy) = 2
√

1 + du , du =
1

4
(dx + 2dy + dxdy) .

Since powers of du produce powers of dx and dy, the expansion of (1+du)1/2

in powers du gives the needed expansion in powers of dx and dy. So, put
g(u) =

√
u. Then (1 + du)1/2 = g(1 + du) and

f(2 + dx, 1 + dy) = f(2, 1) + df(2, 1) +
1

2
d2f(2, 1) +

1

6
d3f(2, 1) + · · ·

= 2g(1 + du)

= 2
(

g(1) + dg(1) +
1

2
d2g(1) +

1

6
d3g(1) + · · ·

)

= 2 + du − 1

4
(du)2 +

1

8
(du)3 + · · · ,

where the dots denotes terms (du)4 and higher. These terms can only give
contributions to d4f(2, 1) and higher as du is proportional to dx and dy.
The differentials up to order 3 are obtained by comparing the first line of
the above equalities with the last one written in powers of dx and dy:

(du)2 =
1

16

(

(dx)2 + 4dxdy + 4(dy)2 + 2(dx)2dy + 4dx(dy)2 + · · ·
)

(du)3 =
1

64
(dx + 2dy)3 + · · ·

=
1

64

(

(dx)3 + 6(dx)2dy + 12dx(dy)2 + 8(dy)3
)

+ · · · ,

where again only terms (dx)k(dy)m with n = k + m ≤ 3 (relevant for dnf ,
n ≤ 3) were kept; the terms of higher orders are denoted by dots. Collecting
terms with n = 1, 2, 3, the needed differentials of f are found:

df(2, 1) =
1

4
dx +

1

2
dy ,

1

2
d2f(2, 1) = − 1

64
(dx)2 +

3

16
dxdy − 1

16
(dy)2

1

6
d3f(2, 1) =

(dx)3

512
− 5(dx)2dy

256
− 5dx(dy)2

128
+

(dy)3

64
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Therefore the linear and quadratic Taylor polynomials are

T1(x, y) = 2 +
1

4
(x − 2) +

1

2
(y − 1) ,

T2(x, y) = T1(x, y)− 1

64
(x− 2)2 +

3

16
(x − 2)(y − 1)− 1

16
(y − 1)2

The values of the differentials and the successive Taylor approximations (up
to the cubic order) are

f(2 + dx, 1 + dy) ≈ f(2, 1) + df(2, 1) +
1

2
d2f(2, 1) +

1

6
d3f(2, 1)

= 2 + 0.5 + 0.0625− 0.015625

= 2.546875

The exact value of the function is f(2 + 1, 1 + 0.5) = 2.549510 (rounded
to the same decimal place as the approximate value). The constant, linear,
and quadratic Taylor approximations give, respectively, 2, 2.5, and 2.5625
for the value of f(3, 1.5). The estimated and exact relative errors of these
approximations rounded up to two significant digits are

εes
0 = 25% , εes

1 = 1.3% , εes
2 = 0.61%

ε0 = 27% , ε1 = 1.9% , ε2 = 0.51% , ε3 = 0.10%

Here ε3 is the relative error of the cubic Taylor polynomial approximation
(the value of d4f(2, 1) would be needed for its estimation). One can see
that the successive Taylor approximations improve the accuracy of the ap-
proximation and the estimates of the errors are close to the exact values.
�

Example 23.6. Use the linear approximation or the differential to esti-
mate the amount of aluminum in a closed aluminum can with diameter 10
cm and height 10 cm if the aluminum is 0.05 cm thick. Estimate the error
of the approximation.

Solution: The volume of a cylinder of radius r and height h is f(h, r) =
πhr2. The volume of a closed cylindrical shell (or the can) of thickness δ is
therefore

V = f(h + 2δ, r + δ)− f(h, r) ,

where h and r are the internal height and radius of the shell. Put dh =
2δ = 0.1 and dr = δ = 0.05. Then V ≈ df(10, 5). One has f ′

h = πr2 and
f ′
r = 2πhr; hence,

V ≈ df(10, 5) = f ′
h(10, 5) dh+ f ′

r(10, 5) dr = 25π dh + 100π dr

= 7.5π cm3 .

To estimate the error of the linear approximation, the value of the sec-
ond differential is needed (f is a polynomial and therefore all its partial
derivatives of any order are continuous). The second partial derivatives are
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f ′′
hh = 0, f ′′

hr = 2πr, and f ′′
rr = 2πh. Therefore the absolute error of the

approximation can be estimated by

εes
1 =

1

2
|d2f(10, 5)| = 1

2

(

20πdhdr + 20π(dr)2
)

= 0.075π cm3

The estimated relative error is

εes
1 =

εes
1

|df(10, 5)| × 100% =
|d2f(10, 5)|
2|df(10, 5)| × 100% = 1% .

�

With increasing the number of variables, calculation of higher-order dif-
ferentials of a function to find Taylor polynomials might be a technically
tedious problem. In some special cases, however, it can be avoided. The
idea has already been used in Example 23.5 for a function of two variables.
The concept is further elucidated by the following example of a function of
three variables (see also Study Problem 23.2).

Example 23.7. Find T3 for the function f(x, y, z) = sin(xy + z) about
the origin.

Solution: The Taylor polynomial T3 in question is a polynomial of degree 3
in x, y, and z, which is uniquely determined by the coefficients at monomials
of degree less or equal 3. Put u = xy + z. The variable u is small near the
origin. So the Taylor polynomial approximation for f near the origin is
determined by the Taylor polynomials for sin u about u = 0. The latter is
obtained from the Maclaurin series

sinu = u − 1

6
u3 + O(u5) ,

where O(u5) contains only monomials of degree 5 and higher. Since the
polynomial u = xy + z vanishes at the origin, its powers un may contain
only monomials of degree n and higher. Therefore T3 is obtained from

u − 1
6u3 = (xy + z) − 1

6 (xy + z)3

= z + xy − 1
6

(

z3 + 3(xy)z2 + 3(xy)2z + (xy)3
)

by retaining in the latter all monomials up to degree 3, which yields

T3(x, y, z) = z + xy − 1

6
z3 .

Evidently, the procedure is far simpler than calculating 19 partial derivatives
(up to the third order)! �
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23.7. Study Problems.

Problem 23.1. Find all Taylor polynomials for

P3(x, y) = 1 + 2x − xy + y2 + 4x3 − y2x

about (0, 0). Use this example to find all Taylor polynomials for a generic
polynomial Pk(x, y) of degree k about (0, 0).

Solution: All partial derivatives of P3 of orders higher than 3 vanish iden-
tically so dnP3 = 0 for all n > 3. Therefore Tn = T3 for all n > 3. By direct
calculation of the differentials dnP3(0, 0) for n = 1, 2, 3:

T0(x, y) = 1 ,

T1(x, y) = 1 + 2x ,

T2(x, y) = 1 + 2x − xy + y2 ,

T3(x, y) = 1 + 2x − xy + y2 + 4x3 − y2x = P3(x, y) .

Similarly, for a generic polynomial Pk, its Taylor polynomials about (0, 0)
of degree higher than k coincide with the Taylor polynomial of degree k,
Tn = Tk for all n > k, because dnPk = 0 for n > k. Any polynomial is the
sum

Pk = Q0 + Q1 + · · ·+ Qk ,

where Qj is a homogeneous polynomial of degree j = 0, 1, ..., k; it contains
only monomials of degree j. For example, the given polynomial P3 is

P3 = Q0 + Q1 + Q2 + Q3 ,

Q0 = 1 , Q1 = 2x , Q2 = −xy + y2 , Q3 = 4x3 − y2x .

For n ≤ k, the considered example suggests that the following general solu-
tion

Tn = Q0 + Q1 + Q2 + · · ·+ Qn , n = 0, 1, 2, ..., k .

Let us prove that this is indeed so.
Partial derivatives of a homogeneous polynomial of degree j are homo-

geneous polynomials of degree j − 1, where j ≥ 1. For example, (Q3)
′
x =

12x2 − y2 and (Q3)
′
y = −2xy. Consequently, second partial derivatives of

a homogeneous polynomial of degree j are homogeneous polynomials of de-
gree j − 2 if j ≥ 2. Clearly, the similar conclusion holds for higher order
derivatives up to order j and all partial derivatives of any order higher than
j vanish identically. Since only a constant homogeneous polynomial does
not vanish at the origin,

dnQj(0, 0) = 0 for all n 6= j .

Therefore for n ≤ k, the Taylor polynomial of Pk about the origin are

Tn = Q0 + dQ1(0, 0) +
1

2!
d2Q2(0, 0) + · · ·+ 1

n!
dnQn(0, 0) ,

where dx is set to x and dy to y after calculation of the differentials (because
x0 = y0 = 0). So it remains to find dnQn(0, 0) for n ≤ k. A homogeneous



356 3. DIFFERENTIATION OF MULTIVARIABLE FUNCTIONS

polynomial of degree n is the sum of monomials of degree n. Since dn(f +
g) = dnf + dng, it is sufficient to find dnQn(0, 0) for Qn = xn−pyp where
0 ≤ p ≤ n is an integer. Next note that

∂n

∂xn−q∂yq
xn−pyp

∣

∣

∣

(x,y)=(0,0)
= (n − p)!p! if q = p

and vanishes otherwise because all the derivatives of yp vanish at y = 0
except the pth derivative which is constant and equal to p! (similarly for
xn−p). Using the binomial expansion of dn, it is concluded that

Qn(x, y) = xn−pyp ⇒
1

n!
dnQn(0, 0) = Bn

p

(n − p)!p!

n!
(dx)n−p(dy)p = (dx)n−p(dy)p .

Replacing dx and dy by x − x0 = x and y − y0 = y, respectively, it follows
that Taylor polynomials of a polynomial Pk = Q0 + Q1 + · · ·+ Qk, where
Qj, j = 1, 2, ..., k, are homogeneous polynomials,

Tn = Q0 + Q1 + · · ·+ Qn , n = 0, 1, ..., k .

In particular, for the given polynomial P3, its Taylor polynomials about the
origin are T0 = 1, T1 = T0 − 2x, T2 = T1 − xy + y2, and Tk = P3 for k ≥ 3.
�

Problem 23.2. Find T1, T2 and T3 for f(x, y, z) = (1+xy)/(1+x+y2+z3)
about the origin.

Solution: The function f is a rational function. It is therefore sufficient
to find a suitable Taylor polynomial for the function (1+x+y2 + z3)−1 and
then multiply it by the polynomial 1 + xy, retaining only monomials up to
the degree 3. Put u = x + y2 + z3. Then

(1 + u)−1 = 1 − u + u2 − u3 + O(u4)

(as a geometric series), where O(u4) contains monomials of degree 4 and
higher. Note that, for n ≥ 4, the terms un contain only monomials of degree
4 and higher in variables x, y, and z and, hence, can be omitted. Up to the
degree 3, one has u2 = x2 + 2xy2 + · · · and u3 = x3 + · · · . Therefore,

(1 + xy)(1− u + u2 − u3) = (1 + xy)(1− x− y2 − z3 + x2 + 2xy2 − x3 + · · · )

and carrying out the multiplication and arranging the monomials in the
order of increasing degrees one infers:

T1(x, y, z) = 1 − x ,

T2(x, y, z) = T1(x, y, z) + x2 + xy − y2 ,

T3(x, y, z) = T2(x, y, z)− x3 − x2y + 2xy2 − z3 .

�
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Problem 23.3. (Multivariable Taylor and Maclaurin series)
Suppose that a function f has continuous partial derivatives of any order
and the reminder in the Taylor polynomial approximation f = Tn−1 + εn

near r0 converges to zero as n → ∞, i.e., εn → 0. Then the function can be
represented by the Taylor series about a point r0:

f(r) = f(r0) +

∞
∑

n=1

1

n!
dnf(r0)

where dr is set to r−r0 after calculating the differentials. The Taylor series
about r0 = 0 is called the Maclaurin series. Find the Maclaurin series of
f(x, y) = sin(xy2) and the set in which it converges.

Solution: Since the argument of the sine is the polynomial xy2, the
Maclaurin series of f can be obtained from the Maclaurin series of sinu
by setting in it u = xy2. From Calculus II,

f(r) = sin u =

∞
∑

n=1

(−1)n+1

(2n − 1)!
u2n−1 =

∞
∑

n=1

(−1)n+1

(2n − 1)!
x2n−1y4n−2 .

Since the Maclaurin series for sin u converges for all u, the above series
converges for all (x, y). �

23.8. Exercises.
1–7. Find the differential df of each of the following functions:

1. f(x, y) = x3 + y3 − 3xy(x− y) ;
2. f(x, y) = y cos(x2y) ;
3. f(x, y) = sin(x2 + y2) ;
4. f(x, y, z) = x + yz + yexyz ;
5. f(x, y, z) = ln(xxyyzz) ;
6. f(x, y, z) = y/(1 + xyz) ;

7. f(r) =
√

a2 − ‖r‖2 where a is a constant and r = 〈x1, x2, ..., xm〉 .

8. Four positive numbers, each less than 100, are rounded and then multi-
plied together. Use the differential to estimate the maximum possible error
in the computed product that might result from the rounding.
9. A boundary stripe 10 cm wide is painted around a rectangle whose di-
mensions are 50 m by 100 m. Use differentials to approximate the number of
square meters of paint in the stripe. Use the second differential to estimate
the error bound of the approximation.
10. A rectangle has sides of x = 6 and y = 8 meters. Use differentials to
estimate the change of the length of the diagonal and the area of the rec-
tangle if x is increased by 2 cm and y is decreased by 5 cm. Use the second
differential to estimate the error of the approximation.
11. Consider a sector of a disk with radius R = 20 cm and the angle
θ = π/3. Use the differential to determine how much should the radius be
decreased in order for the area of the sector to remain the same when the
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angle is increased by 1◦. Use the second differential to estimate the error of
the approximation.
12. Let the quantities f and g be measured with relative errors Rf and Rg.
Show that the relative error the product fg is the sum Rf + Rg.
13. Measurements of the radius r and the height h of a cylinder are
r = 2.2 ± 0.1 and h = 3.1 ± 0.2 in meters. Find the absolute and rela-
tive errors of the volume of the cylinder calculated from these data.
14. The adjacent sides of a triangle have the lengths a = 100 ± 2 and
b = 200 ± 5 in meters, and the angle between them is θ = 60◦ ± 1◦. Find
the relative and absolute errors in calculation of the length of the third side
of the triangle.
15. If R is the total resistance of n resistors, connected in parallel, with
resistances Rj, j = 1, 2, ..., n, then R−1 = R−1

1 + R−1
2 + · · ·R−1

n . If each
resistance Rj is known with a relative error of 0.5%, what is the relative
error of R?
16-18. Use the Taylor theorem and its consequences to find the upper
bound of the absolute error of the linear approximation of each of the fol-
lowing functions about the origin in the ball of radius R (i.e. for ‖r‖ ≤ R):

16. f(x, y) =
√

1 + sin(x + y), R = 1
2 ;

17. f(x, y) = 1+3x
2+y , R = 1 ;

18. f(x, y, z) = ln(1 + x + 2y − 3z), R = 0.1 .

19-24. Find the indicated differentials of a given function:

19. f(x, y) = x − y + x2y , dnf , n = 1, 2, ... ;
20. f(x, y) = ln(x + y) , dnf , n = 1, 2, ... ;
21. f(x, y) = sin(x) cosh(y) , d3f ;
22. f(x, y, z) = xyz , dnf , n = 1, 2, ... ;
23. f(x, y, z) = 1/(1 + xyz) , d2f ;
24. f(r) = ‖r‖ , df and d2f , where r = 〈x1, x2, ..., xm〉 .

25. Let f(r) = g(u) where u is a linear function of r, u = c + n · r where c

is a constant and n is a constant vector. Show that dnf = g(n)(u)(n · dr)n.
26. Let Qn(x, y, z) be a homogeneous polynomial of degree n (it contains
only monomials of degree n). Show that dnQn(x, y, z) = n!Qn(dx, dy, dz).
27-29. Find the Taylor polynomial T2 about a specified point P0 and a
given function:

27. f(x, y) = y + x3 + 2xy2 − x2y2, P0 = (1, 1) ;
28. f(x, y) = sin(xy), P0 = (π/2, 1) ;
29. f(x, y) = xy, P0 = (1, 1) .

30. Let f(x, y) = xy. Use Taylor polynomials T1, T2, and T3 about the
point (1, 1) to approximate f(1.2, 0.7). Compare the results of the three
approximations with the exact value of f(1.2, 0.7) by computing the relative
errors of the approximations (use a calculator value rounded to an appro-
priate number of decimal places).
31-35. Use the method of Example 23.7 and Study Problem 23.2 to find
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the indicated Taylor polynomials about the origin for each of the following
functions:

31. f(x, y) =
√

1 + x + 2y, Tn(x, y), n ≤ 2 ;
32. f(x, y) = xy

1−x2−y2 , Tn(x, y), n ≤ 4 ;

33. f(x, y, z) = sin(x + 2y + z2), Tn(x, y, z), n ≤ 3 ;
34. f(x, y, z) = exy cos(zy), Tn(x, y, z), n ≤ 4 ;
35. f(x, y) = ln(1 + x + 2y)/(1 + x2 + y2), Tn(x, y), n ≤ 2.

36-37. Find polynomials of degree 2 to calculate approximate values of the
following functions in a region in which x2 +y2 is small as compared with 1:

36. f(x, y) = cos y/ cosx ;

37. tan−1
(

1+x+y
1−x+y

)

.

38. Find a non-zero polynomial of the smallest degree to approximate a
local behavior of the function cos(x + y + z) − cos(x) cos(y) cos(z) near the
origin.
39. Let

g(r) =
1

2π

∫ 2π

0
f(x0 + r cos θ, y0 + r sin θ)dθ

where f has continuous partial derivatives up to order 4 and x0 and y0 are
constants. Find T4 about r = 0 for g(r).
40. Consider the roots z = z(x, y) of the equation F (x, y, z) = z5+xz−y = 0
near (1, 2, 1). Use Taylor polynomials T1(x, y) and T2(x, y) about (1, 2)
to approximate z(x, y). In particular, calculate the approximations z1 =
T1(0.7, 2.5) and z2 = T2(0.7, 2.5) of z(0.7, 2.5). Use a calculator to find the
values F (0.7, 2.5, z1) and F (0.7, 2.5, z2). Their deviation from 0 determines
an error of the approximations z1 and z2. Which of the approximations is
more accurate? Hint: Use the result of Study Problem 22.1.
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24. Directional Derivative and the Gradient

24.1. Directional Derivative. Let f be a function of several variables r =
〈x1, x2, ..., xm〉. The partial derivative f ′

xi
(r0) is the rate of change of f at a

point r0 in the direction of the ith coordinate axis. This direction is defined
by the unit vector êi parallel to the corresponding coordinate axis. Let û be
a unit vector that does not coincide with any of the vectors êi. What is the
rate of change of f at r0 in the direction of û? For example, if f(x, y) is the
height of a mountain, where the x and y axes are oriented along the west-
to-east and south-to-north directions, respectively, then it is reasonable to
ask about the slopes, for example, in the southeast or northwest directions.
Naturally, these slopes generally differ from the slopes f ′

x and f ′
y.

To answer the question about the slope in the direction of a unit vector
û, consider a straight line through r0 parallel to û. Its vector equation is

r(h) = r0 + hû ,

where h is a parameter that labels points of the line. The values of f along
the line are given by the composition

F (h) = f(r(h)) .

The numbers F (0) and F (h) are the values of f at a given point r0 and the
point r(h), h 6= 0, that is at the distance |h| from r0 along the line. So the
slope is given by the derivative

F ′(0) = lim
h→0

F (h) − F (0)

h
.

Therefore, the following definition is natural.

Definition 24.1. (Directional Derivative).
Let f be a function on an open set D. The directional derivative of f at
point r0 in D in the direction of a unit vector û is the limit

Duf(r0) = lim
h→0

f(r0 + hû)− f(r0)

h

if the limit exists.

The number Duf(r0) is the rate of change of f at r0 in the direction of
û. A geometrical significance of the directional derivative in the case of two-
variable function is illustrated in Fig. 24.1. Suppose that f is a differentiable
function. By definition,

Duf(r0) =
d

dh
f(r(h))

∣

∣

∣

h=0
, r(h) = r0 + hû .

Since f is a differentiable function, the chain rule applies to compute the
derivative. In the case of functions of two variables, the parametric equations
of the line through (x0, y0) and parallel to a unit vector û = 〈u1, u2〉 are

x(h) = x0 + hu1 , y(h) = y0 + hu2 .
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P0

θ
tan θ = Dûf(x0, y0)

z = f(x, y)

û
(x0, y0)

D

Figure 24.1. Geometrical significance of the directional
derivative of a function of two variables. Consider the graph
z = f(x, y) over a region D. The vertical plane (i.e. par-
allel to the z axis) through (x0, y0) and parallel to the unit
vector û intersects the graph along a curve. The slope of
the tangent line to the curve of intersection at the point
P0 = (x0, y0, f(x0, y0)) is determined by the directional de-
rivative Dûf(x0, y0). So the directional derivative defines the
rate of change of f at (x0, y0) in the direction û.

By the chain rule

d

dh
f(x(h), y(h)) = f ′

x(x(h), y(h))x′(h) + f ′
y(x(h), y(h))y′(h)

= f ′(x(h), y(h))u1 + f ′
y(x(h), y(h))u2 .

Setting h = 0 in this relation

Duf(x0, y0) = f ′
x(x0, y0)u1 + f ′

y(x0, y0)u2 .

Similarly, for any number of variables, one has

df(r(h))

dh
= f ′

x1
(r(h))x′

1(h) + f ′
x2

(r(h))x′
2(h) + · · ·+ f ′

xm
(r(h))x′

m(h) .

Setting h = 0 in this relation and taking into account that r′(h) = û or
x′

i(h) = ui, where û = 〈u1, u2, ..., um〉, the following result is proved.
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Theorem 24.1. (Directional derivative)
Suppose f is a differentiable function of several variable r = 〈x1, x2, ..., xm〉
on an open set D. Then the directional derivative of f at a point r0 in D
in the direction of unit vector û = 〈u1, u2, ..., um〉 is

(24.1) Duf(r0) = f ′
x1

(r0)u1 + f ′
x2

(r0)u2 + · · ·+ f ′
xm

(r0)um .

It is important to emphasize that:

If f has partial derivatives at r0, but is not differentiable at r0, then the
relation (24.1) is false.

An example is given in Study Problem 24.1. Note that Eq. (24.1) fol-
lows from the chain rule, but the mere existence of partial derivatives is not
sufficient for the chain rule to hold. Furthermore, Study Problem 24.1 also
illustrates the following fact:

Even if a function has directional derivatives at a point in every direction, it
may not be differentiable at that point (no good linear approximation exists
at that point).

Equation (24.1) provides a convenient way to compute the directional deriv-
ative if f is differentiable. In turn, a practical way to check differentiability
is provided by Theorem 21.3:

Equation (24.1) holds if the function f has partial derivatives in a neighbor-
hood of r0 that are continuous at r0.

The existence and continuity of partial derivatives are often easy to es-
tablish by analyzing an explicit form of the function in question (in this
regard, recall the discussion of Clairaut’s Theorem 20.1 in Section 20). If
the direction in which the rate of change of a function to be determined is
specified by a nonunit vector u, then the corresponding unit vector can be
obtained by dividing it by its length ‖u‖, that is, û = u/‖u‖.

Example 24.1. The height of a hill is f(x, y) = (9−3x2−y2)1/2, where
the x and y axes in the base of the hill are directed from west to east and from
south to north, respectively. A hiker is on the hill at a point corresponding to
the point r0 = 〈1, 2〉 in the base. Suppose the hiker is facing in the northwest
direction. What is the slope the hiker sees?

Solution: A unit vector in the plane can always be written in the form
û = 〈cosϕ, sinϕ〉, where the angle ϕ is counted counterclockwise from the
positive x axis; that is, ϕ = 0 corresponds to the east direction, ϕ = π/2
to the north direction, ϕ = π to the west direction, and so on. So for the
northwest direction ϕ = 3π/4 and û = 〈−1/

√
2, 1/

√
2〉 = 〈u1, u2〉. The
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partial derivatives,

f ′
x(x, y) = − 3x

(9 − 3x2 − y2)1/2
, f ′

y(x, y) = − y

(9 − 3x2 − y2)1/2
,

are continuous functions near the point (1, 2) (as ratios of continuous func-
tions) and hence f is differentiable at (1, 2). Since f ′

x(1, 2) = −3/
√

2 and

f ′
y(1, 2) = −2/

√
2, by (24.1), the slope is

Duf(r0) = f ′
x(1, 2)u1 + f ′

y(1, 2)u2 = 3/2− 1 = 1/2 .

If the hiker goes northwest, he has to climb up one unit of length per two
units of length forward. �

Example 24.2. Find the directional derivative of f(x, y, z) = x2+3xz+
z2y at the point (1, 1,−1) in the direction toward the point (3,−1, 0). Does
the function increase or decrease in this direction?

Solution: Put r0 = 〈1, 1,−1〉 and r1 = 〈3,−1, 0〉. Then the vector u =
r1 − r0 = 〈2,−2, 1〉 points from the point r0 toward the point r1 according
to the rules of vector algebra. But it is not a unit vector because its length
is ‖u‖ = 3. So the unit vector in the same direction is

û = 1
3u = 〈 2

3 ,−2
3 , 1

3 〉 = 〈u1, u2, u3〉 .

