
CHAPTER 4

Multiple Integrals

28. Double Integrals

28.1. The Volume Problem. Suppose one needs to determine the volume of
a hill whose height f(r) as a function of position r = 〈x, y〉 in the base of the
hill is known. For example, the hill must be leveled to construct a highway.
Its volume is required to estimate the number of truck loads needed to move
the soil away. The following procedure can be used to estimate the volume.
The base D of the hill is first partitioned into small pieces Dp of area ∆Ap,
where p = 1, 2, ..., N enumerates the pieces; that is, the union of all the
pieces Dp is the region D. The partition elements should be small enough
so that the height f(r) has no significant variation when r ranges over Dp.
The volume of the portion of the hill above each partition element Dp is
approximately ∆Vp ≈ f(rp) ∆Ap, where rp is a point in Dp (see the left
panel of Fig. 28.1). The volume of the hill can therefore be estimated as

V ≈
N
∑

p=1

f(rp) ∆Ap.

For practical purposes, the values f(rp) can be found, for example, from a
contour map of f .

The above approximation neglects variations of values of f within a
partition element Dp. Therefore it is expected to become more accurate
with decreasing the size of the partition elements (naturally, their number
N has to increase). If Rp is the smallest radius of a disk that contains Dp,
then put R∗

N = maxp Rp, which determines the size of the largest partition
element. One says that the partition is refined if R∗

N is decreasing with
increasing the number N of partition elements. Note that the reduction of
the maximal area maxp ∆Ap versus the maximal size R∗

N may not be good
enough to improve the accuracy of the estimate. If Dp looks like a narrow
strip, its area is small, but the variations f along the strip may be significant
and the accuracy of the approximation ∆Vp ≈ f(rp) ∆Ap is poor. One can
therefore expect that the exact value of the volume is obtained in the limit

(28.1) V = lim
N→∞

(R∗

N→0)

N
∑

p=1

f(rp) ∆Ap .

The volume V may be viewed as the volume of a solid bounded from above
by the surface z = f(x, y), which is the graph of f , and by the portion D of
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Figure 28.1. Left: The volume of a solid region bounded
from above by the graph z = f(x, y) and from below by
a portion D of the xy plane is approximated by the sum
of volumes ∆Vp = zp∆Ap of columns with the base area
∆Ap and the height zp = f(rp) where rp is a sample point
within the base and p enumerates the columns. Right: A
rectangular partition of a region D is obtained by embedding
D into a rectangle RD. Then the rectangle RD is partitioned
into smaller rectangles Rkj.

the xy plane. Naturally, it is not expected to depend on the way the region
D is partitioned, neither should it depend on the choice of sample points rp

in each partition element.
The limit (28.1) resembles the limit of a Riemann sum for a single-

variable function f(x) on an interval [a, b] used to determine the area under
the graph of f . Indeed, if xk, k = 0, 1, ..., N , x0 = a < x1 < · · · < xN−1 <
xN = b is the partition of [a, b], then ∆Ap is the analog of ∆xj = xj −xj−1,
j = 1, 2, ..., N , the number R∗

N is the analog of ∆N = maxj ∆xj , and the
values f(rp) are analogous to f(x∗

j), where x∗
j is in [xj−1, xj]. The area under

the graph is then

A = lim
N→∞

(∆N→0)

N
∑

j=1

f(x∗
j) ∆xj =

∫ b

a
f(x) dx .

So, the limit (28.1) seems to define an integral over a two-dimensional region
D (i.e., with respect to both variables x and y used to label points in D).
This observation leads to the concept of a double integral. However, the
qualitative construction used to analyze the volume problem still lacks the
level of rigor used to define the single-variable integration. For example,
how does one choose the “shape” of the partition elements Dp, or how does
one calculate their areas? These kinds of questions were not even present in
the single-variable case and have to be addressed.
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28.2. Preliminaries. The closure of a set D in a Euclidean space is the set
obtained from D by adding all its limit points to D. The closure of D is
denoted D̄. For example, let D be the open disk x2 + y2 < 1. Every point
of D is a limit point and every point of the circle x2 + y2 = 1 is also a limit
point. Therefore the closure D̄ is the (closed) disk x2 + y2 ≤ 1.

Definition 28.1. (A Region in a Euclidean Space)
An open connected set in a Euclidean space is called an open region. The
closure of an open connected set is called a closed region. A set D is a
region in a Euclidean space if there is an open region G that is contained in
D while the closure of G contains D.

The whole idea of introducing the notion of a region is to give a name
to sets in a plane that have a non-zero area and to sets in space that have
a non-zero volume. Note that a region in a plane always contains an open
set and this open set has a disk that lies in it. As any disk has a non-zero
area, a region is expected to have a non-zero area. In particular, the volume
problem considered above makes sense if D is a region. But in order to
make the notion of the area (or volume) of a region precise, some additional
conditions on the boundary of the region have to be imposed. If all points
of an open region D are removed from its closure D̄, then the obtained set
is called the boundary of D. In other words,

The boundary of an open region D is the difference of its closure D̄ and
D itself.

For example, if D is the open disk x2 + y2 < 1, then its closure is the
closed disk x2 + y2 ≤ 1, and the difference between the two sets is the circle
x2 + y2 = 1 which is the boundary of D. Now recall that a point of a set is
an interior point of the set if there is an open ball of sufficiently small radius
that contains the point and lies in the set. So,

The boundary of a closed region D is obtained from D by removing all inte-
rior points of D.

Clearly, if D is an open region, then the interior of D̄ is D. Let G be a
region. Then by definition there exists an open region D that it lies in G,
while G is contained in the closure D̄:

D ⊂ G ⊂ D̄ .

Then D is nothing but the collection of all interior points of G. It follows
that the boundary of G coincides with the boundary of D or the boundary
of D̄ (since D and D̄ have the same boundary). Thus, the difference between
an open region and a region is that the region may contain its boundary or
a part of it, while an open region contains no point of its boundary.
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For example, let G be the set in the xy plane defined by the conditions
x2 + y2 < 1 if y ≥ 0 and x2 + y2 ≤ 1 if y < 0. So, G is the disk of radius 1.
The upper part of its boundary circle (y ≥ 0) does not belong to G, while
its lower part lies in G. The largest open set D that is contained in G is the
open disk x2 + y2 < 1. It is an open region. Its closure D̄ is the closed disk
x2 + y2 ≤ 1. Evidently, D ⊂ G ⊂ D̄. So, the boundary of G is the circle
x2 + y2 = 1. Note that G contains a part of its boundary.

Definition 28.2. (Smooth Boundary of a Region)
The boundary of a region is called smooth if in a neighborhood of every
point it coincides with a level set of a function that has continuous partial
derivatives and whose gradient does not vanish. The boundary is called
piecewise smooth if it consists of finitely many smooth pieces.

Let D be a region in the plane. The boundary of D is smooth if in a
neighborhood of each point (x0, y0) of the boundary there is a function g
of two variables such that the boundary is the level set g(x, y) = g(x0, y0),
where the function g has continuous partial derivatives, and ∇g 6= 0. Recall
from Section 24.2 that under these conditions on g, the level set is a smooth
curve. Similarly, a smooth boundary of a region in space is a smooth surface.
For example, the disk x2 + y2 < 1 has the boundary x2 + y2 = 1 which is
the level curve of the function g(x, y) = x2 + y2. The boundary of the ball
in space x2 + y2 + z2 < 1 is the sphere x2 + y2 + z2 = 1, which is the
level set of the function g(x, y, z) = x2 + y2 + z2. In both the cases, g has
continuous partial derivatives and ∇g 6= 0 near any point of the level set
g = 1. By the properties of the gradient, ∇g is normal to the boundary and
its components are continuous functions. An open rectangle in the plane,
a1 < x < b1 and a2 < y < b2, is a region whose boundary is piecewise
smooth as it consists of four straight line segments and each segment is a
smooth curve. Similarly, an open rectangular box in space, a1 < x < b1,
a2 < y < b2, and a3 < z < b3, is a region whose boundary is piecewise
smooth as it consists of six (coordinate) planes that are smooth surfaces.

Definition 28.3. (Bounded Functions)
A function f is called bounded on a set D if there are numbers m and M
such that m ≤ f(r) ≤M for all r in D. The numbers m and M are called,
respectively, lower and upper bounds of f on D.

Evidently, upper and lower bounds are not unique because any number
smaller than m is also a lower bound, and, similarly, any number greater
than M is an upper bound. However, the smallest upper bound and the
largest lower bound are unique.

Definition 28.4. (Supremum and Infimum).
Let f be bounded on a set D. The smallest upper bound of f on D is called
the supremum of f on D and denoted by supD f . The largest lower bound
of f on D is called the infimum of f on D and denoted by infD f .
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In other words, supD f is an upper bound of f on D such that the number
supD f − a is not an upper bound for any positive number a > 0. Similarly,
infD f is a lower bound of f on D such that the number infD f + a is not
a lower bound for any positive number a > 0. If f is continuous and the
set D is closed and bounded, then by the extreme value theorem (Theorem
26.2) the function f attains it absolute maximum and minimum values on
D, and in this case

inf
D

f = min
D

f , sup
D

f = max
D

f .

Let

f(x, y) = x2 + y2

and D be the open rectangle:

D : 0 < x < 1 , 0 < y < 1 .

Then f does not attain its extreme values on D despite that it is continuous
on D. But

sup
D

f = 2 , inf
D

f = 0 .

Indeed, f(x, y) = x2 +y2 < 2 for all (x, y) in D so that 2 is an upper bound.
For any number a > 0, one can find points in D such that f(x, y) > 2 − a
and hence 2− a is not an upper bound. So, 2 is the smallest upper bound.
Similarly, f(x, y) = x2 +y2 > 0 for all (x, y) in D so that 0 is a lower bound
of f on D. For any number a > 0, one can find a point (x, y) in D such that
f(x, y) < 0 + a = a and hence a is not a lower bound. Therefore 0 is the
greatest lower bound of f on D.

28.3. Double Integral. Suppose D is a bounded, closed region in the plane
and f is a bounded function of two variables (x, y) on D. The function f
is extended to the whole plane by setting f(x, y) = 0 if (x, y) is not in D.
Since D is bounded, it can always be embedded into a closed rectangle

RD = {(x, y) | a≤ x ≤ b, c ≤ y ≤ d} = [a, b]× [c, d]

The latter equality defines a short notation for a rectangle in a plane. Con-
sider a partition xj of the interval [a, b] and a partition yk of the interval
[c, d] where

xj = a + j ∆x , ∆x = (b− a)/N1 , j = 0, 1, ..., N1 ,

yk = c + k ∆y , ∆y = (d− c)/N2 , k = 0, 1, ..., N2 .

These partitions induce a partition of the rectangle RD by rectangles

Rjk = [xj−1, xj]× [yk−1, yk] , j = 1, 2, ..., N1 , k = 1, 2, ..., N2 .

The area of each partition rectangle Rkj is ∆A = ∆x ∆y. This partition
is called a rectangular partition of RD. It is depicted in the right panel of
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Fig. 28.1. For every pair (j, k) put

Mjk = sup
Rjk

f , mjk = inf
Rjk

f

which are the supremum and infimum of f on Rjk, respectively.

Definition 28.5. (Upper and Lower Sums).
Let f be a bounded function on a bounded, closed region D. Let RD be a
rectangle that contains D and let the function f be defined to have zero value
for all points of RD that do not belong to D. Given a rectangular partition
Rjk, the sums

U(f, N1, N2) =

N1
∑

j=1

N2
∑

k=1

Mjk ∆A , L(f, N1, N2) =

N1
∑

j=1

N2
∑

k=1

mjk ∆A

are called the upper and lower sums of f over D.

The upper and lower sums are examples of double sequences.

Definition 28.6. (Double Sequence)
A double sequence is a rule that assigns a real number anm to an ordered
pair of integers (n, m), n, m = 1, 2, ....

In other words, a double sequence is a function f of two variables (x, y)
whose domain consists of points with positive integer-valued coordinates,
anm = f(n, m). Similarly to ordinary numerical sequences, the limit a
double sequence can be defined.

Definition 28.7. (The Limit of a Double Sequence)
If for any positive number ε > 0 there exists an integer N such that

|anm − a| < ε for all n, m > N ,

then the sequence is said to converge to a and the number a is called the
limit of the sequence and denoted

lim
n,m→∞

anm = a .

In other words, the number a is the limit of a double sequence anm, if
the deviation |a−anm| of values of anm from a can be made arbitrary small
for all sufficiently large integers n and m. One can also say that the number
a is the limit of the sequence anm if there are only finitely many terms of
the sequence anm outside any interval (a− ε, a+ ε), where ε > 0, no matter
how small is ε.

The limit of a double sequence is analogous to the limit of a function
of two variables. It can be found by studying the corresponding limit of a
function of two variables whose range contains the double sequence. Suppose
anm = f(1/n, 1/m) and f(x, y) → a as (x, y) → (0, 0). The latter means
that for any ε > 0 there is a number δ > 0 such that |f(x, y)− a| < ε for all
‖r‖ < δ where r = 〈x, y〉. In particular, for r = 〈1/n, 1/m〉, the condition
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‖r‖2 = 1/n2 + 1/m2 < δ2 is satisfied for all n, m > N > 2/δ. Hence, for all
such n, m, |anm − a| < ε, which means that anm → a as n, m→∞.

Definition 28.8. (Double Integral).
If the limits of the upper and lower sums exist as (N1, N2) → ∞ and co-
incide, then f is said to be Riemann integrable on D, and the limit of the
upper and lower sums

lim
N1,2→∞

U(f, N1, N2) = lim
N1,2→∞

L(f, N1, N2) =

∫ ∫

D
f(x, y) dA

is called the double integral of f over the region D.

Let us discuss Definition 28.8 from the point of view of the volume
problem. If f(x, y) ≥ 0 in D, then for a given partition the upper and lower
sums represent the smallest upper estimate and the greatest lower estimate
of the volume of the solid region under the graph z = f(x, y) above the
region D. The values of the sums should become closer to the volume as the
partition becomes finer, that is, the limits of L(f, N1, N2) and U(f, N1, N2)
as N1, N2 → ∞ exist and coincide with the volume under the graph z =
f(x, y) over D. However, a specific partition of D by rectangles has been
used in the definition of the double integral. In this way, the area ∆Ap

of the partition element has been given a precise meaning as the area of a
rectangle. Later, it will be shown that if the double integral exists in the
sense of the above definition, then it exists if the rectangular partition is
replaced by any partition of D by elements Dp of an arbitrary shape subject
to certain conditions that allow for a precise evaluation of their areas.

Example 28.1. Determine whether the function f(x, y) = xy is inte-
grable on the region D = [0, 1]× [0, 1] and find the double integral if it exists.

Solution: The region D is embedded into the closed rectangle RD = [0, 1]×
[0, 1]. Put

∆x =
1

N1
, ∆y =

1

N2
, xj = j∆x =

j

N1
, yk = k∆y =

k

N2
,

where j = 1, 2, ..., N1 and k = 1, 2, ..., N2. Since xj > xj−1 ≥ 0 and yk >
yk−1 ≥ 0, the numbers f(xj, yk) = xjyk and f(xj−1, yk−1) = xj−1yk−1

are the maximum and minimum values of the function f on the partition
rectangle Rjk = [xj−1, xj]× [yk−1, yk]:

Mjk = xjyk =
jk

N1N2
, mjk = xj−1yk−1 =

(j − 1)(k− 1)

N1N2
.

Now recall that

1 + 2 + · · ·+ N =

N
∑

k=1

k =
1

2
N (N + 1) .
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The following relation is useful to convert a double sum into the product of
sums:

(

N1
∑

j=1

j
)(

N2
∑

k=1

k
)

=
(

1 + 2 + · · ·+ N1

)(

1 + 2 + · · ·+ N2

)

= 1 · 1 + 1 · 2 + 2 · 1 + 2 · 2 + · · ·+ N1 ·N2

=

N1
∑

j=1

N2
∑

k=1

jk .

The upper and lower sums are

U(f, N1, N2) =
∆x∆y

N1N2

N1
∑

j=1

N2
∑

k=1

jk =
1

N 2
1 N 2

2

(

N1
∑

j=1

j
)(

N2
∑

k=1

k
)

=
1

4

N1(N1 + 1)N2(N2 + 1)

N 2
1N 2

2

=
1

4
+

1

N1
+

1

N2
+

1

N1N2

L(f, N1, N2) =
∆x∆y

N1N2

(

N1
∑

j=1

(j − 1)
)(

N2
∑

k=1

(k− 1)
)

=
1

4

N1(N1 − 1)N2(N2 − 1)

N 2
1N 2

2

=
1

4
− 1

N1
− 1

N2
+

1

N1N2

The function f is integrable on D because

lim
N1,2→∞

U(f, N1, N2) = lim
N1,2→∞

L(f, N1, N2) =
1

4
=

∫ ∫

D
f(x, y)dA

�

28.4. Riemann Sums.

Definition 28.9. (Riemann Sum).
Let f be a bounded function on a region D that is contained in a rectangle
RD. Let f be defined by zero values outside of D in RD. Let r∗jk be a point
in a rectangle Rjk, where Rjk form a rectangular partition of RD. The sum

R(f, N1, N2) =

N1
∑

j=1

N2
∑

k=1

f(r∗jk) ∆A

is called a Riemann sum.

If f(x, y) ≥ 0, then Riemann sums of f approximate the volume under
the graph of f . Since the volume is also given by the double integral of f
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over a region D, the sequence of Riemann sums is expected to converge to
the double integral independently of the choice of sample points r∗jk. This is
indeed so.

Theorem 28.1. (Convergence of Riemann Sums).
If a function f is integrable on D, then its Riemann sums for any choice of
sample points r∗jk converge to the double integral:

lim
N1,2→∞

R(f, N1, N2) =

∫ ∫

D
f dA.

Proof. For any partition rectangle Rjk and any sample point r∗jk in it,

mjk ≤ f(r∗jk) ≤Mjk .

Multiplying this inequality by ∆A and taking the sums over j and k, it is
concluded that

L(f, N1, N2) ≤ R(f, N1, N2) ≤ U(f, N1, N2) .

Since f is integrable, the limits of the upper and lower sums exist and
coincide. The conclusion of the theorem follows from the squeeze principle
for limits. �

Approximations of a Double Integral. If f is integrable, its double integral
can be approximated by a suitable Riemann sum. A commonly used choice
of sample points is to take r∗jk to be the intersection of the diagonals of

partition rectangles Rjk, that is, r∗jk = 〈x̄j, ȳk〉, where x̄j and ȳk are the

midpoints of the intervals [xj−1, xj] and [yk−1, yk], respectively. This rule is
called the midpoint rule. In general, the accuracy of the approximation of a
double integral by Riemann sums can be assessed by finding the upper and
lower sums; their difference determines the upper bound on the absolute
error of the approximation. Note first that, given a partition of D, the value
of the double integral of f over D and the value of the Riemann sum lie
between the values of the lower and upper sums. Therefore the following
chain of inequalities holds:

−(U − L) = L− U ≤ L− R ≤
∫ ∫

D
fdA− R ≤ U − R ≤ U − L

where for the sake of brevity the arguments (f, N1, N2) in the upper, lower,
and Riemann sums are omitted. This inequality can be written in the form

∣

∣

∣

∫ ∫

D
fdA− R(f, N1, N2)

∣

∣

∣ ≤ U(f, N1, N2)− L(f, N1, N2)

for any choice of sample points in the Riemann sum. In Example 28.3, the
error of the approximation of the integral by a Riemann sum does not exceed
2/N1 + 2/N2 for any choice of sample points.

Alternatively, if the double integral of an integrable function f over a
region D is to be evaluated up to some significant decimals, the partition
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in the Riemann sum has to be refined until the value of the sum does not
change in the significant digits.

28.5. Continuity and Integrability. Not every bounded function is inte-
grable. There are functions whose behavior is so irregular that one cannot
give any meaning to the volume under their graph by converging upper and
lower sums.

An Example of a Nonintegrable Function. Consider the function

f(x, y) =







1 if x and y are rational
2 if x and y are irrational
0 otherwise

Let D = [0, 1] × [0, 1]. Since D is a rectangle, one can take RD = D
when constructing the lower and upper sums. Recall that any interval [a, b]
contains both rational and irrational numbers. Therefore, any partition
rectangle Rjk contains points whose coordinates are both rational, or both
irrational, or pairs of rational and irrational numbers. Hence,

Mjk = 2 , mjk = 0 .

The lower sum vanishes

L =
∑

j,k

mjk∆A = 0

for any partition and therefore its limit is 0, whereas the upper sum is

U =
∑

j,k

Mjk∆A = 2
∑

jk

∆A = 2A = 2

for any partition, where A = 1 is the total area of all partition elements or the
area of the square. The limits of the upper and lower sums do not coincide,
2 6= 0, and the double integral of f does not exist. The Riemann sum for
this function can converge to any number between 2 and 0, depending on
the choice of sample points. For example, if the sample points have rational
coordinates, then the Riemann sum equals 1. If the sample points have
irrational coordinates, then the Riemann sum equals 2. If the sample points
are such that one coordinate is rational while the other is irrational, then
the Riemann sum vanishes. Clearly, the conclusion about non-integrability
of this function can be extended to any bounded region.

The following theorem describes a class of integrable functions that is
sufficient in many practical applications.

Theorem 28.2. (Integrability of Continuous Functions).
Let D be a bounded, closed region whose boundaries are piecewise-smooth
curves. If a function f is continuous on D, then it is integrable on D.
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Figure 28.2. Left: The graph of a piecewise constant
function. The function is not continuous on a straight line.
The volume under the graph is V = MA1+mA2. Despite the
discontinuity, the function is integrable and the value of the
double integral coincides with the volume V . Right: Addi-
tivity of the double integral (see Section 29). If a region D is
split by a smooth curve into two regions D1 and D2, then the
double integral of f over D is the sum of integrals over D1

and D2. The additivity of the double integral is analogous
to the additivity of the volume: The volume under the graph
z = f(x, y) and above D is the sum of volumes above D1 and

D2.

Note that the converse is not true; that is, the class of integrable func-
tions is wider than the class of all continuous functions. This is a rather
natural conclusion in view of the analogy between the double integral and
the volume. Let f(x, y) be defined on D = [0, 2]× [0, 1] as

f(x, y) =

{

M , 0 ≤ x ≤ 1
m , 1 < x ≤ 2

where for definitiveness 0 < m < M . The function is not continuous along
the line x = 1 in D. Its graph is shown in the left panel of Fig. 28.2. The
volume below the graph z = f(x, y) and above D is easy to find; it is the
sum of volumes of two rectangular boxes with the bases [0, 1] × [0, 1] and
[1, 2]× [0, 1] and the corresponding heights M and m. So, the volume is

V = MA1 + mA2
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where A1 and A2 are the areas of the bases, A1 = A2 = 1. The double
integral of f exists and also equals the volume V . Indeed, for a partition
xj = j∆x, ∆x = 2/N1, of the interval [0, 2], there exists j ′ such that

xj′−1 ≤ 1 < xj′ .

The numbers Mjk and mjk differs only for partition rectangles intersected
by the line x = 1, that is, in the rectangles Rj′k:

Mjk =







M , j < j ′

M , j = j ′

m , j > j ′
mjk =







M , j < j ′

m , j = j ′

m , j > j ′

for all k = 1, 2, ..., N2. The length of the curve along which f is discontinuous
is l = 1. If ∆y = 1/N2, then l =

∑

k ∆y. To find the upper sum, the
summation over j is split into three terms, j < j ′, j = j ′, and j > j ′:

U(f, N1, N2) =

N2
∑

k=1





j′−1
∑

j=1

Mjk + Mj′k +

N1
∑

j=j′+1

Mjk



∆x∆y

= Mlxj′−1 + Ml∆x + ml(2− xj′) ,

L(f, N1, N2) = Mlxj′−1 + ml∆x + ml(2− xj′)

because Mjk and mjk differs only for j = j ′. Put 1− xj′−1 = p∆x for some
0 ≤ p < 1 so that xj′ − 1 = (1− p)∆x. Then the areas of the bases of the
rectangles on which the function has a constant values can be written in the
form

A1 = l · (1− 0) = l(xj′−1 + p∆x)

A2 = l · (2− 1) = l[(2− xj′) + (1− p)∆x]

Using these relations, it is not difficult to express the upper and lower sums
in terms of the volume V :

U(f, N1, N2) = MA1 + mA2 + (M −m)(1− p)l∆x

= V + (M −m)(1− p)l∆x ,

L(f, N1, N2) = MA1 + mA2 − (M −m)pl∆x

= V − (M −m)pl∆x .

Therefore the upper and lower sums converge to V as ∆x→ 0 (or N1 →∞)
and the double integral of f over D exists and is equal to V . Note that M−m
is the value of the jump discontinuity of f across the line x = 1 and l∆x
is the total area of the partition rectangles intersecting the “discontinuity”
curve.

Furthermore, if a bounded function g coincides with f for all x 6= 1,
but g(1, y) 6= f(1, y), then the function g is also integrable and its double
integral is also equal to V . Note that only the coefficient M − m at the
term l∆x has to be changed to obtained the upper and lower sums of g,
but this term vanishes in the limit for any value of the coefficient. This
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observation resembles a similar property of the ordinary integral: The value
of the integral does not change if the integrand is changed at a single point.

In general, if a bounded function f is not continuous on a smooth curve,
then the contribution of partition rectangles intersecting the curve to the
upper and lower sums tends to zero as N1,2 →∞. This can be shown by a
similar line of arguments as in the above example and the following assertion
holds.

Corollary 28.1. Let D be a closed, bounded region whose boundaries
are piecewise smooth curves. If a function f is bounded on D and not
continuous on a finite number of smooth curves, then it is integrable on D.

Note that by this Corollary, a bounded function that is not continuous
only on the boundary of D is integrable. So a continuous bounded function
f on an open region D with piecewise smooth boundaries is integrable on
the closure D̄, and the value of the double integral does not depend on
the values of f on the boundary of D. Similarly, the value of the double
integral does not depend on the values of f on a smooth curve where f is
not continuous in D.

28.6. Exercises.

1–6. For each of the following functions and the specified rectangular do-
main D, find the upper and lower sums, investigate their convergence, and
find the double integral or show that the function is not integrable.

1. f(x, y) = k = const, D = [a, b]× [c, d] ;
2. f(x, y) = k1 = const if y > 0 and f(x, y) = k2 = const if y ≤ 0,

D = [0, 1]× [−1, 1] ;
3. f(x, y) = xy2, D = [0, 1] × [0, 1] Hint: 1 + 22 + · · · + n2 =

1
6n(n + 1)(2n + 1) ;

4. f(x, y) = 1− x − y, D = {(x, y)| 0≤ y ≤ 1− x , 0 ≤ x ≤ 1} ;
5. f(x, y) = 1 if one of the variables is rational, and otherwise f(x, y) =

xy, D = [0, 1]× [0, 1]
6. f(x, y) = x2 + y2, D = [1, 2]× [1, 3].

7-8. For each of the following functions use a Riemann sum with specified
N1 and N2 and sample points at lower right corners to estimate the double
integral over a given region D.

7. f(x, y) = x + y2, (N1, N2) = (2, 2), D = [0, 2]× [0, 4] ;
8. f(x, y) = sin(x + y), (N1, N2) = (3, 3), D = [0, π]× [0, π] .

9. Approximate the integral of f(x, y) = (24 + x2 + y2)−1/2 over the disk
x2 + y2 ≤ 25 by a Riemann sum. Use a partition by squares whose vertices
have integer-valued coordinates and sample points at vertices of the squares
that are farthest from the origin. Assess the accuracy of the approximation
by calculating the difference of the upper and lower sums.
10-18. Evaluate each of the following double integrals by identifying it as
the volume of a solid, e.g., by sketching the graph of the integrand.
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10.
∫∫

D kdA if D is the disk x2 + y2 ≤ 1 and k is a constant ;

11.
∫∫

D

√

1− x2 − y2dA if D is the disk x2 + y2 ≤ 1 ;

12.
∫∫

D(1−x−y)dA if D is the triangle with vertices (0, 0), (0, 1), and
(1, 0) ;

13.
∫∫

D(c− c
ax− c

by)dA if D is the triangle with vertices (0, 0), (0, b),
and (a, 0) where a, b, and c are positive numbers ;

14.
∫∫

D(k − x)dA if D is the rectangle 0 ≤ x ≤ k and 0 ≤ y ≤ a ;

15.
∫∫

D(2 −
√

x2 + y2)dA if D is the part of the disk x2 + y2 ≤ 1 in
the first quadrant. Hint: the volume of a circular solid cone with
the base being the disk of radius R and the height h is πR2h/3 ;

16.
∫∫

D(2−
√

x2 + y2)dA if D is the ring 1 ≤ x2 + y2 ≤ 2 ;

17.
∫∫

D(
√

1− x2 − y2−
√

x2 + y2 +1)dA if D is the disk x2 +y2 ≤ 1 ;

18.
∫∫

D(
√

1− x2 − y2 +
√

x2 + y2−1)dA if D is the disk x2 +y2 ≤ 1 .
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29. Properties of the Double Integral

The properties of the double integral are similar to those of an ordinary
integral and can be established directly from the definition using the basic
limit laws.

Linearity. Let f and g be functions integrable on D and let c be a number.
Then

∫ ∫

D
(f + g) dA =

∫ ∫

D
f dA +

∫ ∫

D
g dA ,

∫ ∫

D
cf dA = c

∫ ∫

D
f dA .

Area. The double integral

(29.1) A(D) =

∫ ∫

D
dA

is called the area of D (if it exists). If D is bounded by piecewise smooth
curves, then it exists because the unit function f = 1 is continuous on D.
By the geometrical interpretation of the double integral, the number A(D)
is the volume of the solid cylinder with the cross section D and the unit
height (f = 1). Intuitively, the region D can always be covered by the union
of adjacent rectangles of area ∆A = ∆x ∆y. In the limit (∆x, ∆y)→ (0, 0),
the total area of these rectangles converges to the area of D. Let D be a
region with a piecewise smooth boundary. By Corollary 28.1 and the remark
following it, it is natural to define the area of D as the area of its closure
D̄ given by the integral (29.1). It will be shown that the value of (29.1) for
a disk of radius a is πa2. Furthermore, a set D in a plane is said to have
zero area if it is contained in the union of open disks which can be chosen
so that their total area is less than any preassigned positive number. For
example, the piecewise smooth boundary of a bounded region has zero area.
Indeed, let l be the arclength of the boundary curve (it exists as the curve
is piecewise smooth). Suppose that the curve is partition into N pieces
of length ∆s = l/N . Then the curve is covered by the union of N disks
of radius ∆s (centered at the mid-points of each partition segment of the
curve) so that their total area is πN (∆s)2 = πl2/N → 0 as N →∞.

Additivity. Suppose that D is the union of D1 and D2 such that the area
of their intersection is 0; that is, D1 and D2 may only have common points
at their boundaries or no common points at all. If f is integrable on D, then

∫ ∫

D
f dA =

∫ ∫

D1

f dA +

∫ ∫

D2

f dA .

This property is difficult to prove directly from the definition. However, it
appears rather natural when making the analogy of the double integral and
the volume. If the region D is cut into two regions D1 and D2 by a piecewise
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x

y

z

z = f(x, y)

D2

D1

x

y

z z = M

z = f(x, y)

z = m

D

Figure 29.1. Left: A function f is nonnegative on the
region D1 and nonpositive on D2. The double integral of
f(x, y) over the union of regions D1 and D2 is the difference
of the indicated volumes. The volume below the xy plane
and above the graph of f contributes to the double integral
with the negative sign. Right: An illustration to the upper
and lower bounds of the double integral of a function f over
a region D. If A(D) is the area of D and m ≤ f(x, y) ≤ M
in D, then the volume under the graph of f is no less than
the volume mA(D) and no larger than MA(D).

smooth curve, then the solid above D is also cut into two solids, one above
D1 and the other above D2. Naturally, the volume is additive (see the right
panel of Fig. 28.2 in the previous section).

Suppose that f is nonnegative on D1 and nonpositive on D2. The double
integral over D1 is the volume V1 of the solid above D1 and below the graph
of f . Since −f ≥ 0 on D2, the double integral over D2 is −V2 where V2 is
the volume of the solid below D2 and above the graph of f . When f becomes
negative, its graph goes below the plane z = 0 (the xy plane). So, the double
integral is the difference of the volumes above and below the xy plane:

∫ ∫

D
fdA = V1 − V2

Therefore it may vanish or take negative values, depending on which volume
is larger. This property is analogous to the familiar relation between the
ordinary integral and the area under the graph. It is illustrated in Fig. 29.1
(the left panel).

Positivity. If f(r) ≥ 0 for all r in D, then
∫ ∫

D
f dA ≥ 0,
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and, as a consequence of the linearity,
∫ ∫

D

f dA ≥
∫ ∫

D

g dA

if f(r) ≥ g(r) for all r in D.

Upper and Lower Bounds. Let m = infD f and M = supD f . Then m ≤
f(r) ≤M for all r in D. From the positivity property for the double integrals
of f(x, y)−m ≥ 0 and M − f(x, y) ≥ 0 over D and Eq. (29.1), it follows
that

mA(D) ≤
∫ ∫

D
f dA ≤MA(D) .

This inequality is easy to visualize. If f is positive, then the double integral
is the volume of the solid below the graph of f . The solid lies in the cylinder
with the cross section D. The graph of f lies between the planes z = m and
z = M . Therefore, the volume of the cylinder of height m cannot exceed
the volume of the solid, whereas the latter cannot exceed the volume of the
cylinder of height M as shown in the right panel of Fig. 29.1.

Theorem 29.1. (Integral Mean Value Theorem).
If f is continuous on a bounded closed region D, then there exists a point r0

in D such that
∫ ∫

D
f dA = f(r0)A(D) .

Proof. Let h be a number. Put

g(h) =

∫ ∫

D
(f − h) dA =

∫ ∫

D
f dA− hA(D) .

From the upper and lower bounds for the double integral, it follows that
g(M) ≤ 0 and g(m) ≥ 0. Since g(h) is linear in h, there exists h = h0 in
[m, M ] such that g(h0) = 0. On the other hand, a continuous function on a
closed, bounded region D takes its maximal and minimal values as well as all
the values between them (Theorem 26.3). Therefore, for any m ≤ h0 ≤ M ,
there is r0 in D such that f(r0) = h0. �

A geometrical interpretation of the integral mean value theorem is rather
simple. Imagine that the solid below the graph of f is made of clay (see the
left panel of Fig. 29.2). The shape of a piece of clay may be deformed while
the volume is preserved under deformation. The nonflat top of the solid
can be deformed so that it becomes flat, turning the solid into a cylinder of
height h0, which, by volume preservation, should be between the smallest
and the largest heights of the original solid. The integral mean value theorem
merely states the existence of such an average height at which the volume of
the cylinder coincides with the volume of the solid with a nonflat top. The
continuity of the function is sufficient (but not necessary) to establish that
there is a point at which the average height coincides with the value of the
function.
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z = f(x, y)

h0

D

x

y θk

θk−1

x

y

z

1
1

Figure 29.2. Left: A clay solid with a non-flat top (the
graph of a continuous function f) may be deformed to the
solid of the same volume and with the same horizontal cross
section D, but with a flat top z = h0. The function f takes
the value h0 at some point of D. This illustrates the integral
mean value theorem.
Middle: A partition of a disk by concentric circles of radii
r = rp and rays θ = θk as described in Example 29.1. A
partition element is the region rp−1 ≤ r ≤ rp and θk−1 ≤ θk.
Right: The volume below the graph z = x2 + y2 and above
the disk D, x2 + y2 ≤ 1. The corresponding double integral
is evaluated in Example 29.1 by taking the limit of Riemann
sums for the partition of D shown in the middle panel.

Definition 29.1. (Average value of a function)
Let f be integrable on D and let A(D) be the area of D. The average value
of f on D is

1

A(D)

∫∫

D
fdA

If f is continuous on D, then the integral mean value theorem asserts
that f attains its average value at some point in D. The continuity hypoth-
esis is crucial here. For example, the function depicted in the left panel of
Fig. 28.2 is not continuous. Its average value is (MA1 + mA2)/(A1 + A2)
which generally coincides neither with M nor m.

Integrability of the Absolute Value. Suppose that f is integrable on a
bounded, closed region D. Then its absolute value |f | is also integrable
and

∣

∣

∣

∫ ∫

D
f dA

∣

∣

∣ ≤
∫ ∫

D
|f | dA.

If f is continuous on D, then |f | is also continuous on D and, hence, inte-
grable by Theorem 28.2. For a generic integrable function f , a proof of the
integrability of |f | is rather technical and omitted. Once the integrability of
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|f | is established, the inequality is a simple consequence of |a + b| ≤ |a|+ |b|
applied to a Riemann sum of f . Making the analogy between the double
integral and the volume, suppose that f ≥ 0 on D1 and f ≤ 0 on D2, where
D1,2 are two portions of D. If V1 and V2 stand for the volumes of the solids
bounded by the graph of f and D1 and D2, respectively, then the double
integral of f over D is V1 − V2, while the double integral of |f | is V1 + V2.
Naturally, |V1 − V2| ≤ V1 + V2 for positive V1,2.

Independence of Partition. Suppose f is continuous and nonnegative on a
closed bounded region D. Then the volume under the graph of f is given
by the double integral of f over D. On the other hand, the volume can be
computed by (28.1) in which the Riemann sum is defined for an arbitrary
(nonrectangular) partition of D. It seems natural to require that the nu-
merical value of the volume should not depend on the choice of partitions in
the Riemann sums (28.1). This observation leads to a conjecture that the
double integral, if it exists, may also be computed as the limit of Riemann
sums with arbitrary partitions. The analysis is limited to the case when f
is continuous.

A continuous function on a closed bounded region has the following
remarkable property called the uniform continuity.

Theorem 29.2. (Uniform Continuity)
Suppose f is a continuous function on a bounded closed region D in a Eu-
clidean space. Then for any number ε > 0 there exists a number δ > 0 such
that

|f(r)− f(r′)| < ε whenever ‖r− r′‖ < δ

for any r and r′ in D.

The assertion can be understood as follows. Fix a point r′ in D. By
continuity of f , for any ε > 0, one can find a ball (or disk) of sufficiently small
radius centered at the point r′ such that the values of f in this ball deviates
from f(r′) no more than ε (recall limr→r′ f(r) = f(r′) for a continuous f).
Note that the radius δ depends on both the number ε and the point r′, in
general. The uniform continuity implies a stronger condition. Namely, the
radius δ does not depends on the point. A ball of radius δ can be centered at
any point in D and the values of the function at any two points in this ball
differ by no more than ε. In other words, as soon as the distance between
any two points in D in less than δ, the difference between the values of the
function becomes less than ε. This is why this property is called the uniform
continuity. Variations of values of f in any ball in D of a fixed radius are
uniformly bounded.

A continuous function on a non-closed (or non-bounded) set may not
have this property. For example, put f(x, y) = 1/x which is continuous
in the rectangle D = (0, 1]× [0, 1]. Note D is not closed. Then in a disk
whose center is sufficiently close to the line x = 0, the values of f can have
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variations as large as desired within this disk because 1/x diverges as x
approaches zero. Take an interval (x1, x2) of a length δ = x2 − x1. Then
1/x1 − 1/x2 can be made arbitrary large by taking x1 closer to 0 for any
choice of δ > 0. So the variations of f in any disk in D of some non-zero
radius cannot be bounded by a fixed number ε. Similarly, take f(x, y) = x2

which is continuous in the unbounded rectangle D = [0,∞)× [0, 1]. Then
in a disk whose center is sufficiently far from the line x = 0, the values of
f can have variations as large as desired within this disk. For an interval
(x1, x2) of a length δ > 0, the variation x2

2 − x2
1 = δ(x2 + x1) can be made

as large as desired by taking x2 large enough no matter how small δ is.
Let f be a continuous function on a closed bounded region D. Let

D be partitioned by piecewise smooth curves into partition elements Dp,

p = 1, 2, ..., N , so that the union of Dp is D and A(D) =
∑N

p=1 ∆Ap, where

∆Ap is the area of Dp defined by Eq. (29.1). If Rp is the smallest radius of
a disk that contains Dp, put R∗

N = maxp Rp; that is, Rp characterizes the
size of the partition element Dp and R∗

N is the size of the largest partition
element. Suppose that R∗

N → 0 as N → ∞. Under the aforementioned
conditions the following theorem holds.

Theorem 29.3. (Independence of the Partition)
For any choice of sample points r∗p and any choice of partition elements Dp,

(29.2)

∫ ∫

D
f dA = lim

N→∞

(R∗

N→0)

N
∑

p=1

f(r∗p) ∆Ap

Proof. As f is continuous on D, in each Dp there is a point rp such that

∫ ∫

D

f dA =
N
∑

p=1

∫ ∫

Dp

f dA =
N
∑

p=1

f(rp) ∆Ap .

The first equality follows from the additivity of the double integral, and the
second one holds by the integral mean value theorem. Consider the Riemann
sum

R(f, N ) =

N
∑

p=1

f(r∗p) ∆Ap,

where r∗p is a sample point in Dp. If r∗p 6= rp, then the Riemann sum does
not coincide with the double integral. However, its limit as N →∞ equals
the double integral. Indeed, put cp = |f(r∗p) − f(rp)| and cN = max cp,
p = 1, 2, ..., N . Fix a number ε > 0. By Theorem 29.2, there is δ > 0 such
that variations of f in any disk of radius δ in D do not exceed ε. Since
R∗

N → 0 as N → ∞, R∗
N < δ for all N larger than some N0. Hence,

cN < ε because any partition element Dp is contained in a disk of radius
Rp ≤ R∗

N < δ, which implies that cN → 0 as N → ∞. Therefore, the
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deviation of the Riemann sum from the double integral converges to 0:

∣

∣

∣

∫ ∫

D

f dA−R(f, N )
∣

∣

∣
=
∣

∣

∣

N
∑

p=1

(f(rp)− f(r∗p)) ∆Ap

∣

∣

∣

≤
N
∑

p=1

|f(rp)− f(r∗p)|∆Ap

=

N
∑

p=1

cp ∆Ap ≤ cN

N
∑

p=1

∆Ap = cNA(D)→ 0

as N →∞. �

A practical significance of this theorem is that the double integral can
be approximated by Riemann sums for any convenient partition of the inte-
gration region. Note that the region D is no longer required to be embedded
in a rectangle and f does not have to be extended outside of D. This prop-
erty is useful for evaluating double integrals by means of change of variables
discussed later in this chapter. It is also useful to simplify calculations of
Riemann sums.

Example 29.1. Find the double integral of f(x, y) = x2 + y2 over the
disk D, x2 + y2 ≤ 1, using the partition of D by concentric circles and rays
from the origin.

Solution: Consider circles x2 + y2 = r2
p, where

rp = p ∆r , ∆r =
1

N
, p = 0, 1, 2, ..., N .

If θ is the polar angle in the plane, then points with a fixed value of θ form
a ray from the origin. Let the disk D be partitioned by circles of radii rp

and rays

θ = θk = k ∆θ , ∆θ =
2π

n
, k = 1, 2, ..., n .

Each partition element lies in the sector of angle ∆θ and is bounded by two
circles whose radii differ by ∆r (see the middle panel of Fig. 29.2). The
area of a sector of radius rp is r2

p ∆θ/2. Therefore, the area of a partition
element between circles of radii rp and rp−1 is

∆Ap =
1

2
r2
p ∆θ − 1

2
r2
p−1 ∆θ =

1

2
(r2

p − r2
p−1) ∆θ =

1

2
(rp + rp−1) ∆r ∆θ

where p = 1, 2, ..., N . In the Riemann sum, use the midpoint rule; that is,
the sample points are intersections of the circles of radius r̄p = (rp +rp−1)/2
and the rays with angles θ̄k = (θk+1 + θk)/2. The values of f at the sample
points are f(r∗p) = r̄2

p, the area elements are ∆Ap = r̄p ∆r ∆θ, and the
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corresponding Riemann sum reads

R(f, N, n) =

n
∑

k=1

N
∑

p=1

r̄3
p ∆r ∆θ = 2π

N
∑

p=1

r̄3
p ∆r

because
∑n

k=1 ∆θ = 2π, the total range of θ in the disk D. The sum over p
is the Riemann sum for the single-variable function g(r) = r3 on the interval
0 ≤ r ≤ 1. In the limit N →∞, this sum converges to the integral of g over
the interval [0, 1], that is,

∫ ∫

D

(x2 + y2) dA = 2π lim
N→∞

N
∑

p=1

r̄3
p ∆r = 2π

∫ 1

0

r3 dr = π/2 .

So, by choosing the partition according to the shape of D, the double Rie-
mann sum has been reduced to a Riemann sum for a single-variable function.
�

The numerical value of the double integral in this example is the volume
of the solid that lies below the paraboloid z = x2 +y2 and above the disk D
of unit radius in the xy plane. It can also be represented as the volume of the
cylinder with height h = 1/2, V = hA(D) = πh = π/2. This observation
illustrates the integral mean value theorem. The function f takes the value
h = 1/2 on the circle x2 + y2 = 1/2 of radius 1/

√
2 in D.

29.1. Exercises.

1–5. Evaluate each of the following double integrals by using the properties
of the double integral and its interpretation as the volume of a solid.

1.
∫∫

D kdA where k is a constant and D is the square [−2, 2]× [−2, 2]

with a circular hole of radius 1, i.e., x2 + y2 ≥ 1 in D ;
2.
∫∫

D fdA where D is a disk x2 +y2 ≤ 4 and f is piecewise constant

function: f(x, y) = 2 if 1 ≤ x2 + y2 ≤ 4 and f(x, y) = −3 if
0 ≤ x2 + y2 < 1 ;

3.
∫∫

D(4 + 3
√

x2 + y2)dA where D is the disk x2 + y2 ≤ 1 ;

4.
∫∫

D(
√

4− x2 − y2 − 2)dA if D is the part of the disk x2 + y2 ≤ 4
in the first quadrant ;

5.
∫∫

D(4−x−y)dA where D is the triangle with vertices (0, 0), (1, 0),
and (0, 1). Hint: Use the identity 4− x− y = 3 + (1− x− y) and
the linearity of the double integral.

6–7. Use the positivity of the double integral to prove the following inequal-
ities.

6.
∫∫

D sin(xy)/(xy) dA≤ A(D) where D is a bounded region in which
x > 0 and y > 0 ;

7.
∫∫

D(ax2 + by2)dA ≤ (a + b)π/2 where D is the disk x2 + y2 ≤ 1.

Hint: Put r2 = x2 + y2. Then use x2 ≤ r2 and y2 ≤ r2 and apply
the result of Example 29.1.
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8-11. Find the lower and upper bounds for each of the following integrals.

8.
∫∫

D xy3dA where D = [1, 2]× [1, 2] ;

9.
∫∫

D

√
1 + xe−ydA where D = [0, 1]× [0, 1] ;

10.
∫∫

D sin(x+y)dA where D is the triangle with vertices (0, 0), (0, π),
and (π/4, 0). Hint: Graph D and determine the set of point at
which sin(x + y) attains its maximum value ;

11.
∫∫

D(100+cos2 x+cos2 y)−1dA where D is defined by |x|+ |y| ≤ 10.

12. Let f be continuous on a bounded region D with a non-zero area. If
the double integral of f over D vanishes, prove that there is a point in D at
which f vanishes.

13. Use the method of Example 29.1 to find
∫∫

D ex2+y2

dA where D is the

part of the disk x2 + y2 ≤ 1.
14. Use a Riemann sum to approximate the double integral of f(x, y) =√

x + y over the triangle bounded by the lines x = 0, y = 0, and x + y = 1.
Partition the integration region into four equal triangles by the lines x =
const, y = const, and x + y = const. Choose sample points to be centroids
of the triangle.
15–17. Determine the sign of each of the following integrals.

15.
∫∫

D ln(x2 + y2)dA where D is defined by |x|+ |y| ≤ 1 ;

16.
∫∫

D
3
√

1− x2 − y2dA where D is defined by x2 + y2 ≤ 4 ;

17.
∫∫

D sin−1(x + y)dA where D is defined by 0 ≤ x ≤ 1 and 0 ≤ y ≤
1− x.
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30. Iterated Integrals

Here a practical method for evaluating double integrals will be devel-
oped. To simplify the technicalities, the derivation of the method is given
for continuous functions. In combination with the properties of the double
integral, it is sufficient for many applications.

Recall that if a multivariable limit exists, then the repeated limits exist
and coincide. A similar statement is true for double sequences.

Theorem 30.1. Suppose that a double sequence anm converges to a as
n, m→∞. Then

lim
n→∞

(

lim
m→∞

anm

)

= lim
m→∞

(

lim
n→∞

anm

)

= a

A proof of this simple theorem is left to the reader as an exercise. The
limit limm→∞ anm = bn is taken for a fixed value n. Similarly, the limit
limn→∞ anm = cm is taken for a fixed m. The theorem states that the limits
of two generally different sequences bn and cm coincide and are equal to
the limit of the double sequence. This property of double sequences will
be applied to Riemann sums of an integrable function to reduce a double
integral to ordinary iterated integrals.

30.1. Rectangular Domains. The simplest case of a rectangular domain is
considered first. The double integral over general domains is studied in the
next section. Let a function f be continuous on a rectangle D = [a, b]×[c, d].
Let Rjk be a rectangular partition of D as defined earlier. For any choice
of sample points (x∗

j , y
∗
k), where xj−1 ≤ x∗

j ≤ xj and yk−1 ≤ y∗k ≤ yk, the

Riemann sum R(f, N1, N2) converges to the double integral of f over D by
Theorem 28.1. Since the limit of the double sequence R(f, N1, N2) exists, it
should not depend on the order in which the limits N1 → ∞ (or ∆x → 0)
and N2 →∞ (or ∆y → 0) are computed (Theorem 30.1). Suppose the limit
N2 →∞ is to be evaluated first:

∫ ∫

D
f dA = lim

N1,2→∞
R(f, N1, N2)

= lim
N1→∞

N1
∑

j=1

(

lim
N2→∞

N2
∑

k=1

f(x∗
j , y

∗
k) ∆y

)

∆x .

