
CHAPTER 5

Vector Calculus

41. Line Integrals of a Vector Field

41.1. Vector Fields. Consider an air flow in the atmosphere. The air ve-
locity varies from point to point. In order to describe the motion of the air,
the air velocity must be defined as a function of position, which means that
a velocity vector has to be assigned to every point in space. In other words,
in contrast to ordinary functions, the air velocity is a vector-valued function
on a point set in space.

Definition 41.1. (Vector Field).
Let E be a subset of a Euclidean space. A vector field F on E is a rule that
assigns to each point P of E a unique vector F(P ) = 〈F1(P ), F2(P ), F3(P )〉.
The functions F1, F2, and F3 are called the components of the vector field
F. The set E is called the domain of the vector field F.

Let r be a position vector of a point P in a set E of an n−dimensional
Euclidean space relative to some rectangular coordinate system. Then the
components of a vector field F on E are functions of n variables:

F(r) = 〈F1(r), F2(r), F3(r)〉 .

In particular, if the domain of a vector field lies in space, then r = 〈x, y, z〉
and the components of a vector field are functions of three variables. For
example, a stationary flow of fluid or air can be described by a velocity
vector field of three variables. If the flow is not stationary; that is, it can
also change with time, then such a flow is described by a vector field of four
variables (x, y, z, t) where t is time. In general, one can think of a vector field
as a rule that assigns a unique element of a Euclidean space to each element
of a set in another Euclidean space. The dimension of the Euclidean space
where the vector field takes its values determines the number of components
of the vector field, and the dimension of the domain determines the number
of variables on which the vector field depends. Here only two- or three-
dimensional vector fields of two or three variables will be studied. A vector
field is said to be continuous if its components are continuous. A vector field
is said to be differentiable if its components are differentiable. For example,
a vector field F(x, y, z) is differentiable if its components are differentiable
functions of the variables (x, y, z).

A simple example of a vector field is the gradient of a function, F(r) =
∇f(r). The components of this vector field are partial derivatives of f :

F(r) = ∇f(r) ⇔ F1(r) = f ′
x(r), F2(r) = f ′

y(r), F3(r) = f ′
z(r).

609



610 5. VECTOR CALCULUS

Many physical quantities are described by vector fields. Electric and mag-
netic fields are vector fields whose components are functions of position in
space and time. All modern communication devices (radio, TV, cell phones,
etc.) use electromagnetic waves. Visible light is also electromagnetic waves.
The propagation of electromagnetic waves in space is described by differen-
tial equations that relate electromagnetic fields at each point in space and
each moment of time to a distribution of electric charges and currents (e.g.,
antennas). The gravitational force looks constant near the surface of the
Earth, but on the scale of the solar system this is not so. If one thinks
about a planet as a homogeneous ball of mass M , then the gravitational
force exerted by it on a point mass m depends on the position of the point
mass relative to the planet’s center according to Newton’s law of gravity:

F(r) = −GMm

r3
r =

〈

−GMm
x

r3
, −GMm

y

r3
, −GMm

z

r3

〉

,

where G is Newton’s gravitational constant, r is the position vector relative
to the planet’s center, and r = ‖r‖ is its length. The force is proportional
to the position vector and hence parallel to it at each point. The minus sign
indicates that F is directed opposite to r, that is, the force is attractive; the
gravitational force pulls toward its source (the planet). The magnitude of
the force

‖F‖ =
GMm

r2

decreases with increasing distance r. So the gravitational vector field can be
visualized by plotting vectors of length ‖F‖ at each point in space pointing
toward the origin. The magnitudes of these vectors become smaller for
points farther away from the origin. At each point P in space, the vector F is
directed along the line through the origin and the point P . This observation
leads to the concept of flow lines of a vector field.

41.2. Flow Lines of a Vector Field.

Definition 41.2. (Flow Lines of a Vector Field).
The flow line of a vector field F in space is a spatial curve C such that, at
any point r of C, the vector field F(r) is tangent to C.

The direction of F defines the orientation of flow lines. The direction of
a tangent vector F is shown by arrows on the flow lines as depicted in the left
panel of Fig. 41.1. For example, the flow lines of the planet’s gravitational
field are straight lines oriented toward the center of the planet. Flow lines
of a gradient vector field F = ∇f 6= 0 are normal to level surfaces of the
function f and oriented in the direction in which f increases most rapidly
(Theorem 24.2). They are the curves of steepest ascent of the function f .
Flow lines of the velocity vector field of the air are often shown in weather
forecasts to indicate the wind direction over large areas. For example, flow
lines of the air velocity in a hurricane would look like closed loops around
the eye of the hurricane.
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Figure 41.1. Left: Flow lines of a vector field F are curves
to which the vector field is tangential. The flow lines are
oriented by the direction of the vector field. Right: Flow
lines of the vector field F = (−y, x, 0) in Example 41.1 are
concentric circles oriented counterclockwise. The magnitude

‖F‖ =
√

x2 + y2 is constant along the flow lines and linearly
increases with the increasing distance from the origin.

The qualitative behavior of flow lines may be understood by plotting
vectors F at several points ri and sketching curves through them so that the
vectors Fi = F(ri) are tangent to the curves. Finding the exact shape of the
flow lines requires solving differential equations. If r = r(t) is a parametric
equation of a flow line, then r′(t) is parallel to F(r(t)). So the derivative
r′(t) must be proportional to F(r(t)), which defines a system of differential
equations for the components of the vector function r(t):

r′(t) = q(t)F(r(t)) ,

for some positive continuous function q(t). The shape of flow lines is inde-
pendent of the choice of q(t) because one can always reparameterize the flow
line by choosing the parameter s = s(t) such that

ds = s′(t)dt = q(t)dt ⇒ dr(s)

ds
= F(r(s)) .

By the inverse function theorem s(t) is one-to-one because s′(t) = q(t) > 0
and in the new parameterization dr/dt = (dr/ds)(ds/dt) = (dr/ds)q so
that q is cancelled in the above equation for the flow line. To find a flow
line through a particular point r0, the differential equations must be sup-
plemented by initial conditions, e.g., r(t0) = r0. If the equations have a
unique solution, then the flow line through r0 exists and is given by the
solution. Methods of finding solutions of a system of differential equations
is the subject of courses on differential equations.

Example 41.1. Analyze flow lines of the planar vector field F =
〈−y, x, 0〉.
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Solution: By noting that F · r = 0, it is concluded that at any point F is
perpendicular to the position vector r = 〈x, y, 0〉 in the plane. So flow lines
are curves whose tangent vector is perpendicular to the position vector. If
r = r(t) is a parametric equation of such a curve, then

r(t) · r′(t) = 0 ⇒ d

dt

(

r(t) · r(t)
)

= 0 ⇒ ‖r(t)‖2 = const ;

the latter equation implies that r(t) traverses a circle centered at the origin
(or a part of it). So flow lines are concentric circles. At the point (1, 0, 0),
the vector field is directed along the y axis: F(1, 0, 0) = 〈0, 1, 0〉 = ê2.
Therefore, the flow lines are oriented counterclockwise. The magnitude
‖F‖ =

√

x2 + y2 remains constant on each circle and increases with increas-
ing circle radius. The flow lines are shown in the right panel of Fig. 41.1.
�

41.3. Line Integral of a Vector Field. The work done by a constant force
F in moving an object along a straight line is given by

W = F · d,

where d is the displacement vector (Section 3.6). Suppose that the force
varies in space and the displacement trajectory is no longer a straight line.
What is the work done by the force? This question is evidently of great
practical significance. To answer it, the concept of the line integral of a
vector field was developed.

Let C be a smooth curve that goes from a point ra to a point rb and
has a length L. Consider a partition of C by segments Ci, i = 1, 2, ..., N ,
of length ∆s = L/N . Let di be a vector from the initial point of Ci to its
final point. Since the curve is smooth, each partition segment Ci can be
approximated by a straight line segment of length ∆s oriented along the
unit tangent vector T̂(r∗i ) at a sample point r∗i ∈ Ci so that

(41.1) di = T̂(r∗i )∆s .

(see the left panel of Fig. 41.3). Recall that if r(s) is the natural parame-

terization of the curve, then r′(s) = T̂(s) ≡ T̂(r(s)) (the last notation is to
explicitly indicate that the unit tangent vector is taken at the point r(s)).
Suppose that ri = r(si) and ri+1 = r(si+1), where si = i∆s, are the position
vectors of the endpoints of Ci. Then, for any s∗i ∈ [si, si+1] one infers by
using the linearization of r(s) at s∗i that

di = ri+1 − ri = r(si+1) − r(si) = r(si+1)− r(s∗i ) + r(s∗i )− r(si)

= r′(s∗i )(si+1 − s∗i ) + r′(s∗i )(s
∗
i − si) = r′(s∗i )(si+1 − si)

= T̂(r∗i )∆s ,

where terms decreasing to zero faster than ∆s have been neglected. Thus,
variations of a sample point within Ci result only in changing terms that
decreases to zero faster than ∆s so that the approximation (41.1) becomes
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Figure 41.2. Left: To calculate the work done by a con-
tinuous force F(r) in moving a point object along a smooth
curve C, the latter is partitioned into segments Ci of ar-
clength ∆s. The work done by the force along a partition
segment is F(r∗i )·di where the displacement vector is approx-
imated by the oriented segment of length ∆s that is tangent
to the curve at a sample point r∗i , i.e., di = T̂(r∗i )∆s where

T̂ is the unit tangent vector along the curve. Right: An
illustration to Example 41.2. The closed contour of integra-
tion in the line integral consists of two smooth pieces, one
turn of the helix C1 and the straight line segment C2. The
line integral is the sum of line integrals along C1 and C2.

more accurate as N → ∞. The work along the segment Ci can therefore be
approximated by

∆Wi = F(r∗i ) · T̂(r∗i ) ∆s ⇒ W = ∆W1 + ∆W2 + · · ·+ ∆WN .

The actual work should not depend on the choice of sample points. This
problem is resolved by the usual trick of integral calculus by refining a par-
tition, finding the low and upper sums, and taking their limits. If these
limits exist and coincide, the limiting value should not depend on the choice
of sample points and is the sought-after work. Note if one sums N terms
of order ∆s ∼ 1/N , the result is of order N · (1/N ) = 1 (a number) in the
limit N → ∞, while the sum of N terms each of which is decreasing to zero
faster than ∆s ∼ 1/N is expected to vanish in this limit. Put

∆Wi = FT (r∗i ) ∆s , FT (r) = F(r) · T̂(r) ,

where T̂(r) denotes the unit tangent vector at a point r in C. The scalar
function FT is called the tangential component of F to the curve C. The
approximate total work looks like a Riemann sum of FT along C. Its con-
vergence is guaranteed for any choice of sample points if the corresponding
upper and lower sums converge to the same value. If Mi = supCi

FT (r) and
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mi = infCi
FT (r), then

mi∆s ≤ Wi ≤ Mi∆s ⇒
N

∑

i=1

mi∆s ≤
N

∑

i=1

Wi ≤
N

∑

n=1

Mi∆s .

Therefore, if the function FT is integrable on the curve C, then the upper
and lower sums converge to the same limit and the work is the line integral
of the tangential component F · T̂ of the force.

Definition 41.3. (Line Integral of a Vector Field).
The line integral of a vector field F along a smooth curve C is

∫

C

F · dr =

∫

C

F · T̂ ds =

∫

C

FT (r) ds ,

where T̂ is the unit tangent vector to C, provided the tangential component
F · T̂ of the vector field is integrable on C.

The integrability of F · T̂ is defined in the sense of line integrals for
ordinary functions (see Definition 38.1). In particular, the line integral of a
continuous vector field over a smooth curve of a finite length always exists.

41.4. Evaluation of Line Integrals of Vector Fields. The line integral of
a vector field is evaluated in much the same way as the line integral of a
function (the line integral of the tangential component FT ).

Theorem 41.1. (Evaluation of Line Integrals).
Let F = 〈F1, F2, F3〉 be a continuous vector field on a spatial region E and let
C be a smooth curve in E that originates from a point ra and terminates at
a point rb. Suppose that r = r(t) = 〈x(t), y(t), z(t)〉, a ≤ t ≤ b, is a smooth
parameterization of C oriented so that r(a) = ra and r(b) = rb. Then

∫

C

F(r) · dr =

∫

C

F · T̂ ds =

∫ b

a

F(r(t)) · r′(t) dt

=

∫ b

a

(

F1(r(t))x
′(t) + F2(r(t))y

′(t) + F3(r(t))z
′(t)

)

dt.(41.2)

Proof. The unit tangent vector reads T̂ = r′/‖r′‖ and ds = ‖r′‖ dt so

that T̂ ds = r′(t) dt. As the curve is smooth, T̂(t) is continuous on [a, b]
and, by continuity of the vector field, the tangential component FT is also
continuous on the curve, FT (r(t)) = F(r(t)) ·T̂(t), as the dot product of two
continuous functions. Then by Theorem 38.4

∫

C

FT ds =

∫ b

a

FT (r(t)) ‖r′(t)‖ dt =

∫ b

a

F(r(t)) · r′(t) dt

which is the conclusion of the theorem. �

Equation (41.2) also holds if C is piecewise smooth and F is bounded
and not continuous at a finite number of points of C, much like in the case
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of the line integral of ordinary functions. Owing to the representation (41.2)
and the relations dx = x′dt, dy = y′dt, and dz = z′dt, the line integral is
often written in the form:

(41.3)

∫

C
F · dr =

∫

C
F1dx + F2dy + F3dz

For a smooth parametric curve r(t), the differential dr = 〈dx, dy, dz〉 is
tangent to the curve.

In contrast to the line integral of ordinary functions, the line integral
of a vector field depends on the orientation of C. The orientation of C is
fixed by the conditions r(a) = ra and r(b) = rb for a vector function r(t),
where a ≤ t ≤ b, provided the vector function traces out the curve only
once. If r(t) traces out C from rb to ra, then the orientation is reversed,
and such a curve is denoted by −C. The line integral changes its sign when
the orientation of the curve is reversed:

(41.4)

∫

−C
F · dr = −

∫

C
F · dr

because the direction of the derivative r′(t) is reversed for all t. If C is
piecewise smooth (e.g., the union of smooth curves C1 and C2), then the
additivity of the integral should be used to evaluate the line integral:

∫

C

F · dr =

∫

C1

F · dr +

∫

C2

F · dr.

Line integral along a parametric curve. A parametric curve is defined by a
vector function r(t) on [a, b] (recall Definition 10.4). The vector function r(t)
may trace its range (as a point set in space) or some parts of it several times
as t changes from a to b. Furthermore two different vector functions r1(t)
and r2(t) on [a, b] may have the same range. For example, r1 = (cos t, sin t, 0)
and r1(t) = (cos(2t), sin(2t), 0) have the same range on [0, 2π], which is the
circle of unit radius, but r2(t) traces out the circle twice. The line integral
over a parametric curve is defined by the relation (41.2). A parametric
curve is much like the trajectory of a particle that can pass through the
same points multiple times. So, the relation (41.2) defines the work done
by a non-constant force F along a particle’s trajectory or parametric curve
r = r(t).

The evaluation of a line integral includes the following basic steps:

Step 1. If the curve C is defined as a point set in space by some geometrical
means, then find its parametric equations r = r(t) that agree with
the orientation of C. Here it is useful to remember that, if r(t)
corresponds to the orientation opposite to the required one, then
it can still be used according to (41.4);

Step 2. Restrict the range of t to an interval [a, b] so that C is traced out
only once by r(t);
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Step 3. Substitute r = r(t) into the arguments of F to obtain the values
of F on C and calculate the derivative r′(t) and the dot product
F(r(t)) · r′(t);

Step 4. Evaluate the (ordinary) integral (41.2).

Example 41.2. Evaluate the line integral of F = 〈−y, x, z2〉 along a
closed curve C that consists of two parts. The first part is one turn of a
helix of radius R, which winds about the z axis counterclockwise as viewed
from the top of the z axis, starting from the point ra = 〈R, 0, 0〉 and ending
at the point rb = 〈R, 0, 2πh〉. The second part is a straight line segment from
rb to ra.

Solution: Let C1 be one turn of the helix and let C2 be the straight line
segment. Two line integrals have to be evaluated. The parametric equations
of the helix are

r(t) = 〈R cos t, R sin t, ht〉 ⇒ r(0) = ra , r(2π) = rb ⇒ 0 ≤ t ≤ 2π

as required by the orientation of C1. Note the positive signs at cos t and sin t
in the parametric equations that are necessary to make the helix winding
about the z axis counterclockwise (see Study Problem 10.1). Therefore,

r′(t) = 〈−R sin t, R cos t, h〉 ,

F(r(t)) · r′(t) = 〈−R sin t, R cos t, h2t2〉 · 〈−R sin t, R cos t, h〉
= R2 + h3t2,

∫

C1

F · dr =

∫ 2π

0
F(r(t)) · r′(t) dt =

∫ 2π

0
(R2 + h3t2) dt

= 2πR2 +
(2πh)3

3
.

The parametric equations of the line through two points ra and rb are r(t) =
ra + vt, where v = rb − ra is the vector parallel to the line, or in the
components

r(t) = 〈R, 0, 0〉+ t〈0, 0, 2πh〉 = 〈R, 0, 2πht〉 , 0 ≤ t ≤ 1

but r(0) = ra and r(1) = rb whereas rb must be the initial point of C2. So
the found parametric equations describe the curve −C2 (it has the opposite
orientation). One has r′(t) = 〈0, 0, 2πh〉 and hence

F(r(t)) · r′(t) = 〈0, R, (2πh)2t2〉 · 〈0, 0, 2πh〉 = (2πh)3t2,
∫

C2

F · dr = −
∫

−C2

F · dr = −(2πh)3
∫ 1

0
t2 dt = −(2πh)3

3
.

The line integral along C is the sum of these integrals:
∫

C
F · dr =

∫

C1

F · dr +

∫

C2

F · dr = 2πR2 .

�



41. LINE INTEGRALS OF A VECTOR FIELD 617

Example 41.3. Evaluate the work done by the force

F = 〈3x2 + yz, 2y + zx, 3z2xy〉
along the curve C that consists of three straight line segments connecting
the points (0, 0, 0) → (1, 0, 0) → (1, 2, 0) → (1, 2,−1); C is oriented from
(0, 0, 0) to (1, 2,−1).

Solution: Let C1, C2, and C3 be three line segments of C. Since the line
segments are parallel to the coordinate axes,

C1 : (x, y, z) = (x, 0, 0) , dr = 〈dx, 0, 0〉 , 0 ≤ x ≤ 1 ,

C2 : (x, y, z) = (1, y, 0) , dr = 〈0, dy, 0〉 , 0 ≤ y ≤ 2 ,

C3 : (x, y, z) = (1, 2, z) , dr = 〈0, 0,−dz〉 , −1 ≤ z ≤ 0 ,

the sign of dz has been reversed because the line (1, 2, z) starts at (1, 2,−1)
and ends at (1, 2, 0) as z increases from −1 to 0, whereas C3 should have the
opposite orientation. Note that the dot product F · dr depends only on the
first component F1 on C1, the second component F2 on C2, and the third
component F3 on C3. Therefore

∫

C
F · dr =

∫ 1

0
F1(x, 0, 0)dx+

∫ 2

0
F2(1, y, 0)dy−

∫ 0

−1
F3(1, 2, z)dz

=

∫ 1

0

3x2dx +

∫ 2

0

2ydy −
∫ 0

−1

6z2dz

= 1 + 4 − 2 · (0− (−1)3) = 3 .

�

41.5. Study Problems.

Problem 41.1. Find the line integral of the vector field F = g(r)(a× r),
where a is a constant vector, g is continuous function, and r = ‖r‖, along
a straight line segment parallel to a.

Solution: For a straight line segment parallel to a, the tangent vector dr
is parallel to a. Therefore

F · dr = g(r)(a× r) · dr = 0

as the triple product of coplanar vectors vanishes. Thus, the line integral of
F vanishes for any such straight line segment. �

Problem 41.2. Find the work done by the force F = 〈2x, 3y2, 4z3〉 along
any smooth curve originating from the point (0, 0, 0) and ending at the pont
(1, 1, 1).

