Assignment 1 Solutions

1.3.14. Let S be a nonempty set and F a field. Let $C(S, F)$ denote the set of all functions $f \in \mathcal{F}(S, F)$ such that $f(s)=0$ for all but a finite number of elements of S. Prove that $C(S, F)$ is a subspace of $\mathcal{F}(S, F)$.

Solution. For $f \in \mathcal{F}(S, F)$, let $Q_{f}=\{s \in S: f(s) \neq 0\}$. Said another way, $\mathcal{C}(S, F)$ is the set of all functions $f \in \mathcal{F}(S, F)$ such that the set of all $s \in S$ for which $f(s) \neq 0$ is finite, i.e Q_{f} is a finite set.

Let $z: S \rightarrow F$ denote the zero function. That is, for all $s \in S, z(s):=0$. Recall that this is the zero element of $\mathcal{F}(S, F)$, and of course $z \in C(S, F)$ since it is zero everywhere so $Q_{z}=\emptyset$ (which is of course finite).

Let $c \in F$, and $f \in C(S, F)$. If $c=0$, then $c f=z \in C(S, F)$, so suppose $c \neq 0$. We need for the set $Q_{c f}$ to be finite, knowing that Q_{f} is finite. Suppose that $s \in Q_{c f}$, so that $(c f)(s) \neq 0$. Then $f(s) \neq 0$ (for if $f(s)=0$, then $(c f)(s)=c(f(s))=c \cdot 0=0$, despite that $(c f)(s) \neq 0)$, so then $s \in Q_{f}$. As s was arbitrary, we can deduce that $Q_{c f} \subseteq Q_{f}$. As Q_{f} is finite, $Q_{c f}$ must be finite! Hence $c f \in C(S, F)$.

Now suppose $f, g \in C(S, F)$ so that Q_{f} and Q_{g} are both finite. This implies that $Q_{f} \cup Q_{g}$ is finite, as the union of two finite sets is finite. Note now that $Q_{f+g} \subseteq Q_{f} \cup Q_{g}$. Indeed, suppose that $s \in Q_{f+g}$, so that $f(s)+g(s) \neq 0$. It must be the case that at least one of $f(s)$ or $g(s)$ is not zero, for it they were both zero, then $f(s)+g(s)=0+0=0$, a contradiction. If it were the case that $f(s) \neq 0$, then $s \in Q_{f} \subseteq Q_{f} \cup Q_{g}$. If it were instead that $g(s) \neq 0$, then $s \in Q_{g} \subseteq Q_{f} \cup Q_{g}$. Either way, $s \in Q_{f} \cup Q_{g}$, and as s was arbitrary, we may conclude that $Q_{f+g} \subseteq Q_{f} \cup Q_{g}$. As $Q_{f} \cup Q_{g}$ is finite, Q_{f+g} is also finite and so $f+g \in C(S, F)$.

Now, as $C(S, F)$ has the zero element of $\mathcal{F}(S, F)$, is closed under scalar multiplication, and is closed under vector addition, it is a subspace.
1.3.23. Let W_{1} and W_{2} be subspaces of a vector space V.
(a) Prove that $W_{1}+W_{2}$ is a subspace of V that contains both W_{1} and W_{2}.
(b) Prove that any subspace of V that contains both W_{1} and W_{2} must also contain $W_{1}+W_{2}$.

Solution. (a) As W_{1} and W_{2} are subspaces of V, we have $0 \in W_{1}$ and $0 \in W_{2}$ so $0=0+0 \in W_{1}+W_{2}$.
Let $v \in W_{1}+W_{2}$, and let $c \in F$. By definition, there must be $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$ such that $v=w_{1}+w_{2}$, and as these are subspaces, $c w_{1} \in W_{1}$ and $c w_{2} \in W_{2}$. Hence, $c v=c\left(w_{1}+w_{2}\right)=c w_{1}+c w_{2} \in W_{1}+W_{2}$.

Now suppose that $u, v \in W_{1}+W_{2}$. Say that $u=w_{1}+w_{2}$, and $v=t_{1}+t_{2}$, with $w_{1}, t_{1} \in W_{1}$ and $w_{2}, t_{2} \in W_{2}$. Then $w_{1}+t_{1} \in W_{1}$ and $w_{2}+t_{2} \in W_{2}$ by respective closures under addition. If follows that $u+v=\left(w_{1}+w_{2}\right)+\left(t_{1}+t_{2}\right)=\left(w_{1}+t_{1}\right)+\left(w_{2}+t_{2}\right) \in W_{1}+W_{2}$. Note that for any $a \in W_{1}$ and $b \in W_{2}, a=a+0 \in W_{1}+W_{2}$ and $b=0+b \in W_{1}+W_{2}$, so $W_{1} \subseteq W_{1}+W_{2}$ and $W_{2} \subseteq W_{1}+W_{2}$.
(b) Let $S \subseteq V$ be another subspace of V such that $W_{1} \subseteq S$ and $W_{2} \subseteq S$. We wish to show that $W_{1}+W_{2} \subseteq S$, so let $u \in W_{1}+W_{2}$ with $u=w_{1}+w_{2}, w_{1} \in W_{1}$ and $w_{2} \in W_{2}$. Then $w_{1} \in S$ and $w_{2} \in S$ so by closure of S under addition, $u=w_{1}+w_{2} \in S$.