For each j, the expression in parentheses is nothing but the Riemann sum for
the single-variable function gj(y) = f(x∗

j , y) on the interval c ≤ y ≤ d. So, if

the functions gj(y) are integrable on [c, d], then the limit of their Riemann
sums is the integral of gj over the interval. If f is continuous on D, then it
must also be continuous along the lines x = x∗

j in D; that is, gj(y) = f(x∗
j , y)

is continuous for every j and hence integrable on [c, d]. Thus,

(30.1) lim
N2→∞

N2
∑

k=1

f(x∗
j , y

∗
k) ∆y =

∫ d

c
f(x∗

j , y) dy .
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z = f(x, y)

A(y)

y

R

∆y

z = f(x, y)

R

∆x

A(x)

x

Figure 30.1. An illustration to Fubini’s theorem. The vol-
ume of a solid below the graph z = f(x, y) and above a rec-
tangle R is the sum of the volumes of the slices. Left: The
slicing is done parallel to the x axis so that the volume of
each slice is ∆yA(y) where A(y) is the area of the cross sec-
tion by a plane with a fixed value of y. Right: The slicing
is done parallel to the y axis so that the volume of each slice
is ∆xA(x) where A(x) is the area of the cross section by a
plane with a fixed value of x as given in (30.2).

Define a function A(x) by

(30.2) A(x) =

∫ d

c
f(x, y) dy .

The value of A at x is given by the integral of f with respect to y; the
integration with respect to y is carried out as if x were a fixed number. For
example, put f(x, y) = x2y + exy and [c, d] = [0, 1]. Then an antiderivative
F (x, y) of f(x, y) with respect to y is F (x, y) = x2y2/2+exy/x, which means
that F ′

y(x, y) = f(x, y). Therefore,

A(x) =

∫ 1

0
(x2y + exy) dy =

1

2
x2y2 +

exy

x

∣

∣

∣

1

0
=

1

2
x2 +

ex

x
− 1

x
.

A geometrical interpretation of A(x) is simple. If f ≥ 0, then A(x∗
j) is the

area of the cross section of the solid below the graph z = f(x, y) by the
plane x = x∗

j . If variations of A(x) within the interval [xj−1, xj] are small

(or ∆x is small enough), then A(x∗
j) ∆x is the volume of the slice of the

solid of width ∆x (see the right panel of Fig. 30.1).
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One can prove that the function A is continuous on [a, b] (see Study
Problem 30.1). The second sum in the Riemann sum for the double integral
is the Riemann sum of A(x) on the interval [a, b] which converges to the
integral of A over [a, b]:

∫ ∫

D

f dA = lim
N1→∞

N1
∑

j=1

A(x∗
j ) ∆x =

∫ b

a

A(x) dx

=

∫ b

a

(∫ d

c
f(x, y) dy

)

dx .

The integral on the right side of this equality is called the iterated integral.
In what follows, the parentheses in the iterated integral will be omitted.
The order in which the integrals are evaluated is specified by the order of
the differentials in it; for example, dy dx means that the integration with
respect to y is to be carried out first.

In a similar fashion, by computing the limit N1 → ∞ first, the double
integral can be expressed as an iterated integral in which the integration is
carried out with respect to x and then with respect to y. So the following
result has been established.

Theorem 30.2. (Fubini’s Theorem).
If f is continuous on the rectangle D = [a, b]× [c, d], then

∫ ∫

D
f(x, y) dA =

∫ d

c

∫ b

a
f(x, y) dx dy =

∫ b

a

∫ d

c
f(x, y) dydx.

Think of a loaf of bread with a rectangular base and with a top having
the shape of the graph z = f(x, y) ≥ 0. It can be sliced along either of the
two directions parallel to adjacent sides of its base. Fubini’s theorem implies
that the volume of the loaf is the sum of the volumes of the slices and is
independent of how the slicing is done (see Fig. 30.1).

Example 30.1. Verify Fubini’s theorem for the double integral

∫ ∫

D

dA√
2x− y

, D = [1, 2]× [0, 1] .

Solution: The integrand is the composition of two continuous functions
u−1/2 and u = 2x − y. Therefore it continuous for all (x, y) for which

u > 0. In the rectangle [2, 1]× [0, 1], u ≥ 1. So, the function (2x− y)−1/2 is
continuous on D and, hence, integrable on D, and Fubini’s theorem applies
to evaluate the double integral. Let us first integrate with respect to x.
Since

∂

∂x

√

2x− y =
1√

2x− y



30. ITERATED INTEGRALS 457

the integration with respect to x yields:
∫ 1

0

∫ 2

1

dx√
2x− y

dy =

∫ 1

0

√

2x− y
∣

∣

∣

2

1
dy =

∫ 1

0

(

√

4− y −
√

2− y
)

dy

=
2

3

[

(2− y)3/2− (4− y)3/2
] ∣

∣

∣

1

0

=
2

3

(

9− 3
√

3− 2
√

2
)

Let us integrate with respect to y first. Since

∂

∂y

(

−2
√

2x− y
)

=
1√

2x− y
,

the integration with respect to y yields:
∫ 2

1

∫ 1

0

dy√
2x− y

dx = −2

∫ 2

1

√

2x− y
∣

∣

∣

1

0
dx = 2

∫ 2

1

(√
2x−

√
2x− 1

)

dx

=
2

3

[

(2x)3/2 − (2x− 1)3/2
] ∣

∣

∣

2

1

=
2

3

(

9− 3
√

3− 2
√

2
)

.

The values of the iterated integrals coincide in accord with Fubini’s theorem.
�

Example 30.2. Find the volume of the solid bounded from above by the
portion of the paraboloid z = 4− x2 − 2y2 and from below by the portion of
the paraboloid z = −4 + x2 + 2y2, where (x, y) in [0, 1]× [0, 1].

Solution: Let h(x, y) be the height of the solid at a point (x, y). Given
(x, y), the point (x, y, z) lies in the solid if zbot(x, y) ≤ z ≤ ztop(x, y) where
the graphs z = ztop(x, y) and z = zbot(x, y) are the top and bottom bound-
aries of the solid. Then the height of the solid at any (x, y) in D is

h(x, y) = ztop(x, y)− zbot(x, y) .

Therefore the volume is

V =

∫ ∫

D
h(x, y) dA =

∫ ∫

D
[ztop(x, y)− zbot(x, y)] dA

=

∫ ∫

D
(8− 2x2 − 4y2) dA =

∫ 1

0

∫ 1

0
(8− 2x2 − 4y2) dy dx

=

∫ 1

0
[(8− 2x2)y − 4y3/3]

∣

∣

∣

1

0
dx =

∫ 1

0
(8− 2x2 − 4/3) dx = 6.

�

If a function of two variables happens to be the product of two functions
of a single variable, then Fubini’s theorem allows one to convert the double
integral into the product of ordinary integrals.
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Corollary 30.1. (Factorization of Iterated Integrals).
Let D be a rectangle [a, b]× [c, d]. Suppose f(x, y) = g(x)h(y), where the
functions g and h are integrable on [a, b] and [c, d], respectively. Then

∫ ∫

D

f(x, y) dA =

∫ b

a

g(x) dx

∫ d

c

h(y) dy .

Indeed, integrating first with respect to x by Fubini’s theorem
∫ ∫

D
f dA =

∫ b

a

∫ d

c
g(x)h(y) dxdy =

∫ d

c
h(y)

(∫ b

a
g(x) dx

)

dy

=

∫ b

a

g(x) dx

∫ d

c

h(y) dy

where the constant equal to the integral of g over [a, b] has been pulled from
the integral with respect to y using the basic properties (linearity) of the
integral. This simple consequence of Fubini’s theorem is quite useful.

Example 30.3. Evaluate the double integral of f(x, y) = sin(x+y) over
the rectangle [0, π]× [−π/2, π/2].

Solution: One has sin(x+y) = sinx cos y+cos x sin y. The integral of siny
over [−π/2, π/2] vanishes by symmetry. So, by the factorization property of
the iterated integral, only the first term contributes to the double integral:

∫ ∫

D
sin(x + y) dA =

∫ π

0
sin x dx

∫ π/2

−π/2
cos y dy = 2 · 2 = 4 .

�

The following example illustrates the use of the additivity of double
integrals.

Example 30.4. Evaluate the double integral of f(x, y) = 15x4y2 over
the region D, which is the rectangle [−2, 2]×[−2, 2] with the rectangular hole
[−1, 1]× [−1, 1].

Solution: Let D1 = [−2, 2]× [−2, 2] and let D2 = [−1, 1]× [−1, 1]. The
rectangle D1 is the union of D and D2 such that their intersection has no
area. Hence,

∫∫

D1

f dA =

∫∫

D
f dA +

∫∫

D2

f dA ⇒
∫∫

D
f dA =

∫∫

D1

f dA−
∫∫

D2

f dA.

By evaluating the double integrals over D1,2,
∫∫

D1

15x4y2 dA = 15

∫ 2

−2

x4 dx

∫ 2

−2

y2 dy = 210,

∫∫

D2

15x4y2 dA = 15

∫ 1

−1
x4 dx

∫ 1

−1
y2 dy = 4.
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the double integral over D is obtained, 1024− 4 = 1020. �

30.2. Study Problems.

Problem 30.1. Prove that the function A(x) defined in (30.2) is contin-
uous in [a, b].

Solution: The function f is continuous on a closed rectangle and, hence,
uniformly continuous by Theorem 29.2. This implies that for any number
ε > 0 one can find a number δ > 0 such that

|f(x, y)− f(x′, y′)| < ε

d− c
whenever

√

(x− x′)2 + (y − y′)2 < δ

for any choice of such pairs (x, y) and (x′, y′). In particular, set y = y′ so
that

|f(x, y)− f(x′, y)| < ε

d− c
whenever |x− x′| < δ .

Then the following chain of inequalities holds

|A(x)−A(x′)| =
∣

∣

∣

∫ d

c

(

f(x, y)− f(x′, y)
)

dy
∣

∣

∣
≤
∫ d

c

∣

∣

∣
f(x, y)− f(x′, y)

∣

∣

∣
dy

<
ε

d− c

∫ d

c
dy = ε whenever |x− x′| < δ .

By the definition of a limit, the latter implies that

lim
x→x′

A(x) = A(x′) for any x′ ∈ [a, b] ,

and, hence, A(x) is continuous in [a, b]. �

Problem 30.2. Suppose a function f has continuous second partial deriva-
tives on the rectangle D = [0, 1] × [0, 1]. Find

∫∫

D f ′′
xy dA if f(0, 0) = 1,

f(0, 1) = 2, f(1, 0) = 3, and f(1, 1) = 5.

Solution: By Fubini’s theorem,

∫ ∫

D
f ′′
xy dA =

∫ 1

0

∫ 1

0

∂

∂x
f ′
y(x, y) dx dy =

∫ 1

0
f ′
y(x, y)

∣

∣

∣

1

0
dy

=

∫ 1

0
[f ′

y(1, y)− f ′
y(0, y)] dy =

∫ 1

0

d

dy
[f(1, y)− f(0, y)] dy

=[f(1, y)− f(0, y)]
∣

∣

∣

1

0

= [f(1, 1)− f(0, 1)]− [f(1, 0)− f(0, 0)] = 1.

By Clairaut’s theorem f ′′
xy = f ′′

yx and the value of the integral is independent
of the order of integration. �
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30.3. Exercises.

1–15. Evaluate each of the following double integrals over the specified
rectangular region.

1.
∫∫

D(x + y)dA, D = [0, 1]× [0, 2] ;

2.
∫∫

D xy2 dA, D = [0, 1]× [−1, 1] ;

3.
∫∫

D

√
x + 2y dA, D = [1, 2]× [0, 1] ;

4.
∫∫

D(1 + 3x2y)dA, D = [0, 1]× [0, 2] ;

5.
∫∫

D xeyxdA, D = [0, 1]× [0, 1] ;
6.
∫∫

D cos(x + 2y)dA, D = [0, π]× [0, π/4] ;

7.
∫∫

D
1+2x
1+y2 dA, D = [0, 1]× [0, 1] ;

8.
∫∫

D
y

x2+y2 dA, D = [0, 1]× [1, 2] ;

9.
∫∫

D(x− y)ndA, D = [0, 1]× [0, 1], where n is a positive integer ;

10.
∫∫

D ex√y + exdA, D = [0, 1]× [0, 2] ;

11.
∫∫

D sin2(x) sin2(y)dA, D = [0, π]× [0, π] ;

12.
∫∫

D ln(x + y)dA, D = [1, 2]× [1, 2] ;

13.
∫∫

D
1

2x+y dA, D[0, 1]× [1, 2] ;

14.
∫∫

D x2x−y dA, D = [0, 1]× [0, 1] ;

15.
∫∫

D
1−(xy)3

1−xy dA, D = [0, 1
2 ]× [0, 1

2 ].

16–18. Find the volume of each of the following solids E.

16. E lies under the paraboloid z = 1 + 3x2 + 6y2 and above the
rectangle [−1, 1]× [0, 2] ;

17. E lies in the first octant and is bounded by the cylinder z = 4−y2

and the plane x = 3 ;
18. E lies in the first octant and is bounded by the planes x+y−z = 0,

y = 2, and x = 1 .

19. Evaluate
∫∫

D xydA where D is the part of the square [−1, 1]× [−1, 1]
that does not lie in the first quadrant.
20. Let f be continuous on [a, b] × [c, d] and g(u, v) =

∫∫

Duv
f(x, y)dA

where Duv = [a, u] × [c, v] for a < u < b and c < v < d. Show that
g′′uv = g′′vu = f(u, v).
21. Let f be a continuous function on [a, b]. Prove that

(∫ b

a
f(x)dx

)2

≤ (b− a)

∫ b

a

(

f(x)
)2

dx

where the equality is reached only if f(x) = const. Hint: Consider the
iterated integral

∫ b

a

∫ b

a

[

f(x)− f(y)
]2

dy dx

22. Find the average value of the squared distance from the origin to a point
of the disk (x − a)2 + (y − b)2 ≤ R2. Hint: Set up the coordinate system
at the center of the disk, consider the average value of the squared distance
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from the point (a, b) to a point of the disk, and use the method of Example
29.1 to convert the double integral to an iterated integral.



462 4. MULTIPLE INTEGRALS

31. Double Integrals Over General Regions

The concept of the iterated integral can be extended to general regions
subject to the following conditions.

31.1. Simple Regions.

Definition 31.1. (Simple and Convex Regions).
A region D is said to be simple in the direction u if any line parallel to the
vector u intersects D along at most one straight line segment. A region D
is called convex (or simple) if it is simple in any direction.

This definition is illustrated in Fig. 31.1. Suppose D is bounded and
simple in the direction of the y axis. It will be referred to as y simple or
vertically simple. Since D is bounded, there is an interval [a, b] such that
vertical lines x = x0 intersect D if x0 in [a, b]. In other words, the region D
lies within the vertical strip a ≤ x ≤ b where a and b are the minimal and
maximal values of the x coordinate for all points (x, y) in D.

Take a vertical line x = x0 and consider all points of D that also belong
to the line, that is, pairs (x0, y) in D, where the first coordinate is fixed.
Since the line intersects D along a segment, the variable y ranges over an
interval. The endpoints of this interval depend on the line or the value of
x0; that is, for every x0 in [a, b], ybot ≤ y ≤ ytop, where the numbers ybot

and ytop depend on x0. So, all vertically simple regions admit the following
algebraic description.

Algebraic Description of Vertically Simple Regions. If D is bounded and
vertically simple, then it lies in the vertical strip a ≤ x ≤ b and is bounded
from below by the graph y = ybot(x) and from above by the graph y =
ytop(x):

(31.1) D = {(x, y) | ybot(x) ≤ y ≤ ytop(x) , a ≤ x ≤ b}.

u

v

D
D

D

Figure 31.1. Left: A region D is simple in the direction
u. Middle: A region D is not simple in the direction v.
Right: A region D is simple or a convex. Any straight line
intersects it along at most one segment, or a straight line
segment connecting any two points of D lies in D.
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x

y

y = ytop(x)

y
D

y = ybot(x)

a x b
x

y

d

y

c

D

x

x = xbot(y) x = xtop(y)

Figure 31.2. Left: An algebraic description of a vertically
simple region as given in Eq. (31.1): for every a ≤ x ≤ b, the
y coordinate ranges over the interval ybot(x) ≤ y ≤ ytop(x).
Right: An algebraic description of a horizontally simple re-
gion D as given in Eq. (31.2): for every c ≤ y ≤ d, the x
coordinate ranges over the interval xbot(y) ≤ x ≤ xtop(y).

The numbers a and b are, respectively, the smallest and the largest values of
the x coordinate of points of D. The graphs y = ybot(x) and y = ytop(x) are
top and bottom boundaries of D, respectively, relative to the direction of the
y axis. The algebraic description of a vertically simple region is illustrated
in the left panel of Figure 31.2.

Example 31.1. Give an algebraic description of the half-disk x2+y2 ≤ 1,
y ≥ 0, as a vertically simple region.

Solution: The x coordinate of any point in the disk lies in the interval
[a, b] = [−1, 1] (see Fig. 31.3 (left panel)). Take a vertical line corresponding
to a fixed value of x in this interval. This line intersects the half-disk along
the segment whose one endpoint lies on the x axis; that is, y = 0 = ybot(x).
The other endpoint lies on the circle. Solving the equation of the circle for y,
one finds y = ±

√
1− x2. Since y ≥ 0 in the half-disk, the positive solution

has to be taken, y =
√

1− x2 = ytop(x). So the region is bounded by two

graphs y = 0 and y =
√

1− x2:

D = {(x, y) | 0≤ y ≤
√

1− x2 , −1 ≤ x ≤ 1} .

�

Suppose D is simple in the direction of the x axis. It will be referred to
as x simple or horizontally simple. Since D is bounded, there is an interval
[c, d] such that horizontal lines y = y0 intersect D if y0 in [c, d]. In other
words, the region D lies within the horizontal strip c ≤ y ≤ d. Take a
horizontal line y = y0 and consider all points of D that also belong to the
line, that is, pairs (x, y0) in D, where the second coordinate is fixed. Since
the line intersects D along a segment, the variable x ranges over an interval.
The endpoints of this interval depend on the line or the value of y0; that
is, for every y0 in [c, d], xbot ≤ x ≤ xtop, where the numbers xbot and
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x

y
y =
√

1− x2

x

y

−1 1

y = 0
x

y

x = −
√

1− y2 1

x

y
x =

√

1− y2

Figure 31.3. The half-disk D, x2 + y2 ≤ 1, y ≥ 0, is
a simple region. Left: An algebraic description of D as a
vertically simple region as given in (31.1). The maximal
range of x in D is [−1, 1]. For every such x, the y coordinate

in D has the range 0 ≤ y ≤
√

1− x2.
Right: An algebraic description of D as a horizontally simple
region as given in (31.2). The maximal range of y in D is
[0, 1]. For every such y, the x coordinate in D has the range

−
√

1− y2 ≤ x ≤
√

1− y2.

xtop depend on y0. So, all horizontally simple regions admit the following
algebraic description.

Algebraic Description of Horizontally Simple Regions. If D is bounded and
horizontally simple, then it lies in a horizontal strip c ≤ y ≤ d, where c and d
are the minimal and maximal values of the y coordinates for all points of D.
Furthermore, the region D is bounded from below by the graph x = xbot(y)
and from above by the graph x = xtop(y):

(31.2) D = {(x, y) | xbot(y) ≤ x ≤ xtop(y) , c ≤ y ≤ d}.
The terms “top” and “bottom” boundaries are now defined relative to the
line of sight in the direction of the x axis. The algebraic description of a
horizontally simple region is illustrated in the right panel of Figure 31.2.

Example 31.2. Give an algebraic description of the half-disk x2+y2 ≤ 1,
y ≥ 0, as a horizontally simple region.

Solution: The y coordinate of any point in the disk lies in the interval
[c, d] = [0, 1]. Take a horizontal line corresponding to a fixed value of y
from this interval. The line intersects the half-disk along a segment whose
endpoints lie on the circle. Solving the equation of the circle for x, the x

coordinates of the endpoints are obtained: x = ±
√

1− y2. So,

D = {(x, y) | −
√

1− y2 ≤ x ≤
√

1− y2 , 0 ≤ y ≤ 1} .

When viewed in the horizontal direction, the top boundary of the region is

the graph x =
√

1− y2 = xtop(y) and the bottom boundary is the graph

x = −
√

1− y2 = xbot(y) (see Fig. 31.3 (right panel)). �
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31.2. Iterated Integrals for Simple Regions. Suppose D is vertically simple
and bounded by piecewise smooth curves. Then it should have an algebraic
description according to (31.1) where the graphs y = ybot(x) and y = ytop(x)
are smooth curves (or a finite collection of them). Note that the functions
ybot and ytop are not necessarily continuous. For example, if D is the union
of the rectangles [0, 1]× [0, 1] and [1, 2]× [0, 2], then D is vertically simple
and ytop(x) = 2 if 1 ≤ x ≤ 2, while ytop(x) = 1 if 0 ≤ x < 1 so that the
graph y = ybot(x) consists of two smooth curves.

Let RD = [a, b] × [c, d] be an embedding rectangle for the region D,
where c ≤ ybot(x) ≤ ytop(x) ≤ d for all x in [a, b]. Suppose that a function
f is continuous on D and defined by zero values outside D:

f(x, y) = 0 if c ≤ y < ybot(x) or ytop(x) < y ≤ d , a ≤ x ≤ b .

Consider a Riemann sum for a rectangular partition of RD with sample
points (x∗

j , y
∗
k) just like in Section 30.1. Since f is integrable, the double

integral exists, and the double limit of the Riemann sum should not depend
on the order in which the limits N1 →∞ and N2 →∞ are taken (Theorem
30.1). For a vertically simple D, the limit N2 → ∞ (or ∆y → 0) is taken
first. Similarly to Eq. (30.1), one infers that

lim
N2→∞

N2
∑

k=1

f(x∗
j , y

∗
k) ∆y =

∫ d

c
f(x∗

j , y) dy =

∫ ytop(x∗

j )

ybot(x
∗

j )
f(x∗

j , y) dy

because the function f vanishes outside the interval ybot(x) ≤ y ≤ ytop(x)
for any x in [a, b].

Suppose that f(x, y) ≥ 0 and consider the solid bounded from above by
the graph z = f(x, y) and from below by the region D. The area of the
cross section of the solid by the coordinate plane corresponding to a fixed
value of x is given by Eq. (30.2):

A(x) =

∫ d

c
f(x, y) dy =

∫ ytop(x)

ybot(x)
f(x, y) dy .

So just like in the case of rectangular domains, the above limit equals A(x∗
j ).

That the area of the cross section is given by an integral over a single interval
is only possible for a vertically simple base D of the solid. If D were not
vertically simple, then such a slice would not have been a single slice but
rather a few disjoint slices, depending on how many disjoint intervals are in
the intersection of a vertical line with D. In this case, the integration with
respect to y would have yielded a sum of integrals over all such intervals.
The reason the integration with respect to y is to be carried out first only for
vertically simple regions is exactly to avoid the necessity to integrate over a
union of disjoint intervals.

Finally, the value of the double integral is given by the integral of A(x)
over the interval [a, b]. Recall that the volume of a slice of width dx and the
cross section area A(x) is dV = A(x)dx so that the total volume of the solid
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Figure 31.4. Illustration to Example 31.3. Left: The in-
tegration region as a vertically simple region: −1 ≤ x ≤ 1
and, for every such x, x2 ≤ y ≤ 1. Right: The integration
region as a horizontally simple region: 0 ≤ y ≤ 1 and, for
every such y, −√y ≤ x ≤ √y.

is given by the integral V =
∫ b
a A(x)dx (as the sum of volumes of all slices

in the solid).

Iterated Integral for Vertically Simple regions. Let D be a vertically sim-
ple region; that is, it admits the algebraic description (31.1). The double
integral of f over D is then given by the iterated integral

(31.3)

∫∫

D

f(x, y) dA =

∫ b

a

∫ ytop(x)

ybot(x)

f(x, y) dydx.

Iterated Integral for Horizontally Simple Regions. Naturally, for horizon-
tally simple regions, the integration with respect to x should be carried out
first. Therefore the limit N1 → ∞ (or ∆x → 0) should be taken first in
the Riemann sum. The technicalities are similar to the case of vertically
simple regions. Let D be a horizontally simple region; that is, it admits the
algebraic description (31.2). The double integral of f over D is then given
by the iterated integral

(31.4)

∫∫

D
f(x, y) dA =

∫ d

c

∫ xtop(y)

xbot(y)
f(x, y) dx dy.

Example 31.3. Evaluate the double integral of f(x, y) = 6yx2 over the
region D bounded by the line y = 1 and the parabola y = x2.

Solution: The region D is both horizontally and vertically simple. It
is therefore possible to use either (31.3) or (31.4). To find an algebraic
description of D as a vertically simple region, one has to first specify the
maximal range of the x coordinate in D. It is determined by the intersection
of the line y = 1 and the parabola y = x2, that is, 1 = x2, and hence x
in [a, b] = [−1, 1] for all points of D (see the left panel of Figure 31.4) For
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any x in [−1, 1], the y coordinate of points of D attains the smallest value
on the parabola (i.e., ybot(x) = x2), and the largest value on the line (i.e.,
ytop(x) = 1). One has

D = {(x, y) | x2 ≤ y ≤ 1 , −1 ≤ x ≤ 1}
∫∫

D
6yx2 dA = 6

∫ 1

−1
x2

∫ 1

x2

y dy dx = 3

∫ 1

−1
x2(1− x4) dx =

8

7
.

It is also instructive to obtain this result using the reverse order of integra-
tion. To find an algebraic description of D as a horizontally simple region,
one has to first specify the maximal range of the y coordinate in D. The
smallest value of y is 0 and the largest value is 1; that is, y in [c, d] = [0, 1]
for all points of D. For any fixed y in [0, 1], the x coordinate of points of D
attains the smallest and largest values on the parabola y = x2 or x = ±√y,
that is, xbot(y) = −√y and xtop(y) =

√
y (see the right panel of Figure

31.4). One has

D = {(x, y) | − √y ≤ x ≤ √y , 0 ≤ y ≤ 1}
∫∫

D
6yx2 dA = 6

∫ 1

0
y

∫

√
y

−√
y
x2 dx dy = 2

∫ 1

0
y(2y3/2) dy

= 4

∫ 1

0
y5/2 dy =

8

7
.

�

Iterated Integrals for Nonsimple Regions. If the integration region D is
not simple, how can one evaluate the double integral? A region bounded by
a piecewise smooth curve can be cut by suitable smooth curves into simple
regions Dp, p = 1, 2, ..., n. The double integral over simple regions can then
be evaluated. The double integral over D is then the sum of the double
integrals over Dp by the additivity property. When evaluating a double
integral, it is sometimes technically convenient to cut the integration region
into two or more pieces even if the region is simple (see Example 31.5).

Integrals of non-continuous functions. If a function f is not continuous in
D on a smooth curve C, then by Corollary 28.1 f is integrable on D. How to
evaluate the double integral over D? One can show that the representation
of the double integral over D by an iterated integral also holds in this case.
The latter can be established by cutting the region D by a smooth curve
that contains the curve on which f is not continuous into two regions D1

and D2, convert the double integrals over D1 and D2 into the corresponding
iterated integrals, and then add the results. The procedure is illustrated by
an example.
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Example 31.4. Evaluate the double integral of

f(x, y) =

{

x , y ≤ x2

y , y > x2

over D = [0, 1]× [0, 1].

Solution: Clearly f is not continuous along the parabola y = x2 in D.
The parabola cuts D into two simple closed regions:

D1 = {(x, y) | x2 ≤ y ≤ 1 , 0 ≤ x ≤ 1}
D2 = {(x, y) | 0≤ y ≤ x2 , 0 ≤ x ≤ 1}

The function f is continuous on D2 by the definition of f so that
∫∫

D2

f(x, y)dA =

∫ 1

0

x

∫ x2

0

dydx =

∫ 1

0

x3dx =
1

4
.

However, f is not continuous on D1. Note that on the boundary y = x2 of
D1, f(x, x2) = x, but f(x, x2 + a) = x2 + a for any small positive a > 0 so
that f(x, x2 + a)→ x2 as a→ 0+. Nevertheless
∫∫

D1

f(x, y)dA =

∫ 1

0

∫ 1

x2

f(x, y)dydx =

∫ 1

0

∫ 1

x2

ydydx =
1

2

∫ 1

0
(1− x4)dx =

2

5
,

because f(x, y) = y in the interval [x2 + a, 1] so the integral of f(x, y) with
respect to y over [x2 + a, 1] converges to the integral of y over [x2, 1] as
a→ 0+. Therefore

∫ 1

0
f(x, y)dy =

∫ x2

0
xdy +

∫ 1

x2

ydy

and
∫∫

D
fdA =

∫ 1

0

∫ 1

0
f(x, y)dydx =

∫∫

D1

fdA +

∫∫

D2

fdA =
13

20
.

�

31.3. Reversing the Order of Integration. Suppose f is integrable on a
simple region D. Then either Eq. (31.3) or Eq. (31.4) can be used to
evaluate the double integral of f over D. However, the technicalities involved
in each case may be quite different. In fact, it may happen that an analytic
evaluation of the integral is impossible in one order of integration, whereas
it is possible in the other order. The following two examples illustrate these
observations.

Example 31.5. Evaluate the double integral of f(x, y) = 2x over the
region D bounded by the line x = 2y + 2 and the parabola x = y2 − 1.

Solution: The region D is both vertically and horizontally simple. How-
ever, an evaluation of the iterated integral based on the algebraic description
of D as a vertically simple region is more involved. Indeed, the largest value
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√
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Figure 31.5. Illustration to Example 31.5. Left: The in-
tegration region D as a vertically simple region. An algebraic
description requires to split the maximal range of x into two
intervals. For every −1 ≤ x ≤ 0, the y coordinate ranges
over the interval −

√
x + 1 ≤ y ≤

√
x + 1, whereas for every

0 ≤ x ≤ 8, x/2 − 1 ≤ y ≤
√

x + 1. Accordingly, when con-
verting the double integral to the iterated integral, the region
D has to be split into two parts in which x ≤ 0 and x ≥ 0.
Right: The integration region D as a horizontally simple
region. For every −1 ≤ y ≤ 3, the x coordinate ranges the
interval y2 − 1 ≤ x ≤ 2y + 2. So, the double integral can be
converted to a single iterated integral.

of the x coordinate in D occurs at one of the points of intersection of the
line and the parabola, 2y +2 = y2−1 or (y−1)2 = 4, and hence, y = −1, 3.
The largest value of x in D is x = 32 − 1 = 8. The smallest value of x
occurs at the point of intersection of the parabola with the x axis, x = −1.
So [a, b] = [−1, 8]. For any fixed x ∈ [−1, 0], the range of the y coordinate
is determined by the parabola x = y2 − 1. Solutions of this equation are
y = ±

√
x + 1 and the range of the y coordinate is −

√
x + 1 ≤ y ≤

√
x + 1.

For any fixed x ∈ [0, 8], the largest value of y still occurs on the parabola,
y =

√
x + 1, while the smallest value occurs on the line, x = 2y + 2 or

y = (x− 2)/2 so that −
√

x + 1 ≤ y ≤ (x− 2)/2. The boundaries of D are

y = ytop(x) =
√

x + 1, y = ybot(x) =

{

−
√

x + 1 if −1 ≤ x ≤ 0
x/2− 1 if 0 ≤ x ≤ 8
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That the bottom boundary consists of two graphs dictates the necessity to
split the region D into two regions D1 and D2 such that x in [−1, 0] for all
points in D1 and x ∈ [0, 8] for all points in D2. The corresponding iterated
integral reads

∫∫

D

2x dA =

∫∫

D1

2x dA +

∫∫

D2

2x dA

= 2

0
∫

−1

x

√
x+1
∫

−
√

x+1

dy dx + 2

8
∫

0

x

x/2−1
∫

−
√

x+1

dy dx.

On the other hand, if the iterated integral corresponding to the algebraic
description of D as a horizontally simple region is used, the technicalities
are greatly simplified. The smallest and largest values of y in D occur at the
points of intersection of the line and the parabola found above, y = −1, 3,
that is, [c, d] = [−1, 3]. For any fixed y ∈ [−1, 3], the x coordinate ranges
from its value on the parabola to its value on the line, xbot(y) = y2 − 1 ≤
x ≤ 2y + 2 = xtop(y). The corresponding iterated integral reads
∫∫

D
2x dA = 2

∫ 3

−1

∫ 2y+2

y2−1
x dx dy =

∫ 3

−1
(−y4 + 6y2 + 8y + 3) dy =

256

5
,

which is simpler to evaluate than the previous one. �

Sometimes the iterated integration cannot even be carried out in one
order, but it can still be done in the other order.

Example 31.6. Evaluate the double integral of f(x, y) = sin(y2) over
the region D, which is the triangle bounded by the lines x = 0, y = x, and
y =
√

π.

Solution: Suppose that the iterated integral for vertically simple regions
is used. The range of the x coordinate in D is the interval [0,

√
π] = [a, b],

and, for every fixed x ∈ [0,
√

π], the range of the y coordinate is ybot(x) =
x ≤ y ≤ √π = ytop(x) in D:

D = { (x, y) | x ≤ y ≤
√

π , x ∈ [0,
√

π]} .

The iterated integral reads
∫∫

D
sin(y2) dA =

∫

√
π

0

∫

√
π

x
sin(y2) dy dx .

However, the antiderivative of sin(y2) cannot be expressed in elementary
functions! Let us reverse the order of integration. The maximal range of the
y coordinate in D is [0,

√
π] = [c, d]. For every fixed y in [0,

√
π], the range

of the x coordinate is xbot(y) = 0 ≤ x ≤ y = xtop(y) in D:

D = { (x, y) | 0 ≤ x ≤ y , y ∈ [0,
√

π]} .
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Therefore, the iterated integral reads
∫∫

D
sin(y2) dA =

∫

√
π

0
sin(y2)

∫ y

0
dx dy

=

∫

√
π

0

sin(y2)y dy = −1

2
cos(y2)

∣

∣

∣

√
π

0
= 1 ,

where the last integral is evaluated by the substitution u = y2. �

31.4. The Use of Symmetry. The symmetry property has been established
in single-variable integration:

f(−x) = −f(x) ⇒
∫ a

−a
f(x) dx = 0,

which is quite useful. For example, an indefinite integral of sin(x2011) cannot
be expressed in elementary functions. Nevertheless, to find its definite in-
tegral over any symmetric interval [−a, a], an explicit form of the indefinite
integral is not necessary. Indeed, the function sin(x2011) is antisymmetric
and, hence, its integral over any symmetric interval vanishes. A similar
property can be established for double integrals.

Consider a transformation T that maps each point (x, y) of the plane to
another point (xs, ys) so that a region D is mapped to a region Ds. One
writes

T : D → Ds and T (D) = Ds .

A region D is said to be symmetric under a transformation T : (x, y) →
(xs, ys) if the image Ds of D coincides with D (i.e., T (D) = D). For example,
let D be bounded by an ellipse:

D = { (x, y) | x2/a2 + y2/b2 ≤ 1} .

Then D is symmetric under reflections about the x axis, the y axis, or their
combination:

Tx : (x, y)→ (xs, ys) = (−x, y) , Tx(D) = D ,

Ty : (x, y)→ (xs, ys) = (x,−y) , Ty(D) = D ,

Txy : (x, y)→ (xs, ys) = (−x,−y) , Txy(D) = D .

A transformation of the plane (x, y)→ (xs, ys) is said to be area preserving if
the image Ds of any region D under this transformation has the same area,
that is, A(D) = A(Ds). For example, translations, rotations, reflections
about lines, and their combinations are area-preserving transformations.

Theorem 31.1. (Symmetry Property)
Let f be integrable on a region D which is symmetric under an area-preserving
transformation (x, y) → (xs, ys). If the function f is skew symmetric un-
der this transformation, f(xs, ys) = −f(x, y), then the integral of f over D
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1p
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z = f(x, y)

Figure 31.6. Left: The region D is symmetric relative the
reflection about the line. Under this reflection D1 → D2 and
D2 → D1. Any partition of D1 by elements D1p induces
the partition of D2 by taking the images of D1p under the
reflection. Right: The graph of a function f that is skew
symmetric under the reflection. If f is positive in D2, then it
is negative in D1. The volume V2 of the solid below the graph
and above D2 is exactly the same as the volume V1 = V2 of
the solid above the graph and below D1. But the latter solid
lies below the xy plane and, hence, the double integral over
D is V2 − V1 = 0.

vanishes:
∫∫

D
f(x, y) dA = 0 .

A proof is postponed until the change of variables in double integrals is
discussed. Here the simplest case of a reflection about a line is considered.
If D is symmetric under this reflection, then the line cuts D into two equal-
area regions D1 and D2 so that Ds

1 = D2 and Ds
2 = D1. The double integral

is independent of the choice of partition (see (29.2)). Consider a partition
of D1 by elements D1p, p = 1, 2, ..., N . By symmetry, the images Ds

1p of the

partition elements D1p form a partition of D2 such that ∆Ap = A(D1p) =
A(Ds

1p) by area preservation. Choose elements D1p and Ds
1p to partition the

region D as shown in the left panel of Fig. 31.6. Now recall that the double
integral is also independent of the choice of sample points. Suppose (xp, yp)
are sample points in D1p. Choose sample points in Ds

1p to be the images

(xps, yps) of (xp, yp) under the reflection. With these choices of the partition
of D and sample points, the Riemann sum (29.2) vanishes:

∫ ∫

D
f dA = lim

N→∞

N
∑

p=1

(

f(xp, yp) ∆Ap + f(xps, yps) ∆Ap

)

= 0 ,

where the two terms in the sum correspond to partitions of D1 and D2 in
D; by the hypothesis, the function f is antisymmetric under the reflection
and therefore f(xps, yps) = −f(xp, yp) for all p. From a geometrical point
of view, the portion of the solid bounded by the graph z = f(x, y) that lies



31. DOUBLE INTEGRALS OVER GENERAL REGIONS 473

x

y

xy

y = x

x

y

1 2

1

3

−2

−3

(x, y)

(x,−y)

D1 D2

Figure 31.7. Left: Illustration to Example 31.7. The
region is symmetric under the reflection about the line y =
x. Right: The integration region D in Example 31.8. It
can be viewed as the difference of the elliptic region D1 and
the square D2. The elliptic region is symmetric under the
reflection about the x axis, whereas the function f(x, y) =
x2y3 is skew-symmetric, f(x,−y) = −f(x, y). So the integral
over D1 must vanish and the double integral over D is the
negative of the integral over D2.

above the xy plane has exactly the same shape as that below the xy plane,
and therefore their volumes contribute with opposite signs to the double
integral and cancel each other (see the right panel of 31.6).

Example 31.7. Evaluate the double integral of sin[(x − y)3] over the
portion D of the disk x2 + y2 ≤ 1 that lies in the first quadrant (x, y ≥ 0).

Solution: The region D is symmetric under the reflection about the line
y = x (see the left panel of Fig. 31.7):

T : (x, y)→ (xs, ys) = (y, x) , T (D) = D ,

whereas the function is skew-symmetric,

f(xs, ys) = f(y, x) = sin[(y − x)3] = sin[−(x− y)3] = − sin[(x− y)3]

= −f(x, y) ,

By the symmetry property (Theorem 31.1), the double integral vanishes. �

Example 31.8. Evaluate the double integral of f(x, y) = x2y3 over the
region D, which is obtained from the elliptic region x2/4 + y2/9 ≤ 1 by
removing the square [0, 1]× [0, 1].

Solution: Let D1 and D2 be the elliptic and square regions, respectively.
The elliptic region D1 is large enough to include the square D2 as shown in
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the right panel of Fig. 31.7. Therefore, the additivity of the double integral
can be used (compare Example 30.4) to transform the double integral over
a non-simple region D into two double integrals over simple regions:

∫∫

D
x2y3 dA =

∫∫

D1

x2y3 dA−
∫∫

D2

x2y3 dA

= −
∫∫

D2

x2y3 dA = −
∫ 1

0
x2 dx

∫ 1

0
y3 dy = − 1

12
;

the integral over D1 vanishes by Theorem 31.1 because the elliptic region
D1 is symmetric under the reflection

T : (x, y)→ (xs, ys) = (x,−y) , T (D1) = D1 ,

whereas the integrand is skew-symmetric,

f(x,−y) = x2(−y)3 = −x2y3 = −f(x, y) .

�

31.5. Study Problems.

Problem 31.1. Prove the Dirichlet formula
∫ a

0

∫ x

0
f(x, y)dydx =

∫ a

0

∫ a

y
f(x, y)dxdy , a > 0 .

Solution: The left side of the equation is an iterated integral for the double
integral

∫∫

D fdA. Let us find the shape of D. According to the limits of
integration, D admits the following algebraic description (as a vertically
simple region). For every 0 ≤ x ≤ a, the y coordinate changes in the
interval 0 ≤ y ≤ x. So the region D is the triangle bounded by the lines
y = 0, y = x, and x = a. To reverse the order of integration, let us find
an algebraic description of D as a horizontally simple region. The maximal
range of y in D is the interval [0, a]. For every fixed 0 ≤ y ≤ a, the x
coordinate spans the interval y ≤ x ≤ a in D. So the two sides of the
Dirichlet formula represent the same double integral as iterated integrals in
different orders and, hence, are equal. �

Problem 31.2. Reverse the order of integration

∫ 2

1

∫

√
2x−x2

2−x
f(x, y) dydx

Solution: The given iterated integral represents a double integral
∫∫

D fdA
where the integration region admits the following description (as a vertically
simple region). For every fixed 1 ≤ x ≤ 2, the y coordinates spans the

interval 2− x ≤ y ≤
√

2x− x2. So D is bounded by the graphs:

y = 2− x and y =
√

2x− x2 or y2 = 2x− x2 or (x− 1)2 + y2 = 1 ,
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where the squares have been completed to obtain the last equation. The
boundaries of D contain the line and the circle of radius 1 centered at (1, 0).
The circle and the line intersect at the points (1, 1) and (2, 0). Thus, the
region D is the part of the disk (x − 1)2 + y2 ≤ 1 that lies above the line
y = 2− x:

D = { (x, y) | (x− 1)2 + y2 ≤ 1 , y ≥ 2− x} .

The reader is advised to sketch it. To reverse the order of integration, let
us find an algebraic description of D as a horizontally simple region. The
maximal range of y is the interval [0, 1], which is determined by the points
of intersection of the circle and the line. Viewing the region D along the x
axis, one can see that for every fixed 0 ≤ y ≤ 1, the smallest value of x in
D is attained on the line y = 2−x or x = 2−y = xbot(y), while its greatest

value in D is attained on the circle (x− 1)2 + y2 = 1 or x− 1 = ±
√

1− y2

or x = 1 +
√

1− y2 = xtop(y) because the solution with the plus sign
corresponds to the part of the circle that lies above the line. Hence, the
integral in the reversed order reads

∫ 1

0

∫ 1+
√

1−y2

2−y
f(x, y) dxdy

�

31.6. Exercises.

1–5. For each of the two orders of integration, specify the limits in the
iterated integrals for

∫∫

D f(x, y)dA, splitting the integration region when
necessary.

1. D is the triangle with vertices (0, 0), (2, 1), and (−2, 1) ;
2. D is a trapezoid with vertices (0, 0), (1, 0), (1, 2), and (0, 1) ;
3. D is the disk x2 + y2 ≤ 1 ;
4. D is the disk x2 + y2 ≤ y ;
5. D is the ring 1 ≤ x2 + y2 ≤ 4.

6–17. Evaluate each of the following double integrals over the specified
region.

6.
∫∫

D xydA where D is bounded by the curves y = x2 and y = x ;
7.
∫∫

D(2+y)dA where D is the region bounded by the graphs of x = 3

and x = 4− y2 ;
8.
∫ ∫

D dxdy (x + y) where D is bounded by the curves x = y4 and
x = y ;

9.
∫∫

D(2 + y)dA where D is the region bounded by the three lines of
x = 3, y + x = 0 and y − x = 0. Find the value of the integral by
geometric means ;

10.
∫∫

D x2ydA where D is the region bounded by the graphs of y =

2 + x2 and y = 4− x2 ;
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11.
∫∫

D

√

1− y2dA where D is the triangle with vertices (0, 0), (0, 1),
and (1, 1) ;

12.
∫∫

D xydA where D is bounded by the lines y = 1, x = −3y and
x = 2y ;

13.
∫∫

D y
√

x2 − y2dA where where D is the triangle with vertices (0, 0),
(1, 0), and (1, 1) ;

14.
∫∫

D(2a−x)−1/2dA where D is bounded by the coordinate axes and
by the shortest arc of the circle of radius a and centered at (a, a) ;

15.
∫∫

D |xy|dA where D is the disk of radius a centered at the origin ;

16.
∫∫

D(x2 +y2)dA where D is the parallelogram with the sides y = x,
y = x + a, y = a, and y = 3a (a > 0) ;

17.
∫∫

D y2dA where D is bounded by the x axis and by one arc of the
cycloid x = a(t− sin t), y = a(1− cos t), 0 ≤ t ≤ 2π.

18–23. Sketch the solid region whose volume is given by each of the follow-
ing integrals.

18.
∫ 1
0

∫ 1−x
0 (x2 + y2)dydx ;

19.
∫∫

D(x+y)dA, where D is defined by the inequalities 0 ≤ x+y ≤ 1,
x ≥ 0, and y ≥ 0 ;

20.
∫∫

D

√

x2 + y2dA, where D is defined by the inequality x2 +y2 ≤ x ;

21.
∫∫

D(x2 +y2)dA, where D is defined by the inequality |x|+ |y| ≤ 1 ;

22.
∫∫

D

√

1− (x/2)2 − (y/3)2dA, where D is defined by the inequality

(x/2)2 + (y/3)2 ≤ 1.

23–27. Use the double integral to find the volume of the specified solid
region E.

23. E is bounded by the plane x+y+z = 1 and the coordinate planes;
24. E lies under the paraboloid z = 3x2 + y2 and above the region in

the xy-plane bounded by the curves x = y2 and x = 1 ;
25. E is bounded by the cylinder x2 + y2 = 1 and the planes y = z,

z = 0 in the first octant;
26. E is bounded the cylinders x2 + y2 = a2 and y2 + z2 = a2 ;
27. E is enclosed by the parabolic cylinders y = 1−x2, y = x2−1 and

the planes x + y + z = 2, 2x + 2y − z = 10.

28–38. Sketch the region of integration and reverse the order of integra-
tion in each of the following iterated integrals. Evaluate the integral if the
integrand is specified.

28.
∫

√
π

0

∫

√
π

y cos(x2)dxdy Hint: after reversing the integration order,

make the substitution u = x2 to do the integral;

29.
∫ 1
0

∫

√
x

x3 f(x, y)dydx ;

30.
∫ 1
0

∫ y
y2 f(x, y)dxdy ;

31.
∫ 1
0

∫ ex

1 f(x, y)dydx ;

32.
∫ 4
1

∫ 2√
y f(x, y)dxdy ;
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33.
∫ 3
0

∫ y
0 f(x, y)dxdy +

∫ 6
3

∫ 6−y
0 f(x, y)dxdy ;

34.
∫ 4
0

∫ 2√
x(1 + y3)−1dydx ;

35.
∫ 2
−6

∫ 2−x
(x2/4)−1 f(x, y) dydx ;

36.
∫ 1
−1

∫ 1−x2

−
√

1−x2 f(x, y) dydx ;

37.
∫ 2a
0

∫

√
2ax√
2ax−x2 f(x, y) dydx (a > 0) ;

38.
∫ π
0

∫ sinx
0 f(x, y) dydx.

39–41. Use the symmetry and the properties of the double integral to find
each of the following integrals.

39.
∫∫

D ex2

sin(y3)dA where D is the triangle with vertices (0, 1), (0,−1),
and (1, 0);

40.
∫∫

D(y2 − x2)9dA where D = {(x, y)|1≤ |x|+ |y| ≤ 2} ;
41.

∫∫

D xdA where D is bounded by the ellipse x2/a2 + y2/b2 = 1 and
has the triangular hole with vertices (0, b), (0,−b), and (a, 0) ;

42.
∫∫

D(cos(x2)− cos(y2))dA where D is the disk x2 + y2 ≤ a2.

43–45. Use the double integral to find the area of each of the following
regions.

43. D is bounded by the curves xy = a2 and x + y = 5a/2, a > 0 ;
44. D is bounded by the curves y2 = 2px + p2 and y2 = −2qx + q2

where p and q are positive numbers ;
45. D is bounded by (x− y)2 + x2 = a2.
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32. Double Integrals in Polar Coordinates

32.1. Polar coordinates. Polar coordinates (r, θ) are defined by the follow-
ing relations:

x = r cos θ , y = r sin θ ,

where (x, y) are rectangular coordinates in a plane. Polar coordinates used
for integration are a restricted version of polar coordinates introduced in
Calculus 2. For purposes of integration, the range of r and θ is restricted.
The variable r is always required to be non-negative, r ≥ 0, so that r =
√

x2 + y2 is the distance from the origin to the point (x, y). The polar
angle θ is usually required to take its values in an interval of length 2π, the
most commonly-used intervals being [0, 2π), [−π, π), [0, 2π], and [−π, π]. If
the either of the first two intervals is used, then every point in the xy plane,
other than the origin, has exactly one pair of polar coordinates (r, θ). If
0 ≤ θ ≤ 2π, then each point (x, 0) on the positive x axis has two pairs
of polar coordinates: (r, θ) = (x, 0) and (r, θ) = (x, 2π); all other points
besides the origin have exactly one pair of polar coordinates. If the interval
is −π ≤ θ ≤ π, then each point (x, 0) on the negative x axis has two pairs
of polar coordinates: (r, θ) = (|x|,−π) and (r, θ) = (|x|, π); all other points
besides the origin have exactly one pair of polar coordinates. No matter
what interval is chosen, the origin always has infinitely many pairs of polar
coordinates: (r = 0, θ = any value in the chosen interval). Fortunately,
none of these coordinate-duplications has any effect on integration, because
the set of points with more than one pair of polar coordinates has zero
area. Therefore there is never any harm in using the closed interval [0, 2π]
or [−π, π] for θ in integration, and these choices make formulas look less
strange than if half-open intervals were used.