Solution: If r(t) = 〈x(t), y(t), z(t)〉 are parametric equations of a smooth
curve, a ≤ t ≤ b, such that r(a) = 〈0, 0, 0〉 and r(b) = 〈1, 1, 1〉, then by the
chain rule

F · dr = 2xdx + 3y2dy + 4z3dz = d
(

x2 + y3 + z4
)

.
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Note that here the vector field is taken on the curve F = F(r(t)) so that
x = x(t), y = y(t), and z = z(t) in the above equation and the chain rule

applies. By the fundamental theorem of calculus
∫ b
a df(t) = f(b)− f(a) and

therefore
∫

C

F · dr =

∫ b

a

d
(

x2(t) + y3(t) + z4(t)
)

= (x2(t) + y3(t) + z4(t))
∣

∣

∣

b

a
= 3 .

�

Problem 41.3. Find the work done by the engines of a space craft of
mass m against the gravitational pull of a planet of mass M if the space
craft moved from the position ra to rb relative to the center of the planet.

Solution: Let r = r(t), a ≤ t ≤ b, be a smooth parameterization of the
trajectory of the space craft. Then

F · dr = −GMm
r · dr
‖r‖3

= −1

2
GMm

d(r · r)
‖r‖3

= −1

2
GMm

du

u3/2
,

where u = r · r = ‖r‖2. Put ua = ‖ra‖2 and ub = ‖rb‖2. The force
exerted by the engines should compensate the gravitational force and, hence,
its tangential component must be opposite to the tangential component of
the gravitational force of the planed exerted on the space craft. For any
trajectory going from ra to rb, the work done by the engines is

W = −
∫

C
F · dr = −

∫ b

a
F(r(t)) · dr(t) =

1

2
GMm

∫ ub

ua

du

u3/2

= −GMm u−1/2
∣

∣

∣

ub

ua

=
GMm

‖ra‖
− GMm

‖rb‖
.

�

Problem 41.4. A magnetic field B(r) exerts the Lorentz force F =
(e/c)v × B on a charged particle (see Study Problem 12.3), where v is the
velocity of the particle. Prove that the work done by the Lorentz force is
always zero for any trajectory of the particle.

Solution: Let r(t) be a trajectory of the particle. Then dr(t) = r′(t)dt =
v(t)dt and, hence, along the trajectory

F · dr = (e/c)(v×B) · vdt = 0

as the triple product of coplanar vectors vanishes. Therefore, the work done
by the Lorentz force is zero for any trajectory. �

41.6. Exercises.
1–6. Sketch flow lines of the given planar vector field.

1. F = 〈ax, by〉, where a and b are positive constants ;
2. F = 〈ay, bx〉, where a and b are positive constants ;
3. F = 〈ay, bx〉, where the constants a and b have different signs ;
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4. F = ∇u, u = tan−1(y/x) ;

5. F = ∇u, u = ln[(x2 + y2)−1/2] ;
6. F = ∇u, u = ln[(x − a)2 + (y − b)2] .

7–15. Sketch flow lines of the given vector field in space.

7. F = 〈ax, by, cz〉 where a, b, and c are positive constants ;
8. F = 〈ax, by, cz〉 where a and b are positive constants, while c is a

negative constant;
9. F = 〈y,−x, a〉 where a is a constant;

10. F = ∇ ‖r‖, r = 〈x, y, z〉 ;
11. F = ∇ ‖r‖−1, r = 〈x, y, z〉 ;
12. F = ∇u, u = (x/a)2 + (y/b)2 + (z/c)2 ;

13. F = ∇u, u =
√

x2 + y2 + (z + c)2 +
√

x2 + y2 + (z − c)2 where c
is a positive constant;

14. F = a × r, where a is a constant vector and r = 〈x, y, z〉 ;
15. F = ∇u, u = z/

√

x2 + y2 + z2 .

16. A ball rotates at a constant rate ω about its diameter parallel to a unit
vector n. If the origin of the coordinate system is set at the center of the
ball, find the velocity vector field as a function of the position vector r of a
point of the ball.
17–30. Evaluate the line integral

∫

C F · dr for the given vector field F and
the specified curve C.

17. F = 〈y, xy, 0〉 and C is the parametric curve r(t) = 〈t2, t3, 0〉,
0 ≤ t ≤ 1 ;

18. F = 〈z, yx, zy〉 and C is the ellipse x2/a2 + y2/b2 = 1 oriented
clockwise;

19. F = 〈z, yx, zy〉 and C is the parametric curve r(t) = 〈2t, t + t2, 1+
t3〉 from the point (−2, 0, 0) to the point (2, 2, 2) ;

20. F = 〈−y, x, z〉 and C is the boundary of the part of the parabo-
loid z = a2 − x2 − y2 that lies in the first octant; C is oriented
counterclockwise as viewed from the top of the z axis;

21. F = 〈−z, 0, x〉 and C is the boundary of the part of the sphere
x2+y2+z2 = a2 that lies in the first octant; C is oriented clockwise
as viewed from the top of the z axis;

22. F = a × r, where a is a constant vector, r = 〈x, y, z〉, and C is
straight line segment from r1 to r2 ;

23. F = 〈y sin z, z sinx, x sin y〉 and C is the parametric curve r =
〈cos t, sin t, sin(5t)〉, 0 ≤ t ≤ 2π ;

24. F = 〈y, −xz, y(x2 + z2)〉 and C is the intersection of the cylin-
der x2 + z2 = 1 with the plane x + y + z = 1 that is oriented
counterclockwise as viewed from the top of the y axis;

25. F = 〈−y sin(πz2), x cos(πz2), exyz〉 and C is the intersection of the

cone z =
√

x2 + y2 and the sphere x2 + y2 + z2 = 2; C is oriented
counterclockwise as viewed from the top of the z axis;
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26. F = 〈e
√

y, ex, 0〉 and C is the parabola concave up in the xy plane
from the origin to the point (1, 1) ;

27. F = 〈x, y, z〉 and C is an elliptic helix r(t) = 〈a cos t, b sin t, ct〉,
0 ≤ t ≤ 2π ;

28. F = 〈y−1, z−1, x−1〉 and C is the straight line segment from the
point (1, 1, 1) to the point (2, 4, 8) ;

29. F = 〈ey−z , ez−x, ex−y〉 and C is the straight line segment from the
origin to the point (1, 3, 5) ;

30. F = 〈y + z,−x, 3y − 3x〉 and C the shortest arc on the sphere
x2 + y2 + z2 = 25 from the point (3, 4, 0) to the point (0, 0, 5).

31. Find the work done by a constant force F in moving a point object
along a smooth path from a point ra to a point rb.
32. Find the work done by the force F = f ′(r)r/r in moving a point object
along a smooth path from a point ra to a point rb where the derivative f ′

of f is a continuous function of r = ‖r‖.
33–34. Find the work done by the force F = 〈−y, x, c〉, where c is a constant,
in moving a point object along each of the following curves.

33. the circle x2 + y2 = 1, z = 0 ;
34. the circle (x − 2)2 + y2 = 1, z = 0 .

35. The force acting on a charged particle that moves in a magnetic field B

and an electric field E is F = eE+(e/c)v×B where v is the velocity of the
particle, e is its electric charge, and c is the speed of light in the vacuum.
Find the work done by the force along a trajectory originating from a point
ra and ending at the point rb if the electric and magnetic fields are constant.
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42. Fundamental Theorem for Line Integrals

Recall the fundamental theorem of calculus, which asserts that, if the
derivative f ′(x) is continuous on an interval [a, b], then

∫ b

a
f ′(x) dx = f(b)− f(a).

It appears that there is an analog of this theorem for line integrals.

42.1. Conservative Vector Fields.

Definition 42.1. (Conservative Vector Field and Its Potential).
A vector field F in a region E is said to be conservative if there is a differ-
entiable function f , called a potential of F, such that F = ∇f in E.

Conservative vector fields play a significant role in many practical ap-
plications. It has been proved earlier (see Study Problem 24.3) that if a
particle moves along a trajectory r = r(t) under the force F = −∇U , then
its energy E = mv2/2 + U(r), where v = ‖v‖ and v = r′ is the veloc-
ity, is conserved along the trajectory, dE/dt = 0. In particular, Newton’s
gravitational force is conservative,

(42.1) F = −∇U , U(r) = −GMm

‖r‖ .

The result of Study Problem 24.3 shows that the work done by the gravi-
tational force in moving a point object of mass m does not depend on the
trajectory of the object and is determined by the values of its potential U
at the endpoints of the trajectory

W =

∫

C
F · dr = U(rb) − U(ra) .

It turns out that this is a common feature of all conservative vector fields.

Theorem 42.1. (Fundamental Theorem for Line Integrals).
Let C be a smooth curve in a region E with initial and terminal points ra and
rb, respectively. Let f be a function on E whose gradient ∇f is continuous
on C. Then

(42.2)

∫

C
∇f · dr = f(rb) − f(ra).

Proof. Let r = r(t), a ≤ t ≤ b, be a smooth parameterization of C such
that r(a) = ra and r(b) = rb. Then, by (41.2) and the chain rule,
∫

C
∇f · dr =

∫ b

a
(f ′

xx′ + f ′
yy

′ + f ′
zz

′) dt =

∫ b

a

d

dt
f(r(t)) dt = f(rb)− f(ra).

The latter equality holds by the fundamental theorem of calculus and the
continuity of the partial derivatives of f and r′(t) for a smooth curve. �
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42.2. Path Independence of Line Integrals.

Definition 42.2. (Path Independence of Line Integrals).
A continuous vector field F has path-independent line integrals if

∫

C1

F · dr =

∫

C2

F · dr

for any two simple, piecewise-smooth curves in the domain of F with the
same endpoints.

Recall that a curve is simple if it does not intersect itself (see Sec-
tion 10.3). An important consequence of the fundamental theorem for line
integrals is that the work done by a continuous conservative force, F = ∇f ,
is path-independent. So a criterion for a vector field to be conservative would
be advantageous for evaluating line integrals because for a conservative vec-
tor field a curve may be deformed at convenience without changing the value
of the integral. Let us introduce a special notation of a line integral along a
closed curve

∮

C
F · dr .

A circle on the integral sign indicates that the line integral is evaluated along
a closed curve C.

Theorem 42.2. (Path-Independent Property).
Let F be a continuous vector field on an open region E. Then F has path-
independent line integrals if and only if its line integral vanishes along every
piecewise-smooth, simple, closed curve C in E. In that case, there exists a
function f such that F = ∇f :

F = ∇f ⇐⇒
∮

C
F · dr = 0.

Proof. Suppose first that there is a function f such that F = ∇f in E.
Then by the fundamental theorem for line integrals, the line integral of F

vanishes along any simple closed curve in E because the initial and terminal
points of C coincide. Conversely, suppose that F has vanishing line integrals
along any simple closed curve in E. Pick a point r0 in E and consider any
smooth curve C from r0 to a point r = 〈x, y, z〉 in E. The idea is to prove
that the function

(42.3) f(r) =

∫

C
F · dr

is a potential of F, that is, to prove that ∇f = F under the condition that
the line integral of F vanishes for every closed curve in E. This “guess” for
f is motivated by the fundamental theorem for line integrals (42.2), where
rb is replaced by a generic point r in E. The potential is defined up to an
additive constant (∇(f + const) = ∇f) so the choice of a fixed point r0 is
irrelevant. The value of f is independent of the choice of C. Indeed, consider
two such curves C1 and C2. Then the union of C1 and −C2 (the curve C2
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whose orientation is reversed) is a closed curve, and the line integral along
it vanishes by the hypothesis. On the other hand, this line integral is the
sum of line integrals along C1 and −C2. By the property (41.4), the line
integrals along C1 and C2 coincide. To calculate the derivative

f ′
x(r) = lim

h→0

f(r + hê1)− f(r)

h
, ê1 = 〈1, 0, 0〉 ,

let us express the difference f(r + hê1)− f(r) via a line integral. Note that
E is open, which means that a ball of sufficiently small radius centered at
any point in E is contained in E (i.e., r + hê1 in E for a sufficiently small
h). Since the value of f is path-independent, for the point r+hê1, the curve
can be chosen so that it goes from r0 to r and then from r to r + hê1 along
the straight line segment. Denote the latter by ∆C. Therefore,

f(r + hê1)− f(r) =

∫

∆C
F · dr

because the line integral of F from r0 to r is path-independent. A vector
function that traces out ∆C is

∆C : r(t) = 〈t, y, z〉 , x ≤ t ≤ x + h .

Therefore,

r′(t) = ê1 ⇒ F(r(t)) · dr(t) = F(r(t)) · ê1dt = F1(t, y, z)dt .

Thus,

f ′
x(r) = lim

h→0

1

h

∫ x+h

x
F1(t, y, z) dt = lim

h→0

1

h

(

∫ x+h

a
−

∫ x

a

)

F1(t, y, z) dt

=
∂

∂x

∫ x

a
F1(t, y, z) dt = F1(x, y, z) = F1(r)

by the continuity of F1. The equalities f ′
y = F2 and f ′

z = F3 are established
similarly. The details are omitted. �

Although the path independence property does provide a necessary and
sufficient condition for a vector field to be conservative, it is rather imprac-
tical to verify (one cannot evaluate line integrals along every closed curve!).
A more feasible and practical criterion is needed, which is established next.
It is worth noting that Eq. (42.3) gives a practical method of finding a
potential if the vector field is found to be conservative (technical details are
given in Study Problem 42.2).

42.3. The Curl of a Vector Field. According to the rules of vector algebra,
the product of a vector a = 〈a1, a2, a3〉 and a number s is defined by sa =
〈sa1, sa2, sa3〉. By analogy, the gradient ∇f can be viewed as the formal
product of the vector ∇ = 〈∂/∂x, ∂/∂y, ∂/∂z〉 and a scalar f :

∇f =
〈 ∂

∂x
,

∂

∂y
,

∂

∂z

〉

f =
〈∂f

∂x
,

∂f

∂y
,

∂f

∂z

〉

.
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The components of ∇ are not ordinary numbers, but rather they are oper-
ators (i.e., symbols standing for a specified operation that has to be carried
out). For example, (∂/∂x)f means that the operator ∂/∂x is applied to a
function f and the result of its action on f is the partial derivative of f with
respect to x. The directional derivative Duf can be viewed as the result of
the action of the operator

Du = û · ∇ = u1
∂

∂x
+ u2

∂

∂y
+ u3

∂

∂z

on a function f . In what follows, the formal vector ∇ is viewed as an
operator whose action obeys the rules of vector algebra.

Definition 42.3. (Curl of a Vector Field).
The curl of a differentiable vector field F is

curl F = ∇ ×F.

The curl of a vector field is a vector field whose components can be
computed according to the definition of the cross product:

∇ ×F = det





ê1 ê2 ê3
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3





=
(∂F3

∂y
− ∂F2

∂z

)

ê1 +
(∂F1

∂z
− ∂F3

∂x

)

ê2 +
(∂F2

∂x
− ∂F1

∂y

)

ê3.

When calculating the components of the curl, the product of a component
of ∇ and a component of F means that the component of ∇ operates on
the component of F, producing the corresponding partial derivative.

Example 42.1. Find the curl of the vector field F = 〈yz, xyz, x2〉.
Solution:

∇× F = det





ê1 ê2 ê3
∂
∂x

∂
∂y

∂
∂z

yz xyz x2





=
〈 ∂

∂y
(x2) − ∂

∂z
(xyz), − ∂

∂x
(x2) +

∂

∂z
(yz),

∂

∂x
(xyz) − ∂

∂y
(yz)

〉

= 〈−xy, y − 2x, yz − z〉.
�

The geometrical significance of the curl of a vector field will be discussed
later in the section devoted to Stokes’ theorem. Here the curl is used to
formulate sufficient conditions for a vector field to be conservative.

On the Use of the Operator ∇. The rules of vector algebra are useful to
simplify algebraic operations involving the operator ∇. For example,

curl∇f = ∇× (∇f) = (∇ × ∇)f = 0
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because the cross product of a vector with itself vanishes. However, this
formal algebraic manipulation should be adopted with precaution because
it contains a tacit assumption that the action of the components of ∇× ∇

on f vanishes. The latter imposes conditions on the class of functions for
which such formal algebraic manipulations are justified. Indeed, according
to the definition,

∇× ∇f = det





ê1 ê2 ê3
∂
∂x

∂
∂y

∂
∂z

f ′
x f ′

y f ′
z



 = (f ′′
zy − f ′′

yz , f ′′
zx − f ′′

xz, f ′′
xy − f ′′

yx).

This vector vanishes, provided the order in which the partial derivatives are
taken does not matter. In other words, Clairaut’s theorem must hold for the
class of functions for which formal algebraic manipulations with the operator
∇ are justified. Thus, the rules of vector algebra can be used to simplify the
action of an operator involving ∇ if the partial derivatives of a function on
which this operator acts are continuous up to the order determined by that
action.

42.4. Test for a Vector Field to Be Conservative. A conservative vector
field with continuous partial derivatives in a region E has been shown to
have the vanishing curl:

F = ∇f =⇒ curlF = 0.

Unfortunately, the converse is not true in general. In other words, the
vanishing of the curl of a vector field does not guarantee that the vector
field is conservative. The converse is true only if the region in which the
curl vanishes belongs to a special class. Recall that an open region E was
defined as a connected set (Definition 28.1); that is any two points of E
can be connected by a curve that lies in E. In other words, E cannot be
represented as the union of two or more non-intersecting (disjoint) regions.

Definition 42.4. (Simply Connected Region).
A region E is simply connected if every closed curve in E can be continu-
ously shrunk to a point in E while remaining in E throughout the deforma-
tion.

Naturally, the entire Euclidean space is simply connected. A ball in
space is also simply connected. If E is the region outside a ball, then it is
also simply connected. However, if E is obtained by removing a line (or a
cylinder) from the entire space, then E is not simply connected. Indeed, take
a circle such that the line pierces through the disk bounded by the circle.
There is no way this circle can be continuously contracted to a point of E
without crossing the line. A solid torus is not simply connected. (Explain
why!) A simply connected region D in a plane cannot have “holes” in it (see
Figure 42.1).
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Figure 42.1. From to left to right: A planar connected
set (any two points in it can be connected by a continuous
curve that lies in the set); a planar disconnected set (there
are points in it which cannot be connected by a continuous
curve that lies in the set); a planar simply connected set
(every simple closed curve in it can be continuously shrunk
to a point in it while remaining in the set throughout the
deformation); a planar region that is not simply connected
(it has holes).

Theorem 42.3. (Test for a Vector Field to Be Conservative).
Suppose F is a vector field whose components have continuous partial deriva-
tives on a simply connected open region E. Then F is conservative in E if
and only if its curl vanishes for all points of E:

curl F = 0 on simply connected E ⇐⇒ F = ∇f on E.

This theorem follows from Stokes’ theorem discussed later in this chapter
and has two useful consequences. First, the test for the path-independence
of line integrals:

curlF = 0 on simply connected E ⇐⇒
∫

C1

F · dr =

∫

C2

F · dr

for any two curves C1 and C2 in E originating from a point ra in E and
terminating at another point rb in E. It follows from Theorem 42.2 for the
curve C that is the union of C1 and −C2. Second, the test for vanishing line
integrals along closed paths:

curlF = 0 on simply connected E ⇐⇒
∮

C
F · dr = 0,

where C is a closed curve in E. The condition that E is simply connected
is crucial here. Even if curl F = 0, but E is not simply connected, the line
integral of F may still depend on the path and the line integral along a
closed path may not vanish! An example is given in Study Problem 42.1.

Equation (42.1) shows that Newton’s gravitational force can be written
as the gradient of the function U(r) everywhere except the origin. Therefore,
its curl vanishes in the region E that is the entire space with one point



42. FUNDAMENTAL THEOREM FOR LINE INTEGRALS 627

removed; it is simply connected. Hence, the work done by the gravitational
force is independent of the path traveled by the object and determined by
the difference of values of its potential U (called also a potential energy) at
the initial and terminal points of the path. More generally, since the work
done by a force equals the change of the kinetic energy (see Section 3.6), the
motion under a conservative force F = −∇U has the fundamental property
that the sum of kinetic and potential energies, mv2/2 + U(r), is conserved
along a trajectory of the motion (recall Study Problem 24.3).

Example 42.2. Evaluate the line integral of the vector field

F = 〈F1, F2, F3〉 = 〈yz, xz + z + 2y, xy + y + 2z〉
along the path C that consists of straight line segments AB1, B1B2, and
B2D, where the initial point is A = (0, 0, 0), B1 = (2010, 2011, 2012), B2 =
(102, 1102, 2102), and the terminal point is D = (1, 1, 1).

