
Placement Exam with solutions, MAC 3474 Honors Calculus III, Fall 2024

1 (8 pts). Assess each of the following statements as TRUE or FALSE. If the answer is FALSE,
then support your answer by a counter example to the statement.
(i) Any bounded monotonic sequence of real numbers has a limit.
(ii) The limit of a convergent sequence of rational numbers is a rational number.
(iii) A continuous function on a bounded open interval (boundary points are not in the interval)
always attains its maximal and minimal values in the interval.
(iv) Suppose that the derivative f ′(x) is continuous for x < 0 and x > 0. Suppose further that
f ′(x) → 2 as x → 0+ (the right limit) and f ′(x) → −1 as x → 0− (the left limit). Then the
function f cannot be continuous at x = 0.
(v) Let an and bn be numerical sequences such that the sum an + bn converges to some number c
Then an and bn converge to numbers a and b, respectively, and c = a + b.
(vi) If the function f is not continuous on an interval [a, b], then the integral of f over this interval
does not exist.
(vii) The integral

∫ b
a f(x)dx exists for every function f that is continuous on an open interval (a, b).

(viii) If the derivative of a function vanishes throughout the domain of the function, then the func-
tion is constant on its domain.

Solution: (i) TRUE.
(ii) FALSE. Take a sequence of a decimal expansion of

√
2: 1, 1.4, 1.41, 1.414 and so on. This a

sequence of rational numbers that converges to an irrational number.
(iii) FALSE. Take f(x) = tan(x) on the interval (−π

2
, π

2
). It is continuous and monotonically

increasing taking all real values. So, it has no maximal or minimal value.
(iv) FALSE. Let f(x) = 2x if x > 0 and f(x) = −x if x ≤ 0. This function is continuous at x = 0
and f ′(x) has the above properties.
(v) FALSE. Let an = n and bn = −n. These sequences have no limit. But an + bn = 0 and, hence,
the limit is zero.
(vi) FALSE. Let [a, b] = [0, 2] and f(x) = 1 if x ∈ [0, 1) and f(x) = 2 if x ∈ [1, 2]. The integral of
f over [0, 2] is the area under the graph of f and is equal to 1 + 2 = 3.
(vii) FALSE. Let (a, b) = (0, 1) and f(x) = 1

x
. Then the area under the graph is infinite (the

improper integral diverges). (viii) FALSE. Let the domain be the union of two disjoint interval,
e.g., D = (0, 1) ∪ (2, 3), and f(x) = 1 if x ∈ (0, 1) and f(x) = 2 if x ∈ (2, 3). Then f ′(x) = 0 in D
but f(1

2
) 6= f(3

2
) so f is not constant in D.

2 (1 pt). Let f(x) = ax+b. Find all values of a and b such that the composition f(f(x)) = 4x−9.

Solution: The following relation must hold for all x:

f(f(x)) = a(ax+ b)+ b = 4x−9 ⇒ a2 = 4 , b(a+1) = −9 ⇒ (a, b) = (2,−3) or (−2, 3) .

3 (1 pt). Over which points of the x axis are the tangent lines to the graphs of f(x) = x3 + 8 and
g(x) = 3x2 − 3x + 9 parallel?

Solution: Tangent lines are parallel if they have the same slopes. The slope of a tangent
line to the graph y = f(x) at x = a is the derivative f ′(a). Therefore

f ′(x) = g′(x) ⇒ 3x2 = 6x − 3 ⇒ (x − 1)2 = 0 ⇒ x = 1 .

4 (1 pt). For which values of a, b, and c, is it true that the graphs of f(x) = x2 + ax + b and
g(x) = x2 + cx have the same tangent line at the point (x, y) = (2, 2).



Solution: The line through (2, 2) is y = 2 + m(x − 2) where m is the slope. The slopes of
the tangent lines must be same. Therefore

f ′(2) = g′(2) ⇒ 4 + a = 4 + c ⇒ a = c

The graphs must also contain the point (2, 2). Therefore

f(2) = 2 , g(2) = 2 ⇒ 4 + 2a + b = 2 , 4 + 2c = 2 ⇒ a = c = −1 , b = 0 .

5 (3 pts). Let f(x) = x2 for x being a rational number, and f(x) = 1 otherwise. Find each of the
following limits or show that the limit does not exist:

(i) lim
x→1

f(x) , (ii) lim
x→0

f(x) , (iii) lim
x→∞

(ln(f(x))2024

x

Solution: Recall that f(x) → A when x → a means that values of f can get arbitrary close to
A and stay arbitrary close to A for all x close enough to a. Let us verify these two conditions for
the limits in question.
(i) There are rational numbers arbitrary close to 1. Therefore values of f can get arbitrary close
to 12 = 1 by continuity of x2. The values of f stay arbitrary close to 1 because if x is not rational,
then f(x) = 1 . So limx→1 f(x) = 1.
(ii) There are rational numbers arbitrary close to 0. Therefore the values of f can get arbitrary
to 02 = 0 by continuity of x2. However the values of f do not stay arbitrary close to 0 because
there are irrational numbers arbitrary close to 0 where f(x) = 1. Thus, the limit does not exist.
(iii) There are arbitrary large rational numbers. Therefore ln(f(x)) = ln(x2) = 2 ln(x) and

lim
x→∞

22024(lnx)2024

x
= 0

because any power of the log function is increasing slower than any power function. By l’Hospital’s
rule

lim
x→∞

(lnx)n

x
= lim

x→∞

n
x
(lnx)n−1

1
= n lim

x→∞

(lnx)n−1

x
= · · · = n! lim

x→∞

1

x
= 0

for any positive integer n. So, the values of f can get arbitrary close to 0 as x → ∞. They also stay
arbitrary close to 0 for all large enough x because if x is not rational, then ln(f(x)) = ln(1) = 0.
Thus, the limit exists and is equal to 0.

6 (2 pts). Let f(x) = |x|q sin( 1

x2 ) if x 6= 0 and f(0) = c, where 1 < q < 2.
(i) Find c for which f is continuous everywhere or show that no such c exists;
(ii) Is f is differentiable at x = 0 for some value of c? If so, find f ′(0).

Solution: (i) The functions |x|q is continuous everywhere. The function sin( 1

x2 ) is continu-
ous for all x 6= 0 as the composition of two continuous functions. So, f is continuous at any x 6= 0.
The continuity at x = 0 requires that

f(0) = lim
x→0

f(x) ⇒ c = lim
x→0

|x|q sin
( 1

x2

)

= 0

because |x|q| sin(u(x))| ≤ |x|q → 0 as x → 0 for any u(x) (the sine function takes values in [−1, 1]).
(ii) The function f(x) is differentiable for x 6= 0 because power functions and the sine function are



differentiable for x 6= 0. Continuity at x = 0 is necessary for differentiability (every differentiable
function is continuous). So, c = 0 is necessary. By definition of the derivative

f ′(0) = lim
x→0

f(x) − f(0)

x
= lim

x→0
|x|q−1

( 1

x2

)

= 0

by the same argument because q − 1 > 0.

7 (1 pt). A tangent line to the curve x2/3 + y2/3 = 1 meets the x axis at A and the y axis
at B. Show that the distance between A and B does not depend on the point of the curve at
which the tangent line is constructed.

Solution: Let a point (a, b) be on the curve. The tangent line is y = b + m(x − a) where
the slope m is obtaned by the implicit differentiation:

2

3
x− 1

3 dx +
2

3
y− 1

3 dy = 0 ⇒ dy

dx
= −

(y

x

)
1

3 ⇒ m = −
( b

a

)
1

3

The line meets the y axis at B = (0, b − ma) and the x axis at A = (a − b/m, 0). The distance
squared between A and B reads

|AB|2 = (b − ma)2 + (a − b/m)2 =
(

b + b
1

3 a
2

3

)2

+
(

a + a
1

3 b
2

3

)2

= b
2

3

(

b
2

3 + a
2

3

)2

+ a
2

3

(

a
2

3 + b
2

3

)2

= b
2

3 + a
2

3 = 1 .

So, the distance |AB| = 1 for any choice of (a, b).

8 (1 pt). A man is in a boat 1 mile from the nearest point, A, of a straight shore. He wishes to
arrive as soon as possible at a point B 3 miles along the shore from A. He can row 2 miles per
hour and walk 4 miles per hour. Where should he land?

Solution: Let x be the distance from A to the landing point. Then the distance from the
initial position to the landing points is

√
1 + x2 and 3 − x from B. The travel time as a function

of x is

T (x) =
1

2

√
1 + x2 +

1

4
(3 − x) , 0 ≤ x ≤ 3 .

The extreme values of T are attained either at x = 0 or x = 3 or in (0, 3) because T is continuous
on a closed interval [0, 3]. This is a differentiable function and, hence, T ′(x) = 0 at its minimum
in (0, 3) (if any). One has

T ′(x) =
x

2
√

1 + x2
− 1

4
= 0 ⇒ 3x2 = 1 ⇒ x =

√
3

3
.

It is not difficult to see that T (
√

3

3
) is less than T (0) = 5

4
or T (3) =

√
10

2
. So, x =

√
3

3
.

9 (1 pt). A function g is such that the second derivative g′′ is continuous on the interval [a, b]. The
equation g(x) = 0 has three different solutions in the open interval (a, b). Show that the equation
g′′(x) = 0 has at least one solution in (a, b).

Solution: Let x1, x2, and x3 be roots of g(x). Since g′′ is continuous on (a, b), the deriva-
tive g′ is also continuous on (a, b) and, hence, g must be continuous on (a, b). Therefore, by



Rolle’s theorem applied to the intervals [x1, x2] ⊂ (a, b) and [x2, x3] ⊂ (a, b) there exist two points
x′

1
∈ (x1, x2) and x′

2
∈ (x2, x3) such that g′(x′

1
) = 0 and g′(x′

2
) = 0. By Rolle’s theorem applied to

g′ in the interval [x′
1
, x′

2
], there exists a point x′′ ∈ (x′

1
, x′

2
) such that g′′(x′′) = 0 as required.