However, if one wishes to assign every point of the xy plane, other than
the origin, a unique pair of polar coordinates, a half-open interval has to
be used such as [0, 2π), or [−π, π). To express θ in terms of (x, y) 6= (0, 0),
one can use the geometrical interpretation of θ as the angle between the
positive x axis and the ray from the origin through the point (x, y) counted
counterclockwise if θ is positive and clockwise if θ is negative. Recall that
the function tan−1 u has the domain (−∞,∞) and the range (−π/2, π/2);
it is monotonic and limu→∞ = π/2 and limu→−∞ = −π/2. If one takes the
interval −π ≤ θ < π, then

r =
√

x2 + y2 , θ =























tan−1(y/x) if x > 0
π/2 if x = 0, y > 0
−π/2 if x = 0, y < 0
tan−1(y/x) + π if x < 0, y > 0
tan−1(y/x)− π if x < 0, y ≤ 0

The first relation defines the rotation angle θ in in quadrants I and IV,
with the y-axis excluded. The second and third relations define the rotation
angle on the y axis (except the origin). The fourth and fifth relations define
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θ, respectively, in the interior of quadrant II and in quadrant III, with the
negative y axis excluded. Similarly, if 0 ≤ θ < 2π, then

(32.1) r =
√

x2 + y2 , θ =























tan−1(y/x) if x > 0, y ≥ 0
π/2 if x = 0, y > 0
3π/2 if x = 0, y < 0
tan−1(y/x) + π if x < 0
tan−1(y/x) + 2π if x > 0, y < 0

Note that none of the cases above define θ at the origin. As already men-
tioned, at the origin, θ is allowed to have any value from the chosen interval.

An ordered pair of numbers (r, θ) is considered as a point in a polar
plane, just like an ordered pair (x, y) represents a point in a plane in space.
Suppose D′ is a region that lies in the part of the polar plane in which r ≥ 0
and θ lies in one of the standard intervals described above, e.g., 0 ≤ θ ≤ 2π.
The relations x = r cos θ, y = r sin θ define a transformation T of any region
D′ in the polar plane to a region D in the xy plane:

T : D′ → D ,

that is, to every ordered pair (r, θ) corresponding to a point of D′, an ordered
pair (x, y) corresponding to a point of D is assigned. If D′ is a region in
the open rectangle (0,∞) × (0, 2π), then the transformation T is one-to-
one according to the analysis given above. Therefore the transformation
T is one-to-one for any region D′ in [0,∞)× [0, 2π] except possibly on the
boundary of D′. Furthermore, if D is bounded, then it is contained in a disk
x2 + y2 ≤ R2 of a sufficiently large radius R. The region D′ whose image
is a bounded region D is also bounded because 0 ≤ r ≤ R for all r in D′

(recall that the variable θ always ranges over an interval of length 2π). In
particular,

T : boundary of D′ → boundary of D .

This observation allows us to reconstruct the region D′ for a given bounded
region D. First note that, if D′ is a rectangle:

D′ = [a, b]× [θ1, θ2] ,

then
T : r = a → x2 + y2 = a2

T : r = b → x2 + y2 = b2

T : θ = θ1 → (x, y) = (t cos θ1, t sinθ2) , t > 0
T : θ = θ2 → (x, y) = (t cos θ1, t sinθ2) , t > 0

Therefore D is bounded by two concentric circles of radii a and b, and by
two rays from the origin that make the angles θ1 and θ2 with the positive
x axis that are counted counterclockwise (0 ≤ θ1 < θ2 ≤ 2π). If a = 0,
then the boundary r = 0 of D′ is collapsed to a single point (x, y) = (0, 0)
under the transformation T . In this case, D is a wedge of the disk of radius
b that lies between the two rays (provided θ1 6= 0 or θ2 6= 2π). If θ1 = 0 and
θ2 = 2π, then D is bounded only by the circles of radii a 6= 0 and b, and
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just by the circle of radius b if a = 0. It is also clear that if the origin is an
interior point of a region D, then θ takes its full range (e.g., [0, 2π]) in D′.

Example 32.1. Find a closed region D′ in the part [0,∞) × [0, 2π] of
the polar plane whose image under the transformation T is

D = {(x, y) | x2 + (y − 1)2 ≤ 1} .

Solution: The boundary of D contains the origin. Therefore the boundary
of D′ has to contain a part of the line r = 0 in the polar plane because
T : r = 0 → (x, y) = (0, 0). To find the other part of the boundary of D′,
let us write the equation of the boundary of D with the origin excluded in
the polar coordinates:

x2 + (y − 1)2 = 1 ⇒ x2 + y2 − 2y = 0 ⇒ r2 = 2r sin θ

⇒ r = 2 sin θ

because r 6= 0. Since r ≥ 0 in any D′, the range of θ is determined by the
intersection of the line r = 0 and the graph r = 2 sin θ in the polar plane,
which gives the interval [0, π]. Thus,

T : D′ = {(r, θ) | 0≤ r ≤ 2 sin θ , 0 ≤ θ ≤ π} → D .

�

Let D be the disk:

D = { (x, y) | (x− 1)2 + y2 ≤ 1} .

Its boundary (x− 1)2 + y2 = 1 or x2 + y2 = 2x in the polar coordinates is
r2 = 2r cos θ. The region D lies in the first and fourth quadrants of the xy
plane, while none of its parts is either in the second or third quadrants. To
describe the region D′ in the polar plane whose image is D, it is therefore
more convenient to choose the interval [−π, π] as the full range of θ. Using
a similar line of argument, it is concluded that

T : D′ = {(r, θ) | 0≤ r ≤ 2 cos θ , −π/2 ≤ θ ≤ π/2} → D .

32.2. The double integral in polar coordinates. In what follows, the range
of polar coordinates r and θ in the polar plane is always restricted so that
r ≥ 0 and θ takes values in a closed interval of length 2π, and a region D′ is
always assumed to lie in the part of the polar plane defined by the restricted
range of the polar coordinates.

Let D′ be a closed bounded region in the polar plane and D its image
in the xy plane. Let R′

D = [a, b] × [c, d] be a closed rectangle containing
D′ in the polar plane so that the image of R′

D contains D. According to
the above analysis, D lies between two concentric circles of radii a and b
and between two rays extended from the origin. Consider partitions of the
intervals r ∈ [a, b] and θ ∈ [c, d]:

r0 = a , rj = rj−1 + ∆r , ∆r = (b− a)/N1 , j = 1, 2, ..., N1

θ0 = c , θk = θk−1 + ∆θ , ∆θ = (d− c)/N2 , k = 1, 2, ..., N2 .
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r

rj+1

rj

D′
jk

D′

θk θk+1
θ x

y

r = rj

θ = θx+1

θ = θk

D
Djk

r = rj+1

Figure 32.1. Left: A partition of D′ by the coordinate
lines r = rj and θ = θk where rj − rj−1 = ∆r and θk −
θk−1 = ∆θ. A patrition element is a rectangle D′

jk. Its

area is ∆A′
jk = ∆r∆θ. Right: A partition of D by the

images of the coordinate curves r = rj (concentric circles)
and θ = θk (rays extended from the origin). A patrition
element Djk is the image of the rectangle D′

jk. Its area is

∆Ajk = 1
2 (r2

j − r2
j−1)∆θ = 1

2 (rj + rj−1)∆A′
jk.

The partitions of the above interval generate a rectangular partition of R′
D

such that each partition rectangle D′
jk is bounded by the coordinate lines

r = rj−1 , r = rj , θ = θk−1 , θ = θk

in the polar plane as shown in Fig. 32.1 (left panel). Each partition rectangle
has the area

∆A′ = ∆r ∆θ .

The image of the coordinate line r = rk in the xy plane is the circle of radius
rk centered at the origin. The image of the coordinate line θ = θk in the xy
plane is the ray from the origin that makes the angle θk with the positive
x axis (as defined above). The rays and circles are called coordinate curves
of the polar coordinate system, that is, the curves along which either the
coordinate r or the coordinate θ remains constant (concentric circles and
rays, respectively). A rectangular partition of D′ induces a partition of D
by coordinate curves of the polar coordinates. Each partition element Djk

is the image of the rectangle D′
jk and is bounded by two circles and two rays

(if the origin is viewed as the circle of zero radius).
Let f be an integrable function on D that is extended outside D by

setting its values to 0. By Theorem 29.3 the double integral of f over D can
be computed as the limit of Riemann sums (29.2) and the limit does not
depend on either the choice of partition elements or sample points in them.
Let ∆Ajk be the area of Djk. The area of the sector of the disk of radius rj
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that has the angle ∆θ is r2
j∆θ/2. Therefore,

∆Ajk =
1

2
(r2

j − r2
j−1) ∆θ =

1

2
(rj + rj−1) ∆r∆θ =

1

2
(rj + rj−1) ∆A′ .

In (29.2), put ∆Ap = ∆Ajk and choose the sample points rp being the
images of sample points (r∗j , θ

∗
k) in D′

jk so that f(rp) = f(r∗j cos θ∗k, r∗j sin θ∗k).

The limit in (29.2) is understood as the double limit (N1, N2) → ∞ (or
(∆r, ∆θ)→ (0, 0)). Owing to the independence of the limit of the choice of
sample points, let us use the midpoint rule

r∗j =
1

2
(rj + rj−1) .

With this choice,

∆Ajk = r∗j ∆A′ .

By taking the limit of the Riemann sum (29.2) it is concluded that

∫∫

D
f(x, y)dA = lim

N1,2→∞

N1
∑

j=1

N2
∑

k=1

f(r∗j cos θ∗k, r∗j sin θ∗k)r
∗
j ∆A′ .

The right side of this equation is a Riemann sum of the function

g(r, θ) = f(r cos θ, r sin θ)J(r)

over the region D′, where J(r) = r is called the Jacobian of the polar
coordinates. The Jacobian defines the area element transformation

dA = J dA′ = r dA′.

The Riemann sum converges to the integral of g over D′, provided g is
integrable. One can prove that if f is integrable on D, then g is integrable
on D′. For example, if f is continuous on a disk D centered at the origin,
x2 + y2 ≤ b2, then g is continuous on the rectangle D′ = [0, b] × [0, 2π]
because g is a composition of continuous functions f(x, y) and x = r cos θ,
y = r sin θ. Therefore g is integrable on D′ as any continuous function on a
region with a piecewise smooth boundary (Theorem 28.2).

Theorem 32.1. (Double Integral in Polar Coordinates).
Let a closed bounded region D be the image of a closed bounded region D′

in the polar plane spanned by ordered pairs (r, θ) of polar coordinates. Let
f(x, y) be continuous on D. Then f(r cos θ, r sin θ)J(r) is integrable on D′

and
∫∫

D

f(x, y) dA =

∫∫

D′

f(r cos θ, r sin θ) J(r) dA′ , J(r) = r .



32. DOUBLE INTEGRALS IN POLAR COORDINATES 483

The area of a planar region. By setting f(x, y) = 1 in the double integral
in polar coordinates, it is concluded that the area of a region D is given by

A(D) =

∫ ∫

D
dA =

∫ ∫

D′

r dA′ .

A similarity between the double integral in rectangular and polar coordinates
is that they both use partitions by corresponding coordinate curves. Note
that horizontal and vertical lines are coordinate curves of the rectangular
coordinates. So the very term “a double integral in polar coordinates” refers
to a specific partition of D in the Riemann sum, namely, by coordinate curves
of polar coordinates (by circles and rays).

32.3. Evaluation of double integrals in polar coordinates. The double in-
tegral over D′ can be evaluated by the standard means, that is, by converting
it to a suitable iterated integral with respect to r and θ. Suppose that D′ is
a vertically simple region as shown in Fig. 32.2 (right panel):

D′ = { (r, θ) | rbot(θ) ≤ r ≤ rtop(θ), θ1 ≤ θ ≤ θ2 }
Then D is bounded by the polar graphs r = rbot(θ), r = rtop(θ) and by
the lines y cos θ1 = x sin θ1 and y cos θ2 = x sin θ2 (see the left panel of
Fig, 32.2). Recall from Calculus 2 that curves defined by the equation
r = g(θ) are called polar graphs. They can be visualized by means of a
simple geometrical procedure. Take a ray corresponding to a fixed value of
the polar angle θ. On this ray, mark the point at a distance r = g(θ) from
the origin. All such points obtained for all values of θ in a specified interval
form the polar graph. The double integral over D can be written as the
iterated integral over D′:

∫ ∫

D

f(x, y)dA =

∫ θ2

θ1

∫ rtop(θ)

rbot(θ)

f(r cos θ, r sin θ) r drdθ .

The iterated integral over a horizontally simple region D′ is obtained simi-
larly. Thus, the evaluation of a double integral in polar coordinates includes
three essential steps:

Step 1. Find the region D′ in the polar plane whose image is the given
region D under the transformation x = r cos θ, y = r sin θ;

Step 2. Write the integrand as a function of polar coordinates f(x, y) =
f(r cos θ, r sin θ);

Step 3. Evaluate the double integral of f multiplied by the Jacobian J(r) =
r over D′ by converting it to a suitable iterated integral.

Example 32.2. Use polar coordinates to evaluate the double integral of

f(x, y) = xy2
√

x2 + y2 over D, which is the portion of the disk x2 + y2 ≤ 1
that lies in the first quadrant.

Solution: Step 1. Since 0 ≤ x2 + y2 ≤ 1, the region D′ is bounded by
the lines r = 0 and r = 1. The boundary (x, 0), x > 0, of D is the ray
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x

y
θ = θ2

D

r = rtop(θ)

r = rbot(θ)

θ = θ1

r

θ

r = rtop(θ)

r = rbot(θ)

D′

θ1 θ2

Figure 32.2. Left: In polar coordinates, the boundary of
a region D, which is the image of a vertically simple region
D′ in the polar plane, can be viewed as polar graphs and
lines through the origin. Right: A vertically simple region
D′ in the polar plane.

θ = 0 and the boundary (0, y), y > 0, is the ray θ = π/2. Therefore
D′ = [0, 1]× [0, π/2].

Step 2. f(r cos θ, r sin θ) = xy2
√

x2 + y2 = r4 cos θ sin2 θ.
Step 3. The double integral over the rectangle D′ can be evaluated by
Fubini’s theorem:
∫∫

D
f(x, y) dA =

∫∫

D′

r5 cos θ sin2 θdA′ =

∫ π/2

0
sin2 θ cos θ dθ

∫ 1

0
r5dr

=
1

3
sin3 θ

∣

∣

∣

π/2

0
· 1
6

r6
∣

∣

∣

1

0
=

1

18
,

where the area transformation law dA = rdA′ has been taken into account.
�

This example shows that the technicalities involved in evaluating the
double integral have been substantially simplified by passing to polar coor-
dinates. The simplification is twofold. First, the domain of integration has
been simplified; the new domain is a rectangle, which is much simpler to
handle in the iterated integral than a portion of a disk. Second, the eval-
uation of ordinary integrals with respect to r and θ appears to be simpler
than the integration of f with respect to either x or y needed in the iter-
ated integral. However, these simplifications cannot always be achieved by
converting the double integral to polar coordinates. The region D and the
integrand f should have some particular properties that guarantee the ob-
served simplifications and thereby justify the use of polar coordinates. Here
are some guiding principles to decide whether the conversion of a double
integral to polar coordinates could be helpful:

• The domain D is bounded by circles, lines through the origin, and
polar graphs.
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x

y

1 2

2

D

x2 + y2 = 4

x2 + y2 = 2x

r

θ

D′

r = 2

r = 2 cosθ

π/2

Figure 32.3. Illustration to Example 32.3.

• The function f(x, y) depends on either the combination x2+y2 = r2

or y/x = tan θ.

Indeed, if D is bounded only by circles centered at the origin and lines
through the origin, then D′ is a rectangle because the boundaries of D are
coordinate curves of polar coordinates. If the boundaries of D contain circles
not centered at the origin or, generally, polar graphs, that is, curves defined
by the relations r = g(θ), then an algebraic description of the boundaries
of D′ is simpler than that of the boundaries of D. If f(x, y) = h(u), where
u = x2 +y2 = r2 or u = y/x = tan θ, then in the iterated integral one of the
integrations, either with respect to θ or r, becomes trivial.

Example 32.3. Evaluate the double integral of f(x, y) = xy over the
region D that lies in the first quadrant and is bounded by the circles x2+y2 =
4 and x2 + y2 = 2x.

Solution: Step 1. Using the principle that the boundary of D′ is mapped
into the boundary of D, the boundary of D′ is obtained by converting the
equations for the boundary of D to polar coordinates. The boundary of the
region D contains three curves:

x2 + y2 = 4 ⇒ r2 = 4 ⇒ r = 2,
x2 + y2 = 2x ⇒ r2 = 2r cos θ ⇒ r = 2 cosθ ,
x = 0, y ≥ 0 ⇒ θ = π/2

So, in the polar plane, the region D′ is bounded by the horizontal line r = 2,
the graph r = 2 cos θ, and the vertical line θ = π/2 (see Fig. 32.3).
Step 2. f(x, y) = xy = r2 cos θ sin θ.
Step 3. It is convenient to use an algebraic description of D′ as a vertically
simple region:

D′ = {(r, θ) | rbot(θ) = 2 cosθ ≤ r ≤ 2 = rtop(θ) , θ1 = 0 ≤ θ ≤ π/2 = θ2}
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because rtop(0) = rbot(0). Multiplying f by the Jacobian J = r, the double
integral in question is converted to polar coordinates and then evaluated:

∫∫

D
xy dA =

∫∫

D′

r3 sin θ cos θ dA′ =

∫ θ2

θ1

sin θ cos θ

∫ rtop(θ)

rbot(θ)
r3 dr dθ

=

∫ π/2

0
sin θ cos θ

∫ 2

2 cos θ
r3 dr dθ

= 4

∫ π/2

0
(1− cos4 θ) cos θ sin θ dθ

= 4

∫ 1

0
(1− u4)u du = 4

(1

2
− 1

6

)

=
4

3
,

where the change of variables u = cos θ has been used. �

Example 32.4. Find the area of the region D that is bounded by two
spirals r = θ and r = 2θ, where θ in [0, 2π], and the positive x axis.

Before solving the problem, let us make a few comments about the shape
of D. The boundaries r = θ and r = 2θ are polar graphs. Given a value
of θ, r = θ (or r = 2θ) is the distance from the point on the graph to the
origin. As this distance increases monotonically with increasing θ, the polar
graphs are spirals winding about the origin. The region D lies between two
spirals; it is not simple in any direction (see the left panel of Fig. 32.4). Let
us write the equations of the boundary of D in the rectangular coordinates.
For example, in the first quadrant with x 6= 0 (the y axis is excluded)

r = θ ⇒ tan r = tan θ ⇒ x tan
√

x2 + y2 = y .

There is no way to find an analytic solution of this equation to express
y as a function of x or vice versa. Therefore, had one tried to evaluate
the double integral in the rectangular coordinates by cutting the region D
into simple pieces with a subsequent conversion of the double integrals into
iterated integrals, one would have faced an unsolvable problem of finding the
equations for the boundaries of D in the form y = ytop(x) and y = ybot(x)
or x = xtop(y) and x = xbot(y)!
Solution: The region D is bounded by three curves, two spirals (polar
graphs), and the line y = 0, x > 0. They are the images of the lines r = θ,
r = 2θ, and θ = 2π in the polar plane as shown in the right panel of
Fig. 32.4. These lines form the boundary of D′. An algebraic description
of D′ as a vertically simple region is convenient to use:

D′ = {(r, θ) | rbot(θ) = θ ≤ r ≤ 2θ = rtop(θ) , θ1 = 0 ≤ θ ≤ 2π = θ2} .

Hence,

A(D) =

∫∫

D
dA =

∫∫

D′

r dA′ =

∫ 2π

0

∫ 2θ

θ
r dr dθ =

3

2

∫ 2π

0
θ2 dθ = 4π3.

�
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x
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−2π −π
2π 4π

D

r = θ
r = 2θ

r

θ

D′

r = θ

r = 2θ

2π

Figure 32.4. An illustration to Example 32.4. Left: The
integration region D lies between two spirals. It is not simple
in any direction. Right: The region D′ in the polar plane
whose image is D. The region D′ is simple and is bounded
by straight lines.

Example 32.5. Find the volume of the part of the solid bounded by the

cone z =
√

x2 + y2 and the paraboloid z = 2 − x2 − y2 that lies in the first
octant.

Solution: The solid is shown in the left panel of Fig. 32.5. The intersection
of the cone (bottom boundary) and paraboloid (top boundary),

z = ztop(x, y) = 2− x2 − y2 , z = zbot(x, y) =
√

x2 + y2 ,

is a circle of unit radius. Indeed, put r =
√

x2 + y2. Then the points of
intersection satisfy the condition

ztop = zbot ⇒
√

x2 + y2 = 2− x2 − y2 ⇒ r = 2− r2 ⇒ r = 1 .

If the point (x, y, z) is in the solid, then the point (x, y, 0) is said to lie in
the projection D of the solid onto the xy plane along the z axis. Clearly, D
is the part of the disk r ≤ 1 in the first quadrant. The volume in question is

V =

∫∫

D
h(x, y)dA ,

where h(x, y) is the height of the solid at (x, y) in D. Since a line parallel to
the z axis through a point (x, y) in D intersects the solid along a segment,
the height of the solid at (x, y) is

h(x, y) = ztop(x, y)− zbot(x, y) = 2− x2 − y2 −
√

x2 + y2 = 2− r2 − r .

The height does not depend on the polar angle θ and the region D is bounded
by the circle and two straight lines through the origin. Therefore, the conver-
sion of the double integral to polar coordinates can simplify its evaluation.
The region D is the image of the rectangle D′ = [0, 1]× [0, π/2] in the polar



488 4. MULTIPLE INTEGRALS

x

y

z

h(x, y)

1
1 D

1

1

D

x2 + y2 = 1

r

θ

1

D′

π/2

Figure 32.5. An illustration to Example 32.5. Left: The
solid whose volume is sought. Its vertical projection onto the
xy plane is D which is the part of the disk r ≤ 1 in the first
quadrant. At a point (x, y) in D, the height h(x, y) of the
solid is the difference between the values of the z coordinate
on the top and bottom boundaries (the paraboloid and the
cone, respectively). Right: The region D′ in the polar plane
whose image is D .

plane. The volume is

V =

∫∫

D

h(x, y) dA =

∫∫

D′

(2− r2 − r)r dA′

=

∫ π/2

0
dθ

∫ 1

0
(2r− r3 − r2) dr =

π

2

(

1− 1

4
− 1

3

)

=
5π

24
.

�

32.4. Study problems.

Problem 32.1. Find the area of the four-leaved rose bounded by the polar
graph r = cos(2θ).

Solution: The polar graph comes through the origin r = 0 four times when
θ = π/4, θ = π/4 + π/2, θ = π/4 + π, and θ = π/4 + 3π/2. These angles
may be changed by adding an integer multiple of π, owing to the periodicity
of cos(2θ). Therefore each leaf of the rose corresponds to the range of θ
between two neighboring zeros of cos(2θ). Since all leaves have the same
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area, it is sufficient to find the area of one leaf, say, for −π/4 ≤ θ ≤ π/4.
With this choice, the leaf is the image of the vertically simple region

D′ = {(r, θ)|0≤ r ≤ cos(2θ), −π/4 ≤ θ ≤ π/4}

in the polar plane. Therefore, its area is given by the double integral

A(D) =

∫ ∫

D
dA =

∫ ∫

D′

rdA′ =

∫ π/4

−π/4

∫ cos(2θ)

0
rdrdθ

=
1

2

∫ π/4

−π/4

cos2(2θ)dθ =
1

4

∫ π/4

−π/4

(1 + cos(4θ))dθ

=
1

4

(

θ +
1

4
sin(4θ)

)∣

∣

∣

π/4

−π/4
=

π

8
.

Thus, the total area is 4A(D) = π/2. �

32.5. Exercises.

1-4. Sketch the region in the xy plane whose area is given by each of the
following iterated integrals in polar coordinates and find the area of the
region.

1.
∫ π
0

∫ 2
1 rdrdθ ;

2.
∫ π/2
−π/2

∫ 2a cos θ
0 rdrdθ ;

3.
∫ π/4
−π/4

∫ 1/cosθ
0 rdrdθ ;

4.
∫ π
−π

∫ 1+cos θ
0 rdrdθ .

5-8. Convert the double integral
∫∫

D f(x, y)dA to an iterated integral in
polar coordinates for each of the following regions.

5. D is the disk x2 + y2 ≤ a2 ;
6. D is the disk x2 + y2 ≤ ax, a > 0 ;
7. D is the ring a2 ≤ x2 + y2 ≤ b2 ;
8. D is the parabolic segment −a ≤ x ≤ a, x2/a ≤ y ≤ a, a > 0.

9–13. Evaluate each of the following double integrals by changing to polar
coordinates.

9.
∫∫

D xydA where D is the part of the ring a2 ≤ x2 + y2 ≤ b2 in the
first quadrant ;

10.
∫∫

D sin(x2 + y2)dA where D is the disk x2 + y2 ≤ a2 ;

11.
∫∫

D arctan(y/x)dA where D is the part of the ring 0 < a2 ≤ x2 +

y2 ≤ b2 between the lines y =
√

3x and y = x/
√

3 in the first
quadrant ;

12.
∫∫

D ln(x2 + y2)dA where D is the portion of the ring 0 < a2 ≤
x2 + y2 ≤ b2 between two half-lines x = ±y, y > 0 ;

13.
∫∫

D sin(
√

x2 + y2) dA where D is the ring π2 ≤ x2 + y2 ≤ 4π2 .
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14–16. If r and θ are polar coordinates, reverse the order of integration in
each of the following iterated integrals and sketch the integration region in
the xy plane.

14.
∫ π/2
−π/2

∫ cos θ
0 f(r, θ)rdrdθ ;

15.
∫ π/2
0

∫ a
√

sin(2θ)
0 f(r, θ)rdrdθ, a > 0 ;

16.
∫ a
0

∫ θ
0 f(r, θ)rdrdθ, 0 < a < 2π .

17–20. Sketch the region of integration and evaluate each of the following
integrals by converting it to polar coordinates.

17.
∫ 1
−1

∫

√
1−y2

0 ex2+y2

dxdy ;

18.
∫ 0
−1

∫

√
1−x2

−
√

1−x2(x + y)dydx ;

19.
∫ 2
0

∫

√
2y−y2

0

√

x2 + y2dxdy ;

20.
∫ 1
1/

√
2

∫ x√
1−x2 xydydx +

∫

√
2

1

∫ x
0 xydydx +

∫ 2√
2

∫

√
4−x2

0 xydydx .

21–26. Convert each of the following integrals in rectangular coordinates
to an iterated integral in polar coordinates.

21.
∫ 2
0

∫ x
√

3
x f(

√

x2 + y2) dydx ;

22.
∫ 1
0

∫ x2

0 f(x, y) dydx ;

23.
∫∫

D f(
√

x2 + y2)dA where D is the disk x2 + y2 ≤ 1 ;

24.
∫∫

D f(
√

x2 + y2)dA where D = {(x, y)||y| ≤ |x|, |x| ≤ 1} ;
25.

∫∫

D f(y/x)dA where D is the disk x2 + y2 ≤ x ;

26.
∫∫

D f(
√

x2 + y2)dA where D is bounded by the curve (x2 +y2)2 =

a2(x2 − y2) .

27–33. Find the area of the specified region D.

27. D is enclosed by the polar graph r = 1 + cos θ ;
28. D is bounded by two spirals r = θ/4 and r = θ/2, where 0 ≤ θ ≤

2π, and the positive x axis ;
29. D is the part of the region enclosed by the cardioid r = 1 + sin θ

that lies outside the disk x2 + y2 ≤ 9/4 ;
30. D is bounded by the curve (x2+y2)2 = 2a2(x2−y2) and x2+y2 ≥ a2

if (x, y) is in D ;
31. D is bounded by the curve (x3 +y3)2 = x2 +y2 and lies in the first

quadrant ;
32. D is bounded by the curve (x2 + y2)2 = a(x3 − 3xy2), a > 0 ;
33. D is bounded by the curve (x2 + y2)2 = 8a2xy and

(x− a)2 + (y − a)2 ≤ a2, a > 0, if (x, y) is in D .

34–38. Find the volume of the specified solid E.

34. E is bounded by the cones z = 3
√

x2 + y2 and z = 4−
√

x2 + y2 ;

35. E is bounded by the cone z =
√

x2 + y2, the plane z = 0, and the
cylinders x2 + y2 = 1, x2 + y2 = 4 ;
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36. E is bounded by the paraboloid z = 1 − x2 − y2 and the plane
z = −3 ;

37. E is bounded by the hyperboloid x2 + y2 − z2 = −1 and the plane
z = 2 ;

38. E lies under the paraboloid z = x2 + y2, above the xy plane, and
inside the cylinder x2 + y2 = 2x .

39. Find

lim
a→0

1

πa2

∫∫

D
f(x, y)dA, D = {(x, y) | x2 + y2 ≤ a2}

if f is a continuous function.
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33. Change of Variables in Double Integrals

With an example of polar coordinates, it is quite clear that a smart choice
of integration variables can significantly simplify the technicalities involved
when evaluating double integrals. The simplification is twofold: simplifying
the shape of the integration region (a rectangular shape is most desirable)
and finding antiderivatives when calculating the iterated integral. It is there-
fore of interest to develop a technique for a general change of variables in
double integrals so that one would be able to design new variables specific
to the double integral in question in which the sought-for simplification can
be achieved.

33.1. Change of Variables. Let the functions x(u, v) and y(u, v) be defined
on an open region D′. Then, for every pair (u, v) in D′, one can find a pair
(x, y), where x = x(u, v) and y = y(u, v). All such pairs form a region in the
xy plane that is denoted D. In other words, the functions x(u, v) and y(u, v)
define a transformation T of a region D′ in the uv plane onto a region D in
the xy plane:

T : D′ → D ; T : (u, v) → (x, y) = (x(u, v), y(u, v)) .

If no two points in D′ have the same image point in D, then the transforma-
tion is called one-to-one. For a one-to-one transformation, one can define
the inverse transformation T−1, that is, the functions u(x, y) and v(x, y)
that assign a pair (u, v) in D′ to a pair (x, y) in D, where u = u(x, y) and
v = v(x, y):

T−1 : D → D′ ; T−1 : (x, y) → (u, v) = (u(x, y), v(x, y)) .

Owing to this one-to-one correspondence between rectangular coordinates
(x, y) and pairs (u, v), one can describe points in a plane by new coordinates
(u, v). For example, the relations x = x(r, θ) = r cos θ and y = y(r, θ) =
r sin θ define polar coordinates. In any open set D′ of pairs (r, θ) that lie
within the half-strip [0,∞)× [0, 2π), the transformation is one-to-one. The
corresponding inverse functions r = r(x, y) and θ = θ(x, y) have been found
in the previous section.

Definition 33.1. (Change of Variables in a Plane).
A one-to-one transformation of an open region D′ defined by x = x(u, v)
and y = y(u, v) is called a change of variables if the functions x(u, v) and
y(u, v) have continuous first-order partial derivatives on D′.

The pairs (u, v) are often called curvilinear coordinates. Recall that, in
a rectangular coordinate system, a point of a plane can be described as a
point of intersection of two coordinate lines x = xp and y = yp. The point
(xp, yp) in D is a unique image of a point (up, vp) in D′. Consider the in-
verse transformation u = u(x, y) and v = v(x, y). Since u(xp, yp) = up and
v(xp, yp) = vp, the point (xp, yp) in D can be viewed as the point of inter-
section of two curves u(x, y) = up and v(x, y) = vp. The curves u(x, y) = up
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and v(x, y) = vp are called coordinate curves of the new coordinates u and
v; that is, the coordinate u has a fixed value along its coordinate curve
u(x, y) = up, and, similarly, the coordinate v has a fixed value along its co-
ordinate curve v(x, y) = vp. The coordinate curves are images of the straight
lines u = up and v = vp in D′ under the transformation:

T : coordinate lines in D′ → coordinate curves in D
T : u = up → u(x, y) = up

T : v = vp → v(x, y) = vp

If the coordinate curves are not straight lines (as in a rectangular coordinate
system), then such coordinates are naturally curvilinear. A collection of
level curves of the functions u(x, y) and v(x, y) is called a coordinate grid
of curvilinear coordinates (u, v), just like a rectangular coordinate grid in a
plane. The coordinate curves through a point (xp, yp) can also be defined
as parametric curves:

u(x, y) = up ⇔
{

x = x(up, v)
y = y(up, v)

v(x, y) = vp ⇔
{

x = x(u, vp)
y = y(u, vp)

For example, if the radial variable is fixed, r = rp, in x = r cos θ, y = r sin θ,
then parametric equations of the circle are obtained:

r(x, y) =
√

x2 + y2 = rp ⇔
{

x = rp cos θ
y = rp sin θ

, 0 ≤ θ ≤ 2π .

Similarly, by fixing θ = θp, parametric equations of a ray are obtained:

θ = θp ⇔
{

x = r cos θp

y = r sin θp
, 0 ≤ r <∞ .

A collection of concentric circles and rays from the origin is a coordinate
grid of polar coordinates.

33.2. A criterion for a transformation to be a change of variables. Suppose
that the functions x(u, v) and y(u, v) have continuous partial derivatives.
How can one verify whether the transformation x = x(u, v), y = y(u, v) is
one-to-one and, hence, defines a change of variables? Of course, one might
just try to find the inverse transformation but the latter implies solving
a system of non-linear equations, which might be a technically formidable
problem. It turns out that the question can be answered by much simpler
means.

Definition 33.2. (Jacobian of a Transformation).
The Jacobian of a transformation defined by differentiable functions x =
x(u, v) and y = y(u, v) is

∂(x, y)

∂(u, v)
= det

(

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

)

= x′
uy′v − x′

vy
′
u .
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The left side of this relation is a convenient notation of the Jacobian.
The matrix whose determinant is evaluated has the first row composed of
the partial derivatives of the variables in the numerator with respect to the
first variable in the denominator, while the second row contains the partial
derivatives of the variables in the numerator with respect to the second
variable in the denominator. This rule is easy to remember.

The Jacobian of the polar coordinates

J =
∂(x, y)

∂(r, θ)
= x′

ry
′
θ − x′

θy
′
r = r(cos2 θ + sin2 θ) = r

vanishes at r = 0 and the transformation x = r cos θ, y = r sin θ is not one-
to-one on the line r = 0 of the polar plane. But in a neighborhood of any
point (r0, θ0), r0 6= 0, where the Jacobian is not zero, the transformation
x = r cos θ, y = r sin θ is one-to-one and has the inverse constructed in
Section 32.1.

Example 33.1. Find the Jacobian of the transformation x =
u(1 − v), y = uv. Find all zeros of the Jacobian and compare them with
the set of points at which the transformation is not one-to-one.

Solution: The Jacobian of the transformation is

∂(x, y)

∂(u, v)
= det

(

x′
u y′u

x′
v y′v

)

= det

(

1− v v
−u u

)

= u(1− v) + uv = u

The zero of the Jacobian form a line u = 0 (the v axis). The transformation
is not one-to-one on the line u = 0. Indeed, if u 6= 0, then the inverse
transformation is not difficult to find

u = u(x, y) = x + y , v = v(x, y) =
y

x + y
.

For example, the first relation follow from x/u = 1 − v and y/u = v and,
hence, x/u = 1− y/u (which is valid if u 6= 0), while the second relation is
obtained by substituting the first one into v = y/u. Note that u(x, y) = 0
on the line y = −x and v(x, y) does not exist. Thus, the set of zeros of the
Jacobian coincides with the set on which the transformation is not one-to-
one. �

That a transformation is one-to-one and hence has the inverse on the
set where the Jacobian does not vanish is not coincidental and specific to
the two considered examples. It is, in fact, true in general.

Theorem 33.1. (Inverse Function Theorem for Two Variables)
Let the transformation (u, v) → (x, y) be defined on an open set U ′ con-
taining a point (u0, v0). Suppose that the functions x(u, v) and y(u, v) have
continuous partial derivatives in U ′ and the Jacobian of the transformation
does not vanish at the point (u0, v0). Then there exists an inverse trans-
formation u = u(x, y), v = v(x, y) in an open set U containing the image
point (x0, y0) = (x(u0, v0), y(u0, v0)) and the functions u(x, y) and v(x, y)
have continuous partial derivatives in U .
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Let P0 = (x0, y0) be the image of P ′
0 = (u0, v0). Consider two coordinate

curves through the point P0:

C1 : x = x(u, v0) , y = y(u, v0) , u1 < u < u2 , u0 ∈ (u1, u2) ,

C2 : x = x(u0, v) , y = y(u0, v) , v1 < v < v2 , v0 ∈ (v1, v2) .

The curve C1 is the coordinate curve of the variable u. It can also be viewed
as the level curve v(x, y) = v0. Similarly, the curve C2 is the coordinate curve
of the variable v and can also be represented as the level curve u(x, u) = u0.
The curves are intersecting at the point P0 = (x0, y0). The tangent vectors
to the curves at the point of intersection are

T1 = 〈x′
u(u0, v0) , y′u(u0, v0)〉 , T2 = 〈x′

v(u0, v0) , y′v(u0, v0)〉 .

Without loss of generality, suppose that J(u0, v0) > 0. Then it is not difficult
to see that

J(u0, v0) = ‖T1 ×T2‖ 6= 0

Therefore the coordinate curves are intersecting at P0 at some non-zero an-
gle (because the tangent vectors T1 and T2 are not parallel). The partial
derivatives of x(u, v) and y(u, v) are continuous near (u0, v0) and so must be
the Jacobian J(u, v). Since the Jacobian is continuous and does not vanish
at (u0, v0), it does not vanish in a neighborhood of (u0, v0). This implies
that coordinate curves through any other point (xp, yp) in a neighborhood
of (x0, y0) are also intersecting at a non-zero angle. Thus, is a neighborhood
of (x0, y0), the coordinate curves of the new variables look like a contin-
uously deformed rectangular grid; each small “parallelogram” bounded by
four neighboring coordinate curves. Each point near (x0, y0) is uniquely
represented as the point of intersection of two coordinate curves and corre-
sponds to the point of intersection of two intersecting perpendicular lines in
the uv plane. So, the transformation is one-to-one.

33.3. Change of Variables in a Double Integral. Let f be an integrable
function on a region D. Let x = x(u, v) and y = y(u, v) define a transfor-
mation of a region D′ to D. Suppose that the transformation is defined on
a rectangle R′

D = [a, b] × [c, d] and is a change of variables in its interior
(a, b)× (c, d) which contains the region D′. Then there is an inverse trans-
formation, that is, the transformation of D to D′, which is defined by the
functions u = u(x, y) and v = v(x, y). Therefore D is contained in the image
RD of the rectangle R′

D:

T : R′
D ⊂ D′ → RD ⊂ D .

The function f is extended to RD by setting its values to 0 for all points
that are not in D. According to (29.2), the double integral of f over D is
the limit of Riemann sums. The limit depends neither on a partition of D
by area elements nor on sample points in the partition elements. Following
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the analogy with polar coordinates, consider a partition of D (or RD) by
coordinate curves

u(x, y) = ui , i = 0, 1, 2, ..., N1 , v(x, y) = vj , j = 0, 1, 2, ..., N2 ,

where
u0 = a , ui = ui−1 + ∆u , ∆u = (b− a)/N1 ,
v0 = c , vj = vj−1 + ∆v , ∆v = (d− c)/N2 .

This partition of D is induced by a rectangular partition of D′ by horizontal
lines v = vk and vertical lines u = uk in the uv plane. Each partition element
D′

ij of D′ has the area

∆A′ = ∆u ∆v .

The image of D′
ij is a partition element Dij of D (see Figure 33.1). If

(u∗
i , v

∗
j ) is a sample point in D′

ij, then the corresponding sample point in

Dij is r∗ij = (x(u∗
i , v

∗
j ), y(u∗

i , v
∗
j )), and (29.2) becomes

∫∫

D
f dA = lim

N1,N2→∞

N1
∑

i=1

N2
∑

j=1

f(r∗ij) ∆Aij,

where ∆Aij is the area of the partition element Dij. The limit N1, N2 →∞
is understood in the sense of a double limit (∆u, ∆v) → (0, 0). As before,
the values of f(x(u, v), y(u, v)) outside D′ are set to 0 when calculating the
value of f in a partition rectangle that intersects the boundary of D′.

As in the case of polar coordinates, the aim is to convert this limit
into a double integral of f(x(u, v), y(u, v)) over the region D′. This can be
accomplished by finding a relation between ∆Aij and ∆A′

ij, that is, the rule
of the area element transformation under a change of variables. Consider a
rectangle D′

ij in the uv plane bounded by the lines

u = ui−1 , u = ui , v = vj−1 , v = vj .

Let us mark three vertices of the partition rectangle D′
ij (see Fig. 33.1):

A′ = (ui−1, vj−1) , B′ = (ui + ∆u, vj−1) , C′ = (ui−1, vj−1 + ∆v) ,

and their images under the transformation of D′
ij to Dij:

A = (x(A′), y(A′)) , B = (x(B′), y(B′)) , C = (x(C′), y(C′)) .

Since the transformation (u, v)→ (x, y) is a change of variables (see Defini-
tion 33.1), the functions x(u, v) and y(u, v) have continuous partial deriva-
tives and, hence, differentiable. Therefore their variations in D′

ij can be well

approximated by their linearization (recall Definition 21.1). The distances
|A′B′| = ∆u and |A′C′| = ∆v are small. So, when calculating the area ∆A
of Dij, it is sufficient to consider variations of x and y within Dij linear in
variations of u and v within D′

ij. In the limit (∆u, ∆v)→ (0, 0), their higher

powers can be neglected (as they would not contribute to the limit of the
Riemann sum), and the area transformation law should have the form

∆A = J ∆u ∆v = J ∆A′,
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x

y

A

B

C

D

Dij

v = vj−1

v = vj

u = ui−1

u = ui

v

u

v∗j

vj

vj−1

∆u

D′

C′

A′ B′

D′
ij ∆v

ui−1u∗
i ui

Figure 33.1. Left: A partition of a region D by the coordi-
nate curves of the new variables u(x, y) = ui and v(x, y) = vj

which are the images of the straight lines u = ui and v = vj in
the uv plane. A partition element Dij is bounded by the co-
ordinate curves for which ui−ui−1 = ∆u and vj−vj−1 = ∆v.
Right: The region D′, whose image is the integration region
D under the coordinate transformation, is partitioned by the
coordinate lines u = ui and v = vj. A partition element is
the rectangle D′

ij whose area is ∆u∆v. The change of vari-
ables establishes a one-to-one correspondence between points
of D and D′. In particular, A, B, and C in D correspond to
A′, B′, and C′ in D′, respectively.

where the coefficient J is to be found. Recall that J = r for polar coor-
dinates, that is, J coincides with the Jacobian of the transformation. It
turns out that J is the absolute value of the Jacobian for a general change
of variables.

To find J, consider the coordinate curve x = x(u, vj−1), y = y(u, vj−1),
where ui−1 ≤ u ≤ ui, that goes from A to B, and the coordinate curve
x = x(ui−1, v), y = y(ui−1, v), where vj−1 ≤ v ≤ vi, that connects A
and C. Owing to differentiability of x(u, v) and y(u, v), the curves are
smooth. Therefore the arclength from A to B and from A to C along the
corresponding coordinate curves are well approximated by the length of the

corresponding secant line segments, ‖−−→AB‖ and ‖−→AC‖, respectively (recall
Section 13). The error of the approximation decreases to zero faster than
∆u and ∆v. This suggests that the area of Dij can be approximated by the
area of the parallelogram with adjacent sides being the vectors b and c:

∆Aij = ‖−−→AB × −→AC‖ .

The error of the approximation should be decreasing faster than ∆u∆v in
the limit (∆u, ∆v)→ (0, 0). Linearizing the functions x(u, v) and y(u, v) at
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the point A′, one infers that
−−→
AB = 〈x(B′)− x(A′) , y(B′)− y(A′) , 0〉

x(B′)− x(A′) = x(ui−1 + ∆u, vj−1)− x(ui−1, vj−1) = x′
u(ui−1, vj−1) ∆u

y(B′)− y(A′) = y(ui−1 + ∆u, vj−1)− y(ui−1, vj−1) = y′u(ui−1, vj−1) ∆u
−−→
AB = ∆u

〈

x′
u(ui−1, vj−1), y′u(ui−1, vj−1), 0

〉

.

The third component of
−−→
AB is set to 0 as the vector is planar. An analogous

calculation of the components of
−→
AC yields

−→
AC = 〈x(C′)− x(A′) , y(C′)− y(A′) , 0〉

= ∆v
〈

x′
v(ui−1, vj−1), y′v(ui−1, vj−1), 0

〉

.

The cross product of the vectors
−−→
AB and

−→
AC in the xy plane is parallel to

the z axis so that that the area of the parallelogram is equal to the absolute
value of the z component of the cross product:

(33.1) ∆Aij =

∣

∣

∣

∣

det

(

x′
u y′u

x′
v y′v

)∣

∣

∣

∣

∆u ∆v = J(ui−1, vj−1) ∆u ∆v .

The absolute value is needed because the z component of the cross product

may be negative, ‖(0, 0, z)‖ =
√

z2 = |z|. The determinant that appears in
Eq. (33.1) plays a significant role in the theory of transformations. So it
has a special name.

Furthermore, the coefficient J in (33.1) is the absolute value of the Ja-
cobian. If the partial derivatives of x and y with respect to u and v are
continuous on D′, J is continuous on D′, too. Therefore, for any sample
point (u∗

i , v
∗
j ) in D′

ij, the difference

∆Aij − J(u∗
i , v

∗
j )∆A′

∆A′ = J(ui−1, vj−1)− J(u∗
i , v

∗
j )

vanishes in the limit (∆u, ∆v) → (0, 0). So, if in (33.1) the value of the
Jacobian is taken at a sample point other than A′, then the corresponding
change in the value of ∆Aij should decrease to zero faster than ∆u∆v in
the limit (∆u, ∆v) → (0, 0). Thus, with the same accuracy used in the
approximation of ∆Aij, one can always put

∆Aij = J(u∗
i , v

∗
j ) ∆u ∆v

in the Riemann sum for any choice of sample points. The limit of the
Riemann sum

∫∫

D
f dA = lim

N1,N2→∞

N1
∑

i=1

N2
∑

j=1

f(x(u∗
i , v

∗
j ), y(u∗

i , v
∗
j )) ∆Aij,

defines the double integral of the function f(x(u, v), y(u, v))J(u, v) over the
region D′, provided that the latter function is integrable on D′. One can
prove that if f is integrable on D and x = x(u, v), y = y(u, v) is a change of
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variables, then f(x(u, v), y(u, v))J(u, v) is integrable on D′. The foregoing
arguments suggest that the following theorem is true (a full proof is given
in advanced calculus courses).

Theorem 33.2. (Change of Variables in a Double Integral).
Suppose a transformation x = x(u, v), y = y(u, v) has continuous first-order
partial derivatives and maps a region D′ bounded by piecewise-smooth curves
onto a region D. Suppose that this transformation is one-to-one and has a
nonvanishing Jacobian, except perhaps on the boundary of D′. Then

∫∫

D
f(x, y) dA =

∫∫

D′

f(x(u, v), y(u, v))J(u, v) dA′ ,

J(u, v) =

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

.

In the case of polar coordinates, the boundary of D′ may contain the
line r = 0 on which the Jacobian J = r vanishes. This entire line collapses
into a single point, the origin (x, y) = (0, 0) in the xy plane, upon the
transformation x = r cos θ and y = r sin θ; that is, this transformation is
not one-to-one on this line. A full proof of the theorem requires an analysis
of such subtleties in a general change of variables as well as a rigorous
justification of the linear approximation in the area transformation law,
which were excluded in the above analysis.

In practice, the change of variables in a double integral entails the fol-
lowing steps:

Step 1. Finding the region D′ whose image under the transformation x =
x(u, v), y = y(u, v) is the region of integration D. A useful rule to
remember here is:

T : boundary of D′ −→ boundary of D

under the transformation T . In particular, if equations of bound-
aries of D are given, then equations of the corresponding bound-
aries of D′ can be obtained by expressing the former in terms of
the new variables by the substitution x = x(u, v) and y = y(u, v).

Step 2. Transformation of the function to new variables

f(x, y) = f(x(u, v), y(u, v)).

Step 3. Calculation of the Jacobian that defines the area element transfor-
mation:

dA =

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

du dv = J dA′ , J =

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

.

Step 4. Evaluation of the double integral of fJ over D′ by converting it to
a suitable iterated integral. The choice of new variables should be
motivated by simplifying the shape of D′ (a rectangular shape is
the most desirable).
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Example 33.2. Use the change of variables x = u(1 − v), y = uv
(see Example 33.1) to evaluate the integral

∫∫

D(x + y)5y5dA where D is the
triangle bounded by the lines y = 0, x = 0, and x + y = 1.