Solution: The path looks complicated enough to check whether F is con-
servative before evaluating the line integral using the parametric equations
of C. First, note that the components of F are polynomials and hence have
continuous partial derivatives in the entire space. Therefore, if its curl van-
ishes, then F is conservative in the entire space by Theorem 42.3 as the
entire space is simply connected:

∇ ×F = det





ê1 ê2 ê3
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3



= det





ê1 ê2 ê3
∂
∂x

∂
∂y

∂
∂z

yz xz + z + 2y xy + y + 2z





=
〈

(F3)
′
y − (F2)

′
z, −(F3)

′
x + (F1)

′
z, (F2)

′
x − (F1)

′
y

〉

= 〈x + 1 − (x + 1), −y + y, z − z〉 = 0.

Thus, F is conservative. Now there are two options to finish the problem.
Option 1. One can use the path-independence of the line integral, which

means that one can pick any other curve C1 connecting the initial point
A and the terminal point D to evaluate the line integral in question. For
example, a straight line segment connecting A and D is simple enough to
evaluate the line integral. Its parametric equations are r = r(t) = 〈t, t, t〉,
where 0 ≤ t ≤ 1. Therefore,

F(r(t)) · r′(t) = 〈t2, t2 + 3t, t2 + 3t〉 · 〈1, 1, 1〉 = 3t2 + 6t

and hence
∫

C
F · dr =

∫

C1

F · dr =

∫ 1

0
(3t2 + 6t) dt = 4.

Option 2. The procedure of Section 20.1 may be used to find a potential f
of F (see also the study problems at the end of this section for an alternative
procedure). The line integral is then found by the fundamental theorem for
line integrals. Put ∇f = F. Then the problem is reduced to finding f
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from its first-order partial derivatives (the existence of f has already been
established). Following the procedure of Section 20.1,

f ′
x = F1 = yz ⇒ f(x, y, z) = xyz + g(y, z),

for some function g(y, z). The substitution of f into the second equation
f ′
y = F2 yields

xz + g′y(y, z) = xz + z + 2y ⇒ g(y, z) = y2 + zy + h(z),

for some function h(z). The substitution of f = xyz + y2 + zy + h(z) into
the third equation f ′

z = F3 yields

xy + y + h′(z) = xy + y + 2z ⇒ h(z) = z2 + c,

where c is a constant. Thus, a potential of the vector field in question is
f(x, y, z) = xyz + yz + z2 + y2 + c and

∫

C
F · dr = f(1, 1, 1)− f(0, 0, 0) = 4

by the fundamental theorem for line integrals. �

42.5. Study Problems.

Problem 42.1. Consider the vector field in space

F = 〈F1, F2, F3〉 =
〈

− y

x2 + y2
,

x

x2 + y2
, 2z

〉

.

(i). Show that curl F = 0 in the domain of F.
(ii). Let θ = θ(x, y) be the polar angle as a function of rectangular

coordinates (x, y) as defined in Section 32.1. Show that

F = ∇f , f(x, y, z) = θ(x, y) + z2 ,

at all points where f is differentiable.
(iii). Evaluate the line integral of F along the circle C: x2 + y2 = R2

in the plane z = a. The circle is oriented counterclockwise as
viewed from the top of the z axis. Does the result contradict to the
fundamental theorem for line integrals? Explain.

(iv). Is there a subregion of the domain of F where F is conservative?

Solution: (i). Since the first two components do not depend on z and the
third component does not depend on x and y, it follows from Definition 42.3
that

∇ ×F =
(

(F2)
′
x − (F1)

′
y

)

ê3 =
( y2 − x2

(x2 + y2)2
+

x2 − y2

(x2 + y2)2

)

ê3 = 0

for all (x, y, z) that are not on the z axis (that is, (x, y) 6= (0, 0)) as the
vector field is not defined on the z axis.
(ii). For definitiveness, let us use Eq. (32.1) that defines θ(x, y) in the range
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[0, 2π) for all (x, y) 6= (0, 0). It follows from Eq. (32.1) that θ(x, y) has
continuous partial derivatives for x < 0 and for x > 0, y 6= 0:

f ′
x = θ′x = − x

x2 + y2
= F1 , f ′

y = θ′y =
y

x2 + y2
= F2 , f ′

z = 2z = F3

The function θ(x, y) is not continuous in the positive x axis (x > 0 and
y = 0) and, hence, is not differentiable there. If x = 0, then θ(0, y) = π/2
for y > 0 and θ(0, y) = 3π/2 for y < 0. In either case, θ′y(0, y) = 0 = F2(0, y).
The partial derivative θ′x(0, y), y 6= 0, is calculated by using the definition of
partial derivatives. Put p = 1 if y > 0 and p = −1 if y < 0. Then for y 6= 0

lim
x→0+

θ(x, y)− θ(0, y)

x
= lim

x→0+

tan−1( y
x) − pπ

2

x
= − lim

x→0+

y

x2 + y2
= −1

y

lim
x→0−

θ(x, y)− θ(0, y)

x
= lim

x→0−

tan−1( y
x) + pπ

2

x
= − lim

x→0−

y

x2 + y2
= −1

y

where l’Hospital’s rule has been used to find the limits. Since the left and
right limits exist and coincide, it is concluded that

θ′x(0, y) = lim
x→0

θ(x, y)− θ(0, y)

x
= −1

y
= F1(0, y)

⇒ F = ∇f ,

for all (x, y, z) except the points on the half of the xz plane with x ≥ 0. Note
that θ′x and θ′y are continuous at all points of the y axis except the origin.
(iii). Parametric equations of the curve C can be chosen in the form

r(t) = 〈R cos t, R sin t, a〉 , 0 ≤ t ≤ 2π .

Then r′(t) = 〈−R sin t, R cos t, 0〉 and

F · dr = F(r(t)) · r′(t)dt

= 〈−R−1 sin t, R−1 cos t, 2a〉 · 〈−R sin t, R cos t, 0〉dt

= (sin2 t + cos2 t)dt = dt
∮

C

F · dr =

∫ 2π

0

dt = 2π .

The result does not contradict the fundamental theorem for line integrals.
First note that the domain of F is not simply connected. Indeed, the domain
of F is the entire space with the z axis removed. Any closed curve encircling
the z axis cannot be continuously shrunk to a point without crossing the z
axis. Thus, the fact that the curl of F vanishes is not sufficient to conclude
that F has the path-independence property (Theorem 42.3). Second, note
that F = ∇f does not hold in the entire domain of F because the function
f is only differentiable in space with the half-plane θ(x, y) = 0 removed.
In turn, this implies that the chain rule used to prove Eq. (42.2) is not
applicable for any curve that crosses the half-plane θ(x, y) = 0 (see the left
panel of Fig. 42.2). The line integral of ∇f along a curve encircling the z
axis must be viewed as an improper integral where the initial and terminal
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θ = 0
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C3

(x, y, z)

(x0, y0, z0)

Figure 42.2. Left: An illustration to Study Problem 42.1.
Right: An illustration to Study Problem 42.2. To find a
potential of a conservative vector field, one can evaluate its
line integral from any point (x0, y0, z0) to a generic point
(x, y, z) along the rectangular contour C that is the union
of the straight line segments C1, C2, and C3 parallel to the
coordinate axes.

points of the curve approach the same point on the half-plane where ∇f
does not exist. If the fundamental theorem for line integrals is applied to
such a curve, then no contradiction arises because the values of f on the
opposite sides of the half-plane differ exactly by 2π in full accordance with
the conclusion of the theorem.
(iv). The vector field F is conservative in the region E that is the entire
space with the half-plane θ(x, y) = 0 removed and its potential is given by
f (up to an additive constant). Indeed, the region E is simply connected as
closed curves encircling the z axis are no longer contained in E (the point
of intersection of the curve with the half-plane is not in E) and ∇× F = 0

in it. By Theorem 42.3, F is conservative in E. The line integral of F over
any closed curve in E vanishes (the total variation of θ along such a curve
is zero). With any other definition, the function θ(x, y) must exhibit the
2π−discontinuity on some ray extended from the origin as the polar angle
has to change from 0 to 2π along any closed curve encircling the origin in the
xy plane, and the above conclusions hold for any other definition of θ(x, y).
�

Remark. The example considered is not merely a mathematical exercise to
illustrate subtleties of the path-independence property of vector fields, which
is only of academic interest. In fact, non-conservative vector fields with zero
curl in not simply connected regions of space do occur in nature. They
describe vortices in fluid flows. They are also used in theoretical foundations



42. FUNDAMENTAL THEOREM FOR LINE INTEGRALS 631

for the existence of magnetic monopoles, fundamental particles that are
believed to carry magnetic charges and whose properties may shed light on
the early evolution of our Universe. A search for magnetic monopoles is still
underway.

Problem 42.2. Prove that if F = 〈F1, F2, F3〉 is conservative, then its
potential is

f(x, y, z) =

∫ x

x0

F1(t, y0, z0) dt +

∫ y

y0

F2(x, t, z0) dt +

∫ z

z0

F3(x, y, t) dt,

where (x0, y0, z0) is any point in the domain of F. Use this equation to find
a potential of F from Example 42.2.

Solution: In (42.3), take C that consists of three straight line segments,
(x0, y0, z0) → (x, y0, z0) → (x, y, z0) → (x, y, z) as depicted in the right panel
of Fig. 42.2. The parametric equations of the first segment are

C1 : r(t) = 〈t, y0, z0〉 , x0 ≤ t ≤ x .

Therefore, r′(t) = 〈1, 0, 0〉 and F(r(t)) · r′(t) = F1(t, y0, z0). So the line
integral of F along C1 gives the first term in the above expression for f .
Similarly, the second term is the line integral of F along the second segment

C2 : r(t) = 〈x, t, z0〉 , y0 ≤ t ≤ y ,

so that r′(t) = 〈0, 1, 0〉 and F(r(t)) · r′(t) = F2(x, t, z0). The third term is
the line integral of F along the third segment

C3 : r(t) = 〈x, y, t〉 , z0 ≤ t ≤ z ,

so that r′(t) = 〈0, 0, 1〉 and F(r(t)) · r′(t) = F3(x, y, t).
In Example 42.2, it was established that F = 〈F1, F2, F3〉 = 〈yz, xz+z+

2y, xy +y +2z〉 is conservative. For simplicity, choose (x0, y0, z0) = (0, 0, 0).
Then

f(x, y, z) =

∫ x

0
F1(t, 0, 0) dt +

∫ y

0
F2(x, t, 0) dt +

∫ z

0
F3(x, y, t) dt

= 0 + y2 + (xyz + yz + z2) = xyz + yz + z2 + y2,

which naturally coincides with f found by a different (longer) method. �

Problem 42.3. (Operator ∇ in curvilinear coordinates)
Let the transformation (u, v, w) → (x, y, z) be a change of variables. If êu,
êv, and êw are unit vectors normal to the coordinate surfaces (see Eq. (36.7)
in Section 36.6), show that

∇ = ‖∇u‖êu
∂

∂u
+ ‖∇v‖êv

∂

∂v
+ ‖∇w‖êw

∂

∂w

In particular, find the ∇ operator in the cylindrical and spherical coordi-
nates.
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Solution: By the chain rule,

∂

∂x
=

∂u

∂x

∂

∂u
+

∂v

∂x

∂

∂v
+

∂w

∂x

∂

∂w

and similarly for ∂/∂y and ∂/∂z. Then

∇ = ê1
∂

∂x
+ ê2

∂

∂y
+ ê3

∂

∂z

=

(

∂u

∂x
ê1 +

∂u

∂y
ê2 +

∂u

∂z
ê3

)

∂

∂u
+

(

∂v

∂x
ê1 +

∂v

∂y
ê2 +

∂v

∂z
ê3

)

∂

∂v

+

(

∂w

∂x
ê1 +

∂w

∂y
ê2 +

∂w

∂z
ê3

)

∂

∂w

= ∇u
∂

∂u
+ ∇v

∂

∂v
+ ∇w

∂

∂w

= ‖∇u‖ êu
∂

∂u
+ ‖∇v‖ êv

∂

∂v
+ ‖∇w‖ êw

∂

∂v
,

where the unit vectors are defined in (36.7). Making use of equations (36.8),
(36.9), (36.11), and (36.10), the operator ∇ is obtained in the cylindrical
and spherical coordinates:

∇ = êr
∂

∂r
+

1

r
êθ

∂

∂θ
+ ê3

∂

∂z
,

∇ = êρ
∂

∂ρ
+

1

ρ
êφ

∂

∂φ
+

1

ρ sinφ
êθ

∂

∂θ
.

�

42.6. Exercises.
1–5. Calculate the curl ∇ ×F of the given vector field F on its domain.

1. F = 〈xyz,−y2x, 0〉 ;
2. F = 〈cos(xz), sin(yz), 2〉 ;
3. F = 〈h(x), g(y), f(z)〉, where the functions h, g, and f are differ-

entiable.
4. F = 〈ln(xyz), ln(yz), lnz〉 ;
5. F = a × r, where a is a constant vector and r = 〈x, y, z〉 .

6. Suppose that a vector field F(r) and a function f(r) are differentiable.
Use the vector algebra rules for the operator ∇ to show that ∇ × (fF) =
f(∇× F) + ∇f ×F .
7. Use the vector algebra rules for the operator ∇ to find ∇ × (c× rf(r))
where r = ‖r‖, f is differentiable, and c is a constant vector.
8. A fluid, filling the entire space, rotates at a constant rate ω about an
axis parallel to a unit vector n̂. Find the curl of the velocity vector field at
a generic point r. Assume that the position vector r originates from a point
on the axis of rotation.
9–16. Determine whether the given vector field F is conservative in its
domain and, if it is, find its potential.
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9. F = 〈2xy, x2 + 2yz3, 3z2y2 + 1〉 ;
10. F = 〈yz, xz + 2y cos z, xy − y2 sin z〉 ;
11. F = 〈ey, xey − z2, −2yz〉 ;
12. F = 〈6xy + z4y, 3x2 + z4x, 4z3xy〉 ;

13. F =
〈

yz(2x + y + z), xz(x + 2y + z), xy(x + y + 2z)
〉

;

14. F = 〈−y(x2 + y2)−1 + z, x(x2 + y2)−1, x〉 ;
15. F = 〈y cos(xy), x cos(xy), z + y〉 ;
16. F = 〈−yz/x2, z/x, y/x〉 .

17–21. Determine first whether the given vector field F has the path-
independence property (or it is conservative) in its domain and then evaluate
the line integral

∫

C F · dr by making a convenient deformation of the curve
C if applicable.

17. F = 〈y2z2 + 2x + 2y, 2xyz2 + 2x, 2xy2z + 1〉 and C consists of
there line segments: (1, 1, 1) → (a, b, c) → (1, 2, 3);

18. F = 〈zx , yz , z2〉 and C is the part of the helix r(t) = 〈2 sin t ,−2 cos t , t〉
that lies inside the ellipsoid x2 + y2 + 2z2 = 6 and oriented in the
direction of increasing t.

19. F = 〈y − z2 , x + sin z , y cos z − 2xz〉 and C is one turn of a helix
of radius a from (a, 0, 0) to (a, 0, b).

20. F = g(r2)r where r = 〈x, y, z〉, r = ‖r‖, g is differentiable, and C
is a smooth curve from a point on the sphere x2 + y2 + z2 = a2 to
a point on the sphere x2 + y2 + z2 = b2. What is the work done by
the force F if g = −1/r3?

21. F =
〈

2(y + z)1/2, −x(y + z)3/2, −x(y + z)−3/2
〉

and C is a smooth

curve from the point (1, 1, 3) and (2, 4, 5) .

22. Suppose that F and G are continuous on a simply connected open re-
gion E. Show that

∮

C F · dr =
∮

C G · dr for any smooth closed curve C in
E if there is a function f with continuous partial derivatives in E such that
F −G = ∇f .
23. Use the properties of the gradient to show that the vectors êr =
〈cos θ, sin θ〉 and and êθ = 〈− sin θ, cos θ〉 are unit vectors orthogonal to the
coordinate curves r(x, y) = const and θ(x, y) = const of polar coordinates.
Given a planar vector field, put F = Frêr + Fθêθ. Use the chain rule to
express the curl of a planar vector field F(r, θ) in polar coordinates (r, θ) in
terms of Fr, Fθ, êr, and êθ.
24. Evaluate the pairwise cross products of the unit vectors (36.11) and
the pairwise cross products of the unit vectors (36.10). Use the obtained
relations and the result of Study Problem 42.3 to express the curl of a vector
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field in spherical and cylindrical coordinates:

∇ ×F =
1

ρ sinφ

(

∂(sinφFθ)

∂φ
− ∂Fφ

∂θ

)

êρ

+
1

ρ

(

1

sinφ

∂Fρ

∂θ
− ∂(ρFθ)

∂ρ

)

êφ +
1

ρ

(

∂(ρFφ)

∂ρ
− ∂Fρ

∂φ

)

êθ ,

∇ ×F =

(

1

r

∂Fz

∂θ
− ∂Fθ

∂z

)

êr +

(

∂Fr

∂z
− ∂Fz

∂r

)

êθ

+
1

r

(

∂(rFθ)

∂r
− ∂Fr

∂θ

)

êz ,

where the field F is decomposed over the bases (36.11) and (36.10): F =
Fρêρ + Fφêφ + Fθêθ and F = Frêr + Fθêθ + Fz êz.
Hint: Show ∂ êρ/∂φ = êφ, ∂ êρ/∂θ = sin θ êθ, and similar relations for the
partial derivatives of other unit vectors.
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43. Green’s Theorem

Green’s theorem should be regarded as the counterpart of the funda-
mental theorem of calculus for the double integral.

Definition 43.1. (Orientation of Planar Closed Curves). A simple closed
curve C in a plane whose single traversal is counterclockwise (clockwise) is
said to be positively (negatively) oriented.

A simple closed curve divides the plane into two connected regions. If
a planar region D is bounded by a simple closed curve, then the positively
oriented boundary of D is denoted by the symbol ∂D (see the left panel of
Fig. 43.1).

Recall that a simple closed curve can be regarded as a continuous vector
function r(t) = 〈x(t), y(t)〉 on [a, b] such that r(a) = r(b) and, for any
t1 6= t2 in the open interval (a, b), r(t1) 6= r(t2); that is, r(t) traces out C
only once without self-intersection. A positive orientation means that r(t)
traces out its range counterclockwise. For example, the vector functions
r(t) = 〈cos t, sin t〉 and r(t) = 〈cos t,− sin t〉 on the interval [0, 2π] define the
positively and negatively oriented circles of unit radius, respectively.

Theorem 43.1. (Green’s Theorem).
Let C be a positively oriented, piecewise-smooth, simple, closed curve in the
plane and let D be the region bounded by C = ∂D. If the functions F1 and
F2 have continuous partial derivatives in an open region that contains D,
then

∫∫

D

(∂F2

∂x
− ∂F1

∂y

)

dA =

∮

∂D
F1 dx + F2 dy.

Just like the fundamental theorem of calculus, Green’s theorem relates
the derivatives of F1 and F2 in the integrand to the values of F1 and F2 on
the boundary of the integration region. A proof of Green’s theorem is rather
involved. Here it is limited to the case when the region D is simple.
Proof (for simple regions). A simple region D admits two equivalent
algebraic descriptions:

D = {(x, y) | ybot(x) ≤ y ≤ ytop(x) , a ≤ x ≤ b} ,(43.1)

D = {(x, y) | xbot(y) ≤ x ≤ xtop(y) , c ≤ y ≤ d} .(43.2)

The idea of the proof is to establish the equalities

(43.3)

∮

∂D
F1 dx = −

∫∫

D

∂F1

∂y
dA ,

∮

∂D
F2 dy =

∫∫

D

∂F2

∂x
dA

using, respectively, (43.1) and (43.2). The conclusion of the theorem is then
obtained by adding these equations. The technical details will be given to
establish the first relation in (43.3) using the description (43.1) of D as a
vertically simple region. The second relation in (43.3) is proved along the
same line of reasoning by using the description (43.2) of D as a horizontally
simple region.
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The line integral is transformed into an ordinary integral first. The
boundary ∂D contains four curves, denoted C1, C2, C3, and C4 (see the
right panel of Fig. 43.1). The curves C1 and C3 are the graphs y = ybot(x)
and y = ytop(x), respectively. Their parametric equations are

C1 : r = 〈t, ybot(t)〉 , a ≤ t ≤ b ,

C3 : r = 〈t, ytop(t)〉 , a ≤ t ≤ b .