The partial derivatives,

f ′
x = 2x + 3z , f ′

y = z2 , f ′
z = 3x + 2zy ,

are polynomials and hence continuous everywhere so that f is differentiable
everywhere. Since f ′

x(r0) = −1, f ′
y(r0) = 1, and f ′

z(r0) = 1, by Eq. (24.1),
the directional derivative is

Duf(r0) = f ′
x(r0)u1 + f ′

y(r0)u2 + f ′
z(r0)u3 = −2/3 − 2/3 + 1/3 = −1 .

The directional derivative is negative and therefore the function decreases at
r0 in the direction toward r1 (the rate of change is negative in that direction).
�

24.2. Level sets of a differentiable function. Level sets of a function f of
two variables (x, y) are defined by the equation f(x, y) = k. The following
question is of interest. Under what conditions on the function f is the level
set a curve? The implicit function theorem (Theorem 22.2) allows us to
answer this question.

Let (x0, y0) be a particular point in the considered level set, that is,
f(x0, y0) = k. Suppose that f and f ′

y are continuous in an open disk D
centered at (x0, y0) and f ′

y(x0, y0) 6= 0. Then by Theorem 22.2 (where
F (x, z) = f(x, z)− k, z = y, and r is a one-dimensional vector whose single
component is x) there exists an open interval D = (a, b) that contains x0 (a
neighborhood of x0) in which the equation F (x, y) = f(x, y)− k = 0 has a
unique solution y = y(x) where y(x) is a continuous function. Therefore the
level set is the graph y = y(x) of a continuous function in a neighborhood
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of (x0, y0) or a simple curve. Furthermore, if f is differentiable, then y(x)
is differentiable and the level curve is smooth. The level curve is traversed
by the vector function r(t) = 〈t, y(t)〉 and r′(t) = 〈1, y′(t)〉 6= 0 (the unit
tangent vector to the graph exists and is continuous). If f ′

y(x0, y0) = 0 but

f ′
x(x0, y0) 6= 0, then the equation f(x, y)− k = 0 can be solved for x = x(y)

where x(y) is continuous in an open interval containing y0. The level set
near (x0, y0) is again a graph of a continuous function, that is, a curve.

Suppose now that f is a differentiable function and has partial deriva-
tives that do not vanish simultaneously. Consider a level curve through
(x0, y0). The curve is traversed by the vector function r1(t) = 〈t, y(t)〉
if f ′

y(x0, y0) 6= 0 or by r2(t) = 〈x(t), t〉 if f ′
x(x0, y0) 6= 0. The vectors

T1 = r′1(x0) = 〈1, y′(x0)〉 and T2 = r′2(y0) = 〈x′(y0), 1〉 are tangent to
the curve at the point (x0, y0). By the implicit differentiation formula,

T1 = 〈1, y′(x0)〉 , y′(x0) = −f ′
x(x0, y0)

f ′
y(x0, y0)

if f ′
y(x0, y0) 6= 0

T2 = 〈x′(y0), 1〉 , x′(y0) = −
f ′
y(x0, y0)

f ′
x(x0, y0)

if f ′
x(x0, y0) 6= 0 .

In either case, the tangent vectors are orthogonal to the nonzero vector

n = 〈f ′
x(x0, y0) , f ′

y(x0, y0)〉
whose components are the corresponding partial derivatives of f at (x0, y0)
because

n · T1 = f ′
x(x0, y0)− f ′

x(x0, y0) = 0 ,

n · T2 = −f ′
y(x0, y0) + f ′

y(x0, y0) = 0 .

Note also that the nonzero vector T = 〈−f ′
y(x0, y0), f

′
x(x0, y0)〉 is tangent to

the level curve bacause it is orthogonal to n:

n · T = −fx(x0, y0)f
′
y(x0, y0) + fy(x0, y0)f

′
x(x0, y0) = 0 .

If the partial derivatives of f are continuous, then the components of the
tangent vector T 6= 0 are continuous functions and, hence, the level curve
is smooth. Therefore the following consequence of the implicit function
theorem holds.

Corollary 24.1. Suppose that a function f of two variables (x, y) has
continuous partial derivatives in an open disk D that do not vanish simul-
taneously anywhere in D. Then nonempty level sets f(x, y) = k are smooth
curves in D.

Now consider a level set of a function of three variables f(x, y, z) = k and
a point (x0, y0, z0) in it. If f and f ′

z are continuous in an open ball B centered
at (x0, y0, z0), then by Theorem 22.2 (where F = f − k and r = 〈x, y〉) the
equation F (x, y, z) = f(x, y, z) − k = 0 has a unique solution z = z(x, y)
which is a continuous function in an open disk D centered at (x0, y0). Thus,
the level set is the graph z = z(x, y) of a continuous function of two variable,
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that is, it is a surface (it is obtained by a continuous deformation of an open
disk in a plane). Furthermore, if f is differentiable in B, then the function
z(x, y) is also differentiable in D. In particular, it has the tangent plane at
each point. By the implicit differentiation formula the partial derivatives of
z(x, y) at a point (x0, y0, z0) of the level surface are

z′x(x0, y0) = −f ′
x(x0, y0, z0)

f ′
z(x0, y0, z0)

, z′y(x0, y0) = −
f ′
y(x0, y0, z0)

f ′
z(x0, y0, z0)

.

Therefore a normal of the tangent plane to the graph z = z(x, y) at a point
(x0, y0, z0) is

〈−z′x(x0, y0), −z′y(x0, y0), 1〉 =
1

f ′
z(x0, y0, z0)

n if f ′
z(x0, y0, z0) 6= 0 ,

n = 〈f ′
x(x0, y0, z0), f ′

y(x0, y0, z0), f ′
z(x0, y0, z0)〉 ;

it is parallel to the nonzero vector n whose components are the corresponding
partial derivatives at (x0, y0, z0).

Just like in the case of functions of two variables, the implicit function
theorem can be applied to show that a level set of a differentiable function
of three variables is a surface in a neighborhood of each point of the level set
if its partial derivatives do not vanish simultaneously anywhere. If f ′

z = 0
at a point P0, then the level set near P0 is the graph of a differentiable
function, x = x(y, z) if f ′

x(P0) 6= 0 or y = y(x, z) if f ′
y(P0) 6= 0. The

implicit differentiation formula yields that in each case the vector n is a
normal to the tangent plane to the level surface. The details similar to
the case f ′

z(P0) 6= 0 are left to the reader as an exercise. In all cases, a
normal vector to a level surface at a point P0 is parallel to the vector whose
components are the corresponding partial derivatives at P0 of the function.
Therefore, if the partial derivatives are continuous functions that do not
vanish simultaneously, then the normal n 6= 0 has continuous components
along the surface. Such (level) surfaces are called smooth. So, the following
consequence of the implicit function theorem holds.

Corollary 24.2. (Level surfaces)
Suppose that a function f of three variables (x, y, z) has continuous partial
derivatives in an open ball B that do not vanish simultaneously anywhere in
B. Then nonempty level sets f(x, y, z) = k are smooth surfaces in B.

24.3. The Gradient and Its Geometrical Significance. The vector whose
components are the corresponding partial derivatives of a differentiable func-
tion has been shown to provide an important information about the prop-
erties of the function. It is therefore convenient to give it a name.

Definition 24.2. (The Gradient).
Let f be a differentiable function of several variables r = 〈x1, x2, ..., xm〉 on
an open set D and let r0 be a point in D. The vector whose components are
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partial derivatives of f at r0,

∇f(r0) = 〈f ′
x1

(r0), f ′
x2

(r0), ... , f ′
xm

(r0)〉 ,

is called the gradient of f at the point r0.

A boldface font is used for the gradient symbol ∇ to emphasize that
the gradient is a vector. So, for two-variable functions, the gradient is a
two-dimensional vector:

f(x, y) : ∇f = 〈f ′
x, f ′

y〉 ;

for three-variable functions, the gradient is a three-dimensional vector;

f(x, y, z) : ∇f = 〈f ′
x, f ′

y, f
′
z〉 ;

and so on. Comparing (24.1) with the definition of the gradient and recalling
the definition of the dot product, the directional derivative can now be
written in the compact form

(24.2) Duf(r0) = ∇f(r0) · û .

This equation is the most suitable for analyzing the significance of the gra-
dient.

Consider first the cases of two- and three-variable functions. The gradi-
ent is either a vector in a plane or space, respectively. In Example 24.1, the
gradient at the point (1, 2) is

f(x, y) = (9− 3x2 − y2)1/2 : ∇f(1, 2) = 〈−3/
√

2,−2/
√

2〉 .

In Example 24.2, the gradient at the point (1, 1,−1) is

f(x, y, z) = x2 + 3xz + z2y : ∇f(1, 1,−1) = 〈−1, 1, 1〉 .

Recall the geometrical property of the dot product a · b = ‖a‖‖b‖ cosθ,
where θ ∈ [0, π] is the angle between the nonzero vectors a and b. The
value θ = 0 corresponds to parallel vectors a and b. When θ = π/2, the
vectors are orthogonal. The vectors point in the opposite directions if θ = π
(antiparallel vectors). Assume that ∇f(r0) 6= 0. Let θ be the angle between
the gradient ∇f(r0) and the unit vector û. Then

(24.3) Duf(r0) = ∇f(r0) · û = ‖∇f(r0)‖‖û‖ cosθ = ‖∇f(r0)‖ cosθ

because ‖û‖ = 1 (the unit vector). As the components of the gradient
are fixed numbers (the values of the partial derivatives at a particular point
r0), the directional derivative at r0 varies only if the vector û changes. Thus,

the rates of change of a differentiable function f at a point in all direc-
tions that have the same angle θ with the gradient at that point are the same.

In the two-variable case, only two such directions are possible if û is not
parallel to the gradient, while in the three-variable case the rays from r0 in
all such directions form a cone whose axis is along the gradient as depicted
in the left and right panels of Fig. 24.3, respectively. It is then concluded
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Figure 24.2. Left: The same rate of change of a differ-
entiable function of two variables at a point P0 occurs in
two directions that have the same angle with the gradient
∇f(P0).
Right: The same rate of change of a differentiable function
of three variables at a point P0 occurs in infinitely many di-
rections that have the same angle with the gradient ∇f(P0)
(they form a circular cone about the gradient).

that the rate of change of f attains its absolute maximum or minimum when
cos θ does. Therefore, the maximal rate is attained in the direction of the
gradient (θ = 0) and is equal to the magnitude of the gradient ‖∇f(r0)‖,
whereas the minimal rate of change −‖∇f(r0)‖ occurs in the direction of
−∇f(r0), that is, opposite to the gradient (θ = π).

The graph of a function of two variables z = f(x, y) may be viewed
as the shape of a hill. Then the gradient at a particular point shows the
direction of the steepest ascent, while its opposite points in the direction of
the steepest descent. In Example 24.1, the maximal slope at the point (1, 2)
is

‖∇f(r0)‖ = (1/
√

2)‖〈−3,−2〉‖ =
√

13/2 .

It occurs in the direction of 〈−3/
√

2,−2/
√

2〉 or 〈−3,−2〉 (the multiplication
of a vector by a positive constant does not change its direction). The unit
vector in the direction of the gradient corresponds to ϕ ≈ 214◦ (somewhat
in between west and southwest):

〈cos ϕ, sinϕ〉 =
1

‖∇f(r0)‖
∇f(r0) =

1√
13

〈−3,−2〉 ⇒ ϕ ≈ 214◦ .

If the hiker goes in this direction (in the direction of the steepest ascent),
he has to climb up at an angle of

tan−1(‖∇f(r0)‖) = tan−1(
√

13/2) ≈ 69◦

with the horizon. The hiker’s original direction was ϕ = 135◦, which makes
the angle 79◦ with the direction of the steepest ascent. In this direction, he
is climbing up at an angle of

tan−1(Duf(r0)) = tan−1(1/2) ≈ 27◦
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P
∇f(P )

f(x, y) = k

f(x, y) = k

∇f
∇f ∇f

C

f(x, y, z) = k

∇f(P )

P

Figure 24.3. Left: The gradient at a point P is normal
to a level curve f(x, y) = k through P of a function f of
two variables. Middle: A curve C of steepest descent or
ascent for a function f has the characteristic property that
the gradient ∇f is tangent to it. The level curves of f are
normal C. The function f increases most rapidly along C
in the direction of ∇f and f decreases most rapidly along
C in the opposite direction −∇f . Right: The gradient of a
function of three variables is normal to any curve through P
in the level surface f(x, y, z) = k. So, ∇f(P ) is a normal to
the tangent plane through P to the level surface.

with the horizon. The same slope also occurs in the direction ϕ = 214◦ +
79◦ = 293◦ at hiker’s current position (see Fig. 24.3 (left panel)).

Next, consider a level set f(x, y) = k of a differentiable function of two
variables. In Section 24.2, it has been shown that level sets are smooth
curves in an open disk D if the partial derivatives f ′

x and f ′
y are continuous

and do not vanish simultaneously anywhere in D. Furthermore, it has been
shown that the gradient n= ∇f(x0, y0) 6= 0 at a point (x0, y0) of a level
curve of f is orthogonal to a tangent vector to the level curve of f at that
point. This is often expressed by saying that the gradient of f is always
normal to the level curves of f .

This geometrical property of the gradient is illustrated in the left panel of
Fig. 24.3. Recall that a function f(x, y) can be described by a contour map,
which is a collection of level curves. Then one can define a curve through
a particular point that is normal to all level curves in some neighborhood
of that point. This curve is called the curve of steepest descent or ascent
through that point. A tangent vector of this curve at any point is parallel to
the gradient at that point. The values of the function increase (or decrease)
most rapidly along this curve. If a hiker follows the direction of the gradient
of the height, he would go along the path of steepest ascent (or the steepest
descent if he follows the direction opposite to the gradient) as depicted in
the middle panel of Fig. 24.3.

Similarly, the level sets f(r) = k of a function of three variables r =
〈x, y, z〉 are smooth surfaces inside an open ball B if the partial derivatives
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are continuous and do not vanish simultaneously anywhere in B. As has
been shown in Section 24.2, the gradient n = ∇f(r0) at a particular point
r0 of the level surface is a normal of the plane tangent to the surface at
r0. In particular, if r(t) is a smooth curve in the level surface such that
r0 = r(t0), then the value of f along the curve is a constant k and f has
zero rate of change along the curve. By the chain rule,

0 =
d

dt
f(r(t)) = f ′

x(r(t))x′
t + f ′

y(r(t))y
′
t + f ′

z(r(t))z
′
t = ∇f(r(t)) · r′(t)

Thus, for any smooth curve in the level surface, the vector r′(t0) tangent
to the curve at r0 is orthogonal to the gradient ∇f(r0). So the gradient
is normal to every smooth curve in a level surface. This geometrical fact
is expressed by saying that the gradient is normal to level surfaces (see the
right panel of Fig. 24.3). One can define a curve through a particular point
whose tangent vector at any point is parallel to the gradient, just like the
curve of steepest descent or ascent in the case of functions of two variables.
This curve is normal to level surfaces of the function. The values of the
function increase (or decrease) most rapidly along this curve.

All these findings are summarized in the following theorem.

Theorem 24.2. (Geometrical Properties of the Gradient).
Suppose that a function f is differentiable at r0 and ∇f(r0) 6= 0. Let S be
the level surface (or curve) through the point r0. Then

(1) The maximal rate of change of f at r0 occurs in the direction of
the gradient ∇f(r0) and is equal to its magnitude ‖∇f(r0)‖.

(2) The minimal rate of change of f at r0 occurs in the direction op-
posite to the gradient −∇f(r0) and equals −‖∇f(r0)‖.

(3) If f has continuous partial derivatives on an open ball D containing
r0, then the portion of S inside D is a smooth surface (or curve),
and ∇f is normal to S at r0.

Example 24.3. Find an equation of the tangent plane to the ellipsoid
x2 + 2y2 + 3z2 = 11 at the point (2, 1, 1).

Solution: The equation of the ellipsoid can be viewed as the level surface

f(x, y, z) = 11

of the function

f(x, y, z) = x2 + 2y2 + 3z2

through the point r0 = (2, 1, 1) because f(2, 1, 1) = 11. By the geometrical
property of the gradient, the vector n = ∇f(r0) is normal to the plane in
question because the components of ∇f = 〈2x, 4y, 6z〉 are continuous. One
has

n = ∇f(2, 1, 1) = 〈4, 4, 6〉 .

An equation of the plane through the point (2, 1, 1) and normal to n is

4(x − 2) + 4(y − 1) + 6(z − 1) = 0 or 2x + 2y + 3z = 9 .

�
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The gradient of a differentiable function of two variables can be found
if the rates of change of the function in any two non-parallel directions are
known. Similarly, in order to determine the gradient of a function of three
variables, the rates of change in three non-coplanar direction must be known.
To understand the claim, fist note that the components of the gradient are
partial derivatives which can be viewed as the directional derivatives along
the standard basis vectors. The standard basis vectors are perpendicular
and, hence, they are non-parallel in a plane (two variables) and non-coplanar
in space (three variables). The following example illustrates the concept in
the case of two variables (the multi-variable case is similar).

Example 24.4. Find the maximal rate of change of a differentiable func-
tion f of two variables at a point P and the direction in which it occurs if
the function is decreasing at P in the direction of the vector a = 〈1, 1〉 at a

rate of
√

2 and increasing in the direction of the vector b = 〈−1, 2〉 at a rate

of
√

5.

Solution: The maximal rate of change occurs in the direction of the gradi-
ent at P and is equal to the magnitude of the gradient. Thus, the problem
is to find the gradient if

Daf(P ) = −
√

2 , Dbf(P ) =
√

5 .

The negative sign at
√

2 is required as the function is decreasing in the
direction of a. Put ∇f(P ) = 〈X, Y 〉, where the components X and Y of
the gradient are to be found. Since neither a nor b are unit vectors,

Daf(P ) =
1

‖a‖ a ·∇f =
1√
2
(X + Y ) = −

√
2 ,

Dbf(P ) =
1

‖b‖ b · ∇f =
1√
5

(−X + 2Y ) =
√

5 .

Multiplying the first equation by
√

2 and the second equation by
√

5, and
then adding the equations, one finds

3Y = 3 ⇒ Y = 1 ; X + Y = −2 ⇒ X = −3 .

The the maximal rate of change of f at P and the direction in which it
occurs are, respectively,

‖∇f‖ = ‖〈−3, 1〉‖ =
√

10 , ∇f = 〈−3, 1〉 .

�

It is worth noting that if in this problem a and b are parallel, then
the problem has no solution. Indeed, two parallel vectors are proportional,
a = sb for some real s. Then Daf = ±Dbf (the minus sign occurs if the
vectors have opposite directions (anti-parallel vectors)), and the system of
equations for the components of the gradient has no solution.
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Theorem 24.2 holds for functions of more than three variables as well.
Equation (24.2) was obtained for any number of variables, and the repre-
sentation of the dot product (24.3) holds in any Euclidean space. Thus, the
first two properties of the gradient are valid for functions of any number of
variables. The implicit function theorem holds for any number of variables
so the equation of a level set f(r) = k can be solved with respect one of
the variables if the gradient does not vanish, e.g., xm = g(x1, ..., xm−1) near
a point where the conditions of the theorem are fulfilled (here f ′

xm
6= 0).

It can be interpreted as an (m − 1)-dimensional surface embedded in an
m-dimensional Euclidean space, which is hard to visualize. To this end, it
is only noted that if f has continuous partial derivatives (the components
of the gradient are continuous functions) and r(t) is a smooth parametric
curve in a level set f(r) = k, then f has a constant value along any such
curve, and, by the chain rule, it follows that

d

dt
f(r(t)) = ∇f(r(t)) · r′(t) = 0 for any t .

At any particular point r0 = r(t0), tangent vectors r′(t0) to all such curves
through r0 are orthogonal to a single vector ∇f(r0) 6= 0. So these vectors
form an (m− 1)-dimensional Euclidean space (called a tangent space to the
level surface at r0), just like all vectors in a plane in three dimensional
Euclidean space are orthogonal to a normal of the plane. In this sense,
the third property of the gradient holds for functions of more than three
variables.

Remark. The gradient can be viewed as the result of the action of the
operator ∇ = 〈∂/∂x1, ∂/∂x2, · · · , ∂/∂xm〉 if ∇f is understood in the sense
of multiplication of the “vector” ∇ by a scalar f :

∇f =
〈 ∂

∂x1
,

∂

∂x2
, ...,

∂

∂xm

〉

f =
〈 ∂f

∂x1
,

∂f

∂x1
, ...,

∂f

∂x1

〉

.

With this notation, the operator d introduced to define the differentials of
a function f has a compact form d = dr ·∇. The linearization L(r) of f(r)
at r0 and the differentials of f also have a simple form for any number of
variables:

L(r) = f(r0) + ∇f(r0) · (r− r0) , dnf(r) = (dr ·∇)nf(r) .

24.4. Study Problems.

Problem 24.1. (Differentiability and Directional Derivative)
Let f(x, y) = y3/(x2 + y2) if (x, y) 6= (0, 0) and f(0, 0) = 0. Show that
Duf(0, 0) exists for any û, but it is not given by equation (24.1). Show that
this function is not differentiable at (0, 0). In other words, the existence
of the directional derivative at a point in every direction does not imply
differentiability at that point.
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Solution: Put û = 〈cos θ, sin θ〉 for 0 ≤ θ < 2π. By the definition of the
directional derivative

Duf(0, 0) = lim
h→0

f(h cos θ, h sin θ) − f(0, 0)

h
= lim

h→0

h3 sin3 θ

h3
= sin3 θ .

In particular, for θ = 0, û = (1, 0), and Duf(0, 0) = f ′
x(0, 0) = 0; similarly

for θ = π/2, û = (0, 1), and Duf(0, 0) = f ′
y(0, 0) = 1. Therefore

f ′
x(0, 0)u1 + f ′

y(0, 0)u2 = sin θ 6= sin3 θ = Duf(0, 0)

that is, the relation (24.1) does not hold.
Since the partial derivatives exist, the function is differentiable if the

linear L(x, y) = f ′
x(0, 0)x + f ′

y(0, 0)y = y is a good linear approximation to
f at the origin. But the limit

lim
(x,y)→(0,0)

f(x, y)− L(x, y)

(x2 + y2)1/2
= − lim

(x,y)→(0,0)

yx2

(x2 + y2)3/2

does not exist because the limits along straight lines (x, y) = (t, at), t → 0+,

have different values a/(1+a2)3/2, where a is real. So, f is not differentiable
at the origin, despite that it has all directional derivatives at the origin. �

Problem 24.2. Suppose that three level surfaces f(x, y, z) = 1, g(x, y, z) =
2, and h(x, y, z) = 3 are intersecting along a smooth curve C. Let P be
a point on C in whose neighborhood f , g, and h have continuous partial
derivatives and their gradients do not vanish at P . Find ∇f · (∇g × ∇h)
at P .

Solution: Let v be a tangent vector to C at the point P (it exists be-
cause the curve is smooth). By Part (3) of Theorem 24.2, the equations
f(x, y, z) = 1, g(x, y, z) = 2, and h(x, y, z) = 3 define three smooth surfaces
in a neighborhood of P . Since C lies in the surface f(x, y, z) = 1, the gradi-
ent ∇f(P ) is orthogonal to v. Similarly, the gradients ∇g(P ) and ∇h(P )
must be orthogonal to v. Therefore, all the gradients must be in a plane
perpendicular to the vector v. The triple product for any three coplanar
vectors vanishes, and hence ∇f · (∇g × ∇h) = 0 at P . �

Problem 24.3. (Energy Conservation in Mechanics)
Consider Newton’s second law ma = F. Suppose that the force is the gra-
dient F = −∇U , where U = U(r). Let r = r(t) be the trajectory satisfying
Newton’s second law. Prove that the quantity E = mv2/2 + U(r), where
v = ‖r′(t)‖ is the speed, is a constant of motion, that is, dE/dt = 0. This
constant is called the total energy of a particle. A force that can be repre-
sented by the gradient of a function U is called a conservative force, and the
function U is called a potential energy.

Solution: First, note that v2 = v ·v. Hence, (v2)′ = 2v ·v′ = 2v ·a. Using
the chain rule,

dU

dt
= U ′

xx′(t) + U ′
yy

′(t) + U ′
zz

′(t) = r′ · ∇U = v · ∇U .
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It follows from these two relations that

dE

dt
=

m

2
(v2)′ +

dU

dt
= mv · a + v · ∇U = v · (ma− F) = 0

So the total energy is conserved for the trajectory of the motion. �

24.5. Exercises.
1. Let f be a differentiable function of two variables. Specify the directions
at a particular point in which the function has no rate of change? How
many such directions exist if the first partial derivatives do not vanish at
that point? Answer the same questions for a differentiable function of three
variables.
2. Let f(x, y) = y if y 6= x2 and f(x, y) = 0 if y = x2. Find Dnf(0, 0) for
all unit vectors n̂. Show that f(x, y) is not differentiable at (0, 0). Is the
function continuous at (0, 0)?
3–8. For each of the following functions, find the gradient and the direc-
tional derivative at a specified point P in the direction parallel to a given
vector v. Indicate whether the function increases or decreases in that direc-
tion at P .