Solution: Step 1. Note first that the line u = 0 is mapped to a single
point, the origin, in the xy plane. So a part of the line u = 0 must be
in the boundary of D′. The equation x = 0 in the new variables becomes
u(1− v) = 0 which means that either u = 0 or v = 1. Therefore a part of
the line v = 1 is in the boundary of D′ as it is mapped to the boundary line
x = 0. The equation y = 0 in the new variables reads uv = 0. Therefore a
part of the line v = 0 is also in the boundary of D′. The equation x + y = 1
in the new variables has the form u = 1. So,

T : u = 0 or v = 0 → y = 0 ,

T : u = 0 or v = 1 → x = 0 ,

T : u = 1 → x + y = 1

This suggests that D′ is bounded by four lines u = 0, u = 1, v = 0, and v = 1
because the boundary of D′ is mapped onto the boundary of D. Therefore
D′ is the square

D′ = [0, 1]× [0, 1] .

Note that the transformation is not one-to-one on the line u = 0 because
the line u = 0 is mapped to a single point, the origin.
Step 2. Since x + y = u, the integrand in the new variables is

f(x, y) = (x + y)5y5 = u5(uv)5 = u10v5 .

Step 3. By Example 33.1 the Jacobian of the transformation is J = u.
Therefore the area element transformation is dA = |u|dA′. The absolute
value may be omitted because u ≥ 0 in D′. Note that the Jacobian vanishes
only on the boundary of D′ and, hence, the hypotheses of Theorem 33.2 are
fulfilled.
Step 4. The double integral in the new variables is evaluated by Fubini’s
theorem:
∫∫

D
(x + y)5y5dA =

∫∫

D′

u11v5dA′ =

∫ 1

0
u11du

∫ 1

0
v5dv =

1

12
· 1
6

=
1

72

�

Let D be a region of integration. Suppose new variables are defined by
a transformation.

If the Jacobian of the transformation does not vanish in the interior of D,
then by Theorem 33.1 the transformation defines a genuine change of vari-
ables in the double integral and the conclusion of Theorem 33.2 holds.

Note that zeros of the Jacobian on the boundary of the region of integration
do not affect the conclusion of Theorem 33.2. Furthermore, suppose that
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the Jacobian vanishes at a single point of the interior of D. For example,
let D be a disk centered at the origin. The Jacobian of polar coordinates
vanishes at the origin. Does the conclusion of Theorem 33.2 hold in this
case? Let us cut the disk along its diameter and represent a double integral
over the disk as the sum of integrals over two half-disks. The conclusion of
the Theorem 33.2 holds for each of the two integrals because the zero of the
Jacobian lies on the boundary of each half-disk. Therefore it holds for the
whole disk. This observation can be generalized:

If zeros of the Jacobian lie on a smooth curve in the region of integration,
then the conclusion of Theorem 33.2 still holds.

Indeed, the region of integration can be cut into two regions along a smooth
curve that contain zeros of the Jacobian. The Jacobian does not vanish in
the interiors of two new regions of integration and, hence, the conclusion of
Theorem 33.2 holds for them. Evidently, the procedure may be repeated for
finitely many smooth curves on which the Jacobian has zeros.

33.4. Jacobian of the inverse transformation. By Theorem 33.1, the Jaco-
bian of the inverse transformation can be calculated as ∂(u, v)/∂(x, y) so
that the area transformation law is

dudv =
∣

∣

∣

∂(u, v)

∂(x, y)

∣

∣

∣
dxdy

and the following statement holds:

Corollary 33.1. If u = u(x, y) and v = v(x, y) is the inverse of the
transformation x = x(u, v) and y = y(u, v), then

(33.2)
∂(x, y)

∂(u, v)
=

1
∂(u,v)
∂(x,y)

=
1

det

(

u′
x v′x

u′
y v′y

) .

The analogy with a change of variables in the one-dimensional case can
be made. If x = f(u) where f has continuous derivative f ′(u) that does not
vanish, then by the inverse function theorem for functions of one variable
(Theorem 13.2) there is an inverse function u = g(x) whose derivative is
continuous and g′(x) = 1/f ′(u) where u = g(x). Then the transformation
of the differential dx can be written in two equivalent forms, just like the
transformation of the area element dA = dxdy:

dx = f ′(u)du =
du

g′(x)
←→ dxdy =

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

dudv =
dudv
∣

∣

∣

∂(u,v)
∂(x,y)

∣

∣

∣

.

Note the absence of the absolute value bars in the one-variable case. If
f ′(u) > 0, then f(a′) = a < b = f(b′) if a′ < b′. If f ′(u) < 0, then
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Figure 33.2. An illustration to Example 33.3. The trans-
formation of the integration region D. Equations of the
boundaries of D, y = 3x, y = x, xy = 2, and xy = 1, are
written in the new variables u = y/x and v = xy to obtain
the equations of the boundaries of D′, u = 3, u = 1, v = 2,
and v = 1, respectively. The correspondence between the
boundaries of D and D′ is indicated by encircled numbers
enumerating the boundary curves.

f(a′) = a < b = f(b′) if a′ > b′. In the latter case,
∫ b

a
h(x)dx =

∫ b′

a′

h(f(u))f ′(u)du = −
∫ a′

b′
h(f(u))f ′(u)du

=

∫ a′

b′
h(f(u))|f ′(u)|du .

Therefore the full analogy with the two-variable case is achieved, that is,
dx = |f ′(u)|du if one agrees that the new lower integration limit is always
set to be smaller than the upper one. In other words, the length of a segment
is always given by

b− a =

∫ b

a
dx =

∫ b′

a′

|f ′(u)|du ,

where a′ < b′.
Equation (33.2) defines the Jacobian as a function of (x, y). Sometimes

it is technically simpler to express the product f(x, y)J(x, y) in the new
variables rather than doing so for f and J separately. This is illustrated by
the following example.

Example 33.3. Use a suitable change of variables to evaluate the double
integral of f(x, y) = xy3 over the region D that lies in the first quadrant and
is bounded by the lines y = x and y = 3x and by the hyperbolas yx = 1 and
yx = 2.
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Solution: The equations of the lines can be written in the form y/x =
1 and y/x = 3 because y, x > 0 in D (see Fig. 33.2). Note that the
equations of boundaries of D depend on just two particular combinations
y/x and yx that take constant values on the boundaries of D. Consider the
transformation T defined by the functions

u = u(x, y) =
y

x
, v = v(x, y) = xy .

Under this transformation the boundary curves of D becomes the straight
lines:

T : y = 3x → u = 3 ; T : y = x → u = 1 ;
T : yx = 2 → v = 2 ; T : yx = 1 → v = 1 .

This suggests that the image D′ of D is the rectangle [1, 3]× [1, 2] in the
uv plane. To verify that the defined transformation is a change of variables
and, hence, can be used to simplify the region of integration, the Jacobian
of the transformation should not vanish in the interior of D. By means of
Eq. (33.2) the Jacobian as a function of (x, y) is obtained:

J =

∣

∣

∣

∣

det

(

u′
x v′x

u′
y v′y

)∣

∣

∣

∣

−1

=

∣

∣

∣

∣

det

(

−y/x2 y
1/x x

)∣

∣

∣

∣

−1

=

∣

∣

∣

∣

−2y

x

∣

∣

∣

∣

−1

=
x

2y
.

The absolute value bars may be omitted as x and y are strictly positive in
D. Thus, J 6= 0 in D and the transformation is indeed a change of variables.
Let us put aside for a moment the problem of expressing x and y as functions
of new variables, which is needed to express f and J as functions of u and
v, and find first the product fJ as a function of (x, y) and then express it
in terms of the new variables (u, v):

f(x, y)J(x, y) =
1

2
x2y2 =

1

2
v2 .

So finding the functions x = x(u, v) and y = y(u, v) happens to be unneces-
sary in this example! Hence,

∫∫

D
xy3 dA =

1

2

∫∫

D′

v2 dA′ =
1

2

∫ 3

1
du

∫ 2

1
v2 dv =

7

3
.

The reader is advised to evaluate the double integral in the original rectan-
gular coordinates to compare the amount of work needed with this solution.
�

The following example illustrates how a change of variables can be used
to simplify the integrand of a double integral.

Example 33.4. Evaluate the double integral of the function f(x, y) =
cos[(y − x)/(y + x)] over the trapezoidal region with vertices (1, 0), (2, 0),
(0, 1), and (0, 2).

Solution: An iterated integral in the rectangular coordinates would con-
tain the integral of the cosine function of a rational argument (either with
respect to x or y), which is difficult to evaluate. So a change of variables
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D′
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Figure 33.3. Left: The integration region D in Example
33.4 is bounded by the lines x + y = 1, x + y = 2, x = 0
and y = 0. Right: The image D′ of D under the change
of variables u = x + y and v = y − x. The boundaries of
D′ are obtained by substituting the new variables into the
equations for boundaries of D so that x + y = 1 → u = 1,
x + y = 2→ u = 2, x = 0→ v = u, and y = 0→ v = −u.

should be used to simplify the argument of the cosine function. The region
D is bounded by the lines x + y = 1, x + y = 2, x = 0, and y = 0. Consider
the transformation T defined by the functions

u = u(x, y) = x + y , v = v(x, y) = y − x ,

so that the function in the new variables becomes

f(x, y) = cos

(

y − x

y + x

)

= cos
( v

u

)

.

The transformation is a change of variables because the Jacobian

J =
1

∣

∣

∣

∂(u,v)
∂(x,y)

∣

∣

∣

=
1

∣

∣

∣

∣

det

(

1 −1
1 1

)∣

∣

∣

∣

=
1

2

does not vanish anywhere. Under this transformation, the boundary of D
is mapped onto the boundary of D′ = T (D):

T : x + y = 1 → u = 1 ; T : x + y = 2 → u = 2 ;
T : x = 0 → v = u ; T : y = 0 → v = −u ;

The last two relations follow from the inverse transformation

x =
1

2
(u− v) , y =

1

2
(u + v) ,

so that the line x = 0 is mapped onto the line v = u, while the line y = 0 is
mapped onto the line v = −u. Thus, the new integration region is

D′ = {(u, v)| − u ≤ v ≤ u, 1 ≤ u ≤ 2} .
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1
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1

Figure 33.4. The transformation of the integration region
D in Example 33.5 (Area of an ellipse). The region D,
x2/a2 + y2/b2 ≤ 1, is first transformed into the disk D′,
u2 + v2 ≤ 1, by x = au, y = bv, and then D′ is transformed
into the rectangle D′′ by u = r cos θ, v = r sin θ.

Hence, using dA = JdA′ = 1
2dA′,

∫∫

D
cos
(y − x

y + x

)

dA =

∫∫

D′

cos
(v

u

)

JdA′ =
1

2

∫ 2

1

∫ u

−u
cos
( v

u

)

dv du

=
1

2

∫ 2

1
u sin

(v

u

)∣

∣

∣

u

−u
du

= sin(1)

∫ 2

1
udu =

3

2
sin(1) .

�

Example 33.5. (Area of an Ellipse).
Find the area of the region D bounded by the ellipse x2/a2 + y2/b2 = 1.

Solution: Under the change of variables u = x/a, v = y/b, the ellipse is
transformed into the circle u2 + v2 = 1 of unit radius. The Jacobian is

J =

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

=

∣

∣

∣

∣

det

(

a 0
0 b

)∣

∣

∣

∣

= ab .

Therefore

A(D) =

∫∫

D
dA =

∫∫

D′

J dA′ = ab

∫∫

D′

dA′ = abA(D′) = πab .

Of course the area A(D′) of the disk u2 + v2 ≤ 1 can also be evaluated by
converting the integral over D′ to polar coordinates u = r cos θ, v = r sin θ.
The disk D′ is the image of the rectangle D′′ = [0, 1] × [0, 2π] and the
Jacobian is r. The corresponding transformations of the region of integration
are shown in Fig. 33.4. �

When a = b, the ellipse becomes a circle of radius R = a = b, and the
area of the ellipse becomes the area of the disk, A = πR2.
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33.5. Symmetries and a Change of Variables. Using the concept of a change
of variables in a double integral one can give an algebraic criterion of area-
preserving transformations introduced in Section 31.4 and prove Theorem
31.1. A transformation x = x(u, v), y = y(u, v) is said to be area preserving
if the absolute value of its Jacobian is 1, that is, dA = dA′. Indeed, since
the Jacobian does not vanish, the transformation is a change of variables.
For any closed bounded region D′ whose image under such transformation
is D,

A(D) =

∫ ∫

D
dA =

∫ ∫

D′

JdA′ =

∫ ∫

D′

dA′ = A(D′) .

For example, rotations, translations, and reflections are area-preserving trans-
formations for obvious geometrical reasons (they preserve the distance be-
tween any two points of a region). The following theorem holds.

Theorem 33.3. (Symmetry of Double Integrals)
Suppose that an area-preserving transformation x = x(u, v), y = y(u, v)
maps a region D onto itself. Suppose that a function f is skew-symmetric
under this transformation, that is, f(x(u, v), y(u, v)) = −f(u, v). Then the
double integral of f over D vanishes.

Proof. Since D′ = D and dA = dA′, the change of variables yields

I =

∫∫

D
f(x, y) dA =

∫∫

D
f(x(u, v), y(u, v)) dA′

= −
∫∫

D
f(u, v) dA′ = −I,

that is, I = −I , or I = 0. �

33.6. Study Problems.

Problem 33.1. (Generalized Polar Coordinates)
Generalized polar coordinates are defined by the transformation

x = ar cosn θ , y = br sinn θ

where a, b, and n are parameters. Find the Jacobian of the transformation.
Use the generalized polar coordinates with a suitable choice of parameters to
find the area of the region in the first quadrant that is bounded by the curve
4
√

x/a + 4
√

y/b = 1.

Solution: The Jacobian of the generalized polar coordinates is

∂(x, y)

∂(r, θ)
= det

(

x′
r y′r

x′
θ y′θ

)

= det

(

a cosn θ b sinn θ
−nar sin θ cosn−1 θ nbr cos θ sinn−1 θ

)

= nabr
(

cosn+1 θ sinn−1 θ + cosn−1 θ sinn+1 θ
)

= nabr cosn−1 θ sinn−1 θ(cos2 θ + sin2 θ)

= nabr cosn−1 θ sinn−1 θ
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Choosing the parameter n = 8, the equation of the curve 4
√

x/a+ 4
√

y/b = 1
becomes 4

√
r = 1 or r = 1. Since the region in question lies in the first

quadrant, it is also bounded by the lines y = 0 and x = 0 which are the
images of the lines θ = π/2 and θ = 0 in the (r, θ) plane. Therefore the
rectangle D′ = [0, 1] × [0, π/2] is mapped onto the region D in question.
The Jacobian of the transformation is positive in the interior of D′ so the
absolute value of the Jacobian in the area element transformation may be
omitted. The area of D is

A(D) =

∫∫

D
dA =

∫∫

D′

JdA′ = 8ab

∫ π/2

0
cos7 θ sin7 θdθ

∫ 1

0
rdr

=
ab

32

∫ π/2

0

(

sin(2θ)
)7

dθ = −ab

64

∫ π/2

0

(

sin(2θ)
)6

d cos(2θ)

=
ab

64

∫ 1

−1

(

1− u2
)3

du =
ab

70

where first the double angle formula cos θ sin θ = 1
2 sin(2θ) has been used and

then the integration has been carried out with the help of the substitution
u = cos(2θ). �

33.7. Exercises.

1–4. Find the Jacobian of each of the following transformations.

1. x = 3u− 2v, y = u + 3v ;
2. x = er cos θ, y = er sin θ ;
3. x = uv, y = u2 − v2 ;
4. x = u cosh v, y = u sinh v .

5. Consider hyperbolic coordinates in the first quadrant x > 0, y > 0 defined
by the transformation x = veu, y = ve−u. Calculate the Jacobian. Deter-
mine the range of (u, v) in which the transformation is one-to-one. Find the
inverse transformation and sketch coordinate curves of hyperbolic coordi-
nates.
6. Find the conditions on the parameters of a linear transformation x =
a1u+b1v+c1, y = a2u+b2v+c2 so that the transformation is area-preserving.
In particular, prove that rotations discussed in Study Problem 1.2 are area-
preserving.
7–9. Find the image D of the specified region D′ under the given transfor-
mation.

7. D′ = [0, 1]× [0, 1] and the transformation is x = u, y = v(1− u2) ;
8. D′ is the triangle with vertices (0, 0), (1, 0), and (1, 1), and the

transformation is x = v2, y = u ;
9. D′ is the region defined by the inequality |u| + |v| ≤ 1, and the

transformation is x = u + v, y = u− v.

10. Find a linear transformation that maps the triangle D′ with vertices
(0, 0), (0, 1), and (1, 0) onto the triangle D with vertices (0, 0), (a, b), and
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(b, a) where a and b are positive, non-equal numbers. Use this transformation
to evaluate the integral of f(x, y) = bx− ay over the triangle D.
11–14. Evaluate each of the following double integrals using the specified
change of variables.

11.
∫∫

D(8x+4y)dA, where D is the parallelogram with vertices (3,−1),
(−3, 1), (−1, 3), and (5, 1); the change of variables is x = (v−3u)/4,
y = (u + v)/4 ;

12.
∫∫

D(x2−xy +y2)dA, where D is the region bounded by the ellipse

x2 − xy + y2 = 1; the change of variables is x = u − v/
√

3, y =

u + v/
√

3 ;

13.
∫∫

D(x2−y2)−1/2dA, where D is in the first quadrant and bounded

by hyperbolas x2 − y2 = 1, x2 − y2 = 4 and by the lines x = 2y,
x = 4y; the change of variables is x = u cosh v, y = u sinh v ;

14.
∫ ∫

D e(x/y) (x + y)3/y2dA, where D is bounded by the lines y =
x, y = 2x, x + y = 1 and x + y = 2; the change of variables u =
x/y, v = x + y. Hint: Follow the procedure based on Eq. (33.2) as
illustrated in Example 33.3 .

15. Find the image D′ of the square a < x < a + h, b < y < b + h, where a,
b, and h are positive numbers, under the transformation u = y2/x, v =

√
xy.

Find the ratio of the area A(D′) to the area A(D). What is the limit of the
ratio when h→ 0?
16–17. Use the specified change of variables to convert the iterated integral
to an iterated integral in the new variables.

16.
∫ b
a

∫ βx
αx f(x, y) dydx where 0 < a < b and 0 < α < β if u = x and

v = y/x ;

17.
∫ 2
0

∫ 2−x
1−x f(x, y) dydx if u = x + y and v = x− y .

18. Convert the double integral
∫∫

D f(x, y)dA to an iterated integral in the

new variables where D is bounded by the curve
√

x +
√

y =
√

a (a > 0) and

the lines x = 0, y = 0 if x = u cos4 v and y = u sin4 v.
19–28. Evaluate each of the following double integrals by making a suitable
change of variables.

19.
∫ ∫

D yx2 dA where D is in the first quadrant and bounded by the

curves xy = 1, xy = 2, yx2 = 1 and yx2 = 2 ;
20.

∫∫

D ex−y dA where D is given by the inequality |x|+ |y| ≤ 1 ;

21.
∫∫

D(1+3x2)dA where D is bounded by the lines x+y = 1, x+y = 2

and by the curves y − x3 = 0, y − x3 = 1 ;
22.

∫∫

D(y+2x2)dA where the domain D is bounded by two parabolas,

y = x2 + 1, y = x2 + 2 and by two hyperbolas xy = −1 (x < 0),
xy = 1 (x > 0) ;

23.
∫∫

D(x+y)2/x2dA where D is bounded by four lines y = x, y = 2x,
y + x = 1 and y + x = 2 ;
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24.
∫∫

D

√
y − x/(x + y) where D is the square with vertices (0, 2a),

(a, a), (2a, 2a), and (a, 3a) with a > 0 ;
25.

∫∫

D cos(x2/a2+y2/b2)dA where D is bounded by the ellipse x2/a2+

y2/b2 = 1 ;
26.

∫∫

D(x + y)dA where D is bounded by x2 + y2 = x + y ;

27.
∫∫

D(|x|+ |y|)dA where D is defined by |x|+ |y| ≤ 1 ;

28.
∫∫

D(1− x2

a2 − y2

b2 )1/2dA where D is bounded by the ellipse x2/a2 +

y2/b2 = 1 .

29. Let f be continuous on [0, 1]. Show that
∫∫

D f(x + y)dA =
∫ 1
0 uf(u)du

if D is the triangle with vertices (0, 0), (0, 1), and (1, 0).
30–32. Use a suitable change of variables to reduce the double integral to
a single integral.

30.
∫∫

D f(x + y)dA where D is defined by |x|+ |y| ≤ 1 ;

31.
∫∫

D f(ax+by+c)dA where D is the disk x2+y2 ≤ 1 and a2+b2 6= 0 ;

32.
∫∫

D f(xy)dA where D lies in the first quadrant and is bounded by
the curves xy = 1, xy = 2, y = x, and y = 4x .

33. Let n and m be positive integers. Prove that if
∫∫

D xnymdA = 0, where

D is bounded by an ellipse x2/a2 + y2/b2 = 1, then at least one of the
numbers n and m is odd.
34. Suppose that level curves of a function f(x, y) are simple, closed, and
smooth. Let a region D be bounded by two level curves f(x, y) = a and
f(x, y) = b. Prove that

∫∫

D

f(x, y)dA =

∫ b

a

uF ′(u)du

where F (u) is the area of the region between the curves f(x, y) = a and
f(x, y) = u. Hint: partition the region D by level curves of the function f .
35–37. Use the generalized polar coordinates with a suitable choice of
parameters to find the area of the given region D.

35. D is bounded by the curves x3/a2 +y3/b3 = x2 +y2 and lies in the
first quadrant ;

36. D is bounded by the curves x3/a2 +y3/b3 = x2/c2−y2/k2 and lies
in the first quadrant ;

37. D is bounded by the curve (x/a + y/b)5 = x2y2/c4 .

38–42. Use the double integral and a suitable change of variables to find
the area of the given region D.

38. D is bounded by the curves x + y = a, x + y = b, y = mx, y = nx
and lies in the first quadrant;

39. D is bounded by the curves y2 = 2ax, y2 = 2bx, x2 = 2cy, x2 = 2ky
where 0 < a < b and 0 < c < k ;

40. D is bounded by the curves (x/a)1/2 + (y/b)1/2 = 1, (x/a)1/2 +

(y/b)1/2 = 2, x/a = y/b, 4x/a = y/b, where a > 0 and b > 0;
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41. D is bounded by the curves (x/a)2/3 + (y/b)2/3 = 1, (x/a)2/3 +

(y/b)2/3 = 4, x/a = y/b, 8x/a = y/b and lies in the first quadrant;
42. D is bounded by the ellipses x2/ cosh2 u + y2/ sinh2 u = 1, where

u = u1 and u = u2 > u1, and by the hyperbolas x2/ cos2 v −
y2/ sin2 v = 1, where v = v1 and v = v2 > v1. Hint: Consider the
transformation x = cosh u cos v, y = sinh u sin v.
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34. Triple Integrals

Suppose a solid region E is filled with an inhomogeneous material. The
latter means that, if a small volume ∆V of the material is taken at two
distinct points of E, then the masses of these two pieces are different, despite
the equality of their volumes. The inhomogeneity of the material can be
characterized by the mass density as a function of position. Let ∆m(r) be
the mass of a small piece of material of volume ∆V cut out around a point
r. Then the mass density is defined by

σ(r) = lim
∆V →0

∆m(r)

∆V
.

The limit is understood in the following sense. If R is the radius of the
smallest ball that contains the region of volume ∆V , then the limit means
that R→ 0 (i.e., roughly speaking, all the dimensions of the piece decrease
uniformly in the limit). The mass density is measured in units of mass per

unit volume. For example, the value σ(r) = 5 g/cm3 means that a piece of
material of volume 1 cm3 cut out around the point r has a mass of 5 gr.

Suppose that the mass density of the material in a region E is known.
The question is: What is the total mass of the material in E? A practical
answer to this question is to partition the region E so that each partition el-
ement Ep, p = 1, 2, ..., N , has a mass ∆mp. The total mass is M =

∑

p ∆mp.

If a partition element Ep has a volume ∆Vp, then ∆mp ≈ σ(rp) ∆Vp for some

E

rp
∆Vp

(x, y, z)

(x, y,−z)

Figure 34.1. Left: A partition element of a solid region
and rp is the position vector of a sample point in it. If σ(r)
is the mass density, then the mass of the partition element is
∆m(rp) ≈ σ(rp)∆Vp where ∆Vp is the volume of the parti-
tion element. The total mass is the sum of ∆m(rp) over the
partition of the solid E as given in Eq. (34.1).
Right: An illustration to Example 34.1. A ball is sym-
metric under the reflection about the xy plane: (x, y, z) →
(x, y,−z). If the function f is skew-symmetric under this re-
flection, f(x, y,−z) = −f(x, y, z), then the triple integral of
f over the ball vanishes.
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rp in Ep (see the left panel of Fig. 34.1). If Rp is the radius of the smallest
ball that contains Ep, put R∗

N = max{R1, R2, ..., RN}. Then, by increasing
the number N of partition elements so that Rp ≤ R∗

N → 0 as N → ∞, the
approximation ∆mp ≈ σ(rp) ∆Vp becomes more and more accurate by the
definition of the mass density because ∆Vp→ 0 for all p. So the total mass
is

(34.1) M = lim
N→∞

(R∗

N→0)

N
∑

p=1

σ(rp) ∆Vp ,

which is to be compared with (28.1). In contrast to (28.1), the summation
over the partition should include a triple sum, one sum per each direction
in space. This gives an intuitive idea of a triple integral. Its abstract math-
ematical construction follows exactly the footsteps of the double-integral
construction.

34.1. Definition of a Triple Integral. Suppose E is a closed bounded region
in space (recall Definition 28.1). Let f be a bounded function on E, that
is m ≤ f(r) ≤ M for all r in E. The function f is extended to the whole
space by setting its values to zero for all points that are not in E.

Rectangular Partition. Since E is bounded it can be embedded into a rect-
angular box

RE = {(x, y, z) | a≤ x ≤ b , c ≤ y ≤ d , s ≤ z ≤ q} = [a, b]× [c, d]× [s, q] .

The rectangle RE is partitioned by the coordinate planes

x = xi = a + i ∆x , i = 0, 1, ..., N1 , ∆x = (b− a)/N1 ,

y = yj = c + j ∆y , j = 0, 1, ..., N2 , ∆y = (d− c)/N2 ,

z = zk = s + k ∆z , k = 0, 1, ..., N3 , ∆z = (q − s)/N3 .

Each partition element is a rectangular box

Rijk = [xi−1, xi]× [yj−1, yj]× [zk−1, zk] , i, j, k ≥ 1 ,

Its volume is ∆V = ∆x ∆y ∆z. The total number of partition elements is
N = N1N2N3.

Upper and Lower Sums. By analogy with Definition 28.5, the lower and
upper sums are defined. Put

Mijk = sup
Rijk

f(r) , mijk = inf
Rijk

f(r) ,

where the supremum and infimum are taken over the partition element Rijk.
Then the upper and lower sums are

U(f, N) =

N1
∑

i=1

N2
∑

j=1

N3
∑

k=1

Mijk ∆V , L(f, N) =

N1
∑

i=1

N2
∑

j=1

N3
∑

k=1

mijk ∆V,
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where N = 〈N1, N2, N3〉. So the upper and lower sums are triple sequences.
A rule that assigns a unique number an to an ordered triple of integers
n = 〈n1, n2, n3〉 is called a triple sequence. The limit of a triple sequence is
defined similarly to the limit of a double sequence (see Definition 28.6). A
number a is the limit of a triple sequence,

lim
n→0

an = a

if for any number ε > 0 one can find an integer N such that

|an − a| < ε for all n1, n2, n3 > N .

One can also say that a triple sequence converging to a has only finitely
many terms outside any interval (a−ε, a+ε). The limit of a triple sequence
is analogous to the limit of a function of three variables. It can be found by
studying the corresponding limit of a function of three variables. Suppose

an = f(1/n1, 1/n2, 1/n3)

and

f(x, y, z)→ a as (x, y, z)→ (0, 0, 0) .

Then

an → a as n→ 0 .

Indeed, since f has the limit at the origin, for any ε > 0 one can find a ball
of radius δ > 0 in which the values of f deviate from a no more than by ε:

|f(r)− a| < ε , ‖r‖ < δ ,

where r = 〈x, y, z〉. In particular, for r = 〈1/n1, 1/n2, 1/n3〉, the condition

‖r‖2 =
1

n2
1

+
1

n2
2

+
1

n2
3

< δ2

is satisfied for all n1, n2, n3 > N ≥ 3/δ (e.g., the number N is the integer
part of 3/δ). Hence,

|an − a| < ε for all n1, n2, n3 > N ≥ 3

δ
,

which means that an → a as n → ∞ (only finitely many terms of an lie
outside any interval (a− ε, a + ε)).

Definition 34.1. (Triple Integral).
If the limits of the upper and lower sums exist as N → ∞ (or ∆r =
〈∆x, ∆y, ∆z〉 → 0) and coincide, then f is said to be Riemann integrable
on E, and the limit of the upper and lower sums

∫∫∫

E

f(x, y, z) dV = lim
N→∞

U(f, N) = lim
N→∞

L(f, N)

is called the triple integral of f over the region E.
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Continuity and Integrability. Let the boundary of E be piecewise smooth
(recall Definition 28.2). In other words, the region E is bounded by finitely
many level surfaces of functions that have continuous partial derivatives
and whose gradients do not vanish; the level surfaces are adjacent along
piecewise smooth curves. For example, E can be bounded by graphs of
functions of two variables which have continuous partial derivatives. The
relation between continuity and integrability is pretty much the same as in
the case of double integrals.

Theorem 34.1. (Integrability of Continuous Functions).
Let E be a closed, bounded spatial region whose boundary is a piecewise
smooth surface. If a function f is continuous on E, then it is integrable on
E. Furthermore, if f is bounded and not continuous only on a finite number
of smooth surfaces in E, then it is also integrable on E.

A set in space is said to have zero volume if it can be covered by open
balls whose total volume is less than any preassigned positive number ε. For
example, a straight line segment of length L can be covered by N balls of
radius R = L/N so that their total volume is 4πR3N/3 = 4πL3/(3N 2). By
taking N large enough, the total volume can be made less than any given
ε > 0 and therefore the volume of the segment is zero. Similarly, a square
piece of a plane with dimension L can be covered by N 2 balls of radius
R = L/N . There total volume is 4πR3N 2/3 = 4πL3/(3N ) can be made
arbitrary small with a large enough N . So, this piece of a plane has no
volume. Using similar arguments, one can show that a smooth surface in
space has zero volume. For this reason, the value of a triple integral does
not change if the values of the integrand are changed on a smooth surface.

34.2. Properties of Triple Integrals. The properties of triple integrals are
the same as those of double integrals discussed in Section 29; that is, the
linearity, additivity, positivity, integrability of the absolute value |f |, and
upper and lower bounds holds for triple integrals.

A constant function is continuous and, hence, integrable by Theorem
34.1. In particular, put f(r) = 1. The corresponding triple integral is the
volume of the region E

(34.2) V (E) =

∫∫∫

E
dV .

If m ≤ f(r) ≤M for all r in E, then

mV (E) ≤
∫∫∫

E
fdV ≤MV (E) .

The Integral Mean-Value Theorem. The integral mean value theorem (The-
orem 29.1) is extended to triple integrals. If f is continuous in E, then there
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is exists a point r0 in E such that
∫∫∫

E
f(r)dV = V (E)f(r0)

Its proof follows the same lines as in the case of double integrals.

Riemann Sums. Let f be a continuous function on a closed bounded region
E whose boundary is piecewise smooth. Let E be partitioned by piecewise
smooth surfaces into partition elements Ep, p = 1, 2, ..., N , so that the union

of Ep is D and V (E) =
∑N

p=1 ∆Vp, where ∆Vp is the volume of Ep defined

by Eq. (34.2). If Rp is the smallest radius of a ball that contains Ep, put
R∗

N = maxp Rp; that is, Rp characterizes the size of the partition element Ep

and R∗
N is the size of the largest partition element. Suppose that R∗

N → 0
as N → ∞. Let rp be a sample point in Ep. Under the aforementioned
conditions the analog of Theorem 29.3 also holds for triple integrals

Theorem 34.2. (Independence of the Partition)
For any choice of sample points rp and any choice of partition elements Ep,

(34.3)

∫∫∫

E
f dV = lim

N→∞

(R∗

N→0)

N
∑

p=1

f(rp) ∆Vp .

A proof of this theorem goes along the same line of reasoning as the
proof of Theorem 29.3. Equation (34.3) can be used for approximations of
triple integrals, when evaluating the latter numerically just like in the case
of double integrals.

Symmetry. Let T be a transformation in space, that is, T is a rule that
assigns a unique point rs to a point r so that

T : E → Es = T (E)

for every set E in space. If a transformation preserves the volume of any
region, V (E) = V (Es), then it is called volume preserving. Obviously, rota-
tions, reflections, and translations in space are volume-preserving transfor-
mations as they preserve the distance between any two points in space. Sup-
pose that, under a volume-preserving transformation, a region E is mapped
onto itself; that is, E is symmetric relative to this transformation. If rs in E
is the image of r in E under this transformation and the integrand is skew-
symmetric, f(rs) = −f(r), then the triple integral of f over E vanishes:

T : r → rs

T (E) = E
f(rs) = −f(r)







⇒
∫∫∫

E

f(r) dV = 0 .

A proof of this assertion is postponed until the change of variables in triple
integrals is introduced.
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Example 34.1. Evaluate the triple integral of f(x, y, z) =
x2 sin(y4z) + 2 over a ball centered at the origin of radius R.

Solution: Put g(x, y, z) = x2 sin(y4z) so that f = g + h, where h = 2 is
a constant function. By the linearity property, the triple integral of f is
the sum of triple integrals of g and h over the ball. The ball is symmetric
relative to the reflection transformation

T : (x, y, z)→ (x, y,−z) ,

whereas the function g is skew-symmetric:

g(x, y,−z) = x2 sin(y4(−z)) = −x2 sin(y4z) = −g(x, y, z) .

Therefore, its triple integral vanishes, and
∫∫∫

E
f dV =

∫∫∫

E
g dV +

∫∫∫

E
h dV

= 0 + 2

∫∫∫

E
dV = 2V (E) = 8πR3/3.

�

One can think of the numerical value of a triple integral of f over E as
the total amount of a quantity distributed in the region E with the density
f (the amount of the quantity per unit volume). For example, f can be
viewed as the density of electric charge distributed in a dielectric occupying
a region E. The total electric charge stored in the region E is then given by
the triple integral of the density over E. The electric charge can be positive
and negative. So, if the total positive charge in E is exactly the same as the
negative charge, the triple integral vanishes.

34.3. Iterated Triple Integrals. Similar to a double integral, a triple in-
tegral can be converted to a triple iterated integral, which can then be
evaluated by means of ordinary single-variable integration.

Definition 34.2. (Simple Region).
A spatial region E is said to be simple in the direction of a vector v if
any straight line parallel to v intersects E along at most one straight line
segment.

A triple integral can be converted to an iterated integral if E is simple
in a particular direction. If there is no such direction, then E should be
split into a union of simple regions with the consequent use of the additivity
property of triple integrals. Suppose that v = ê3; that is, E is simple along
the z axis. Consider all lines parallel to the z axis that intersect E. These
lines also intersect the xy plane. The region Dxy in the xy plane is the set
of all such points of intersection and is called the projection of E into the
xy plane. One might think of Dxy as a shadow made by the solid E when it
is illuminated by rays of light parallel to the z axis. Take any line through
(x, y) in Dxy parallel to the z axis. By the simplicity of E, any such line
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Figure 34.2. Left: An algebraic description of a solid re-
gion simple in the direction of the z axis. The solid E is
vertically projected into the xy plane: every point (x, y, z) of
E goes into the point (x, y, 0). The projection points form
the region Dxy. Since E is simple in the z direction, for every
(x, y, 0) in Dxy, the z coordinate of the point P = (x, y, z)
in E ranges the interval zbot(x, y) ≤ z ≤ ztop(x, y). In
other words, E lies between the graphs z = zbot(x, y) and
z = ztop(x, y). Right: An illustration to the algebraic
description (34.5) of a solid E as a simple in the y direc-
tion. E is projected along the y axis to the xz plane, form-
ing a region Dxz. For every (x, 0, z) in Dxz, the y coor-
dinate of the point P = (x, y, z) in E ranges the interval
ybot(x, z) ≤ y ≤ ytop(x, z). In other words, E lies between
the graphs y = ybot(x, z) and y = ytop(x, z).

intersects E along a single segment. If zbot and ztop are the minimal and
maximal values of the z coordinate along the intersection segment, then, for
any (x, y, z) in E, zbot ≤ z ≤ ztop and (x, y) in Dxy. Naturally, the values
zbot and ztop may depend on (x, y) in Dxy. Thus, the region E is bounded
from the top by the graph z = ztop(x, y) and from the bottom by the graph
z = zbot(x, y); it admits the following algebraic description:

(34.4) E = {(x, y, z)|zbot(x, y) ≤ z ≤ ztop(x, y), (x, y) ∈ Dxy} .

If E is simple along the y or x axis, then E admits similar descriptions:

E = {(x, y, z)| ybot(x, z) ≤ y ≤ ytop(x, z), (x, z) ∈ Dxz} ,(34.5)

E = {(x, y, z)| xbot(y, z) ≤ x ≤ xtop(y, z), (y, z) ∈ Dyz} ,(34.6)

where Dxz and Dyz are projections of E into the xz and yz planes, respec-
tively; they are defined analogously to Dxy. The “top” and “bottom” are
now defined relative to the direction of the y or x axis.

Suppose f is integrable on E. Suppose E is simple in the direction of the
z axis. According to (34.3), the limit of the Riemann sum is independent of
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partitioning E and choosing sample points. Since E is bounded, there are
numbers s and q such that

s ≤ zbot(x, y) ≤ ztop(x, y) ≤ q for all (x, y) ∈ Dxy ;

that is, E always lies between two horizontal planes z = s and z = q. The
region E can therefore be embedded into a cylinder with the horizontal cross
section having the shape of Dxy. The function f is extended outside E by
zero values. The cylinder is partitioned as follows. Let Dp, p = 1, 2, ..., N ,
be a partition of the region Dxy. This partition induces partitioning of the
cylinder by cylinders (or columns Ep) with the horizontal cross sections Dp.
Each column Ep is partitioned by equispaced horizontal planes

z = s + k ∆z , k = 0, 1, ..., N3 , ∆z = (q − s)/N3 ,

into small regions Epk. The union of all Epk forms a partition of the cylinder
embedding E. This partition will be used in the Riemann sum (34.3). The
volume of Epk is

∆Vpk = ∆z ∆Ap ,

where ∆Ap is the area of Dp. Next, let us chose sample points. Take a point
(xp, yp, 0) in each Dp and pick a number z∗k from the interval [zk−1, zk]. Then
a sample point in the partition element Epk is (xp, yp, z

∗
k).

The three-variable limit (34.3) exists and hence can be taken in any
particular order. Let us take first the limit N3 → ∞ or ∆z → 0 and then
the limit N → ∞. The latter limit of the sum over the partition of Dxy is
understood as before; that is, the radii Rp of smallest disks containing Dp

go to 0 uniformly, Rp ≤ maxp Rp = R∗
N → 0 as N →∞. Therefore,

∫∫∫

E

f dV = lim
N→∞

(R∗

N→0)

N
∑

p=1

(

lim
N3→∞

N3
∑

k=1

f(xp, yp, z
∗
k) ∆z

)

∆Ap

= lim
N→∞

(R∗

N→0)

N
∑

p=1

(

∫ ztop(xp,yp)

zbot(xp,yp)
f(xp, yp, z) dz

)

∆Ap

because, for every (xp, yp) in Dxy, the function f vanishes outside the interval
zbot(xp, yp) ≤ z ≤ ztop(xp, yp). The integral of f with respect to z over the
interval [zbot(x, y), ztop(x, y)] defines a function

g(x, y) =

∫ ztop(x,y)

zbot(x,y)

f(x, y, z) dz

on Dxy. Its values g(xp, yp) at sample points in the partition elements Dp

appear in the parentheses of the above Riemann sum. A comparison of the
resulting expression with (29.2) leads to the conclusion that, after taking
the second limit, one obtains the double integral of g(x, y) over Dxy.
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Theorem 34.3. (Iterated Triple Integral).
Let f be integrable on a solid region E bounded by a piecewise smooth surface.
Suppose that E is simple in the z direction so that it is bounded by the graphs
z = zbot(x, y) and z = ztop(x, y) for all (x, y) in Dxy. Then

∫∫∫

E
f(x, y, z) dV =

∫∫

Dxy

∫ ztop(x,y)

zbot(x,y)
f(x, y, z) dzdA

=

∫∫

Dxy

g(x, y) dA.

34.4. Evaluation of Triple Integrals. By Theorem 34.3, an evaluation of a
triple integral over a region E can be carried out by the following steps:

Step 1. Determine the direction along which E is simple. If no such di-
rection exists, split E into a union of simple regions and use the
additivity property. For definitiveness, suppose that E happens to
be simple in the direction of the z axis.

Step 2. Find the projection Dxy of E into the xy plane.
Step 3. Find the bottom and top boundaries of E as the graphs of some

functions z = zbot(x, y) and z = ztop(x, y).
Step 4. Evaluate the integral of f with respect to z to obtain g(x, y).
Step 5. Evaluate the double integral of g(x, y) over Dxy by converting it to

a suitable iterated integral.

Similar iterated integrals can be written when E is simple in the y or x
direction. According to (34.5) or (34.6), the first integration is carried out
with respect to y or x, respectively, and the double integral is evaluated over
Dxz or Dyz:

∫∫∫

E
f(x, y, z) dV =

∫∫

Dxz

∫ ytop(x,z)

ybot(x,z)
f(x, y, z) dydA ,

∫∫∫

E
f(x, y, z) dV =

∫∫

Dyz

∫ xtop(y,z)

xbot(y,z)
f(x, y, z) dxdA .

If E is simple in any direction, then any of the iterated integrals can be used.
In particular, just like in the case of double integrals, the choice of an iterated
integral for a simple region E should be motivated by the simplicity of an
algebraic description of the top and bottom boundaries or by the simplicity
of the integrations involved. Technical difficulties may strongly depend on
the order in which the iterated integral is evaluated.

Let E be a rectangular region [a, b]× [c, d]× [s, q]. It is simple in any
direction. If the integration with respect to z is to be carried out first,
then Dxy = [a, b]× [c, d] and the top and bottom boundaries are the planes
z = q and z = s. The double integral over the rectangle Dxy can be
evaluated by Fubini’s theorem. Alternatively, one can take Dyz = [c, d]×
[s, q], xbot(y, z) = a, and xtop(y, z) = b to obtain an iterated integral in a
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different order (where the x integration is carried out first). So, Fubini’s
theorem is extended to triple integrals.

Theorem 34.4. (Fubini’s Theorem).
Let f be continuous on a rectangular region E = [a, b]× [c, d]× [s, q]. Then

∫∫∫

E
f dV =

∫ b

a

∫ d

c

∫ q

s
f(x, y, z) dzdy dx

and the iterated integral can be evaluated in any order.

In particular, if f(x, y, z) = g(x)h(y)w(z), then

∫∫∫

E

f(x, y, z)dV =

∫ b

a

g(x)dx

∫ d

c

h(y)dy

∫ s

q

w(z)dz

which is an extension of the factorization property stated in Corollary 30.1
to triple integrals.

Example 34.2. Evaluate the triple integral of f(x, y, z) = xy2z2 over
the rectangular box E = [0, 2]× [1, 2]× [0, 3].

Solution: By Fubini’s theorem,

∫∫∫

E
xy2z2 dV =

∫ 2

0
x dx

∫ 2

1
y2 dy

∫ 3

0
z2 dz =

4

2
· 8− 1

3
· 27

3
= 42.

�

Example 34.3. Evaluate the triple integral of f(x, y, z) = (x2+y2)z over

the portion of the solid bounded by the cone z =
√

x2 + y2 and paraboloid
z = 2− x2 − y2 in the first octant.

Solution: Following the step-by-step procedure outlined above, the inte-
gration region is simple in the direction of the z axis. The top and bottom
boundaries are the graphs of the functions:

ztop(x, y) = 2− x2 − y2 , zbot(x, y) =
√

x2 + y2 .

To determine the region Dxy, note that it has to be bounded by the projec-
tion of the curve of the intersection of the cone and paraboloid onto the xy
plane. The curve of intersection is defined by the condition

zbot(x, y) = ztop(x, y) ⇒ r = 2− r2 ⇒ r = 1 ,

where r =
√

x2 + y2. The condition r = 1 defines the circle of unit radius
centered at the origin. Since E is in the first octant, Dxy is the part of the



34. TRIPLE INTEGRALS 521

y z

x

2 2

4

Dyz

x = y2 + z2

x

y

z

1

1

1

y = x y = 1

ztop =
√

1− x2

zbot = 0
x

y
Dxy

y

y

1

1

Figure 34.3. Left: The integration region in Example
34.4. The x axis is vertical. The region is bounded by the
plane x = 4 (top) and the paraboloid x = y2 + z2 (bottom).
Its projection into the yz plane is the disk of radius 2 as the
plane and paraboloid intersect along the circle 4 = y2 + z2.
Right: An illustration to Study Problem 34.1.

disk of unit radius in the first quadrant. One has
∫∫∫

E
(x2 + y2)z dV =

∫∫

Dxy

(x2 + y2)

∫ 2−x2−y2

√
x2+y2

z dz dA

=
1

2

∫∫

Dxy

(x2 + y2)[(2− x2 − y2)2 − (x2 + y2)] dA

=
1

2

∫ π/2

0
dθ

∫ 1

0
r2[(2− r2)2 − r2] r dr

=
π

8

∫ 1

0
u[(2− u)2 − u] du =

7π

96
,

where the double integral has be transformed into polar coordinates; the
region Dxy is the image of the rectangle D′

xy = [0, 1]× [0, π/2] in the polar
plane and dA = rdrdθ. The integration with respect to r is carried out by
the substitution u = r2 so that rdr = 1

2du. �

Example 34.4. Evaluate the triple integral of f(x, y, z) =
√

y2 + z2 over the region E bounded by the paraboloid x = y2 + z2 and
the plane x = 4.

Solution: It is convenient to choose an iterated integral for E described as
an x simple region (see (34.6)). There are two reasons for doing so. First,
the integrand f is independent of x, and hence the first integration with
respect to x is trivial. Second, the boundaries of E are already given in the
form required by (34.6):

xbot(y, z) = y2 + z2 , xtop(y, z) = 4 .
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The region Dyz is bounded by the curve of intersection of the boundaries of
E:

xtop(y, z) = xbot(y, z) ⇒ y2 + z2 = 4 .

Therefore, Dyz is the disk or radius 2 (see the left panel of Fig. 34.3). One
has

∫∫∫

E

√

y2 + z2dV =

∫∫

Dyz

√

y2 + z2

∫ 4

y2+z2

dx dA

=

∫∫

Dyz

√

y2 + z2 [4− (y2 + z2)] dA

=

∫ 2π

0

dθ

∫ 2

0

r[4− r2]r dr =
128π

15
,

where the double integral over the disk Dyz has been converted to polar
coordinates in the yz plane (y = r cos θ, z = r sin θ, and dA = rdrdθ). �

34.5. Study Problems.

Problem 34.1. Evaluate the triple integral of f(x, y, z) = z over the region
E bounded by the cylinder x2 + z2 = 1 and the planes z = 0, y = 1, and
y = x in the first octant.

Solution: The region is z simple and bounded by the xy plane from
the bottom (i.e., zbot(x, y) = 0), and by the cylinder from the top (i.e.,

ztop(x, y) =
√

1− x2) (by taking the positive solution of x2 + z2 = 1). The
integration region is shown in the right panel of Fig. 34.3. Since E is in
the first octant, the region Dxy lies in the first quadrant and is bounded by
the lines y = x and y = 1. Thus, Dxy is the triangle bounded by the lines
x = 0, y = 1, and y = x:

Dxy = { (x, y) | 0 ≤ x ≤ y , y ∈ [0, 1]}
E = { (x, y, z) | 0 ≤ z ≤

√

1− x2 , (x, y) ∈ Dxy} .

One has
∫∫∫

E

z dV =

∫∫

Dxy

∫

√
1−x2

0

z dz dA

=
1

2

∫∫

Dxy

(1− x2) dA =
1

2

∫ 1

0

∫ y

0

(1− x2)dx dy

=
1

2

∫ 1

0

(

y − 1

3
y3
)

dy =
5

24
,

where the double integral has been evaluated by using the above description
of Dxy as a horizontally simple region. �

Problem 34.2. Evaluate the triple integral of the function f(x, y, z) =
xy2z3 over the region E that is a ball of radius 3 centered at the origin with
a cubic cavity [0, 1]× [0, 1]× [0, 1].
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Solution: The region E is not simple in any direction. The additivity
property must be used. Let E1 be the ball and let E2 be the cavity. By the
additivity property,

∫∫∫

E
xy2z3 dV =

∫∫∫

E1

xy2z3 dV −
∫∫∫

E2

xy2z3 dV

= 0−
∫ 1

0
x dx

∫ 1

0
y2 dy

∫ 1

0
z3 dz = − 1

24
.

The triple integral over E1 vanishes by the symmetry argument (the ball is
symmetric under the reflection (x, y, z)→ (−x, y, z) whereas f(−x, y, z) =
−f(x, y, z)). The second integral is evaluated by Fubini’s theorem. �

34.6. Exercises.

1–11. Evaluate each of the following triple integrals over the specified solid
region by converting it to an appropriate iterated integral.