10 (1 pt). Find the area of a planar region bounded by the graphs y = x4 and y =
√

x.

Solution: The graphs are intersecting at the points where x4 =
√

x or x = 1 and x = 0.
Since x4 ≤ √

x in [0, 1], the area of a region bounded by the graphs reads

A =
∫

1

0

(
√

x − x4) dx =
(2x3/2

3
− x5

5

)
∣

∣

∣

1

0
=

2

3
− 1

5
=

7

15
.

11 (1 pt). Find the area of a planar region that is bounded by the curve
√

y +
√

x = 1 and the
coordinate axes.

Solution: The equation makes sense only if y ≥ 0 and x ≥ 0. So, the region is bounded
from above by the graph y = (1−√

x)2, obtained by solving the equation for y, and by the x axis
from below. Therefore

A =
∫

1

0

(1 −
√

x)2dx =
∫

1

0

(1 − 2
√

x + x) dx = x − 4x3/2

3
+

x2

2

∣

∣

∣

1

0
= 1 − 4

3
+

1

2
=

1

6
.

12 (4 pts). Evaluate

(i)
∫

1

−1

d

dx
arctan

(1

x

)

dx

(ii)
∫

1

0

x
√

3 − 2x dx

(iii)
∫ π

0

cos2(x) sin2(x) dx

(iv)
∫ π/2

0

sin2(
√

x)

sin2(
√

π
2
− x) + sin2(

√
x)

dx

Hint: (iv) Change the integration variable: y = π
2
− x.

Solution: (i) The function arctan( 1

x
) has a jump discontinuity at x = 0 and, hence, not differen-

tiable at x = 0 and continuously differentiable otherwise. Therefore the fundamental theorem of
calculus cannot be applied on any interval that contains x = 0. So, the integral should be viewed
as an improper integral:

∫

1

−1

d

dx
arctan

(1

x

)

dx = lim
a→0+

∫ −a

−1

d

dx
arctan

(1

x

)

dx + lim
b→0+

∫

1

b

d

dx
arctan

(1

x

)

dx

= lim
a→0+

[

arctan
(

− 1

a

)

− arctan(−1)
]

+ lim
b→0+

[

arctan(1) − arctan
(1

b

)]

= −π

2
+

π

4
+

π

4
− π

2
= −π

2
.

because the fundamental theorem of calculus applies on [−1,−a] and [b, 1].
(ii) Let s = 3 − 2x so that x = (3 − s)/2 and dx = −ds/2. One has s = 3 when x = 0 and s = 1
when x = 1. Therefore

∫

1

0

x
√

3 − 2x dx = −1

4

∫

1

3

(3 − s)
√

s ds =
1

4

∫

3

1

(3s1/2 − s3/2) ds

=
s3/2

2
− s5/2

10

∣

∣

∣

3

1
=

3
√

3 − 2

5



(iii) By the double angle formulas sin(2x) = 2 sin(x) cos(x) and sin2(a) = 1

2
(1 − cos(2a)), the

integral is reduced to

∫ π

0

cos2(x) sin2(x) dx =
1

4

∫ π

0

sin2(2x) dx =
1

8

∫ π

0

(1 − cos(4x)) dx =
x

8
− sin(4x)

32

∣

∣

∣

π

0
=

π

8

(iv) Let I denote the integral in question. Let y = π
2
− x so that dy = −dx and y = π

2
when x = 0

and y = 0 when x = π
2
. Therefore

I = −
∫

0

π/2

sin2(
√

π
2
− y)

sin2(
√

y) + sin2(
√

π
2
− y)

dy =
∫ π/2

0

sin2(
√

π
2
− y) + sin2(

√
y) − sin2(

√
y)

sin2(
√

y) + sin2(
√

π
2
− y)

dy

=
∫ π/2

0

dy − I =
π

2
− I ⇒ 2I =

π

2
⇒ I =

π

4
.

13 (2 pt). Find the limit or show that it does not exist

(i) lim
a→0

1

a

∫

2a

0

(

x2024 + x2023 + · · · + x + 1 + sin(2024x)
)2024

dx

(ii) lim
x→0

x−2024e−
1

x
2

Solution: (i) The integrand is a continuous function for all x, denoted by f(x). By the integral
mean value theorem, there exists a point xa between 0 and 2a such that

∫

2a

0

f(x) dx = 2af(xa) ⇒ lim
a→0

1

a

∫

2a

0

f(x) dx = lim
a→0

2f(xa) = 2f(0) = 2

because xa → 0 as x → 0 and by continuity of f , f(xa) → f(0).
(ii) Put s = 1

x2 . Then s → ∞ for x → 0. Therefore

lim
x→0

x−2024e−
1

x
2 = lim

s→∞
s1012e−s = lim

s→∞

s1012

es
= 1012 lim

s→∞

s1011

es
= · · · = 1012! lim

s→∞

1

es
= 0

by l’Hospital’s rule.