3. f(x, y) = x2y, P = (1, 2), v = 〈4, 3〉 ;
4. f(x, y) = x/(1 + xy), P = (1, 1), v = 〈2, 1〉 ;
5. f(x, y, z) = x2y − zy2 + xz2, P = (1, 2,−1), v = 〈1,−2, 2〉 ;
6. f(x, y, z) = tan−1(1 + x + y2 + z3), P = (1,−1, 1), v = 〈1, 1, 1〉 ;
7. f(x, y, z) =

√
x + yz, P = (1, 1, 3), v = 〈2, 6, 3〉 ;

8. f(x, y, z) = (x + y)/z, P = (2, 1, 1), v = 〈2,−1,−2〉 .
9–13. Find the maximal and minimal rates of change of each of the following
functions at a specified point P and the directions in which they occur. Find
the directions in which the function has zero rate of change at P .

9. f(x, y) = x/y2, P = (2, 1) ;
10. f(x, y) = xy, P = (2, 1) ;
11. f(x, y, z) = xz/(1 + yz), P = (1, 2, 3) ;
12. f(x, y, z) = x sin(yz), P = (1, 2, π/3);
13. f(x, y, z) = xyz

, P = (2, 2, 1) .

14. Let f(x, y) = y/(1 + x2 + y). For a number −1 ≤ p ≤ 1, find all
unit vectors û along which the rate of change of f at (2,−3) is p times the
maximal rate of change of f at (2,−3).
15. For the function f(x, y, z) = 1

2x2− 1
2y2x+z3y at the point P0 = (1, 2,−1)

find:

(i) The maximal rate of change of f and the direction in which it
occurs;

(ii) A direction in which the rate of change is half of the maximal rate
of change. How many such directions exist?

(iii) The rate of change in the direction from P0 toward the point P =
(3, 1, 1) .
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16. If f is a differentiable real-valued function of one real variable, and
u is a differentiable real-valued function of m real variables, show that
∇(f(u(r))) = f ′(u(r))∇u(r), where r = 〈x1, x2, . . . , xm〉.
17. Find ∇‖c× r‖2 where c is a constant vector.
18. If f is a differentiable real-valued function of two real variables, and
u and v are differentiable real-valued functions of m real variables, show
that ∇f(u(r), v(r)) = f ′

u(u(r), v(r))∇u(r)+f ′
v(u(r), v(r))∇v(r), where r =

〈x1, x2, . . . , xm〉.
19. Find the directional derivative of f(r) = (x/a)2 + (y/b)2 + (z/c)2 at
a point r = 〈x, y, z〉 in the direction of r. Find the points at which this
derivative is equal to ‖∇f‖.
20. Find the angle between the gradients of f = x/(x2 + y2 + z2) at the
points (1, 2, 2) and (−3, 1, 0).

21. Let f(x, y, z) = z/
√

x2 + y2 + z2. Sketch the level surfaces of the func-
tion f and the function ‖∇f‖. What is the significance of the level surfaces
of ‖∇f‖? Find the maximal and minimal values of f and ‖∇f‖ in the
region 1 ≤ z ≤ 2.
22. Let a curve C be defined as the intersection of the plane
sin θ(x − x0) − cos θ(y − y0) = 0, where θ is a parameter, and the graph
z = f(x, y) of a differentiable function f is differentiable. Find tanα where
α is the angle between the tangent line to C at (x0, y0, f(x0, y0)) and the xy
plane.
23. Consider the function f(x, y, z) = 2

√
z + xy and three points P0 =

(1, 2, 2), P1 = (−1, 4, 1), and P2 = (−2,−2, 2). In which direction is the
absolute value of the rate of change of f at P0 the largest, toward P1 or
toward P2? What is the direction in which f has the largest rate of change
at P0?
24. For the function f(x, y, z) = xy + zy + zx at the point P0 = (1,−1, 0)
find:

(i) The maximal rate of change;
(ii) The rate of change in the direction v = 〈−1, 2,−2)〉 ;
(iii) The angle θ between v and the direction in which the maximal rate

of f occurs.

25. Let f(x, y, z) = x/(x2 + y2 + z2)1/2. Find the rate of change of f in
the direction of the tangent vector to the curve r(t) = (〈t, 2t2,−2t2)〉 at the
point (1, 2,−2).
26. Find all points at which the gradient of f = x3 + y3 + z3 − 3xyz has
the given property:

(i) ∇f is orthogonal to the z axis;
(ii) ∇f is parallel to the z axis;
(iii) ∇f = 0.

27. Let f(r) = ln ‖r−r0‖, where r0 is a fixed vector. Find points r = 〈x, y, z〉
in space where ‖∇f‖ = 1.
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28–33. Show that each of the following equations define a smooth surface
through the specified point P in a neighborhood of P , and find the tangent
plane and the normal line to the surface through P :

28. x2 + y2 + z2 = 169, P = (3, 4, 12);
29. x2 − 2y2 + z2 + yz = 2, P = (2, 1,−1) ;
30. x = tan−1(y/z), P = (π/4, 1, 1);
31. z = y + ln(x/z), P = (1, 1, 1) ;

32. 2x/z + 2y/z = 8, P = (2, 2, 1);
33. x2 + 4y2 + 3z2 = 5, (1,−1/2,−1) .

34. Find the points of the surface x2 + 2y2 + 3z2 + 2xy + 2zx + 4yz = 8 at
which the tangent planes are parallel to the coordinate planes.
35. Find the tangent planes to the surface x2 + 2y2 + 3z2 = 21 that are
parallel to the plane x + 4y + 6z = 0.
36. Find the points on the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1 at which the
normal line makes equal angles with the coordinate axes.
37. Consider the paraboloid z = x2 + y2.

(i) Give the parametric equations of the normal line through a point
P0 = (x0, y0, z0) on the paraboloid;

(ii) Consider all normal lines through points with a fixed value of z0

(say, z0 = 2). Show that all such lines intersects at one single point
which lies on the z−axis and find the coordinates of this point.

38. Find the points on the hyperboloid x2 − y2 + 2z2 = 5 where the normal
line is parallel to the line that joints the points (3,−1, 0) and (5, 3, 8).
39. Find an equation of the plane tangent to the surface x2 + y2 − 4z2 = 1
at a generic point (x0, y0, z0) of the surface.

40. Find the rate of change of the function h(x, y) =
√

10 − x2y2 at the
point P0 = (1, 1) in the direction toward the point P = (−2, 5). Let h(x, y)
be the height of a mountain in a neighborhood of P0. Would you be climbing
up or getting down when you go from P0 toward P?
41. Your Mars rover is caught by a dust storm in mountains. The visibility
is zero. Your current position is P0 = (1, 2). You can escape in the direction
of a cave located at P1 = (4,−2) or in the direction of the base located
at P2 = (17, 14). Which way would you drive to avoid steep climbing or
descending if the height in a neighborhood of P0 can be approximated by
the function h(x, y) = xy + x2?
42. You are flying a small aircraft on the planet Weirdo. You have dis-
turbed a nest of nasty everything-eating bugs. The onboard radar indicates
that the concentration of the bugs is C(x, y, z) = 100− x2 − 2y2 − 3z2 and
C(x, y, z) = 0 if x2 + 2y2 + 3z2 > 100. If your current position is (2, 3, 1), in
which direction would you fire a mass-destruction microwave laser to kill as
many poor bugs as possible near you? Find the optimal escape trajectory.
43. Suppose that the functions f and g have continuous partial deriva-
tives, their gradients do not vanish, and their level curves f(x, y) = 0 and
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g(x, y) = 0 intersect at some point P0. The rate of change of the function f
at P0 along the curve g(x, y) = 0 is a half of its maximal rate of change at
P0. What is the angle at which the curves intersect (the angle between the
tangent lines)?
44. Suppose that the directional derivatives Duf = a and Dvf = b of a
differentiable function f of two variables are known at a particular point P0

for two unit non-parallel vectors û and v̂ that make the angles θ and φ with
the x axis counted counterclockwise from the latter, respectively. Find the
gradient of f at P0.
45. Three tests of drilling into rock along the directions u = 〈1, 2, 2〉,
v = 〈0, 4, 3〉, and w = 〈0, 0, 1〉 yielded that the gold concentration increases
at the rates 3 units per meter, 3 units per meter, and 1 unit per meter,
respectively. Assume that the concentration is a differentiable function. In
what direction would you drill to maximize the gold yield and at what rate
does the gold concentration increase in that direction?
46. A level surface of a differentiable function f(x, y, z) contains the curves
r1(t) = 〈2+3t, 1−t2, 3−4t+t2〉 and r2(t) = 〈1+t2, 2t3−1, 2t+1〉. Can this
information be used to find the tangent plane to the surface at the point
(2, 1, 3)? If so, find an equation of the plane.
47. Prove that tangent planes to the surface xyz = a3 > 0 and the coordi-
nate planes form tetrahedrons of equal volumes.
48. Prove the total length of intervals from the origin to the points of in-
tersection of tangent planes to the surface

√
x+

√
y +

√
z =

√
a, a > 0, with

the coordinate axes is constant.
49. Two surfaces are called orthogonal at a point of intersection if the nor-
mal lines to the surfaces at that point are orthogonal. Show that the surfaces
x2 + y2 + z2 = r2, x2 + y2 = z2 tan2 φ, and y cos θ = x sin θ are pairwise or-
thogonal at their points of intersection for any values of the constants r > 0,
0 < φ < π, and 0 ≤ θ < 2π.
50. Find the directional derivative of f(x, y, z) in the direction of the gradi-
ent of g(x, y, z). Assume that the gradients ∇f and ∇g do not vanish and
have continuous components. What is the geometrical significance of this
derivative?
51. Find the angle at which the cylinder x2 + y2 = a2 intersects the surface
bz = xy at a generic point of intersection (x0, y0, z0).
52. A ray of light reflects from a mirrored surface at a point P just as it
would reflect from the mirrored plane tangent to the surface at P (if the
light travels along a vector u, then the reflected light travels along a vector
obtained from u by reversing the direction of the component parallel to the
normal to the surface). Show that the light coming parallel to the z axis
from above the xy plane will be focused by the parabolic mirror az = x2+y2,
a > 0, to a single point. Find its coordinates. This property of parabolic
mirrors is used to design telescopes. Conversely, if a point light source is put
into the focus of a parabolic mirror, then the light that is coming out if the
source and reflected by the mirror forms a beam parallel to the symmetry
axis of the mirror. This property is used to design flashlights.
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25. Maximum and Minimum Values

25.1. Critical Points of Multivariable Functions. Positions of local maxima
and minima of a one-variable function play an important role when analyzing
an overall behavior of the function. In Calculus I, it was shown how the
derivatives can be used to find local maxima and minima. Here this analysis
is extended to multivariable functions.

The following notation will be used. An open ball of radius δ centered
at a point r0 is denoted Bδ = {r | ‖r− r0‖ < δ}; that is, it is a set of points
whose distance from r0 is less than δ > 0. A neighborhood Nδ(r0) of a point
r0 in a set D is a set of common points of D and Bδ; that is, Nδ(r0) contains
all points in D whose distance from r0 is less than δ.

Definition 25.1. (Absolute and Local Maxima or Minima).
A function f on a set D is said to have a local maximum at r0 if there
is a neighborhood Nδ(r0) such that f(r0) ≥ f(r) for all r in Nδ(r0). The
number f(r0) is called a local maximum value. If there is a neighborhood
Nδ(r0) such that f(r0) ≤ f(r) for all r in Nδ(r0), then f is said to have a
local minimum at r0 and the number f(r0) is called a local minimum value.
If the inequality f(r0) ≥ f(r) or f(r0) ≤ f(r) holds for all points r in the
domain of f , then f has an absolute maximum or absolute minimum at r0,
respectively.

Minimal and maximal values are also called extremum values. In the one-
variable case, Fermat’s theorem asserts that if a differentiable function has a
local extremum at x0, then its derivative vanishes at x0. The tangent line to
the graph of f at x0 is horizontal: y = f(x0) + df(x0) = f(x0) + f ′(x0)dx =
f(x0). There is an extension of Fermat’s theorem to the multivariable case.

Theorem 25.1. (Necessary Condition for a Local Extremum)
If a differentiable function f has a local extremum at an interior point r0 of
its domain D, then df(r0) = 0 or ∇f(r0) = 0 (all partial derivatives of f
vanish at r0).

Proof. Consider a smooth parametric curve r(t) through the point r0 such
that r(t0) = r0. Then dr(t0) = r′(t0)dt 6= 0 (the curves is smooth and,
hence, has a non-zero tangent vector). The function F (t) = f(r(t)) defines
the values of f along the curve. Therefore, F (t) must have a local extremum
at t = t0. Since f is differentiable, the differential dF (t0) = F ′(t0)dt exists
by the chain rule:

dF (t0) = dr(t0) · ∇f(r0) .

By Fermat’s theorem dF (t0) = 0 and, hence, by the geometrical properties
of the dot product

dF (t0) = 0 ⇒ dr(t0) · ∇f(r0) = 0 ⇒ dr(t0) ⊥ ∇f(r0)

the tangent vector dr(t0) and the gradient ∇f(r0) are orthogonal for any
smooth curve through r0. But the tangent vector dr(t0) is an arbitrary non-
zero vector because the curve is arbitrarily chosen. The only vector that is
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orthogonal to any vector is the zero vector and the conclusion of the theorem
follows: ∇f(r0) = 0. �

In particular, for a differentiable function f of two variables, this theorem
states that the tangent plane to the graph of f at a local extremum is
horizontal.

A local extremum may occur at a point where the function is not dif-

ferentiable. For example, f(x, y) =
√

x2 + y2 is continuous everywhere and

has an absolute minimum at (0, 0). Note that the graph z =
√

x2 + y2 is a
cone with the vertex at the origin. However, the partial derivatives f ′

x(0, 0)
and f ′

y(0, 0) do not exist because the derivative of f(x, 0) = |x| does not
exists at x = 0, and similarly, the derivative of f(0, y) = |y| does not exists
at y = 0.

Definition 25.2. (Critical Points).
An interior point r0 of the domain of a function f is said to be a critical
point of f if either ∇f(r0) = 0 or the gradient does not exist at r0.

It should be emphasized that a function f does not always achieve a local
extreme value at a critical point. In particular, the converse of Theorem 25.1
is not true. If the gradient of a function f vanishes at a point, then f may
not have a local extremum at that point. For example, let

f(x, y) = xy .

It is differentiable everywhere and its partial derivatives are f ′
x = y and

f ′
y = x. They vanish at the origin,

∇f(0, 0) = 0 .

However, the function achieves neither a local maximum value nor a local
minimum value at this critical point. Indeed, consider a straight line through
the origin, x = t, y = at. Then the values of f along the line are

F (t) = f(t, at) = at2 .

So F (t) has a minimum at t = 0 if a > 0 or a maximum if a < 0. Thus, f
cannot have a local extremum at (0, 0). The graph z = xy is a hyperbolic
paraboloid rotated through an angle π/4 about the z axis (see Example 9.4).
It looks like a saddle.

Furthermore, consider

f(x, y) = x3 − x2y .

It follows that

f ′
x(x, y) = 3x3 − 2xy , f ′

y(x, y) = −x2 ⇒ ∇f(0, 0) = 0 .

However the values of the function along any straight line through the origin
x = t cos θ, y = t sin θ do not achieve a local extremum value:

F (t) = f(t cos θ, t sin θ) = cos2 θ(cos θ − sin θ)t3 = at3
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z = f(x, y)

y0

x0 Nδ

z = f(x, y)

y0

x0 Nδ

z = f(x, y)

y0

x0 Nδ

Figure 25.1. Left: The graph z = f(x, y) near a local
minimum of f . The values of f are no less than f(x0, y0) for
all (x, y) in a sufficiently small neighborhood Nδ of (x0, y0).
Middle: The graph z = f(x, y) near a local maximum of
f . The values of f do not exceed f(x0, y0) for all (x, y) in
a sufficiently small neighborhood Nδ of (x0, y0). Right: An
example of the graph z = f(x, y) near a saddle point (x0, y0)
of f . In a neighborhood Nδ of (x0, y0), the values of f do not
have a local maximum or minimum.

where the constant a can be positive, or negative, or zero. So, the curve of
intersection of the surface

z = x3 − x2y

with any plane containing the z axis (except the planes x = 0 and x = y)
has an inflection point at the origin. Such a surface is known as the “monkey
saddle”.

In the two examples considered, the critical point (0, 0) is an example of
a saddle point of a function (see Fig. 25.1 (right panel)).

Definition 25.3. (Saddle Point)
A saddle point of a function f of several variables is a critical point at which
f does not achieve a local maximum or minimum value.

Remark. The analysis of the above two examples of a saddle point might
make an impression that if ∇f(r0) = 0 and the values of f along any straight
line through r0 have a local maximum (minimum) (i.e., F (t) = f(r0 + vt)
has a local maximum (minimum) at t = 0 for any non-zero vector v), then f
has a local maximum (minimum) at r0. This conjecture is false! An example
is given in Study Problem 25.2.

25.2. Concavity. Recall from Calculus I that if the graph of a function f of
a single variable x lies above all its tangent lines in an interval I , then f is
concave upward on I . If the graph lies below all its tangent lines in I , then
f is concave downward on I . Furthermore, if f ′(x0) = 0 (the tangent line is
horizontal at x0) and f is concave upward in an open interval I containing
x0, then f(x) > f(x0) for all x 6= x0 in I and, hence, f has a local minimum.
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Similarly, f has a local maximum at x0 where f ′(x0) = 0 if it is concave
downward in a neighborhood of x0. If the function f is twice differentiable
on I , then it is concave upward if f ′′(x) > 0 on I and it is concave downward
if f ′′(x) < 0 on I . The concavity test can be restated in the form of the
second differential

d2f(x) = f ′′(x)(dx)2

which is a function of two independent variables x and dx:

d2f(x) > 0, dx 6= 0 ⇒ f is concave upward
d2f(x) < 0, dx 6= 0 ⇒ f is concave downward

Suppose that f ′(x0) = 0, f ′′(x0) 6= 0, and f ′′ is continuous at x0. Recall if
a continuous function is positive (negative) at a particular point, then it is
positive (negative) in a neighborhood of that point. So the continuity of f ′′

ensures that d2f(x) has the same sign as d2f(x0) for all x near x0 and all
dx 6= 0. Hence, the graph of f has a fixed concavity in a neighborhood of
x0. Thus, if d2f(x0) < 0 (dx 6= 0), then f has a local maximum at x0 and,
if d2f(x0) > 0 (dx 6= 0), then f has a local minimum at x0. It turns out
that this sufficient condition for a function to have a local extremum has a
natural extension to functions of several variables.

Theorem 25.2. (Sufficient condition for a local extremum)
Suppose that a function f of several variables has continuous second partial
derivatives in an open ball containing a point r0 and ∇f(r0) = 0. Then

f has a local maximum at r0 if d2f(r0) < 0,
f has a local minimum at r0 if d2f(r0) > 0,

for all dr such that dr 6= 0.

The proof of this theorem is omitted. However, the conclusion of theorem
can be understood as follows. Let r0 be an interior point of the domain of f .
Suppose that d2f(r0) > 0 (or d2f(r0) < 0) for all dr 6= 0. If f has continuous
second partial derivatives, then by Taylor Theorem 23.1, its values near r0

can be approximated by the second Taylor polynomial

f(r0 + dr) = T2(r0 + dr) + ε2(dr)

= f(r0) + df(r0) +
1

2
d2f(r0) + h2(dr)‖dr‖2 ,

where h2(dr) → 0 as dr → 0. Therefore in a neighborhood Nδ(r0) of a
sufficiently small radius δ, the sign of the difference between the value of
the function and the value of its linearization coincides with the sign of the
second differential d2f(r0):

f(r0 + dr)− f(r0) − df(r0) =
1

2
d2f(r0) + h2(dr)‖dr‖2 .

Indeed, the error h2‖dr‖2 decreases to zero faster than ‖dr‖2 with decreasing
‖dr‖ whereas d2f(r0) decreases as ‖dr‖2 and, hence, |d2f(r0)| > |h2|‖dr‖2
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for all 0 < ‖dr‖ < δ and a small enough δ. Neglecting the terms smaller
than ‖dr‖2, it is concluded that

(25.1) f(r0 + dr)− L(r0 + dr) = 1
2d2f(r0) ,

where L(r0 + dr) = f(r0) + df(r0) is the linearization of f at r0. If, in
addition, r0 is a critical point, that is, df(r0) = 0, then

f(r0 + dr)− f(r0) = 1
2d2f(r0) .

This equation shows that if d2f(r0) > 0 (or d2f(r0) < 0) for all dr 6= 0, then
at any point in a neighborhood Nδ(r0), the value of f is strictly greater (or
strictly less) than f(r0), and f attains a local maximum value (or a local
minimum value) at r0.

Furthermore, the concept of concavity can be extended to the multivari-
able case. Let f have continuous second partial derivatives and r0 be an
interior point of the domain of f . Equation (25.1) shows that if d2f(r0) > 0
(or d2f(r0) < 0) for all dr 6= 0, then at any point in a neighborhood Nδ(r0),
the value of f is strictly greater (or strictly less) than the value of its lin-
earization at r0. In particular, in the two-variable case, the graph z = f(x, y)
lies above (or below) the tangent plane at (x0, y0) for all (x, y) in a small
disk centered at (x0, y0). So, this analysis shows that if the second differen-
tial d2f(r) is positive (negative) for all r in an open ball B and all dr 6= 0,
then the graph z = f(r) over B is concave upward (downward) relative to
the direction of the z axis.

The second differential d2f(r) is a function of two independent variables
r and dr. If second partial derivatives of f are continuous, then the function
d2f is continuous. A continuous function has the property that if it is
positive (negative) at a particular point, then it is positive (negative) in a
neighborhood of that point. Therefore if d2f(r0) is positive (negative) for
all dr 6= 0 at a critical point r0, then d2f(r) is positive (negative) for all
dr 6= 0 and all r in a neighborhood of r0, that is, the graph z = f(r) has a
fixed concavity in a neighborhood of r0. In the two-variable case, the graph
z = f(x, y) near a local maximum at (x0, y0) looks like a paraboloid concave
downward (see Fig. 25.1 (middle panel)). Similarly, the graph z = f(x, y)
near a local minimum at (x0, y0) looks like a paraboloid concave upward
(see Fig. 25.1 (left panel)).

25.3. Second-Derivative Test. The differential d2f(r0) is a homogeneous
quadratic polynomial in the variables dr. Its sign is determined by its coef-
ficients which are the second partial derivatives of f at r0. One can pose the
question: Under what conditions on the second partial derivatives of f at a
critical point r0 is the second differential d2f(r0) positive or negative for all
dr 6= 0? This question is answered first for functions of two variables. The
general case is studied in the next section.
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Suppose that a function f of two variable (x, y) has continuous second
partial derivatives in an open disk centered at r0 = 〈x0, y0〉. Then

d2f(r0) = a(dx)2 + 2cdxdy + b(dy)2 ,

where a = f ′′
xx(r0), b = f ′′

yy(r0), and c = f ′′
xy(r0) = f ′′

yx(r0) (Clairaut’s theo-
rem). The second partial derivatives can be arranged into a 2×2 symmetric
matrix whose diagonal elements are a and b and whose off-diagonal elements
are c. The quadratic polynomial of a variable λ,

P2(λ) = det

(

a − λ c
c b − λ

)

= (a − λ)(b− λ)− c2,

is called the characteristic polynomial of the matrix of the second partial
derivatives of f at r0.

Theorem 25.3. (Second-Derivative Test).
Let r0 be a critical point of a function f . Suppose that the second partial
derivatives of f are continuous in an open disk containing r0. Let P2(λ) be
the characteristic polynomial of the matrix of the second partial derivatives
of f at r0. Let λi, i = 1, 2, be the roots of P2(λ). Then

(1) If the roots are strictly positive, λi > 0, then f has a local minimum
at r0.

(2) If the roots are strictly negative, λi<0, then f has a local maximum
at r0.

(3) If the roots do not vanish but have different signs, then f has nei-
ther a local maximum nor a local minimum at r0 (in this case, r0

is a saddle point).
(4) If at least one of the roots vanishes, then f may have a local maxi-

mum, a local minimum, or none of the above (the second-derivative
test is inconclusive).

A proof of the second-derivative test is given in Section 25.4. The proof
shows that the characteristic polynomial P2(λ) always have two real roots
(complex roots never occur). The roots may coincide (one real root of mul-
tiplicity 2). The roots λ1 and λ2 of the quadratic equation P2(λ) = 0 or

λ2 − (a + b)λ + ab − c2 = 0

are known to satisfy the conditions:

λ1λ2 = ab − c2 , λ1 + λ2 = a + b .

Put D = ab − c2. So, if D < 0, then λ1λ2 < 0 and the roots have different
signs. By Part (3) of the second-derivative test, r0 is a saddle point. If
D > 0, then the roots have the same sign. Suppose that D > 0. Then either
a > 0 or a < 0. In the first case,

D > 0 ⇒ D

a
> 0 ⇒ b >

c2

a
> 0 .
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Therefore the roots are positive because they have the same sign and their
sum is positive. By Part (1) of the second derivative test, the function has
a local minimum at r0. If a < 0, then

D > 0 ⇒ D

a
< 0 ⇒ b <

c2

a
< 0 .

Therefore the roots are negative because they have the same sign and their
sum is negative. By Part (2) of the second derivative test, the function
has a local maximum at r0. Thus, the following consequence of the second
derivative test is established.