1.
∫∫∫

E(xy − 3z2)dV , where E = [0, 1]× [1, 2]× [0, 2] ;
2.
∫∫∫

E 6xzdV , where E is defined by the inequalities 0 ≤ y ≤ x + z,
0 ≤ x ≤ z, and 0 ≤ z ≤ 1 ;

3.
∫∫∫

E zey2

dV , E is defined by the inequalities 0 ≤ x ≤ y, 0 ≤ y ≤ z,
and 0 ≤ z ≤ 1 ;

4.
∫∫∫

E 6xydV , where E lies under the plane x+y−z = −1 and above
the region in the xy plane bounded by the curves x =

√
y, x = 0,

and y = 1 ;
5.
∫∫∫

E xydV where E is bounded by the parabolic cylinders y = x2,

x = y2, and by the planes x + y − z = 0, x + y + z = 0 ;
6.
∫∫∫

E dV where E is bounded by the coordinate planes and the plane
through the points (a, 0, 0), (0, b, 0), and (0, 0, c) with a, b, c being
positive numbers ;

7.
∫∫∫

E zx dV where E lies in the first octant between two planes

x = y and x = 0 and is bounded by the cylinder y2 + z2 = 1 ;
8.
∫∫∫

E(x2z + y2z)dV where E is enclosed by the paraboloid z =

1− x2 − y2 and the plane z = 0 ;
9.
∫∫∫

E zdV where where E is enclosed by the elliptic paraboloid z =

1−x2/a2−y2/b2 and the plane z = 0. Hint: Use a suitable change
of variable in the double integral ;

10.
∫∫∫

E xy2z3dV where E is bounded by the surfaces z = xy, y = x,
x = 1, z = 0 ;

11.
∫∫∫

E(1+x+y+z)−3dV where E is bounded by the plane x+y+z = 1
and by the coordinate planes.

12–21. Use the triple integral to find the volume of the specified solid E.

12. E is bounded by the parabolic cylinder x = y2 and the planes z = 0
and z + x = 1 ;



524 4. MULTIPLE INTEGRALS

13. E lies in the first octant and is bounded by the parabolic sheet
z = 4− y2 and by two planes y = x and y = 2x ;

14. E is bounded by the surfaces z2 = xy, x + y = a, x + y = b, where
0 < a < b ;

15. E is bounded by the surfaces z = x2 + y2, xy = a2, xy = 2a2,
y = x/2, y = 2x, z = 0. Hint: Use a suitable change of variable in
the double integral ;

16. E is bounded by the surfaces z = x3/2 + y3/2, z = 0, x + y = 1,
x = 0, and y = 0 ;

17. E is bounded by the surfaces x2/a2 + y2/b2 + z/c = 1, (x/a)2/3 +

(y/b)2/3 = 1, and z = 0, where c > 0. Hint: use the generalized
polar coordinates defined in Study Problem 33.1 to evaluate the
double integral;

18. E is bounded by the surfaces z = x + y, z = xy, x + y = 1, x = 0,
and y = 0 ;

19. E is bounded by the surfaces x2 + z2 = a2, x + y = ±a, and
x− y = ±a, where a > 0 ;

20. E is bounded by the surfaces az = x2 + y2, z = a− x− y, and by
the coordinate planes, where a > 0 ;

21. E is bounded by the surfaces z = 6− x2 − y2, and z =
√

x2 + y2 .

22-24. Use symmetry and other properties of the triple integral to evaluate
each of the following triple integrals.

22.
∫∫∫

E 24xy2z3 dV where E is bounded by the elliptic cylinder (x/a)2+

(y/b)2 = 1 and by the paraboloids z = ±[c− (x/a)2 − (y/b)2] and
has the rectangular cavity [0, 1]× [−1, 1]× [0, 1]. Assume that a,
b, and c are larger than 2 ;

23.
∫∫∫

E(sin2(xz) − sin2(xy))dV where E lies between the spheres:

1 ≤ x2 + y2 + z2 ≤ 4 .
24.

∫∫∫

E(sin2(xz) + cos2(xy))dV where E lies between the spheres:

1 ≤ x2 + y2 + z2 ≤ 4 .

25–26. Express the integral
∫∫∫

E fdV as an iterated integral in six different
ways, where E is the solid bounded by the specified surfaces.

25. x2 + y2 = 4, z = −1, and z = 2 ;
26. z + y = 1, z = 0, and y = x2 .

27–29. Reverse the order of integration in all possible ways.

27.
∫ 1
0

∫ 1−x
0

∫ x+y
0 f(x, y, z) dzdydx ;

28.
∫ 1
−1

∫

√
1−x2

−
√

1−x2

∫ 1√
x2+y2 f(x, y, z) dzdydx ;

29.
∫ 1
0

∫ 1
0

∫ x2+y2

0 f(x, y, z) dzdydx .

30–31. Reduce each of the following iterated integrals to a single integral
by reversing the integration in a suitable order.

30.
∫ a
0

∫ x
0

∫ y
0 f(z)dzdydx ;
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31.
∫ 1
0

∫ 1
0

∫ x+y
0 f(z)dzdydx .

32. Use the interpretation of the triple integral f over a region E as the
total amount of some quantity in E distributed with the density f to find
E for which

∫∫∫

E(1− x2/a2 − y2/b2 − z2/c2)dV is maximal.
33. Prove the following representation of the triple integral by iterated
integrals.

∫∫∫

E

f(x, y, z)dV =

∫ b

a

∫∫

Dz

f(x, y, z)dAdz

where Dz is the cross section of E by the plane z = const.
34. Prove that if f(x, y, z) is continuous in E and for any subregion W of
E,
∫∫∫

W fdV = 0, then f(x, y, z) = 0 in E.
35. Use the lower bound for the triple integral in Exercise 11 to show that
ln 2 ≥ 2

3 . Try to give an alternative prove of this inequality based on the
definition of the log or exponential function.
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35. Triple Integrals in Cylindrical and Spherical Coordinates

A change of variables has been proved to be quite useful in simplifying
the technicalities involved in evaluating double integrals. An essential ad-
vantage is a simplification of the integration region. The concept of changing
variables can be extended to triple integrals.

35.1. Cylindrical Coordinates. One of the simplest examples of curvilinear
coordinates in space is cylindrical coordinates. They are defined by the
transformation

(35.1) T : (r, θ, z) → (x, y, z) , x = r cos θ , y = r cos θ , z = z .

In any plane parallel to the xy plane, the points are labeled by polar coor-
dinates, while the z coordinate is not transformed. A set of triples (r, θ, z)
can be viewed as a set of points E ′ in a Euclidean space in which the co-
ordinate axes are spanned by r, θ, and z. Then, under the transformation
(35.1), the region E ′ is mapped to an image region E. From the study
of polar coordinates, the transformation (35.1) is one-to-one if (r, θ, z) in
(0,∞)× [0, 2π)× (−∞,∞). As noted before, the range of θ can be chosen
to be any interval of length 2π. The inverse transformation is the same as
in the case of polar coordinates. The transformation is not one-to-one on
the boundaries r = 0 or θ = 2π. Indeed, T : (0, θ, z)→ (0, 0, z) (the plane
r = 0 is mapped to the z axis) and the points with θ different by 2π have
the same image. This multiple-counting does not have any effect on the
triple integral as it occurs on surfaces that have zero volume. So there is
no harm to assume that 0 ≤ r < ∞ and θ ranges over a closed interval of
length 2π, just like in polar coordinates. The z axis is called the axis of
cylindrical coordinates. Note that the x or y axis may be chosen as the axis
of cylindrical coordinates. In this case, the polar coordinates are introduced
in the yz or xz planes.

Given a region E, to find the shape of E ′ as well as its algebraic descrip-
tion, the same strategy as in the two-variable case can be used:

T : boundary of E ′ → boundary of E

under the transformation (35.1). A particularly important question is to
investigate the shape of coordinate surfaces of cylindrical coordinates, that
is, surfaces on which each of the cylindrical coordinates has a constant value.
If E is bounded by coordinate surfaces only, then it is an image of a rectan-
gular box E ′ which is the simplest, most desirable, shape when evaluating
a multiple integral.

The coordinate surfaces of r are cylinders, r =
√

x2 + y2 = r0 or x2 +
y2 = r2

0. In the xy plane, the equation θ = θ0 defines a ray from the origin at
the angle θ0 to the positive x axis counted counterclockwise. Since θ depends
only on x and y, the coordinate surface of θ is the half-plane bounded by
the z axis that makes an angle θ0 with the xz plane (it is swept by the ray
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Figure 35.1. Coordinate surfaces of cylindrical coordi-
nates: Cylinders r = r0, half-planes θ = θ0 bounded by the
z axis, and horizontal planes z = z0. Any point in space can
be viewed as the point of intersection of three coordinate

surfaces.

when the latter is moved parallel up and down along the z axis). Since the
z coordinate is not changed, neither changes its coordinate surfaces; they
are planes parallel to the xy plane. So the coordinate surfaces of cylindrical
coordinates are

T : r = r0 → x2 + y2 = r2
0 (cylinder),

T : θ = θ0 → y cos θ0 = x sin θ0 (half-plane),
T : z = z0 → z = z0 (plane).

The coordinate surfaces of cylindrical coordinates are shown in Fig. 35.1.
A point in space corresponding to an ordered triple (r0, θ0, z0) is the point
of intersection of a cylinder, half-plane bounded by the cylinder axis, and a
plane perpendicular to the cylinder axis.

Example 35.1. Find the region E ′ whose image under the transforma-
tion (35.1) is the solid region E that is bounded by the paraboloid z = x2+y2

and the planes z = 4, y = x, and y = 0 in the first (positive) octant.

Solution: In cylindrical coordinates, the equations of boundaries become

z = x2 + y2 ⇒ z = r2 ,

z = 4 ⇒ z = 4 ,

y = x , x ≥ 0 ⇒ θ = π/4 ,

y = 0 , x ≥ 0 ⇒ θ = 0 .

Since E lies below the plane z = 4 and above the paraboloid z = r2, the
range of r is determined by their intersection: 4 = r2 or r = 2 as r ≥ 0.
Thus,

T : E ′ =
{

(r, θ, z) | r2 ≤ z ≤ 4 , (r, θ) ∈ [0, 2]× [0, π/4]
}

→ E .
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35.2. Triple Integrals in Cylindrical Coordinates. To change variables in a
triple integral to cylindrical coordinates, one has to consider a partition of
the integration region E by coordinate surfaces, that is, by cylinders, half-
planes, and horizontal planes, which corresponds to a rectangular partition
of E ′ (the image of E under the transformation from rectangular to cylindri-
cal coordinates). Then the limit of the corresponding Riemann sum (34.3)
has to be evaluated. In the case of cylindrical coordinates, this task can be
accomplished by simpler means.

Suppose E is simple in the direction of the axis of the cylindrical co-
ordinates. Let the z be the axis of cylindrical coordinates. By Theorem
34.3, the triple integral can be written as an iterated integral consisting of
a double integral over Dxy and an ordinary integral with respect to z. The
transformation (35.1) merely defines polar coordinates in the region Dxy.
So, if Dxy is the image of D′

xy in the polar plane spanned by pairs (r, θ),
then, by converting the double integral to polar coordinates, one infers that

∫∫∫

E

f(x, y, z) dV =

∫∫

D′

xy

∫ ztop(r,θ)

zbot(r,θ)

f(r cos θ, r sin θ, z)r dz dA′

=

∫∫∫

E′

f(r cos θ, r sin θ, z)r dV ′,(35.2)

where the region E ′ is the image of E under the transformation from rect-
angular to cylindrical coordinates,

E ′ = {(r, θ, z) | zbot(r, θ) ≤ z ≤ ztop(r, θ) , (r, θ) ∈ D′
xy},

and z = zbot(r, θ), z = ztop(r, θ) are equations of the bottom and top
boundaries of E written in polar coordinates by substituting (35.1) into
the equations for boundaries written in rectangular coordinates. Note that
dV ′ = dz dr dθ = dz dA′ is the volume of an infinitesimal rectangle in the
space spanned by the triples (r, θ, z). Its image in the space spanned by
(x, y, z) lies between two cylinders whose radii differ by dr, between two
half-planes with the angle dθ between them, and between two horizontal
planes separated by the distance dz as shown in the left panel of Fig. 35.2.
So its volume is the product of the area dA of the base and the height dz,
dV = dz dA = r dz dA′ according to the area transformation law for polar
coordinates, dA = rdA′. So the volume transformation law for cylindrical
coordinates reads

dV = J dV ′ , J = r,

where J = r is the Jacobian of transformation to cylindrical coordinates.
Cylindrical coordinates are advantageous when the boundary of E con-

tains cylinders, half-planes, horizontal planes, or any surfaces with axial
symmetry. A set in space is said to be axially symmetric if there is an
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∆z

∆θ∆r

r

z

ztop = x2 + y2

zbot = 0
1

1
Dxy

Figure 35.2. Left: A partition element of the partition
of E by cylinders, half-planes, and horizontal planes (coordi-
nate surfaces of cylindrical coordinates). The partition is the
image of a rectangular partition of E ′. Keeping only terms
linear in the differentials dr = ∆r, dθ = ∆θ, dz = ∆z, the
volume of the partition element is dV = dAdz = rdrdθdz =
rdV ′ where dA = rdrdθ is the area element in the polar coor-
dinates. So, the Jacobian of cylindrical coordinates is J = r.
Right: An illustration to Example 35.2.

axis such that any rotation about it maps the set onto itself. For example,
circular cones, circular paraboloids, and spheres are axially symmetric.

Example 35.2. Evaluate the triple integral of f(x, y, z) = x2z over the
region E bounded by the cylinder x2 + y2 = 1, the paraboloid z = x2 + y2,
and the plane z = 0.

Solution: The solid E is axially symmetric because it is bounded from
below by the plane z = 0, by the circular paraboloid from above, and the side
boundary is the cylinder. Hence, the projection Dxy of E onto the xy plane
is a disk of unit radius. It is the image of the rectangle D′

xy = [0, 1]× [0, 2π]

in the polar plane. The top and bottom boundaries are z = ztop(r, θ) = r2

and z = zbot(r, θ) = 0. Hence,

∫∫∫

E
x2z dV =

∫ 2π

0

∫ 1

0

∫ r2

0
r2 cos2 θ z r dz dr dθ

=
1

2

∫ 2π

0
cos2 θ dθ

∫ 1

0
r7dr =

π

16
,

where the double-angle formula, cos2 θ = (1 + cos(2θ))/2, has been used to
evaluate the integral. �

35.3. Spherical Coordinates. Spherical coordinates are introduced by the
following geometrical procedure. Let (x, y, z) be a point in space. Consider a
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Figure 35.3. Spherical coordinates and their relation to
the rectangular coordinates. A point P in space is defined by
its distance to the origin ρ, the angle φ between the positive
z axis and the ray OP , and the polar angle θ.

ray from the origin through this point (see Figure 35.3). Any such ray lies in
the half-plane corresponding to a fixed value of the polar angle θ. Therefore,
the ray is uniquely determined by the polar angle θ and the angle φ between
the ray and the positive z axis. If ρ is the distance from the origin to the
point (x, y, z), then the ordered triple of numbers (ρ, φ, θ) defines uniquely
any point in space. The triples (ρ, φ, θ) are called spherical coordinates in
space.

To find the transformation law from spherical to rectangular coordinates,
consider the plane that contains the z axis and the ray from the origin
through P = (x, y, z) and the rectangle with vertices (0, 0, 0), (0, 0, z), P ′ =
(x, y, 0), and (x, y, z) in this plane as depicted in Figure 35.3. The diagonal
of this rectangle has length ρ (the distance between (0, 0, 0) and (x, y, z)).
Therefore, its vertical side has length z = ρ cosφ because the angle between
this side and the diagonal is φ. Its horizontal side has length |OP ′| = ρ sinφ.

On the other hand, |OP ′| =
√

x2 + y2 = r is the distance between (0, 0, 0)
and (x, y, 0). Therefore r = ρ sinφ. Since x = r cos θ and y = r sin θ, it is
concluded that

(35.3) x = ρ sinφ cos θ , y = ρ sinφ sin θ , z = ρ cosφ .

These equations define a transformation T of an ordered triple (ρ, φ, θ) to
an ordered triple (x, y, z). It follows from Figure 35.3 that the range of the
zenith angle φ must be the interval [0, π] because φ is the angle between the
positive z axis and a ray from the origin. If φ = 0, the ray coincides with
the positive z axis. If φ = π, the ray is the negative z axis. Any ray with
φ = π/2 lies in the xy plane. The variable ρ is non-negative as it is the
distance from the origin to a point in space.
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Under the transformation (35.3)

T : (0, φ, θ) → (0, 0, 0) ;

T : (ρ, 0, θ) → (0, 0, ρ) ;

T : (ρ, π, θ) → (0, 0,−ρ) .

So the plane ρ = 0 collapses into a single point, while the planes φ = 0
and φ = π are mapped to the positive and negative z axes, respectively. It
follows from the geometrical interpretation of the spherical coordinates that
the transformation (35.3) is one-to-one if the range of (ρ, φ, θ) is restricted
to (0,∞)× (0, π)× [0, 2π). The inverse transformation is then defined by

(35.4) ρ =
√

x2 + y2 + z2 , cotφ =
z

r
=

z
√

x2 + y2
, x sin θ = y cos θ ,

here the last equation is solved for θ as explained in Section 32 where the
polar coordinates are discussed. On the other hand, the image of the set
[0,∞)×[0, π]×[0, 2π] covers the entire space spanned by (x, y, z). Therefore,
any region E in space is the image of a region E ′ under the transformation
(35.3) that lies in [0,∞)×[0, π]×[0, 2π], and the transformation T : E ′ → E
is one-to-one except possibly at the boundary of E ′. However, the multiple-
counting occurs on the set that has no volume and for this reason the full
range [0,∞)×[0, π]×[0, 2π] of spherical coordinates can be used for purposes
of integration. As noted earlier, any closed interval of length 2π may be
chosen as the full range of the polar angle instead of [0, 2π].

Coordinate Surfaces of Spherical Coordinates. It follows from the inverse
transformation (35.4) that all points (x, y, z) that have the same value of
ρ = ρ0 form a sphere of radius ρ0 centered at the origin because they are at
the same distance ρ0 from the origin. Naturally, the coordinate surfaces of θ
are the half-planes described earlier when discussing cylindrical coordinates.
Consider a ray from the origin that has the angle φ = φ0 (here 0 < φ0 < π)
with the positive z axis. By rotating this ray about the z axis, all rays with
the fixed value of φ are obtained. Therefore, the coordinate surface φ = φ0

is a circular cone whose axis is the z axis. For small values of φ, the cone
is a narrow cone about the positive z axis. The cone becomes wider as φ
increases so that it coincides with the xy plane when φ = π/2. For φ > π/2,
the cone lies below the xy plane, and it eventually collapses into the negative
z axis as soon as φ reaches the value π. Thus, the coordinate surfaces of the
spherical coordinates are

T : ρ = ρ0 → x2 + y2 + z2 = ρ2
0 (sphere),

T : φ = φ0 → z = cot(φ0)
√

x2 + y2 (cone),

T : θ = θ0 → y cos θ0 = x sin θ0 (half-plane).

The coordinate surfaces of spherical coordinates are depicted in Figure 35.4.
A point in space can be viewed as the point of intersection of three coordinate
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Figure 35.4. Coordinate surfaces of spherical coordinates:
Spheres ρ = ρ0, circular cones φ = φ0, and half-planes θ = θ0

bounded by the z axis. In particular, φ = 0 and φ = π
describe the positive and negative z axes, respectively, and
the cone with the angle φ = π/2 becomes the xy plane.

surfaces: the sphere, cone, and half-plane (if the positive and negative z axes
are viewed at the limit cases of the cone φ = φ0 where φ0 → 0 and φ0 → π).
If E is bounded by coordinate surfaces of spherical coordinates, then E is
the image of a rectangular box E ′ = [ρ1, ρ2]× [φ1, φ2]× [θ1, θ2].

Example 35.3. Let E be the portion of the solid bounded by the sphere
x2+y2+z2 = 4 and the cone z2 = 3(x2+y2) that lies in the first octant. Find
the region E ′ spanned by (ρ, φ, θ) in [0,∞)× [0, π]× [0, 2π] that is mapped
into E by the transformation (ρ, φ, θ)→ (x, y, z).

Solution: The region E has four boundaries: the sphere, the cone z =√
3
√

x2 + y2, the xz plane (x ≥ 0), and the yz plane (y ≥ 0). Writing the
equations of the boundary surfaces in spherical coordinates the correspond-
ing boundary surfaces of E ′ are obtained:

x2 + y2 + z2 = 4 ⇒ ρ = 2 ,

z =
√

3
√

x2 + y2 ⇒ cotφ =
√

3 or φ = π/6 ,

y = 0, x > 0 ⇒ θ = 0 ,

x = 0, y > 0 ⇒ θ = π/2 .

The region E is intersected by all spheres with radii 0 < ρ ≤ 2, all cones
with angles 0 < φ ≤ π/6, and all half-planes with angles 0 ≤ θ ≤ π/2.
Therefore

T : E ′ = [0, 2]× [0, π/6]× [0, π/2] → E .

�



35. TRIPLE INTEGRALS IN SPHERICAL COORDINATES 533

dφ

dA
ρdφ

z
r

rdθ

ρ

ρ

dθ

dφ dA

dρ

dθ

dθ

Figure 35.5. Left: The base of a partition element in
spherical coordinates is a portion of a sphere of radius ρ cut
out by two cones with the angles φ and φ+dφ, where dφ = ∆φ
and by two half-planes with the angles θ and θ + dθ, where
dθ = ∆θ. Its area is dA = (ρdφ) · (rdθ) = ρ2 sin φ dφ dθ
if only terms linear in dφ and dθ are retained. Right: A
partition element has the height dρ = ∆ρ as it lies be-
tween two spheres whose radii differ by dρ. So, its volume
is dV = dAdρ = ρ2 sinφdρdφdθ = JdV ′ and the Jacobian of
spherical coordiantes is J = ρ2 sinφ.

35.4. Triple integrals in spherical coordinates. Suppose that f is integrable
on a bounded closed region E. A triple integral in spherical coordinates is
obtained by partitioning the integration region E by coordinate surfaces of
spherical coordinates, that is, spheres, cones, and half-planes, constructing
the Riemann sum (34.3), and taking its limit under a refinement of the
partition. Let E ′ be mapped onto a region E under the transformation
(35.3). If E is bounded, then E ′ must be bounded, too. Indeed, E lies in
a ball of sufficiently large radius and hence the range of ρ in E ′ must be
bounded, whereas the range of (φ, θ) is always bounded. Therefore E ′ is
contained in the rectangular box [a, b]× [c, d]× [s, q] (E is contained in the
image of this box). Consider a rectangular partition of E ′ by equispaced
planes ρ = ρi, φ = φj, and θ = θk such that

ρ0 = a , ρi = ρi−1 + ∆ρ , ∆ρ = (b− a)/N1 , i = 1, 2, ..., N1 ,

φ0 = c , φj = φj−1 + ∆φ , ∆φ = (d− c)/N2 , j = 1, 2, ..., N2 ,

θ0 = s , θk = θk−1 + ∆θ , ∆θ = (q − s)/N3 , k = 1, 2, ..., N3 .

The volume of each partition element is ∆V ′ = ∆ρ∆φ∆θ. The rectangular
partition of E ′ induces a partition of E by spheres, cones, and half-planes
so that

T : E ′
ijk = [ρi, ρi + ∆ρ]× [φj, φj + ∆φ]× [θk, θk + ∆θ] → Eijk
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Each partition element Eijk is bounded by two spheres whose radii differ by
∆ρ, by two cones whose angles differ by ∆φ, and by two half-planes the angle
between which is ∆θ as shown in Fig. 35.5. In the limit N = 〈N1, N2, N3〉 →
∞, the numbers ∆ρ, ∆φ, and ∆θ tend to zero. When calculating the volume
of partition elements Eijk only terms linear in dρ = ∆ρ, dφ = ∆φ, and
dθ = ∆θ should be kept so that the volume of Eijk can be written in the
form

∆Vijk = Jijk ∆V ′ .

To find Jijk, note that Eijk lies between two spheres of radii ρi and ρi +∆ρ,
its volume can be written as

∆Vijk = ∆ρ ∆Aijk ,

where ∆Aijk is the area of the portion of the sphere of radius ρi that lies
between two cones and two half-planes. Any half-plane θ = θk intersects the
sphere ρ = ρi along a half-circle of radius ρi. The arc length of the portion
of this circle that lies between the two cones φ = φj and φ = φj + ∆φ is
therefore ∆lij = ρi ∆φ. The cone φ = φj intersects the sphere ρ = ρi along
a circle of radius rij = ρi sin φj (see the text above (35.3)). Hence, the arc
length of the portion of this circle of intersection that lies between the half-
planes θ = θk and θ = θk + ∆θ is ∆mijk = rij ∆θ = ρi sinφj ∆θ. The area
∆Aijk can be approximated by the area of a rectangle with adjacent sides
∆lij and ∆mijk because the circles that contain the arcs of length ∆lij and
∆mijk are intersecting at the right angle. Since only terms linear in ∆φ and
∆θ are to be retained, one can write

∆Aijk = ∆lij ∆mijk = ρ2
i sin φj ∆φ ∆θ ⇒ ∆Vijk = ρ2

i sinφj∆V ′

Let us choose (ρi, φj, θk) to be sample points in E ′
ijk so that T : (ρi, φj, θk)→

rijk, the corresponding sample points in Eijk. Put J = ρ2 sin φ. Then by
Eq. (34.3),

∫∫∫

E
f(x, y, z)dV = lim

N→∞

N1
∑

i=1

N2
∑

j=1

N3
∑

k=1

f(rijk)Jijk∆V ′

=

∫∫∫

E′

f
(

ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ
)

ρ2 sinφ dV ′(35.5)

because the triple sum is the Riemann sum of the function fJ expressed in
spherical coordinates over the region E ′ and, hence, should converge to the
triple integral of fJ over E ′, provided fJ is integrable on E ′. One can prove
that if f is integrable on E, then fJ is integrable on E ′.

Thus, Equation (35.5) defines the triple integral in spherical coordinates.
The coefficient J in the volume transformation

dV = J dV ′ , J = ρ2 sinφ ,

is called the Jacobian of the transformation to spherical coordinates. It
vanishes in the planes ρ = 0, φ = 0, and φ = π of a Euclidean space spanned
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ρ = 2 cosφ

φ = π/4
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Figure 35.6. An illustration to Example 35.5. Any ray in
space is defined as the intersection of a cone with an angle
φ and a half-plane with an angle θ. To find E ′ whose image
is the depicted solid E, note that any such ray intersects E
along a single straight line segment if 0 ≤ φ ≤ π/4 where the
cone φ = φ/4 is a part of the boundary of E. Due to the
axial symmetry of E, there is no restriction on the range of
θ, i.e., 0 ≤ θ ≤ 2π in E ′. The range of ρ is determined by
the length of the segment of intersection of the ray at fixed
φ and θ with E: 0 ≤ ρ ≤ 2 cosφ where ρ = 2 cosφ is the
equation of the top boundary of E in spherical coordinates.

by ordered triples (ρ, φ, θ). As noted before, the transformation (35.3) is
not one-to-one on them. The Jacobian vanishes only in the boundary of
[0,∞) × [0, π] × [0, 2π] whose image covers the whole space spanned by
(x, y, z). It is worth noting that in any open region in [0,∞)× [0, π]× [0, 2π]
the Jacobian is strictly positive (it does not vanish) and the transformation
T defined in (35.3) has the inverse defined in (35.4).

The main advantage of converting a multiple integral to curvilinear coor-
dinates is a simplification of the region of integration. Therefore the conver-
sion of a triple integral to spherical coordinates is advantageous if the region
of integration is bounded by coordinate surfaces of spherical coordinates.

Example 35.4. Evaluate
∫∫∫

E zdV if E lies in the first octant and is

bounded by the planes y = x, y =
√

3x, z = 0, and the sphere x2+y2+z2 = 1.
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Solution: The equations of the boundaries of E in spherical coordinates
are:

y = x , x > 0 ⇒ tan θ = 1 ⇒ θ = π/4 ,

y =
√

3x , x > 0 ⇒ tan θ =
√

3 ⇒ θ = π/3 ,

z = 0 ⇒ φ = π/2 ,

x2 + y2 + z2 = 1 ⇒ ρ = 1 .

Since E is in the first octant, 0 ≤ φ ≤ π/2. Thus,

T : E ′ = [0, 1]× [0, π/2]× [π/4, π/3] → E .

Therefore, by Eq. (35.5) and Fubini’s theorem
∫∫∫

E
z dV =

∫∫∫

E′

ρ cosφJ dV ′ =

∫∫∫

E′

ρ3 cosφ sinφ dV ′

=

∫ π/3

π/4

dθ

∫ π/2

0

cos φ sinφ dφ

∫ 1

0

ρ3dρ

=
π

12
·
(

1

2
sin2 φ

∣

∣

∣

π/2

0

)

· 1
4

=
π

96
.

�

Example 35.5. Find the volume of the solid E bounded by the sphere

x2 + y2 + z2 = 2z and the cone z =
√

x2 + y2.

Solution: By completing the squares, the equation x2 + y2 + z2 = 2z is
written in the standard form x2 +y2 +(z−1)2 = 1, which describes a sphere
of unit radius centered at (0, 0, 1). So E is bounded from the top by this
sphere, while the bottom boundary of E is the cone, and E has no other
boundaries (see Figure 35.6). In spherical coordinates, the equations of the
boundary surfaces are

x2 + y2 + z2 = 2z ⇒ ρ2 = 2ρ cosφ ⇒ ρ = 2 cosφ ,

z =
√

x2 + y2 ⇒ cot φ = 1 ⇒ φ = π/4 .

The boundaries of E impose no restriction on θ, which can therefore be
taken over its full range. Since E lies above the xy plane, 0 ≤ φ ≤ π/4.
Hence,

T : E ′ =
{

(ρ, φ, θ) | 0≤ ρ ≤ 2 cosφ , (φ, θ) ∈ [0, π/4]× [0, 2π]
}

→ E .

Since the range of ρ depends on the other variables, the integration with
respect to it must be carried out first when converting the triple integral
over E ′ into an iterated integral (E ′ is simple in the direction of the ρ axis
and the projection of E ′ onto the φθ plane is the rectangle [0, π/4]× [0, 2π]).
The order in which the integration with respect to θ and φ is carried out is
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irrelevant because the angular variables range over a rectangle. One has

V (E) =

∫∫∫

E

dV =

∫∫∫

E′

J dV ′ =

∫∫∫

E′

ρ2 sinφ dV ′

=

∫ 2π

0

∫ π/4

0
sin φ

∫ 2 cos φ

0
ρ2 dρ dφ dθ

=
8

3

∫ 2π

0

dθ

∫ π/4

0

cos3 φ sinφ dφ =
16π

3

∫ 1

1/
√

2

u3 du = π,

where the change of variables u = cosφ has been carried out in the last
integral. �

35.5. Study Problems.

Problem 35.1. Convert the iterated integral in cylindrical coordinates
∫ π/2

0

∫ 1

0

∫

√
2−r2

r
r2 cos θ

√

z2 + r2 dzdrdθ

to spherical coordinates and evaluate it.

Solution: In order to convert the given iterated integral to spherical coor-
dinates, one has first to reconstruct the triple integral in rectangular coor-
dinates which has been converted to cylindrical coordinates. In particular,
one has to find the integration region. The triple integral in rectangular
coordinates is then converted to spherical coordinates. First, note that the
volume transformation law in cylindrical coordinates is

dxdydz = Jdzdrdθ , J = r .

Therefore the integrand in the triple integral is

f(x, y, z) = r cos θ
√

z2 + r2 = x
√

x2 + y2 + z2 ,

where the relations between the cylindrical and rectangular coordinates have
been used. If E is the integration region of the triple integral in rectangular
coordinates and Dxy is its projection onto the xy plane, then Dxy is the
image of the rectangle D′

xy = [0, 1]× [0, π/2] in the polar plane according to

Eq. (35.2). Therefore Dxy is the part of the disk x2 + y2 ≤ 1 in the first
quadrant:

Dxy = { (x, y) | x2 + y2 ≤ 1 , x ≥ 0 , y ≥ 0} .

Converting the equation of the top and bottom boundaries of E back to the
rectangular coordinates:

z =
√

2− r2 ⇒ x2 + y2 + z2 = 2 , z = r ⇒ z =
√

x2 + y2

it is concluded that E is the part of a solid bounded by the sphere x2 +

y2 + z2 = 2 and the cone z =
√

x2 + y2 that lies in the first octant (as
0 ≤ θ ≤ π/2). Expressing the function and the volume element in spherical
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coordinates, the given iterated integral is proved to be equal to the triple
integral in spherical coordinates

∫∫∫

E
fdV =

∫∫∫

E′

ρ2 sinφ cos θ J dV ′ , J = ρ2 sinφ .

Next, one has to find E ′. Rewriting the equations of the boundary surfaces
of E in spherical coordinates

x2 + y2 + z2 = 2 ⇒ ρ2 = 2 ⇒ ρ =
√

2 ,

z =
√

x2 + y2 ⇒ cotφ = 1 ⇒ φ = π/4 ,

and taking into account the side boundaries θ = 0 and θ = π/2, it is
concluded that

E ′ = [0,
√

2]× [0, π/4]× [0, π/2] .

Therefore by Fubini’s theorem
∫∫∫

E
fdV =

∫ π/2

0
cos θ dθ

∫ π/4

0
sin2 φ dφ

∫

√
2

0
ρ4dρ

= 1 ·
(1

2
φ− 1

4
sin(2φ)

)∣

∣

∣

π/4

0
· 1
5

(
√

2)5

=
(π

8
− 1

4

)4
√

2

5
=

π − 2

5
√

2
,

where the double angle formula sin2 φ = (1 − cos(2φ))/2 has been used to
evaluate the integral with respect to φ. �

35.6. Exercises.

1–3. Sketch the solid E onto which the specified region E ′ is mapped by
the transformation (r, θ, z)→ (x, y, z).

1. E ′ = [0, 3]× [−π/4, π/4]× [0, 1] ;
2. E ′ = {(r, θ, z) | r− 1 ≤ z ≤ 1− r , (r, θ) ∈ [0, 1]× [0, π/2]} ;
3. E ′ = {(r, θ, z) | 0≤ z ≤ 4− r2 , (r, θ) ∈ [0, 2]× [0, π/2]} .

4–7. Given the solid E, find the region E ′ whose image is E under the
transformation to cylindrical coordinates and the transformation is one-to-
one except perhaps on the boundary of E ′.

4. E is bounded by the cylinder x2 + y2 = 1, the paraboloid z =
x2 + y2, and the plane z = 0 ;

5. E is bounded by the cone (z − 1)2 = x2 + y2 and the cylinder
x2 + y2 = 1 ;

6. E is bounded by the paraboloid z = x2 +y2, the cylinder x2 +y2 =
2x, and the plane z = 0 ;

7. E is the part of the ball x2 + y2 + z2 ≤ a2 in the first octant .

8–14. Evaluate the triple integral by converting it to cylindrical coordinates.

8.
∫∫∫

E |z|dV , where E is bounded by the sphere x2 +y2 + z2 = 4 and

lies inside the cylinder x2 + y2 = 1 ;
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9.
∫∫∫

E(x2y + y3)dV , where E lies beneath the paraboloid z = 1 −
x2 − y2 in the first octant ;

10.
∫∫∫

E ydV , where E is enclosed by the planes z = 0, x+y− z = −5,

and by the cylinders x2 + y2 = 1, x2 + y2 = 4 ;
11.

∫∫∫

E dV , where E is enclosed by the cylinder x2 + y2 = 2x, by the

plane z = 0, and by the cone z =
√

x2 + y2 ;
12.

∫ ∫ ∫

E yz dV , where E lies beneath the paraboloid z = a2−x2− y2

in the first octant ;
13.

∫∫∫

E(x2 + y2)dV , where E is bounded by the surfaces x2 + y2 = 2z
and z = 2 ;

14.
∫

E xyzdV , where E lies in the first octant and is bounded by the

surfaces x2 + y2 = az, x2 + y2 = bz, xy = c2, xy = k2, y = αx,
y = βx, and 0 < a < b, 0 < α < β, 0 < c < k .

15–17. Sketch the solid E onto which the specified region E ′ is mapped by
the transformation (ρ, φ, θ)→ (x, y, z)

15. E ′ = [0, 1]× [0, π/2]× [0, π/4];
16. E ′ = [1, 2]× [0, π/4]× [0, π/2];
17. E ′ = {(ρ, φ, θ) | 1

cosφ ≤ ρ ≤ 2 , (φ, θ) in [0, π/6]× [0, π]} .
18–20. Given the solid E, find the region E ′ whose image is E under the
transformation to spherical coordinates and the transformation is one-to-one
except perhaps on the boundary of E ′.

18. E lies between two spheres x2 + y2 + z2 = 1 and x2 + y2 + z2 = 4
in the first octant ;

19. E is defined by the inequalities z2 ≤ 3(x2+y2) and x2+y2+z2 ≤ a2 ;
20. E is bounded by the sphere x2+y2+z2 = a2 and by the half-planes

y =
√

3x, y = x/
√

3 where x ≥ 0 ;
21. E is bounded by the surface x2 + y2 + z2 = 4z .

22–27. Evaluate each of the following triple integrals by converting it to
spherical coordinates.

22.
∫∫∫

E(x2 + y2 + z2)3dV , where E is the ball of radius a centered at
the origin ;

23.
∫∫∫

E y2dV , where E is bounded by yz plane and the hemispheres

x =
√

1− y2 − z2, x =
√

4− y2 − z2 . Hint: Use spherical coordi-
nates in which the polar angle is defined in the yz plane ;

24.
∫∫∫

E xyzdV, where E is enclosed by the cone z =
√

3
√

x2 + y2 and

the spheres x2 + y2 + z2 = a2, and a = 1, 2 ;
25.

∫∫∫

E zdV , where E is the part of the ball x2 + y2 + z2 ≤ 1 that lies

below the cone z =
√

3x2 + 3y2 ;
26.

∫∫∫

E zdV , where E lies in the first octant between the planes y = 0

and x =
√

3 y, above the cone z =
√

x2 + y2, and inside the sphere
x2 + y2 + z2 = 4 ;
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27.
∫∫∫

E

√

x2 + y2 + z2dV , where E is bounded by the sphere

x2 + y2 + z2 = z .

28–29. Sketch the region of integration in the triple integral corresponding
to the given iterated integral, write the triple integral in spherical coordi-
nates, and then evaluate it.

28.
∫ 1
0

∫

√
1−x2

0

∫ 1√
x2+y2

zdzdydx ;

29.
∫ 1
0

∫

√
1−x2

0

∫

√
2−x2−y2√
x2+y2

z2dzdydx .

30. Sketch the solid whose volume is given by the iterated integral in the
spherical coordinates:
∫ π/2
0

∫ π/4
0

∫ 2/ cosφ
0 ρ2 sin φdρdφdθ

Write the integral in cylindrical coordinates and evaluate it.
31. Sketch the region of integration in the triple integral corresponding to
the given iterated integral write the triple integral in cylindrical coordinates,
and then evaluate it:
∫ 1
−1

∫

√
1−x2

−
√

1−x2

∫ 1−x2−y2

0 zdzdydx

32–33. Convert the triple integral
∫∫∫

E f(x2+y2+z2)dV to iterated integrals
in cylindrical and spherical coordinates if E is bounded by the given surfaces.

32. z = x2 + y2, y = x, x = 1, y = 0, z = 0 ;
33. z2 = x2 + y2, x2 + y2 + z2 = 2z, x = y/

√
3, x = y

√
3 where x ≥ 0

and y ≥ 0 .

34–36. Use spherical coordinates to find the volume of a solid bounded by
the given surfaces.

34. x2 + y2 + z2 = a2, x2 + y2 + z2 = b2, z = c
√

x2 + y2, c > 0, and
0 < a < b ;

35. (x2 + y2 + z2)2 = a2(x2 + y2 − z2), a > 0 ;
36. (x2 + y2 + z2)3 = 3xyz .

37. Find the volume of a solid bounded by the surfaces x2 + z2 = a2,
x2 + z2 = b2, x2 + y2 = z2 where x > 0 and 0 < a < b.
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36. Change of Variables in Triple Integrals

36.1. Change of variables in space. Consider a transformation T of an open
region E ′ in space into a region E defined by x = x(u, v, w), y = y(u, v, z),
and z = z(u, v, w); that is, for every point (u, v, w) in E ′, these functions
define an image point (x, y, z) in E.

Definition 36.1. (Jacobian of a Transformation).
Suppose that a transformation of an open region E ′ into E has continuous
partial derivatives. The quantity

∂(x, y, z)

∂(u, v, w)
= det





x′
u y′u z′u

x′
v y′v z′v

x′
w y′w z′w





is called the Jacobian of the transformation.

If the determinant is expanded over the first column, then it can also be
written as the triple product:

(36.1)
∂(x, y, z)

∂(u, v, w)
= ∇x · (∇y ×∇z)

The technical details are left to the reader as an exercise.

Example 36.1. Find the Jacobian of the transformation to spherical
coordinates.

Solution: Let (u, v, w) = (ρ, φ, θ) be the spherical coordinates. Then using
Eq. (35.3) and Definition 36.1,

∂(x, y, z)

∂(ρ, φ, θ)
= det





x′
ρ y′ρ z′ρ

x′
φ y′φ z′φ

x′
θ y′θ z′θ





= det





sin φ cos θ sin φ sin θ cosφ
ρ cosφ cos θ ρ cosφ sin θ −ρ sinφ
−ρ sinφ sin θ ρ sinφ cos θ 0





= sinφ cos θ(ρ2 sin2 φ cos θ − 0)− sinφ sin θ(0− ρ2 sin2 φ sin θ)

+ cosφ[ρ2 cosφ sinφ(cos2 θ + sin2 θ)]

= ρ2 sin3 φ(cos2 θ + sin2 θ) + ρ2 sinφ cos2 φ

= ρ2 sinφ(sin2 φ + cos2 φ)

= ρ2 sinφ .

�

If no two points in E ′ have the same image point, the transformation is
one-to-one, and there is a one-to-one correspondence between points of E
and E ′. The inverse transformation exists and is defined by the functions u =
u(x, y, z), v = v(x, y, z), and w = w(x, y, z). Suppose that these functions
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have continuous partial derivatives so that the gradients of these functions
do not vanish. Then, as shown in Section 24.2, the equations

u(x, y, z) = u0 , v(x, y, z) = v0 , w(x, y, z) = w0 ,

define smooth surfaces. A point (x0, y0, z0) in E is the point of intersection of
three coordinate planes x = x0, y = y0, and z = z0. Alternatively, it can be
viewed as the point of intersection of three coordinate surfaces, u(x, y, z) =
u0, v(x, y, z) = v0, and w(x, y, z) = w0, where the point (u0, v0, w0) in E ′ is
mapped to (x0, y0, z0) by the transformation T .

Definition 36.2. (Change of Variables in Space).
A one-to-one transformation of an open region E ′ defined by x = x(u, v, w),
y = y(u, v, w), and z = z(u, v, w) is called a change of variables (or a
change of coordinates) if the functions x(u, v, w), y(u, v, w), and z(u, v, w)
have continuous partial derivatives on E ′.

The ordered triples (u, v, w) are also called curvilinear coordinates in
space. There is a three-dimensional analog of Theorem 33.1 that establishes
a useful criterion for a transformation to be a change of variables.

Theorem 36.1. (Inverse Function Theorem for Three Variables)
Let a transformation (u, v, w)→ (x, y, z) be defined on an open set U ′ con-
taining a point (u0, v0, w0). Let the point (x0, y0, z0) be the image of the point
(u0, v0, w0). Suppose that the functions x(u, v, w), y(u, v, w), and z(u, v, w)
have continuous partial derivatives in U ′ and the Jacobian of the transfor-
mation does not vanish at the point (u0, v0, w0). Then there exists a open
neighborhood U of (x0, y0, z0) in which the inverse transformation exists, the
functions u = u(x, y, z), v = v(x, y, z), and w = w(x, y, z) have continuous
partial derivatives, and the Jacobian of the inverse transformation is given
by

∂(u, v, w)

∂(x, y, z)
= det





u′
x v′x w′

x

u′
y v′y w′

y

u′
z v′z w′

z



 =
1

∂(x, y, z)

∂(u, v, w)

(36.2)

Equation (36.2) shows that the Jacobian of the direct and inverse trans-
formations are reciprocals of one another. The left side of (36.2) defines the
Jacobian as a function of (x, y, z), while the right side defines the Jacobian
as a function of new variables (u, v, w). By expanding the determinant over
the first column it is not difficult to verify that

(36.3)
∂(u, v, w)

∂(x, y, z)
= ∇u · (∇v ×∇w)

which the analog of (36.1).
The non-vanishing gradients ∇u, ∇v, and ∇w are normal to the level

surfaces of the functions u(x, y, z), v(x, y, z), and w(x, y, z). If the Jaco-
bian does not vanish at a particular point, then by its continuity it cannot
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vanish in a neighborhood of that point. Therefore, by Eq. (36.3), the
gradients are not coplanar in a neighborhood of a point at which the Jaco-
bian does not vanish and the level surfaces in this neighborhood are always
intersecting at a single point. The latter means that the system of equa-
tions u(x, y, z) = u, v(x, y, z) = v, w(x, y, z) = w has a unique solution
x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) (or that the transformation
is one-to-one) near any point at which the Jacobian does not vanish. Fur-
thermore, the image of a rectangular box in a neighborhood of (u0, v0, w0)
looks like a “deformed” rectangular box in a neighborhood of (x0, y0, z0)
whose six faces are level surfaces of the functions u(x, y, z), v(x, y, z), and
w(x, y, z). In other words, level surfaces of the functions u(x, y, z), v(x, y, z),
and w(x, y, z) are coordinate surfaces in a region where the Jacobian is not
zero, just like planes are coordinate surfaces of the rectangular coordinate
system, or spheres, cones, and half-planes are coordinate surfaces of the
spherical coordinate system. This observation is crucial to determine the
volume transformation law under a change of variables.

36.2. The Volume Transformation Law. It is convenient to introduce the
following notations: 〈u, v, w〉 = r′ and 〈x, y, z〉 = r so that the change of
variables is written as

(36.4) r =
〈

x(r′), y(r′), z(r′)
〉

or r′ =
〈

u(r), v(r), w(r)
〉

.

It is assumed that the above relations define a change variable in an open
region E ′. Let

E ′
0 = [u0, u0 + ∆u]× [v0, v0 + ∆v]× [w0, w0 + ∆w]

be a rectangular box in E ′ and E0 be the image of E ′
0 under the change of

variables. As noted before, the image E0 is bounded by smooth surfaces as
depicted in Figure 36.1. If the values of ∆u, ∆v, and ∆w can be made ar-
bitrary small, owing to the smoothness of coordinate surfaces, the boundary
surfaces of E0 can be approximated by tangent planes to them and the vol-
ume of E0 is then approximated by the volume of the polyhedron bounded
by these planes. This implies, in particular, that when calculating the vol-
ume, only terms linear in ∆u, ∆v, and ∆w are to be retained, while their
higher powers are neglected. Therefore the volumes of E0 and E ′

0 must be
proportional:

∆V = J ∆V ′ , ∆V ′ = ∆u ∆v ∆w .

The objective is to calculate J. By the examples of cylindrical and spherical
coordinates, J is a function of the point (u0, v0, w0) at which the rectangle
E ′

0 is taken. The derivation of J is fully analogous to the two-variable case.

An infinitesimal rectangular box in E ′
0 and its image under the coordi-

nate transformation are shown in Fig. 36.1. Let the position vectors of the
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∆V ′

C′ ∆u ∆v

∆w
r′c B′

O′
r′b

A′

w
r′ar′0

u

v

∆V

C
Brc

rb
AO

r0 ra

x

y

z

Figure 36.1. Left: A rectangular box E ′
0 with small

sides du = ∆u, dv = ∆v, dw = ∆w so that its volume
∆V ′ = dudvdw. Right: The image of the rectangular box
under a change of variables. The position vectors rp, where
p = 0, a, b, a, are images of the position vectors r′p. The vol-
ume ∆V of the image is approximated by the volume of the
parallelepiped with adjacent sides OA, OB, and OC. It is
computed by linearization of ∆V in du, dv, and dw so that
∆V = Jdudvdw = J∆V ′ where J > 0 is the Jacobian of
the change of variables. The approximation is justified in
the limit dr′ → 0 owing to the smoothness of the boundary
surfaces of E0.

points O′, A′, B′, and C′ be, respectively,

r′0 = 〈u0, v0, w0〉 ,
r′a = 〈u0 + ∆u, v0, w0〉 = r′0 + ê1 ∆u,

r′b = 〈u0, v0 + ∆v, w0〉 = r′0 + ê2 ∆v,

r′c = 〈u0, v0, w0 + ∆w〉 = r′0 + ê3 ∆w,

where ê1 = 〈1, 0, 0〉, ê2 = 〈0, 1, 0〉, and ê3 = 〈0, 0, 1〉 are unit vectors along
the first, second, and third coordinate axes, respectively. In other words,
the segments O′A′, O′B′, and O′C′ are the adjacent sides of the rectangular
box E ′

0. Let O, A, B, and C be the images of O′, A′, B′, and C′. Owing to
the smoothness of the boundary surfaces of E0, the volume ∆V of E0 can
be approximated by the volume of the parallelepiped with adjacent sides
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a =
−→
OA, b =

−−→
OB, and c =

−−→
OC. Then

a =
(

x(r′a)− x(r′0), y(r′a)− y(r′0), z(r′a)− z(r′0)
)

= (x′
u, y′u, z′u) ∆u,

b =
(

x(r′b)− x(r′0), y(r′b)− y(r′0), z(r′b)− z(r′0)
)

= (x′
v, y′v , z′v) ∆v,

c =
(

x(r′c)− x(r′0), y(r′c)− y(r′0), z(r′c)− z(r′0)
)

= (x′
w, y′w, z′w) ∆w,

where all the differences have been linearized, for instance,

x(r′a)− x(r′0) = x(r′0 + ê1 ∆u)− x(r′0) =
∂x

∂u
(r′0)∆u = x′

u(r′0) ∆u .