These vector functions traverse the graphs from left to right. The positive
orientation of ∂D implies that the graph y = ybot(x) must be oriented from
left to right, whereas the graph y = ytop(x) from right to left. So the
orientation of C3 must be reversed to obtain the corresponding part of ∂D,
which is achieved by changing the sign of the line integral along C3 (the
curve −C3 is the part of ∂D). The boundary curves C2 and C4 (the sides
of D) are segments of the vertical lines x = b (oriented upward) and x = a
(oriented downward), which may collapse to a single point if the graphs
y = ybot(x) and y = ytop(x) intersect at x = a or x = b or both. The line
integrals along C2 and C4 do not contribute to the line integral with respect
to x along ∂D because dx = 0 along C2 and C4. By construction, x = t and
dx = dt for the curves C1 and C3. Hence,

∮

∂D

F1 dx =

∫

C1

F1 dx +

∫

−C3

F1 dx

=

∫ b

a

(

F (x, ybot(x))− F (x, ytop(x))
)

dx,

x

y

D
∂D

x

y

a b

C1

C2

C3

C4

y = ytop(x)

y = ybot(x)

Figure 43.1. Left: A simple closed planar curve encloses a
(connected) region D in the plane. The positive orientation
of the boundary of D means that the boundary curve ∂D
is traversed counterclockwise. Right: A vertically simple
region D is bounded by four smooth curves: two graphs C1

and C2 and two vertical lines C2 (x = b) and C3 (x = a).
The boundary ∂D is the union of these curves oriented coun-

terclockwise.
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where the property (41.4) has been used. Next, the double integral is trans-
formed into an ordinary integral by converting it to an iterated integral:

∫∫

D

∂F1

∂y
dA =

∫ b

a

∫ ytop(x)

ybot(x)

∂F1

∂y
dy dx

=

∫ b

a

(

F (x, ytop(x)) − F (x, ybot(x))
)

dx,

where the latter equality follows from the fundamental theorem of calculus
and the continuity of F1 on an open interval that contains [ybot(x), ytop(x)]
for any x in [a, b] (the hypothesis of Green’s theorem). Comparing the
expression of the line and double integrals via ordinary integrals, the validity
of the first relation in (43.3) is established. �

Suppose that a smooth, oriented curve C divides a region D into two
simple regions D1 and D2 (see the left panel of Fig. 43.2). If the boundary
∂D1 contains C (i.e., the orientation of C coincides with the positive orien-
tation of ∂D1), then ∂D2 must contain the curve −C and vice versa. Using
the conventional notation F1 dx + F2 dy = F · dr, where F = 〈F1, F2〉, one
infers that

∮

∂D
F · dr =

∮

∂D1

F · dr +

∮

∂D2

F · dr

=

∫∫

D1

(∂F2

∂x
− ∂F1

∂y

)

dA +

∫∫

D2

(∂F2

∂x
− ∂F1

∂y

)

dA

=

∫∫

D

(∂F2

∂x
− ∂F1

∂y

)

dA.

The first equality holds because of the cancellation of the line integrals along
C and −C according to (41.4). The validity of the second equality follows
from the proof of Green’s theorem for simple regions. Finally, the equality
is established by the additivity property of double integrals. By making use
of similar arguments, the proof can be extended to a region D that can be
represented as the union of finitely many simple regions.

Green’s Theorem for Non-simply Connected Regions. Let regions D1 and
D2 be bounded by simple, piecewise-smooth, closed curves and let D2 lie in
the interior of D1 (see the right panel of Fig. 43.2). Consider the region D
that was obtained from D1 by removing D2 (the region D has a hole of the
shape D2). Making use of Green’s theorem, one finds

∫∫

D

(∂F2

∂x
− ∂F1

∂y

)

dA =

∫∫

D1

(∂F2

∂x
− ∂F1

∂y

)

dA −
∫∫

D2

(∂F2

∂x
− ∂F1

∂y

)

dA

=

∮

∂D1

F · dr−
∮

∂D2

F · dr =

∮

∂D1

F · dr +

∮

−∂D2

F · dr

=

∮

∂D
F · dr.(43.4)
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x

D

C

−C

x

y

−C2
C2

∂D

∂D
D

∂D

−C1

C1

Figure 43.2. Left: A region D is split into two regions by
a curve C. If the boundary of the upper part of D has posi-
tive orientation, then the positively oriented boundary of the
lower part of D has the curve −C. Right: Green’s theorem
holds for non-simply connected regions. The orientation of
the boundaries of “holes” in D is obtained by making cuts
along curves C1 and C2 so that D becomes simply connected.
The positive orientation of the outer boundary of D induces
the orientation of the boundaries of the “holes”.

This establishes the validity of Green’s theorem for not simply connected
regions. The boundary ∂D consists of ∂D1 and −∂D2; that is, the outer
boundary has a positive orientation, while the inner boundary is negatively
oriented. A similar line of reasoning leads to the conclusion that Green’s
theorem holds for any number of holes in D: all inner boundaries of D must
be negatively oriented. Such orientation of the boundaries can also be un-
derstood as follows. Let a curve C connect a point of the outer boundary
with a point of the inner boundary. Let us make a cut of the region D along
C. Then the region D becomes simply connected and ∂D consists of a con-
tinuous curve (the inner and outer boundaries, and the curves C and −C).
The boundary ∂D has to be positively oriented. The latter requires that
the outer boundary be traced counterclockwise, while the inner boundary is
traced clockwise (the orientation of C and −C is chosen accordingly). By
applying Green’s theorem to ∂D, one can see that the line integrals over C
and −C are cancelled and (43.4) follows from the additivity of the double
integral.

43.1. Evaluating Line Integrals via Double Integrals. Green’s theorem pro-
vides a technically convenient tool to evaluate line integrals along planar
closed curves. It is especially beneficial when the curve consists of several
smooth pieces that are defined by different vector functions; that is, the
line integral must be split into a sum of line integrals to be converted into
ordinary integrals. Sometimes, the line integral turns out to be much more
difficult to evaluate than the double integral.



43. GREEN’S THEOREM 639

−2 −1 1 2

1

2

D

Pi+1

Pn Ci

Cn
Pi

P1

Figure 43.3. Left: The integration curve in the line inte-
gral discussed in Example 43.1. Right: A general polygon.
Its area is evaluated in Example 43.3 by representing the
area via a line integral.

Example 43.1. Evaluate the line integral of

F = 〈y2 + ecosx, 3xy − sin(y4)〉
along the curve C that is the boundary of the half of the annulus: 1 ≤
x2 + y2 ≤ 4 and y ≥ 0; C is oriented clockwise.

The curve C consists of four smooth pieces, the half-circles of radii 1
and 2 and two straight line segments of the x axis, [−2,−1] and [1, 2] as
shown in the left panel of Fig. 43.3. Each curve can be easily parameterized
and the line integral in question can be transformed into the sum of four
ordinary integrals which are then evaluated. The reader is advised to pursue
this avenue of actions to appreciate the following alternative way based on
Green’s theorem (this is not impossible to accomplish if one figures out
how to handle the integration of the functions ecosx and sin(y4) whose anti-
derivatives are not expressible in elementary functions).
Solution: The curve C is a simple, piecewise-smooth, closed curve and
the components of F have continuous partial derivatives everywhere. Thus,
Green’s theorem applies if ∂D = −C (because the orientation of C is neg-
ative) and D is the half-annulus. One has ∂F1/∂y = 2y and ∂F2/∂x = 3y.
By Green’s theorem,

∮

C
F · dr = −

∮

∂D
F · dr = −

∫∫

D

(∂F2

∂x
− ∂F1

∂y

)

dA = −
∫∫

D
y dA

= −
∫ π

0

∫ 2

1
r sin θ r dr dθ = −

∫ π

0
sin θ dθ

∫ 2

1
r2dr = −14

3
,

where the double integral has been transformed to polar coordinates. The
region D is the image of the rectangle D′ = [1, 2]× [0, π] in the polar plane
under the transformation (r, θ) → (x, y). �

Changing the Curve of Integration in a Line Integral. If a planar vector
field is not conservative, then its line integral along a curve C originating
from a point A and terminating at a point B depends on C. If C′ is another
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curve outgoing from A and terminating at B, what is the relation between
the line integrals of F over C and C′? Green’s theorem allows us to establish
such a relation. Suppose that C and C′ have no self-intersections and do not
intersect each other. Then their union is a boundary of a simply connected
region D. Let us reverse the orientation of one of the curves so that their
union is the positively oriented boundary ∂D, say, ∂D is the union of C and
−C′. Then

∮

∂D
F · dr =

∫

C
F · dr +

∫

−C′

F · dr =

∫

C
F · dr−

∫

C′

F · dr

By Green’s theorem

(43.5)

∫

C
F · dr =

∫

C′

F · dr +

∫∫

D

(∂F2

∂x
− ∂F1

∂y

)

dA

which establishes the relation between lines integrals of a non-conservative
planar vector field over two different curves that have common endpoints.

Example 43.2. Evaluate the line integral of the vector field

F = 〈2y + cos(x2), x2 + y3〉

along the curve C which consists of the line segments (0, 0) → (1, 1) and
(1, 1) → (0, 2).

Solution: Let C′ be the line segment (0, 0) → (0, 2). Then the union of C
and −C′ is the boundary ∂D (positively oriented) of the triangular region D
with vertices (0, 0), (1, 1), and (0, 2). The relation (43.5) can be applied to
evaluate the line integral over C. The parametric equations of C′ are x = 0,
y = t, 0 ≤ t ≤ 2. Hence, along C′, F · dr = F2(0, t)dt = t3dt and

∫

C′

F · dr =

∫ 2

0
t3dt = 4 .

Then ∂F2/∂x = 2x and ∂F1/∂y = 2. The region D admits an algebraic
description as a vertically simple region: x ≤ y ≤ 2 − x, 0 ≤ x ≤ 1. Hence,

∫∫

D

(

∂F2

∂x
− ∂F1

∂y

)

dA =

∫∫

D
(2x − 2)dA = 2

∫ 1

0
(x − 1)

∫ 2−x

x
dydx

= −4

∫ 1

0
(x − 1)2dx = −4

3
.

Therefore, by Eq. (43.5)
∫

C

F · dr = 4 − 4

3
=

8

3
.

�
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43.2. Area of a Planar Region as a Line Integral. Consider the planar
vector field F = 〈F1, F2〉, where F2 = x and F1 = 0. Then

∫∫

D

(∂F2

∂x
− ∂F1

∂y

)

dA =

∫∫

D
dA = A(D).

The area A(D) can also be obtained if F = 〈−y, 0〉 or F = 〈−y/2, x/2〉. By
Green’s theorem, the area of D can be expressed by line integrals:

(43.6) A(D) =

∮

∂D
x dy = −

∮

∂D
y dx =

1

2

∮

∂D
x dy − y dx,

assuming, of course, that the boundary of D is a simple, piecewise-smooth,
closed curve (or several such curves if D has holes). The reason the values of
these line integrals coincide is simple. The difference of any two vector fields
involved is the gradient of a function whose line integral along a closed curve
vanishes owing to the fundamental theorem for line integrals. For example,
for F = 〈0, x〉 and G = 〈−y, 0〉, the difference is F − G = 〈y, x〉 = ∇f ,
where f(x, y) = xy, so that

∮

∂D
F · dr−

∮

∂D
G · dr =

∮

∂D
(F− G) · dr =

∮

∂D
∇f · dr = 0.

The representation (43.6) of the area of a planar region as the line integral
along its boundary is quite useful when the shape of D is too complicated
to be computed using a double integral (e.g., when D is not simple and/or a
representation of boundaries of D by graphs becomes technically difficult).

Example 43.3. (Area of a polygon)
Consider an arbitrary polygon whose vertices in counterclockwise order are
(x1, y1), (x2, y2), ..., (xn, yn). Find its area.

Solution: Evidently, a generic polygon is not a simple region (e.g., it may
have a star-like shape). So the double integral is not at all suitable for finding
the area. In contrast, the line integral approach seems far more feasible as
the boundary of the polygon consists of n straight line segments connecting
neighboring vertices as shown in the right panel of Fig. 43.3). If Ci is such
a segment oriented from (xi, yi) to (xi+1, yi+1) for i = 1, 2, ..., n−1, then Cn

goes from (xn, yn) to (x1, y1). A vector function that traces out a straight
line segment from a point ra to a point rb is

r(t) = ra + (rb − ra)t , 0 ≤ t ≤ 1 .

For the segment Ci, take ra = (xi, yi) and rb = (xi+1, yi+1). Hence, para-
metric equations of Ci are

x(t) = xi − (xi+1 −xi)t = xi + ∆xi t , y(t) = yi + (yi+1 − yi)t = yi + ∆yi t .

For the vector field F = 〈−y, x〉 on Ci, one has

F(r(t)) · r′(t) = 〈−y(t), x(t)〉 · 〈∆xi, ∆yi〉 = xi ∆yi − yi ∆xi

= xiyi+1 − yixi+1;
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that is, the t dependence cancels out. Therefore, taking into account that
Cn goes from (xn, yn) to (x1, y1), the area is

A =
1

2

∮

∂D

x dy − y dx =
1

2

n
∑

i=1

∫

Ci

x dy − y dx

=
1

2

n−1
∑

i=1

∫ 1

0
(xiyi+1 − yixi+1) dt +

1

2

∫ 1

0
(xny1 − ynx1) dt

=
1

2

(

n−1
∑

i=1

(xiyi+1 − yixi+1) + (xny1 − ynx1)
)

.

�

So Green’s theorem offers an elegant way to find the area of a general polygon
if the coordinates of its vertices are known. A simple, piecewise-smooth,
closed curve C in a plane can always be approximated by a polygon. The
area of the region enclosed by C can therefore be approximated by the area
of a polygon with a large enough number of vertices, which is often used in
many practical applications.

43.3. The Test for Planar Vector Fields to Be Conservative. Green’s the-
orem can be used to prove Theorem 42.3 for planar vector fields. Consider
a planar vector field F = 〈F1(x, y), F2(x, y), 0〉. Its curl has only one com-
ponent:

∇× F = det





ê1 ê2 ê3
∂
∂x

∂
∂y

∂
∂z

F1(x, y) F2(x, y) 0



 = ê3

(∂F2

∂x
− ∂F1

∂y

)

.

Suppose that the curl of F vanishes throughout a simply connected open
region D, ∇× F = 0. By definition, any simple closed curve C in a simply
connected region D can be shrunk to a point of D while remaining in D
throughout the deformation (i.e., any such C bounds a subregion Ds of D).
By Green’s theorem, where C = ∂Ds,

∮

C

F · dr =

∫∫

Ds

(∂F2

∂x
− ∂F1

∂y

)

dA =

∫∫

Ds

0 dA = 0

for any closed simple curve C in D. By the path-independence property
(Theorem 42.2), the vector field F is conservative in D.

43.4. Study Problems.

Problem 43.1. Evaluate the line integral of F = 〈y + ex2

, 3x − sin(y2)〉
along the counterclockwise-oriented boundary of D that is enclosed by the
parabolas y = x2 and x = y2.
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Figure 43.4. Left: An illustration to Study Problem 43.1.
Right: An illustration to Study Problem 43.2. The region
Da is bounded by a curve C and the circle Ca.

Solution: One has ∂F1/∂y = 1 and ∂F2/∂x = 3. By Green’s theorem,

∮

∂D
F · dr =

∫∫

D
2 dA = 2

∫ 1

0

∫

√
x

x2

dy dx = 2

∫ 1

0
(
√

x − x2) dx =
2

3
.

The integration region D is shown in the left panel of Fig. 43.4. �

Problem 43.2. Prove that the line integral of the planar vector field

F =
〈

− y

x2 + y2
,

x

x2 + y2

〉

along any positively oriented, simple, smooth, closed curve C that encircles
the origin is 2π and that it vanishes for any such curve that does not encircle
the origin.

Solution: It has been established (see Study Problem 42.1) that the curl
of this vector field vanishes in the domain that is the entire plane with the
origin removed. If C does not encircle the origin, then ∂F2/∂x−∂F1/∂y = 0
throughout the region encircled by C, and the line integral along C vanishes
by Green’s theorem. Given a closed curve C that encircles the origin, but
does not go through it, one can always find a disk of a small enough radius
a such that the curve C does not intersect it. Let Da be the region bounded
by the circle Ca of radius a and the curve C. Then ∂F2/∂x − ∂F1/∂y = 0
throughout Da. Let C be oriented counterclockwise, while Ca is oriented
clockwise. Then ∂Da is the union of C and Ca. By Green’s theorem,

∮

∂D
F · dr = 0 ⇒

∮

C
F · dr = −

∮

Ca

F · dr =

∮

−Ca

F · dr = 2π

because −Ca is the circle oriented counterclockwise and for such a circle the
line integral has been found to be 2π (see Study Problem 42.1). �

Problem 43.3. (Volume of axially symmetric solids)
Let D be a region in the upper part of the xy plane (y ≥ 0). Consider the
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solid E obtained by rotation of D about the x axis. Show that the volume of
the solid is given by

V (E) = −π

∮

∂D
y2dx

Solution: Let dA be the area of a partition element of D that contains a
point (x, y). If the partition element is rotated about the x axis, the point
(x, y) traverses the circle of radius y (the distance from the point (x, y) to
the x axis). The length of the circle is 2πy. Consequently, the volume of the
solid ring swept by the partition element is dV = 2πydA. Taking the sum
over the partition of D, the volume is expressed via the double integral over
D:

V (E) = 2π

∫∫

D

ydA

In Green’s theorem, demand ∂F1/∂y = 2y and ∂F2/∂x = 0 so that the
above double integral is proportional to the left side of Green’s equation.
In particular, F1 = y2 and F2 = 0 satisfy these conditions. By Green’s
theorem,

V (E) = π

∫∫

D

∂F1

∂y
dA = −π

∮

∂D
F1dx = −π

∮

∂D
y2dx

as required. �

43.5. Exercises.
1–2. Evaluate the given line integral by two methods: (a) directly and (b)
using Green’s theorem.

1.
∮

C xy2dx−y2xdy, where C is the triangle with vertices (0, 0), (1, 0),
(1, 2); C is oriented counterclockwise;

2.
∮

C 2yxdx+ x2dy, where C consists of the line segments from (0, 1)

to (0, 0) and from (0, 0) to (1, 0) and the parabola y = 1− x2 from
(1, 0) to (0, 1) .

3–11. Evaluate the given line integral using Green’s theorem.

3.
∮

C x sin(x2)dx + (xy2 − x8)dy, where C is the positively oriented

boundary of the region between two circles x2+y2 = 1 and x2+y2 =
4 ;

4.
∮

C(y3dx−x3dy), where C is the positively oriented circle x2 +y2 =

a2 ;
5.

∮

C(
√

x + y3)dx + (x2 +
√

y)dy, where C consists of the arc of the
curve y = cos x from (−π/2, 0) to (π/2, 0) and the line segment
from (π/2, 0) to (−π/2, 0) ;

6.
∮

C(y4 − ln(x2 + y2))dx+ 2 tan−1(y/x)dy, where C is the positively
oriented circle of radius a > 0 with the center (x0, y0) such that
x0 > a and y0 > a ;

7.
∮

C(x+y)2dx−(x2+y2)dy, where C is a positively oriented triangle
with the vertices (1, 1), (3, 2), and (2, 5) ;



43. GREEN’S THEOREM 645

8.
∮

C xy2dx−x2ydy, where C is the negatively oriented circle x2+y2 =

a2 ;
9.

∮

C(x + y)dx− (x− y)dy, where C is the positively oriented ellipse

(x/a)2 + (y/b)2 = 1 ;
10.

∮

C ex[(1−cosy)dx−(y−siny)dy], where C is the positively oriented
boundary of the region 0 ≤ y ≤ sinx, 0 ≤ x ≤ π ;

11.
∮

C e−x2+y2

[cos(2xy)dx− sin(2xy)dy], where C is the positively ori-

ented circle x2 + y2 = a2 .