Corollary 25.1. Suppose that a function f satisfies the hypotheses
of Theorem 25.3. Put D = ab − c2 where a = f ′′

xx(r0), b = f ′′
yy(r0), and

c = f ′′
xy(r0). Then

(1) If D > 0 and a > 0, then f(r0) is a local minimum.
(2) If D > 0 and a < 0, then f(r0) is a local maximum.
(3) If D < 0, then r0 is a saddle point of f .
(4) If D = 0, then the second-derivative test gives no information about

the nature of the critical point r0.

Example 25.1. Find all critical points of the function

f(x, y) =
1

3
x3 + xy2 − x2 − y2

and determine whether f has a local maximum, minimum, or saddle at them.

Solution: Critical points. The function is a polynomial, and therefore it
has continuous partial derivatives everywhere of any order. So its critical
points are solutions of the system of equations

∇f(x, y) = 0 ⇔
{

f ′
x = x2 + y2 − 2x = 0

f ′
y = 2xy − 2y = 0

It is important to obtain an equivalent system of equations when transform-
ing the system ∇f(r) = 0 . It follows from the second equation that either
y = 0 or x = 1. Therefore, the original system of equations is equivalent to
two systems of equations:

{

f ′
x = x2 + y2 − 2x = 0
x = 1

or

{

f ′
x = x2 + y2 − 2x = 0
y = 0

.

Solutions of the first system are (1, 1) and (1,−1). Solutions of the second
system are (0, 0) and (2, 0). Thus, the function has four critical points.
The second-derivative test applies because the function has continuous second
partial derivatives:

f ′′
xx = 2x− 2 , f ′′

yy = 2x − 2 , f ′′
xy = 2y.

Critical points (1,±1): The values of the second partial derivatives are:

a = fxx(1,±1) = 0 , b = f ′′
yy(1,±1) = 0 , c = f ′′

xy(1,±1) = ±2 .
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The characteristic equation reads

P2(λ) = (a − λ)(b− λ)− c2 = λ2 − 4 = 0 .

Its roots λ1 = 2 and λ2 = −2 do not vanish and have opposite signs.
Therefore, the points (1,±1) are saddle points of the function.
Critical point (0, 0): The values of the second partial derivatives are

a = f ′′
xx(0, 0) = −2 , b = f ′′

yy(0, 0) = −2 , c = f ′′
xy(0, 0) = 0 .

The characteristic equation

P2(λ) = (a − λ)(b − λ) = (−2 − λ)2 = 0

has one negative root of multiplicity 2, that is, λ1 = λ2 = −2 < 0. Therefore
f has a local maximum at (0, 0).
Critical point (2, 0): The values of the second partial derivatives are

a = f ′′
xx(2, 0) = 2 , b = f ′′

yy(2, 0) = 2 , c = f ′′
xy(2, 0) = 0 .

The characteristic equation

P2(λ) = (a− λ)(b− λ) = (2− λ)2 = 0

has one positive root of multiplicity 2, λ1 = λ2 = 2 > 0. Therefore the
function has a local minimum at (2, 0). �

Example 25.2. Investigate the function f(x, y) = ex2−y(5− 2x + y) for
extreme values.

Solution: The functions is defined on the whole plane and, as the product
of an exponential and a polynomial, it has continuous partial derivatives of
any order. So its critical points are points where its gradient vanishes, and
its local extreme values, if any, can be investigated by the second-derivative
test.
Critical points. Using the product rule for partial derivatives,

f ′
x = ex2−y

(

2x(5− 2x + y) − 2
)

= 0 ⇒ x(5 − 2x + y) = 1

f ′
y = ex2−y

(

(−1)(5− 2x + y) + 1
)

= 0 ⇒ 5 − 2x + y = 1

The substitution of the second equation into the first one yields x = 1. Then
it follows from the second equation that y = −2. So the function has just
one critical point (1,−2).
Second derivative test. Using the product rule for partial derivatives,

f ′′
xx = (f ′

x)′x = ex2−y
[

2x
(

2x(5 − 2x + y) − 2
)

+ 2(5− 2x + y)− 4
]

f ′′
yy = (f ′

y)
′
y = ex2−y

[

(−1)
(

(−1)(5− 2x + y) + 1
)

− 1
]

f ′′
xy = (f ′

y)
′
x = ex2−y

[

2x
(

(−1)(5− 2x + y) + 1
)

+ 2
]

The values of the second partial derivatives at the critical point are

a = f ′′
xx(1,−2) = −2e3 , b = f ′′

yy(1,−2) = −e3 , c = f ′′
xy(1,−2) = 2e3 .
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Therefore D = ab − c2 = −2e6 < 0. By Corollary 25.1, the only critical
point is a saddle point. The function has no extreme values. �

25.4. Proof of Theorem 25.3. Consider a rotation of the variables (dx, dy):

(dx, dy) = (dx′ cos φ − dy′ sin φ, dy′ cosφ + dx′ sinφ)

Following the proof of Theorem 9.1 (classification of quadric cylinders), the
second differential is written in the new variables (dx′, dy′) as

d2f(r0) = a(dx)2 + 2cdxdy + b(dy)2 = a′(dx′)2 + 2c′dx′dy′ + b′(dy′)2

a′ = 1
2

(

a + b + (a− b) cos(2φ) + 2c sin(2φ)
)

b′ = 1
2

(

a + b − (a− b) cos(2φ) − 2c sin(2φ)
)

2c′ = 2c cos(2φ)− (a − b) sin(2φ)

The rotation angle is chosen so that c′ = 0. Put A2 = (a − b)2 + 4c2. If
cos(2φ) = (a − b)/A and sin(2φ) = 2c/A, then c′ = 0. With this choice,

a′ = 1
2(a + b + A), b′ = 1

2(a + b − A)

Next note that

a′ + b′ = a + b , a′b′ =
1

4
((a + b)2 − A2) = ab − c2 .

On the other hand, the roots of the quadratic equation P2(λ) = 0 also satisfy
the same conditions

λ1 + λ2 = a + b , λ1λ2 = ab − c2 .

Thus, a′ = λ1, b′ = λ2, and

d2f(r0) = λ1(dx′)2 + λ2(dy′)2

If λ1 and λ2 are strictly positive, then d2f(r0) > 0 for all (dx, dy) 6= (0, 0)
and by Theorem 25.2 the function has a local minimum at r0. If λ1 and
λ2 are strictly negative, then d2f(r0) < 0 for all (dx, dy) 6= (0, 0) and by
Theorem 25.2 the function has a local maximum at r0. If λ1 and λ2 do not
vanish but have opposite signs, λ1λ2 < 0, then in a neighborhood of r0, the
graph of f looks like

z = f(r0) + λ1(x
′ − x′

0)
2 + λ2(y

′ − y′0)
2

where the coordinates (x′, y′) are obtained from (x, y) by rotation through
the angle φ. When λ1 and λ2 have different signs, this surface is a hyperbolic
paraboloid (a saddle), and f has neither a local minimum nor maximum.
Case (4) is easily proved by examples (see Study Problem 25.3).
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25.5. Study Problems.

Problem 25.1. Find all critical points of the function f(x, y) =
sin(x) sin(y) and determine whether f has a local maximum, minimum, or
saddle at them.

Solution: The function has continuous partial derivative of any order on
the whole plane. So, its critical points are points where the gradient of f
vanishes, and the second-derivative test applies to study their nature.
Critical points are solutions of the system of equations:

{

f ′
x = cos(x) sin(y) = 0

f ′
y = sin(x) cos(y) = 0

The first equation is satisfied if either x = π
2 + πn or y = πm, where n and

m are integers. So the system is equivalent two systems of equations
{

x = π
2 + πn

sin(x) cos(y) = 0
or

{

y = πm

sin(x) cos(y) = 0

Since sin(π
2 + πn) = (−1)n, the second equation of the first system is equiv-

alent to cos y = 0 or y = π
2 +πm. The second equation of the second system

is equivalent to sin x = 0 or x = πn. Thus, for any pair of integers n and
m, the points

rnm = 〈π
2 + πn, π

2 + πm〉 , r′nm = 〈πn, πm〉

are critical points of the function.
The second-derivative test has to be applied to each critical point. The second
partial derivatives are

f ′′
xx = − sin(x) sin(y), f ′′

yy = − sin(x) sin(y), f ′′
xy = cos(x) cos(y)

For the critical points rnm, one has

a = f ′′
xx(rnm) = −(−1)n+m , b = f ′′

yy(rnm) = −(−1)n+m = a ,

c = f ′′
xy(rnm) = 0 .

The characteristic equation is (a − λ)2 = 0 and, hence,

λ1 = λ2 = −(−1)n+m .

If n + m is even, then the roots are negative and f(rnm) = 1 is a local
maximum. If n + m is odd, then the roots are positive and f(rnm) = −1 is
a local minimum. For the critical points r′nm, one has

a = f ′′
xx(r′nm) = 0 , b = f ′′

yy(r′nm) = 0 , c = f ′′
xy(r

′
nm) = (−1)n+m .

The characteristic equation λ2 − c2 = λ2 − 1 = 0 has two roots λ = ±1 of
opposite signs. Thus, r′nm are saddle points of f . �
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Problem 25.2. Let

f(x, y) = x2 + y2 − 2x2y − 4x6y2

(x4 + y2)2
if (x, y) 6= (0, 0)

and f(0, 0) = 0. Show that, for all (x, y), the following inequality holds:
4x4y2 ≤ (x4+y2)2. Use it and the squeeze principle to conclude that f is con-
tinuous. Next, consider a line through (0, 0) and parallel to û = 〈cosϕ, sinϕ〉
and the values of f on it:

Fϕ(t) = f(t cosϕ, t sinϕ).

Show that Fϕ(0) = 0, F ′
ϕ(0) = 0, and F ′′

ϕ(0) = 2 for all 0 ≤ ϕ ≤ 2π. Thus,
f has a minimum at (0, 0) along any straight line through (0, 0). Show that
nevertheless f has no minimum at (0, 0) by studying its value along the
parabolic curve (x, y) = (t, t2).

Solution: For any numbers A and B,

0 ≤ (A − B)2 = A2 − 2AB + B2 ⇒ 2AB ≤ A2 + B2 .

Therefore,

4AB = 2AB + 2AB ≤ 2AB + A2 + B2 = (A + B)2 .

By setting A = x4 and B = y2, the said inequality is established:

4x4y2 ≤ (x4 + y2)2 .

The continuity of the last term in f at (0, 0) has to be verified. By the above
inequality,

0 <
4x6y2

(x4 + y2)2
≤ 4x6y2

4x4y2
= x2 → 0 as (x, y) → (0, 0).

Thus, by the squeeze principle f(x, y) → f(0, 0) = 0 as (x, y) → (0, 0), and
f is continuous everywhere. If ϕ = 0 or ϕ = π, that is, the line coincides
with the x axis, (x, y) = (t, 0), one has Fϕ(t) = t2, from which it follows
that Fϕ(0) = F ′

ϕ(0) = 0 and F ′′
ϕ(0) = 2. When ϕ is not equal to 0 or π so

that sin ϕ 6= 0, one has

Fϕ(t) = t2 + at3 +
bt4

(1 + ct2)2
= t2 + at3 + bt4(1 + O(t2)),

a = −2 cos2 ϕ sinϕ, b = −4 cos6 ϕ

sin2 ϕ
, c =

cos4 ϕ

sin2 ϕ
.

A straightforward differentiation shows that Fϕ(0) = F ′
ϕ(0) = 0 and F ′′

ϕ(0) =
2 as stated, and Fϕ(t) has an absolute minimum at t = 0, or f attains an
absolute minimum at (0, 0) along any straight line through (0, 0). Never-
theless, the latter does not imply that f has a minimum at (0, 0)! Indeed,
along the parabola (x, y) = (t, t2), the function f behaves as

f(t, t2) = −t4,
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which attains an absolute maximum at t = 0. Thus, along the parabola, f
has a maximum value at the origin and hence cannot have a local minimum
there. The problem illustrates the remark given after Definition 25.3. �

Problem 25.3. Suppose that a function f has continuous second partial
derivatives and a critical point at which one of the roots of the characteristic
equation or both vanish. Prove Part (4) of the second-derivative test by
giving examples of f that has a local maximum, or a local minimum or a
saddle at a critical point.

Solution: Consider the function

f(x, y) = x2 + sy4 ,

where s is a number. Since f ′
x = 2x and f ′

y = 4sy3, it has one critical point
(0, 0). The second partial derivatives at the critical point are

a = f ′′
xx(0, 0) = 2 , b = f ′′

yy(0, 0) = 0 , c = f ′′
xy(0, 0) = 0 .

Therefore, one of the roots of the characteristic equation is zero:

P2(λ) = −(2 − λ)λ = 0 ⇒ λ1 = 2 , λ2 = 0 .

If s > 0, then f(x, y) ≥ 0 for all (x, y) and f has a minimum at (0, 0). Let
s = −1. Then the curves x = ±y2 divide any disk centered at the origin
into four sectors with the vertex at the critical point (the origin). In the
sectors containing the x axis, f(x, y) ≥ 0, whereas in the sectors containing
the y axis, f(x, y) ≤ 0. Thus, in this case f cannot have a local extreme
value at the critical point. In particular the graph of f has the shape of a
saddle. By the similar reasoning, the function

f(x, y) = −(x2 + sy4)

has a maximum value at (0, 0) if s > 0. If s = −1, the graph of f has the
shape of a saddle. So, if one of the roots vanishes, then f may have a local
maximum or a local minimum, or a saddle. The same conclusion is reached
when λ1 = λ2 = 0 by studying the functions

f(x, y) = ±(x4 + sy4)

along the similar lines of arguments. �

Problem 25.4. For functions of one variable it is impossible for a con-
tinuous function to have two local minima (or two local maxima) and no
local maximum (or no local minimum). However for functions of several
variables such functions exist. Show that the function

f(x, y) = (y2 − 1)2 + (xy2 − y − 1)2

has two local minima and no local maximum.
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Solution: Critical points. The function f is a polynomial and, hence,
differentiable everywhere. Therefore its critical points are points where the
gradient vanishes:

{

f ′
x = 2y2(xy2 − y − 1) = 0

f ′
y = 4y(y2 − 1) + 2(2xy − 1)(xy2 − y − 1) = 0

It follows from the first equation that either y = 0 or xy2 − y − 1 = 0. But
the second equation has no solution if y = 0 because its right side is equal
to 2 6= 0 for any x. So, y 6= 0 for any critical point and the above system is
equivalent to

{

xy2 − y − 1 = 0
y2 − 1 = 0

⇒ (x, y) = (2, 1) , (x, y) = (0,−1) .

Thus, the function has two critical points.
Second-derivative test. The second partial derivatives are

f ′′
xx = 2y4 ,

f ′′
yy = 4(y2 − 1) + 8y2 + 4x(xy2 − y − 1) + 2(2xy − 1)2 ,

f ′′
xy = 4y(xy2 − y − 1) + 2y2(2xy − 1) .

Their values at the critical point (2, 1) are

a = f ′′
xx(2, 1) = 2 , b = f ′′

yy(2, 1) = 26 , c = f ′′
xy(2, 1) = 6

⇒ D = ab − c2 = 52 − 36 = 16 > 0 and a = 2 > 0 .

By Corollary 25.1, the function has a local minimum value at (2, 1). The
values of the second partial derivatives at the second critical point are

a = f ′′
xx(0,−1) = 2 , b = f ′′

yy(0,−1) = 10 , c = f ′′
xy(0,−1) = −2

⇒ D = ab − c2 = 20 − 4 = 16 > 0 and a = 2 > 0 .

By Corollary 25.1, the function has a local minimum value at (2, 1). By
Theorem 25.1 the function f cannot have other critical points and, hence,
it has no local maximum value. �

Problem 25.5. (The least square method)
Suppose that a scientist has a reason to believe that two quantities x and y
are related linearly, y = mx+ b where m and b are unknown constants. The
scientist performs an experiment and collects data as points on the plane
(xi, yi), i = 1, 2, ..., N . Since the data contain errors, the points do not lie
on a straight line. Let di = yi−(mxi+b) be the vertical deviation of the point
(xi, yi) from the line y = mb + x. The method of least squares determines
the constants m and b by demanding that the sum of squares

∑

d2
i attains

its minimal value, thus providing the “best” fit to the data points. Find m
and b.
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Solution: Consider the function f(m, b) =
∑N

i=1 d2
i . Its critical points

satisfy the equations

f ′
b = −2

N
∑

i=1

di = 0 , f ′
m = −2

N
∑

i=1

xidi = 0 ,

because (di)
′
b = −1 and (di)

′
m = −xi. The substitution of di = yi−(mxi +b)

into these equations yields the following system

m
N

∑

i=1

xi + bN =
N

∑

i=1

yi , m
N

∑

i=1

x2
i + b

N
∑

i=1

xi =
N

∑

i=1

xiyi

The solution of this system determines the slope m and the constant b of
the least square linear fit to the data points:

m =
〈x〉〈y〉 − 〈xy〉
〈x〉2 − 〈x2〉 , b = 〈y〉 − 〈x〉m ,

where 〈a〉 denotes the mean value of a quantity a:

〈a〉 =
1

N

N
∑

i=1

ai .

For example 〈xy〉 = (x1y1 + · · ·+xNyN )/N . Note that the second-derivative
test here is not really necessary to conclude that f has a minimum value at
the critical point. Explain why! �

25.6. Exercises.
1. Suppose that (0, 0) is a critical point of a function f with continuous
second partial derivatives. In each case, what can be said about the nature
of the critical point:

(i) f ′′
xx(0, 0) = −3 , f ′′

xy(0, 0) = 2 , f ′′
yy(0, 0) = −2 ;

(ii) f ′′
xx(0, 0) = 3 , f ′′

xy(0, 0) = 2 , f ′′
yy(0, 0) = 2 ;

(iii) f ′′
xx(0, 0) = 1 , f ′′

xy(0, 0) = 2 , f ′′
yy(0, 0) = 2 ;

(iv) f ′′
xx(0, 0) = 2 , f ′′

xy(0, 0) = 2 , f ′′
yy(0, 0) = 2 .

2–27. For each of the following functions, find all critical points and de-
termine if they are a relative maximum, a relative minimum, or a saddle
point:

2. f(x, y) = x2 + (y − 2)2 ;
3. f(x, y) = x2 − (y − 2)2 ;
4. f(x, y) = x4 − 2x2 − y3 + 3y ;
5. f(x, y) = 1

2x2 + 1
3y3 − xy ;

6. f(x, y) = x2 − xy + y2 − 2x + y ;
7. f(x, y) = 1

3x3 + y2 − x2 − 3x − y + 1 ;

8. f(x, y) = x3 + y3 − 3xy ;
9. f(x, y) = xy + 50/x + 20/y, x > 0, y > 0 ;

10. f(x, y) = x2 + y2 + 1
x2y2 ;
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11. f(x, y) = cos(x) cos(y) ;
12. f(x, y) = cos x + y2 ;
13. f(x, y) = y3 + 6xy + 8x3 ;
14. f(x, y) = x3 − 2xy + y2 ;
15. f(x, y) = xy(1 − x − y) ;
16. f(x, y) = x cos y ;

17. f(x, y) = xy
√

1− x2/a2 − y2/b2 ;

18. f(x, y) = (ax + by + c)/
√

1 + x2 + y2, a2 + b2 + c2 6= 0 ;

19. f(x, y) = (5x + 7y − 25)e−x2−xy−y2

;
20. f(x, y) = sin x + sin y + cos(x + y) ;
21. f(x, y) = 1

3x3 + xy2 − x2 − y2 ;

22. f(x, y) = 1
3y3 + xy + 8

3x3 ;

23. f(x, y) = x2 + xy + y2 − 4 lnx − 10 ln y ;
24. f(x, y) = xy ln(x2 + y2) ;
25. f(x, y) = x + y + sin(x) sin(y) ;
26. f(x, y) = sin(x) + cos(y) + cos(x − y) ;

27. f(x, y) = x − 2y + ln(
√

x2 + y2) + 3 tan−1(y/x) .

28-30. Let the function z = z(x, y) be defined implicitly by the given
equation. Use the implicit differentiation to find extreme values of z(x, y):

28. x2 + y2 + z2 − 2x + 2y − 4z − 10 = 0 ;
29. x2 + y2 + z2 − xz − yz + 2x + 2y + 2z − 2 = 0 ;
30. (x2 + y2 + z2)2 = a2(x2 + y2 − z2) .

31. Find the point on the plane x − y + z = 4 that is closest to the point
(1, 2, 3). Hint: minimize the distance from (1, 2, 3) to a generic point of the
plane.
32. A rectangular box without a lid is to be made from 12 m2 of cardboard.
Find the maximum volume of such a box. Hint: express one of the dimen-
sions of the box as a function of the others using that the total area of the
box faces is 12 m2 and then maximize the volume.
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26. Maximum and Minimum Values on a Set

26.1. Second-Derivative Test for Multivariable Functions. Theorem 25.2
holds for any number of variables as it is stated and there is a multi-variable
analog of the second derivative test (Theorem 25.3). As in the two-variable
case, the values of the second partial derivatives at a critical point

f ′′
xixj

(r0) = Dij

can be arranged into a m × m matrix. By Clairaut’s theorem, this matrix
is symmetric Dij = Dji. The polynomial of degree m,

Pm(λ) = det















D11 − λ D12 D13 · · · D1m

D21 D22 − λ D23 · · · D2m

D31 D32 D33 − λ · · · D3m
...

...
...

. . .
...

Dm1 Dm2 Dm3 · · · Dmm − λ















,

is called the characteristic polynomial of the matrix of second partial deriva-
tives. The following facts are established by methods of linear algebra:

(1) The characteristic polynomial of a real symmetric m × m matrix
has m real roots λ1, λ2,..., λm (a root of multiplicity k is counted
k times);

(2) There exists a rotation

dr = 〈dx1, dx2, ..., dxm〉 → dr′ = 〈dx′
1, dx2, ..., dx′

m〉 ,

which is a linear homogeneous transformation that preserves the
length ‖dr‖ = ‖dr′‖, such that

d2f(r0) =

m
∑

i=1

m
∑

j=1

f ′′
xixj

(r0)dxidxj =

m
∑

i=1

m
∑

j=1

Dijdxidxj

= λ1(dx′
1)

2 + λ2(dx′
2)

2 + · · ·+ λm(dx′
m)2

(3) The roots of the characteristic polynomial satisfy the conditions:

λ1 + λ2 + · · ·+ λm = D11 + D22 + · · ·+ Dmm

λ1λ2 · · ·λm = det D

Fact (2) implies that if all roots of the characteristic polynomial are strictly
positive, then d2f(r0) > 0 for all ‖dr‖ = ‖dr′‖ 6= 0 and, hence, f(r0) is
a local minimum by Theorem 25.2. Similarly, if all the roots are strictly
negative, then f(r0) is a local maximum. Corollary 25.1 follows from Fact
(3) for m = 2. For m > 2 these properties of the roots are insufficient to
establish a multi-variable analog of Corollary 25.1. Fact (3) also implies
that if detD = 0, then one or more roots are 0. Hence, d2f(r0) = 0 for
some dr 6= 0, and the hypotheses of Theorem 25.2 are not fulfilled.
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Theorem 26.1. (Second-Derivative Test for m Variables).
Let r0 be a critical point of f and suppose that f has continuous second par-
tial derivatives in an open ball centered at r0. Let λi, i = 1, 2, ...,m, be roots
of the characteristic polynomial Pm(λ) of the matrix of second derivatives
Dij = f ′′

xixj
(r0).

(1) If all the roots are strictly positive, λi > 0, then f has a local
minimum at r0.

(2) If all the roots are strictly negative, λi < 0, then f has a local
maximum at r0.

(3) If two roots have different signs, then f has no local minimum or
maximum at r0.

(4) If some of the roots vanish (or det D = 0), then f may have a local
maximum, or a local minimum, or none of the above (the test is
inconclusive).

In case (3) the difference f(r)−f(r0) changes its sign in a neighborhood
of r0. It is an m dimensional analog of a saddle point. In general, roots
of Pm(λ) are found numerically. If some of the roots are guessed, then
a synthetic division can be used to reduce the order of the equation. If
Pm(λ1) = 0, then there is a polynomial Qm−1 of degree m − 1 such that
Pm(λ) = (λ−λ1)Qm−1(λ) so that the other roots satisfy Qm−1(λ) = 0. The
signs of the roots can also be established by a graphical method (an example
is given in Study Problem 26.1).

Example 26.1. Investigate the function f(x, y, z) = 1
3x3 + 1

2y2 + z2 +
xy + 2z for extreme values.