The function x(u, v, w) has continuous partial derivatives and, hence, differ-
entiable. Therefore the error of the above approximation tends to zero faster
than ∆u as ∆u → 0. Similarly, owing to differentiability of the functions
x(r′), y(r′), and z(r′), all the differences in the components of the vectors a,
b and c can be linearized in ∆u, ∆v, and ∆w. The error of this approxima-
tion decreases to zero faster than ∆u, ∆v, ∆w as the latter approach zero
values.

In the limit (∆u, ∆v, ∆w) → (0, 0, 0), the volume of the image of the
rectangular box E ′

0 is well approximated by the volume of the parallelepiped
with adjacent sides a, b, and c:

(36.5) ∆V = |a · (b× c)| =

∣

∣

∣

∣

∣

∣

det





x′
u y′u z′u

x′
v y′v z′v

x′
w y′w z′w





∣

∣

∣

∣

∣

∣

∆u ∆v ∆w = J ∆V ′,

where the derivatives are evaluated at (u0, v0, w0). The function J in (36.5)
is the absolute value of the Jacobian of the transformation. Since the consid-
ered transformation is a change of variables, the Jacobian does not vanish.
Equation (36.5) defines J as a function of new variables (u, v, w). By Equa-
tion (36.2), J can also be determined as a function of old variables (x, y, z):

J =
1

∣

∣

∣

∣

∂(u, v, w)

∂(x, y, z)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

det





u′
x u′

y u′
z

v′x v′y v′z
w′

x w′
y w′

z





∣

∣

∣

∣

∣

∣

−1

(36.6)

36.3. Triple Integral in Curvilinear Coordinates. As in the case of double
integrals, a change of variables in space can be used to simplify the evaluation
of triple integrals. For example, if there is a change of variables whose
coordinate surfaces form the boundary of the integration region E, then
the new integration region E ′ is a rectangular box, and the limits in the
corresponding iterated integral are greatly simplified in accordance with
Fubini’s theorem.

The derivation of the triple integral in curvilinear coordinates follows
the same conceptual steps as in the case of spherical coordinates. Suppose
the integration region E is the image of a closed bounded region E ′ under
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a transformation that defines a change of variables in a rectangular box
R′

E = [a, b]× [c, d]× [s, q] except perhaps on the boundary of R′
E and the

rectangular box R′
E contains E ′. Then E is contained in the image RE of

R′
E. The integrand f is extended to RE by setting its values to zero for

all points that are not in E. Consider a rectangular partition of E ′ by the
planes u = ui, v = vj, and w = wk such that

u0 = a , ui = ui−1 + ∆u , ∆u = (b− a)/N1 , i = 1, 2, ..., N1 ,

v0 = c , vj = uj−1 + ∆v , ∆v = (d− c)/N2 , j = 1, 2, ..., N2 ,

w0 = s , wk = wk−1 + ∆w , ∆w = (q − s)/N3 , k = 1, 2, ..., N3 .

This rectangular partition of E ′ corresponds to a partition of E by the
coordinate surfaces u(r) = ui, v(r) = vj, and w(r) = wk. Under the trans-
formation considered

T : E ′
ijk = [ui−1, ui]× [vj−1, vj]× [wk−1, wk] → Eijk ,

where Eijk is a partition element of E. Consider the Riemann sum of
f for this partition of E. The triple integral of f over E is the three-
variable limit of the Riemann sum (34.3) as N = 〈N1, N2, N3〉 → ∞ (or
(∆u, ∆v, ∆w)→ (0, 0, 0)). The volume ∆Vijk of Eijk is related to the vol-
ume of the rectangular box E ′

ijk by (36.5). By continuity of J, its value

in (36.5) can be taken at any sample point in E ′
ijk because variations of

a sample point yields corrections that decreases to zero faster than ∆V ′.
Therefore the limit of the Riemann sum is the triple integral of fJ over the
region E ′. The above qualitative consideration suggests that the following
theorem holds (a full proof is considered in advanced calculus courses).

Theorem 36.2. (Change of Variables in Triple Integrals).
Let a transformation E ′ → E defined by functions (u, v, w)→ (x, y, z) with
continuous partial derivatves have a non-vanishing Jacobian, except perhaps
on the boundary of E ′. Suppose that f is continuous on E and E is bounded
by piecewise smooth surfaces. Then

∫∫∫

E
f(r) dV =

∫∫∫

E′

f(x(r′), y(r′), z(r′))J(r′) dV ′ ,

J(r′) =

∣

∣

∣

∣

∂(x, y, z)

∂(u, v, w)

∣

∣

∣

∣

.

Evaluation of a triple integral in curvilinear coordinates follows the same
steps as for a double integral in curvilinear coordinates.

Example 36.2. (Volume of an Ellipsoid).
Find the volume of a solid region E bounded by an ellipsoid x2/a2 +y2/b2 +
z2/c2 = 1, where a, b, and c are positive numbers.

Solution: The integration domain can be simplified by a scaling transfor-
mation x = au, y = bv, and z = cw under which the ellipsoid is mapped
onto a sphere of unit radius u2 + v2 + w2 = 1 (see Figure 36.2). The image
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x
y

z

a b

c E
E ′

1
1

1

u
v

w

Figure 36.2. An illustration to Example 36.2. The el-
lipsoidal region x2/a2 + y2/b2 + z2/c2 ≤ 1 is mapped onto
the ball u2 + v2 + w2 ≤ 1 by the coordinate transformation
u = x/a, v = y/b, w = z/c with the Jacobian J = abc

E ′ of E is a ball of unit radius. The transformation defines a change of
variables because its Jacobian vanishes nowhere:

J =

∣

∣

∣

∣

∂(x, y, z)

∂(u, v, w)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

det





a 0 0
0 b 0
0 0 c





∣

∣

∣

∣

∣

∣

= abc 6= 0 .

Therefore,

V (E) =

∫∫∫

E
dV =

∫∫∫

E′

J dV ′ = abc

∫∫∫

E′

dV ′

= abcV (E ′) =
4π

3
abc.

�

When a = b = c = R, the ellipsoid becomes a ball of radius R, and a familiar
expression for the volume is recovered: V = (4π/3)R3.

Example 36.3. Let a, b, and c be non-coplanar vectors. Find the vol-
ume of a solid E bounded by the surface (a · r)2 + (b · r)2 + (c · r)2 = R2

where r = 〈x, y, z〉.
Solution: Define new variables by the transformation u = a · r, v = b · r,
w = c · r. The Jacobian of this transformation is obtained by Eqs. (36.6)
where it is convenient to use the representation (36.3)

∂(x, y, z)

∂(u, v, w)
=

(

∂(u, v, w)

∂(x, y, z)

)−1

=
(

∇u · (∇v ×∇w)
)−1

=
(

a · (b× c)
)−1
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The vector a, b, and c are non-coplanar and, hence, their triple product does
not vanish. So, the transformation is a genuine change of variables. Under
this transformation the boundary of E becomes a sphere u2 +v2 +w2 = R2.
So, the region E is mapped onto the ball E ′ of radius R. Therefore

V (E) =

∫∫∫

E
dV =

∫∫∫

E′

JdV ′ =
1

|a · (b× c)|

∫∫∫

E′

dV ′

=
V (E ′)

|a · (b× c)| =
4πR3

3|a · (b× c)|
where V (E ′) = 4πR3/3 is the volume of a ball of radius R. �

36.4. Volume Preserving Transformations and Symmetry. Consider a trans-
formation such that the absolute value of its Jacobian is one. Then the
volume transformation law reads dV = JdV ′ = dV ′ and therefore such a
transformation preserves the volume:

V (E) =

∫∫∫

E

dV =

∫∫∫

E′

JdV ′ =

∫∫∫

E′

dV ′ = V (E ′) .

This allows us to prove the assertion stated in Section 34.2 about the use of
symmetry in triple integrals which is the analog of Theorem 33.3 for triple
integrals.

Theorem 36.3. (Symmetry of Triple Integrals)
Let a function f be integrable on a region E. Suppose that a volume-
preserving transformation x = x(u, v, w), y = y(u, v, w), z = z(u, v, w)
maps a region E onto itself. Suppose that the function f is skew-symmetric
under this transformation, that is,

f(x(u, v, w), y(u, v,w), z(u, v,w)) = −f(u, v, w) .

Then the triple integral of f over E vanishes.

Proof. Since E ′ = E and dV = dV ′, the change of variables yields

I =

∫∫∫

E
f(x, y, z) dV =

∫∫∫

E
f(x(u, v, w), y(u, v,w), z(u, v,w)) dV ′

= −
∫∫∫

E
f(u, v, z) dV ′ = −I ;

that is, I = −I , or I = 0. �

36.5. Study Problems.

Problem 36.1. (Volume of a Tetrahedron).
A tetrahedron is a solid with four vertices and four triangular faces. Let
the vectors a, b, and c be three adjacent sides of the tetrahedron. Find its
volume.
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c

y

z

E

x

a

b

u

v

w

q

q

q

E ′

a
′

b
′

c
′

Figure 36.3. An illustration to Study Problem 36.1. A
general tetrahedron is transformed to a tetrahedron whose
faces lie in the coordinate planes by a change of variables.

Solution: Consider first a tetrahedron whose adjacent sides are along the
coordinate axes and have the same length q. From the geometry, it is clear
that six such tetrahedrons form a cube of volume q3. Therefore, the volume
of each tetrahedron is q3/6 (if so desired this can also be established by
evaluating the corresponding triple integral; this is left to the reader). The
idea is to make a change of variables such that a generic tetrahedron is
mapped onto a tetrahedron whose adjacent faces lie in the three coordinate
planes (see Figure 36.3. The adjacent faces of a generic tetrahedron are
portions of the planes through the origin. The face containing vectors a and
b is perpendicular to vector n = a× b so the equation of this boundary is
n · r = 0. The other adjacent faces are obtained similarly:

n · r = 0 or n1x + n2y + n3z = 0 , n = a× b,

l · r = 0 or l1x + l2y + l3z = 0 , l = c × a,

m · r = 0 or m1x + m2y + m3z = 0 , m = b× c,

where r = 〈x, y, z〉. So, by putting

u = m · r , v = l · r w = n · r ,

the images of these planes become the coordinate planes, w = 0, v = 0, and
u = 0. The defined transformation is a genuine change of variables because
its Jacobian does not vanish because the vectors n, l, and m are not coplanar
(as they are normals to adjacent faces of the tetrahedron). To see this, it is
convenient to use the representation (36.6) in combination with the relation
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(36.3):

J =
1

∣

∣

∣

∣

∂(u, v, w)

∂(x, y, z)

∣

∣

∣

∣

=
1

|∇u · (∇v ×∇w)| =
1

|m · (n× l)| .

Furthermore a linear equation in the old variables becomes a linear equation
in the new variables under a linear transformation. Therefore, an image of a
plane is a plane. So the fourth boundary of E ′ is a plane through the points
a′, b′, and c′, which are the images of r = a, r = b, and r = c, respectively.
One has

a′ = 〈u(a), v(a), w(a)〉 = 〈q, 0, 0〉 , q = a ·m = a · (b× c)

because a · n = 0 and a · l = 0 by the geometrical properties of the cross
product. Similarly,

b′ = 〈u(b), v(b), w(b)〉 = 〈0, q, 0〉 , c′ = 〈u(c), v(c), w(c)〉 = 〈0, 0, q〉 .
Thus, the volume of the image region E ′ is V (E ′) = |q|3/6 (the absolute
value is needed because the triple product can be negative). Therefore,

V (E) =

∫∫∫

E
dV =

∫∫∫

E′

J dV ′ = J

∫∫∫

E′

dV ′ = JV (E ′) =
|q|3J

6
.

The volume V (E) is independent of the orientation of the coordinate axes.
It is convenient to direct the x axis along the vector a. The y axis is directed
so that b is in the xy plane. With this choice,

a = 〈a1, 0, 0〉 , b = 〈b1, b2, 0〉 , c = 〈c1, c2, c3〉 .
A straight forward calculation shows that

q = a1b2c3 , J = (a2
1b

2
2c

2
3)

−1 ⇒ V (E) =
1

6
|a1b2c3| .

Finally, note that |c3| = h is the height of the tetrahedron, that is, the
distance from the vertex c to the opposite face (to the xy plane). The area
of that face is A = ‖a× b‖/2 = |a1b2|/2. Thus,

V (E) =
1

3
hA;

that is, the volume of a tetrahedron is one-third the distance from a vertex
to the opposite face, times the area of that face. �

36.6. Exercises.

1–4. Find the Jacobian of each of the following transformations.

1. x = u/v, y = v/w, z = w/u ;
2. x = v + w2, y = w + u2, z = u + v2 ;
3. x = uv cosw, y = uv sinw, z = (u2 − v2)/2 (these coordinates are

called parabolic coordinates;
4. x + y + z = u, y + z = uv, z = uvw .
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5. Find the region E ′ whose image E under the transformation defined in
Exercise 4. is bounded by the coordinate planes and by the plane x+y+z =
1. In particular, investigate the image of those points in E ′ at which the
Jacobian of the transformation vanishes.
6. Let E be the solid region in the first octant defined by the inequality√

x +
√

y +
√

z ≤ a where a > 0. Find its volume using the triple integral
in the new variables u =

√
x, v =

√
y, w =

√
z.

7–11. Use a suitable change of variables in the triple integral to find the
volume of a solid bounded by the given surfaces.

7. (x/a)2/3 + (y/b)2/3 + (z/c)2/3 = 1, where a, b, and c are positive;
8. (x/a)1/3 + (y/b)1/3 + (z/c)1/3 = 1 where x ≥ 0, y ≥ 0, z ≥ 0 and

a, b, and c are positive;
9. (x/a)n + (y/b)m + (z/c)k = 1 where x ≥ 0, y ≥ 0, z ≥ 0, and the

numbers a, b, c, n, m, and k are positive;
10. (x + y + z)2 = ax + by where (x, y, z) lie in the first octant and a,

b are positive;
11. (x + y)2 + z2 = R2 where (x, y, z) lie in the first octant.

12. Evaluate the triple integral
∫∫∫

E zdV where E lies above the cone z =

c
√

x2/a2 + y2/b2 and bounded from above by the ellipsoid x2/a2 + y2/b2 +
z2/c2 = 1.
13. Evaluate the triple integral

∫∫∫

E(4x2− 9y2)dV where is enclosed by the

paraboloid z = x2/9 + y2/4 and the plane z = 10.
14. Consider a linear transformation of the coordinates x = a · r′, y =
b · r′, z = c · r′ where r′ = 〈u, v, w〉 and the vectors a, b, and c have
constant components. Show that this transformation is volume preserving
if |a · (b× c)| = 1.
15. If a, b, and c are constant vectors, r = 〈x, y, z〉, and E is given by
the inequalities 0 ≤ a · r ≤ α, 0 ≤ b · r ≤ β, 0 ≤ c · r ≤ γ, show that
∫∫∫

E(a · r)(b · r)(c · r)dV = 1
8 (αβγ)2/|a · (b× c)| .

16. Consider parabolic coordinates x = uv cosw, y = uv sinw, z = (u2−v2).
Show that 2z = (x2 + y2)/v2 − v2, 2z = −(x2 + y2)/u2 + u2, and tan w =
y/x. Use these relations to sketch the coordinates surfaces u(x, y, z) =
u0, v(x, y, z) = v0, and w(x, y, z) = w0. Evaluate the triple integral of
f(x, y, z) = xyz over the region E that lies in the first octant beneath the
paraboloid 2z − 1 = −(x2 + y2) and above the paraboloid 2z + 1 = x2 + y2

by converting to parabolic coordinates.
17. Use a suitable change of variables to find the volume of a solid that is
bounded by the surface

(

x2

a2
+

y2

b2

)n

+
z2n

c2n
=

z

h

(

x2

a2
+

y2

b2

)n−2

, n > 1 , h > 0 .
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18. (Generalized Spherical Coordinates) Generalized spherical coordinates
(ρ, φ, θ) are defined by the equations

x = aρ sinn φ cosm θ , y = bρ sinn φ sinm θ , z = cρ cosn φ

where 0 ≤ ρ <∞, 0 ≤ φ ≤ π, 0 ≤ θ < 2π, and a, b, c, n, and m are positive
parameters. Find the Jacobian of the generalized spherical coordinates.
19–22. Use generalized spherical coordinates with a suitable choice of pa-
rameters to find the volume of a solid bounded by the given surfaces.

19. [(x/a)2 + (y/b)2 + (z/c)2]2 = (x/a)2 + (y/b)2 ;
20. [(x/a)2 + (y/b)2 + (z/c)2]2 = (x/a)2 + (y/b)2− (z/c)2 ;
21. (x/a)2 + (y/b)2 + (z/c)4 = 1 ;
22. [(x/a)2 + (y/b)2]2 + (z/c)4 = 1 .

23. (Dirichlet’s integral) Let n, m, p, and s be positive integers. Use the
transformation defined by x + y + z = u, y + z = uv, z = uvw to show that

∫∫∫

E

xnymzp(1− x− y − z)sdV =
n! m! p! s!

(n + m + p + s + 3)!

where E is the tetrahedron bounded by the coordinate planes and the plane
x + y + z = 1.
24. (Orthogonal curvilinear coordinates)
Curvilinear coordinates (u, v, w) are called orthogonal if the normals to their
coordinate surfaces are mutually orthogonal at any point of their intersec-
tion. In other words, the gradients ∇u(x, y, x), ∇v(x, y, z), and ∇w(x, y, z)
are mutually orthogonal. One can define unit vectors orthogonal to the
coordinates surfaces:

(36.7) êu =
∇u

‖∇u‖ , êv =
∇v

‖∇v‖ , êw =
∇w

‖∇w‖

Note that the Jacobian of a change of variables does not vanish and the
relation (36.6) guarantees that these unit vectors are not coplanar and form
a basis in space (any vector can be uniquely expanded into a linear combi-
nation of them).
(i) Show that

‖∇r‖ = 1, ‖∇θ‖ =
1

r
, ‖∇z‖ = 1(36.8)

‖∇ρ‖ = 1 , ‖∇φ‖ =
1

ρ
, ‖∇θ‖ =

1

ρ sinφ
(36.9)

for the cylindrical (r, θ, z) and spherical (ρ, φ, θ) coordinates.
(ii) Show that the spherical and cylindrical coordinates are orthogonal co-
ordinates and, in particular,

(36.10) êr = 〈cos θ, sin θ, 0〉, êθ = 〈− sin θ, cos θ, 0〉, êz = 〈0, 0, 1〉
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for the cylindrical coordinates, and

êr = 〈sinφ cos θ, sinφ sin θ, cosφ〉
êφ = 〈cosφ cos θ, cosφ sin θ,− sinφ〉(36.11)

êθ = 〈− sin θ, cos θ, 0〉
for the spherical coordinates.
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37. Improper Multiple Integrals

37.1. Preliminary Remarks. In the case of one-variable integration, im-
proper integrals occur when the integrand is not bounded at a boundary
point of the integration interval or the integration interval is not bounded.
For example, for ν 6= 1,

(37.1)

∫ 1

0

dx

xν
= lim

a→0+

∫ 1

a

dx

xν
= lim

a→0+

1− a1−ν

1− ν
or

(37.2)

∫ ∞

R

dx

xν
= lim

a→∞

∫ a

R

dx

xν
= lim

a→∞

x1−ν

1− ν

∣

∣

∣

∣

∣

a

R

= −R1−ν

1− ν
+ lim

a→∞

a1−ν

1− ν
.

The limit (37.1) exists if ν < 1 and does not exist if ν > 1. The limit (37.2)
exists if ν > 1 and does not exist if ν < 1. If ν = 1, the improper integrals
diverge as ln a with either a→ 0+ or a→∞, respectively.

By the very definition of a multiple integral, the construction of the
lower and upper sums requires that the function is bounded and the region
of integration is bounded as well. If the function is not bounded, then its
supremum and infimum do not exist for some partition elements. If the
region of integration is not bounded, then it cannot be partitioned into
finitely many pieces of finite areas. In either case, the upper and lower sums
cannot be defined. Just like in the one-variable case, multiple integrals of
unbounded functions, or over unbounded regions, or both are called improper
multiple integrals.

For definitiveness, the discussion will be given for triple integrals. The
case of double integrals is treated along the same line of reasoning and all
the equations hold for double integrals if the symbol

∫∫∫

is replaced by
∫∫

.
It will always be assumed that the boundary of a closed region is piecewise
smooth. Let E be a bounded closed region in space and f is a function on
E (regions in a plane and in space will be denoted by E here). Suppose
now that E contains a set S of zero volume and in any neighborhood of
each point of S, the function f is not bounded. The function f is said to be
singular on S. The objective is to give a definition of the integral of f over
E. Note that the values of f on S are irrelevant (f can be given any values
on S), only the fact that f is not bounded near any point of S requires a
modification of the definition of the integral of f over E. For example, the
function defined by the rule

f(r) =
1

‖r‖ if r 6= 0 , f(0) = 1 ,

is not bounded in any neighborhood of the origin. So, the function is singular
at the origin (despite that it has a value at the origin).

Suppose first that S consists of a single point r0; that is, in any small
open ball Bε of radius ε centered at r0 the values of f(r) are not bounded,
whereas f is bounded on the closed region Eε obtained from E by removing
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Bε

BE
ε

E E

BE
ε = Bε

Sε E

S

Figure 37.1. A regularization of an improper integral.
Left: Bε is a ball centered at a singular point of the inte-
grand. BE

ε is the intersection of Bε with E. The integration
is carried out over the region E with Bε removed. Then
the limit ε → 0 is taken. Middle: The same regularization
procedure when the singular point is an interior point of E.
Right: A regularization procedure when the set S on which
the integrand is singular has more than one point. By re-
moving the set Sε from E, the region Eε is obtained. The
distance between any point of Eε and the set S is no less

than ε.

the ball Bε. Suppose that f is integrable on Eε for any ε > 0 (e.g., f is
continuous on Eε). Then, by analogy with the one-variable case, one can
define the integral of f over E as the limit

(37.3)

∫∫∫

E

f dV = lim
ε→0+

∫∫∫

Eε

f dV ,

provided, of course, the limit exists. Similarly, if S contains more than one
point, one can construct a set Sε that is the union of open balls of radius ε
centered at each point of S. Then Eε is obtained by removing Sε from E.
The regularization procedure is illustrated in Fig. 37.1.

Suppose a region E is not bounded. Let ER be the part of E that lies
in the closed ball ‖r‖ ≤ R and a function f be integrable on ER for all R
for which ER has non-zero volume. Then by analogy with the one variable
case, the improper integral of f can be defined by the rule

(37.4)

∫∫∫

E
fdV = lim

R→∞

∫∫∫

ER

fdV

provided the limit exists.
Although the rules (37.3) and (37.4) seem rather natural generalizations

of one-variable improper integrals, there are subtleties that are specific to
multivariable integrals. This is illustrated by the following example. Sup-
pose that the function

(37.5) f(x, y) =
y2 − x2

(x2 + y2)2
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is to be integrated over the region that is the part of the unit disk (centered
at the origin) in the positive quadrant:

E = {(x, y) |x2 + y2 ≤ 1 , x ≥ 0 , y ≥ 0}.
The function is singular at the origin that lies on the boundary of the region
of integration. The value of f at the origin is not relevant and one can set
f(0, 0) to any number because a regularization eliminates a neighborhood of
the points (0, 0) from the region of integration. If the rule (37.3) is applied,
then one can choose

Eε = {(x, y) |R2
ε ≤ x2 + y2 ≤ 1 , x ≥ 0 , y ≥ 0} , Rε = e−1/ε

so that Rε → 0+ as ε → 0+ (this choice of the dependence of Rε on ε is a
matter of convenience which will soon become clear). The integration region
Eε is symmetric under the reflection about the line y = x, while the function
f is skew symmetric:

T : (x, y)→ (y, x) , T (Eε) = Eε , f(y, x) = −f(x, y) .

So the integral of f over Eε vanishes by the symmetry argument. The
integrand is positive in the part of the domain where x2 < y2 and negative
if y2 > x2, and there is a mutual cancellation of contributions from these
regions.

Now consider the portion E ′
ε of Eε corresponding to the following interval

of the polar angle θ:

0 ≤ θ ≤ θ0 ≤
π

2
for some θ0. Then, by evaluating the integral in polar coordinates, one finds
that

∫∫

E′

ε

y2 − x2

(x2 + y2)2
dA =

∫ θ0

0

(sin2 θ − cos2 θ)dθ

∫ 1

Rε

dr

r

= lnRε

∫ θ0

0
cos(2θ) dθ

= −sin(2θ0)

2ε
,(37.6)

where the double angle formula has been used to transform the integrand
to cos(2θ). Note also that the explicit form of Rε was used (the choice of
Rε is justified by the simplicity (37.6)). Put

θ0 =
π

2
− ϕε

for some numerical parameter ϕ ≥ 0 and ε small enough to make θ0 >
0 so that θ0 → π/2 as ε → 0+. The integral (37.6) can be viewed as
another regularization of the improper integral of f over E. However, this
regularization can give any value of the improper integral! Indeed,

lim
ε→0+

∫∫

E′

ε

fdA = − lim
ε→0+

sin(2θ0)

2ε
= − lim

ε→0+

sin(2ϕε)

2ε
= −ϕ .
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This observation suggests that the value of the improper integral may depend
on the way a regularization is introduced. Naturally, if the improper integral
is to be given a value, then this value should not depend on a regularization
used to obtain it. From this point of view, the rule (37.3) cannot be regarded
as a proper definition of a multiple improper integral.

A similar observation can be made for an improper integral over an
unbounded region. Suppose the function (37.5) is to be integrated over the
unbounded region that is the part of the positive quadrant outside the unit
disk centered at the origin:

E = {(x, y) | 1≤ x2 + y2 , x ≥ 0 , y ≥ 0} .

If the rule (37.4) is applied to evaluate the integral, one can choose

Eε = {(x, y) |1≤ x2 + y2 ≤ R2
ε , x ≥ 0 , y ≥ 0} , Rε = e1/ε

so that Rε → ∞ as ε → 0+. The integral over Eε has zero value by the
symmetry argument given above. Let E ′

ε be the part of Eε corresponding
to the interval 0 ≤ θ ≤ θ0 ≤ π/2 of the polar angle θ and, as before, put
θ0 = π/2−ϕε. The integral over E ′

ε can be viewed as another regularization
of the improper integral over E. The integral over E ′

ε is given by Eq. (37.6)
if the limits of integration over r are swapped as in the present case Rε > 1.
Therefore

lim
ε→0+

∫∫

E′

ε

fdA = −1

2
lim

ε→0+
lnRε sin(2θ0) = − lim

ε→0+

sin(2ϕε)

2ε
= −ϕ .

37.2. Definition of an Improper Integral. Let E be a region in space (or in
a plane) possibly unbounded. An exhaustion of E is a sequence of regions
Ek, k = 1, 2, ..., such that

• each region Ek is bounded, closed, and contained in E,
• the region Ek+1 contains Ek,
• the union of all Ek coincides with E excluding possibly a set of

zero volume (or zero area) in E.

One-variable improper integrals are defined as the limit of integrals over
ever-expanding intervals of integration, e.g., as in (37.1) or (37.2), that
eventually cover the original interval of integration. An exhaustion is a
multidimensional analog of ever-expanding intervals (Ek+1 contains Ek).

For example, if E is the entire space, then the union of balls

Ek = {(x, y, z) |x2 + y2 + z2 ≤ k2} , k = 1, 2, ...

So, this sequence of ever-expanding balls is an exhaustion of the entire space.
Another exhaustion the entire space is given by the following sequence of
ever-expanding cubes:

Ek = {(x, y, z) | |x| ≤ k , |y| ≤ k , |z| ≤ k} k = 1, 2, ....
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If E is the part of the disk of unit radius in the first quadrant discussed in
the above example and θ is the polar angle, then for each fixed 0 ≤ ϕ < π/2,
the regions

(37.7) Ek = {(x, y) | e−2k ≤ x2 + y2 ≤ 1 , 0 ≤ θ ≤ π/2− ϕ/k}
where k = 1, 2, ..., are exhaustions of E (in the above consideration of E,
put ε = 1/k).

If a bounded function f is integrable on a closed bounded region E that
has the volume V (E), then it can be proved that for any exhaustion of E

lim
k→∞

∫∫∫

Ek

fdV =

∫∫∫

E

fdV ,

lim
k→∞

V (Ek) = lim
k→∞

∫∫∫

Ek

dV =

∫∫∫

E
dV = V (E) .

The above properties are called continuity of the Riemann integral. Its one-
dimensional analog is a familiar property of the integral over an interval:

lim
c→b−

∫ c

a
f(x) dx =

∫ b

a
f(x) dx

if f is integrable on [a, b]. In other words, the definition of the integral via
an exhaustion of the region of integration leads to the same result as the
definition via the upper and lower sums. This is just a consistency check.

However, an exhaustion of E can be used to regularize an improper
integral of f over E. For example, if f is singular at a zero-volume set S in
a closed bounded region E, then one can take an exhaustion of E such that
none of Ek contains S. A simple possibility is take a sequence of the unions
of open balls with centers at each point of S and of radii ε = 1/k and, for
each k, remove the union from E to obtain Ek as depicted in the right panel
of Fig. 37.1.

Definition 37.1. (Improper Multiple Integral)
Let Ek be an exhaustion of a region E. Suppose that a function f on E is
integrable on each Ek. Then the function f is said to be integrable on E if
the limit

lim
k→∞

∫∫∫

Ek

fdV =

∫∫∫

E
fdV

exists and is independent of the choice of Ek. The value of the limit is called
an improper integral of f over E.

Note that the region of integration E is no longer required to be bounded
and the function f may not be bounded in E, but it is bounded on each Ek

in order to define the integral of f over Ek. An improper double integral is
defined in the same way. The condition that the limit should not depend
on the choice of an exhaustion means that the value of the improper integral
should not depend on its regularization. According to this definition the
function (37.5) is not integrable on any closed bounded region containing the
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origin because the limit depends on the way the regularization is imposed.
For instance, let E be the part of the disk x2 + y2 ≤ 1 in the first quadrant.
Take the exhaustion defined in Eq. (37.7). Then using the previous result
(37.6) with ε = 1/k and θ0 = π/2− ϕ/k,

∫∫

Ek

f(x, y)dA =
1

2
sin
(

π − 2ϕ

k

)

ln e−k = −1

2
k sin(2ϕ/k) → −ϕ

as k →∞, where sinu = u+O(u3) with u = 2ϕ/k has been used to find the
limit. The limit value depends on an arbitrary parameter ϕ and therefore
the improper integral does not exist.

37.3. Evaluation of an Improper Multiple Integral. Definition 37.1 elim-
inates the aforementioned potential ambiguity of the rule (37.3), but, un-
fortunately, it is rather difficult to use. It turns out that the difficult task
of investigating the regularization-independence of an improper integral can
be avoided for non-negative functions, thanks to the following theorem.

Theorem 37.1. (Improper Integrals of Non-negative Functions)
Let Ek and E ′

k be two exhaustions of a region E. Let a function f be non-
negative on E, f(r) ≥ 0 for all r in E. Suppose that f is integrable on each
Ek and each E ′

k. Then

lim
k→∞

∫∫∫

Ek

fdV = lim
k→∞

∫∫∫

E′

k

fdV ,

where the limit may be +∞. In particular, if the limit is a number, then f
is integrable on E and

∫∫∫

E

fdV = lim
k→∞

∫∫∫

Ek

fdV .

The same statement holds for double integrals. The conclusion of this
theorem can intuitively be understood in the following way. Take an exhaus-
tion Ek (a regularization of the improper integral). Suppose the improper
integral converges if the rule (37.3) or (37.4) is used. Since the integrand is
non-negative, the value of the improper integral is positive (it is zero only if
the integrand is zero). The sequence Ik of integrals over each Ek increases
monotonically because the region of integration Ek+1 contains Ek and the
integrand is non-negative. Since each Ek is contained in ER for a sufficiently
large R in (37.4) or a sufficiently small ε in (37.3), the sequence Ik is also
bounded by the value of the limit (37.4) or (37.3). Every monotonically
increasing bounded sequence Ik converges (Calculus 2). Therefore

• the improper integral of a non-negative function converges for any ex-
haustion and its value can be found for a particular exhaustion, e.g., defined
in (37.4) or (37.3).
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Example 37.1. Find the integral of f(x, y, z) = z(x2 +y2 +z2)−7/4 over
the half-ball x2 + y2 + z2 ≤ 1, z ≥ 0, if it exists.

Solution: The function is non-negative in the region of integration and
singular at the origin. Therefore if the improper integral of f exists for a
particular regularization, then by Theorem 37.1, it exists for any regular-
ization and has the same value. Let us use the rule (37.3) to regularize the
improper integral in question. Put

Eε = {(x, y, z) | ε2 ≤ x2 + y2 + z2 ≤ 1 , z ≥ 0} .

The region Eε is the image of the rectangular box E ′
ε = [ε, 1]×[0, π/2]×[0, 2π]

in spherical coordinates. By converting the integral of f over Eε to spherical
coordinates and using Fubini’s theorem to evaluate it,

∫∫∫

Eε

fdV =

∫∫∫

E′

ε

ρ cosφ · ρ−7/2 · ρ2 sin φdV ′

=

∫ 2π

0
dθ

∫ π/2

0
sin φ cosφ dφ

∫ 1

ε
ρ−1/2dρ

= 2π ·
(1

2
sin2 φ

∣

∣

∣

π/2

0

)

·
(

2ρ1/2
∣

∣

∣

1

ε

)

= 2π(1−
√

ε) .

Taking the limit ε→ 0+,
∫∫∫

E
fdV = lim

ε→0+

∫∫∫

Eε

fdV = lim
ε→0+

2π(1−
√

ε) = 2π .

�

Given a function f on a region E, define two functions on E

f+(r) =

{

f(r), if f(r) ≥ 0

0, otherwise
, f−(r) =

{

−f(r), if f(r) ≤ 0

0, otherwise
.

Then f±(r) ≥ 0 and f(r) = f+(r)− f−(r) in E. Suppose that the functions
f± are integrable on E. Then f is also integrable on E. Indeed, if Ek is an
exhaustion of E, then

lim
k→∞

∫∫∫

Ek

fdV = lim
k→∞

(

∫∫∫

Ek

f+dV −
∫∫∫

Ek

f−dV
)

= lim
k→∞

∫∫∫

Ek

f+dV − lim
k→∞

∫∫∫

Ek

f−dV

=

∫∫∫

E
f+dV −

∫∫∫

E
f−dV

because the limit of the difference of two sequences exists and is equal to
the difference of the limits of the sequences, provided the latter exist, and
they do exist since the improper integrals of f± exist by the hypothesis.



37. IMPROPER MULTIPLE INTEGRALS 561

Theorem 37.2. (Sufficient Condition for Integrability)
Let f be a function on a region E possibly unbounded. Suppose that the
functions f± are integrable on E in the sense of the rule (37.3) or (37.4).
Then f is integrable on E and the improper integral of f over E can be
evaluated by the rule (37.3) or (37.4), or by any convenient regularization
of the improper integral.

Next note that

0 ≤ f±(r) ≤ |f(r)| for all r ∈ E .

Suppose there exists a function g that is integrable on E such that

|f(r)| ≤ g(r) for all r ∈ E .

Since f± and g are non-negative, by Theorem 37.1 and the positivity prop-
erty of the integral

I±k =

∫∫∫

Ek

f±dV ≤
∫∫∫

Ek+1

f±dV ≤
∫∫∫

Ek+1

gdV ≤
∫∫∫

E
gdV = Ig

for an exhaustion Ek of E, assuming that f± are integrable on each Ek.
As Ek+1 contains Ek, the value of the integral over Ek+1 of a non-negative
function cannot be less than the value of the integral over Ek. Therefore
the numerical sequences I±k are increasing and bounded by the integral Ig.
Recall from Calculus 2 that any such sequence is convergent. Therefore f±
are integrable on E and so is f . Moreover the rules (37.3) and (37.4) can
be used to evaluate the improper integral of f over E by Theorem 37.2.

Theorem 37.3. (Integrability Test).
Suppose there exists an integrable function g on a region E such that |f(r)| ≤
g(r) for all r in E. If f is integrable on any closed bounded subregion of E
on which f is bounded, then f is integrable on E and its improper integral
over E can be evaluated by the rules (37.3) and (37.4), or by any convenient
regularization of the improper integral.

Since g is non-negative, its integrability can be verified by the rule (37.3)
or (37.4), or by any convenient regularization of the improper integral of g.

Example 37.2. Evaluate the triple integral of

f(x, y, z) =
sin(x2 − z2)

(x2 + y2 + z2)2

over a ball of radius R centered at the origin if it exists.

Solution: The function is singular only at the origin and continuous
otherwise so f is integrable on any closed bounded subregion of the ball
that does not include the origin. Put ρ = (x2 + y2 + z2)1/2 (the distance
from the origin) so that |x| ≤ ρ and |z| ≤ ρ. Using the inequality | sinu| ≤ |u|
for u = x2 − z2,

|f(x, y, z)| ≤ |x
2 − z2|
ρ4

≤ x2 + z2

ρ4
≤ 2ρ2

ρ4
=

2

ρ2
=

2

x2 + y2 + z2
= g(x, y, z)
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If g is integrable on the ball, then f is integrable and the rule (37.3) can be
applied to evaluate the improper integral. To verify the integrability of g,
take the restricted region Eε that lies between two spheres:

Eε : ε2 ≤ x2 + y2 + z2 ≤ R2 .

It is the image of the rectangular box E ′
ε = [ε, R]× [0, π]× [0, 2π] in spher-

ical coordinates. The improper integral of g becomes a proper integral in
spherical coordinates because

g(x, y, z)dV =
2

ρ2
· JdV ′ =

2

ρ2
· ρ2 sinφdV ′ = 2 sinφdV ′

and the singularity at ρ = 0 is cancelled by the Jacobian. Using the rule
(37.3),

∫∫∫

E
fdV = lim

ε→0+

∫∫∫

Eε

sin(x2 − z2)

(x2 + y2 + z2)2
dV = 0

because for any 0 < ε < R the integral vanishes as Eε is symmetric under
the reflection about the plane x = z:

T : (x, y, z)→ (z, y, x) , T (Eε) = Eε ,

whereas the function is skew-symmetric f(z, y, x) = −f(x, y, z). �

Note that the use of symmetry in the above example is justified only after
proving that the function is in fact integrable! For example, changing the
denominator (x2 + y2 + z2)2 of the integrand to (x2 + y2 + z2)3 does not
violate the symmetry of the integrand, but the improper integral does not
exist. Integrands singular at a point will be discussed in the next subsection.

Although Theorems 37.1, 37.2, and 37.3 appear to be helpful when
analyzing improper multiple integrals, they do not exhaust all the cases
when the rules (37.3) and (37.4) are valid. It is important to understand
that these theorems provide only sufficient conditions for the existence of
improper integrals. In particular, if the integrals of f± defined by the rule
(37.3) or (37.4) diverge, this does not generally imply that the improper
integral of f does not exist. A further investigation is needed to verify the
conditions of Definition 37.1. The following improper integrals are known
as the Fresnel integrals
∫ ∞

0
sin(x2)dx = lim

a→∞

∫ a

0
sin(x2)dx =

√

π/8 ,

∫ ∞

0
cos(x2)dx =

√

π/8 .

On the other hand, the integrals of | sin(x2)| and | cos(x2)| over [0,∞) are
proved to diverge. For a positive integer n, the following inequality holds:
∫

√
πn

√
π(n−1)

| sin(x2)|dx =

∫ πn

π(n−1)
| sinu| du

2
√

u
=

∫ π

0
sin v

dv

2
√

v + π(n− 1)

≥ 1

2
√

πn

∫ π

0
sin vdv =

1√
πn

,
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where u = x2, v = u − π(n − 1), and
√

πn ≥
√

v + π(n− 1) for v ≤ π
by monotonicity of the power function. Using this inequality, the improper
integral of | sin(x2)| can be bounded from below:

∫

√
πN

0
| sin(x2)|dx =

N
∑

n=1

∫

√
πn

√
π(n−1)

| sin(x2)|dx ≥ 1√
π

N
∑

n=1

1√
n

.

The series
∑

np diverges for p ≥ −1 (Calculus 2) and, by the comparison
test, the limit N →∞ does not exist in the left side of this equation. By a
similar argument, one can show that the functions f± for f(x) = sin(x2) are
not integrable, too (their improper integral diverges). The case of cos(x2)
can be studied in the same way and the same conclusion holds. There are
a lot of cancellations in the improper integrals of sin(x2) and cos(x2) that
ensure their convergence. The analogy can be made with alternating se-
ries (e.g., in Calculus 2 it has been shown that the alternating p−series,
∑

(−1)n+1np, converges for p < 0, but it converges absolutely only for
p < −1). Multiple improper integrals may also behave similarly.

37.4. Functions singular at a point.

Example 37.3. Find the integral of f(x, y) = x(x2 + y2)−1 over the
half-disk, x2 + y2 ≤ 1, x ≥ 0, if it exists.

Solution: The function is singular at the origin. Since f is non-negative
and continuous everywhere except the origin, it is sufficient to investigate
the existence of the improper integral in a particular regularization. Take

Eε = {(x, y) | ε2 ≤ x2 + y2 ≤ 1 , x ≥ 0} .

It is the image of the rectangle E ′
ε = [ε, 1]× [−π/2, π/2] in the polar plane.

Therefore

f(x, y)dA =
r cos θ

r2
rdA′ = cos θ dA′

So, the singularity at r = 0 is cancelled by the Jacobian of polar coordi-
nates and the integral becomes proper in polar coordinates and, hence, the
function is integrable

∫∫

E
fdA =

∫ π/2

−π/2
cos θdθ

∫ 1

0
dr = 2 · 1 = 2 .

�

Examples 37.2 and 37.3 exhibit a common feature: An improper integral
becomes a proper integral in curvilinear coordinates if the Jacobian vanishes
at a point where the integrand is singular. The following theorem provides
sufficient conditions under which a function singular at a point is integrable
over a bounded closed region that includes this point.

Theorem 37.4. Let E be a closed bounded region in an n−dimensional
Euclidean space (n = 1, 2, 3). Let a function f be singular at a point r0
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of E and integrable on any closed subregion of E that does not include r0.
Suppose that

|f(r)| ≤ M

‖r− r0‖ν
, if 0 < ‖r− r0‖ ≤ R and ν < n ,

for some positive R and M . Then the improper integral of f over E exists
and can be evaluated in any convenient regularization.

Proof. One can always set the origin of the coordinate system at r0 by the
shift transformation r → r − r0. Evidently, its Jacobian is 1. So, without
loss of generality, assume that f is singular at the origin. Let BR be the ball
‖r‖ ≤ R and BE

R be the intersection of BR and E (compare with Fig. 37.1

with ε = R). It is sufficient to show the existence of the improper integral
of f over BE

R as f is integrable over any closed subregion of E that does
not include the origin. For n = 1, the integrability follows from (37.1). In
the two-variable case, the use of the polar coordinates yields dA = r dr dθ,
‖r‖ = r, and

∫∫

BE
R

|f | dA ≤M

∫∫

BE
R

dA

‖r‖ν ≤M

∫∫

BR

dA

‖r‖ν = 2πM

∫ R

0

dr

rν−1
,

which is finite if ν < 2; the second inequality follows from that the part BE
R

is contained in BR and the integrand is positive. In the three-variable case,
the use of spherical coordinates gives (with ‖r‖ = ρ)

|f |dV ≤ M

ρν
J dV ′ =

M

ρν−2
sinφ dρ dφ dθ

So a similar estimate of the improper triple integral of f over BE
R yields an

upper bound 4πM
∫ R
0 ρ2−ν dρ, which is finite if ν < 3. �

37.5. Multiple Integrals Over Unbounded Regions. Equation (37.2) shows
that the improper integral exists if the function decreases sufficiently fast at
infinity, e.g., |f(x)| ≤ M/xν , ν > 1, for all x > R and some constants M
and R. A similar sufficient criterion for the existence of a multiple improper
integral can be established.

Theorem 37.5. Let E be an bounded region in an n−dimensional Eu-
clidean space (n = 1, 2, 3). Let a function f be integrable on any closed
bounded subregion of E. Suppose that

|f(r)| ≤ M

‖r‖ν if ‖r‖ ≥ R and ν > n

for some positive R and M . Then the improper integral of f over E exists
and can be evaluated in any convenient regularization.

Proof. Let R > 0. Let E ′
R be the part of E that lies outside the ball BR

of radius R and let B′
E be the part of the space outside BR (see Fig. 37.2
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(left panel)). Note that B′
R includes E ′

R. In the two-variable case, the use
of polar coordinates gives

∫∫

E′

R

|f |dA ≤
∫∫

B′

R

|f |dA ≤
∫∫

B′

R

MdA

‖r‖ν = M

∫ 2π

0
dθ

∫ ∞

R

r dr

rν

= 2πM

∫ ∞

R

dr

rν−1
,

which is finite, provided ν − 1 > −1 or ν > 2. The case of triple integrals is
proved similarly by means of spherical coordinates. The volume element is
dV = ρ2 sin φ dρ dφ dθ. The integration over the spherical angles yields the
factor 4π as 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π for the region B′

R so that

∫∫∫

E′

R

|f |dV ≤
∫∫∫

B′

R

|f |dV ≤
∫∫∫

B′

R

M dV

‖r‖ν = 4πM

∫ ∞

R

ρ2 dρ

ρν

= 4πM

∫ ∞

R

dρ

ρν−2
,

which converges if ν > 3. �

Example 37.4. Evaluate the double integral of f(x, y) = exp(−x2− y2)
over the entire plane. Use Fubini’s theorem to find the numerical value of

the integral of e−x2

over (−∞,∞).

Solution: In polar coordinates |f | = e−r2

. So, as r → ∞, |f | decreases
faster than any inverse power r−n, n > 0, and by virtue of the integrability
test and Theorem 37.5, the improper integral of f exists and can be evalu-
ated in any suitable regularization. By making use of the polar coordinates,

∫∫

E
e−x2−y2

dA = lim
R→∞

∫ 2π

0

∫ R

0
e−r2

r dr dθ = π lim
R→∞

∫ R2

0
e−u du

= π lim
R→∞

(1− e−R2

) = π,

where the substitution u = r2 has been made. On the other hand, choosing a
rectangle [−a, a]×[−b, b] as the regularization, by virtue of Fubini’s theorem
one infers that

π =

∫∫

E

e−x2−y2

dA = lim
a→∞

∫ a

−a

e−x2

dx · lim
b→∞

∫ b

−b

e−y2

dy = I2 ,

⇒ I =

∫ ∞

−∞
e−x2

dx =
√

π .

A direct evaluation of I by means of the fundamental theorem of calculus is

problematic as an antiderivative of e−x2

cannot be expressed in elementary
functions. �
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BR

O

R

ER

E

E ′
R

B′
R

x y

z

φ = ε

singular points

ρ = ε

Figure 37.2. Left: An unbounded region E is split into
two parts ER that lies inside the ball BR of radius R and E ′

R
is the part of E that lies outside the ball BR. The region B′

R
is the entire space with the ball BR removed. The region E ′

R
is contained in B′

R. Right: A regularization procedure for
the integral in Study Problem 37.1. The integration region
E contains singular points along the z axis. The integral is
regularized by removing the ball ρ < ε and the solid cone
φ < ε from E. After the evaluation of the integral, the limit
ε→ 0 is taken.

Volume and area of unbounded regions. Let f(r) = 1 in an unbounded
region E. Since f is positive, its improper integral exists if it exists in any
particular regularization.

Definition 37.2. (Area and volume of unbounded regions)
The double and triple integrals

A(D) =

∫∫

D
dA , V (E) =

∫∫∫

E
dV

over unbounded regions D and E are called the area of D and the volume of
E, respectively, provided they converge.

37.6. Fubini’s Theorem and Integrability. If a function is not integrable, its
iterated integrals may still exist as improper integrals. However, the value
of the iterated integral depends on the order of integration and Fubini’s
theorem does not hold. For example, consider the function (37.5) over
the rectangle [0, 1] × [0, 1]. As argued, the function is not integrable on
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the rectangle because it contains the origin. The improper integral can be
regularized by reducing the domain to a rectangle [a, 1]×[b, 1], where a→ 0+

and b→ 0+. Consider the iterated integral

lim
a→0+

∫ 1

a

lim
b→0+

∫ 1

b

x2 − y2

(x2 + y2)2
dy dx = lim

a→0+

∫ 1

a

lim
b→0+

∫ 1

b

∂

∂y

y

x2 + y2
dy dx

= lim
a→0+

∫ 1

a
lim

b→0+

( 1

1 + x2
− b

x2 + b2

)

dx

= lim
a→0+

∫ 1

a

dx

1 + x2
=

∫ 1

0

dx

1 + x2
=

π

4
.

So it exists as an improper integral. The iterated integral in the reverse
order also exists but has a different value:

lim
b→0+

∫ 1

b
lim

a→0+

∫ 1

a

x2 − y2

(x2 + y2)2
dx dy = − lim

b→0+

∫ 1

b
lim

a→0+

∫ 1

a

∂

∂x

x

x2 + y2
dx dy

= − lim
b→0+

∫ 1

b
lim

a→0+

( 1

1 + y2
− a

y2 + a2

)

dy

= − lim
b→0+

∫ 1

b

dy

1 + y2
= −

∫ 1

0

dy

1 + y2
= −π

4
.

This example shows that Fubini’s theorem cannot be used unless the exis-
tence of the improper integral has been established. The same observation
holds for improper integrals over unbounded regions.

37.7. Study Problems.

Problem 37.1. Evaluate the triple integral of f(x, y, z) =

(x2 + y2)−1/2(x2 + y2 + z2)−1/2 over E, which is bounded by the cone z =
√

x2 + y2 and the sphere x2 + y2 + z2 = 1 if it exists.