12–14. Use the contour transformation law (43.5) to solve each of the
following problems.

12. Let F = 〈(x+y)2, −(x−y)2〉. Find the difference between the line
integrals of F over two curves C1 and C2 originating from the point
(1, 1) and terminating at (2, 6) if C1 in the straight line segment
and C2 is the parabola through (1, 1) and (2, 6) that also passes
through (0, 0);

13. Find
∫

C(ex sin y − qx)dx + (ex cos y − q)dy, where q is a constant

and C is the upper part of the circle x2 + y2 = ax, y ≥ 0, oriented
from (a, 0) to (0, 0), a > 0 ;

14. Find
∫

C [g(y)ex − qy]dx + [g′(y)ex − q]dy, where g(y) and g′(y)
are continuous functions and C is a smooth curve from the point
P1 = (x1, y1) to the point P2 = (x2, y2) such that it and the straight
line segment P1P2 form the boundary of a region D of the area
A(D) .

15. Use Green’s theorem to find the work done by the force F =
〈3xy2 + y3, y4〉 in moving a particle along the circle x2 + y2 = a2 from
(0,−a) to (0, a) counterclockwise, a > 0.
16–23. Use a representation of the area of a planar region by the line
integral to find the area of the specified region D.

16. D is bounded by an ellipse x = a cos t, y = b sin t, 0 ≤ t ≤ 2π ;
17. D is under one arc of the cycloid x = a(t− sin t), y = a(1− cos t) ;
18. D is the astroid enclosed by the curve x = a cos3 t, y = a sin3 t ;
19. D is bounded by the curve x(t) = a cos2 t, y(t) = b sin(2t), where

0 ≤ t ≤ π ;
20. D is bounded by the parabola (x + y)2 = ax and by the x axis,

a > 0 ;
21. D is bounded by one loop of the curve x3 + y3 = 3axy, a > 0.

Hint: put y = tx ;
22. D is bounded by the curve (x2 + y2)2 = a2(x2 − y2).

Hint: put y = x tan t ;
23. D is bounded by (x/a)n + (y/b)n = 1, n > 0.

Hint: x = a cosn/2 t, y = b sinn/2 t .

24. Let a curve C have fixed endpoints. Under what condition on the
function g(x, y) is the line integral

∫

C g(x, y)(ydx+ xdy) independent of C?
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25. Let D be a planar region bounded by a simple closed curve. If A is the
area of D, show that the coordinates (xc, yc) of the centroid of D are

xc =
1

2A

∮

∂D

x2dy, yc = − 1

2A

∮

∂D

y2dx

Hint: Use an approach similar to the derivation of (43.6).
26. Let a lamina with a constant surface mass density σ occupy a planar re-
gion D enclosed by a simple piecewise smooth curve. Show that its moments
of inertia about the x and y axes are

Ix = −σ

3

∮

∂D

y3dx, Iy =
σ

3

∮

∂D

x3dy

Hint: Use an approach similar to the derivation of (43.6).
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44. Flux of a Vector Field

The idea of a flux of a vector field stems from an engineering problem of
mass transfer across a surface. Suppose there is a flow of a fluid or gas with
a constant velocity v and a constant mass density σ (mass per unit volume).
Let ∆A be a planar area element placed into the flow. At what rate is the
fluid or gas carried by the flow across the area ∆A? In other words, what
is the mass of fluid transferred across ∆A per unit time? This quantity is
called a flux of the mass flow across the area ∆A.

Suppose first that the mass flow is normal to the area element. The flow
may occur in two opposite directions. To distinguish these two cases, a unit
normal vector n̂ is set on the area element. Suppose first that the flow occurs
in the direction of n̂; that is, the velocity vector is a positive multiple of the
normal: v = vn̂, where v = ‖v‖ is the flow speed. Consider the cylinder with
an axis parallel to v with cross section area ∆A and height h = v ∆t, where
∆t is a time interval. The volume of the cylinder is ∆V = h ∆A = v ∆t ∆A.
In time ∆t, all the mass stored in this cylinder is transferred by the flow
across ∆A. This mass is ∆m = σ ∆V = σv ∆t ∆A, and the flux is

∆Φ =
∆m

∆t
= σv ∆A.

The flux becomes negative ∆Φ = −σv ∆A if the velocity of the mass flow
is a negative multiple of the normal v = −vn̂. More generally, the flux
depends on the angle between the normal n̂ and the velocity of the mass
flow. If the velocity is parallel to the area element (or perpendicular to
the normal), then no mass is transferred across it and the flux vanishes. A
vector v can be uniquely decomposed into the sum of two orthogonal vectors
one of which is parallel to n̂. If θ is the angle between v and n̂, then the
component of v parallel to n̂ is vn = vnn̂, where vn = v cos θ = v · n̂ is the
scalar projection of v onto n̂. Only the normal component vn of the flow
contributes to the flux (see the left panel of Fig. 44.1):

(44.1) ∆Φ = σvn ∆A = σv · n̂∆A = F · n̂∆A = Fn ∆A,

where the vector F = σv characterizes the mass flow (“how much” (σ) and
“how fast” (v)) and Fn is the scalar projection of F onto the normal n̂.
Observe that the value of the flux is unambiguously defined by setting a
normal vector to the surface element as the sign of the flux depends on the
direction of the normal.

Suppose S is a smooth surface such that it has a continuous unit normal
vector (n̂ is a continuous vector field on S). If the mass flow is not constant;
that is, F becomes a vector field, then its flux across a surface S can be
defined by partitioning S into small surface elements Si, i = 1, 2, ..., N ,
whose surface areas are ∆Si as shown in the right panel of Fig. 44.1. Let
r∗i be a sample point in Si and let n̂i = n̂(r∗i ) be the unit normal to Si at r∗i .
If the size of Si (the radius of the smallest ball containing Si) is small, then,
by neglecting variations of F and the normal n̂ within Si, the flux across Si
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Figure 44.1. Left: A mass transferred by a homogeneous
mass flow with a constant velocity v across an area element
∆A in time ∆t is ∆m = σ∆V where ∆V = h∆A is the
volume of the cylinder with the cross section area ∆A and
the hight h = ∆tvn; vn is the scalar projection of v onto
the normal n. Right: A partition of a smooth surface S
by elements Si. If r∗i is a sample point in Si, n̂i is a unit
normal to S at r∗i , and ∆Si is the surface area of the partition
element Si, then the flux of a vector field F(r) across Si is
approximated by ∆Φi = F(r∗i ) · n̂i∆Si.

can be approximated by (44.1), ∆Φi ≈ F(r∗i ) · n̂i ∆Si. The approximation
becomes better when N → ∞ so that the sizes of Si decrease to 0 uniformly
and hence the total flux is

Φ = lim
N→∞

N
∑

i=1

∆Φi = lim
N→∞

N
∑

i=1

F(r∗i ) · n̂i ∆Si = lim
N→∞

N
∑

i=1

fn(r∗i ) ∆Si ,

where fn = F · n denotes the normal component of the vector field F. A
comparison with Eq. (39.1) shows that the sum in the above equation is
nothing but the Riemann sum of the function fn(r) over a partition of the
surface S. If the normal component fn(r) is integrable over S, then the
above limit is the surface integral of fn(r) over S. For example, if F is
continuous on S, then by continuity of n̂, fn is continuous on S and, hence,
integrable on S.

44.1. Orientable Surfaces. Consider a mass flow along a smooth surface.
In this case the flow lines lie in the surface hence are perpendicular to the
normal. In this case, the flux across any part of the surface is zero. Since
the flux vanishes, no mass can get from side of the surface to the other,
that is, across the surface. For example, a portion of a plane has two sides,
say, the upper and lower (e.g., relative to a normal to the plane). A mass
flow along the plane cannot transfer mass from one side to the other. A
sphere also has two sides, the outer and inner sides. A mass flow along the
sphere cannot transfer mass from one side to the other. Strangely enough,
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S n̂

∆S ∆S

n̂

Figure 44.2. Left: If there is a continuous unit normal
vector n̂ on a surface S, then n̂ changes continuously along
any closed curve C in S so that its initial direction should
match the final direction. Right: A small patch ∆S of a
surface S can be oriented in two different ways according to
two possible choices of a unit normal vector, n̂ or −n̂. If there
is a “one-sided” surface, a face-up patch can be transported
along a closed curve in S to a face-down patch at the same
position on S. If S has a boundary, then the closed curve is
not allowed to cross the boundary.

there are smooth surfaces for which a particle (or a pont) can get from one
side of the surface to the other just by sliding along the surface! In other
words, there are smooth surfaces for which a tangential flow can transfer
mass across the surface. So, the above definition of the flux is not suitable
for such surfaces. The objective is therefore to describe the class of surfaces
for which our definition of the flux is applicable.

Let S be a smooth surface. Since S is smooth, a continuous normal
n̂ = n̂(r) can always be defined in a neighborhood of any point on S as a
continuous vector field. If two neighborhoods overlap, then the normal must
be same at their common points. Suppose that, by doing this procedure of
constructing n̂ in neighborhoods of some points of S and matching n̂ in their
overlaps, a continuous normal n̂ can be obtained on the whole S. Then n̂

has to be continuous along every closed curve C in S. In other words, if one
moves the obtained normal n̂ around a closed curve C in S, then the normal
does not reverse its direction as illustrated in the left panel of Fig. 44.2. If
n̂(r) is a unit normal at a point r of S, then −n̂(r) is also a unit normal
at r. By continuity the direction of n̂(r) defines one side of S, while the
direction of −n̂(r) defines the other side. For example, the outward normal
of a sphere is continuous along any closed curve on the sphere (it remains
outward along any closed curve) and hence defines the outer side of the
sphere. If a normal on the sphere is chosen to be inward, then it is also
continuous and defines the inner side of the sphere. Evidently, the flux is
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well defined for two-sided surfaces. (no tangential mass flow can transfer
mass across a two-sided surface).

Are there one-sided surfaces? If such a surface exists, it should have
quite remarkable properties. Take a point on it. In a sufficiently small
neighborhood of this point, one can always think about two sides of a smooth
surface. One side is defined by a normal n̂ (face-up patch), while the other
has the same shape but its normal is −n̂ (face-down patch) as shown in
the right panel of Fig. 44.2. For a one-sided surface, face-up and face-down
patches must be on the same side of the surface. This implies that there
should exist a closed curve on the surface such that a face-up patch can be
transported along it to a face-down patch at the same position on S and,
if S has a boundary, this transport of a patch is not allowed to cross the
boundary. This shows that a continuous normal cannot be defined on a
one-sided surface.

Examples of One-Sided Surfaces. One-sided surfaces do exist. To construct
an example, take a rectangular piece of paper. Put upward arrows on its
vertical sides and glue these sides so that the arrows remain parallel. In
doing so, a cylinder is obtained, which is a two-sided surface (there is no
curve that traverses from one side to the other without crossing the boundary
circles formed by the horizontal sides of the rectangle). The gluing can
be done differently. Before gluing the vertical sides, twist the rectangle
so that the arrows on its opposite sides have opposite directions and then
glue the sides together. The procedure is shown in Fig. 44.3. The resulting
surface is the famous Möbius strip or Möbius band (named after the German
mathematician August Möbius). It is one-sided. A face-up patch can be
transported into a face-down patch at the same position along a closed
curve in the band. The original rectangle is two-sided. Make a horizontal
line that cuts the rectangle into two equal-area pieces. The line on one side
cannot be continued to the line on the other side if the vertical edges of the
rectangle are glued parallel to obtain a cylinder. Thanks to the twisting
of the glued sides, the line on one side of the original rectangle becomes a
continuation of the line on the other side of the rectangle, thus making a
closed curve in the band along which a face-up patch can be transported
into a face-down patch at the same position.

There are one-sided surfaces without boundaries (like a sphere). The
most famous one is a Klein bottle. Take a bottle. Drill a hole in the side
surface and in the bottom of the bottle. Suppose the neck of the bottle is
flexible (a “rubber” bottle). Bend its neck and pull it through the hole on
the bottle’s side surface (so that neck fits tightly into the hole). Finally,
attach the edge of the bottle’s neck to the edge of the hole in the bottom
of the bottle. The result is a surface without boundaries and it is one-sided
(see the left panel of Fig. 44.4). A small patch of this surface has two sides.
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Figure 44.3. A construction of two-sided surface (a por-
tion of a cylinder) from a band by gluing its edges (left).
A construction of one-sided surface (a Möbius band) from a
band by gluing its edges after twisting the band (right).
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Figure 44.4. Left: A Klein bottle is an example of one-
sided closed surface (it has no boundaries). Right: An illus-
tration to Example 44.1

A bug sitting on one side of the patch can crawl along the surface and get
to the other side of the patch.
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Definition 44.1. (Orientable Surface).
A smooth surface is called orientable if there exists a continuous unit normal
vector field on the surface.

Definition 44.2. (Orientation of an Orientable Smooth Surface)
An orientation of an orientable smooth surface is a choice of continuous
unit normal vector field.

Definition 44.3. (Oriented Smooth Surface)
An oriented smooth surface is an orientable smooth surface together with an
orientation.

As already argued, every connected orientable surface has exactly two
orientations. A flux of a vector field can only be defined across an orientable
surface. Furthermore, there is a simple criterion whether a given smooth
surface can be oriented.

Corollary 44.1. (Test for a smooth surface to be orientable)
A smooth surface is orientable if and only if there is no closed curve in it
such that a unit normal is reversed when moved around this curve.

For example, if a smooth surface is defined either as a graph of a function
with continuous partial derivatives, or as a level set of a function whose
gradient is continuous and non-vanishing, or by parametric equations, then
a continuous unit normal vector field can be defined in a neighborhood of
each point of a closed curve in the surface. It remains then to check if the
directions of the normal match on overlaps of neighborhoods; that is, the
defined normal is continuous on any such curve, e.g., by studying the values
of the unit normal vector field n̂(r) on a closed parametric curve r = r(t),
a ≤ t ≤ b, r(a) = r(b).

44.2. Flux as a Surface Integral.

Definition 44.4. (Flux of a Vector Field).
Let S be an oriented smooth surface, and let n̂ be the chosen unit normal
vector field on S. The flux of a vector field F across S is the surface integral

Φ =

∫∫

S
F · n̂ dS,

provided the normal component F · n̂ of the vector field is integrable on S.

The integrability of the normal component Fn(r) = F · n̂ is defined in
the sense of surface integrals of ordinary functions (see Definition 39.2). In
particular, the flux of a continuous vector field across a smooth oriented
surface exists.

44.3. Evaluation of the Flux of a Vector Field. Suppose that a surface S
is a graph z = g(x, y) and g has continuous partial derivatives in a region D
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bounded by piecewise smooth curves. There are two possible orientations of
S. One of these is the continuous unit normal vector field

n̂(x, y) =
1

‖n(x, y)‖ n(x, y) , n(x, y) = 〈−g′x(x, y), −g′y(x, y), 1〉 ;

n is the normal vector used in Section 21.5 to find equations of tangent
planes. Its z component is positive. For this reason, the graph is said to
be oriented upward. Alternatively, one can take the normal vector in the
opposite direction,

n(x, y) = 〈g′x(x, y), g′y(x, y), −1〉 .

the graph with this orientation is said to be oriented downward. Accordingly,
the upward (downward) flux, denoted Φ↑ (Φ↓), of a vector field is associated
with the upward (downward) orientation of the graph. When the orientation
of a surface is reversed, the flux changes its sign:

Φ↑ = −Φ↓.

Consider the upward-oriented graph z = g(x, y). The unit normal vector
reads

n̂ =
1

‖n‖ n =
1

J
〈−g′x, −g′y, 1〉 , J =

√

1 + (g′x)2 + (g′y)
2.

In Section 39 it was established that the area of the portion of the graph
above a planar region of area dA is dS = J dA. Therefore, in the flux across
the surface area dS can be written in the form

F · n̂ dS = F · n 1

J
J dA = F · n dA,

where the vector field must be evaluated on S, that is, F = F(x, y, g(x, y))
(in accord with Theorem 39.2, the variable z is replaced by g(x, y) because
z = g(x, y) for any point (x, y, z) in S). If the vector field F is continuous,
then the dot product F · n is a continuous function on D so that the flux
exists and is given by the double integral over D. The following theorem
has been proved.

Theorem 44.1. (Evaluation of the Flux Across a Graph).
Suppose that S is a graph z = g(x, y) of a function g on a region D bounded
by piecewise smooth curves and partial derivatives of g are continuous and
bounded on the interior of D. Let S be oriented upward by the normal vector
n = 〈−g′x,−g′y, 1〉, and let F be a continuous vector field on S. Then

Φ↑ =

∫∫

S
F · n̂ dS =

∫∫

D
Fn(x, y) dA,

Fn(x, y) = F · n
∣

∣

∣

z=g(x,y)
= −g′xF1(x, y, g)− g′yF2(x, y, g)+ F3(x, y, g).

By this theorem, an evaluation of the flux involves the following basic
steps:
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Step 1. Represent S as a graph of a function g of two variables, e.g., z =
g(x, y) (i.e., find the function g using a geometrical description of
S). If S cannot be represented as a graph of a single function, then
it has to be split into pieces so that each piece can be described as
a graph. By the additivity property, the surface integral over S is
the sum of integrals over each piece.

Step 2. Find the region D that defines the part of the graph that coincides
with S. One can think of D as the vertical projection of S onto
the xy plane.

Step 3. Determine an orientation of S (upward or downward) from the
problem description, n = p〈−g′x,−g′y, 1〉 where p = 1 and p = −1
for the upward and downward orientations, respectively. The sign
of the flux is determined by the orientation. Calculate Fn = F · n
as a function on D.

Step 4. Evaluate the double integral of Fn over D.

Example 44.1. Evaluate the downward flux of the vector field F =
〈xz, yz, z〉 across the part of the paraboloid z = 1 − x2 − y2 in the first
octant.

Solution:
Step 1. The surface is the part of the graph z = g(x, y) = 1−x2 − y2 in the
first octant.
Step 2. The paraboloid intersects the xy plane (z = 0) along the circle
x2 +y2 = 1. Therefore, the region D is the part of the disk bounded by this
circle in the first quadrant.
Step 3. Since S is oriented downward,

n = 〈g′x, g′y,−1〉 = 〈−2x,−2y,−1〉
and the dot product of F and n on S is

Fn(x, y) = 〈xg, yg, g〉 · 〈−2x, −2y,−1〉 = −(1 − x2 − y2)(1 + 2x2 + 2y2).

Step 4. The region D is the image of the rectangle D′ = [0, 1]× [0, π/2] in
the polar plane. Converting the double integral of Fn to polar coordinates
and using Fubini’s theorem,

Φ↓ =

∫∫

D
Fn(x, y) dA = −

∫ π/2

0

∫ 1

0
(1 − r2)(1 + 2r2) r dr dθ = −5π

24
.

The negative value of the downward flux means that the actual transfer of
a quantity (like mass), whose flow is described by the vector field F, occurs
in the upward direction across S. �

Example 44.2. Evaluate the flux of the vector field F = 〈−x, y2, z〉
across the part of the surface y = zx that lies between the cylinders x2+z2 =
1 and x2+z2 = 4; the surface is oriented so that a normal to it has a positive
y component.
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Solution: It is convenient to view the surface as the graph y = g(x, z) = xz
over the region D in the xz plane:

D = {(x, z) | 1 ≤ x2 + z2 ≤ 4}
which is an annulus with the inner radius 1 and the outer radius 2. Therefore
a normal to the surface can be chosen in the form

n = 〈−g′x, 1, −g′z〉 = 〈−z, 1, −x〉 ;

an upward normal relative to the direction of the y axis. Then

Fn(x, z) = 〈−x, (g(x, z))2, z〉 · 〈−z, 1, −x〉 = x2z2 .