Solution: The functions is a polynomial so it has continuous partial deriva-
tives of any order everywhere. So its critical points satisfy the equations:







f ′
x = x2 + y = 0

f ′
y = y + x = 0

f ′
z = 2z + 2 = 0

⇔







x2 = x
y = −x
z = −1

The first equation has two solutions x = 0 and x = 1. So the function has
two critical points r1 = 〈0, 0,−1〉 and r2 = 〈1,−1,−1〉. The second order
partial derivatives are

f ′′
xx = 2x, f ′′

xy = f ′′
yy = 1, f ′′

xz = f ′′
yz = 0, f ′′

zz = 2

For the critical point r1, the characteristic polynomial

P3(λ) = det





−λ 1 0
1 1 − λ 0
0 0 2 − λ



 = (2 − λ)(λ2 − λ − 1)

has the roots 2 and (1±
√

5)/2. They do not vanish but have different signs.
So r1 is a saddle point of f (no extreme value). For the critical point r2,
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the characteristic polynomial

P3(λ) = det





2− λ 1 0
1 1 − λ 0
0 0 2 − λ



 = (2− λ)(λ2 − 3λ + 1)

has positive roots 2 > 0 and (3 ±
√

5)/2 > 0. So f(1,−1,−1) = −7/6 is a
local minimum. �

26.2. When the second derivative test is inconclusive. Suppose that a func-
tion f has an isolated critical point r0 (that is, a neighborhood of r0 of a
small enough radius has no other critical points). Furthermore, suppose that
f has continuous partial derivatives of sufficiently high orders in a neigh-
borhood of r0. Since a local extreme value occurs only at critical points, by
Definition 25.1 f has a local maximum value at r0 if

f(r0 + dr)− f(r0) < 0 for all 0 < ‖dr‖ < δ

for some δ > 0 (δ is the radius of a neighborhood of r0). Similarly, f has a
local minimum value at r0 if

f(r0 + dr)− f(r0) > 0 for all 0 < ‖dr‖ < δ .

By the Taylor theorem, the local behavior of a function near a critical point
r0 is determined by higher order differentials dnf(r0) which are polynomials
in the variable dr:

f(r0 + dr)− f(r0) = 1
2d2f(r0) + 1

6d3f(r0) + · · ·+ 1
n!d

nf(r0) + O(‖dr‖n+1) .

If δ is small enough and d2f(r0) 6= 0 for all dr 6= 0, then the higher order
terms can be neglected and the sign of the difference is determined by the
sign of d2f(r0) (all roots of the characteristic polynomial are either positive
(a local minimum) or negative (a local maximum)). Suppose that d2f(r0) ≥
0 for all dr, but d2f(r0) = 0 for some dr (the case d2f(r0) ≤ 0 can be treated
similarly). It is then possible that the difference f(r0 +dr)−f(r0) could be
negative for those dr for which d2f(r0) = 0 and the function does not have
a local minimum at r0. To determine the sign of the difference, the sign of
higher order differentials has to be investigated for such dr, that is, the sign
of d3f(r0) for those dr for which d2f(r0) = 0. If d2f(r0) = d3f(r0) = 0 for
some dr, then the sign of d4f(r0) for these values of dr has to be determined,
and so on until the conclusion about the nature of the critical point is
reached. It is generally easier to study the concavity of a polynomial than
that of a general function.

Example 26.2. Show that (0, 0) is a critical point of the function

f(x, y) = (1 + x4 + y2 + y3)1/2 and use a suitable Taylor approximation
to determine whether f has a local maximum, minimum, or saddle at (0, 0).
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Solution: The partial derivatives

f ′
x =

2x3

(1 + x4 + y2 + y3)1/2
, f ′

y =
2y + 3y2

2(1 + x4 + y2 + y3)1/2

vanish at (x, y) = (0, 0). Therefore it is a critical point. Put u = x4+y2+y3.
Then

f(x, y) = (1 + u)1/2 = 1 +
1

2
u + ε(u)u , lim

u→0
ε(u) = 0 .

It follows that

f(x, y)− f(0, 0) =
1

2
u(1 + 2ε(u))

For small enough u, 1 + 2ε(u) > 0 and therefore the sign of this difference
in a neighborhood of the critical point is determined by the sign of u. For
small enough y 6= 0, y2 + y3 > 0 and, hence, u = x4 + y2 + y3 > 0 for
all (x, y) 6= (0, 0) in a neighborhood of (0, 0) and the function has a local
minimum at (0, 0). �

The reader can verify that the second derivative test is inconclusive in
this problem by a direct calculation of second partial derivatives. Using the
expansion (1+ u)1/2 = 1 + 1

2u− 1
8u2 + O(u3), the Taylor polynomials about

the origin can be obtained by retaining the monomials in u and u2 of the
degrees corresponding to the degree of the Taylor polynomial as explained
in Example 23.7 and Study Problem 23.2:

T2 = 1 +
1

2
y2 , T3 = T2 +

1

2
y3 , T4 = T3 +

1

2
x4 − 1

8
y4 .

It follows from the definition of Taylor polynomials that

1

2!
d2f(0, 0) =

1

2
(dy)2 ,

1

3!
d3f(0, 0) =

1

2
(dy)3 ,

1

4!
d4f(0, 0) =

1

2
(dx)4 − 1

8
(dy)4 .

Note that d2f(0, 0) ≥ 0, but d2f(0, 0) = 0 for all dr = 〈dx, 0〉, dx 6= 0.
Therefore d2f(0, 0) does not determine the sign of the difference
f(r0 + dr) − f(r0) for the critical point r0 = 0 if dr is parallel to the x
axis, and approximations by higher order differentials are needed. Since
d3f(0, 0) also vanishes for dr parallel to the x axis, one has to study the sign
of d4f(0, 0). The latter happens to be positive for dr = 〈dx, 0〉, dx 6= 0, so
that f(r0 + dr) − f(r0) > 0 for all sufficiently small ‖dr‖ 6= 0. Note that
if the term x4 in the function is replaced by −x4, then the sign of (dx)4 in
d4f(0, 0) becomes negative and the function does not have a local extreme
value at (0, 0) because f(r0 + dr)− f(r0) < 0 for dr parallel to the x axis.

In general, the directions of dr along which d2f(r0) = 0 do not coincide
with one (or more) coordinate axes. Such directions are determined by the
rotation of the coordinate system that brings d2f(r0) to the standard form as
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noted in the beginning of the section (or in the proof of the second-derivative
test for functions of two variables).

Non-isolated critical points. There are functions whose critical points are
not isolated. Consider the function

f(x, y) = x2(y − 1)2 .

The function is a polynomial (it has continuous partial derivatives of any
order) and therefore all its critical points are solutions to the system of
equations

{

f ′
x = 2x(y − 1)2 = 0

f ′
y = 2x2(y − 1) = 0

⇒ (x, y) = (0, p) and (x, y) = (q, 1)

where p and q are any real numbers. Note that the critical points form the
level set f(x, y) = 0 which consists of two perpendicular lines intersecting
at the point (0, 1). The second partial derivatives are

f ′′
xx = 2(y − 1)2 , f ′′

yy = 2x2 , f ′′
xy = 4x(y − 1)

are continuous and the second derivative test applies. For critical points
(0, p), their values are

a = f ′′
xx(0, p) = 2(p− 1)2 , b = f ′′

yy(0, p) = 0 , c = f ′′
xy(0, p) = 0 .

Therefore D = ab − c2 = 0 and the second-derivative test is inconclusive.
Similarly, this test is inconclusive for points (q, 1):

a = f ′′
xx(q, 1) = 0 , b = f ′′

yy(q, 1) = 2q2 , c = f ′′
xy(q, 1) = 0 ⇒ D = 0 .

However, f(x, y) ≥ 0 for any point and hence in any neighborhood of any
critical point f(x, y) ≥ f(0, p) = 0 and f(x, y) ≥ f(q, 1) = 0 and the function
attains its minimal value at all critical points.

If a function f has a constant value along a curve of its critical points
which is, say, a local minimum value, then the graph z = f(r) in a neigh-
borhood of a critical point does not look like a concave upward parabo-
loid, but rather it resembles a valley in mountains (local minima of the
height are along the valley bottom). Consequently, if the variables dr are
such that r0 + dr lies on the curve of critical points, then the difference
f(r0 +dr)−f(r0) = 0 vanishes for all such dr and so should all the differen-
tials dnf(r0) = 0. The analysis based on the sign of higher-order differentials
becomes inconclusive. However, if the curve of critical points is identified,
then variations of the values of the function can be studied in the directions
that are not tangent to the curve. The sign of higher-order differentials can
be determined for such directions of dr and the nature of critical points can
be established.

In the above example, the critical points r0 = 〈0, p〉 form the y axis.
Therefore dr = 〈dx, 0〉, dx 6= 0, is perpendicular to this line and

f(dx, p)− f(0, p) = (dx)2(p− 1)2 > 0 , p 6= 1 .
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So, the function has a minimum at (0, p), p 6= 1. Similarly, the critical points
(q, 1) form a line parallel to the x axis and the vector dr = 〈0, dy〉, dy 6= 0,
is perpendicular to it. Then

f(q, 1 + dy)− f(q, 1) = q2(dy)2 > 0 , q 6= 0 .

So, the function has a minimum at (q, 1), q 6= 0. At the point (0, 1), f(dx, 1+
dy)−f(0, 1) = (dx)2(dy)2 > 0 and, hence, the function also has a minimum.

In general, if v̂ is a unit vector tangent to a curve formed by critical
points at a particular critical point r0, then one has to investigate f(r0+dr)−
f(r0) where dr are not independent but subject to the condition v̂ · dr = 0.

26.3. Absolute Maximum and Minimum Values. For a function f of one
variable, the extreme value theorem says that if f is continuous on a closed
interval [a, b], then f has an absolute minimum value and an absolute max-
imum value (Calculus I). For example, the function f(x) = x2 on [−1, 2]
attains an absolute minimum value at x = 0 and an absolute maximum
value at x = 2. The function is differentiable for all x and therefore its
critical points are determined by f ′(x) = 2x = 0. So the absolute minimum
value occurs at the critical point x = 0 inside the interval, while the absolute
maximum value occurs on the boundary of the interval that is not a critical
point of f . Thus, to find the absolute maximum and minimum values of
a function f in a closed interval in the domain of f , the values of f must
be evaluated and compared not only at the critical points but also at the
boundaries of the interval.

The situation for multivariable functions is similar. For example, the
function f(x, y) = x2 + y2 whose arguments are restricted to the square
D = [0, 1]× [0, 1] attains its absolute maximum and minimum values on the
boundary of D as shown in the left panel of Fig. 26.1.

Definition 26.1. (Closed Set).
A set D in a Euclidean space is said to be closed if it contains all its limit
points.

Let D be a part of the plane bounded by a simple closed curve C. Recall
that any neighborhood of a limit point of D contains points of D. If a limit
point of D is not an interior point of D, then it lies on the boundary curve
C. So D is closed if it contains its boundary. All points of an open interval
(a, b) are its limit points, but, in addition, the boundaries a and b are also its
limit points, so when they are added, a closed set [a, b] is obtained. Similarly,
the set in the plane D = {(x, y)|x2 + y2 < 1} has limit points on the circle
x2 +y2 = 1 (the boundary of D), which is not in D. By adding these points,
a closed set is obtained, x2 + y2 ≤ 1.

Definition 26.2. (Bounded Set).
A set D in a Euclidean space is said to be bounded if it is contained in some
ball.
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Figure 26.1. Left: The graph z = x2 + y2 (a circular
paraboloid) over the square D = [0, 1]× [0, 1]. The function
f(x, y) = x2+y2 attains its absolute maximum and minimum
values on the boundary of D: f(0, 0) ≤ f(x, y) ≤ f(1, 1) for
all points in D. Right: The graph z = −xy. The values of
f(x, y) = −xy along the circle x2 + y2 = 4 are shown by the
curve on the graph. The function has two local maxima and
minima the disk x2 + y2 ≤ 4, while it has no maximum and
minimum values on the entire plane.

In other words, for any two points in a bounded set, the distance between
them cannot exceed some value (the diameter of the ball that contains the
set).

Theorem 26.2. (Extreme Value Theorem).
If f is continuous on a closed, bounded set D in a Euclidean space, then f
attains an absolute maximum value f(r1) and an absolute minimum value
f(r2) at some points r1 and r2 in D.

The closedness of D is essential. For example, if the function f(x, y) =
x2 + y2 is restricted to the open square D = (0, 1)× (0, 1), then it has no
extreme values on D. For all (x, y) in D, f(0, 0) < f(x, y) < f(1, 1) and
there are points in D arbitrarily close to (0, 0) and (1, 1), but the points (0, 0)
and (1, 1) are not in D. So, f takes values on D arbitrary close to 0 and 2,
never reaching them. The boundedness of D is also crucial. For example, if
the function f(x, y) = x2 + y2 is restricted to the first quadrant, x ≥ 0 and
y ≥ 0, then f has no maximum value on D. It should be noted that the
continuity of f and the closedness and boundedness of D are sufficient (not
necessary) conditions for f to attain its absolute extreme values on D. There
are non-continuous or continuous functions on an unbounded or non-closed
region D (or both) that attain their extreme values on D. Such examples are
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given in Calculus I and functions of a single variable may always be viewed
as a particular case of functions of two or more variables: f(x, y) = g(x).

The minimum and maximum values of a function f on a set D will be
denoted, respectively, by minD f and maxD f . One writes

f(r1) = max
D

f and f(r2) = max
D

f ,

if the absolute maximum and minimum occur, respectively, at r1 and r2. By
the extreme value theorem, it follows that the points r1 and r2 are either
critical points of f (because local extrema always occur at critical points) or
lie on the boundary of D. So, to find the absolute minimum and maximum
values of a continuous function f on a closed, bounded set D, one has to

Step 1. Find the values of f at the critical points of f in the interior of D.
Step 2. Find the extreme values of f on the boundary of D.
Step 3. The largest of the values obtained in Steps 1 and 2 is the absolute

maximum value, and the smallest of these values is the absolute
minimum value.

Example 26.3. Find the absolute maximum and minimum values of
f(x, y) = x2 + y2 + xy on the disk x2 + y2 ≤ 4 and the points at which they
occur.

Solution: The function f is continuous everywhere because it is a polyno-
mial. The disk x2 + y2 ≤ 4 is a closed set in the plane. So, the hypotheses
of the extreme value theorem are fulfilled.

Step 1. The function has continuous partial derivatives of any order on the
whole plane. Therefore critical points of f satisfy the system of equations

f ′
x = 2x + y = 0 , f ′

y = 2y + x = 0 ,

which has the only solution (x, y) = (0, 0). The critical point happens to be
in the interior of the disk. The value of f at the critical point is f(0, 0) = 0.
Step 2. The boundary of the disk is the circle C: x2 + y2 = 4. To find the
extreme values of f on it, take the parametric equations of C:

x = x(t) = 2 cos t , y = y(t) = 2 sin t , 0 ≤ t ≤ 2π .

The values of the function on the boundary are

F (t) = f(x(t), y(t)) = 4 + 4 cos t sin t = 4 + 2 sin(2t) .

The function F (t) attains its maximal value 6 on [0, 2π] when sin(2t) = 1
or t = π/4 and t = π/4 + π. These values of t correspond to the points

(
√

2,
√

2) and (−
√

2,−
√

2). Similarly, F (t) attains its minimal value 2 on
[0, 2π] when sin(2t) = −1 or t = 3π/4 and t = 3π/4 + π. These values of t
correspond to the points (−

√
2,
√

2) and (
√

2,−
√

2). Therefore

f(
√

2,
√

2) = f(−
√

2,−
√

2) = max
C

f = 6 ,

f(−
√

2,
√

2) = f(
√

2,−
√

2) = min
C

f = 2 .
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Step 3. Then

max
D

f = max
{

f(0, 0), max
C

f
}

= max{0, 6} = 6 ,

min
D

f = min
{

f(0, 0), min
C

f
}

= min{0, 2} = 0 .

The maximum of f on D occurs at the points (
√

2,
√

2) and (−
√

2,−
√

2).
The minimum of f on D occurs at the point (0, 0). �

Example 26.4. Find the absolute maximum and minimum values of
f(x, y, z) = x2+y2−z2+2z on the closed set D = {(x, y, z) |x2+y2 ≤ z ≤ 4}.

Solution: The set D is the solid bounded from below by the paraboloid
z = x2 + y2 and from the top by the plane z = 4. The set D is a bounded
closed set, and f is continuous everywhere because it is a polynomial.

Step 1. Since f is differentiable everywhere, its critical points satisfy the
equations

f ′
x = 2x = 0 , f ′

y = 2y = 0 , f ′
z = −2z + 2 = 0 .

which has the only solution (x, y, z) = (0, 0, 1). The critical point happens
to be in the interior of D. The value of f at it is f(0, 0, 1) = 1.
Step 2. The boundary S of D consists of two surfaces:

S1 = {(x, y, z) | z = 4, x2 + y2 ≤ 4} ,
S2 = {(x, y, z) | z = x2 + y2, x2 + y2 ≤ 4} .

The surface S1 is the disk of radius 2 in the plane z = 4 and S2 is the portion
of the paraboloid above the disk x2 + y2 ≤ 4. The values of f on S1 are

F1(x, y) = f(x, y, 4) = x2 + y2 − 8 , x2 + y2 ≤ 4 .

The problem now is to find the extreme values of the function F1 on the
disk. In principle, at this point, Steps 1, 2, and 3 have to be applied to
F1 as a function of two variables. These technicalities can be avoided in
this particular case by noting that F1(x, y) = r2 − 8, where r2 = x2 + y2 ≤
4. Therefore, the maximum value of F1 is reached when r2 = 4, and its
minimum value is reached when r2 = 0. So

max
S1

f = −4 , min
S1

f = −8 .

The values of f on S2 are

F2(x, y) = f(x, y, x2 + y2) = 3(x2 + y2) − (x2 + y2)2 = 3r2 − r4 = g(r) ,

where 0 ≤ r ≤ 2. The critical points of g(r) satisfy the equation g′(r) =

6r − 4r3 = 0 whose solutions for r ≥ 0 are r = 0, r =
√

3/2. The extereme
values of g can occur either at the boundaries of the interval 0 ≤ r ≤ 2 or
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at the critical point r =
√

3/2. Therefore,

max
S2

f = max{g(0), g(
√

3/2), g(2)} = max{0, 9/4, −4} = 9/4 ,

min
S2

f = min{g(0), g(
√

3/2), g(2)} = min{0, 9/4, −4} = −4 .

Step 3. The maximum and minimum values of f on the boundary S are,
respectively,

max
S

f = max{−4, 9/4} = 9/4 , min
S

= min{−8,−4} = −8 .

Therefore the absolute maximum and minimum values of f on D are, re-
spectively,

max
D

f = max{1, 9/4} = 9/4 , min
D

f = min{1, −8} = −8 .

Both extreme values of f occur on the boundary of D: f(0, 0, 4) = −8 and
the absolute maximum value is attained along the circle of intersection of
the plane z = 3/2 with the paraboloid z = x2 + y2. �

26.4. Intermediate Value Theorem. Let f be a continuous function of a
single variable on an interval and f(a) < f(b) for some a and b in the
interval. The intermediate value theorem states that the function f attains
all values between f(a) and f(b) in the interval with boundary points a and
b. There is an analog of this theorem for functions of several variables.

Definition 26.3. (Connected Set)
A set D in a Euclidean space is connected if any two points of D can be
connected by a curve that lies in D.

For example, the disk x2 + y2 < 4 is a connected set in two-dimensional
Euclidean space (a plane). The set D in space whose points satisfy the
condition x2 +y2 + z2 6= 1 is not connected because any curve that connects
a point inside the ball of radius 1 with a point outside this ball has to
intersect the sphere x2 + y2 + z2 = 1 whose points are not in D.

Theorem 26.3. (Intermediate Value Theorem)
Let f be a continuous function on a connected set D in a Euclidean space.
For any two points r1 and r2 in D such that f(r1) < f(r2) and any number
c such that f(r1) ≤ c ≤ f(r2), there is a point r0 in D such that f(r0) = c.

Proof. Since D is connected, there exists a parametric curve r = r(t),
t1 ≤ t ≤ t2, in D such that r(t1) = r1 and r(t2) = r2. Since f is continuous
in D, its values on the curve define a continuous function on an interval,

F (t) = f(r(t)) , t1 ≤ t ≤ t2 ,

such that f(r1) = F (t1) < F (t2) = f(r2). Therefore F takes all values
between F (t1) and F (t2) in the interval [t1, t2]. Then for any number F (t1) ≤
c ≤ F (t2) there exists a number t1 ≤ t0 ≤ t2 such that F (t0) = c. The point
r0 = r(t0) is in D as the curve lies in D and f(r0) = c. �
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In particular, if f is a continuous function on a closed, bounded, and
connected set D in a Euclidean space, then f attains its absolute maximum
and minimum values as well as all values between them in D.

26.5. Study problems.

Problem 26.1. Find local extreme values of the function f(x, y, z) =
x + y2/(4x) + z2/y + 2/z if x > 0, y > 0, and z > 0.

Solution: The function is differentiable in the specified domain. So its
critical points are solutions of the system of equations

f ′
x = 1 − y2

4x2
= 0, f ′

y =
y

2x
− z2

y2
= 0, f ′

z =
2z

y
− 2

z2
= 0

The first equation is equivalent to y = 2x (since x > 0 and y > 0). The
substitution of this relation into the second equation gives z = y because
y > 0 and z > 0. The substitution of the latter relation into the third
equation yields z = 1 as z > 0. There is only one critical point r0 = 〈 1

2 , 1, 1〉.
The second partial derivatives at r0 are:

f ′′
xx(r0) = y2

2x3

∣

∣

∣

r0

= 4, f ′′
xy(r0) = − y

2x2

∣

∣

∣

r0

= −2,

f ′′
xz(r0) = 0, f ′′

yy(r0) = 1
2x + 2z2

y3

∣

∣

∣

r0

= 3,

f ′′
yz(r0) = −2z

y2

∣

∣

∣

r0

= −2, f ′′
zz(r0) = 2

y + 4
z3

∣

∣

∣

r0

= 6

The characteristic equation of the second derivative matrix is

det





4 − λ −2 0
−2 3 − λ −2
0 −2 6 − λ



 = (4 − λ)[(3− λ)(6− λ)− 4]− 4(6− λ)

= −λ3 + 13λ2 − 46λ + 32 = 0

First of all, λ = 0 is not a root and the second derivative test is conclusive.
To analyze the sings of the roots, the following method is employed. The
characteristic equation is written in the form

λ(λ2 − 13λ + 46) = 32

This equation determines the points of intersection of the graph y = g(λ) =
λ(λ2 − 13λ + 46) with the horizontal line y = 32. The polynomial g(λ) has
one simple root g(0) = 0 because the quadratic equation λ2 − 13λ + 46 = 0
has no real roots. Therefore g(λ) > 0 if λ > 0 and g(λ) < 0 if λ < 0.
This implies that the intersection of the horizontal line y = 32 > 0 with the
graph y = g(λ) occurs only for λ > 0. Thus, all roots of the characteristic
polynomial P3(λ) are positive and, hence, f(1/2, 1, 1) = 4 is a local minimum
value. �
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Problem 26.2. Find the absolute extreme values of the function in the
rectangle:

f(x, y) =
1

2
x2 +

1

3
y3 − xy , 0 ≤ x ≤ 2 , 0 ≤ y ≤ 2 .

Solution: The function is continuous everywhere because it is a polyno-
mial and the given rectangle is a closed set. So the function attains its
extreme values in the rectangle.

Step 1. The function has continuous partial derivative of any order. There-
fore its critical points satisfy the system of equations:

f ′
x = x − y = 0 , f ′

y = y2 − x = 0 .

Since x = y by the first equation, x2 −x = 0 by the second equation so that
the function has two critical points (0, 0) and (1, 1). The point (0, 0) lies
on the boundary of the rectangle and can be discarded because the extreme
values of f on the boundary will be studied separately. The critical point
(1, 1) lies in the interior of the rectangle and f(1, 1) = −1/6.
Step 2. The boundary C of the rectangle consists of four straight line seg-
ments:

L1 = {(x, y) | 0≤ x ≤ 2, y = 2}
L2 = {(x, y) | 0≤ x ≤ 2, y = 0}
L3 = {(x, y) | x = 2, 0 ≤ y ≤ 2}
L4 = {(x, y) | x = 0, 0 ≤ y ≤ 2}

The values of f along L1 are

F1(x) = f(x, 2) =
1

2
x2 − 2x +

8

3

where 0 ≤ x ≤ 2. Since F ′
1(x) = x − 2 ≤ 0, the function is decreasing and

its maximum and minimum values are

max
L1

f = F1(0) = f(0, 2) =
8

3
, min

L1

f = F1(2) = f(2, 2) =
2

3
.

The values of f along L2 are

F2(x) = f(x, 0) =
1

2
x2 .

Therefore the maximum and minimum values of f on L2 are

max
L2

f = F2(2) = f(2, 0) = 2 , min
L1

f = F2(0) = f(0, 0) = 0 .

The values of f along L3 are

F3(y) = f(2, y) =
1

3
y3 − 2y + 2 .

The derivative F ′
3(y) = y2 − 2 vanishes at y =

√
2 in the interval [0, 2].

Since F3(0) = 2, F3(2) = 2
3 , and F3(

√
2) = 2 − 4

√
2/3, the maximum and
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minimum values of f on L3 are

max
L3

f = F3(0) = f(2, 0) = 2 , min
L3

f = F (
√

2) = f(2,
√

2) = 2 − 4
√

2

3
.

Finally, the values f along L4 are F4(y) = f(0, y) = 1
3y3, which is monoton-

ically increasing function. So the maximum and minimum values of f on L4

are

max
L4

f = F4(2) = f(0, 2) =
8

3
, min

L4

f = F4(0) = f(0, 0) = 0 .

Thus, the extreme values of f on the boundary C of D are

max
C

f = f(0, 2) =
8

3
, min

C
f = f(0, 0) = 0 .

