MAP 2302
Final Exam
Please write your answers in full detail.

1. (6 points) Find the general solution of the equation

$$
y^{\prime \prime}+y=\tan x
$$

2. (5 points) Find the general solution of

$$
\frac{1}{x} \frac{d y}{d x}-\frac{2 y}{x^{2}}=x \cos x, \quad x>0
$$

3. (6 points)

The motion of a mass-spring system with damping is governed by the equations

$$
y^{\prime \prime}(t)+b y^{\prime}(t)+16 y(t)=0, \quad y(0)=1, y^{\prime}(0)=0
$$

Find the equation of motion and sketch its graph for $b=0,8$, and 10 .
4. (5 points) If $\mathcal{L}\{f(t)\}(s)=F(s)$ and $\mathcal{L}\{g(t)\}(s)=G(s)$ express

$$
\mathcal{L}\left\{e^{t}\left[f^{\prime}(t) *(g(t-5) u(t-5))\right]\right\}(s)
$$

in terms of $F(s)$ and $G(s)$, explaining clearly which properties of the Laplace transform you use in each step. (Pay attention to the brackets!)
5. (6 points) Solve the initial value problem

$$
y^{\prime \prime}+3 y^{\prime}+2 y=e^{-3 t} u(t-2), \quad y(0)=2, \quad y^{\prime}(0)=0
$$

6. (6 points) Find the first 4 nonzero terms of the Taylor series of the solution of the initial value problem

$$
y^{\prime \prime}+\sin y=0, \quad y(0)=1, y^{\prime}(0)=-1
$$

You may leave your answer in terms of values of the sine function.
7. (6 points) Find a the power series expansion about $x=0$ for the general solution of the differential equation.

$$
\left(x^{2}+1\right) y^{\prime \prime}-x y^{\prime}+y=0
$$

Your answer should include a general formula for the coefficients.

Formulae

$$
\begin{equation*}
\mathcal{L}\left\{e^{a t} f(t)\right\}(s)=F(s-a) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}\left\{f^{\prime}(t)\right\}(s)=s F(s)-f(0) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}\{t f(t)\}(s)=-\frac{d}{d s} F(s) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}\{f(t-a) u(t-a)\}(s)=e^{-a s} F(s) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}\{(f * g)(t)\}(s)=F(s) G(s) \tag{5}
\end{equation*}
$$