The region D is the image of the rectangle D′ = [1, 2]× [0, 2π] in the polar
plane. Converting the double integral of Fn to polar coordinates in the xz
plane,

Φ =

∫∫

S
F · n̂ dS =

∫∫

D
x2z2dA =

∫∫

D′

(r cos θ)2(r sin θ)2r dA′

=

∫ 2π

0
cos2 θ sin2 θ dθ

∫ 2

1
r5dr =

1

4

∫ 2π

0
sin2(2θ)dθ · 1

6
r6

∣

∣

∣

2

1

=
21

8

∫ 2π

0

1

2

(

1 − cos(4θ)
)

dθ =
21π

8
,

where the trigonometric double-angle formulas have been used to evaluate
the integral. The integral of cos(4θ) vanishes by periodicity. �

44.4. Parametric Surfaces. Suppose that an orientable smooth surface S
is defined by parametric equations r = r(u, v), where (u, v) span a region
D. Then, by Theorem 39.3, a normal vector to S can be chosen as

n = ±(r′u × r′v) 6= 0

in the interior of D. The sign defines one of the two possible orientations of
S. Since ‖n‖ = J, where J determines the area transformation law

dS = J dA , dA = du dv , J = ‖n‖ ,

the flux of a vector field F across the surface area dS reads

F(r(u, v)) · n̂dS = F(r(u, v)) · n dA = F(r(u, v)) · (r′u × r′v) dA

= Fn(u, v) dA

and the flux of F across S is given by the double integral

Φ =

∫∫

S
F · n̂dS =

∫∫

D
F(r(u, v)) · (r′u × r′v) dA =

∫∫

D
Fn(u, v) dA.

Naturally, a graph z = g(x, y) is described by the parametric equations
r(u, v) = 〈u, v, g(u, v)〉, which is a particular case of the above expression;
it coincides with that given in Theorem 44.1 (x = u and y = v). A descrip-
tion of surfaces by parametric equations is especially convenient for closed
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surfaces (i.e., when the surface cannot be represented as a graph of a single
function).

Example 44.3. Evaluate the outward flux of the vector field F =
〈z2x, z2y, z3〉 across the sphere of unit radius centered at the origin.

Solution: The parametric equations of the sphere of radius R = 1 are
given in (39.4), and a normal vector is computed in Example 39.7:

n = sin(φ)r(φ, θ) , r(φ, θ) = 〈cos θ sin φ, sin θ sinφ, cosφ〉 ,

where the spherical angles (φ, θ) span their whole range D = [0, π]× [0, 2π].
This is an outward normal because sinφ ≥ 0. It is convenient to represent
F = z2r so that

Fn(φ, θ) = F(r(φ, θ)) · n = cos2 φ sinφ r(φ, θ) · r(φ, θ)

= cos2 φ sinφ ‖r(φ, θ)‖2 = cos2 φ sinφ

because ‖r(φ, θ)‖2 = R2 = 1. The outward flux reads

Φ =

∫∫

S
F · n̂ dS =

∫∫

D
cos2 φ sinφ dA

=

∫ 2π

0
dθ

∫ π

0
cos2 φ sinφ dφ =

4π

3
.

�

Non-orientable Parametric Surfaces. Nonorientable smooth surfaces can
be described by the parametric equations r = r(u, v) or by an algebraic
equation F (x, y, z) = 0 (as a level surface of a function). For example, a
Möbius band of width 2h with midcircle of radius R that lies in the xy plane
is defined by parametric equations:

(44.2) r(u, v) =
〈

[R +u cos(v/2)] cosv, [R +u cos(v/2)] sinv, u sin(v/2)
〉

,

where the parameters (u, v) span the rectangle D = [−h, h] × [0, 2π]. This
Möbius band can also be defined as a level set of a cubic polynomial (a cubic
surface):

−R2y + x2y + y3 − 2Rxz − 2x2z − 2y2z + yz3 = 0.

This is verified by substituting the parametric equations into this algebraic
equation and showing that the left side vanishes for all (u, v) in D.

Let us prove that the surface defined by the parametric equations (44.2)
is not orientable. By Corollary 44.1, one should analyze the behavior of
a normal vector when the latter is moved around a closed curve in the
surface. Consider the circle in the xy plane defined by the condition u = 0:
r(0, v) = 〈R cos v, R sin v, 0〉, 0 ≤ v ≤ 2π. It is easy to show that

r′u(0, v) = 〈cos(v/2) cosv, cos(v/2) sinv, sin(v/2)〉 ,

r′v(0, v) = 〈−R sin v, R cos v, 0〉 .
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When r(0, v) returns to the initial point, that is, r(0, v + 2π) = r(0, v), the
normal vector is reversed. Indeed,

r′u(0, v + 2π) = −r′u(0, v) , r′v(0, v + 2π) = r′v(0, v)

⇒ n(0, v + 2π) = r′u(0, v + 2π)× r′v(0, v + 2π) = −r′u(0, v)× r′v(0, v)

= −n(0, v);

that is, the surface defined by these parametric equations is not orientable
because a normal vector is reversed when moved around a closed curve.

So, if a surface S is defined by parametric or algebraic equations, one
still has to verify that it is orientable (i.e., it is two-sided!), when evaluating
the flux across it; otherwise, the flux makes no sense.

44.5. Exercises.
1-7. Find the flux of a constant vector field F = 〈a, b, c〉 across the speci-
fied surface S without evaluation of the flux integral using only geometrical
means.

1. S is a rectangle of area A in each of the coordinate planes oriented
along the coordinate axis orthogonal to the rectangle (n̂ = êi,
i = 1, 2, 3) ;

2. S is the part of the plane (x/a) + (y/b)+ (z/c) = 1 in the positive
octant oriented outward from the origin and a, b, c are positive;

3. S is the boundary of the pyramid whose base is the square [−q, q]×
[−q, q] in the xy plane and the vertex is (0, 0, h). S is oriented
outward;

4. S is the cylinder x2 + y2 = R2, 0 ≤ z ≤ h, oriented inward (n̂ is
directed toward the axis of the cylinder);

5. S is the surface of a rectangular box oriented outward;
6. S is the sphere x2 + y2 + z2 = R2 oriented outward;
7. S is a torus oriented inward.

8–20. Find the flux of the given vector field F across the specified oriented
surface S.

8. F = 〈xy, zx, xy〉 and S is the part of the paraboloid z = 1−x2−y2

that lies above the square [0, 1]× [0, 1] and is oriented upward;
9. F = 〈y, −x, z2〉 and S is the part of the paraboloid z = 1−x2−y2

that lies above the xy−plane and is oriented downward;
10. F = 〈xz , zy , z2〉 and where S is the part of the cone z =

√

x2 + y2

beneath the plane z = 2 in the first octant and is oriented upward;
11. F = 〈x, −z, y〉 and S the part of the sphere x2 + y2 + z2 = R2 in

the first octant oriented toward the origin;
12. F = a×r where a is a constant vector and S is the sphere of radius

R oriented outward and centered at the origin;
13. F = 〈2y + x, y + 2z −x, z − y〉 and S is the boundary of the cube

with vertices (±1,±1,±1) oriented outward.
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14. F = cr/‖r‖3, where c is a constant, and S is the sphere of radius
a that is centered at the origin and oriented inward;

15. F = 〈2y, x,−z〉 and S is the part of the paraboloid y = 1−x2 − z2

in the first octant oriented so that n̂ has a positive y component;
16. F = 〈xy, zy, z〉 and S is the part of the plane 2x− 2y − z = 3 that

lies inside the cylinder x2 + y2 = 1 and is oriented upward;
17. F = 〈x, y, z〉 and S is the part of the paraboloid x = z2 + y2 that

lies between the planes x = 0 and x = 1 and is oriented so that n̂

has a positive x component;
18. F = 〈x, y, z〉 and S is the boundary of the solid region 0 < a2 ≤

x2 + y2 + z2 ≤ R2 oriented outward;
19. F = 〈f(x), g(y), h(z)〉where f , g, h are continuous functions and S

is the boundary of the rectangular box [0, a]× [0, b]× [0, c] oriented
outward;

20. F = 〈y−z, z−x, x−y〉 and S is the part of the cone x2 +y2 = z2,
0 ≤ z ≤ h, oriented away from the z axis.

21–26. Use parametric equations of the specified oriented surface S to
evaluate the flux of the given vector field F across S.

21. F = 〈x, −y, z2〉 and S is the part of the double cone z2 = x2 + y2

between the planes z = −1 and z = 1 oriented so that n̂ is directed
away from the axis of the cone;

22. F = 〈z2 + y2, x2 + z2, x2 + y2〉 and S is the boundary of the solid
enclosed by the cylinder x2 + z2 = 1 and the planes y = 0 and
y = 1. S is oriented outward;

23. F = 〈y, x, z〉 and S is the part of the sphere x2 + y2 + z2 = 4 that
lies outside the double cone z2 = 3(x2 +y2) and is oriented toward
the origin;

24. F = 〈−y, x, z〉 and S is the torus with radii R and a oriented
outward;

25. F = 〈x−1, y−1, z−1〉 and S is the ellipsoid (x/a)2+(y/b)2+(z/c)2 =
1 oriented outward;

26. F = 〈x2, y2, z2〉 and S is the sphere (x−a)2+(y−b)2+(z−c)2 = R2

oriented outward.
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45. Stokes’ Theorem

45.1. Vector Form of Green’s Theorem. It was shown in Section 43.3 that
the curl of a planar vector field F(x, y) = 〈F1(x, y), F2(x, y), 0〉 is parallel to
the z axis, ∇ × F = (∂F2/∂y − ∂F1/∂x)ê3. This observation allows us to
reformulate Green’s theorem in the following vector form:

∮

∂D
F · dr =

∫∫

D
(curlF) · ê3 dA.

Thus, the line integral of a vector field along a closed simple curve is deter-
mined by the flux of the curl of the vector field across the surface bounded by
this curve. It turns out that this statement holds not only in a plane, but
also in space. It is known as Stokes’ theorem.

45.2. Positive (Induced) Orientation of a Closed Curve. Suppose S is an
oriented smooth surface, with a chosen normal vector field n̂, and suppose
that S is bounded by a simple closed curve C. Consider a tangent plane at
a point r0 of S. Any circle in the tangent plane centered at r0 can always
be oriented counterclockwise as viewed from the top of the normal vector
n̂ = n̂0 at r0. This circle is said to be positively oriented relative to the
orientation of S. Since the surface is smooth, a circle of a sufficiently small
radius can always be projected onto a closed simple curve C in S by moving
each point of the circle parallel to n̂0. This curve is also positively oriented
relative to n̂0. It can then be continuously (i.e., without breaking) deformed
along S so that a part of it lies on the boundary of S after the deformation
and the orientations of the boundary of S and C can be compared. The
boundary of S is said to be positively oriented if it has the same orientation as
C. The positively oriented boundary of S is denoted by ∂S. The procedure
to define a positive orientation of the boundary of an oriented surface S is
illustrated in Fig. 45.1 (left panel).

In other words, the positively oriented boundary ∂S of a surface S (or
the induced orientation of the boundary of S) means that if one walks in
the positive direction along the boundary with one’s head pointing in the
direction of n̂, then the surface S will always be on one’s left. Let S be a
graph z = g(x, y) over D oriented upward. Then ∂S is obtained from ∂D
(a positively oriented boundary of D) by lifting points of ∂D to S parallel
to the z axis (see the right panel of Fig. 45.1).

Theorem 45.1. (Stokes’ Theorem).
Let S be an oriented, piecewise-smooth surface that is bounded by a simple,
closed, piecewise-smooth curve that is positively oriented relative to the ori-
entation of S. Let the components of a vector field F have continuous partial
derivatives on an open spatial region that contains S. Then

∮

∂S
F · dr =

∫∫

S
curl F · n̂dS,

where n̂ is the unit normal vector on S.
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n̂

S

∂S

C

x

y

z

n S

∂S

D

∂D

Figure 45.1. Left: The positive (or induced) orientation
of the boundary of an oriented surface S. The surface S is
oriented by a normal vector n̂. Take a closed curve C in
S that is oriented counterclockwise as viewed from the tip
of the vector n̂. Deform this curve toward the boundary of
S. The boundary of S has positive orientation if it coincides
with the orientation of C. Right: The surface S is the graph
of a function on D. If S is oriented upward, then the posi-
tively oriented boundary ∂S is obtained from the positively
(counterclockwise) oriented boundary ∂D.

Stokes’ theorem is difficult to prove in general. Here it is proved for a
particular case when S is a graph of a function.
Proof (for S being a graph). Let S be an upward-oriented graph:

S : z = g(x, y) , (x, y) ∈ D ,

where g has continuous second-order partial derivatives on D and D is a
simple planar region whose boundary ∂D corresponds to the boundary ∂S.
The upward orientation of the graph is defined by the normal vector

n = 〈−g′x,−g′y, 1〉
and the upward flux of curlF across S can be evaluated according to The-
orem 44.1 in which F is replaced by ∇× F:
∫∫

S
curlF · n̂ dS =

∫∫

D
(curlF)n dA,

(curlF)n = curl F · n = −
(∂F3

∂y
− ∂F2

∂z

)∂z

∂x
−

(∂F1

∂z
− ∂F3

∂z

)∂z

∂y
+

+
(∂F2

∂x
− ∂F1

∂y

)

,

where the notations ∂z/∂x = g′x and ∂z/∂y = g′y are used to emphasize that
z is not an independent variable on S but a function of x and y. Let x = x(t)
and y = y(t), a ≤ t ≤ b, be parametric equations of ∂D so that x(a) = x(b)
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and y(a) = y(b) (∂D is a closed curve). Then the vector function

r(t) = 〈x(t), y(t), g(x(t), y(t))〉 , a ≤ t ≤ b ,

traces out the boundary ∂S, r(a) = r(b). Making use of Theorem 41.1, the
line integral of F along ∂S can be evaluated. By the chain rule,

r′ = 〈x′ , y′ , g′xx
′ + g′yy

′〉 .

Therefore,

F · r′ = (F1 + F3g
′
x)x′ + (F2 + F3g

′
y)y

′ , Fi = Fi

(

x(t), y(t), g(x(t), y(t))
)

,

where i = 1, 2, 3, and hence
∮

∂S

F · dr =

∫ b

a

[(F1 + F3g
′
x)x′ + (F2 + F3g

′
y)y

′] dt

=

∮

∂D

(

F1 + F3
∂z

∂x

)

dx +
(

F2 + F3
∂z

∂y

)

dy

because x′ dt = dx and y′ dt = dy along ∂D, where z = g(x, y) in all
components of F. The latter line integral can be transformed into the double
integral over D by Green’s theorem (Theorem 43.1 where F1 and F2 are
replaced by F1 + F3g

′
x and F2 + F3g

′
y, respectively):

∮

∂S

F · dr =

∫∫

D

[ ∂

∂x

(

F2 + F3
∂z

∂y

)

− ∂

∂y

(

F1 + F3
∂z

∂x

)]

dA

=

∫∫

D
(curlF)n dA =

∫∫

S
curlF · n̂dS,(45.1)

where the middle equality is verified by the direct evaluation of the partial
derivatives using the chain rule (which holds by the hypothesis that the
vector field F has continuous partial derivatives and g has continuous second-
order partial derivatives). For example,

∂

∂x
F2(x, y, g(x, y)) =

∂F2

∂x
+

∂F2

∂z

∂g

∂x
∂

∂x

(

F3
∂g

∂y

)

=
(∂F3

∂x
+

∂F3

∂z

∂g

∂x

)∂g

∂y
+ F3

∂2g

∂x∂y

The terms containing the mixed derivatives g′′xy = g′′yx are cancelled out ow-
ing to Clairaut’s theorem, while the other terms can be arranged to coincide
with the expression for (curlF)n found above. The last equality in (45.1)
holds by Theorem 39.2 (dS = J dA and n = Jn̂). �

45.3. Use of Stokes’ Theorem. Stokes’ theorem is very helpful for evaluat-
ing line integrals of vector fields along closed oriented curves of complicated
shapes when a direct use of Theorem 41.1 is technically too involved. The
procedure includes a few basic steps.
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S1

S2

C = ∂S1 = ∂S2

C = ∂S

S
n

D

Figure 45.2. Left: Given the curve C = ∂S, the surface S
may have any desired shape in Stokes’ theorem. The surfaces
S1 and S2 have the same boundaries ∂S1 = ∂S2 = C. The
line integral over C can be transformed to the flux integral
either across S1 or S2. Right: An illustration to Example
45.1. The integration contour C is the intersection of the
cylinder and a plane. When applying Stokes’ theorem, the
simplest choice of a surface, whose boundary is C, is the part
of the plane that lies inside the cylinder.

Step 1. Given an oriented simple closed curve C, choose any smooth ori-
entable surface S whose boundary is C. Note that, according to
Stokes’ theorem, the value of the line integral is independent of the
choice of S. This freedom should be used to make S as simple as
possible (see the left panel of Fig. 45.2).

Step 2. Determine the orientation of S such that the orientation of C is
positive relative to the unit normal of S, that is, C = ∂S.

Step 3. Evaluate B = curlF and calculate the flux of B across S.

Example 45.1. Evaluate the line integral of F = 〈xy, yz, xz〉 along the
curve of intersection of the cylinder x2 +y2 = 1 and the plane x+y +z = 1.
The curve is oriented clockwise as viewed from above.

Solution:
Step 1. The curve C lies in the plane x + y + z = 1. Therefore, the simplest
choice of S is the portion of this plane that lies within the cylinder. The
surface S can be represented as the graph z = g(x, y) = 1 − x − y over the
region D that is x2 + y2 ≤ 1 (as shown in the right panel of Fig. 45.2).
Step 2. Since C is oriented clockwise as viewed from above, the orientation
of S must be downward to make the orientation positive relative to the
normal on S, that is,

n = 〈g′x, g′y, −1〉 = 〈−1, −1, −1〉 .
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Step 3. The curl of F is

B = ∇ ×F = det





ê1 ê2 ê3
∂
∂x

∂
∂y

∂
∂z

xy yz xz



 = 〈−y,−z,−x〉 .

Therefore, substituting z = g(x, y) into the components of B,

Bn(x, y) = B · n = 〈−y,−g,−x〉 · 〈−1,−1,−1〉 = g(x, y)+ y + x = 1 ,
∫

C
F · dr =

∫

∂S
F · dr =

∫∫

S
B · n̂ dS =

∫∫

D
Bn(x, y) dA

=

∫∫

D
dA = A(D) = π .

�

Changing the Curve of Integration in a Line Integral. In Section 43.1 it was
shown how Green’s theorem can be used to change the curve of integration
in a line integral of a planar vector field. Stokes’s theorem can also be used
to change the curve of integration in a line integral of a general vector field.
Let C1 and C2 be two simple smooth non-intersecting curves originating
from a point A and terminating at a point B. Consider the line integrals of
a vector field F along C1 and C2. The union of C1 and C2 is a closed simple
curve C. Let C be oriented so that

∮

C
F · dr =

∫

C1

F · dr +

∫

−C2

F · dr =

∫

C1

F · dr−
∫

C2

F · dr .

Suppose S is a smooth orientable surface whose boundary is the closed
curve C. The orientation of S is chosen so that ∂S = C. Assuming that
the hypotheses of Stokes’ theorem are fulfilled for the vector field F, the line
integral of F along C can be converted to the flux of curlF across S, which
yields the following relation between the line integrals of F along two curves
with common endpoints.

Corollary 45.1. (Changing the Curve of Integration in a Line Integral)
Let two simple curves C1 and C2 have common initial and terminal points
A and B and be non-intersecting otherwise. Suppose that C1 and C2 are
oriented from A to B so that the union of C1 and −C2 is the positively
oriented boundary ∂S of an oriented surface S. Suppose that the hypotheses
of Stokes’ theorem hold for S and a vector field F. Then

(45.2)

∫

C1

F · dr =

∫

C2

F · dr +

∫∫

S

curlF · n̂dS

Note that any suitable surface may be used in relation (45.2).

Example 45.2. Evaluate the line integral of

F = 〈xy2 + zexz , −x2y − z2y , xexz〉
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along the curve C that consists of two parabolas z = 1−y2, x = 0, 0 ≤ y ≤ 1
and z = 1 − x2, y = 0, 0 ≤ x ≤ 1. The curve C is oriented from the point
(0, 1, 0) to (1, 0, 0).

Solution: The initial and final points of the curve C lie in the plane
z = 0 in which the vector field F has much simpler form (set z = 0 in
the components of F). This suggests that the curve of integration should
be deformed to a curve in the xy plane to simplify the evaluation of the
integral. Consider the paraboloid z = 1 − x2 − y2. Its part S in the first
octant is bounded by the curve C and by the part C′ of the circle x2+y2 = 1
in the first quadrant of the xy plane. The curves C and C1 have the same
initial and final points. If S is oriented upward, then C is a part of ∂S
according to the given orientation of C. By Eq. (45.2) the line integral
in question can be transformed to the line integral of F along C′ where C′

should be oriented from the point (0, 1, 0) to the point (1, 0, 0). Let us take
the standard parameterization of a circle

C′ : r(t) = 〈cos t, sin t, 0〉, 0 ≤ t ≤ π/2 .