Step 3. The maximum and minimum values of f on D are, respectively,

max
D

f = max{0, −1/6, 8/3} = 8/3 = f(0, 2) ,

min
D

f = min{0, −1/6, 0} = −1/6 = f(1, 1) .

The absolute maximum occurs on the boundary of D. �

26.6. Exercises.
1–10. For each of the following functions, find all critical points and deter-
mine whether the function has a relative maximum, a relative minimum, or
a saddle point at each critical point:

1. f(x, y, z) = x2 + y2 + z2 + 2x + 4y − 8z ;
2. f(x, y, z) = x2 + y3 + z2 + 12xy − 2z ;
3. f(x, y, z) = x2 + y3 − z2 + 12xy + 2z ;
4. f(x, y, z) = sinx + z sin y ;
5. f(x, y, z) = x2 + 5

3y3 + z2 − 2xy − 4zy ;

6. f(x, y, z) = x + y2/(4x) + z2/y + 2/z ;
7. f(x, y, z) = a2/x+x2/y +y2/z + z2/b, x > 0, y > 0, z > 0, b > 0 ;
8. f(x, y, z) = sinx + sin y + sin z + sin(x + y + z), where (x, y, z) is

in the rectangular box [0, π]× [0, π]× [0, π] ;
9. f(x1, ..., xm) =

∑m
k=1 sin xk ;

10. f(r) = (R2 − ‖r‖2)2 where r = 〈x1, ..., xm〉 and R is a constant ;
11. f(x1, ..., xm) = x1+x2/x1+x3/x2+· · ·+xm/xm−1+2/xm, xi > 0,

i = 1, 2, ...,m .

12. Given two positive numbers a and b, find m numbers xi, i = 1, 2, ..., m,
between a and b so that the ratio

x1x2 · · ·xm

(a + x1)(x1 + x2) · · · (xm + b)

is maximal.
13–21. Use multivariable Taylor polynomials to show that the origin is
a critical point of each of the following functions. Determine whether the
function has a local extreme value at the critical point:
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13. f(x, y) = x2 + xy2 + y4 ;
14. f(x, y) = ln(1 + x2y2) ;
15. f(x, y) = x2 ln(1 + x2y2) ;
16. f(x, y) = xy(cos(x2y) − 1) ;
17. f(x, y) = (x2 + 2y2) tan−1(x + y) ;
18. f(x, y) = cos(exy − 1) ;
19. f(x, y) = ln(y2 sin2 x + 1) ;

20. f(x, y) = ex+y2 − 1 − sin(x − y2) ;
21. f(x, y, z) = sin(xy + z2)/(xy + z2), where f is defined on the set

xy+z2 = 0 by the continuous extension (show that this is possible);
22. f(x, y, z) = 2− 2 cos(x + y + z) − x2 − y2 − z2 .

23. Let f(x, y, z) = xy2z3(a − x − 2y − 3z), a > 0. Find relative extreme
values of f .
24–26. Give examples of a function f of two variables that attains its
extreme values in the specified set D and has the following properties:

24. f is continuous on D and D is not closed ;
25. f is not continuous on D and D is bounded and closed ;
26. f is not continuous on D and D is not bounded and not closed .

27–31. For each of the following functions find the extreme values on the
specified set D:

27. f(x, y) = 1 + 2x − 3y, D is the closed triangle with vertices (0, 0),
(1, 2), and (2, 1) ;

28. f(x, y) = x2 + y2 + xy2 − 1, D = {(x, y)| |x| ≤ 1, |y| ≤ 2} ;
29. f(x, y) = yx2, D = {(x, y)|x ≥ 0, y ≥ 0, x2 + y2 ≤ 4} ;
30. f(x, y, z) = xy2 + z, D = {(x, y, z)| |x| ≤ 1, |y| ≤ 1, |z| ≤ 1} ;
31. f(x, y, z) = xy2 + z, D = {(x, y, z)| 1≤ x2 + y2 ≤ 4, −2 + x ≤ z ≤

2 − x} .

32. Find the point on the plane x + y − z = 1 that is closest to the point
(1, 2, 3). Hint: Let the point in question have the coordinates (x, y, z). Then
the squared distance between it and (1, 2, 3) is f(x, y) = (x−1)2 +(y−2)2 +
(z − 3)2 where z = x + y − 1 because (x, y, z) is in the plane.
33. Find the point on the cone z2 = x2 + y2 that is closest to the point
(1, 2, 3)
34. Find an equation of the plane that passes through the point (3, 2, 1)
and cuts off the smallest volume in the first octant.
35. Find the extreme values of f(x, y) = ax2 + 2bxy + cy2 on the circle
x2 + y2 = 1.
36. Find the extreme values of f(x, y, z) = x2/a2 + y2/b2 + z2/c2 on the
sphere x2 + y2 + z2 = 1.
37. Find 2 positive numbers whose product is fixed, while the sum of their
reciprocals is minimal.
38. Find m positive numbers whose product is fixed, while the sum of their
reciprocals is minimal.
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39. A solid object consists of a solid cylinder and a solid circular cone so
that the base of the cone coincides with the base of the cylinder. If the
total surface area of the object is fixed, what are dimensions of the cone and
cylinder at which the object has maximal volume?
40. Find a linear approximation y = mx+b to the parabola y = x2 such that
the deviation ∆ = max |x2 − mx − b| is minimal in the interval 1 ≤ x ≤ 3.
41. Let N points of masses mj, j = 1, 2, ..., N , be positioned in a plane at
Pj = (xj, yj). Recall from Calculus II that the moment of inertia of this
system about a point P = (x, y) is

I(x, y) =
N

∑

j=1

mj |PPj|2

Find P about which the moment of inertia is minimal.
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27. Lagrange Multipliers

Let f(x, y) be the height of a hill at a point (x, y) in the base of the hill.
A hiker walks along a path r(t) = 〈x(t), y(t)〉. What are the local maxima
and minima along the path? What are the maximum and minimum heights
along the path? These questions are easy to answer if parametric equations
of the path are explicitly known. Indeed, the height along the path is the
single-variable function F (t) = f(r(t)) and the problem is reduced to the
standard extreme value problem for F (t) on an interval a ≤ t ≤ b.

Example 27.1. Find extreme values of the function f(x, y) = −xy on
the circle x2 + y2 = 4.

Solution: The parametric equation of the circle can be taken in the form

r(t) = 〈2 cos t, 2 sin t〉 , 0 ≤ t ≤ 2π .

The values of f on the circle are

F (t) = f(2 cos t, 2 sin t) = −4 cos t sin t = −2 sin(2t) .

On the interval [0, 2π], the function − sin(2t) attains its absolute minimum
value at t = π/4 and t = π/4 + π and its absolute maximum value at
t = 3π/4 and t = 3π/4 + π. So, on the circle, the function f attains the
absolute maximum value 2 at (

√
2,−

√
2) and (−

√
2,
√

2) and the absolute

minimum value −2 at (
√

2,
√

2) and (−
√

2,−
√

2). The solution is illustrated
in the right panel of Fig. 26.1. �

The problem considered may be generalized in the following way:

Find extreme values of f(x, y) on the set defined by the equation g(x, y) = 0.

In other words, only the points (x, y) that satisfy the condition g(x, y) = 0
are permitted in the argument of f ; that is, the variables x and y are no
longer independent in the extreme value problem. The condition g(x, y) = 0
is called a constraint. Problems of this type occur for functions of more than
two variables. For example, let f(x, y, z) be the temperature as a function of
position in space. A reasonable question to ask is: What are the maximum
and minimum temperatures on a surface? A surface may be described by
imposing one constraint g(x, y, z) = 0 on the variables x, y, and z. Nothing
precludes us from asking about the maximum and minimum temperatures
along a curve defined as an intersection of two surfaces g1(x, y, z) = 0 and
g2(x, y, z) = 0. So the variables x, y, and z are now subject to two con-
straints.

In general, what are the extreme values of a multivariable function f(r)
whose arguments are subject to several constraints ga(r) = 0, a = 1, 2, ...,M
(assuming, of course, that the set defined by all constraints is not empty)?
Evidently, the constraints cannot always be solved explicitly to obtain the
values f on the set defined by the constraints. It is therefore desirable to



408 3. DIFFERENTIATION OF MULTIVARIABLE FUNCTIONS

develop a technique to find extreme values of f without solving the con-
straints. If constraints are level sets of differentiable functions, then this
technique is known the method of Lagrange multipliers.

Definition 27.1. (Local Maxima and Minima Subject to Constraints).
A function f has a local maximum (or minimum) at r0 on the set defined
by constraints ga(r) = 0, a = 1, 2, ...,M , if f(r) ≤ f(r0) (or f(r) ≥ f(r0))
for all r in some neighborhood of r0 that satisfy the constraints, that is,
ga(r) = 0.

The extreme values of a function subject to constraints are defined sim-
ilarly.

Definition 27.2. (Extreme Values of a Function Subject to Constraints)
A function f has a maximum (or minimum) value at a point r0 on the
set defined by constraints ga(r) = 0, a = 1, 2, ...,M , if f(r) ≤ f(r0) (or
f(r) ≥ f(r0)) for all r such that ga(r) = 0.

Note that a function f may not have local maxima or minima in its
domain. However, when its arguments become subject to constraints, it may
well have local maxima and minima on the set defined by the constraints.
In the example considered, f(x, y) = −xy has no local maxima or minima,
but, when it is restricted on the circle by imposing the constraint g(x, y) =
x2 + y2 − 4 = 0, it happens to have two local minima and maxima. In this
case, the local maxima and minima also determine the extreme values of the
function f on the circle.

27.1. Critical Points of a Function Subject to a Constraint. The extreme
value problem with constraints amounts to finding the critical points of
a function whose arguments are subject to constraints. Suppose that f
is a differentiable function. The example discussed above shows that the
equation ∇f = 0 no longer determines the critical points of f in the set
defined by constraints. A new condition has to be found.

Consider first the case of a single constraint for two variables r = 〈x, y〉.
Let r0 be a point at which a differentiable function f has a local extremum
on the set S defined by the constraint g(r) = 0. Let us further assume that g
has continuous partial derivatives in a neighborhood of r0 and ∇g(r0) 6= 0.
Then by the analysis of Section 24.2 the equation g(r) = 0 defines a smooth
curve through the point r0. Let r(t) be parametric equations of this curve
in a neighborhood of r0, that is, for some t = t0, r(t0) = r0 and r′(t0) 6= 0
(a smooth curve has a tangent vector at any point). The function F (t) =
f(r(t)) defines values of f along the curve and has a local extremum at t0.
Since the curve is smooth, the vector function r(t) is differentiable and it
is concluded that F has no rate of change at t = t0, F ′(t0) = 0. Since f is
a differentiable function, the derivative F ′(t0) can also be computed by the



27. LAGRANGE MULTIPLIERS 409

∇g ∇f

P
P0

∇f
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Figure 27.1. Left: Relative orientations of the gradients
∇f and ∇g along the curve g(x, y) = 0. At the point P0, the
function f has a local extreme value along the curve g = 0.
At this point, the gradients are parallel and the level curve
of f through P0 and the curve g = 0 have a common tangent
line. Right: Relative orientations of the gradients ∇f and
∇g along any curve in the constraint surface g(x, y, z) = 0.
At the point P0, the function f has a local extreme value on
the surface g = 0. At this point, the gradients are parallel
and the level surface of f through P0 and the surface g = 0
have a common tangent plane.

chain rule:

F ′(t0) = f ′
x(r0)x

′(t0) + f ′
y(r0)y

′(t0)

= ∇f(r0) · r′(t0) = 0 ⇒ ∇f(r0)⊥ r′(t0) .

The gradient ∇f(r0) is orthogonal to a tangent vector to the curve at the
point where f has a local extremum on the curve. By Theorem 24.2, the
gradient ∇g(r) at any point is normal to the level curve g(r) = 0, that is,
∇g(r(t))⊥r′(t) for any t, provided ∇g(r0) 6= 0. Therefore, the gradients
∇f(r0) and ∇g(r0) must be parallel at r0 (see Fig. 27.1):

∇f(r0) ⊥ r′(t0)
∇g(r0) ⊥ r′(t0)

}

⇒ ∇f(r0) = λ∇g(r0) ,

for some number λ. This is a characteristic property of a critical point of
f subject to a constraint. This algebraic condition also has a simple geo-
metrical interpretation. Suppose that f has continuous partial derivatives
in a neighborhood of r0 and ∇f(r0) 6= 0. Then the level set f(r) = f(r0) is
a smooth curve through r0. The characteristic geometrical property of the
point r0 is that the level curve of f and the curve g(x, y) = 0 are intersect-
ing at r0 and tangential to one another (they share the same tangent line
through r0).

The conclusion is readily extended to functions of three or more vari-
ables. Let r = 〈x, y, z〉. Then by the analysis of Section 24.2, the equation
g(r) = 0, where g has continuous partial derivatives and ∇g(r0) 6= 0, defines
a smooth surface S through the point r0 in a neighborhood of r0. If f has
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a local extreme value at r0 on the surface g(r) = 0, then f attains a local
extreme value along any smooth curve r = r(t) through r0 in that surface.
Therefore the derivative

F ′(t) =
d

dt
f(r(t)) = f ′

xx′ + f ′
yy

′ + f ′
zz

′ = ∇f(r(t)) · r′(t)

must vanish at t0 for which r(t0) = r0. Therefore, the gradient ∇f(r0) is
orthogonal to a tangent vector of any smooth curve in the surface S at r0:

F ′(t0) = ∇f(r0) · r′(t0) = 0 ⇒ ∇f(r0) ⊥ r′(t0) .

On the other hand, by the properties of the gradient (Theorem 24.2), the
vector ∇g(r0) is orthogonal to r′(t0) for every such curve. Therefore, at the
point r0, the gradients of f and g are orthogonal to the tangent plane of S
and, hence, must be parallel. A similar line of reasoning proves the following
theorem for any number of variables.

Theorem 27.1. (Critical Points Subject to a Constraint).
Suppose that f has a local extreme value at a point r0 on the set defined by
a constraint g(r) = 0. Suppose that g has continuous partial derivatives in
a neighborhood of r0 and ∇g(r0) 6= 0. If f is differentiable at r0, then there
exists a number λ such that

∇f(r0) = λ∇g(r0).

This theorem provides a powerful method to find critical points of f
subject to a constraint g = 0. It is called the method of Lagrange multipliers.
To find the critical points of f , the following system of equations must be
solved:

(27.1) ∇f(r) = λ∇g(r) , g(r) = 0.

If r = 〈x, y〉, this is a system of three equations:






f ′
x(x, y) = λg′x(x, y)

f ′
y(x, y) = λg′y(x, y)

g(x, y) = 0

for three variables (x, y, λ). For each solution (x0, y0, λ0), the corresponding
critical point of f is (x0, y0). The numerical value of λ is not relevant;
only its existence must be established by solving the system. In the case
of functions of three variables, the system contains four equations for four
variables (x, y, z, λ):



















f ′
x(x, y, z) = λg′x(x, y, z)

f ′
y(x, y, z) = λg′y(x, y, z)

f ′
z(x, y, z) = λg′z(x, y, z)

g(x, y, z) = 0

For each solution (x0, y0, z0, λ0), the corresponding critical point of f is
(x0, y0, z0).
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On applicability of the Lagrange method. Suppose that f has a local ex-
tremum at a point r0 on a curve g(r) = 0. The hypothesis ∇g(r0) 6= 0 in
Theorem 27.1 is crucial for the method of Lagrange multipliers to work. If
∇f(r0) 6= 0 (i.e. r0 is not a critical point of f without the constraint), then
Eqs. (27.1) have no solution when ∇g(r0) = 0, and the method of Lagrange
multiplers fails to detect a local extremum of f . Recall that the derivation
of Eq. (27.1) requires that a curve defined by the equation g(r) = 0 is
smooth near r0, which may no longer be the case if ∇g(r0) = 0. So, if f
attains its local extreme value at a point where the curve g(x, y) = 0 is not
smooth, then this point cannot be determined by Eq. (27.1). For example,
the equation

g(x, y) = x3 − y2 = 0 ⇒ x = y2/3

defines a curve that has a cusp at (0, 0) and ∇g(0, 0) = 0. Since x = y2/3 ≥ 0
on the curve, the function

f(x, y) = x ⇒ f(y2/3, y) = y2/3 , −∞ < y < ∞ ,

attains its absolute minimum value 0 along this curve at the origin. However,
∇f(0, 0) = 〈1, 0〉 6= 0 and the method of Lagrange multipliers fails to detect
this point because there is no λ at which Eqs. (27.1) are satisfied.

On the other hand, the function f(x, y) = x2 also attains its abso-
lute minimum value at the origin. Equations (27.1) do have the solution
(x, y, λ) = (0, 0, 0). The difference between the two cases is that in the lat-
ter case ∇f(0, 0) = 0, i.e., (0, 0) is also a critical point of f without the
constraint. Thus, if the gradient ∇g vanishes at some points in the set de-
fined by the constraint g = 0, then these points should also be studied as
critical points of a function f subject to the constraint g = 0.

27.2. Extreme Value Problem Subject to a Constraint. A differentiable
function does not necessarily attains its extreme values on a set defined by
a constraint g = 0. For example, f(x, y) = xy has no maximum value of
the line g(x, y) = y − x = 0, but it attains its minimum value because the
values of f on the line are f(x, x) = x2 where x is any real. On the line
g(x, y) = y + x = 0, the function f has no minimum value, but attains its
maximum value: f(x,−x) = −x2. On the parabola g(x, y) = y − x2 = 0,
the function f has no maximum and minimum values because f(x, x2) = x3.
So, the mere existence of critical points as solutions to Eqs. (27.1) does not
guarantee that f has extreme values at a critical point.

If, however, a differentiable function f is known to attain its extreme
values on a set defined by a constraint g = 0 where g is also a differentiable
function, then finding the extreme values becomes a two-steps procedure:

Step 1. Find all solutions (r, λ) = (r0, λ0) of the system (27.1); find all
points in the set g = 0 where ∇g = 0.
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Step 2. Evaluate f at all the critical points that result from Step 1. The
largest of these values is the maximum value of f ; the smallest is
the minimum value of f .

The extreme value theorem (Theorem 26.2) provides sufficient condi-
tions under which the above two-steps procedure allows us to find the ex-
treme values of a function subject to constraints. If the constraints define
a closed and bounded set, then a differentiable function attains its extreme
values on the set at some of the critical points determined by the method of
Lagrange multipliers.

If g(x, y) = 0 define a piecewise smooth curve that is a boundary of a
bounded region in a plane, then that curve is a closed bounded set. A line
in a plane is a closed, but not bounded set because it is not contained in
any disk. Similarly, if g(x, y, z) = 0 define a piecewise smooth surface that
is a boundary of a bounded region in space, then that surface is a closed
bounded set. A plane or a line in space is not a bounded set as these sets
are not contained in any ball.

Example 27.2. Use the method of Lagrange multipliers to solve the the
problem in Example 27.1.

Solution: Put g(x, y) = x2 + y2 − 4. The functions f(x, y) = −xy and g
are differentiable everywhere as they are polynomials.
Step 1: Then







f ′
x = λg′x

f ′
y = λg′y

g = 0
⇒







−y = 2λx
−x = 2λy

x2 + y2 = 4
.

The substitution of the first equation into the second one gives x = 4λ2x.
This means that either x = 0 or λ = ±1/2. If x = 0, then y = 0 by the first
equation, which contradicts the constraint. For λ = 1/2, x = −y and the
constraint gives 2x2 = 4 or x = ±

√
2. The critical points corresponding to

λ = 1/2 are

P1 = (
√

2,−
√

2) , P2 = (−
√

2,
√

2) .

If λ = −1/2, x = y and the constraint gives 2x2 = 4 or x = ±
√

2. The
critical points corresponding to λ = −1/2 are

P3 = (
√

2,
√

2) , P4 = (−
√

2,−
√

2) .

The gradient ∇g(x, y) = 〈2x, 2y〉 vanishes only at the origin which is not on
the circle x2 + y2 = 4. Alternatively, one could just notice that a circle is a
smooth curve.
Step 2: The circle x2 + y2 = 4 is is a closed, bounded set in the plane
as a boundary of a disk. So f attains its extreme values at (some of)
the found critical points: f(±

√
2,∓

√
2) = 2 is the maximum value and

f(±
√

2,±
√

2) = −2 is the minimum one. �
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27.3. The Nature of Critical Points Subject to a Constraint. The mere
existence of a solution to (27.1) does not guarantee that f has a local ex-
tremum at the point found. The situation is fully analogous to finding local
extrema of a differentiable function without constraints: the function in
question does not necessarily attains a local extremum value at each critical
point. An additional study is needed to determine the nature of a critical
point (e.g., the second derivative test). For example, in the case of a func-
tion f of two variables subject to a constraint g = 0, Eq. (27.1) means that
the function f has no rate of change along the curve g = 0 at a particular
point of the curve. This can happen not only when f has a local extremum
at this point, but also when f has an inflection point along the curve. Here
is an example of this kind.

Consider the following function and constraint

f(x, y) = xy , g(x, y) = y − x2 = 0 .

It is easy to see that the constraint defines the parabola y = x2 in the plane.
The function f has no extreme values on the parabola: f(x, x2) = x3 where
−∞ < x < ∞. However, the system (27.1) has one solution:







f ′
x = λg′x

f ′
y = λg′y
g = 0

⇒







y = −2λx
x = λ
y = x2

⇒ (x, y, λ) = (0, 0, 0) .

The substitution of the first and second equations into the third one yields
−2λ2 = λ2 or λ = 0, and, hence, x = y = 0. Note that f(x, x2) = x3 has an
inflection point at x = y = 0.

How does one determine the nature of a critical point in the case of
constrains? There is an analog of the second derivative test in the case of
a constrained extreme value problem. It will be discussed in Section 27.6.
However, this test is generally far more difficult to use than the second
derivative test for non-constrained extreme value problems. So, a direct use
of Definition 27.1 often works better. Yet, in the case when constraints
define a curve, there is a simple way to determine the nature of critical
points.

Let g(x, y) = 0 define a smooth curve so that all critical points P1, P2,
..., Pn are solutions to (27.1). Suppose that it is known that f has a local
maximum at P1 on the curve. For instance, if the curve is closed, then by
the extreme value theorem f attains its maximum value at one of the critical
points, say, P1. In particular, it is also a local maximum. The critical points
can always be ordered along the curve, that is, if a curve is traversed in a
particular direction, then the point Pk follows the point Pk−1, k = 2, 3, ....
Since f has a local maximum at P1, it should have either a local minimum or
an inflection at the neighboring critical point P2 along the curve. Let P3 be
the critical point next to P2 along the curve. Then f has a local minimum
at P2 if f(P2) < f(P3) and an inflection if f(P2) > f(P3). In other words,
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• Only a local minimum (maximum) can occur at the only critical
point between two neighboring local maxima (minima);

• One or more consecutive inflection points can only occur between
two neighboring local maximum and minimum.

This procedure may be continued until all critical points are exhausted.
Compare this pattern of critical points with the behavior of a height along
a hiking path.

Example 27.3. Find all critical points of the function f(x, y) = x2y on
the circle x2 + y2 = 1 and determine the nature of each critical point.

Solution: The function f is a polynomial and hence differentiable every-
where. The constraint g(x, y) = x2 +y2−1 = 0 is defined by a differentiable
function g(x, y) whose gradient ∇g = 〈2x, 2y〉 does not vanish anywhere on
the circle. Therefore all critical point of f are determined by solutions of
the system (27.1):







f ′
x = λg′x

f ′
y = λg′y
g = 0

⇒







2xy = 2λx
x2 = 2λy

x2 + y2 = 1

It follow from the first equation that either x = 0 or y = λ. If x = 0, then
y = ±1 (by the constraint) and λ = 0 (by the second equation). So, (0,±1)
are critical points corresponding to λ = 0. If y = λ, then by the second
equation x2 = 2λ2. Then by the constraint x2 + y2 = 3λ2 = 1 and, hence,
λ = ±1/

√
3. Thus, (±

√

(2/3), 1/
√

3) are critical points corresponding to

λ = 1/
√

3 and (±
√

(2/3),−1/
√

3) are critical points corresponding to λ =

−1/
√

3. Let us order the critical points along the circle counterclockwise
starting from the point in the positive quadrant:

P1 = (
√

(2/3), 1/
√

3) , P2 = (0, 1) , P3 = (−
√

(2/3), 1/
√

3) ,

P4 = (−
√

2/3,−1/
√

3) , P5 = (0,−1) , P6 = (
√

(2/3),−1/
√

3) .

By examining the sequence of values of f at the critical points

f(P1) → f(P2) → f(P3) → f(P4) → f(P5) → f(P6)√
2

3
√

3
→ 0 →

√
2

3
√

3
→ −

√
2

3
√

3
→ 0 → −

√
2

3
√

3

max → min → max → min → max → min

it is concluded that the function f has local maxima at P1, P3 and P5 and
it has local minima at P2, P4, and P6. �

27.4. Applications of the method of Lagrange multipliers. The method of
Lagrange multipliers is used in various optimization problems where some
of the variables are not independent and subject to constraints.

Example 27.4. A rectangular box without a lid is to be made from card-
board. Find the dimensions of the box of a given volume V such that the
cost of material is minimal.
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Solution: Let the dimensions of the box be x, y, and z, where z is the
height. The amount of cardboard needed is determined by the surface area

f(x, y, z) = xy + 2xz + 2yz .