Solution: The function is singular at all points on the z axis. It is positive
on the domain of integration. Therefore it is sufficient to investigate the
convergence of the improper integral in a particular regularization. Under
the transformation T from spherical to rectangular coordinates, E is the
image of a rectangular box:

T : E ′ = [0, 1]× [0, π/4]× [0, 2π] → E .

Consider Eε obtained from E by eliminating from the latter a solid cone
φ < ε and a ball ρ < ε, where ρ and φ are spherical coordinates (as depicted
in the right panel of Fig. 37.2) so that

T : E ′
ε = [ε, 1]× [ε, π/4]× [0, 2π] → Eε .

Then transforming the integral over Eε to spherical coordinates, in which
√

x2 + y2 = ρ sinφ, one infers that the improper integral becomes a proper
integral over E ′ because the singularity is cancelled by the Jacobian:

f dV = (ρ2 sinφ)−1ρ2 sinφdV ′ = dV ′



568 4. MULTIPLE INTEGRALS

So the improper integral in question exists and is equal to

lim
ε→0

∫∫∫

Eε

f dV =

∫∫∫

E′

dV ′ = V (E ′) = 1 · π
4
· 2π =

π2

2
.

�

37.8. Exercises.

1–5. Let a function g(x, y) be integrable on any bounded closed region.
Assume that 0 < m ≤ g(x, y) ≤ M for all (x, y). Investigate the existence
of each of the following improper double integrals.

1.
∫∫

D g(x, y)(x2 + y2)−1dA where D is defined by the conditions

|y| ≤ x2, x2 + y2 ≤ 1 ;
2.
∫∫

D g(x, y)(|x|p + |y|q)−1dA, p > 0, q > 0, where D is defined by
the condition |x|+ |y| ≤ 1 ;

3.
∫∫

D g(x, y)(1− x2 − y2)−pdA where D is defined by the condition

x2 + y2 ≤ 1 ;
4.
∫∫

D g(x, y)|x− y|−pdA where D is the square [0, a]× [0, a] ;

5.
∫∫

D e−(x+y)dA where D is defined by 0 ≤ x ≤ y .

6–9. Let a function g(x, y, z) be integrable on any bounded closed region.
Assume that 0 < m ≤ g(x, y, z) ≤ M for all (x, y, z). Investigate the
existence of each of the following improper triple integrals.

6.
∫∫∫

E g(x, y, z)(x2+y2+z2)−νdV where E is defined by x2+y2+z2 ≥
1 ;

7.
∫∫∫

E g(x, y, z)(x2+y2+z2)−νdV where E is defined by x2+y2+z2 ≤
1 ;

8.
∫∫∫

E g(x, y, z)(|x|p + |y|q + |z|s)−1dV , where p, q, s are positive
numbers, and E is defined by |x|+ |y|+ |z| ≥ 1 ;

9.
∫∫∫

E g(x, y, z)|x+ y− z|−νdV where E = [−1, 1]× [−1, 1]× [−1, 1] .

10. Let n be an integer. Use the Fresnel integral to show that

lim
n→∞

∫∫

Dn

sin(x2 + y2)dA = π , Dn : |x| ≤ n , |y| ≤ n;

lim
n→∞

∫∫

Dn

sin(x2 + y2)dA = 0 , Dn : x2 + y2 ≤ 2πn

Note that in each case Dn covers the entire plane as n→∞. What can be
said about the convergence of the integral over the entire plane?
11–30. Evaluate each of the following improper integrals if it exists. Use
appropriate coordinates when needed.

11.
∫∫∫

E(x2 +y2 +z2)−1/2(x2 +y2)−1/2dV where E is the region in the

first octant bounded from above by the sphere x2 + y2 + z2 = 2z

and from below by the cone z =
√

3
√

x2 + y2 ;
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12.
∫∫∫

E z(x2 + y2)−1/2 where E is in the first octant and bounded

from above by the cone z = 2−
√

x2 + y2 and from below by the
paraboloid z = x2 + y2 ;

13.
∫∫∫

E xy(x2 +y2)−1(x2 +y2 +z2)−1dV where E is the portion of the

ball x2 + y2 + z2 ≤ a2 above the plane z = 0 ;

14.
∫∫∫

E e−x2−y2−z2

(x2 + y2 + z2)−1/2dV where E is the entire space ;

15.
∫∫

D(x2+y2)−1/2dA where D lies between the two circles x2+y2 = 4

and (x− 1)2 + y2 = 1 in the first quadrant, x, y ≥ 0 ;
16.

∫∫

D ln(x2 + y2)dA where D is the disk x2 + y2 ≤ a2 ;

17.
∫∫∫

E(x2 +y2 +z2)ν ln(x2 +y2 +z2)dV where E is the ball x2 +y2 +

z2 ≤ a2 and ν is real. Does integral exist for all ν?
18.

∫∫

D(x2 +y2)ν ln(x2 +y2)dA where D is defined by x2 +y2 ≥ a2 > 0
and ν is real. Does integral exist for all ν?

19.
∫∫∫

E(x2 + y2 + z2)ν ln(x2 + y2 + z2)dV where E is defined by x2 +

y2 + z2 ≥ a2 > 0 and ν is real. Does integral exist for all ν?
20.

∫∫

D[(a− x)(x− y)]−1/2dA where D is the triangle bounded by the
lines y = 0, y = x, and x = a ;

21.
∫∫

D ln sin(x− y)dA where D is bounded by the lines y = 0, y = x,
and x = π ;

22.
∫∫

D(x2 + y2)−1dA where D is defined by x2 + y2 ≤ x ;
23.

∫∫∫

E x−py−qz−sdV where E = [0, 1]× [0, 1]× [0, 1] ;

24.
∫∫∫

E(x2 + y2 + z2)−3dV where E is defined by x2 + y2 + z2 ≥ 1 ;

25.
∫∫∫

E(1−x2−y2− z2)−νdV where E is defined by x2 +y2 + z2 ≤ 1 ;

26.
∫∫∫

E e−x2−y2−z2

dV where E is the entire space ;

27.
∫∫

D e−x2−y2

sin(x2 + y2)dA where D is the entire plane ;

28.
∫∫

D e−(x/a)2−(y/b)2dA where D is the entire plane ;

29.
∫∫

D eax2+2bxy+cy2

dA where a < 0, ac− b2 > 0, and D is the entire
plane. Hint: Find a rotation that transforms x and y so that in the
new variables the bilinear term ”xy” is absent in the exponential ;

30.
∫∫∫

E e−(x/a)2−(y/b)2−(z/c)2+αx+βy+γzdV where E is the entire space .

31–32. Show that each of the following improper integrals converges. Use
the geometric series to show that their values are given by the specified
convergent series.

31. lima→1−
∫∫

Da
(1− xy)−1dA =

∑∞
n=1

1
n2

where Da = [0, a]× [0, a] ;
32. lima→1−

∫∫∫

Ea
(1− xyz)−1dV =

∑∞
n=1

1
n3

where Ea = [0, a]× [0, a]× [0, a] .
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38. Line Integrals

Consider a wire made of a nonhomogeneous material. The inhomogene-
ity means that, if one takes a small piece of the wire of length ∆s at a point r,
then its mass ∆m depends on the point r. It can therefore be characterized
by a linear mass density (the mass per unit length at a point r):

σ(r) = lim
∆s→0

∆m(r)

∆s
.

Suppose that the linear mass density is known as a function of r. What is
the total mass of the wire that occupies a space curve C? If the curve C
has a length L, then it can be partitioned into N small segments of length
∆s = L/N . If r∗p is a sample point in the pth segment, then the total mass
reads

M = lim
N→∞

N
∑

p=1

σ(r∗p) ∆s,

where the mass of the pth segment is approximated by ∆mp ≈ σ(r∗p) ∆s and
the limit is required because this approximation becomes exact only in the
limit ∆s→ 0. The expression for M resembles the limit of a Riemann sum
and leads to the concept of a line integral of σ along a curve C.

38.1. Line Integral of a Function. Let f be a bounded function in a region
E and let C be a smooth (or piecewise-smooth) curve in E. Suppose C
has a finite arclength. Recall Section 13 where the arclength of a smooth
curve is defined. Consider a partition of C by its N pieces Cp of length
∆sp, p = 1, 2, ..., N , which is the arclength of Cp. Put mp = infCp f and
Mp = supCp

f ; that is, mp is the largest lower bound of values of f for all
r in Cp, and Mp is the smallest upper bound on the values of f for all r in
Cp. The upper and lower sums are defined by, respectively,

U(f, N ) =

N
∑

p=1

Mp ∆sp , L(f, N ) =

N
∑

p=1

mp ∆sp .

Suppose that maxp ∆sp = ∆s∗N → 0 as N → ∞. In other words, the
partition element of the maximal arclength becomes smaller with increasing
N . The upper and lower sums are the least upper and greatest lower bounds
of the total mass of the wire for a given partition in the above mass problem.
Naturally, with increasing N these bounds should become closer and coincide
with the total mass in the limit N →∞. Therefore the following definition
of the line integral can be adopted.

Definition 38.1. (Line Integral of a Function).
The line integral of a function f along a piecewise-smooth curve C is

∫

C
f(r) ds = lim

N→∞
U(f, N ) = lim

N→∞
L(f, N ),
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∆sp

Crp
r∗p

rp+1

∆A

Ea

∆sp

C

∆Vp = ∆A∆sp

Figure 38.1. Left: A partition of a smooth curve C by
segments of arclength ∆sp used in the definition of the line
integral and its Riemann sum. Right: The region Ea is a
neighborhood of a smooth curve C. It consists of points
whose distance to C cannot exceed a > 0 (recall Defini-
tion 5.2). For a and ∆sp small enough, planes normal to
C through the points rp partition Ea into elements whose
volume is ∆Vp = ∆A∆sp where ∆A = πa2 is the area of the
cross section of Ea (for a small enough). This partition is
used to establish the relation (38.1) between the triple and
line integrals.

provided the limits of the upper and lower sums exist and coincide. The limit
is understood in the sense that maxp ∆sp → 0 as N →∞.

It follows from this definition that the line integral can also be repre-
sented by the limit of a Riemann sum (see the left panel of Fig. 38.1).

Theorem 38.1. (Riemann Sums for a Line Integral)
Suppose f is integrable along a smooth curve C. Let Cp be a partition of C
and for each p, a point r∗p lies in the curve segment Cp. Then

∫

C
f(r) ds = lim

N→∞

N
∑

p=1

f(r∗p) ∆sp = lim
N→∞

R(f, N ) .

Proof. For any partition

mp ≤ f(r∗p) ≤Mp ⇒ L(f, N ) ≤ R(f, N ) ≤ U(f, N ) .

with any choice of sample points r∗p. The conclusion of the theorem follows
from the squeeze principle for limits. �

The following theorem provides sufficient conditions for the existence of
the line integral.

Theorem 38.2. (Integrability on a Curve)
If f is bounded and possibly not continuous at finitely many points of a
piecewise smooth curve C, then the line integral of f along C exists.
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It is also interesting to establish a relation of the line integral with a triple
integral. Suppose that f is continuous on a spatial region that contains a
smooth curve C. Let Ea be a neighborhood of C that is defined as the set
of points whose distance (in the sense of Definition 5.2) to C cannot exceed
a > 0 (think of the union of balls of radius a centered at each point of C).
Consider a partition of C by curve segments of arclength ∆sp, p = 1, 2, ..., N .
Then Ea is partitioned by elements Eap obtained by cutting Ea by normal
planes through the endpoints of curve segments Cp (see the right panel of
Fig. 38.1). Recall that a plane normal to a smooth curve is the plane
whose normal is a vector tangent to the curve. In the limit a → 0+, the
cross section of Ea by any such plane is a disk of radius a and therefore the
volume ∆Vp of the partition element Eap has the property

lim
a→0+

∆Vp

πa2
= ∆sp .

By the integral mean value theorem for multiple integrals
∫∫∫

Ea

fdV =

N
∑

p=1

∫∫∫

Eap

fdV =

N
∑

p=1

f(rp)∆Vp ,

for some points rp in Eap and any integer N . Note that rp depends on a.
However, in the limit a → 0+, the point rp should approach a point r∗p on
the curve segment Cp by continuity of f . Therefore

lim
a→0+

1

πa2

∫∫∫

Ea

f(r) dV = lim
a→0+

N
∑

p=1

f(rp)
∆Vp

πa2
=

N
∑

p=1

f(r∗p)∆sp .

The latter relation holds for any N and therefore one can take the limit
N → ∞, assuming that maxp ∆sp = ∆s∗N → 0 as N → ∞. Since f is
continuous, the Riemann sum of f over the curve C converges to the line
integral:

(38.1) lim
a→0+

1

πa2

∫∫∫

Ea

f(r) dV =

∫

C

f(r) ds.

If C is a planar curve, then a relation similar to (38.1) can be established for
double integrals by considering the double integral over the planar region
Da defined similarly to Ea. The region Da is partitioned by normal lines
to the curve C. The area ∆Ap of each partition element has the property
that ∆Ap/(2a)→ ∆sp as a→ 0+ so that in Eq. (38.1) the factor (πa2)−1 is
replaced by (2a)−1 and the triple integral is replaced by the double integral:

(38.2) lim
a→0+

1

2a

∫∫

Da

f(r) dA =

∫

C
f(r) ds.

Thus, line integrals can be viewed as the limiting case of multiple in-
tegrals when the other dimensions of the integration region become small
as compared to the arclength of the curve. In particular, the line integral
inherits all the properties of multiple integrals.
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Theorem 38.3. (Mean Value Theorem for Line Integrals)
Suppose f is continuous and C is a smooth curve of length L. Then there
exists a point r∗ on C such that

∫

C
f(r)ds = f(r∗)L .

38.2. Evaluation of Line Integrals. The evaluation of a line integral is based
on the following theorem.

Theorem 38.4. (Evaluation of a Line Integral).
Suppose that f is continuous in a region that contains a smooth curve C.
Let r = r(t), a ≤ t ≤ b, be a smooth parameterization of C. Then

(38.3)

∫

C
f(r) ds =

∫ b

a
f(r(t))‖r′(t)‖ dt.

Proof. Consider a partition of [a, b],

tp = a + p ∆t , ∆t = (b− a)/N , p = 0, 1, 2, ..., N .

It induces a partition of C by curve segments Cp so that r(t) traces out Cp

if tp−1 ≤ t ≤ tp, p = 1, 2, ..., N . The arclength of Cp is

∆sp =

∫ tp

tp−1

‖r′(t)‖ dt = ‖r′(t∗p)‖∆t ,

for some t∗p ∈ [tp−1, tp]. The latter equality follows from the integral mean

value theorem. Indeed, since C is smooth, the tangent vector r′(t) is a
continuous function and so is its length ‖r′(t)‖. By the integral mean value
theorem, there exists t∗p in [tp−1, tp] such that the value of the integrand at
t∗p times the length of the integration interval gives the value of the integral.

Note that ‖r′(t)‖ is bounded on [a, b] as any continuous function on a closed
bounded interval. This ensures that maxp ∆sp → 0 as N →∞ (or ∆t→ 0).
Since f is integrable along C, the limit of its Riemann sum is independent of
the choice of sample points and a partition of C. Choose the sample points
to be r∗p = r(t∗p). Therefore,

∫

C
f ds = lim

N→∞

N
∑

p=1

f(r(t∗p))‖r′(t∗p)‖∆t =

∫ b

a
f(r(t))‖r′(t)‖dt.

Note that the Riemann sum for the line integral becomes a Riemann sum of
the function g(t) = f(r(t))‖r′(t)‖ over an interval t in [a, b]. Its limit exists
by the continuity of g and equals the integral of g over [a, b]. �

The conclusion of the theorem still holds if f is bounded and not con-
tinuous at finitely many points on C, and C is piecewise smooth. The latter
implies that the function g is bounded and not continuous at finitely many
points in the interval [a, b] and, hence, g is integrable on [a, b].

Thus, the evaluation of a line integral includes the following basic steps:
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Step 1. Find a suitable parameterization of a smooth curve C, r(t) =
〈x(t), y(t), z(t)〉, where a ≤ t ≤ b, so that r(t) traverses C only
once as t increases from a to b ;

Step 2. Calculate the derivative r′(t) and its norm ‖r′(t)‖ ;
Step 3. Substitute x = x(t), y = y(t), and z = z(t) into f(x, y, z) and

evaluate the integral (38.3).

Remark. A curve C may be traced out by different vector functions. The
value of the line integral is independent of the choice of parametric equations
because Definition 38.1 is stated only in parameterization-invariant terms
(the arclength and values of the function on the curve). The integrals (38.3)
written for two different parameterizations of C are equal and can be trans-
formed to one another by changing the integration variable. Recall from
Section 13.2 that if r(t) and R(u) are two smooth parameterizations of C,
then

ds = ‖r′(t)‖dt = ‖R′(u)‖du .

Since neither ‖r′(t)‖ nor ‖R′(u)‖ vanishes for a smooth parameterization,
there is a change of variables t = t(u) or u = u(t) that transforms the
integral (38.3) with respect to the parameter t to the integral (38.3) with
respect to the parameter u.

Example 38.1. Evaluate the line integral of f(x, y) = x2y over a circle
of radius R centered at the point (0, a).

Solution: Step 1. The equation of a circle of radius R centered at the
origin is x2 + y2 = R2. It has familiar parametric equations x = R cos t and
y = R sin t, where t is the angle between r(t) and the positive x axis counted
counterclockwise. The equation of the circle in question is x2+(y−a)2 = R2.
So, by analogy, one can put x = R cos t and y − a = R sin t (by shifting the
origin to the point (0, a)). Parametric equations of the circle can be taken
in the form

r(t) = 〈R cos t, a + R sin t〉 , 0 ≤ t ≤ 2π .

Step 2. The derivative of this vector function and its norm are

r′(t) = 〈−R sin t, R cos t〉 ⇒ ‖r′(t)‖ =
√

R2 sin2 t + R2 cos2 t = R .

Step 3. Substituting x = R cos t, y = a−R sin t, and ds = Rdt into the line
integral,
∫

C
x2y ds =

∫ 2π

0
(R cos t)2(a + R sin t)R dt = R3a

∫ 2π

0
cos2 t dt = πR3a ,

where the integral
∫ 2π

0
cos2 t sin t dt = −1

3
cos3 t

∣

∣

∣

2π

0
= 0

vanishes by periodicity of the cosine function. The other integral is evaluated
with the help of the double-angle formula cos2 t = (1 + cos(2t))/2. �
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Example 38.2. Evaluate the line integral of f(x, y, z) = x2 + xy +
zy along the curve that consists of three straight line segments (0, 0, 0) →
(a, 0, 0)→ (a, b, 0)→ (a, b, c).

Solution: The curve consists of three smooth pieces (straight line seg-
ments): C1 : (0, 0, 0) → (a, 0, 0), C2 : (a, 0, 0) → (a, b, 0), and C3 :
(a, b, 0)→ (a, b, c). By the additivity of the line integral

∫

C
fds =

∫

C1

fds +

∫

C2

fds +

∫

C3

fds

The segments can be parameterized as

C1 : (x, y, z) = (x, 0, 0) , 0 ≤ x ≤ a , ds = dx ;

C2 : (x, y, z) = (a, y, 0) , 0 ≤ y ≤ b , ds = dy ;

C3 : (x, y, z) = (a, b, z) , 0 ≤ z ≤ c , ds = dz .

Therefore
∫

C
fds =

∫ a

0
f(x, 0, 0)dx+

∫ b

0
f(a, y, 0)dy +

∫ c

0
f(a, b, z)dz

=

∫ a

0
x2dx +

∫ b

0
(a2 + ay)dy +

∫ c

0
(a2 + ab + bz)dz

=
1

3
a3 + a2b +

1

2
ab2 + (a2 + ab)c +

1

2
bc2 .

�

Example 38.3. Evaluate the line integral of f(x, y, z) =
√

3x2 + 3y2 − z2 over the curve of intersection of the cylinder x2 + y2 = 1
and the plane x + y + z = 0.

Solution: Since the curve lies on the cylinder, one can always put

x = cos t , y = sin t , z = z(t) ,

where z(t) is to be found from the condition that the curve also lies in the
plane:

x(t) + y(t) + z(t) = 0 ⇒ z(t) = − cos t− sin t .

So C is traversed by the vector function

r(t) = 〈cos t , sin t , − cos t− sin t〉 , 0 ≤ t ≤ 2π .

Therefore, using the identity 2 sin t cos t = sin(2t),

r′(t) = 〈− sin t, cos t, sin t− cos t〉 ,

‖r′(t)‖ =
(

sin2 t + cos2 t + (sin t− cos t)2
)1/2

=
(

2− 2 sin t cos t
)1/2

= (2− sin(2t))1/2 ,

f(r(t)) =
(

3− (cos t + sin t)2
)1/2

= (2− sin(2t))1/2
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Note that the function is defined only in the region 3(x2 +y2) ≥ z2 (outside
the double cone). It happens that the curve C lies in the domain of f and
its values along C are well defined as 2 > sin(2t) for any t. Hence,
∫

C
f ds =

∫ 2π

0
f(r(t))‖r′(t)‖dt =

∫ 2π

0
(2− sin(2t)) dt =

∫ 2π

0
2dt = 4π .

The integral of sin(2t) vanishes by periodicity. �

38.3. Exercises.

1–17. Evaluate each of the following line integrals.

1.
∫

C xy2ds, where C is the half-circle x2 + y2 = 4, x ≥ 0 ;

2.
∫

C x sin yds, where C is the line segment from (0, a) to (b, 0) ;

3.
∫

C xyzds, where C is the helix x = 2 cos t, y = t, z = −2 sin t,
0 ≤ t ≤ π ;

4.
∫

C(2x + 9z)ds, where C is the curve x = t, y = t2, z = t3 from
(0, 0, 0) to (1, 1, 1);

5.
∫

C zds, where C is the intersection of the paraboloid z = x2 + y2

and the plane z = 4 ;
6.
∫

C yds, where C is the part of the graph y = ex for 0 ≤ x ≤ 1 ;
7.
∫

C(x+y)ds, where C is the triangle with vertices (0, 0), (1, 0), and
(0, 1) ;

8.
∫

C y2ds, where C is an arc of the cycloid x = R(t − sin t), y =
R(1− cos t) from (0, 0) to (2πR, 0) ;

9.
∫

C xyds, where C is an arc of the hyperbola x = a sinh t, y =
a cosh t for 0 ≤ t ≤ T , ;

10.
∫

C(x4/3 + y4/3)ds, where C is the astroid x2/3 + y2/3 = a2/3 ;

11.
∫

C xds, where C is the part of the spiral r = aeθ that lies in the
disk r ≤ a; here (r, θ) are polar coordinates ;

12.
∫

C

√

x2 + y2ds, where C is the circle x2 + y2 = ax ;

13.
∫

C y−2ds, where C is y = a cosh(x/a) ;

14.
∫

C(x2 + y2 + z2)ds, where C is one turn of the helix x = R cos t,
y = R sin t, z = ht (0 ≤ t ≤ 2π) ;

15.
∫

C y2ds, where C is the circle x2 + y2 + z2 = 1, x + y + z = 0 ;
16.

∫

C zds, where C is the conic helix x = t cos t, y = t sin t, z = t
(0 ≤ t ≤ T ) ;

17.
∫

C zds, where C is the curve of intersection of the surfaces x2+y2 =

z2 and y2 = ax from the origin to the point (a, a, a
√

2), a > 0.

18. Find the mass of an arc of the parabola y2 = 2ax, 0 ≤ x ≤ a/2, a > 0,
if its linear mass density is σ(x, y) = |y| .
19. Find the mass of the curve x = at, y = at2/2, z = at3/3, 0 ≤ t ≤ 1,

a > 0, if its linear mass density is σ(x, y, z) =
√

2y/a.
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39. Surface Integrals

39.1. Surface Area. Suppose a function g in space has continuous partial
derivatives and its gradient does not vanish. Then level sets of g are smooth
surfaces in space. What is the area of a smooth surface? The question
can be answered by the standard trick of integral calculus. The equation
g(x, y, z) = k that describes a smooth surface can be solved for one of the
variables (by the implicit function theorem), say, z = f(x, y) where (x, y)
is in some region D, and the function f has continuous partial derivatives.
The equation z = f(x, y) defines the graph of f over D. In general, the level
surface of g can always be represented as the union of several graphs. So, it
is sufficient to answer the question about the surface area for the graph of
a function that has continuous partial derivatives.

Let D be a bounded closed region in the xy plane. It can be embedded
into a rectangle RD = [a, b]× [c, d]. Consider a rectangular partition of D:

xi = a + i∆x , x0 = a , ∆x = (b− a)/N1 , i = 1, 2, ..., N1 ;

yj = c + j∆y , y0 = c , ∆y = (d− c)/N2 , j = 1, 2, ..., N2 .

Let a partition rectangle

Rij = [xi, xi + ∆x]× [yj, yj + ∆y]

be contained in the interior of D. Let ∆Sij be the area of the part of the
graph of f that lies above Rij. As f has continuous partial derivatives, it
is differentiable, and its linearization at any point in Rij defines a tangent
plane to the graph. Then ∆Sij can be approximated by the area of the
parallelogram that lies above Rij in the tangent plane to the graph through
a point (x∗

i , y
∗
j , z

∗
ij), where z∗ij = f(x∗

i , y
∗
j ) and (x∗

i , y
∗
j ) is any sample point in

Rij. Recall that the differentiability of f means that the deviation of f from

its linearization tends to zero faster than
√

(∆x)2 + (∆y)2 as (∆x, ∆y) →
(0, 0). Therefore, in this limit, only terms linear in ∆x and ∆y must be
retained, when calculating ∆Sij, and hence the surface area ∆Sij and the
area of the partition rectangle ∆A = ∆x ∆y have to be proportional in this
limit:

∆Sij = Jij ∆A.

The coefficient Jij is found by comparing the area of the parallelogram in
the tangent plane above Rij with the area ∆A of Rij. Think of the roof
of a building of shape z = f(x, y) covered by shingles of area ∆Sij. The
equation of the tangent plane is

z = z∗ij + f ′
x(x∗

i , y
∗
j )(x− x∗

i ) + f ′
y(x

∗
i , y

∗
j )(y − y∗j ) = L(x, y).

Let O′, A′, and B′ be, respectively, the vertices (xi, yj, 0), (xi + ∆x, yj, 0),
and (xi, yj +∆y, 0) of the rectangle Rij; that is, the segments O′A′ and O′B′

are the adjacent sides of Rij (see the left panel of Fig. 39.1). If O, A, and B
are the points in the tangent plane above O′, A′, and B′, respectively, then
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A

z = L(x, y)

a P∗ z = f(x, y)

O
b

B

A′

∆x P ′
∗

O′
∆y B′ x

y

z

2

4

2

S

D

Figure 39.1. Left: The rectangle with adjacent sides O′A′

and O′B′ is an element of a rectangular partition of D and
P ′
∗ is a sample point. The point P∗ is the point on the graph

z = f(x, y) for (x, y) = P ′
∗. The linearization of f at P∗

defines the tangent plane z = L(x, y) to the graph through
P∗. The surface area of the portion of the graph above the
partition rectangle is approximated by the area of the portion
of the tangent plane above the partition rectangle which is
the area of the parallelogram with adjacent sides OA and OB.
It equals ‖a× b‖. Right: An illustration to Example 39.1.
The part of the paraboloid whose area is to be evaluated is
obtained by restricting (x, y) to the part D of the disk of
radius 2 that lies in the first quadrant.

the adjacent sides of the parallelogram in question are a =
−→
OA and b =

−−→
OB

and

∆Sij = ‖a× b‖

if only the leading term, proportional to ∆x∆y, is retained in the limit
(∆x, ∆y)→ (0, 0).

By substituting the coordinates of O′, A′, and B′ into the equation of
the tangent plane, the coordinates of the points O, A, and B are found:

O = (xi, yj, L(xi, yj)) ,

A = (xi + ∆x, yj, L(xi + ∆x, yj)) ,

B = (xi, yj + ∆y, L(xi, yj + ∆y) .
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By the linearity of the function L,

L(xi + ∆x, yj)− L(xi, yj) = f ′
x(x∗

i , y
∗
j ) ∆x ,

L(xi, yj + ∆y)− L(xi, yj) = f ′
y(x

∗
i , y

∗
j )∆y

and therefore

a = 〈∆x, 0, f ′
x(x

∗
i , y

∗
j ) ∆x〉 = ∆x 〈1, 0, f ′

x(x∗
i , y

∗
j )〉 ,

b = 〈0, ∆y, f ′
y(x

∗
i , y

∗
j ) ∆y〉 = ∆y 〈0, 1, f ′

y(x
∗
i , y

∗
j )〉 ,

a× b = ∆x ∆y 〈−f ′
x(x∗

i , y
∗
j ), −f ′

y(x
∗
i , y

∗
j ), 1〉 ,

∆Sij = ‖a× b‖ = J(x∗
i , y

∗
j ) ∆x∆y = J(x∗

i , y
∗
j ) ∆A = Jij∆A ,

J(x, y) =
√

1 + (f ′
x)2 + (f ′

y)
2 .

If the intersection of a partition rectangle Rij with D contains at most only
points of the boundary of D, then it is natural to set ∆Sij = 0. If Rij is
not contained in D, but intersects the interior of D, then ∆Sij = Jij∆A
where the sample point (x∗

i , y
∗
j ) can be chosen in the interior of D. With

this agreement, the sum of ∆Sij over the partition is a Riemann sum of a
continuous function J(x, y) over D. Assuming that the boundary of D is
piecewise smooth, the Riemann sum should converge to the double integral
of J over D, and by the geometrical construction of the Riemann sum, this
limit is the surface area:

A(S) = lim
N1,N2→∞

N1
∑

i=1

N2
∑

j=1

J(x∗
i , y

∗
j ) ∆A =

∫∫

D
J(x, y)dA .

If f(x, y) = const, then f ′
x = f ′

y = 0 and A(S) = A(D) as required. Note
that the continuity of partial derivatives and the linearization of f can be
established only for interior points of D if f is not defined outside of a closed
region D. However the above double integral still exists by Corollary 28.1,
provided f ′

x and f ′
y are bounded on the interior of D and the boundary of D

is piecewise smooth. Thus, the following definition of the surface area can
be adopted.

Definition 39.1. (Surface Area).
Suppose that f(x, y) has continuous first-order partial derivatives on a closed
bounded region D bounded by a piece-wise smooth curve. Then the surface
area of the graph z = f(x, y) is given by

A(S) =

∫∫

D

√

1 + (f ′
x)2 + (f ′

y)
2 dA.

Example 39.1. Find the area of the part of the paraboloid z = x2 + y2

in the first octant and below the plane z = 4.

Solution: The surface in question is the graph z = f(x, y) = x2 + y2.
Next, the region D must be specified (it determines the part of the graph
whose area is to be found). One can view D as the vertical projection of
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the surface onto the xy plane. The plane z = 4 intersects the paraboloid
above the circle 4 = x2 + y2 of radius 2. Since the surface also lies in the
first octant, D is the part of the disk x2 +y2 ≤ 4 in the first quadrant. Then
f ′
x = 2x, f ′

y = 2y, and J = (1 + 4x2 + 4y2)1/2. The surface area is

A(S) =

∫∫

D

√

1 + 4x2 + 4y2 dA =

∫ π/2

0

dθ

∫ 2

0

√

1 + 4r2 r dr

=
π

2

∫ 2

0

√

1 + 4r2 r dr =
π

16

∫ 17

1

√
u du =

π

24
(173/2− 1),

where the double integral has been converted to polar coordinates and the
substitution u = 1 + 4r2 has been used to evaluate the last integral. �

Remark. Suppose that partial derivatives of f are continuous but not
bounded in the interior of a region D or they do not exist at the boundary
of D. The surface area may still exist in the sense of Definition 39.1 if the
double integral is treated as an improper integral. Since J > 0 in the interior
of D, it can be regularized in any convenient way according to Theorems
37.1 and 37.2. Similarly the surface area of an unbounded surface is defined
as the corresponding improper integral, provided it converges. Since J is
positive, the improper integral can be evaluated in any convenient regular-
ization. If in either of the two cases the improper integral diverges, the
surface area is said to be infinite.

Example 39.2. Show that the surface area of a sphere of radius R is
4πR2.

Solution: The hemisphere is the graph z = f(x, y) =
√

R2 − x2 − y2 on
the disk x2 + y2 ≤ R2 of radius R. The area of the sphere is twice the area
of this graph. One has

f ′
x = − x

√

R2 − x2 − y2
= −x

f
, f ′

y = − y
√

R2 − x2 − y2
= −y

f
,

J =

(

1 +
x2

f2
+

y2

f2

)1/2

=
(f2 + x2 + y2)1/2

f
=

R
√

R2 − x2 − y2
.

The partial derivatives do not exist at the boundary of D, the circle x2+y2 =
R2. The surface area integral is not proper. One can regularize it by reducing
D to the disk Da : x2 + y2 = a2 < R2 and after evaluation of the integral
take the limit a → R−. Hence, by converting the double integral to polar
coordinates

A(S) = 2R lim
a→R−

∫∫

Da

dA
√

R2 − x2 − y2
= 2R lim

a→R−

∫ 2π

0
dθ

∫ a

0

r dr√
R2 − r2

= 4πR lim
a→R−

∫ a

0

r dr√
R2 − r2

= 4πR lim
a→R−

(

−
√

R2 − r2
)∣

∣

∣

a

0
= 4πR2,
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where the substitution u = R2 − r2 has been used to evaluate the last
integral. �

39.2. Surface Integral of a Function. An intuitive idea of the concept of the
surface integral of a function can be understood from the following example.
Suppose one wants to find the total human population on the globe. The
data about the population is usually supplied as the population density
(i.e., the number of people per unit area). The population density is not a
constant function on the globe. It is high in cities and low in deserts and
jungles. Let σ(r) be the population density as a function of position r on
the globe (r is taken relative to some coordinate system in space). Consider
a partition of the surface of the globe by surface elements of area ∆Sp.
Then the population on each partition element is approximately σ(r∗p) ∆Sp,
where r∗p is a sample point in the partition element. The approximation
neglects variations of σ within each partition element. The total population
is approximately the Riemann sum

∑

p σ(r∗p) ∆Sp. To get an exact value,
the partition has to be refined so that the size of each partition element
becomes smaller. The limit is the surface integral of σ over the surface of
the globe, which is the total population. In general, one can think of some
quantity distributed over a surface with some density (the amount of this
quantity per unit area as a function of position on the surface). The total
amount is the surface integral of the density over the surface.

Let f be a bounded function in an open region E and let S be a surface
in E that has a finite surface area. Consider a partition of S by N pieces
Sp, p = 1, 2, ..., N , which have surface area ∆Sp. Suppose that S is defined
as a level surface g(x, y, z) = k of a function g that has continuous partial
derivatives on E and whose gradient does not vanish. Then for any point P
on S there is a function of two variables whose graph coincides with S in a
neighborhood of P and the function has continuous partial derivatives. So
the surface area ∆Sp of a partition element Sp can be evaluated by Definition
39.1. Put mp = infSp f and Mp = supSp

f ; that is, mp is the greatest lower
bound of values of f for all r in Sp and Mp is the least upper bound on the
values of f for all r in Sp. The upper and lower sums are defined by

U(f, N ) =

N
∑

p=1

Mp ∆Sp , L(f, N ) =

N
∑

p=1

mp ∆Sp .

Let Rp be the radius of the smallest ball that contains Sp and maxp Rp = R∗
N .

A partition of S is said to be refined if R∗
N is decreasing with increasing N so

that R∗
N → 0 as N → ∞. In other words, under a refinement, the sizes Rp

of partition elements become uniformly smaller with increasing the number
N of partition elements.

Definition 39.2. (Surface Integral of a Function).
The surface integral of a bounded function f over a smooth bounded surface
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r∗p ∆Sp

S

E

∆Sp

a

∆Vp = a∆Sp

Figure 39.2. Left: A partition of a surface S by elements
with surface area ∆Sp. It is used in the definition of the sur-
face integral and also to construct its Riemann sums. Right:
A neighborhood Ea of a smooth surface S defined as the set
of points whose distance to S cannot exceed a > 0. For
sufficiently fine partition of S and small a, the region Ea is
partitioned by elements of volume ∆Vp = a∆Sp.

S is
∫∫

S
f(r) dS = lim

N→∞
U(f, N ) = lim

N→∞
L(f, N ),

provided the limits of the upper and lower sums exist and coincide. The limit
is understood in the sense R∗

N → 0 as N →∞.

If the surface integral of f exists, then it can also be represented by the
limit of a Riemann sum:

(39.1)

∫∫

S
f(r) dS = lim

N→∞

N
∑

p=1

f(r∗p) ∆Sp = lim
N→∞

R(f, N ) ,

for any choice of sample points r∗p in partition elements Sp. Indeed, it follows
from the definition of supremum and infimum that

mp ≤ f(r) ≤Mp ⇒ L(f, N ) ≤ R(f, N ) ≤ U(f, N ) .

The Riemann sum converges to the surface integral by the squeeze principle
and its limit is independent of the choice of sample points r∗p. Riemann sums
can be used in numerical approximations of the surface integral.

The following theorem provides sufficient conditions for the existence of
the surface integral.

Theorem 39.1. (Integrability on a Surface)
If f is bounded and possibly not continuous at finitely many smooth curves
in a piecewise smooth bounded surface S, then the surface integral of f over
the surface S exists.

Similar to line integrals, surface integrals are related to triple integrals.
Consider a neighborhood Ea of a smooth surface S which is defined as the
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set of points whose distance to S cannot exceed a/2 > 0 (in the sense of
Definition 5.2). The region Ea looks like a shell with thickness a (see the
right panel of Fig. 39.2). Suppose that f is continuous on Ea. Since S is
smooth, there is a normal line through each point of S. For a small enough,
the segments of normal lines of length a through any two neighboring points
of S do not intersect. The region Ea can be partitioned by solid regions Eap

of volume ∆Vp such that the intersection of Eap with the surface S is a part
Sp of S and all Sp form a partition of S. If ∆Sp is the surface area of Sp,
then

lim
a→0+

∆Vp

a
= ∆Sp .

Using the integral mean value theorem for the triple integral over Eap, it is
concluded that

∫∫∫

Ea

fdV =
N
∑

p=1

∫∫∫

Eap

fdV =
N
∑

p=1

f(rp)∆Vp ,

for some points rp in Eap and any integer N . Note that rp depends on a.
However, in the limit a → 0+, the point rp should approach a point r∗p on
the surface Sp by continuity of f . Therefore

lim
a→0+

1

a

∫∫∫

Ea

f(r) dV = lim
a→0+

N
∑

p=1

f(rp)
∆Vp

a
=

N
∑

p=1

f(r∗p)∆Sp .

The latter relation holds for any N and therefore one can take the limit
N → ∞ in the sense that R∗

N → 0 (as in Definition 39.2). Since f is
continuous, the Riemann sum of f over the surface S converges to the surface
integral:

(39.2) lim
a→0+

1

a

∫∫∫

Ea

f(r) dV =

∫∫

S

f(r) dS.

This shows that the surface integral inherits all the properties of multiple
integrals. In particular, if f is continuous on S, then there exists a point r∗

in S such that
∫∫

S
f(r)dS = f(r∗)A(S) ,

which is nothing but the integral mean value theorem for surface integrals.

39.3. Evaluation of a Surface Integral.

Theorem 39.2. (Evaluation of a Surface Integral).
Suppose that f is continuous in a region that contains a surface S defined by
the graph z = g(x, y) on D. Suppose that g has continuous partial derivatives
on an open region that contains D. Then

(39.3)

∫∫

S
f(x, y, z) dS =

∫∫

D
f(x, y, g(x, y))

√

1 + (g′x)2 + (g′y)
2 dA.
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Proof. By Theorem 39.1, the surface integral exists. So, it can be evalu-
ated as the limit of any convenient Riemann sum as the limit is independent
of the choice of partition or sample points. Consider a partition of D by

elements Dp of area ∆Ap, p = 1, 2, ..., N . Let J(x, y) =
√

1 + (g′x)
2 + (g′y)

2.

By the continuity of g′x and g′y, J is continuous on D. By the integral mean
value theorem, the area of the part of the graph z = g(x, y) over Dp is given
by

∆Sp =

∫∫

Dp

J(x, y) dA = J(x∗
p, y

∗
p) ∆Ap

for some (x∗
p, y

∗
p) in Dp. In the Riemann sum for the surface integral (39.1),

take the sample points to be r∗p = 〈x∗
p, y

∗
p, g(x∗

p, y
∗
p)〉 in Sp. The Riemann

sum becomes the Riemann sum (29.2) of the function

F (x, y) = f(x, y, g(x, y))J(x, y)

on D. By the continuity of F (because f , g and J are continuous functions),
it converges to the double integral of F over D. �

The evaluation of the surface integral involves the following steps:

Step 1. Represent S as a graph z = g(x, y); that is, find the function g
using a geometrical description of S. If S cannot be represented
as a graph of a single function, cut the surface into several pieces
each of which is a graph, use the additivity of the surface integral;

Step 2. Find the region D that defines the part of the graph that coincides
with S (if S is not the entire graph);

Step 3. Calculate the derivatives g′x and g′y and the area transformation
function J, dS = J dA;

Step 4. Evaluate the double integral (39.3).

Example 39.3. Evaluate the integral of f(x, y, z) = z over the part of
the saddle surface z = xy that lies inside the cylinder x2 + y2 = 1 in the
first octant.

Solution: Step 1. The surface is a part of the graph z = g(x, y) = xy.
Step 2. Since the surface lies within the cylinder, its projection onto the xy
plane is bounded by the circle of unit radius, x2 + y2 = 1. The first octant
is projected onto the first (positive) quadrant in the xy plane. Thus, D is
the part of the disk x2 + y2 ≤ 1 in the first quadrant.
Step 3. One has g′x = y, g′y = x, and J(x, y) = (1 + x2 + y2)1/2.
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Step 4. The surface integral is
∫∫

S
z dS =

∫∫

D
xy
√

1 + x2 + y2 dA

=

∫ π/2

0
cos θ sin θ dθ

∫ 1

0
r2
√

1 + r2 r dr

=
sin2 θ

2

∣

∣

∣

π/2

0
· 1

2

∫ 2

1
(u− 1)

√
udu

=
1

2

(u5/2

5
− u3/2

3

)∣

∣

∣

2

1
=

√
2 + 1

15
,

where the double integral has been converted to polar coordinates and the
last integral is evaluated by the substitution u = 1 + r2 so that du = 2rdr.
�

39.4. Parametric Equations of a Surface. The graph z = g(x, y), where
(x, y) in D, defines a surface S in space. Consider the vectors

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 = 〈u, v, g(u, v)〉 ,
where the ordered pair of parameters (u, v) spans the region D. For every
pair (u, v), the rule r = r(u, v) defines a vector in space which is the position
vector of a point on the surface. Consider a change of variables defined by
a transformation

T : D′ → D , u = u(u′, v′) , v = v(u′, v′) .

Then the components of position vectors of points of S become general
functions of the new variables (u′, v′):

r = r(u′, v′) = 〈x(u′, v′), y(u′, v′) z(u′, v′)〉 .
This observation suggests that a surface in space can be defined by specifying
three functions of two variables that span a planar region; these functions
are viewed as components of the position vector in space.

Definition 39.3. (Parametric Surface)
A mapping of a planar region D into space defined by the rule

r = r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 ,
where x(u, v), y(u, v), and z(u, v) are continuous functions on D, is called
a parametric surface in space, and the equations x = x(u, v), y = y(u, v),
and z = z(u, v) are called parametric equations of the surface.

For example, the equations

(39.4) x = R cos θ sinφ , y = R sin θ sin φ , z = R cos φ

are parametric equations of a sphere of radius R. Indeed, by comparing these
equations with the spherical coordinates, one finds that (ρ, φ, θ) = (R, u, v);
that is, when (u, v) = (φ, θ) range over the rectangle D = [0, π]× [0, 2π],
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the vector 〈x, y, z〉 = r(φ, θ) traces out the sphere ρ = R. An apparent
advantage of using parametric equations of a surface is that the surface
no longer needs be represented as the union of graphs. For example, the
whole sphere is described by the single vector-valued function (39.4) of two

variables instead of the union of two graphs z = ±
√

R2 − x2 − y2.

Definition 39.4. (Smooth Parametric Surface)
Let a vector function r(u, v) be defined on a closed planar region D. If the
vector function is one-to-one, has continuous partial derivatives r′u and r′v
in the interior of D such that the vector n = r′u × r′v does not vanish, and
the components of the unit vector n̂ parallel to n are continuously extendable
to the boundary of D, then the range S of the vector function on D is called
a smooth parametric surface.

Let (u0, v0) be a point on the boundary of D. Since n̂ = n̂(u, v) is well
defined in the interior of D (n(u, v) does not vanish), one can investigate
the limit lim(u,v)→(u0,v0) n̂(u, v) which is understood as the limit of each
component of n̂ (just like the limit of a vector function). Following the
discussion of Section 17.4, the components of n̂ are continuously extendable
to the limit point (u0, v0) if the above limit exists. An analogy can be made
with parametric equations of a curve in space. A curve in space is a mapping
of an interval [a, b] into space defined by a vector function of one variable
r(t). If r′(t) is continuous and r′(t) 6= 0, then the curve has a continuous
tangent vector and the curve is smooth. Similarly, the condition r′u×r′v 6= 0

ensures that the surface has a continuous normal vector just like a graph of
a continuously differentiable function of two variables. If r′(t0) = 0 or r′(t0)
does not exists for a particular t0, but the limit of the unit tangent vector
v̂(t) = r̂′(t)/‖r′(t)‖ as t→ t0 exists, the curve is smooth at r(t0) (recall the
discussion in Section 11.3).

Example 39.4. Find the parametric equations of the double cone z2 =
x2 + y2.

Solution: Suppose z 6= 0. Then (x/z)2 + (y/z)2 = 1. The solution of this
equation is x/z = cos u and y/z = sinu, where u in [0, 2π). Therefore, the
parametric equations are

x = v cosu , y = v sin u , z = v,

where (u, v) in [0, 2π) × (−∞,∞) for the whole double cone. Of course,
there are many different parameterizations of the same surface. They are
related by a change of variables u = u(s, t), v = v(s, t), where (s, t) are new
parameters of the same surface S. �

Example 39.5. A torus is a surface obtained by rotating a circle about
an axis outside the circle and parallel to its diameter. Find the parametric
equations of a torus.
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y

z

(x, y, z)(x0, 0, z0)
R

u
a

v a R

u

Figure 39.3. A torus. Consider a circle of radius R in the
zx plane whose center is positioned on the positive x axis
at a distance a > R. Any point (x0, 0, z0) on the circle is
obtained from the point (a + R, 0, 0) by rotation about the
center of the circle through an angle 0 ≤ u ≤ 2π so that
x0 = a + R cos u and z0 = R sinu. A torus is a surface
swept by the circle when the xz plane is rotated about the z
axis. A generic point (x, y, z) on the torus is obtained from
(x0, 0, z0) by rotating the latter about the z axis through an
angle 0 ≤ v ≤ 2π. Under this rotation z0 does not change
and z = z0, while the pair (x0, 0) in the xy plane changes to
(x, y) = (x0 cos v, x0 sin v). Parametric equations of a torus
are x = (a+R cosu) cos v, y = (a+R cosu) sin v, z = R sinu,
where (u, v) ranges over the rectangle [0, 2π]× [0, 2π].

Solution: Let the rotation axis be the z axis. Let a be the distance from
the z axis to the center of the rotated circle and let R be the radius of the
latter, a ≥ R. In the xz plane, the rotated circle is z2 + (x− a)2 = R2. Let
(x0, 0, z0) be a solution to this equation. The point (x0, 0, z0) traces out the
circle of radius x0 upon the rotation about the z axis. All such points are
(x0 cos v, x0 sin v, z0), where v in [0, 2π]. Since all points (x0, 0, z0) are on
the circle z2 +(x−a)2 = R2, they can be parameterized as x0−a = R cos u,
z0 = R sin u where u in [0, 2π]. Thus, the parametric equations of a torus
are

(39.5) x = (a + R cosu) cos v , y = (a + R cosu) sin v , z = R sinu ,



588 4. MULTIPLE INTEGRALS

where (u, v) in [0, 2π]× [0, 2π]. An alternative (geometrical) derivation of
these parametric equations is given in the caption of Fig. 39.3. �

A tangent plane to a parametric surface. The line v = v0 in D is mapped
onto the curve r = r(u, v0) in S (see Fig. 39.4). The derivative r′u(u, v0)
is tangent to the curve. Similarly, the line u = u0 in D is mapped to
the curve r = r(u0, v) in S and the derivatives r′v(u0, v) is tangent to it.
If the cross product r′u × r′v does not vanish in D, then one can define
a plane normal to the cross product at any point of S. Furthermore, if
r′u × r′v 6= 0 in a neighborhood of (u0, v0), then without loss of generality,
one can assume that, say, the z component of the cross product is not zero:
x′

uy′v − x′
vy

′
u = ∂(x, y)/∂(u, v) 6= 0. This shows that the transformation

x = x(u, v), y = y(u, v) with continuous partial derivatives has a non-
vanishing Jacobian. By the inverse function theorem (Theorem 33.1), there
exists an inverse transformation u = u(x, y), v = v(x, y) which also has
continuous partial derivatives. So the vector function r(u, v) can be written
in the new variables (x, y) as

R(x, y) = r(u(x, y), v(x, y)) = (x, y, z(u(x, y), v(x, y)) = (x, y, g(x, y))

which is a vector function that traces out the graph z = g(x, y). Thus, a
smooth parametric surface near any of its points can always be represented
as the graph of a function of two variables. By the chain rule, the function g
has continuous partial derivatives. Therefore its linearization near (x0, y0) =
(x(u0, v0), y(u0, v0)) defines the tangent plane to the graph and, hence, to the
parametric surface at the point r0 = r(u0, v0). In particular, the vectors r′v
and r′u must lie in this plane as they are tangent to two curves in the graph.
Thus, the vector r′u × r′v is normal to the tangent plane. So Definition 39.4
of a smooth parametric surface agrees with the notion of a smooth surface
as a level set of a function with continuous partial derivatives and a non-
vanishing gradient and the following theorem holds.