This vector function traverses C′ from (1, 0, 0) to (0, 1, 0). Therefore this
parameterization defines the orientation opposite to the required one and,
hence, setting C1 = C and C2 = −C′ in (45.2) one has

∫

C
F · dr = −

∫

C′

F · dr +

∫∫

S
curlF · n̂ dS

The upward orientation of S, which is the graph z = g(x, y) = 1 − x2 − y2,
is defined by the normal

n = 〈−g′x, −g′y, 1〉 = 〈2x, 2y, 1〉 ,

where (x, y) span the part D of the disk x2 + y2 ≤ 1 in the first quadrant.
Next,

B = curl F = det





ê1 ê2 ê3
∂
∂x

∂
∂y

∂
∂z

xy2 + zexz −x2y − z2y xexz





= 〈2zy, 0, −4xy〉 ,

Bn(x, y) = B · n = 〈2gy, 0, −4xy〉 · 〈2x, 2y, 1〉 = 4gxy − 4xy

= 4xy(g − 1) = −4xy(x2 + y2) ,
∫∫

S
curlF · n̂ dS =

∫∫

D
Bn(x, y) dA = −4

∫ π/2

0
sin θ cos θdθ

∫ 1

0
r5 dr

= −4 · 1

2
· 1

6
= −1

3
.

where the double integral has been converted to polar coordinates. Note
that D is the image of the rectangle D′ = [0, 1]× [0, π/2] in the polar plane.
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Finally, the line integral of F along C′ has to be evaluated. One has

F(r(t)) · r′(t) = 〈cos t sin2 t,− sin t cos2 t, cos t〉 · 〈− sin t, cos t, 0〉
= − cos t sin3 t − sin t cos3 t = − sin t cos t(sin2 t + cos2 t)

= − sin t cos t ,
∫

C′

F · dr =

∫ π/2

0

F(r(t)) · r′(t) dt = −
∫ π/2

0

sin t cos tdt = −1

2
,

∫

C
F · dr =

1

2
− 1

3
=

1

6
.

�

45.4. Geometrical Significance of the Curl. Stokes’ theorem reveals the
geometrical significance of the curl of a vector field. The line integral of a
vector field along a closed curve C is often called the circulation of a vector
field along C. Let B = ∇×F and let B0 = B(r0) at some point r0. Consider
a plane through r0 normal to a unit vector n̂. Let Sa be a simple region in
the plane such that r0 is an interior point of Sa. The unit vector n̂ defines
an orientation of Sa and, as usual, ∂Sa is the positively oriented boundary
curve of Sa. Let a be the radius of the smallest disk centered at r0 that
contains Sa. If ∆Sa is the area of Sa, consider the circulation of a vector
field F per unit area at a point r0 defined as the limit

lim
a→0+

1

∆Sa

∮

∂Sa

F · dr ,

i.e., in the limit when the region Sa shrinks to the point r0. Then by virtue
of Stokes’ theorem and the integral mean value theorem,

lim
a→0

1

∆Sa

∮

∂Sa

F · dr = lim
a→0

1

∆Sa

∫∫

Sa

B · n̂dS = B0 · n̂ = (curl F)0 · n̂

= ‖(curlF)0‖ cos θ ,

where θ is the angle between n̂ and (curlF)0, the curl of F at the point
r0. Indeed, since the function f(r) = B · n̂ is continuous on Sa, by the
integral mean value theorem there is a point ra in Sa such that the surface
integral of f equals ∆Sa f(ra). As a → 0, ra → r0 and, by the continuity
of f , f(ra) → f(r0). Thus, the circulation of a vector field per unit area
is maximal if the normal to the area element is in the same direction as
the curl of the vector field (θ = 0), and the maximal circulation equals the
magnitude of the curl.

This observation has the following mechanical interpretation illustrated
in the left panel of Fig. 45.3. Let F describe a fluid flow F = v, where v

is the fluid velocity vector field. Imagine a tiny paddle wheel in the fluid
at a point r0 whose axis of rotation is directed along n̂. The fluid exerts
pressure on the paddles, causing the paddle wheel to rotate. The work done
by the pressure force is determined by the line integral along the loop ∂Sa
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∇ × vn̂

∂Sa

n̂

S2

S1

E

n̂

Figure 45.3. Left: An illustration to the mechanical in-
terpretation of the curl. A small paddle wheel whose axis of
rotation is parallel to n̂ is placed into a fluid flow. The work
done by the pressure force along the loop ∂Sa through the
paddles causes rotation of the wheel. It is determined by the
line integral of the velocity vector field v. The work is max-
imal (the fastest rotation of the wheel) when n̂ is aligned
parallel with ∇ × v. Right: An illustration to Corollary
46.2. The flux of a vector field across the surface S1 can be
related to the flux across S2 by the divergence theorem if S1

and S2 have a common boundary and their union encloses a
solid region E.

through the paddles. The more work done by the pressure force, the faster
the wheel rotates. The wheel rotates fastest (maximal work) when its axis
n̂ is parallel to curlv because, in this case, the normal component of the
curl, (∇ × v) · n̂ = ‖∇ × v‖, is maximal. For this reason, the curl is often
called the rotation of a vector field and also denoted as rotF = ∇ ×F.

Definition 45.1. (Rotational Vector Field).
A vector field F that can be represented as the curl of another vector field
A, that is, F = ∇× A, is called a rotational vector field.

The following theorem holds (the proof is omitted).

Theorem 45.2. (Helmholtz’s Theorem).
Let F be a vector field on a bounded open region E whose components have
continuous second order partial derivatives. Then F can be decomposed into
the sum of conservative and rotational vector fields; that is, there is a func-
tion f and a vector field A such that

F = ∇f + ∇ ×A.

The vector field A is called a vector potential of the field F. The vec-
tor potential is not unique and determined up to adding the gradient of a
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function, A → A + ∇g, because

∇ × (A + ∇g) = ∇ ×A + ∇ × (∇g) = ∇ ×A

for any g that has continuous second order partial derivatives. Electromag-
netic waves are rotational components of electromagnetic fields, while the
Coulomb field created by static charges is conservative. The velocity vector
field of an incompressible fluid (like water) is a rotational vector field.

45.5. Test for a Vector Field to Be Conservative. The test for a vector field
to be conservative (Theorem 42.3) follows from Stokes’ theorem. Indeed, in
a simply connected region E, any simple, closed curve can be shrunk to a
point while remaining in E throughout the deformation. Therefore, for any
such curve C, one can always find a surface S in E such that ∂S = C (e.g.,
C can be shrunk to a point along such S). If curlF = 0 throughout E, then,
by Stokes’ theorem,

∮

C
F · dr =

∫∫

S
curlF · n̂dS = 0

for any simple closed curve C in E. Alternatively, if curlF = 0 in a simply
connected region E, then a curve C1 can be continuously deformed along a
surface S in E to a curve C2 that has the same initial and terminal points.
The path-independence property of F follows from Eq. (45.2) and, hence,
F is conservative. The hypothesis that E is simply connected is crucial. For
example, if E is the entire space with the z axis removed (see Study Problem
42.1), then the z axis always pierces through any surface S bounded by a
closed simple curve encircling the z axis, and one cannot claim that the curl
vanishes everywhere on S.

45.6. Study problems.

Problem 45.1. Prove that the flux of a continuous rotational vector field
F vanishes across any smooth, closed, and oriented surface. What can be
said about a flux in a flow of an incompressible fluid?

Solution: A continuous rotational vector field can be written as the curl
of a vector field A whose components have continuous partial derivatives,
F = ∇×A. Consider a smooth closed simple curve C in a smooth, oriented,
and closed surface S. It cuts S into two pieces S1 and S2. Since S is a
boundary of a solid connected region, it can be oriented either inward or
outward. In either case, the induced orientations of the boundaries ∂S1 and
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∂S2 are opposite: ∂S1 = −∂S2. By virtue of Stokes theorem:
∫∫

S

(∇×A) · n̂ dS =

∫∫

S1

(∇ ×A) · n̂ dS +

∫∫

S2

(∇× A) · n̂dS

=

∮

∂S1

A · dr +

∮

∂S2

A · dr

=

∮

∂S1

A · dr +

∮

−∂S1

A · dr = 0

Recall that the line integral changes its sign when the orientation of the
curve is reversed. Since the flow of an incompressible fluid is described by
a rotational vector field, the flux across a closed surface always vanishes in
such a flow. �

45.7. Exercises.
1–3. Verify Stokes’ theorem for the given vector field F and surface S by
calculating the circulation of F along ∂S and the flux of ∇ × F across S.
Choose an orientation of S.

1. F = 〈y, −x, z〉 and S is the part of the sphere x2 + y2 + z2 = 2
that lies above the plane z = 1;

2. F = 〈x, y, xyz〉 and S is the part of the plane 2x + y + z = 4 in
the first octant;

3. F = 〈y, z, x〉 and S is the part of the plane x+y + z = 0 inside the
sphere x2 + y2 + z2 = a2.

4–14. Use Stokes’ theorem to evaluate the line integral of the given vector
field F along the specified closed contour C.

4. F = 〈x + y2, y + z2, z + x2〉 and C is the triangle traversed as
(1, 0, 0) → (0, 1, 0)→ (0, 0, 1) → (1, 0, 0);

5. F = 〈yz, 2xz, exy〉 and C is the intersection of the cylinder x2 +
y2 = 1 and the plane z = 3 oriented clockwise when viewed from
above the plane;

6. F = 〈xy, 3z, 3y〉 and C is the intersection of the plane x + y = 1
and the cylinder y2 + z2 = 1, C is oriented counterclockwise when
viewed from the tip of the x axis;

7. F = 〈z, y2, 2x〉 and C is the intersection of the plane x+y+z = 5
and the cylinder x2 + y2 = 1, C is oriented counterclockwise when
viewed from the tip of the z axis;

8. F = 〈−yz, xz, 0〉 and C is the intersection of the hyperbolic
paraboloid z = y2 − x2 and the cylinder x2 + y2 = 1, C is oriented
clockwise when viewed from the tip of the z axis;

9. F = 〈z2y/2, −z2x/2, 0〉 and C is the boundary of the part of the

cone z = 1−
√

x2 + y2 that lies in the first quadrant, C is oriented
counterclockwise when viewed from the tip of the z axis;
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10. F = 〈y − z, −x, x〉 and C is the intersection of the cylinder
x2 + y2 = 1 and the paraboloid z = x2 + (y − 1)2, C is oriented
counterclockwise when viewed from the tip of the z−axis;

11. F = 〈y − z, z−x, x− y〉 and C is the ellipse x2 + y2 = a2, (x/a)+
(z/b) = 1, a > 0, b > 0, oriented positively when viewed from the
tip of the z axis;

12. F = 〈y + z, z + x, x + y〉 and C is the ellipse x = a sin2 t, y =
2a sin t cos t, z = a cos2 t, 0 ≤ t ≤ π, oriented in the direction of
increasing t;

13. F = 〈y2 − z2, z2 − x2, x2 − y2〉 and C is the intersection of the
boundary surface of the cube [0, a] × [0, a] × [0, a] by the plane
x + y + z = 3a/2, oriented counterclockwise when viewed from the
tip of the x axis;

14. F = 〈3y2z, xyz, xy2〉 and C is the intersection of the parabolic
cylinder y = x2 with the circular cylinder x2+z2 = 1, C is oriented
clockwise when viewed from the tip of the y axis. Hint: Choose S
to be a part of the parabolic cylinder.

15. Let C be a simple, closed curve in the plane n ·r = d and let the area of
a region in the plane bounded by C be A. If C is oriented counterclockwise
when viewed from the tip of the vector n, find

∮

C
(n× r) · dr

16–18. Use Stoke’s theorem to find the work done by the given force F in
moving a particle along the specified closed curve C.

16. F = 〈−yz, zx, yx〉 and C is the triangle: (0, 0, 6) → (2, 0, 0) →
(0, 3, 0) → (0, 0, 6);

17. F = 〈−yz, xz, z2〉 and C is the boundary of the part of the
paraboloid z = 1 − x2 − y2 in the first octant that is traversed
clockwise when viewed from the tip of the z-axis;

18. F = (y + sin x, z2 + cos y, x3) and C is traversed by r(t) =
(sin t, cos t, sin(2t)) for 0 ≤ t ≤ 2π, C is oriented in the direction
of increasing t. Hint: Observe that C lies in the surface z = 2xy.

19. Find the line integral of F = (ex2 −yz, ey2 −xz, z2−xy) along C which
is the helix x = a cos t, y = a sin t, z = ht/(2π) from the point (a, 0, 0) to
the point (a, 0, h);
Hint: Supplement C by the straight line segment BA to make a closed curve
and then use Stokes’ theorem.
20. Suppose that a surface S satisfies the hypotheses of Stokes’ theorem
and the functions f and g have continuous partial derivatives. Show that:

∮

∂S
(f∇g) · dr =

∫∫

S
(∇f × ∇g) · n̂dS,
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Use the result to show that the circulation of the vector fields of the form
F = f∇f and F = f∇g + g∇f vanishes along ∂S.
21. Consider a rotationally symmetric solid. Let the solid be rotating about
the symmetry axis at a constant rate ω (angular velocity measured in radians
per unit time). Let w be the vector parallel to the symmetry axis such that
‖w‖ = ω and the rotation is counterclockwise when viewed from the tip of
w. If the origin is on the symmetry axis, show that the linear velocity vector
field in the solid is given by v = w × r where r is the position vector of a
point in the solid. Next, show that ∇×v = 2w. This gives another relation
between the curl of a vector field and rotations.
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46. Gauss-Ostrogradsky (Divergence) Theorem

46.1. Divergence of a Vector Field.

Definition 46.1. (Divergence of a Vector Field).
Suppose that a vector field F = 〈F1, F2, F3〉 is differentiable. Then the scalar
function

divF = ∇ ·F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
is called the divergence of a vector field.

Example 46.1. Find the divergence of the vector field

F = 〈x3 + cos(yz), y + sin(x2z), xyz〉 .

Solution: One has

divF = (x3 + cos(yz))′x + (y + sin(x2z))′y + (xyz)′z = 3x2 + 1 + yx.

�

Corollary 46.1. A rotational vector field whose components have con-
tinuous partial derivatives is divergence free,

div curlA = 0 .

Proof. By definition, a rotational vector field has the form F = curlA =
∇ ×A, where the components of A have continuous second partial deriva-
tives because, by the hypothesis, the components of F have continuous par-
tial derivatives. Therefore,

divF = div curl A = ∇ · curl A = ∇ · (∇× A) = 0

by the rules of vector algebra (the triple product vanishes if any two vectors
in it coincide). These rules are applicable because the components of A

have continuous second partial derivatives (Clairaut’s theorem holds for its
components; see Section 42.3). �

Laplace operator. Let F = ∇f . Then divF = ∇ · ∇f = f ′′
xx + f ′′

yy + f ′′
zz .

The operator ∇ · ∇ = ∇
2 is called the Laplace operator.

46.2. Another Vector Form of Green’s Theorem. Green’s theorem relates
a line integral along a planar closed smooth simple curve C of the tangential
component of a planar vector field to the flux of its curl across the region D
bounded by C. Let us investigate the line integral of the normal component
of a vector field. If a vector function r(t) = 〈x(t), y(t), 0〉, a ≤ t ≤ b, traces
out the boundary C of D in the positive (counterclockwise) direction, then
the vectors

T̂(t) =
1

‖r′(t)‖
〈

x′(t), y′(t), 0
〉

, n̂(t) =
1

‖r′(t)‖
〈

y′(t), −x′(t), 0
〉

,

T̂ · n̂ = 0 ,
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are the unit tangent vector and the outward unit normal vector to the curve
C, respectively. That n̂ is directed outward the region D can easily be
understood from the right-hand rule for the direction of the cross product.
Indeed, the direct evaluation of the cross product shows that it is parallel
to the z axis:

n̂× T̂ =
1

‖r′(t)‖2
〈0, 0, (x′(t))2 + (y′(t))2〉 = 〈0, 0, 1〉 = ê3 .

On the other hand, under the condition that T̂ defines the counterclockwise
orientation of C, the cross product n̂×T̂ points in the direction of the z axis
if and only if n̂ is the outward normal. Similarly, if the parameterization of
C is such that T̂ defines the clockwise orientation of C, then n̂ defined by
the above equation is the inward normal.

Consider the line integral
∮

C

F · n̂ ds

of the normal component of a planar vector field F along C. One has
ds = ‖r′(t)‖dt, and hence

F · n̂ ds = F1y
′ dt − F2x

′ dt = F1 dy − F2 dx = G · dr,

where G = 〈−F2, F1〉. By Green’s theorem applied to the line integral of
the vector field G,
∮

C

F · n̂ ds =

∮

C

G · dr =

∫∫

D

(∂G2

∂x
− ∂G1

∂y

)

dA =

∫∫

D

(∂F1

∂x
+

∂F2

∂y

)

dA.

The integrand in the double integral is the divergence of F. Thus, another
vector form of Green’s theorem has been obtained:

∮

∂D
F · n̂ ds =

∫∫

D
divF dA.

For a planar vector field (think of a mass flow on a plane), the line integral
on the left side can be viewed as the outward flux of F across the boundary
of a region D (e.g., the mass transfer by a planar flow across the boundary
of D) . An extension of this form of Green’s theorem to three-dimensional
vector fields is known as the divergence or Gauss-Ostrogradsky theorem.

46.3. The Divergence Theorem. Let a solid region E be bounded by a
closed smooth orientable surface S. If the surface is oriented outward (the
normal vector points outside of E), then it is denoted S = ∂E (the inward
oriented boundary of a solid region is then −∂E).

Theorem 46.1. (Gauss-Ostrogradsky (Divergence) Theorem).
Suppose E is a bounded, closed region in space that has a piecewise-smooth
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boundary ∂E (oriented outward). If components of a vector field F have
continuous partial derivatives in an open region that contains E, then

∫∫

∂E
F · n̂ dS =

∫∫∫

E
divF dV.

The divergence theorem states that the outward flux of a vector field
across a closed surface S is given by the triple integral of the divergence of
the vector field over the solid region bounded by S. It provides a convenient
technical tool to evaluate the flux of a vector field across a closed surface.

Remark. It should be noted that the boundary ∂E may contain several
disjoint pieces. For example, let E be a solid region with a cavity. Then ∂E
consists of two pieces, the outer boundary and the cavity boundary. Both
pieces are oriented outward in the divergence theorem.

Green’s and divergence theorems are two- and three-dimensional exten-
sions of the fundamental theorem of calculus:

∫ b

a

df(x)

dx
dx = f(b)− f(a) .

It it relates the integral of the derivative to values of the function on the
boundary of the region of integration, much like Green’s and divergence
theorems.

Example 46.2. Evaluate the outward flux of the vector field F = 〈xz , xy , yz〉
across the boundary of the cube E = [0, 1]× [0, 1]× [0, 1].

Solution: The components of the vector fields are polynomials and there-
fore have continuous partial derivatives everywhere. The boundary of the
cube is a piecewise smooth surface. So the hypotheses of the divergence
theorem are fulfilled. One has

divF = (xz)′x + (xy)′y + (yz)′z = z + x + y ,
∫∫

∂E

F · n̂dS =

∫∫∫

E

divF dV =

∫ 1

0

∫ 1

0

∫ 1

0

(x + y + z) dxdydz

=
1

2
+

1

2
+

1

2
=

3

2
,

where Fubini’s theorem has been used to evaluate the triple integral. �

Example 46.3. Evaluate the inward flux of the vector field

F = 〈4xy2z + ez , 4yx2z , z4 + sin(xy)〉
across the closed surface that is the boundary of the part of the ball x2 +y2 +
z2 ≤ R2 in the first octant.