The question is to find the minimal value of f subject to constraint that the
volume of the box has a given value V :

g(x, y, z) = xyz − V = 0 .

Since f and g have continuous partial derivatives, let us apply the method
of Lagrange multipliers:















f ′
x = λg′x

f ′
y = λg′y

f ′
z = λg′z

g = 0

⇒















y + 2z = λyz
x + 2z = λxz

2x + 2y = λxy
xyz = V

⇒















xy + 2xz = λV
xy + 2zy = λV

2xz + 2yz = λV
xyz = V

,

where the last system has been obtained by multiplying the first equation
by x, the second one by y, and the third one by z with the subsequent use of
the constraint. Combining the first two equations, one infers 2z(y − x) = 0.
Since z 6= 0 (V 6= 0), one has y = x. Combining the first and third equations,
one infers y(x− 2z) = 0 and hence x = 2z. The substitution of y = x = 2z
into the constraint yields 4z3 = V . Hence, the optimal dimensions are

x = y = (2V )1/3 , z =
1

2
(2V )1/3 .

The amount of cardboard minimizing the cost is 3(2V )2/3 (the value of f
at the critical point). From the geometry of the problem, it is clear that f
attains its minimum value at the only critical point. �

Extreme values on a set. The method of Lagrange multipliers can be used
to determine extreme values of a function on a set D. Recall that the
extreme values may occur on the boundary of D. In Example 26.3, explicit
parametric equations of the boundary of D have been used (Step 2 in the
solution). Instead, an algebraic equation of the boundary,

g(x, y) = x2 + y2 − 4 = 0

can be used in combination with the method of Lagrange multipliers. In-
deed, if

f(x, y) = x2 + y2 + xy ,

then its critical points along the boundary circle satisfy the system of equa-
tions:







f ′
x = λg′x

f ′
y = λg′y

g = 0
=⇒







2x + y = 2λx
2y + x = 2λy

x2 + y2 = 4
.

By subtracting the second equation from the first one, it follows that

x − y = 2λ(x− y) .
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Hence, either x = y or λ = 1/2. In the former case, the constraint yields

2x2 = 4 or x = ±
√

2. The corresponding critical points are (±
√

2,±
√

2).
If λ = 1/2, then from the first two equations in the system, one infers that

x = −y. The constraint becomes 2x2 = 4 or x = ±
√

2, and the critical
points are (±

√
2,∓

√
2).

27.5. The Case of Two or More Constraints. Let a differentiable function
of three variables f have a local extreme value at point r0 on the set defined
by two constraints g1(r) = 0 and g2(r) = 0. Suppose that g1 and g2 have
continuous partial derivatives in a neighborhood of r0 and the gradients of
g1 and g2 do not vanish at r0, ∇g1(r0) 6= 0 and ∇g2(r0) 6= 0. Then each
constraint defines a smooth surface in a neighborhood of r0. Suppose that
the vectors ∇g1(r0) and ∇g2(r0) are not parallel or, equivalently, ∇g1(r0)
is not proportional to ∇g2(r0). Then the set defined by the constraints is a
smooth curve of intersection of two surfaces. Let v be a tangent vector to
the curve at r0. Since the curve lies in the level surface g1 = 0, by the earlier
arguments, ∇f(r0)⊥v and ∇g1(r0)⊥v. On the other hand, the curve also
lies in the level surface g2 = 0 and hence ∇g2(r0)⊥v. It follows that the
gradients ∇f , ∇g1, and ∇g2 become coplanar at the point r0 as they lie
in the plane normal to v. Any vector in the plane normal to v is a linear
combination of two non-parallel vectors in it. Therefore there exist numbers
λ1 and λ2 such that

∇f(r) = λ1∇g1(r) + λ2∇g2(r) , g1(r) = g2(r) = 0

when r = r0. This is a system of five equations for five variables (x, y, z, λ1, λ2).
For any solution (x0, y0, z0, λ10, λ20), the point (x0, y0, z0) is a critical point
of f on the set defined by the constraints. In general, the following result
can be proved by a similar line of reasoning.

Theorem 27.2. (Critical Points Subject to Constraints).
Suppose that functions ga, a = 1, 2, ..., M , of m variables, m > M , have
continuous partial derivatives in a neighborhood of a point r0 and a func-
tion f has a local extreme value at r0 in the set defined by the constraints
ga(r) = 0. Suppose that ∇ga(r0) are non-zero vectors any of which cannot
be expressed as a linear combination of the others and f is differentiable at
r0. Then there exist numbers λa such that

∇f(r0) = λ1∇g1(r0) + λ2∇g2(r0) + · · ·+ λM∇gM(r0).

Example 27.5. Find extreme values of the functions f(x, y, z) = xyz
on the curve that is an intersection of the sphere x2 + y2 + z2 = 1 and the
plane x + y + z = 0.

Solution: Put g1(x, y, z) = x2 + y2 + z2 − 1 and g2(x, y, z) = x + y + z.
One has ∇g1 = 〈2x, 2y, 2z〉 which can only vanish at (0, 0, 0) and, hence,
∇g1 6= 0 on the sphere. Also, ∇g2 = 〈1, 1, 1〉 6= 0. Therefore critical points
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of f on the surface of constraints are determined by the equations:

f ′
x = λ1g

′
x + λ2g

′
x

f ′
y = λ1g

′
y + λ2g

′
y

f ′
z = λ1g

′
z + λ2g

′
z

g1 = 0
g2 = 0

⇒

yz = 2λ1x + λ2

xz = 2λ1y + λ2

xy = 2λ1z + λ2

1 = x2 + y2 + z2

0 = x + y + z

Subtract the second equation from the first one to obtain that (y − x)z =
2λ1(x−y). It follows then that either x = y or z = −2λ1. Suppose first that
y = x. Then z = −2x by the fifth equation. The substitution of x = y and
z = −2x into the fourth equation yields 6x2 = 1 or x = ±1/

√
6. Therefore

the points

r1 = 〈1/
√

6, 1/
√

6,−2/
√

6〉 , r2 = 〈−1/
√

6,−1/
√

6, 2/
√

6〉

are critical points, provided there exist the corresponding values λ1 and λ2

such that all equations are satisfied. For example, take r1. Then the second
and third equations become

{

−2
6 = 2√

6
λ1 + λ2

1
6 = − 4√

6
λ1 + λ2

⇔
{

−3
6 = 6√

6
λ1

1
6 = − 4√

6
λ1 + λ2

So λ1 = −1/(2
√

6) and λ2 = −1/6. The existence of λ1 and λ2 for the
point r2 is verified similarly. Next suppose that z = −2λ1. Subtract the
third equation from the second one to obtain that (z − y)x = 2λ1(y − z). It
follows that either y = z or x = −2λ1. Let y = z. The fifth equation yields
x = −2y and the fourth equation is reduced to 6y2 = 1. Therefore there are
two more critical points

r3 = 〈−2/
√

6, 1/
√

6, 1/
√

6〉 , r4 = 〈2/
√

6,−1/
√

6,−1/
√

6〉 .

The reader is to verify the existence of λ1 and λ2 in these cases (note that
λ1 = −z/2). Finally, let x = −2λ1 and z = −2λ1. These conditions imply
that x = z and, by the fifth equation, y = −2x. The fourth equation yields
6x2 = 1 so that there is another pair of critical points:

r5 = 〈1/
√

6,−2/
√

6, 1/
√

6〉 , r6 = 〈−1/
√

6, 2/
√

6,−1/
√

6〉

(the reader is to verify the existence of λ1 and λ2). The intersection of the
sphere and the plane is a circle, which is a closed and bounded set. So, f
attains its extreme values at some of the critical points found. By examining
the largest and smallest values of f at the critical points, it is concluded that
f attains the maximum value 2/

√
6 at r2, r4, and r6 and the minimum value

−2/
√

6 at r1, r3, and r5. �

Let f(r) be a function subject to a constraint g(r). Define the function

F (r, λ) = f(r) − λg(r),
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where λ is viewed as an additional independent variable. Then critical points
of F are determined by (27.1). Indeed, if r = 〈x1, x2, ..., xm〉, then

F ′
λ(r, λ) = 0 ⇒ g(r) = 0

F ′
xj

(r, λ) = 0 ⇒ f ′
xj

(r, λ)− λg′xj
(r, λ) = 0 ⇒ ∇f = λ∇g .

Similarly, if there are several constraints, critical points of the function with
additional variables λa, a = 1, 2, ..., M ,

(27.2) F (r, λ1, λ2, ..., λM) = f(r)−
M
∑

a=1

λaga(r)

coincide with the critical points of f subject to the constraints ga = 0 as
stated in Theorem 27.2. The functions F and f have the same values on
the set defined by the constraints ga = 0 because they differ by a linear
combination of constraint functions with the coefficients being the Lagrange
multipliers. The above observation provides a simple way to formulate the
equations for critical points subject to constraints.

27.6. Finding Local Maxima and Minima. In the simplest case of a func-
tion f of two variables subject to a constraint, the nature of critical points
has been determined by ordering critical points along the curve and by ex-
amining the values of the function at the critical points. Unfortunately, this
method is limited in applications. For example, if the constraint defines
a surface, then it is not possible to order critical points. It is possible to
develop an analog of the second-derivative test for critical points subject to
constraints.

The second-derivative test. If the constraints can be solved, then an ex-
plicit form of f on the set defined by the constraints can be found, and the
standard second-derivative test applies! For instance, in Example 27.4, the
constraint can be solved z = V/(xy). The values of the function f on the
constraint surface are

F (x, y) = f(x, y, V/(xy)) = xy +
2V (x + y)

xy
.

The equations F ′
x = 0 and F ′

y = 0 determine the critical point x = y =

(2V )1/3 (and z = V/(xy) = (2V )1/3/2). So the second-derivative test can

be applied to the function F (x, y) at the critical point x = y = (2V )1/3 to
show that indeed F has a minimum and hence f has a minimum on the
constraint surface.

Even if the constraint cannot be solved explicitly, the implicit function
theorem may be used to obtain an analog of the second-derivative test for
critical points of functions subject to constraints. Its general formulation is
not simple. So the discussion is limited to the simplest case of a function
of two variables subject to a constraint (see also Study Problem 27.2 where
the case of three variables and one constraint is studied).
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Suppose that g and f have continuous second order partial derivatives
and ∇g(r0) 6= 0 where r0 is a solution of the system (27.1) for some λ. Then
g′x and g′y cannot simultaneously vanish at the critical point. Without loss

of generality, assume that g′y 6= 0 at r0. By the implicit function theorem,
there is a neighborhood of r0 in which the equation g(x, y) = 0 has a unique
solution y = h(x). The values of f on the level curve g = 0 near the critical
point are F (x) = f(x, h(x)). By the chain rule, one infers that F ′ = f ′

x+f ′
yh

′

and

(27.3) F ′′ = (d/dx)(f ′
x + f ′

yh
′) = f ′′

xx + 2f ′′
xyh

′ + f ′′
yy(h′)2 + f ′

yh
′′.

So, in order to find F ′′(x0), one has to calculate h′(x0) and h′′(x0). This
latter task is accomplished by the implicit differentiation.

By the definition of h(x), G(x) = g(x, h(x)) = 0 for all x in an open
interval containing x0. Therefore, G′(x) = 0, which defines h′:

G(x) = 0 ⇒ 0 = G′(x) = g′x(x, h) + g′y(x, h)h′(x) ⇒ h′(x) = −g′x
g′y

.

Similarly, G′′(x) = 0 yields

(27.4) G′′ = g′′xx + 2g′′xyh
′ + g′′yy(h

′)2 + g′yh
′′ = 0,

which can be solved for h′′:

h′′ = − 1

g′y

(

g′′xx + 2g′′xyh
′ + g′′yy(h

′)2
)

, h′ = −g′x
g′y

So the derivatives h′(x0) and h′′(x0) can be computed in terms of the values
of the partial derivatives of g at the critical point (x0, y0). Their substitution
into (27.3) gives the value F ′′(x0). If F ′′(x0) > 0 (or F ′′(x0) < 0), then f has
a local minimum (or maximum) at (x0, y0) along the curve g = 0. Note also
that F ′(x0) = 0 as required owing to the conditions f ′

x = λg′x and f ′
y = λg′y

satisfied at the critical point.
If g′y(r0) = 0, then g′x(r0) 6= 0, and there is a function x = h(y) that

solves the equation g(x, y) = 0. So, by swapping x and y in the above
arguments, the same conclusion is proved to hold.

Example 27.6. Show that the point r0 = 0 is a critical point of the
function f(x, y) = x2y + y + x subject to the constraint exy = x + y + 1 and
determine whether f has a local minimum or maximum at it.

Solution:

Critical point. Put g(x, y) = exy − x − y − 1. Then g(0, 0) = 0; that is, the
point (0, 0) satisfies the constraint. The first partial derivatives of f and g
are

f ′
x = 2xy + 1 , f ′

y = x2 + 1 , g′x = yexy − 1 , g′y = xexy − 1 .

Therefore, both equations f ′
x(0, 0) = λg′x(0, 0) and f ′

y(0, 0) = λg′y(0, 0) are
satisfied at λ = −1. Thus, the point (0, 0) is a critical point of f subject to
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the constraint g = 0.
Second-derivative test. Since g′y(0, 0) = −1 6= 0, there is a function y = h(x)
near x = 0 such that G(x) = g(x, h(x)) = 0. By the implicit differentiation,

h′(0) = −g′x(0, 0)/g′y(0, 0) = −1 .

The second partial derivatives of g are

g′′xx = y2exy , g′′yy = x2exy , g′′xy = exy + xyexy .

The derivative h′′(0) is found from (27.4), where g′′xx(0, 0) = g′′yy(0, 0) = 0,

g′′xy(0, 0) = 1, h′(0) = −1, and g′y(0, 0) = −1:

h′′(0) = −[g′′xx(0, 0) + 2g′′xy(0, 0)h′(0) + g′′yy(0, 0)(h′(0))2]/g′y(0, 0) = −2.

The second partial derivatives of f are

f ′′
xx = 2y , f ′′

yy = 0 , f ′′
xy = 2x.

The substitution of f ′′
xx(0, 0) = f ′′

yy(0, 0) = f ′′
xy(0, 0) = 0, h′(0) = −1,

f ′
y(0, 0) = 1, and h′′(0) = −2 into (27.3) gives F ′′(0) = −2 < 0. There-

fore, f attains a local maximum at (0, 0) along the curve g = 0. Note also
that F ′(0) = f ′

x(0, 0) + f ′
y(0, 0)h′(0) = 1 − 1 = 0 as required. �

The implicit differentiation and the implicit function theorem can be
used to establish the second-derivative test for the multivariable case with
constraints (see another example in Study Problem 27.2).

27.7. Study Problems.

Problem 27.1. An axially symmetric solid consists of a circular cylinder
and a right-angled circular cone attached to one of the cylinder’s bases. What
are the dimensions of the solid at which it has a maximal volume if the
surface area of the solid has a fixed value S?

Solution: Let r and h be the radius and height of the cylinder. Since the
cone is right-angled, its height is r. The surface area is the sum of three
terms: the area of the base (disk) πr2, the area of the side of the cylinder
2πrh, and the surface area Sc of the cone. A cone of height a and with
the radius of the base r is obtained by rotation of a straight line y = mx,
where m = r/a and 0 ≤ x ≤ a, about the x−axis. In the present case r = a
and m = 1. Recall from Calculus II that the area of a surface obtained by
rotation about the x axis is

Sc =

∫ a

0
2πy

√

1 + (dy/dx)2dx =
√

2

∫ r

0
2πxdx = π

√
2 r2 .

Similarly, the volume of the cone is

Vc =

∫ a

0
πy2dx =

∫ r

0
πx2dx =

πr3

3
.
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Therefore the problem is reduced to finding the maximal value of the func-
tion (volume) V (r, h) = πr2h + πr3/3 subject to the constraint

g(r, h) = 2πrh + (1 +
√

2)πr2 − S = 0 .

The critical points of V satisfy the equations:






V ′
r = λg′r

V ′
h = λg′h
0 = g(r, h)

⇒







2πrh + πr2h = λ(2πh + 2(1 +
√

2)πr)
πr2 = 2πλr

S = 2πrh + (1 +
√

2)πr2

Since r 6= 0 (the third equation is not satisfied if r = 0), the second equation
implies that λ = r/2. The substitution of the latter into the first equation

yields rh = r2
√

2 or h = r
√

2. Then it follows from the third equation that
r = (S/[π(1 + 2

√
2)])1/2. By the geometrical nature of the problem it is

clear that the found critical point corresponds to the maximum value of the
volume. �

Problem 27.2. Let functions f and g of three variables r = 〈x, y, z〉 have
continuous partial derivatives up to order 2. Use the implicit differentiation
to establish the second-derivative test for critical points of f on the surface
g(r) = 0.

Solution: Suppose that ∇g(r0) 6= 0 at a critical point r0. Without
loss of generality, one can assume that g′z(r0) 6= 0. By the implicit func-
tion theorem, there exists a function z = h(x, y) such that G(x, y) =
g(x, y, h(x, y)) = 0 in some neighborhood of the critical point. Then the
equations G′

x(x, y) = 0 and G′
y(x, y) = 0 determine the first partial deriva-

tives of h:

g′x + g′zh
′
x = 0 ⇒ h′

x = −g′x/g′z ; g′y + g′zh
′
y = 0 ⇒ h′

y = −g′y/g′z .

The second partial derivatives h′′
xx, h′′

xy, and h′′
yy are found from the equations

G′′
xx = 0 ⇒ g′′xx + 2g′′xzh

′
x + g′′zz(h

′
x)

2 + g′zh
′′
xx = 0,

G′′
yy = 0 ⇒ g′′yy + 2g′′yzh

′
y + g′′zz(h

′
y)

2 + g′zh
′′
yy = 0,

G′′
xy = 0 ⇒ g′′xy + g′′xzh

′
x + g′′yzh

′
y + g′′zzh

′
xh′

y + g′zh
′′
xy = 0.

The values of the function f on the level surface g(x, y, z) = 0 near the
critical point are F (x, y) = f(x, y, h(x, y)). To apply the second-derivative
test to the function F , its second partial derivatives have to be computed
at the critical point. By the chain rule

F ′′
xx = (f ′

x + f ′
zh

′
x)′x = f ′′

xx + 2f ′′
xzh

′
x + f ′′

zz(h
′
x)

2 + f ′
zh

′′
xx,

F ′′
yy = (f ′

y + f ′
zh

′
y)

′
y = f ′′

yy + 2f ′′
yzh

′
y + f ′′

zz(h
′
y)

2 + f ′
zh

′′
yy,

F ′′
xy = (f ′

x + f ′
zh

′
x)′y = f ′′

xy + f ′′
xzh

′
x + f ′′

yzh
′
y + f ′′

zzh
′
xh′

y + f ′
zh

′′
xy,

where the first and second partial derivatives of h have been found earlier.
If (x0, y0, z0) is the critical point found by solving the system (27.1), then
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a = F ′′
xx(x0, y0), b = F ′′

yy(x0, y0), and c = F ′′
xy(x0, y0) in the second-derivative

test for the two-variable function F . �

27.8. Exercises.
1–18. Use Lagrange multipliers to find the maximum and minimum values
of each of the following functions subject to the specified constraints:

1. f(x, y) = xy, x + y = 1 ;
2. f(x, y) = x2 + y2, x/a + y/b = 1 ;
3. f(x, y) = xy2, 2x2 + y2 = 6 ;
4. f(x, y) = y2, x2 + y2 = 4 ;
5. f(x, y) = x + y, x2/16 + y2/9 = 1 ;
6. f(x, y) = 2x2 − 2y2, x4 + y4 = 16 ;
7. f(x, y) = Ax2 + 2Bxy + Cy2, x2 + y2 = 1 ;
8. f(x, y, z) = xyz, 3x2 + 2y2 + z2 = 6 ;
9. f(x, y, z) = x − 2y + 2z, x2 + y2 + z2 = 1 ;

10. f(x, y, z) = x2 + y2 + z2, x2/a2 + y2/b2 + z2/c2 = 1 ;
11. f(x, y, z) = −x + 3y − 3z, x + y − z = 0, y2 + 2z2 = 1 ;
12. f(x, y, z) = xy + yz, xy = 1, y2 + 2z2 = 1 ;
13. f(x, y, z) = xy+yz, x2 +y2 = 2, y+z = 2 (x > 0, y > 0, z > 0) ;
14. f(x, y, z) = sin(x) sin(y) sin(z), x + y + z = π/2 (x > 0, y > 0,

z > 0) ;
15. f(x, y, z) = x2/a2 +y2/b2 + z2/c2, x2 +y2 + z2 = 1, n1x+n2y +

n3z = 0, where n̂ = 〈n1, n2, n3〉 is a unit vector ;
16. f(r) = û · r, ‖r‖ = R, where r = 〈x1, ..., xm〉, û is a constant unit

vector, and R > 0 is a constant ;
17. f(r) = r · r, n · r = 1 where n has strictly positive components

and r = 〈x1, x2, ..., xm〉 ;
18. f(r) = xn

1 + xn
2 + · · ·+ xn

m, x1 + x2 + · · ·+ xm = a where n > 0
and a > 0.

19. Prove the inequality

xn + yn

2
≥

(

x + y

2

)n

if n ≥ 1, x ≥ 0, and y ≥ 0. Hint: Minimize the function f = (xn + yn)/2
under the condition x + y = s.
20. Find the minimal value of the function f(x, y) = y on the curve
x2 + y4 − y3 = 0. Explain why the method of Lagrange multipliers fails.
Hint: Sketch the curve near the origin.
21. Use the method of Lagrange multipliers to maximize the function
f(x, y) = 3x + 2y on the curve

√
x +

√
y = 5. Compare the obtained

value with f(0, 25). Explain why the method of Lagrange multipliers fails.
22. Find three positive numbers whose sum is a fixed number c > 0 and
whose product is maximal.
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23–27. Use the method of Lagrange multipliers to solve the following Prob-
lems from Section 26.6:

23. Exercise 35 ;
24. Exercise 36 ;
25. Exercise 37 ;
26. Exercise 38 ;
27. Exercise 39 .

28. The cross section of a cylindrical tab is a half-disk. If the tab has total
area S, what are the dimensions at which the tab has maximal volume?
29. Find a rectangle with a fixed perimeter 2p that forms a solid of the
maximal volume under rotation about one of its sides.
30. Find a triangle with a fixed perimeter 2p that form a solid of the
maximal volume under rotation about one of its sides.
31. Find a rectangular box with the maximal volume that is contained in a
half-ball of radius R.
32. Find a rectangular box with the maximal volume that is contained in
an ellipsoid x2/a2 + y2/b2 + z2/c2 = 1.
33. Consider a circular cone obtained by rotation of a straight line segment
of length l about the axis through an endpoint of the segment. If the angle
between the segment and the axis is θ, find a rectangular box within the
cone that has a maximal volume.
34. The solid consists of a rectangular box and two identical pyramids whose
bases are opposite faces of the box. The edges of the pyramid adjacent at
the vertex opposite to its base have equal lengths. If the solid has a fixed
volume V , at what angle between the edges of the pyramid and its base is
the surface area of the solid minimal?
35. Use Lagrange multipliers to find the distance between the parabola
y = x2 and the line x − y = 2.
36. Find the maximum value of the function f(r) = m

√
x1x2 · · ·xm given

that x1 +x2 + · · ·+xm = c, where c is a positive constant. Deduce from the
result that if xi > 0, i = 1, 2, ...,m, then

m
√

x1x2 · · ·xm ≤ 1

m
(x1 + x2 + · · ·+ xm)

that is, the geometrical mean of m numbers is no larger than the arithmetic
mean. When is the equality reached?
37. Give an alternative proof of the Cauchy-Schwarz inequality in a Eu-
clidean space (Theorem 8.1) using the method of Lagrange multipliers to
maximize the function of 2m variables f(x, y) = x · y subject to the con-
traints x · x = 1 and y · y = 1, where x = 〈x1, ..., xm〉 and y = 〈y1, ..., ym〉.
Hint: After maximizing the function, put x = a/‖a‖ and y = b/‖b‖ for any
two non-zero vectors a and b.
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Selected Answers and Hints to Exercises

Section 16.6. 1. D = {(x, y)|y 6= 0}, R = (−∞,∞). 2. D = {(x, y)|(x, y)
6= (0, 0)}, R = (−∞,∞). 3. D = {(x, y)|y 6= ±2x}, R = (−∞,∞). 4.
D = {(x, y)|(x/3)2 + (y/6)2 < 1} (an interior of an ellipse, the boundary is
not included), R = (−∞, ln 9]. 5. D = {(x, y)|x2 + (y/3)2 ≤ 1} (an interior
of an ellipse, the boundary is included), R = [0, 1]. 6. D = {(x, y)|x2+y2 ≤
4, y > 0} (the half-disk with the circular boundary included), R = (−∞,∞).
7. D = {(x, y)|x2 + y2 ≤ 4, y 6= 0} (the disk with the circular boundary
included and with the diameter along the x axis excluded), R = (−∞,∞).
8. D = {(x, y)|x2 + y2 ≤ 4, x2 + y2 > 1} (the region between the circles,
the inner circle is excluded), R = (−∞, ln 3] 9. D = {(x, y, z)|yz 6= 0} (the
whole space with the planes y = 0 and z = 0 excluded), R = (−∞,∞). 10.
D = {(x, y, z)|x 6= y2 +z2} (the whole space with the paraboloid x = y2 +z2

excluded), R = (−∞,∞). 11. D = {(x, y, z)|z − 1 < x2 + y2} (the solid
region below the circular paraboloid z − 1 = x2 + y2, the paraboloid is not
included), R = (−∞,∞). 12. D = {(x, y, z)|x2 ≥ y2 +z2 , x2 +y2 +z2 < 1}
(the part of the ball that lies inside the double cone whose axis is the x axis,
the boundary of the ball is not included). 14. The contour map consists

of ellipses (x/a)2 + (y/b)2 = 1 where a =
√

k, b =
√

k/2, and k > 0;
the graph is the elliptic paraboloid, z = x2 + 4y2. 15. The contour map
consists of hyperbolas y = k/x, k 6= 0 and the coordinate axes (level curves
f(x, y) = 0); the graph is the hyperbolic paraboloid with axes rotated by
45◦ (the axes are y = ±x) or a “saddle”. 17. The contour map consists of
ellipses (x/a)2 + (y/b)2 = 1 where b = a/3, the graph is the elliptic cone
z2 = x2 + 9y2, z ≥ 0. 18. The contour map consists of coordinate lines
x = sin−1(k), the graph is a cylindrical surface swept by the graph z = sinx
by moving the latter parallel to the y axis. 20. Parallel planes perpendicular
to n = 〈1, 2, 3〉. 21. Ellipsoids (x/a)2 + (y/b)2 + (z/c)2 = 1 where b = a/2
and c = a/3, a > 0. 22. Paraboloids z − k = −(x2 + y2) where k is real.
24. Hyperboloids of one sheet x2 + y2 − z2 = ek > 0, where k is real, with
the axis parallel to the z axis. 33. The surface z = f(x, y) is shifted along
the z axis by k units. 34. The surface z = f(x, y) is stretched along the z
axis if |m| > 1 and compressed if 0 < |m| < 1, a negative m corresponds
to the reflection about the xy plane. 35. The surface z = f(x, y) is rigidly
shifted so that each point is along the vector (a, b, 0). 36. The surface
z = f(x, y) is stretched (|p| < 1, |q| < 1) and/or compressed (|p| > 1,
|q| > 1) along the x and y axes; negative values of p and/or q correspond
to reflections of the surface about yz and/or xz planes, respectively. 41.
f(x, y) = x2(1 − y)/(1 + y). 45. The surface is obtained by rotation of the
graph z = f(u), u ≥ 0, about the z axis

Section 17.7. 1. 0 < δ ≤ ε/10. 2. 0 < δ ≤ 3ε/10. 3. 0 < δ ≤ δ1 where δ1 is
the smallest number of 3ε/10 and 1. 4. 0 < δ ≤ 3ε/10. 5. 0 < δ ≤ δ1 where
δ1 is the smallest number of ε/12 and 1. 6. −|x|√y ≤ y sin(x/

√
y) ≤ |x|√y.
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7. −1
2y2 ≤ [1 − cos(y/x)]x2 ≤ 1

2y2. 9. The value f(r0) is unknown. If f is
continuous, then f(r0) = 2. 12. f is continuous on its domain. 17. f is not
continuous at y = x, x 6= 0. 20. No such c exists. 21. c = 0. 22. c = 0.
23. 1

2 . 24. 0. 25. 0. 26. −1. 27. 0.