Theorem 39.3. (Normal to a Smooth Parametric Surface).
Let r = r(u, v) be a smooth parametric surface. Then the vector n = r′u× r′v
is normal to the surface .

Area of a smooth parametric surface. Owing to the definition of the surface
area element of the graph and the established relation between graphs and
smooth parametric surfaces, the area a smooth surface can be found using
the tangent planes to it (see Fig. 39.1 (left panel)). Let a region D spanned
by the parameters (u, v) be partitioned by rectangles of area ∆A = ∆u ∆v,
then the vector function r(u, v) defines a partition of the surface (a partition
element of the surface is the image of a partition rectangle in D). Consider
a rectangle [u0, u0 +∆u]× [v0, v0 +∆v] = R0. Let its vertices O′, A′, and B′

have the coordinates (u0, v0), (u0 + ∆u, v0), and (u0, v0 + ∆v), respectively.
The segments O′A′ and O′B′ are the adjacent sides of the rectangle R0. Let
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D

v0 O′

u0

r = r(u, v)

S

O
r′u

r′v

Figure 39.4. The lines u = u0 and v = v0 in D are mapped
onto the curves in S that are traced out by the vector func-
tions r = r(u0, v) and r = r(u, v0), respectively. The curves
intersect at the point O with the position vector r(u0, v0).
The derivatives r′v(u0, v0) and r′u(u0, v0) are tangential to the
curves. If they do not vanish and are not parallel, then their
cross product is normal to the plane through O that con-
tains r′u and r′v. If the parametric surface is smooth, then
r′u × r′v 6= 0 is a normal vector to the plane tangent to the

surface.

O, A, and B be the images of these points in the surface. Their position
vectors are r0 = r(u0, v0), ra = r(u0 + ∆u, v0), and rb = r(u0, v0 + ∆v),
respectively. The area ∆S of the image of the rectangle R0 can be approxi-
mated by the area of the parallelogram ‖a× b‖ with adjacent sides:

a =
−→
OA = ra − r0 = r(u0 + ∆u, v0)− r(u0, v0) = r′u(u0, v0) ∆u,

b =
−−→
OB = rb − r0 = r(u0, v0 + ∆v)− r(u0, v0) = r′v(u0, v0) ∆v.

The last equalities are obtained by the linearization of the components of
r(u, v) near (u0, v0), which is justified because the surface has a tangent
plane at any point. The area transformation law is now easy to find:

∆S = ‖a× b‖ = ‖r′u × r′v‖∆u∆v = J∆A .

Having found the surface area of a partition element of a parametric smooth
surface, the total surface area can be found in the same way as it was done
for a smooth surface defined by the graph of a function. The following
theorem can be proved.

Theorem 39.4. (Surface Integral over Parametric Surface)
Let D be a closed bounded planar region with a piecewise smooth boundary.
Let r = r(u, v) be parametric equations of a surface S. Suppose that a
vector function r(u, v) is one-to-one and has continuous and bounded partial
derivatives, r′u and r′v, in the interior of D such that the vector r′u× r′v does
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not vanish. Then the surface area of S is given by the double integral

A(S) =

∫∫

D

‖r′u × r′v‖dA .

If a function f is bounded and possibly not continuous at finitely many
smooth curves in S, then the surface integral of f over S exists and is given
by

∫∫

S
f(r) dS =

∫∫

D
f(r(u, v))‖r′u× r′v‖ dA .

Note that the partial derivatives r′u and r′v are not required to be defined
on the boundary of D and, if they are defined, the cross product ru × rv is
allowed to vanish on the boundary of D. Also, the function r(u, v) is required
to be one-to-one on D except possibly on the boundary of D. The behavior
of the function r(u, v) on the boundary of D would have no effect on the
value of the double integral over D by Corollary 28.1 as long as the partial
derivatives r′u and r′v remain continuous and bounded in the interior of D
because the boundary of D is a piecewise smooth curve and has zero area.
The situation is similar to the change of variables in the double integral
stated in Theorem 33.2 because, as has been argued before, parametric
equations of a surface may be obtained from the graph of a function of two
variables by a change of variables so that the surface integral over the graph
(or the union of several graphs) is related to the surface integral over the
same surface described by parametric equations by a change of variables.

Example 39.6. Find the surface area of the torus (39.5).

Solution: To shorten the notation, put w = a + R cos u. One has

r′u = 〈−R sinu cos v, −R sinu sin v, R cosu〉 ,
= −R 〈sinu cos v, sin u sin v, − cosu〉 ,

r′v = 〈−(a + R cos u) sinv, (a + R cosu) cos v, 0〉
= w 〈− sin v, cos v, 0〉 ,

n = r′u × r′v = −Rw 〈cos v cos u, sin v cosu, sinu〉 ,
J = ‖r′u × r′v‖ = Rw

(

cos2 u(cos2 v + sin2 v) + sin2 u
)1/2

= Rw = R(a + R cos u).

The surface area is

A(S) =

∫∫

D

J(u, v) dA =

∫ 2π

0

∫ 2π

0

R(a + R cosu) dv du = 4π2Ra .

�

Example 39.7. Evaluate the surface integral of f(x, y, z) = z2(x2 +y2)
over a sphere of radius R centered at the origin.
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Solution: Using the parametric equations (39.4), one finds

r′φ = 〈R cos θ cos φ, R sin θ cos φ, −R sinφ〉 ,
r′θ = 〈−R sin θ sinφ, R cos θ sin φ, 0〉

= R sinφ〈− sin θ, cos θ, 0〉 ,
n = r′φ × r′θ = R sinφ〈R sin φ cos θ, R sin φ sin θ, R cos φ〉

= R sinφ r(φ, θ),

J = ‖r′φ × r′θ‖ = R sin φ‖r(φ, θ)‖ = R2 sinφ ,

f(r(φ, θ)) = (R cosφ)2R2 sin2 φ = R4 cos2 φ(1− cos2 φ) .

Note that sin φ ≥ 0 as 0 ≤ φ ≤ π. Therefore, the normal vector n is outward
(parallel to the position vector; the inward normal would be opposite to the
position vector.) The surface integral is

∫∫

S

f dS=

∫∫

D

f(r(φ, θ))J(φ, θ) dA

= R6

∫ 2π

0

dθ

∫ π

0

cos2 φ(1− cos2 φ) sinφ dφ

= 2πR6

∫ 1

−1

w2(1−w2) dw =
8π

15
R6,

where the substitution w = cosφ has been made to evaluate the last integral.
�

Note that the vector function defined by the parametric equations (39.4)
is not one-to-one on the boundary of the rectangle [0, π]×[0, 2π]. The points
(φ, 0) and (φ, 2π) have the same image. Furthermore all points (0, θ) on
the boundary are mapped to the point (0, 0, R), while the points (π, θ) are
mapped to (0, 0,−R) of the sphere, and the function J vanishes at these
boundary points. But all the double-counting has no effect on the surface
integral because it occurs on the set that has no area in full accord with
Theorem 39.4. For example, the surface area of the sphere is

A(S) =

∫∫

S

dS =

∫∫

D

J(φ, θ)dA′ = R2

∫ 2π

0

dθ

∫ π

0

sinφdφ = 4πR2 .

The parametric equations (39.4) define a smooth surface (the sphere is a
smooth surface!) despite the fact that n(0, θ) = n(π, θ) = 0. Indeed the
unit vector parallel to n is well defined and continuous for 0 < φ < π:

n̂ =
1

‖n‖ n = 〈sinφ cos θ, sin φ sin θ, cosφ〉

and has the continuous extension to φ = 0 and φ = π:

lim
φ→0+

n̂(φ, θ) = 〈0, 0, 1〉 , lim
φ→π−

n̂(φ, θ) = 〈0, 0,−1〉
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for any θ by continuity of the trigonometric functions. The limits are the
unit normal vectors of the sphere at the points (0, 0, R) and (0, 0,−R), re-
spectively.

39.5. Exercises.

1–5. Find the surface area of each of the following surfaces.

1. The part of the plane in the first octant that intersects the coor-
dinate axes at (a, 0, 0), (0, b, 0) and (0, 0, c) where a, b, and c are
positive numbers ;

2. The part of the plane 3x + 2y + z = 1 that lies inside the cylinder
x2 + y2 = 4 ;

3. The part of the hyperbolic paraboloid z = y2−x2 that lies between
the cylinders x2 + y2 = 1 and x2 + y2 = 4 ;

4. The part of the paraboloid z = x2+y2 that lies between two planes
z = 1 and z = 9 ;

5. The part of the surface y = 4x + z2 that lies between the planes
x = 0, z = 1, and z = x .

6–10. Evaluate the integral over the specified surface.

6.
∫∫

S yzdS where S is the part of the plane x + y + z = 1 that lies in
the first octant ;

7.
∫∫

S x2z2dS where S is the part of the cone z2 = x2 + y2 that lies
in between the planes z = 1 and z = 2 ;

8.
∫∫

S xzdS where S is the boundary of the solid region enclosed by

the cylinder y2 + z2 = 1 and the planes x = 0 and x + y = 3. Hint:
use the additivity of the surface integral ;

9.
∫∫

S zdS where S is the part of the sphere x2 +y2 + z2 = 2 that lies
above the plane z = 1 ;

10.
∫∫

S z(sin(x2) − sin(y2))dS where S is the part of the paraboloid

z = 1−x2−y2 that lies in the first octant. Hint: Use the symmetry .

11. Suppose that f(r) = g(‖r‖) where r = (x, y, z). If g(a) = 2, use the
geometrical interpretation of the surface integral to find

∫∫

S fdS where S is
the sphere of radius a centered at the origin.
12–13. Identify and sketch the given parametric surface.

12. r(u, v) = 〈u + v, 2− v, 2− 2v + 3u〉 ;
13. r(u, v) = 〈a cosu, b sinu, v〉, where a and b are positive constants .

14–15. For the given parametric surface sketch the curves r(u, v0) for several
fixed values v = v0 and the curves r(u0, v) for several fixed values u = u0.
Use them to visualize the parametric surface.

14. r(u, v) = 〈sin v, u sin v, sin u sin(2v)〉 ;
15. r(u, v) = (u cos v sin θ, u sinu sin θ, u cos θ) where 0 ≤ θ ≤ π/2 is a

parameter.

16–19. Find parametric equations of the specified surface.
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16. The plane through r0 that contains two non-zero and non-parallel
vectors a and b ;

17. The elliptic cylinder y2/a2 + z2/b2 = 1 ;
18. The part of the sphere x2 + y2 + z2 = a2 that lies below the cone

z =
√

x2 + y2 ;
19. The ellipsoid x2/a2 + y2/b2 + z2/c2 = 1 .

20–21. Find an equation of the tangent plane to the given parametric
surface at the specified point P .

20. r(u, v) = 〈u2, u− v, u + v〉 at P = (1,−1, 3) ;
21. r(u, v) = 〈sin v, u sin v, sin u sin(2v)〉 at P = (1, π/2, 0).

22–25. Evaluate each of the following surface integrals over the specified
parametric surface.

22.
∫∫

S z2dS, where S is the torus (39.5) with R = 1 and a = 2 ;

23.
∫∫

S(1 + x2 + y2)1/2dS, where S is the helicoid with parametric
equations r(u, v) = 〈u cos v, u sin v, v〉 and (u, v) in [0, 1]× [0, π] ;

24.
∫∫

S zdS, where S is the part of the helicoid r(u, v) = 〈u cos v, u sin v, v〉,
(u, v) in [0, a]× [0, 2π] ;

25.
∫∫

S z2dS, where S is the part of the cone x = u cos v sin θ, y =
u sin v sin θ, z = u cos θ, (u, v) in [0, a]× [0, 2π], and 0 < θ < π/2 is
a parameter.

26–32. Evaluate each of the following surface integrals. If necessary, use
suitable parametric equations of the surface.

26.
∫∫

S(x2 + y2 + z2)dS, where S is the sphere x2 + y2 + z2 = R2 ;

27.
∫∫

S(x2 + y2 + z2)dS, where S is the surface |x| + |y| + |z| = R;
compare the result with the previous exercise ;

28.
∫∫

S(x2 + y2)dS where S is the boundary of the solid
√

x2 + y2 ≤
z ≤ 1 ;

29.
∫∫

S(1 + x + y)−2dS where S is the boundary of the tetrahedron
bounded by the coordinate planes and by the plane x + y + z = 1 ;

30.
∫∫

S |xyz|dS where S is the part of the paraboloid z = x2 +y2 below
the plane z = 1 ;

31.
∫∫

S(1/h)dS where S is an ellipsoid (x/a)2 + (y/b)2 + (z/c)2 = 1
and h is the distance from the origin to the plane tangent to the
ellipsoid at the point where the surface area element dS is taken ;

32.
∫∫

S(xy + yz + zx)dS where S is the part of the cone z =
√

x2 + y2

cut out by the cylinder x2 + y2 = 2ax .

33. Prove the Poisson formula
∫∫

S
f(ax + by + cz)dS = 2π

∫ 1

−1
f(u
√

a2 + b2 + c2)du

where S is the sphere x2 + y2 + z2 = 1.
34. Evaluate F (a, b, c, t) =

∫∫

S f(x, y, z)dS where S is the sphere

(x − a)2 + (y − b)2 + (z − c)2 = t2, f(x, y, z) = 1 if x2 + y2 + z2 < R2

and f(x, y, z) = 0 elsewhere. Assume that
√

a2 + b2 + c2 > R > 0.
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40. Moments of Inertia and Center of Mass

An important application of multiple integrals is finding the center of
mass and moments of inertia of an extended object. The laws of mechanics
say that the center of mass of an extended object on which no external force
acts moves along a straight line with a constant speed. In other words, the
center of mass is a particular point of an extended object that defines the
trajectory of the object as a whole. The motion of an extended object can
be viewed as a combination of the motion of its center of mass and rotation
about its center of mass. The kinetic energy of the object is

K =
mv2

2
+ Krot,

where m is the total mass of the object, v is the speed of its center of mass,
and Krot is the kinetic energy of rotation of the object about its center
of mass; Krot is determined by moments of inertia discussed later. For
example, when docking a spacecraft to a space station, one needs to know
exactly how long the engine should be fired to achieve the required position
of its center of mass and the orientation of the craft relative to it, that is,
how exactly its kinetic energy has to be changed by firing the engines. So
its center of mass and moments of inertia must be known to accomplish the
task.

40.1. Center of Mass. Consider a point mass m fixed at an endpoint of a
rod that can rotate about its other end. If the rod has length L and the
gravitational force is normal to the rod, then the quantity gmL is called
the rotational moment of the gravitational force mg, where g is the free-fall
acceleration. If the rotation is clockwise (the mass is at the right endpoint),
the moment is assumed to be positive, and it is negative, −gmL, for a
counterclockwise rotation (the mass is at the left endpoint). More generally,
if the mass has a position x on the x axis, then its rotation moment about a
point xc is M = (x−xc)m (omitting the constant g). It is negative if x < xc

and positive when x > xc. The center of mass is understood through the
concept of rotational moments.

The simplest extended object consists of two point masses m1 and m2

connected by a massless rod. It is shown in the left panel of Fig. 40.1.
Suppose that one point of the rod is fixed so that it can only rotate about
that point. The center of mass is the point on the rod such that the object
would not rotate about it under a uniform gravitational force applied along
the direction perpendicular to the rod. Evidently, the position of the center
of mass is determined by the condition that the total rotational moment
about it vanishes. Suppose that the rod lies on the x axis so that the masses
have the coordinates x1 and x2. The total rotational moment of the object
about the point xc is M = M1 + M2 = (x1 − xc)m1 + (x2 − xc)m2. If xc is
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Figure 40.1. Left: Two masses connected by a rigid mass-
less rod (or its mass is much smaller than the masses m1 and
m2) are positioned at x1 and x2. The gravitational force is
perpendicular to the rod. The center of mass xc is determined
by the condition that the system does not rotate about xc

under the gravitational forces. Right: An extended object
consisting of point masses with fixed distances between them.
If the position vectors of the masses relative to the center of
mass C are ri, then m1r1 + m2r2 + · · ·+ mNrN = 0.

such that M = 0, then

m1(x1 − xc) + m2(x2 − xc) = 0 =⇒ xc =
m1x1 + m2x2

m1 + m2
.

The center of mass (xc, yc) of point masses mi, i = 1, 2, ..., N , positioned
on a plane at (xi, yi) can be understood as follows. Think of the plane as a
plate on which the masses are positioned. The gravitational force is normal
to the plane. If a rod (a line) is put underneath the plate, parallel to the
plate, then due to an uneven distribution of masses, the plate can rotate
about the rod. When the rod is aligned along either the line x = xc or the
line y = yc, the plane with distributed masses on it does not rotate under the
gravitational pull. In other words, the rotational moments about the lines
x = xc and y = yc vanish. The rotational moment about the line x = xc or
y = yc is determined by the distances of the masses from this line:

N
∑

i=1

(xi − xc)mi = 0 =⇒ xc =
1

m

N
∑

i=1

mixi =
My

m
, m =

N
∑

i=1

mi,

N
∑

i=1

(yi − yc)mi = 0 =⇒ yc =
1

m

N
∑

i=1

miyi =
Mx

m
,

where m is the total mass. The quantity My is the moment about the y
axis (the line x = 0), whereas Mx is the moment about the x axis (the line
y = 0).

Consider an extended object that is a collection of point masses shown
in the right panel of Fig. 40.1. Its center of mass is defined similarly by
demanding that the total moments about either of the planes x = xc, or
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y = yc, or z = zc vanish. Thus, if rc is the position vector of the center of
mass, it satisfies the condition:

∑

i

mi(ri − rc) = 0,

where the vectors ri−rc are position vectors of masses relative to the center
of mass.

Definition 40.1. (Center of Mass).
Suppose that an extended object consists of N point masses mi, i = 1, 2, ..., N ,
whose position vectors are ri. Then its center of mass is a point with the
position vector

(40.1) rc =
1

m

N
∑

i=1

miri , m =

N
∑

i=1

mi,

where m is the total mass of the object. The quantities

Myz =

N
∑

i=1

mixi, Mxz =

N
∑

i=1

miyi, Mxy =

N
∑

i=1

mizi,

are called the moments about the coordinate planes.

If an extended object contains continuously distributed masses, then
the object can be partitioned into N small pieces. Let Bi be the smallest
ball of radius Ri within which the ith partition piece lies. Although all the
partition pieces are small, they still have finite sizes Ri, and the definition
(40.1) cannot be used because the point ri could be any point in Bi. By
making the usual trick of integral calculus, this uncertainty can be eliminated
by taking the limit N → ∞ in the sense that all the partition sizes tend
to 0 uniformly, Ri ≤ maxi Ri = R∗

N → 0 as N → ∞. In this limit, the
position of each partition piece can be described by any sample point r∗i in
Bi. The limit of the Riemann sum is given by the integral over the region
E in space occupied by the object. If σ(r) is the mass density of the object,
then ∆mi = σ(r∗i ) ∆Vi, where ∆Vi is the volume of the ith partition element
and

rc =
1

m
lim

N→∞

N
∑

i=1

r∗i ∆mi =
1

m

∫∫∫

E
r σ(r) dV ,(40.2)

m =

∫∫∫

E

σ(r) dV .

Relation (40.2) is adopted as the definition of the position vector of the
center of mass of an extended object (with continuously distributed mass).
In practical applications, one often encounters extended objects whose one
or two dimensions are small relative to the other (e.g., shell-like objects or
wire-like objects). In this case, the triple integral is simplified to either a
surface (or double) integral for shell-like E, according to (39.2), or to a
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line integral, according to (38.1). For two- and one-dimensional extended
objects, the center of mass can be written as, respectively,

rc =
1

m

∫∫

S
r σ(r) dS , m =

∫∫

S
σ(r) dS,

rc =
1

m

∫

C
r σ(r) ds , m =

∫

C
σ(r) ds,

where, accordingly, σ is the surface mass density or the line mass density
for two- or one-dimensional objects. In particular, when S is a part of the
plane, the surface integral turns into a double integral.

The concept of rotational moments is also useful for finding the center of
mass using the symmetries of the mass distribution of an extended object.
For example, the center of mass of a disk with a uniform mass distribution
apparently coincides with the disk center (the disk would not rotate about
its diameter under the gravitational pull).

Example 40.1. Find the center of mass of the half-disk x2 + y2 ≤ R2,
y ≥ 0, if the mass density at any point is proportional to the distance of that
point from the x axis.

Solution: The mass is distributed evenly to the left and right from the
y axis because the mass density is independent of x, σ(x, y) = ky (k is a
constant). So, the rotational moment about the y axis vanishes; My = 0 by
symmetry and hence xc = My/m = 0. The total mass is

m =

∫∫

D
σ dA = k

∫∫

D
y dA = k

∫ π

0

∫ R

0
r sin θ r dr dθ

= 2k

∫ R

0
r2 dr =

2kR3

3
,

where the integral has been converted to polar coordinates. The moment
about the x axis (about the line y = 0) is

Mx =

∫∫

D
yσ dA =

∫ π

0

∫ R

0
k(r sin θ)2r dr dθ =

πk

2

∫ R

0
r3 dr =

πkR4

8
.

So yc = Mx/m = 3πR/16. �

Example 40.2. Find the center of mass of the solid that lies between
spheres of radii a < b centered at the origin and is bounded by the cone

z =
√

x2 + y2/
√

3 if the mass density is constant.

Solution: The mass is evenly distributed about the xz and yz planes. So
the moments Mxz and Myz about them vanish, and hence yc = Mxz/m = 0
and xc = Myz/m = 0. The center of mass lies on the z axis. Put σ = k =
const. The total mass is

m =

∫∫∫

E
σ dV = k

∫ 2π

0

∫ π/3

0

∫ b

a
ρ2 sin φ dρ dφ dθ =

πk

3
(b3 − a3),
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Figure 40.2. Left: The moment of inertia of a point mass
about an axis γ. A point mass rotates about an axis γ with
the rate ω called the angular velocity. Its linear velocity is
v = ωR where R is the distance from γ. So the kinetic energy
of the rotational motion is mv2/2 = mR2ω2/2 = Iγω2/2
where Iγ = mR2 is the moment of inertia. Right: The
moment of inertia of an extended object E about an axis γ is
defined as the sum of moments of inertia of partition elements
of E: ∆Ii = ∆m(r∗i )R

2
γ(r

∗
i ) where Rγ(r∗i ) is the distance to

the axis γ from a sample point r∗i in the ith partition element
and ∆m(r∗i ) is its mass.

where the triple integral has been converted to spherical coordinates. The
boundaries of E are the spheres ρ = a and ρ = b and the cone defined by the
condition cot φ = 1/

√
3 or φ = π/3. Therefore, the region E is the image of

the rectangular box E ′ = [a, b]× [0, π/3]× [0, 2π] under the transformation
to spherical coordinates. The full range is taken for the polar angle θ as the
equations of the boundaries impose no condition on it. The moment about
the xy plane is

Mxy =

∫∫∫

E

zσ dV = k

∫ 2π

0

∫ π/3

0

∫ b

a

ρ cosφ ρ2 sinφ dρ dφ dθ

=
3πk

16
(b4 − a4).

So zc = Mxy/m = (9/16)(a + b)(a2 + b2)/(a2 + ab + b2). �

Centroid. The center of mass of an extended object with a constant mass
density is called the centroid. The centroid of a region depends only on the
shape of the region. In this sense, the centroid is an intrinsic (geometrical)
characteristic of the region.

40.2. Moments of Inertia. Consider a point mass m rotating about an axis
γ at a constant rate of ω rad/s (called the angular velocity). The system is
shown in Fig. 40.2 (left panel). If the radius of the circular trajectory is R,
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then the linear velocity of the object is v = ωR. The object has the kinetic
energy

Krot =
mv2

2
=

mR2ω2

2
=

Iγω2

2
.

The constant Iγ is called the moment of inertia of the point mass m about
the axis γ. Similarly, consider an extended solid object consisting of N point
masses. The distances between the masses do not change when the object
moves (the object is solid). So, if the object rotates about an axis γ at a
constant rate ω, then each point mass rotates at the same rate and hence
has kinetic energy miR

2
i ω

2/2, where Ri is the distance from the mass mi to
the axis γ. The total kinetic energy is Krot = Iγω2/2, where the constant

Iγ =

N
∑

i=1

miR
2
i

is called the moment of inertia of the object about the axis γ. It is indepen-
dent of the motion itself and determined solely by the mass distribution and
distances of the masses from the rotation axis.

Suppose that the mass is continuously distributed in a region E with
the mass density σ(r) (see the right panel of Fig. 40.2). Let Rγ(r) be the
distance from a point r in E to an axis (line) γ. Consider a partition of E
by small elements Ei of volume ∆Vi. The mass of each partition element
is ∆mi = σ(r∗i ) ∆Vi for some sample point r∗i in Ei in the limit when all
the sizes of partition elements tend to 0 uniformly. The moment of inertia
about the axis γ is

Iγ = lim
N→∞

N
∑

i=1

R2
γ(r∗i )σ(r∗i ) ∆Vi =

∫∫∫

E
R2

γ(r)σ(r) dV

in accordance with the Riemann sum for triple integrals (34.3). In particu-
lar, the distance of a point (x, y, z) from the x-, y-, and z axes is, respectively,

Rx =
√

y2 + z2, Ry =
√

x2 + z2, and Rz =
√

x2 + y2. So the moments of
inertia about the coordinate axes are

Ix =

∫∫∫

E
(y2 + z2)σ dV , Iy =

∫∫∫

E
(x2 + z2)σ dV ,

Iz =

∫∫∫

E
(x2 + y2)σ dV.

In general, if the axis γ goes through the origin parallel to a unit vector û,
then by the distance formula between a point r and the line,

R2
γ(r) = ‖û× r‖2 = (û× r) · (û× r) = û · (r× (û× r))

= r2 − (û · r)2,(40.3)

where the bac− cab rule (4.2) has been used to transform the double cross
product.
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φ

h

x

y

z

a

γ γc

Rγ ∆m
Rγc

r

u

u
r− rc

rc

Figure 40.3. Left: An illustration to Example 40.3.
Right: An illustration to the proof of the parallel axis theo-
rem for moments of inertia (Study Problem 40.2). The axis
γc is parallel to γ and goes through the center of mass with
the position vector rc. The vectors r and r− rc are position
vectors of a partition element of mass ∆m relative to the
origin and the center of mass, respectively.

If one or two dimensions of the object are small relative to the other,
the triple integral is reduced to either a surface integral or a line integral,
respectively, in accordance with (39.2) or (38.1); that is, for two- or one-
dimensional objects, the moment of inertia becomes, respectively,

Iγ =

∫∫

S
R2

γ(r)σ(r) dS , Iγ =

∫

C
R2

γ(r)σ(r) ds,

where σ is either the surface or linear mass density.

Example 40.3. A rocket tip is made of thin plates with a constant sur-
face mass density σ = k. It has a circular conic shape with base diameter
2a and distance h from the tip to the base. Find the moment of inertia of
the tip about its axis of symmetry.

Solution: Set up the coordinate system so that the tip is on the z axis at
the point (0, 0, h), and the base is the disk of radius a in the xy plane (see
the left panel of Fig. 40.3). A cone with its tip at the origin obtained by
rotating a ray extended from the origin about the z axis is described by the

equation z = cotφ
√

x2 + y2, where φ is the angle between the ray and the
z axis. Putting cot φ = −h/a (as φ > π/2) and shifting the surface up along
the z axis (z → z−h), the equation of the surface in question is obtained:

z = g(x, y) = h− h

a

√

x2 + y2 ,
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where (x, y) range over the disk

D : x2 + y2 ≤ a2 .

To evaluate the needed surface integral, the area transformation law dS =
J dA should be established. One has

g′x = −hx

a
(x2 + y2)−1/2 , g′y = −hy

a
(x2 + y2)−1/2 ,

J =
√

1 + (g′x)
2 + (g′y)

2 =
√

1 + (h/a)2 =

√
h2 + a2

a
.

The moment of inertia about the z axis is

Iz =

∫∫

S
(x2 + y2)σ dS = k

∫∫

D
(x2 + y2)J dA

= kJ

∫ 2π

0
dθ

∫ a

0
r3 dr =

πk

2
a3
√

h2 + a2 ,

where the double integral has been converted to polar coordinates. �

Example 40.4. Find the moment of inertia of a homogeneous ball of
radius a and mass m about its diameter.

Solution: Set up the coordinate system so that the origin is at the center
of the ball. Then the moment of inertia about the z axis has to be evaluated.
Since the ball is homogeneous, its mass density is constant, σ = m/V , where
V = 4πa3/3 is the volume of the ball. By converting the triple integral to
spherical coordinates,

Iz =

∫∫∫

E
(x2 + y2)σ dV =

3m

4πa3

∫ 2π

0

∫ π

0

∫ a

0
(ρ sinφ)2ρ2 sinφ dρ dφ dθ

=
3

10
ma2

∫ π

0
sin3 φ dφ =

3

10
ma2

∫ 1

−1
(1− u2) du =

2

5
ma2 ,

where the substitution u = cosφ has been made to evaluate the integral.
It is noteworthy that the problem admits a smarter solution by noting that
Iz = Ix = Iy owing to the rotational symmetry of the mass distribution. By
the identity Iz = (Ix + Iy + Iz)/3, the triple integral can be simplified:

Iz =
1

3
σ

∫∫∫

E
2(x2 + y2 + z2) dV =

1

3
σ8π

∫ a

0
ρ4 dρ =

2

5
ma2 .

�

Example 40.5. Find the center of mass and the moment of inertia of
a homogeneous rod of mass m bent into a half-circle of radius R about the
line through the endpoints of the rod.

Solution: Set up the coordinate system so the half-circle lies above the x
axis: x2 + y2 = R2, y ≥ 0. The linear mass density is constant σ = m/(πR)
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where πR is the length of the rod. By the symmetry of the mass distribution,
the center of mass lies on the y axis,

xc = 0 , yc =
1

m

∫

C
yσds .

To evaluate the line integral, choose the following parametric equation of the
half-circle r(t) = 〈R cos t, R sin t〉, 0 ≤ t ≤ π. Then r′(t) = 〈−R sin t, R cos t〉
and ds = ‖r′(t)‖dt = Rdt. Therefore

yc =
1

m

∫

C
yσds =

1

πR

∫ π

0
R sin tRdt =

2R

π

If Rγ(x, y) is the distance from the line connecting the end point of the
rod to its point (x, y), then in the chosen coordinate system Rγ(x, y) = y.
Therefore the moment of inertia in question is

Iγ =

∫

C
R2

γσds =
m

πR

∫

C
y2ds =

mR2

π

∫ π

0
sin2 tdt =

mR2

2

�

40.3. Study Problems.

Problem 40.1. Find the center of mass of the shell described in Example
40.3.

Solution: By the symmetry of the mass distribution about the axis of the
conic shell, the center of mass must be on that axis:

xc = yc = 0 , zc =
Mxy

m
.

Using the algebraic description of a shell given in Example 40.3, the total
mass of the shell is

m =

∫∫

S
σ dS = k

∫∫

S
dS = kJ

∫∫

D
dA = kJA(D) = πka

√

h2 + a2.

Using polar coordinates, the moment about the xy plane is

Mxy =

∫∫

S
zσ dS = k

∫∫

D

(

h − h

a

√

x2 + y2

)

J dA

=
k
√

h2 + a2

a

(

hA(D)− h

a

∫∫

D

√

x2 + y2dA

)

=
k
√

h2 + a2

a

(

πha2 −
∫ 2π

0

∫ a

0
r2 dr dθ

)

=
k
√

h2 + a2

a

(

πha2 − 2

3
πha2

)

=
πkha

3

√

h2 + a2.

Thus, the center of mass is at the distance zc = Mxy/m = h/3 from the
base of the cone. �
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Problem 40.2. (Parallel Axis Theorem).
Let Iγ be the moment of inertia of an extended object about an axis γ and
let γc be a parallel axis through the center of mass of the object. Prove that

Iγ = Iγc + mR2
c,

where Rc is the distance between the axis γ and the center of mass, and m
is the total mass.

Solution: Choose the coordinate system so that the axis γ goes through
the origin (see the right panel of Fig. 40.3). Let it be parallel to a unit
vector û. The difference Iγ − Iγc is to be investigated. If rc is the position
vector of the center of mass, then the axis γc is obtained from γ by parallel
transport of the latter along the vector rc. Therefore, the distance R2

γc
(r)

is obtained from R2
γ(r) (see (40.3)) by changing the position vector r in

the latter to the position vector relative to the center of mass, r − rc. In
particular, R2

γ(rc) = R2
c by the definition of the function Rγ(r). Hence, by

Eq. (40.3)

R2
γ(r)− R2

γc
(r) = R2

γ(r)−R2
γ(r− rc)

= r2 − (r · û)2 − (r− rc)
2 + (r · û − rc · û)2

= 2rc · r− r2
c − (û · rc)(2û · r− û · rc)

= r2
c − (û · rc)

2 + 2rc · (r− rc)− 2(û · rc)û · (r− rc)

= R2
c + 2a · (r− rc),

where a = rc − (û · rc)û. Therefore,

Iγ − Iγc =

∫∫∫

E

(

R2
γ(r)−R2

γc
(r)
)

σ(r) dV

= R2
c

∫∫∫

E
σ(r) dV + 2a ·

∫∫∫

E
(r− rc)σ(r) dV = R2

cm,

where the second integral vanishes by the definition of the center of mass.
�

Problem 40.3. Find the moment of inertia of a homogeneous ball of radius
a and mass m about an axis that is at a distance R from the ball center.

Solution: The center of mass of the ball coincides with its center because
the mass distribution is invariant under rotations about the center. The
moment of inertia of the ball about its diameter is Iγc = (2/5)ma2 by
Example 40.4. By the parallel axis theorem, for any axis γ at a distance R
from the center of mass, Iγ = Iγc + mR2 = m(R2 + 2a2/5). �

40.4. Exercises.

1–19. Find the center of mass of each the following extended objects.

1. A homogeneous thin rod of length L ;
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2. A homogeneous thin wire that occupies the part a circle of radius
R that lies in the first quadrant ;

3. A homogeneous thin wire bent into one turn of the helix of radius
R that rises by the distance h per each turn ;

4. A homogeneous thin shell that occupies a hemisphere of radius R ;
5. A homogeneous thin disk of radius R that has a circular hole of

radius a < R/2 and its center is at the distance R/2 from the disk
center ;

6. A homogeneous solid enclosed by the ellipsoid x2/a2 + y2/b2 +
z2/c2 = 1 that has a square box cavity [0, h]× [0, h]× [0, h] ;

7. The part of the ball x2 + y2 + z2 ≤ 4 that lies above the cone

z
√

3 =
√

x2 + y2 and the mass density at any point is proportional
to its distance from the origin ;

8. The part of the spherical shell a2 ≤ x2+y2+z2 ≤ b2 that lies above
the xy plane and whose mass density at any point is proportional
to its distance from the z axis ;

9. The part of the disk x2 + y2 ≤ a2 in the first quadrant bounded
by the lines y = x and y =

√
3x if the mass density at any point is

proportional to its distance from the origin ;
10. The part of the solid enclosed by the paraboloid z = 2 − x2 − y2

and the cone z =
√

x2 + y2 that lies in the first octant and whose
mass density at any point is proportional to its distance from the
z axis ;

11. A homogeneous surface cut from the cone z =
√

x2 + y2 by the
cylinder x2 + y2 = ax ;

12. The part of a homogeneous sphere defined by z =
√

a2 − x2 − y2,
x ≥ 0, y ≥ 0, x + y ≤ a, a > 0 ;

13. The arc of the homogeneous cycloid x = a(t−sin t), y = a(1−cos t),
0 ≤ t ≤ π ;

14. The arc of the homogeneous curve y = a cosh(x/a) from the point
(0, a) to the point (b, h) ;

15. The arc of the homogeneous astroid x2/3 + y2/3 = a2/3 in the first
quadrant ;

16. The homogeneous lamina bounded by the curves
√

x +
√

y =
√

a,
x = 0, y = 0 ;

17. The part of the homogeneous lamina bounded by the curve x2/3 +
y2/3 = a2/3 in the first quadrant ;

18. The homogeneous solid bounded by the surfaces x2 + y2 = 2z,
x + y = z ;

19. The homogeneous solid bounded by the surfaces z = x2 + y2, 2z =
x2 + y2, x + y = ±1, x− y = ±1.

20. Show that the centroid of a triangle is the point of intersection of its
medians (the lines joining each vertex with the midpoint of the opposite
side).
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21. Show that the centroid of a pyramid is located on the line segment that
connects the apex to the centroid of the base and is 1/4 the distance from
the base to the apex.
22–34. Find the specified moment of inertia of each of the following ex-
tended objects.

22. The smaller wedge cut out from a ball of a radius R by two planes
that intersect along the diameter of the ball at an angle 0 < θ0 ≤ π.
The wedge is homogeneous and has the mass m. Find the moment
of inertia about the diameter ;

23. The moment of inertia about the z axis of the solid that is enclosed
by the cylinder x2 + y2 ≤ 1 and the planes z = 0, y + z = 5 and
has the mass density σ(x, y, z) = 10− 2z ;

24. A thin homogeneous shell in the shape of the torus with radii R
and a > R that has mass m. The moment of inertia about the
symmetry axis of the torus ;

25. The moments of inertia Ix and Iy of the part of the disk of radius a
that lies in the first quadrant and whose mass density at any point
is proportional to its distance from the y axis ;

26. The moments of inertia of a solid circular homogeneous cone with
height h and the radius of the base a about its symmetry axis, the
axis through its vertex and perpendicular to the symmetry axis,
and an axis that contains a diameter of the base ;

27. The moments of inertia of the part of the homogeneous plane x +
y + z = a, a > 0, in the first octant about the coordinate axes ;

28. The polar moment of inertia I0 = Ix + Iy of the homogeneous
triangle of mass m whose vertices in polar coordinates are (r, θ) =
(a, 0), (a, 2π/3), (a, 4π/3) ;

29. The moment of inertia of the homogeneous solid cylinder x2 +y2 ≤
a2, −h ≤ z ≤ h, of mass m about the line parallel to the z axis
through the point (a, 0, 0) ;

30. The sum of moments of inertia Ix + Iy + Iz of the homogeneous
solid of mass density σ0 bounded by the surface (x2 + y2 + z2)2 =
a2(x2 + y2) ;

31. The moments of inertia of the lamina with a constant mass density
σ0 bounded by the circle (x − a)2 + (y − a)2 = a2 and by the
segments 0 ≤ y ≤ a, 0 ≤ x ≤ a about the coordinate axes ;

32. The moments of inertia of the lamina with a constant mass density
σ0, bounded by the curves xy = a2, xy = 2a2, x = 2y, and 2x = y,
about the coordinate axes ;

33. The moments of inertia of the solid that has a constant mass den-
sity σ0 and is bounded by the ellipsoid (x/a)2+(y/b)2+(z/c)2 = 1
about the coordinate axes ;

34. The moment of inertial of a thin spherical homogeneous shell of
mass m and radius R about its diameter .
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Selected Answers and Hints to Exercises

Section 28.6. 6. Hints: 1 + 2 + 3 + · · ·+ n = 1
2n(n + 1) and 1 + 22 + 32 +

· · ·+n2 = 1
6 (2n+1)n(n+1) so that L(N ) = 40

3 − 32
3N + 2

N2 → 40
3 as N →∞.

10. πk. 11. 2
3π 12. 1

6 . 14. 1
2k2a. 15. 1

3π.

Section 29.1. 1. k(16−π). 2. 3π. 3. 6π. 4. −2π/3. 5. 5
3 . 8. 1 ≤ I ≤ 16.

9. 1 ≤ I ≤
√

2. 10. 0 ≤ I ≤ π2/8. 11. 100/51 ≤ I ≤ 2, where I denotes
the double integral in question. 13. π(e− 1).

Section 30.3. 1. 3. 2. 1
3 . 3.2(25−25/2−35/2+1]/15. 4. 4. 5. e−2. 6. −1.

7. π
2 . 8. 2 tan−1(1/2) + 1

2 ln(5/2)− π
4 . 9.(1 + (−1)n)/[(n + 1)(n + 2)]. 10.

4[(2+e)5/2−35/2−e5/2+1]/15. 11. π2/4. 12. F (4)+F (2)−2F (3)−1 where
F (u) = 1

2u2(ln u − 1
2). 13. 1

2(6 ln 2 − 3 ln 3). 14. (2 ln 2)−1 − [2(ln 2)3]−1.

15. 77
288 . 16. 40. 17. 16. 18. 3. 22. 1

2R2 + a2 + b2.

Section 31.6. 1.
∫ 1
0

∫ 2y
−2y fdxdy. 2.

∫ 1
0

∫ x+1
0 fdydx. 3.

∫ 1
−1

∫

√
1−x2

−
√

1−x2 fdydx.

4.
∫ 1
0

∫

√
y−y2

−
√

y−y2
fdxdy. 5.

∫ −1
−2

∫

√
4−x2

−
√

4−x2 fdydx +
∫ 1
−1

∫

√
4−x2

√
1−x2 fdydx +

∫ 1
−1

∫ −
√

1−x2

−
√

4−x2 fdydx +
∫ 2
1

∫

√
4−x2

−
√

4−x2 fdydx. 6. 1
24 . 7. 8

3 . 8. 5
18 . 9. 18.

10. 8
5 . 11. 1

3 . 12. −5
8 . 13. 1

12 . 14. [2(
√

2 − 1) − 2
3 ]a3/2. 15. 1

2a4. 16.

14a4. 17. 35π
12 a4. 18. A solid bounded above by the paraboloid z = x2 + y2

and below by the triangle with vertices (0, 0), (0, 1), and (1, 0). 19. A
solid bounded above by the plane z = x + y and below by the triangle
with vertices (0, 0), (0, 1), and (1, 0). 20. A solid bounded above by the

cone z =
√

x2 + y2 and below by the disk (x − 1
2 )2 + y2 ≤ 1

4 . 21. A solid

bounded above by the paraboloid z = x2 +y2 and below by the square with
vertices (0, 1), (1, 0), (0,−1), and (−1, 0). 22. A part of the solid ellipsoid
(x/2)2 + (y/3)2 + z2 ≤ 1 that lies above the xy plane. 23. 1

6 . 24. 208
105 .

25. 1
3 . 26. 16

3 a3. 27. 32. 28. 0. 29.
∫ 1
0

∫ y1/3

y2 fdxdy. 30.
∫ 1
0

∫

√
x

x fdydx.

31.
∫ e
1

∫ 1
ln y fdxdy. 32.

∫ 2
1

∫ x2

1 fdydx. 33.
∫ 3
0

∫ 6−x
x fdydx. 34. 2

3 ln 3.

35.
∫ 0
−1

∫ 2
√

y+1

−2
√

y+1
fdxdy +

∫ 8
0

∫ 2−y
−2

√
y+1

fdxdy. 36.
∫ 0
−1

∫

√
1−y2

−
√

1−y2
fdxdy +

∫ 1
0

∫

√
1−y

−
√

1−y
fdxdy. 37.

∫ a
0 (
∫ a−
√

a2−y2

y2/(2a)
+
∫ 2a

a+
√

a2−y2
)fdxdy+

∫ 2a
a

∫ 2a
y2/(2a) fdxdy.

38.
∫ 1
0

∫ π−sin−1(y)

sin−1(y)
fdxdy. 39. 0. 40. 0. 41. −1

3ba2. 42. 0.

Section 32.5. 1. D = {(x, y)|1 ≤ x2 + y2 ≤ 4, y ≥ 0}, the integral is
the area of D which is A(D) = 3

2π. 2. D = {(x, y)|(x− a)2 + y2 ≤ a2},
the integral is the area of the disk D, which is A(D) = πa2. 3. D is the
right-angled triangle with the vertices (0, 0), (1, 1), and (1,−1); its area is 1.
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4. D is bounded by the cardioid r = 1+cos θ (symmetric about the x axis);

its area is 3π/2. 9. 1
8(b4 − a4). 10. π(1− cos(a2)). 11. π2

48 (b2 − a2). 12.
π
4 [b2 ln( b2

e )− a2 ln(a2

e )]. 13. −6π2. 17. D′ = [0, 1]× [−π
2 ; π

2 ]; I = π
2 (e− 1).

18. D′ = [0, 1]× [π
2 , 3π

2 ]; I = −2
3 . 19. D′ = {(r, θ)|0 ≤ r ≤ 2 sin θ, 0 ≤ θ ≤

π
2}; I = 16

9 . 20. D′ = [1, 2]× [0, π
4 ]; I = 15

16 . 23. 2π
∫ 1
0 f(r)rdr. 27. 3

2π.

28. 1
4π3. 29. 9

8

√
3 − π

4 . 34. 4
3π. 35. 14

3 π. 36. 8π. 37. 4
3π. 38. 3

2π. 39.

f(0, 0).

Section 33.5. 7. D lies in the first quadrant and is bounded by the coordi-
nate lines and by the parabola y = 1−x2. 8. D lies in the first quadrant and
is bounded by the curves x = 0, y = 1, and y =

√
x. 9. D = [−1, 1]×[−1, 1].

11. 192. 12. π√
3
. 13. ln 3− 1

2 ln 5. 14. 7
3 (e−√e). 19. 1; u = xy, v = yx2.

20. e − 1
e ; u = x + y, v = y − x. 21. 1; u = x + y, v = y − x3. 22. 2;

u = xy, v = y − x2. 23. 3
2 ; u = y

x , v = x + y.

Section 34.6. 1. −13
2 . 2. 1. 3. 1

4(e − 2). 4. 65
28 . 7. 1

30 . 8. π
24 . 12. 8

15 .

13. 2. 18. 7
24 . 21. 32

3 π. 22. −2. 23. 0 by symmetry (x, y, z)→ (x, z, y).
24. 28π/3 by symmetry (x, y, z)→ (x, z, y). 32. The maximum is achieved
on the largest E in which the integrand is positive, which the solid ellipsoid
x2/a2 + y2/b2 + z2/c2 ≤ 1.

Section 35.6. 1. A wedge of the solid cylinder x2 + y2 ≤ 3 between the
planes z = 0 and z = 1 that lies between the half-planes y = ±x, x ≥ 0. 2.

The solid bounded by the cones z = 1 −
√

x2 + y2 and z =
√

x2 + y2 − 1.
3. The part of the solid between the paraboloid z = 4− x2 − y2 and the xy
plane that lies in the first octant. 4. 0 ≤ z ≤ r2, (r, θ) in [0, 1]× [0, 2π]. 5.

1 − r ≤ z ≤ 1 + r, (r, θ) in [0, 1]× [0, 2π]. 6. 0 ≤ z ≤ r2, 0 ≤ r ≤ 2 cos θ,

θ in [−π
2 , π

2 ]. 7. 0 ≤ z ≤
√

a2 − r2, (r, θ) in [0, a]× [0, π
2 ]. 8. 7

2π. 9. 2
35 .

10. 15
4 π. 11. 32

9 . 12. 4
105a7. 13. 16

3 π. 18. (ρ, φ, θ) in [1, 2]× [0, π
2 ]× [0, π

2 ].

19. (ρ, φ, θ) in [0, a]× [π
6 , 5π

6 ]× [0, 2π]. 20. (ρ, φ, θ) in [0, a]× [0, π]× [π
6 , π

3 ].

21. 0 ≤ ρ ≤ 4 cosφ, (φ, θ) ∈ [0, π/2]× [0, 2π]. 22. 4
9πa9. 23. 62

15π. 24. 0.

25. − π
16 . 26. π

6 . 27. π
10 . 28. π

4 . 29. π
15 (2
√

2 − 1). 30. 2
3π; the solid is

the part of the cone z =
√

x2 + y2 below the plane z = 2 that lies in the
first octant. 31. π

6 ; the region of integration is bounded by the paraboloid

z = 1− x2 − y2 and the xy plane.

Section 36.3. 1. 0. 2. 8uvw + 1. 3. uv(u2 + v2). 6. 1
90a6. 7. 4π

35abc. 8.
abc
1680. 12. π

8abc2. 13. 0; put u = x/3, v = y/2, w = z and use the symmetry
(u, v, w)→ (v, u, w).

Section 38.3. 1. 32
3 . 2. b

a

√
a2 + b2(1− sina

a ). 3. π
√

5. 4. 1
6 (143/2− 1). 5.

16π. 16. 1
3 [(T 2 + 2)3/2− 23/2]. 18. 2

3a2(2
√

2− 1).
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Section 39.5. 1. 1
2

√
a2b2 + b2c2 + a2c2. 2. 4π

√
14. 3. π

6 (173/2 − 53/2). 4.
π
6 (373/2− 53/2). 5. 1

12 (213/2− 173/2). 6.
√

3
24 . 7. 21π√

2
. 8. 0. 9. π

√
2. 10. 0.

Section 40.4. 3. (0, 0, h
2 ) if the axis of the helix is the z axis. 4. (0, 0, R

2 )
if the hemisphere lies above the xy plane and is centered at the origin. 5.

Let the center of the hole be at (R
2 , 0). Then xc = − Ra2

2(R2−a2)
and yc = 0. 8.

xc = yc = 0, zc = 16
15π

b5−a5

b4−a4 . 9. xc = 9a
2π (
√

3 −
√

2), yc = 9a
2π (
√

2 − 1). 22.
2
5mR2. 23. 38

3 π. 29. 3
2ma2. (Hint: use the Parallel Axis Theorem, Study

problem 40.2). 34. 2
3mR2.