Solution: The divergence of the vector field is

divF = (4xy2z + ez)′x + (4yx2z)′y + (z4 + sin(xy))′z = 4z(x2 + y2 + z2).
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By the hypotheses of the divergence theorem, the boundary of a solid region
must be oriented outward. Since the reversal of an orientation of the surface
changes the sign of the flux,

∫∫

S
F · n̂ dS = −

∫∫∫

E
4z(x2 + y2 + z2) dV = −

∫∫∫

E′

4ρ3 sinφJdV ′

= −
∫ π/2

0

dθ

∫ π/2

0

cos φ sinφ dφ

∫ R

0

4ρ5 dρ

= −π

2
· 1

2
· 4R6

6
= −πR6

6
,

where the triple integral has been converted to spherical coordinates, dV =
JdV ′, J = ρ2 sinφ, and the region E is the image of the rectangular box
E ′ = [0, R]× [0, π/2]× [0, π/2] spanned by spherical coordinates. The reader
is advised to try to evaluate the flux without using the divergence theorem
to appreciate the power of the latter! �

The divergence theorem can be used to change (simplify) the surface of
integration in a flux integral.

Corollary 46.2. (Changing the Surface in a Flux Integral)
Let the (outward oriented) boundary ∂E of a solid region E be the union of
two surfaces S1 and S2 that have a common boundary curve and no other
common points. Suppose that all the hypotheses of the divergence theorem
hold. Then

(46.1)

∫∫

S2

F · n̂ dS =

∫∫∫

E
divF dV −

∫∫

S1

F · n̂dS.

Proof. The flux of a vector field F across ∂E is the sum of the flux
integrals over S1 and S2 (see Fig. 45.3 (right panel)). On the other hand,
the integral over ∂E can be expressed as a triple integral by the divergence
theorem, which establishes the stated relation between the fluxes across S1

and S2. �

Note that the surfaces S1 and S2 in Eq. (46.1) are oriented by an outward
normal. If, for example, S1 is oriented by an inward normal (relative to the
solid E the surfaces S1 and S2 enclose), then the sign of the flux integral
over S1 is reversed in Eq. (46.1).

Example 46.4. Evaluate the upward flux of the vector field

F = 〈z2 tan−1(y2 + 1) , z4 ln(x2 + 1) , z〉
across the part of the paraboloid z = 2 − x2 − y2 that lies above the plane
z = 1.

Solution: Consider the solid E bounded by the paraboloid and the plane
z = 1 (see the left panel of Fig. 46.1). Let S2 be the part of the paraboloid
that bounds E and let S1 be the part of the plane z = 1 that bounds E.
If S2 is oriented upward and S1 is oriented downward, then the boundary
of E is oriented outward, and Corollary 46.2 applies. The surface S1 is
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x y

z

2

1

1 1

n

E S2

S1

n

D

F

Ea

div F > 0

F

Ea

div F < 0

Figure 46.1. Left: An illustration to Example 46.4. The
solid region E is enclosed by the paraboloid z = 2 − x2 − y2

and the plane z = 1. By Corollary 46.2, the flux of a vector
field across the part S2 of the paraboloid oriented upward
can be converted to the flux across the part S1 of the plane
z = 1 oriented downward. The union of S1 and S2 is a closed
surface oriented outward. Right: The divergence of a vector
field F determines the density of sources of F. If divF > 0
at a point, then the flux of F across a surface that encloses a
small region Ea containing the point is positive (a “faucet”).
If divF < 0 at a point, then the flux of F across a surface that
encloses a small region Ea containing the point is negative (a

“sink”).

the part of the plane z = 1 bounded by the curve of intersection of the
paraboloid and the plane: 1 = 2 − x2 − y2 or x2 + y2 = 1. So S2 is
the graph z = g(x, y) = 1 over D, which is the disk x2 + y2 ≤ 1. The
downward normal vector to S1 is n = 〈g′x, g′y,−1〉 = 〈0, 0,−1〉, and hence
Fn = F · n = −F3(x, y, g) = −F3(x, y, 1) = −1 on S1 and

∫∫

S1

F · n̂ dS =

∫∫

D
Fn(x, y) dA = −

∫∫

D
dA = −A(D) = −π.

Next, the divergence of F is

divF = (z2 tan−1(y2 + 1))′x + (z4 ln(x2 + 1))′y + (z)′z = 0 + 0 + 1 = 1.

Hence,
∫∫∫

E
divF dV =

∫∫∫

E
dV =

∫ 2π

0

∫ 1

0

∫ 2−r2

1
r dz dr dθ

= 2π

∫ 1

0
(1 − r2)r dr =

π

2
,
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where the triple integral has been converted to cylindrical coordinates for

E = {(x, y, z)|zbot = 1 ≤ z ≤ 2 − x2 − y2 = ztop , x2 + y2 ≤ 1} ,

which is the image of the region E ′ : 1 ≤ z ≤ 2 − r2 and (r, θ) span the
rectangle D′ = [0, 1]× [0, 2π]. The upward flux of F across the paraboloid
is now easy to find by Corollary 46.2:

∫∫

S2

F · n̂dS =

∫∫∫

E
divF dV −

∫∫

S1

F · n̂ dS =
π

2
+ π =

3π

2
.

�

The reader is again advised to try to evaluate the flux directly via the surface
integral to appreciate the power of the divergence theorem!

Corollary 46.3. The flux of a rotational vector field, whose compo-
nents have continuous partial derivatives, across an oriented, closed, piecewise-
smooth surface S vanishes:

∫∫

S
curlA · n̂dS = 0.

Proof. The hypotheses of the divergence theorem are fulfilled. Therefore,
∫∫

S
curlA · n̂dS =

∫∫∫

E
div curl A dV = 0

by Corollary 46.1. �

By Helmholtz’s theorem, a vector field can always be decomposed into
the sum of conservative and rotational vector fields. It follows then that
only the conservative component of the vector field contributes to the flux
across a closed surface:

div(∇f + ∇ ×A) = ∇
2f + ∇ · (∇ ×A) = ∇

2f

So the divergence of a vector field is determined by the action of the Laplace
operator on a scalar potential f of the vector field. This observation is
further elucidated with the help of the concept of sources of a vector field.

46.4. Sources of a Vector Field. Consider a region Ea of volume ∆Va whose
(outward oriented) boundary ∂Ea is a connected surface (Ea has no cavities).
Let r0 be an interior point of Ea. Let a be the radius of the smallest ball
that contains Ea and is centered at r0. Let us calculate the outward flux per
unit volume of a vector field F across the boundary ∂Ea, which is defined
as the limit of the ratio

lim
a→0+

1

∆Va

∫∫

∂Ea

F · n̂ dS .

Suppose that components of F have continuous partial derivatives. By virtue
of the divergence theorem and the integral mean value theorem,

lim
a→0

1

∆Va

∫∫

∂Ea

F · n̂ dS = lim
a→0

1

∆Va

∫∫∫

Ea

divF dV = divF(r0).
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Indeed, by the continuity of divF and the integral mean value theorem,
there is a point ra in Ea such that the triple integral equals ∆Va divF(ra).
In the limit a → 0+, ra → r0 and divF(ra) → divF(r0) by continuity of
partial derivatives of F. Thus, if the divergence is positive divF(r0) > 0,
the outward flux of the vector field across any small surface around r0 is
positive. This, in turn, means that the flow lines of F are outgoing from
r0 as if there is a source creating a flow at r0. Following the analogy with
water flow, such a source is called a faucet (see the right panel of Fig. 46.1).
If divF(r0) < 0, the outward flux across any small surface around r0 is
negative, which means that the inward flux is positive. Therefore the flow
lines should go toward r0. Such a source is called a sink again by analogy
with water flow. Thus,

• the divergence of a vector field determines the density of sources of
a vector field.

For example, flow lines of a static electric field originate from positive electric
charges and end on negative electric charges. The divergence of the electric
field determines the electric charge density in space.

The divergence theorem states that the outward flux of a vector field
across a closed surface is determined by the total source of the vector field
in the region bounded by the surface. In particular, the outward flux of
the electric field E across a closed surface S is determined by the total
electric charge in the region enclosed by S. In contrast, the magnetic field
B is a rotational vector field and, hence, is divergence free. So there are
no magnetic charges also known as magnetic monopoles. These two laws of
physics are stated in the form:

divE = 4πσ, div B = 0

where σ is the density of electric charges. Flow lines of a static magnetic
field are closed, while flow lines of a static electric field end at points where
electric charges are located (just like indicated by arrows in the right panel
of Fig. 46.1).

Remark. Magnetic monopoles are forbidden by the laws of classical electro-
magnetism. However the laws of quantum physics, which are more general
than the laws of classical physics, allow for magnetic monopoles to exist if
their magnetic charge is determined by the electric charge of an electron in
a certain way. Such magnetic monopoles are known as Dirac monopoles.
As of now, no Dirac monopole or a similar particle predicted by modern
fundamental laws of physics have been found despite an extensive search.

46.5. Study Problems.

Problem 46.1. (Volume of a solid as the surface integral)
Let E be bounded by a piecewise smooth surface S = ∂E oriented by an
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outward unit normal vector n̂ = 〈n1, n2, n3〉. Prove that the volume of E is

V (E) =
1

3

∫∫

∂E
n̂ · r dS =

∫∫

∂E
n1x dS =

∫∫

∂E
n2y dS =

∫∫

∂E
n3z dS

Solution: Consider the vector field F = 〈x, y, z〉. Then

divF = 1 + 1 + 1 = 3 .

Then by virtue of the divergence theorem
∫∫

∂E
n̂ · r dS =

∫∫

∂E
n̂ · F dS =

∫∫∫

E
divF dV = 3

∫∫∫

E
dV = 3V (E)

and the first equality in the asserted result follows. The other equalities
are established similarly by considering the vector field F = 〈x, 0, 0〉, or
F = 〈0, y, 0〉, or F = 〈0, 0, z〉. �

46.6. Exercises.
1–8. Find the divergence of the specified vector field F in its domain. If F

contains a general function of a vector field, express divF in terms of the
operator ∇ acting on that function or vector field and simplify the action
of ∇ as much as possible.

1. F = ∇f , where f =
√

x2 + y2 + z2 ;
2. F = r/r, where r = ‖r‖ 6= 0 ;
3. F = af(r), where r = ‖r‖, f is differentiable, and a is a constant

vector;
4. F = rf(r), where r = ‖r‖ and f is differentiable. Find all f for

which the divergence vanishes everywhere except possibly at r = 0 ;
5. F = ag where a is a constant vector and ∇g is continuous and

vanishes nowhere. If the divergence of F vanishes everywhere, what
can be said about level sets of g?

6. F = a × r, where a is a constant vector;
7. F = a × ∇g, where a is a constant vector;
8. F = a ×G where a is a constant vector.

9–12. Prove each of the following identities assuming that the appropriate
partial derivatives of vector fields and functions exist and are continuous.

9. div (fF) = fdivF + F ·∇f ;
10. div (F ×G) = G · curl F −F · curl G ;
11. div (∇f × ∇g) ;
12. curl curl F = ∇(divF)− ∇

2F .

13. Let a be a fixed vector and n̂ be the unit normal to a planar closed
curve C directed outward from the region bounded by C. Show that

∮

C

a · n̂ds = 0 .

14. Let C be a simple closed smooth curve in the xy plane and n̂ be the
unit normal to C directed outward from the region D bounded by C. If
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A(D) is the area of D, find
∮

C r · n̂ds.
15–16. Verify the divergence theorem for the given vector field F on the
region E by calculating both sides of the equation stated in the divergence
theorem.

15. F = 〈3x, yz, 3xz〉 and E is the rectangular box [0, a]×[0, b]×[0, c] ;
16. F = 〈3x, 2y, z〉 and E is the solid bounded by the paraboloid

z = a2 − x2 − y2 and the plane z = 0 .

17. Let a be a constant vector and S be a closed smooth surface oriented
outward by the unit normal vector n̂. Prove that

∫∫

S
a · n̂ dS = 0 .

18–30. Evaluate the flux of the given vector field F across the specified
closed oriented surface S. In each case, determine the kind of source of F

in the region enclosed by S (sink or faucet).

18. F = 〈x2, y2, z2〉 and S is the boundary of the rectangular box
[0, a]× [0, b]× [0, c] oriented outward;

19. F = 〈x3, y3, z3〉 and S is the sphere x2 + y2 + z2 = R2 oriented
inward;

20. F = 〈xz, yz +sin(xz), cos(yx)〉 and S is the boundary of the solid
enclosed by the parabolic cylinder z = 1−x2 and the planes z = 0,
y = 0, y + z = 1. S is oriented outward;

21. F = 〈−xy2, −yz2, zx2〉 and S is the sphere x2 + y2 + z2 = 1
oriented inward;

22. F = 〈xy, z2y, zx〉 and S is the boundary of the solid region inside
the cylinder x2 + y2 = 4 and between the planes z = ±2. S is
oriented outward;

23. F = 〈xz2, y3/3, zy2 + xy〉 and S is the boundary of the part of
the ball x2 + y2 + z2 ≤ 1 in the first octant oriented inward;

24. F = 〈yz, z2x + y, z − xy〉 and S is the boundary of the solid

enclosed by the cone z =
√

x2 + y2 and the sphere x2 +y2 +z2 = 1
oriented outward;

25. F = 〈x + tan(yz), cos(xz)− y, sin(xy) + z〉 and S is the boundary
of the solid region between the sphere x2 + y2 + z2 = 2z and the

cone z =
√

x2 + y2 oriented outward;
26. F = 〈tan(yz), ln(1+ z2x2), z2 + eyx〉 and S is the boundary of the

smaller part of the ball x2 + y2 + z2 ≤ a2 between two half-planes
y = x/

√
3 and y =

√
3x, x ≥ 0, oriented inward;

27. F = 〈xy2, xz, zx2〉 and S is the boundary of the solid bounded by
two paraboloids z = x2 + y2 and z = 1 + x2 + y2 and the cylinder
x2 + y2 = 4, oriented outward;

28. F = 〈x, y, z〉 and S is the boundary of the solid obtained from the
box [0, 2a] × [0, 2b] × [0, 2c] by removing the smaller box [0, a] ×
[0, b]× [0, c]. S is oriented inward;
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29. F = 〈x − y + z, y − z + x, z − x + y〉 and S is the surface |x −
y + z| + |y − z + x| + |z − x + y| = 1 oriented outward. Hint: Use
a suitable change of variables in the triple integral to simplify the
equation of the boundary;

30. F = 〈x3, y3, z3〉 and S is the sphere x2 + y2 + z2 = x oriented
outward.

31. Let S1 and S2 be two smooth oriented surfaces that have the same
boundary and non-intersecting otherwise. Suppose that F = curl A and
components of F have continuous partial derivatives. Compare the fluxes of
F across S1 and S2.
32–35. Use the divergence theorem to find the flux of the given vector field
F across the specified surface S by an appropriate deformation of S.

32. F = 〈xy2, yz2, zx2 + x2〉 and S is the top half of the sphere
x2 + y2 + z2 = 4 oriented toward the origin;

33. F = 〈z cos(y2), z2 ln(1+x2), z〉 and S is the part of the paraboloid
z = 2 − x2 − y2 above the plane z = 1, S is oriented upward;

34. F = 〈yz, xz, xy〉 and S is the cylinder x2 + y2 = a2, 0 ≤ z ≤ b,
oriented outward from its axis of symmetry;

35. F = 〈y tan z + x3, x2z3, xy〉 and S is the part of the cone z =

1−
√

x2 + y2 that lies above the xy plane and is oriented upward.

36. The electric field E and the charge density σ are related by the Gauss
law divE = 4πσ. Suppose the charge density is constant, σ = k > 0, inside
the sphere x2 + y2 + z2 = R2 and zero otherwise. Find the outward flux of
the electric field across the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1 in the two
following cases: first, when R is greater than any of a, b, c; second, when R
is less than any of a, b, c.
37. Let F be a vector field such that divF = σ0 = const in a solid bounded
region E and divF = 0 otherwise. Let S be a closed smooth surface oriented
outward. Consider all possible relative positions of E and S in space (the
solid region bounded by S has or does not have an overlap with E). If V is
the volume of E, what are all possible values of the flux of E across S?
38. Use the vector form of Green’s theorem to prove the Green’s first and
second identities:

∫∫

D
f∇

2gdA =

∮

∂D
(f∇g) · n̂ds −

∫∫

D
g∇

2fdA

∫∫

D
(f∇

2g − f∇
2g)dA =

∮

∂D
(f∇g − g∇f) · n̂ds

where D satisfy the hypotheses of Green’s theorem and the appropriate
partial derivatives of f and g exist and are continuous.
39–41. Use the result of Study Problem 46.1 to find the volume of a solid
bounded by the specified surfaces.

39. The planes z = ±c and the parametric surface x = a cosu cos v +
b sinu sin v, y = a cosu sin v − b sinu cos v, z = c sinu ;
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40. The planes x = 0 and z = 0 and the parametric surface x = u cos v,
y = u sinv, z = −u + a cos v where u ≥ 0 and a > 0 ;

41. The torus x = (a+R cos u) cosv, y = (a+R cosu) sin v, z = R sinu .

42. Use the results of Study Problem 42.3 to express the divergence of a
vector field in the cylindrical and spherical coordinates:

∇ · F =
1

r

∂(rFr)

∂r
+

1

r

∂Fθ

∂θ
+

∂Fz

∂z

∇ · F =
1

ρ2

∂(ρ2Fρ)

∂ρ
+

1

ρ sinφ

(

∂(sinφFφ)

∂φ
+

∂Fθ

∂θ

)

Hint: Show ∂ êρ/∂φ = êφ, ∂ êρ/∂θ = sin θ êθ, and similar relations for
partial derivatives of other unit vectors.
43. Use the results of Study Problem 42.3 to express the Laplace operator
in the cylindrical and spherical coordinates:

∇
2f =

1

r

∂

∂r

(

r
∂f

∂r

)

+
1

r2

∂2f

∂2θ
+

∂2f

∂z2

∇
2f =

1

ρ2

∂

∂ρ

(

ρ2∂f

∂ρ

)

+
1

ρ2 sinφ

∂

∂φ

(

sinφ
∂f

∂φ

)

+
1

ρ2 sin2 φ

∂2f

∂θ2

Hint: Show ∂ êρ/∂φ = êφ, ∂ êρ/∂θ = sin θ êθ, and similar relations for
partial derivatives of other unit vectors.
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Selected Answers and Hints to Exercises

Section 41.6. 17. 31
40 . 18. 0. 19. 944

105 . 20. π
2a2. 21. π

2a2. 22. r2 · (a× r1).
24. 0. 25. −π.

Section 42.6. 1. 〈0, xy,−y2 − xy〉. 2. 〈−y cos(yz),−x sin(xz), 0〉. 3. 0.
4. 〈−1

z , 1
z ,−1

y 〉. 5. 2a. 9. x2y + y2z3 + z + c. 10. xyz + y2 cos z + c. 11.

xey − yz2 + c. 17. 39. 18. 2
3 . 19. −ab2.

Section 43.5. 1. −5
3 . 2. 0. 3. 15

4 π. 4. −3
2πa4. 12. −2. 13. 1

2qa2. 16.

πab. 17. 3πa2.

Section 44.5. 1. aA, bA, or cA if the surface is in the yz, xz, or xy planes,
respectively. 2. 3

2abc. 3. 0. 4. 0. 5. 0. 8. 7
12 . 9. −π

3 . 10. 0. 11. −π
6 R3.

13. 24. 15. 13
15 − π

8 . 18. 4π(R3 − a3).

Section 45.7. 4. −1. 5. −3π. 6. 0. 7. −π. 9. 0. 10. −6π. 14. 0. 15.

2‖n‖A. 17. 0. 18. −π. 19. 1
3h3.

Section 46.6. 1. 2
r , r = ‖r‖ 6= 0. 2. 2

r , r = ‖r‖ 6= 0. 6. 0. 7. 0. 13. Hint:
Use the form of Green’s theorem as the divergence theorem for planar vector
fields. 14. 2A. 15. 3abc+ 1

2abc2 + 3
2a2bc. 16. 3πa4. 18. a2bc+ab2c+abc2,

faucet. 19. −12
5 πR5, faucet. 20. 16

35 , faucet. 21. 4
15π, sink. 22. 64

3 π,

faucet. 23. − π
10 , faucet. 24. 4π

3 (1 − 1√
2
), faucet. 25. π, faucet. 26. 0, no

source. 32. −84
5 π. 33. 3π

2 . 36. 16π2kabc/3 (first) and 16π2kR3/3 (second).
37. The flux changes from 0 to σ0V (when S encloses E).