Section 18.7. 4. 1
4 . 5. −1

6 . 6. 1
2 . 7. The limit does not exist. 8. 0. 9.

1
2 . 10. The limit does not exist. 11. 0. 12. ln 2. 13. 1. 14. 1. 15. 0.

16. 0. 17. 0. 19. f(t, at2) = a/(1 + a2) 6= 0 (limits along parabolas do
not vanish), a 6= 0. 21. The limit along the lines is zero. But the limit at
infinity does not exist because the limit along the parabola does not vanish:
f(t, t2) = t2 → ∞ as t → ∞. 22. ∞. 23. ∞. 24. The limit does not exist

(consider x = y = z = t as t → ∞ and x = y = t, z = e−at2 as t → ∞).
25. ∞. 26. The limit does not exist. 27. The limit does not exist. Hint:
compare the limits along 〈t, t,−t〉 and 〈t, t,−t2〉 as t → 0+. 28. The limit
does not exist. 30. The limit does not exist.

Section 19.4. 1. f ′
x(1, 2) = 4

9 , f ′
y(1, 2) = −2

9 . 2. f ′
x(1, 2, 3) = 2

5 , f ′
y(1, 2, 3)

= f ′
z(1, 2, 3) = 0. 3. f ′

xk
(0) = k, k = 1, 2, ..., n. 4. f ′

x(1, 2, π
2 ) = 0,

f ′
y(1, 2, π

2 ) = −π
2 , f ′

z(1, 2, π
2 ) = −2. 5. f ′

x(1, 1) = 1, f ′
y(1, 1) = π

2 . 6.

f ′
x(0, 0) = f ′

y(0, 0) = 1. 7. f ′
x(0, 0) = f ′

y(0, 0) = 0. 8. f ′
x = n(x + y2)n−1,

f ′
y = 2ny(x + y2)n−1. 9. f ′

x = yxy−1, f ′
y = ln(x)xy. 10. f ′

x = (1 + 2x2 +

4xy)e(x+2y)2, f ′
y = 4x(x + 2y)e(x+2y)2. 11. f ′

x = y cos(xy) cos(x2 + y2) −
2x sin(xy) sin(x2 + y2), f ′

y = x cos(xy) cos(x2 + y2)− 2y sin(xy) sin(x2 + y2).

12. f ′
x = 1/(x+y2 + z3), f ′

y = 2y/(x+y2 + z3), f ′
z = 3z2/(x+y2 + z3). 13.

f ′
x = y2 cos(xz2)−xy2z2 sin(xz2), f ′

y = 2xy cos(xz2), f ′
z = −2x2y2z sin(xz2).

14. f ′
xk

= mak(a · r)m−1, k = 1, 2, 3. 15. f ′
x = −y/(x2 + y2), f ′

y =

x/(x2 + y2). 16. f ′
x = y/(x2 + y2), f ′

y = −x/(x2 + y2). 17. f ′
x = yzxyz−1,

f ′
y = z ln(x)xyz

yz−1, f ′
z = xyz

y ln(x). 22. f ′
xj

= (a × b)j, j = 1, 2, 3. 23.

f ′
xj

= 1
‖a×r‖ [(a · a)xj − (a · r)aj], j = 1, 2, 3, where a = 〈a1, a2, a3〉 and r =

〈x1, x2, x3〉. 24. f ′
x(1, 2) = 4

9 > 0 (increasing), f ′
y(1, 2) = 1

9 > 0 (increasing).

25. f ′
x(1, 1) = 2

3 > 0 (increasing), f ′
y(1, 1) = −4

3 < 0 (decreasing). 26.

f ′
x(−1, π) = −π < 0 (decreasing), f ′

y(−1, π) = 1 > 0 (increasing).

Section 20.4. 1. f ′′
xx = −2xy3/(1 + x2y2)2, f ′′

yy = −2x3y/(1 + x2y2)2,

f ′′
xy = f ′′

yx = (1 − x2y2)/(1 + x2y2)2. 2. f ′′
xx = 0, f ′′

yy = 2xz cos(zy2) −
4xy2z2 sin(zy2), f ′′

zz = −xy4 sin(zy2), f ′′
zx = f ′′

xz = y2 cos(zy2), f ′′
xy = f ′′

yx =

2zy cos(zy2), f ′′
yz = f ′′

zy = 2xy cos(zy2) − 2xyz3 sin(zy2). 3. f ′′
xx = 6x,

f ′′
xy = f ′′

yx = 0, f ′′
yy = 0, f ′′

zy = f ′′
yz = 1, f ′′

zz = 2. 7. f ′′
xixj

= aibj + ajbi, i, j =

1, 2, ...,m. 13. f ′′′
xxy = f ′′′

xyx = f ′′′
yxx = 0. 14. f ′′′

xyz = 0 f ′′′
xxz = 0, f ′′′

yzz = 0 (the

order of differentiation does not matter). 15. ∂5f/∂z5 = sin(xy)ez, f
(4)
xyzz =

ez[cos(xy) − xy sin(xy)] (the order of differentiation does not matter). 16.
−4! sin(x+2y+3z−4t). 21. f = x3y+y3+c. 22. f = xyz+x3+2y2+z+c.
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23. f =
∑m

k=1
k
2 x2

k + c. 24. f does not exist. 25. f = x sin(xy) + c. 33.

c2 = a2 + b2 (a double circular cone). 34. F (t) = t2u′′′(t) + 3tu′′(t) + u′(t).
39. f ′′

xy(0, 0) does not exist, f ′′
yx(0, 0) = 0 (note f ′

x(0, 0) = f ′
y(0, 0) = 0,

f ′
x(0, y) = 1 if y 6= 0, whereas f ′

y(x, 0) = 0 if x 6= 0). 40. f(x, y) =
g(y)x + h(y) for some g(y) and h(y). 41. f(x, y) = g(x) + h(y) for some
g(x) and h(y). 42. f(x, y) = gn(x)yn−1 +gn−1(x)yn−1 + · · ·+g2(x)y+g1(x)
for some gk(x), k = 1, 2, ..., n. 43. g(x, y, z) = f(x, y) + h(y, z) + p(x, z) for
some f(x, y), h(y, z), and p(x, z). 44. f(x, y) = x2y + y2 − 2x4 + 1. 45.
f(x, y) = 2y2 + xy + 2. 46. f(x, y) = 1

2 (x2y + y2x) + x + y2.

Section 21.6. 3. No; f ′
x(0, 0) and f ′

y(0, 0) do not exist. 4. No; since

f ′
x(0, 0) = f ′

y(0, 0) = 0, there should be L(x, y) = 0, but

[f(x, y) − L(x, y)]/
√

x2 + y2 does not have a limit as (x, y) → (0, 0). 5.

f ′
x(0, 0) = f ′

y(0, 0) = 0, so L(x, y) = 0, but [f(x, y) − L(x, y)]/
√

x2 + y2

does not have a limit as (x, y) → (0, 0) and, hence, f is not differentiable
at (0, 0). 7. 0 < x < ∞, −∞ < y < ∞. 8. 2x + y 6= 0. 9. All (x, y, z).
10. x2 + y2 > z2 (solid region outside the double cone). 14. The plane is
6x+9y + z = 23, the line is (x−1)/6 = (y−2)/9 = z +1. 15. The plane is
3(x−1)+ 1

4(y−4)−(z−2) = 0, the line is (x−1)/3 = 4(y−4) = 2−z. 16. The

plane is 4(x−2)−3(y−1)−z = 0, the line is 1
4(x−2) = 1

3 (1−y) = −z. 17.

The plane is 1
2 (x−1)−(y−π

4 )−(z+1) = 0, the line is 2(x−1) = π
4−y = −z−1.

18. The plane is z − x = 0, the line is x − 1 = 1 − z, y = 1. 19. The plane
is 2z − x − y = 0, the line is x − 1 = y − 1 = (1 − z)/2 (consider the
graph y = z + ln z − lnx = f(x, z) and the tangent plane to it at (1, 1, 1)).
20. L(x, y) = 3 − 12x + 2y. 21. L(x, y, z) = 1 + 1

2 x + 1
3 (z − 1). 22.

L(r) = n · (r− r0). 23. 3− 7
3∆x− 2

3∆y, where ∆x = 0.08 and ∆y = −0.05.
24. 108(1+∆x+∆y+∆z) where ∆x = 0.002, ∆y = 0.003, and ∆z = 0.004.
25. 1+2∆x− 1

3∆y− 1
6∆z where ∆x = 0.03, ∆y = −0.02, and ∆z = 0.05 (lin-

earize f(x, y, z) = x2y−1/3z−1/6 at (1, 1, 1)). 26. 1 + ∆x where ∆x = −0.03
(linearize f(x, y) = xy at (1, 1)).

Section 22.7. 2. dz/dt = (12t5 + 2 ln t/t)[1 + 4t6 + 2(ln t)2]−1/2. 3. z′t =

z′xs+ z′yt/
√

t2 + s2 and z′s = z′xt+ z′ys/
√

t2 + s2, where z′x = e−x[y cos(xy)−
sin(xy)] and z′y = e−xx cos(xy). 6. z′u = 23, z′v = 32. 9. z′′uu = 2f ′

x +

8uvf ′′
xy +4u2f ′′

xx +4v2f ′′
yy , z′′vv = 2f ′

x +8uvf ′′
xy +4u2f ′′

yy +4v2f ′′
xx, z′′uv = z′′vu =

2f ′
y + 2y(f ′′

xx + f ′′
yy) + 4xf ′′

xy. 11. g′x = 2xf ′(u), g′y = 2yf ′(u), g′z = 2zf ′(u),

g′′xx = 2f ′(u) + 4x2f ′′(u), g′′yy = 2f ′(u) + 4y2f ′′(u), g′′zz = 2f ′(u) + 4z2f ′′(u),

g′′xy = g′′yx = 4xyf ′′(u), g′′xz = g′′zx = 4xzf ′′(u), g′′zy = g′′yz = 4zyf ′′(u) where

u = x2 + y2 + z2. 12. If u = x and v = x/y so that g(x, y) = f(u, v), then

g′x = f ′
u + 1

yf ′
v , g′y = − x

y2 f ′
v , g′′xx = f ′′

uu + 2
y f ′′

uv + 1
y2 f ′′

vv , g′′yy = 2x
y3 f ′

v + x2

y4 f ′′
vv ,

g′′xy = g′′yx = − 1
y3 [yf ′

v +xyf ′′
uv +xf ′′

vv ]. 25. z′x = (ez −3)−1, z′y = 2(ez −3)−1,

z′′xx = −ez(ez − 3)−3, z′′xy = z′′yx = −2ez(ez − 3)−3, z′′yy = −4ez(ez − 3)−3
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where z 6= ln 3. 31. z(2.8,−2.3) ≈ 2 + 2
9∆x − 1

9∆y where ∆x = −0.2 and
∆y = −0.3. 36. At the point (2, 6, 8), the temperature is increasing at the
rate dT/dt = 4.5 degrees Celsius per second. 39. The volume is increasing
at the rate 6 m3/s, the surface area is increasing at the rate 10 m2/s, and
the diagonal is not changing. 40. Examples: x + 3y if n = 1, x2 + xy − y2

if n = 2, x3 − 4y3 + 2xy2 if n = 3, etc.

Section 23.7. 1. df = (3x2 − 6xy + 3y2)dx + (3y2 − 3x2 + 6xy)dy. 2. df =
−2xy2 sin(x2y)dx+[cos(x2y)−yx2 sin(x2y)]dy. 3. df = 2 cos(x2+y2)(xdx+
ydy). 4. df = (1 + y2zexyz)dx + (z + xzyexyz + exyz)dy + (y + xy2exyz)dz.
8. Let f(x, y, z, u) = xyzu; the rounding error is bounded by 0.5 so that
the differentials dx, dy, dz, and du, representing the rounding errors, cannot
exceed 0.5, and, hence, df cannot exceed 4 · 106 · 0.5 = 2 · 106. 9. 30 m2,
the error bound of the estimate is 0.04 m2. 10. The area is decreased by
0.14 m2 (the error of the estimate is approximately 10−3 m2), the diagonal
is decreased by 2.8 cm (the error of the estimate is approximately 0.01 cm).
11. Put S = R2θ/2, dS = 0, and dθ = π/180 so that dR = −1/6 cm (the
error of the estimate is approximately 3

8R(dθ/θ)2 = 1/480 ≈ 0.002 cm).
13. The volume is π(15.0± 2.3) and the relative error is 15.5%. 14. The
third side is 173 ± 6 m and the relative error is 3.5%. 15. 0.5%. 19.
df = (1 + 2xy)dx + (−1 + x2)dy, d2f = 2y(dx)2 + 4xdxdy, d3f = 6(dx)2dy,
and dnf = 0 for n ≥ 4. 22. df = yzdx + xzdy + xydz, d2f = 2(zdxdy +
ydxdz+xdydz), d3f = 6dxdydz, and dnf = 0 for n ≥ 4. 23. If u = xyz, then
df = −(1+u)−2du and d2f = 2(1+u)−3(du)2−(1+u)−2d2u (see the previous
answer for du and d2u). 27. T2 = 3+3(x−1)+3(y−1)+2(x−1)2+(y−1)2.

28. T2 = 1− 1
2(x − π

2 )2 − π2

8 (y − 1)2 − π
2 (x − π

2 )(y − 1). 29. T2 = 1 + (x −
1) + (x − 1)(y − 1). 31. T0 = 1, T1 = 1 + 1

2(x + 2y), T2 = T1 − 1
8 (x + 2y)2.

32. T0 = T1 = 0, T2 = T3 = xy, T4 = xy(1 + x2 + y2); 33. T0 = 0,
T1 = x+2y, T2 = x+2y+z2 , T3 = T2− 1

6 (x+2y)3. 38. P2 = −xy−yz−xz

39. T0 = f(x0, y0), T1(r) = T0, T2(r) = T0 + (f ′′
xx(x0, y0) + f ′′

yy(x0, y0))r
2/4,

T3(r) = T2(r).

Section 24.5. 1. If ∇f 6= 0 at a point, then the function has no rate of
change at that point in all direction orthogonal to ∇f (in the two-variable
case, two such directions exist and in the three-variable case, any direction
in the plane orthogonal to ∇f . 3. ∇f(1, 2) = 〈4, 1〉, Dvf(1, 2) = 19

5 > 0

(increasing). 4. ∇f(1, 1) = 〈 1
4 ,−1

4〉, Dvf(1, 1) = 1
4
√

5
> 0 (increas-

ing). 5. ∇f(1, 2,−1) = 〈5, 5,−6〉, Dvf(1, 2,−1) = −17
3 < 0 (decreas-

ing) 6. ∇f(1,−1, 1) = 1
17 〈1,−2, 3〉, Dvf(1, 2,−1) = 2

17
√

3
> 0 (increas-

ing). 7. ∇f(1, 1, 3) = 1
4〈1, 3, 1〉, Dvf(1, 1, 3) = 23

28 > 0 (increasing),

8. ∇f(2, 1, 1) = 〈1, 1,−3〉, Dvf(2, 1, 1) = 7
3 > 0 (increasing). 9. The

maximal rate
√

17 occurs in the direction 〈1,−4〉, the minimal rate −
√

17
occurs in the direction 〈−1, 4〉, the rate vanishes in the directions 〈4, 1〉
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and 〈−4,−1〉. 10. The maximal rate
√

1 + 4(ln 2)2 occurs in the direc-

tion 〈1, 2 ln2〉, the minimal rate −
√

1 + 4(ln 2)2 occurs in the direction
〈−1,−2 ln2〉, the rate vanishes in the directions 〈2 ln 2,−1〉 and 〈−2 ln 2, 1〉.
11. The maximal rate

√
523/49 occurs in the direction 〈21,−9, 1〉, the min-

imal rate −
√

523/49 occurs in the direction 〈−21, 9,−1〉, the rate vanishes
along any direction orthogonal to n = 〈21,−9, 1〉 (along any vector in the

plane orthogonal to n). 14. Define the angle φ by cos φ = a/
√

a2 + b2

and sinφ = b/
√

a2 + b2 where a = 3 and b = 5/4. Let û = (cos θ, sin θ).

Then cos(θ − φ) = p or θ = cos−1 p + φ. 15. (i)
√

46, 〈−1,−3, 6〉; (ii)
all vectors that make the angle π/3 with the vector n = 〈−1,−3, 6〉 (they
form a cone about n); (iii) 13/3. 23. The direction toward P2; f increases

most rapidly in the direction of v = 〈2, 1, 1〉. 24. (i)
√

2; (ii) 1; (iii) π/4.

25. −8/(27
√

33). 26. (i) all points on the surface z2 = xy; (ii) all points
(0, 0, a) where a 6= 0; (iii) all points (a, a, a) where a is real. 28. The plane:
3(x − 3) + 4(y − 4) + 12(z − 12) = 0; the line: (x − 3)/3 = (y − 4)/4 =
(z − 12)/12. 29. the plane: 4(x − 2) − 5(y − 1) − (z + 1) = 0; the line:
(2 − x)/4 = (y − 1)/5 = z + 1. 30. The plane: 2(x − π/4) − y − z = 0;
the line: z − 1 = 1 − y = (x − π/4)/2. 34. The tangent plane is paral-
lel to the yz plane at the points (4,−2, 0) and (−4, 2, 0), to the zx plane
at the points (−2, 4,−2) and (2,−4, 2), and to the xy plane at the points

(0, 2
√

2,−2
√

2) and (0,−2
√

2, 2
√

2). 35. The planes through the points
(1, 2, 2) and (−1,−2,−2) and orthogonal to n = 〈1, 4, 6〉. 41. Toward P1.
42. Shoot in the direction v = 〈−2,−6,−3〉; the escape trajectory is traced
out by the vector function r(t) = 〈2t, 3t2, t3〉 where t ≥ 1. 44. f ′

x(P0) =
(b sinθ − a sinφ)/ sin(θ − φ) and f ′

y(P0) = (a cosφ − b cosθ)/ sin(θ − φ).
45. Drill in the direction of a = 〈1, 3, 1〉; the concentration is increas-

ing at the rate
√

11 g/m in this direction. 46. Yes, the tangent plane is
12(x− 2) − 7(y − 1) + 9(z − 3) = 0. 52. The focus is at (0, 0, a/4).

Section 25.6. 1. (i) A local maximum; (ii) a local minimum; (iii) a saddle
point; (iv) no information. 2. A local minimum at (0, 2). 3. A saddle
at (0, 2). 6. A local minimum at (1, 0). 7. A local minimum at (3, 1

2 ), a

saddle at (−1, 1
2). 8. A local minimum at (1, 1), saddle at (0, 0). 9. A local

minimum at (5, 2). 10. Local minima at (1,±1) and (±1, 1). 11. Local
minima at (πn, πm) if n + m is odd, local maxima at (πn, πm) if n + m is
even, and saddles at (π

2 + πn, π
2 + πm), where n and m are integers. 12.

Local minima at (πn, 0) if n is odd, saddles at (πn, 0) if n is even, where n
is an integer. 13. A saddle at (0, 0), a local maximum at (−1

2 ,−1). 14. A

saddle at (0, 0), a local minimum at (2
3 , 2

3 ). 15. Saddles at (0, 0), (1, 0), and

(0, 1); a local maximum at ( 1
3 , 1

3). 16. Saddles at (0, π
2 + πn) where n is an

integer. 28. There are two solutions z = z(x, y), one attains a maximum
value 6 at (1,−1) and the other attains a minimum value −2 at (1,−1).
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Section 26.6. 1. A local minimum at (−1,−2, 4). 2. A saddle at (0, 0, 1);
a local minimum at (−144, 24, 1). 3. Saddles at (0, 0, 1) and (−144, 24, 1).
4. Saddles at (π

2 + πn, πm, 0) where n and m are integers. 5. A saddle at
(0, 0, 0); a local minimum at (2, 2, 4). 13. A local minimum (complete the
squares: (x + 1

2y2)2 + 3
4y4). 14. A local minimum. 15. A local minimum.

16. No local extremum. 17. no local extremum. 18. A local maximum. 19.
A local minimum. 20. A local minimum. 21. A local maximum. 22. No
local extremum. 24. Let 0 < a < u < b for some a and b. Take a continuous
function g(u) on (a, b) such that it attains maximum and minimum values

in (a, b). Put f(x, y) = g(
√

x2 + y2). The function f attains extreme values
in the open region a2 < x2 + y2 < b2. 25. Take g(u) on [a, b], a > 0,
that is not continuous and attains its extreme values in [a, b]. Put f(x, y) =

g(
√

x2 + y2). 26. A similar construction as in 24 and 25 on (a,∞), a > 0.
27. maxD f = f(2, 1) = 2 and minD f = f(1, 2) = −3. 28. maxD f =
f(1,±2) = 8 and minD f = f(0, 0) = −1. 29. minD f = f(a, 0) = f(0, b) =

0, where a and b are real, and maxD f = f(2
√

2/
√

3, 2/
√

3) = 16/3
√

3. 30.
maxD f = f(1,±1, 1) = 2 and minD f = f(−1,±1,−1) = −2.

Section 27.6. 1. max f = 1
4 . 3. min f = −4, max f = 4. 4. min f = 0,

max f = 4. 5. min f = −5, max f = 5. 6. min f = −8, max f = 8.
8. min f = −2/

√
3, max f = 2/

√
3. 9. min f = −3, max f = 3. 11.

min f = −2
√

6, max f = 2
√

6. 12. min f = 1 − 2−3/2, max f = 1 + 2−3/2.
25. If the numbers are x and y, and xy = p, then x = y =

√
p. 26. If

the numbers are xj, j = 1, 2, ..., m, and x1x2 . . . xm = p, then xj = p1/m,
j = 1, 2, ..., m. 28. If R and h are the radius and the length of the tab, then
h = 2R and R =

√

S/(3π). 31. The base of the box is a square whose side

is 2R/
√

3, and the height of the box is R/
√

3. 32. |x| ≤ a/
√

3, |y| ≤ b/
√

3,

|z| ≤ c/
√

3.


